BioMon Sensor

Datasheet Version 1.1

SFH7050

Features:

- Multi chip package featuring 3 emitters and one detector
- Small package:
- (WxDxH) 4.7 mm x 2.5 mm x 0.9 mm
- Light Barrier to block optical crosstalk

Applications

- Heart rate monitoring
- Pulse oximetry

for:

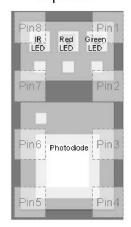
- Wearable devices (e.g. smart watches, fitness trackers, ...)
- Mobile devices

Ordering Information SFH7050 BioMon

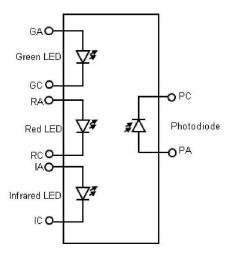
Туре:	Ordering Code
SFH7050	Q65111A6271

2016-04-20

1


Find authenticated court documents without watermarks at docketalarm.com.

Pin configuration


Pin	Name	Function
1	GC	Green LED Cathode
2	GA	Green LED Anode
3	RA	Red LED Anode
4	PA	Photodiode Anode
5	PC	Photodiode Cathode
6	RC	Red LED Cathode
7	IA	Infrared LED Anode
8	IC	Infrared LED Cathode

Top view

SFH7050

Block diagram

2

2016-04-20

DOCKET

Α

Α

SFH7050

Parameter	Symbol	Values	Unit
General			
Operating temperature range	T _{op}	-40 85	°C
Storage temperature range	T _{stg}	-40 85	°C
ESD withstand voltage (acc. to ANSI/ ESDA/ JEDEC JS-001 - HBM)	V _{ESD}	2	kV
Infrared Emitter			
Reverse Voltage	V _R	5	V
Forward current	I _{F (DC)}	60	mA
Surge current (t _p = 100 μs, D = 0)	I _{FSM}	1	A
Red Emitter			
Reverse voltage	V _R	12	V
Forward current	I _{F (DC)}	40	mA
Surge current (t _p = 100 μs, D = 0)	I _{FSM}	600	mA
Green Emitter			
Reverse voltage	V _R	not designed for reverse operation	V
Forward current	I _{F (DC)}	25	mA
Surge current ($t_p = 100 \ \mu s, D = 0$)	I _{FSM}	300	mA
Detector			
Reverse voltage	V _R	16	V

Maximum Ratings (T_A = 25 °C)

Note: The stated maximum ratings refer to single emitter chip operation, unless otherwise specified.

3

2016-04-20

SFH7050

Characteristics (T _A = 25 °C)					
Parameter		Symbol	Value	Unit	
Infrared Emitter					
Wavelength of peak emission (I _F = 20 mA, t _p = 20 ms)	(typ.)	λ_{peak}	950	nm	
Centroid Wavelength ($I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$)	(typ. (max.))	$\lambda_{centroid}$	940 (±10)	nm	
Spectral bandwidth at 50% of I_{max} (I_F = 20 mA, t_p = 20 ms)	(typ.)	Δλ	42	nm	
Half angle	(typ.)	φ	± 60	0	
Rise and fall time of I _e (10% and 90% of I _{e max}) (I _F = 100 mA, t_p = 16 µs, R _L = 50 Ω)	(typ.)	t _r , t _f	16	ns	
Forward voltage (I _F = 20 mA, t _p = 20 ms)	(typ. (max.))	V _F	1.3 (≤ 1.8)	V	
Reverse current		I _R	not designed for reverse operation	μA	
Radiant intensity (I _F = 20 mA, t _p = 20 ms)	(typ.)	l _e	2	mW / sr	
Total radiant flux (I _F = 20 mA, t _p = 20 ms)	(typ.)	Φ_{e}	5.3	mW	
Temperature coefficient of I_e or Φ_e (I_F = 20 mA, t_p = 20 ms)	(typ.)	TC	-0.3	% / K	
Temperature coefficient of V_F ($I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$)	(typ.)	TCv	-0.8	mV / K	
Temperature coefficient of $\lambda_{centroid}$ (I _F = 20 mA, t _p = 20 ms)	(typ.)	TC _{Acentroid}	0.25	nm / K	

2016-04-20

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

SFH7050

Parameter		Symbol	Value	Unit
Red Emitter				
Wavelength of peak emission (I _F = 20 mA)	(typ.)	λ_{peak}	660	nm
Centroid Wavelength (I _F = 20 mA)	(typ. (max.))	$\lambda_{centroid}$	655 (±3)	nm
Spectral bandwidth at 50% of I_{max} ($I_F = 20 \text{ mA}$)	(typ.)	Δλ	17	nm
Half angle	(typ.)	φ	± 60	0
Rise and fall time of I _e (10% and 90% of I _{e max}) (I _F = 100 mA, t _p = 16 μs, R _L = 50 Ω)	(typ.)	t _r , t _f	17	ns
Forward voltage (I _F = 20 mA)	(typ. (max.))	V _F	2.1 (≤ 2.8)	V
Reverse current	(typ. (max.))	I _R	not designed for reverse operation	μA
Radiant intensity (I _F = 20 mA, t _p = 20 ms)	(typ.)	l _e	2.6	mW / sr
Total radiant flux (I _F = 20 mA, t _p = 20 ms)	(typ.)	Φ_{e}	6.4	mW
Temperature coefficient of λ _{centroid} (I _F = 20 mA, -10°C ≤ T ≤ 100°C)	(typ.)	$TC_{\lambda centroid}$	0.13	nm / K

2016-04-20

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.