Field Guide to

Illumination

Angelo V. Arecchi Tahar Messadi R. John Koshel

MASITC_01080381

MASIMO 2054 Apple v. Masimo IPR2022-01300 **SPIE Terms of Use:** This SPIE eBook is DRM-free for your convenience. You may install this eBook on any device you own, but not post it publicly or transmit it to others. SPIE eBooks are for personal use only. For details, see the SPIE <u>Terms of Use</u>. To order a print version, <u>visit SPIE</u>.

MASITC_01080382 MASIMO 2054 Apple v. Masimo IPR2022-01300

PAGE 2 OF 154

Field Guide to

Angelo V. Arecchi Tahar Messadi R. John Koshel

> SPIE Field Guides Volume FG11

John E. Greivenkamp, Series Editor

MASITC_01080383 MASIMO 2054 Apple v. Masimo IPR2022-01300

PAGE 3 OF 154

CX-0693

Introduction to the Series

to the SPIE Field *Guides*—a series Welcome of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic. essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The SPIE Field Guides are intended to be living documents. The modular page-based presentation format allows them to be easily updated and expanded. We are interested in your suggestions for new Field Guide topics as well as what material should be added to an individual volume to make these Field Guides more useful to you.

John E. Greivenkamp, Series Editor College of Optical Sciences The University of Arizona

MASITC 01080384

The Field Guide Series

Field Guide to Geometrical Optics, John E. Greivenkamp (FG01)

Field Guide to Atmospheric Optics, Larry C. Andrews (FG02)

Field Guide to Adaptive Optics, Robert K. Tyson & Benjamin W. Frazier (FG03)

Field Guide to Visual and Ophthalmic Optics, Jim Schwiegerling (FG04)

Field Guide to Polarization, Edward Collett (FG05)

Field Guide to Optical Lithography, Chris A. Mack (FG06)

Field Guide to Optical Thin Films, Ronald R. Willey (FG07)

Field Guide to Spectroscopy, David W. Ball (FG08)

Field Guide to Infrared Systems, Arnold Daniels (FG09)

Field Guide to Interferometric Optical Testing, Eric P. Goodwin & James C. Wyant (FG10)

Field Guide to Illumination

In writing this *Field Guide* to Illumination, the first task was to decide what topics to include. Illumination tends to mean different things to different people. Certainly any subject matter under the purview of the CIE, Commission Internationale de l'Eclairage (the International Commission Illumination) Illuminating on or the Engineering Society of North America (IESNA) must be considered. Some particular areas pertaining to imaging optics systems and nonimaging are potentially overlooked. Thus, we chose to address a number of topics that fall under the following three categories: imaging system illumination, nonimaging optics for illumination, and architectural illumination, which all call upon principles of radiometry and photometry. Although this is not a guide to radiometry, enough information on the subject is included to make this manual a self-contained document. Additionally, those optical properties of materials that are pertinent to illumination, such as surface color, scattering, and retroreflection are described.

The content in this Field Guide starts with traditional illumination in imaging systems, followed by the recent advances in computer-aided design of high efficiency nonimaging illumination optics, along with the modern source models that support these techniques. Sections on the illumination of visual displays are included.

There was not enough room for a complete treatment of architectural illumination, but some important topics are included at the end of this *Field Guide* such as indoor and outdoor architectural illumination.

The notation and terminology are consistent throughout this *Guide*, but we do not lose sight of the fact that they may not be consistent in the field. Examples of alternate notation and terminology are presented.

Angelo Arecchi	Tahar Messadi	R. John Koshel
Hebron, NH	Fayetteville, AR	Tucson, AZ

Glossary	ix
Basic Quantities in Illumination	1
Flux and Irradiance	1
Solid Angle	2
Intensity, Radiance, Projected Solid Angle	3
Solid Angle and Projected Solid Angle	4
Spectroradiometric and Radiometric Quantities	5
Photometric Quantities	6
Matrix of Basic Quantities	7
Photopic and Scotopic Vision	8
Luminous Efficacy	9
Typical Values of Illumination Quantities	10
Averaged LED Intensity	11
Color	12
Light Source Color	12
Chromaticity Diagram	13
Color Temperature and CCT	14
Dominant Wavelength and Purity	15
Surface Color	16
Color of Fluorescent Surfaces	17
Color Rendering and CRI	18
Calculating CRI and Problems with CRI	19
Sources for Illumination	20
Typical Source Parameters	20
Tungsten Lamps	21
Tungsten and Sunlight	22
Fluorescent Lamps	23
H.P. Sodium and Metal Halide	24
Xenon and White LED	25
Light Emitting Diodes (LEDs)	26
Illumination Properties of Materials	27
Transmittance, Reflectance, and Absorptance	27
Reflectance Factor and BRDF	28
Harvey / ABg Scatter Model	29
Directional Properties of Materials	30

Table of Contents

vii

Table of Contents (cont.)

Retroreflectors—Geometry	31
Retroreflectors-Radiometry	32
Illumination Transfer	33
Lambertian and Isotropic Models	33
Known Intensity	34
Known Flux and Known Radiance	35
Form Factor and Average Projected Solid Angle	36
Configuration Factor	37
Useful Configuration Factor	38
Useful Form Factor	39
Irradiance from a Uniform Lambertian Disk	40
Cosine Fourth and Increase Factor	41
Known Irradiance	42
ω , Ω , NA, and <i>f</i> /# for a Circular Cone	43
Invariance of Radiance	44
Illumination in Imaging Systems	45
Image Radiance	45
Limitations on Equivalent Radiance	46
Image Irradiance	47
$f/\#$, Working $f/\#$, $T/\#$, NA, Ω	48
Flux and Étendue	49
Illumination in Nonimaging Systems	50
Generalized Étendue	50
Concentration	51
Skew Invariant	52
Fibers, Lightpipes, and Lightguides	53
Fibers—Basic Description	53
Numerical Aperture and Étendue	54
Fiber Bundles	55
Tapered Fibers and Bundles	56
Classical Illumination Designs	57
Spherical Reflector	57
Abbe Illumination	58
Köhler Illumination	59

viii

Table of Contents (cont.)

Ellipsoidal and Paraboloidal Mirrors

Illumination in Visual Afocal Systems 62	2
Uniform Illumination 63	3
Searchlight 63	3
Source at a Distance 64	ł
Mixing Rod 65	5
Bent Lightpipes 66	3
Integrating Sphere 67	7
Lenslet Arrays 68	3
Small Reflectors, Lenslet Arrays, and Facets 69)
Source Models 70)
Source Modeling Overview 70)
Source Modeling Methods 71	
LED Modeling 72)
Incandescent Lamp Modeling 73	2
Arc and Fluorescent Lamp Modeling 74	1
The and I horeseent hamp modering	L
Nonimaging Compound Concentrators 75	5
Nonimaging Compound Concentrators 75	5
Concentrators as Luminaires 76	3
Compound Parabolic Concentrators 77	7
Compound Elliptical and Hyperbolic Concentrators 78	2
Tailored-Edge-Ray Design	ן א
Faceted Reflector Design 80)
Advanced Nonimaging Ontic Design 81	,
Auvanceu Nominaging Optic Design 01	-
Displays 82	2
Displays—Overview 82	2
Backlit Display Components 83	2
Backlit Display Source and Injector 84	Ĺ
Backlit Display: Lightquides Features Reflectors 85	5
Backlit Display: Polarizore LC and BEF 86	3
Projection Displays 87	, 7
1 Tojection Displays	
Characterizing Illumination Systems 88	3
Mapping Flat-Fielding Sources 88	3
FF	

Table of Contents (cont.)

Goniophotometers	89
Types A, B, C Goniometer Coordinate Systems	90
"Snapshot" Goniophotometers	91
Software Modeling	92
Software Modeling Discussion	92
Architectural Illumination	93
Role of Light in Architecture	93
Light and Visual Performance	94
Eye Adaptation and Visual Fields	94
Apparent Brightness	95
Lighting Design	96
Lighting Design—Layering of Light	96
Luminaire for Open-Plan Office	97
Photometric Report and VCP	97
Spacing Criteria and Coefficient of Utilization	98
Daylight Compensation	99
Daylight Factor	99
Daylight Strategies	100
Exterior Lighting	101
Nighttime Visibility Criteria	101
Recommended Illuminance for Façades	102
Façade Floodlighting for Uniform Illumination	103
Illumination of Outdoor Areas	104
Special Considerations for Outdoor Fixtures	105
Parking	106
Outdoor Luminaire—Transverse Light	
Distribution	106
Outdoor Luminaire—Lateral Light Distribution	107
Roadway Lighting	108
Criteria for Roadway Lighting	108

Table of Contents (cont.)

Small Target Visibility	109
Recommended Roadway Luminaires	110
Recommended Lamps for Roadway Luminaires	111
Appendix	112
Equation Summary	112
CIE Illuminants A and D65	119
$\overline{x}, \overline{y}, \overline{z}, V(\lambda)$, and $V'(\lambda)$	122
Archaic and Arcane Units of Illumination	125
Bibliography	127
Index	133

PAGE 11 OF 154

Glossary

α	Absorptance
α	Observation angle (in retroreflection)
a_i	Input area to a compound concentrator
a_o	Output area of a compound concentrator
A	Absorbance
A_i	Illuminated area
A_r	Radiating area
a_x	Area of plane x
$a\Omega$	Throughput, étendue
C	Concentration ratio
CCT	Correlated color temperature
CIE	International Commission on Illumination
CRI	Color rendering index
d_i	Diameter of input aperture to a CPC
d_o	Diameter of output aperture of a CPC
d_s	Diameter of small aperture of a CPC
$D(\mu,\lambda)$	Donaldson matrix
E	Irradiance
E_{\perp}	Illuminance normal to the illumination
E_0	Axial irradiance
E_e	Edge irradiance
E_i	Image irradiance
E_{i0}	Axial image irradiance
E_λ	Spectral irradiance
f/#	F-number
$f/\#_{ m w}$	Working F-number
F'	Increase factor
$F_{a \ { m to} \ b}$	Form factor from a to b
$f_{ m skew}$	Skew invariant
I	Intensity
$I_{ m LED~A}$	Averaged LED intensity, CIE condition A
$I_{ m LED~B}$	Averaged LED intensity, CIE condition B
I_λ	Spectral intensity
L	Radiance
L*,a*,b*	CIE 1976 (L*a*b*) color space; CIELAB
L*,u*,v*	CIE 1976 (L*u*v*) color space; CIELUV
L_i	Image radiance
L_o	Object radiance
L_λ	Spectral radiance

MIntegrating sphere multiplier Lateral image magnification \boldsymbol{m} Index of refraction n NA Numerical aperture OD **Optical density** Purity p_e \mathbf{pf} **Packing** fraction psa Projected solid angle R**Reflectance** factor R_A Coefficient of retroreflection R_a General color rendering index R_I Coefficient of retroreflected luminous intensity R_L Coefficient of retroreflected luminance $S_{\lambda}(\lambda)$ Spectral density of a light source T Transmittance factor T/#T-number CIE 1960 UCS chromaticity coordinates u, vu', v'CIE 1976 UCS chromaticity coordinates $V(\lambda)$ Photopic luminous efficiency $V'(\lambda)$ Scotopic luminous efficiency W* U* V* CIE 1964 uniform space coordinates CIE 1931 chromaticity coordinates x, yX, Y, Z **CIE** tristimulus values X, Y, Z CIE color matching functions в Entrance angle (in retroreflection) ξ Generalized étendue λ Wavelength, emission wavelength $\lambda_{0.5m}$ Center wavelength (for LED) Centroid wavelength (for LED) λ_c λ_d Dominant wavelength Peak wavelength (for LED) λ_p **Excitation** wavelength μ Reflectance ρ Average reflectance ρ Transmittance Viewing angle (in retroreflection) υ Φ Flux Φ_{λ} Spectral flux

Glossary (cont.)

τ

Projected solid angle (psa) Ω

xiii

MASITC 01080393

MASIMO 2054 Apple v. Masimo IPR2022-01300

Glossary (cont.)

~	Colidorado
ω	Solid angle
$\Omega_{a ext{ to } b}$	Average projected solid angle from a to b
Ω_i	Input psa to a compound concentrator
Ω_o	Output psa from a compound concentrator
Ω_x	Projected solid angle viewed from plane x
Θ_i	Input half-angle of compound concentrator
Θ_o	Output half-angle from compound concentrator
θ_{max}	Maximum output half-angle from CPC

xiv

PAGE 14 OF 154

Flux and Irradiance

In examining terminology for illumination, it is useful to separate the spatial considerations from the spectral concerns. In many cases, the spatial and spectral issues are independent and can be separated without losing any generality. In other cases, the spatial and spectral issues cannot be separated physically, but it is useful to separate them conceptually. The commonly used spatial quantities are **flux**, **irradiance**, **intensity**, and **radiance**.

Flux, $\Phi,$ is the optical power or rate of flow of radiant energy.

Irradiance, E, is the flux per unit area striking a surface. Occasionally, the flux per unit area leaving a surface, called **exitance**, M, is important. However, the geometry is the same as for irradiance, so it will not be treated separately here. Furthermore, when exitance is used, it is often the flux leaving a nonphysical surface such as the exit port of an integrating sphere or the real image in an imaging system, where it is identical to the irradiance onto the surface.

The irradiance quantity itself says absolutely nothing about the directionality of the flux. For example, if the three cases in the figure below all have the same flux per unit area striking the surface, then they all have the same irradiance. Because of this ambiguity, specifications for illumination systems often qualify the irradiance quantity with an added description of the desired directional properties.

MASITC_01080395 MASIMO 2054 Apple v. Masimo IPR2022-01300 Solid Angle

The definition of intensity involves the concept of a **solid angle**. A solid angle is a 3D angular volume that is defined analogously to the definition of a plane angle in two dimensions.

A **plane angle**, θ , made up of the lines from two points meeting at a vertex, is defined by the arc length of a circle subtended by the lines and by the radius of that circle, as shown below. The dimensionless unit of plane angle is the **radian**, with 2π radians in a full circle.

A solid angle, ω , made up of all the lines from a closed curve meeting at a vertex, is defined by the surface area of a sphere subtended by the lines and by the radius of that sphere, as shown below. The dimensionless unit of solid angle is the **steradian**, with 4π steradians in a full sphere.

PAGE 16 OF 154

Intensity, Radiance, and Projected Solid Angle

Intensity, *I*, is the flux per unit solid angle. It is the amount of flux from a point source contained in a small angular volume. A source can be considered a point source for this application if the irradiance falls off as the **inverse square** of the distance from the source. Intensity, for a given source, can vary with direction.

The term "intensity" is used in many disciplines, some even closely related to optics, to mean things other than flux per unit solid angle. Use caution and rely on context to determine the meaning of the word in a particular situation.

Radiance, *L*, applies to extended sources and surfaces. It is the flux per unit solid angle per unit **projected area** of the source or surface. The projected area is the projection of the area onto a surface normal to the direction of view and is equal to the actual area times the cosine of the angle between the surface normal and the direction of view. Radiance can vary with position on a surface, and like intensity, it can vary with direction. A source or surface with constant radiance in all directions is called Lambertian. A **Lambertian source** or surface has intensity that varies with the cosine of the angle with the surface normal.

In many cases, the angle of view changes over the extent of the receiver. These cases require an alternate definition of radiance: radiance is the flux per unit area per unit **projected solid angle**. (In fact, this is the more general definition and covers the simpler case where the entire surface of the extended source is at essentially the same angle as the direction of view.)

Illumination

Solid Angle and Projected Solid Angle

The relationship between solid angle and projected solid angle can be confusing. Projected solid angle has meaning primarily for a small Lambertian source, which has intensity that varies as the cosine of the angle with the surface normal. The **projected solid angle**, Ω , is the **solid angle**, ω , weighted by the cosine of the angle with the surface normal.

When the solid angle is large enough so that the angle with the surface normal is not the same over the entire solid angle, the total projected solid angle must be computed by integrating the incremental projected solid angles. See the reference by Bartell for a more detailed explanation.

For some special cases, the integration results in simple expressions, such as for a large circular cone that is normal to a surface and subtends a half angle, θ .

A hemisphere has 2π steradians (solid angle) but π projected steradians (projected solid angle).

MASITC_01080398 _м

In the spectral dimension of illumination, the most general view looks at the spectral density—the amount of radiation per unit wavelength interval. In terms of the four spatial quantities already considered, the spectral quantities are **spectral flux**, Φ_{λ} ; **spectral irradiance**, E_{λ} ; **spectral intensity**, I_{λ} ; and **spectral radiance**, L_{λ} . These quantities, usually written with a subscript to indicate that they are integrable, must be integrated to determine the amount of radiation in a particular spectral band. For example, the **total radiant flux**, Φ (in units of watts), in the band between wavelength $\lambda 1$ and wavelength $\lambda 2$ is

$$\Phi(\lambda 1, \lambda 2) = \int_{\lambda 1}^{\lambda 2} \Phi_{\lambda}(\lambda) \cdot d\lambda.$$

Similar expressions can be written for the total irradiance, E (watts/m²); total radiant intensity, I (watts/sr); and total radiance, L (watts/m²·sr).

Photometry measures the response of the human eye to light. Although not everyone has exactly the same the standardized CIE 1924 luminous response, efficiency function works very well for most people. CIE (The is the International Commission on Illumination.) This function, shown on the following page, is designated $V(\lambda)$. The values for this function, in 5-nm increments, are given in the Appendix. Not coincidentally, this function is identical to the CIE color matching function, y. The unit of luminous (photopic) flux is the lumen. The luminous flux is found from the spectral flux and the $V(\lambda)$ function from the following relationship:

luminous flux =
$$683 \int \Phi_{\lambda}(\lambda) \cdot V(\lambda) \cdot d\lambda$$
.

The factor of 683 in this equation comes directly from the definition of the fundamental unit of luminous intensity, the **candela**.

MASITC_01080399 MASIMO 2054 Apple v. Masimo IPR2022-01300

Illumination

Photometric Quantities

Notes on notation:

- The photopic quantities of flux, irradiance, intensity, and radiance are called luminous flux, illuminance, luminous intensity, and luminance, respectively.
- These quantities are sometimes notated with a subscript "v" (for visual), as Φ_v , E_v , I_v , and L_v . But often the subscript is omitted since the meaning is usually clear from the context, and it could be confused with the subscript notation often reserved for integrable quantities.
- The designations Φ , E, I, and L are common but not universally standard. Another set of symbols sometimes used is P, H, J, and N, respectively, for radiometric quantities; P_{λ} , H_{λ} , J_{λ} , and N_{λ} for spectral quantities; and F, E, I, and B for the corresponding photometric quantities.
- Solid angle and projected solid angle are not always distinguished by ω and Ω , respectively.

MASITC_01080400 MASIMO 2054 Apple v. Masimo IPR2022-01300

SPECTRAL					
		Radio- metric	Spectral	Photopic	
	Flux	Power	Power/ wavelength interval	Luminous flux	
ç	Flux/	Irradiance	Spectral irradiance	Illuminance Im/m ²	
$\frac{S}{P}$	area	W/m^2	$W/m^2 \cdot nm$	or lux	
A T I	Flux/	(Radiant) intensity	Spectral intensity	(Luminous) intensity lm/sr	
A L	solid angle	W/sr	W/sr nm	or candela (cd)	
		Radiance	Spectral radiance	Luminance	
	Flux/ area· solid			lm/m ² sr or cd/m ²	
	angle	$ m W/m^2sr$	W/m ² ·sr ·nm	or nit	

Matrix of Basic Quantities

The table above shows the four spatial quantities and the three spectral categories that are discussed in the preceding pages. These create 12 distinct cells that cover the vast majority of specifications for illumination systems.

With two exceptions, both used mainly in the United States, work in illumination is almost always done in SI units. The two exceptions (both deprecated) are:

Illuminance 1 footcandle $(lm/ft^2) = 10.764 lux (lm/m^2)$

Luminance

1 footlambert (candela/ π ft²) = 3.426 nit (candela/m²)

Photopic and Scotopic Vision

The human visual system responds to light over a wide dynamic range, in excess of 6 orders of magnitude. To achieve this dynamic range, the mechanisms for highlight-level vision and low-light-level vision are different. The high-level region, called the **photopic region**, is active at luminance levels above about 3 cd/m². The lowlevel region, called the **scotopic region**, is active below approximately 0.01 cd/m². The region between pure photopic and pure scotopic is called the **mesopic region**, where the visual response is a mixture of the two. The **photopic efficiency**, usually designated $V(\lambda)$, peaks at 555 nm, while the **scotopic efficiency**, usually designated $V(\lambda)$, peaks at 507 nm.

Scotopic and Photopic Luminous Efficiency 1.0 Luminous Efficiency 0.8 0.6 0.4 0.2 0.0 350 400 450 500 550 600 650 700 750 800 wavelength (nm)

The values for photopic efficiency and scotopic efficiency, both in 5-nm increments, are given in the Appendix.

> MASITC_01080402 MASIMO 2054 Apple v. Masimo IPR2022-01300

Luminous efficacy, quantified in lumens per watt, is a measure of the ability of a light source to produce a visual response from its power. In the photopic region, luminous efficacy peaks at 683 lumens per watt at 555 nm. In fact, the lumen is defined in terms of the power at 555 nm (frequency of 540×10^{12} Hz). Specifically, the definition (adopted in 1979) is in terms of the candela (lumen per steradian).

The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation at a frequency of 540×10^{12} Hz and that has a radiant intensity in that direction of 1/683 watt per steradian.

It is usually clear from the context whether the power is the radiated power (as in the discussion above) or, often for lamps, the "wall-plug" power.

> MASITC_01080403 MASIMO 2054 Apple v. Masimo IPR2022-01300

Irradiance and Illuminance			
Direct sunlight	$1000 \ { m W/m^2} (250 {-} 2500 $		
	nm)		
Direct sunlight	100,000 lux		
Shade	10,000 lux		
Overcast day	1,000 lux		
Office space	300–600 lux		
Full moon	0.2 lux		
Quarter moon	0.01 lux		
Moonless clear night	0.001 lux		
Luminous	s Intensity		
Automobile headlight	5,000–20,000 cd		
Household flashlight	100–1,000 cd		
100-W tungsten lightbulb	100 cd		
LED traffic signal	250–700 cd		
Single LED	1 mcd–25 cd		
Radiance an	d Luminance		
Sun	$2 imes 10^7~{ m W/m^2sr}$		
	(250–2500nm)		
Sun	$2 imes 10^9 m nit$		
Frosted lightbulb	100,000 nit		
Fluorescent lamp	5,000 nit		
Computer screen	100 nit		
Wavelength Range	es for Illumination		
UV-C* 25	0 to 280 nm		
UV-B 28	0 to 315 nm		
UV-A 31	5 to 400 nm		

Typical Values of Illumination Quantities

* Actual definition of UV-C is 100 to 280 nm. However, the range from 100 to 250 nm is not of interest for illumination systems.

~360–400 to ~760–800 nm

760 nm to 1.1 µm

 † Actual definition of NIR is to 1.4 $\mu m.$ However, 1.1 μm is the upper limit for silicon-based detectors.

MASITC_01080404

Visible

Near-infrared (NIR)[†]

Averaged LED Intensity

In 1997 the CIE established a special quantity for lightemitting diodes (LEDs) called the **averaged LED intensity**. This was introduced because, as stated in CIE Publication 127:2007, *Measurement of LEDs*, "There are significant differences between LEDs and other light sources which made it necessary for the CIE to introduce a new quantity for their characterization with precisely defined measurement conditions."

To obtain **averaged LED intensity**, the LED is measured on its mechanical axis (in line with the package) by a circular detector of area 100 mm² at a prescribed distance from the front tip of the LED package. Two distances are used: 316 mm (condition A) and 100 mm (condition B), with the solid angles defined as 0.001 sr and 0.01 sr, respectively. The measurements made are notated as $I_{\text{LED A}}$ and $I_{\text{LED B}}$ in units of intensity (candela or W/sr). Since the entire measurement geometry is completely defined, the measurements should be repeatable.

MASITC_01080405 MASIMO 2054 Apple v. Masimo IPR2022-01300

Light Source Color

The perceived color of a light source is quantified by its **chromaticity**. Chromaticity is calculated from the spectral density of the light source, S_{λ} , and the **CIE color matching functions**, \bar{x} , \bar{y} , and \bar{z} as follows:

$$\begin{split} X &= \int S_{\lambda}(\lambda) \cdot \overline{x}(\lambda) \cdot d\lambda, \qquad \qquad x = \frac{X}{X + Y + Z}, \\ Y &= \int S_{\lambda}(\lambda) \cdot \overline{y}(\lambda) \cdot d\lambda, \qquad \qquad x = \frac{Y}{X + Y + Z}, \\ Z &= \int S_{\lambda}(\lambda) \cdot \overline{z}(\lambda) \cdot d\lambda, \qquad \qquad y = \frac{Y}{X + Y + Z}, \end{split}$$

where X, Y, and Z are called **tristimulus values**, and x and y are the CIE **1931 chromaticity coordinates**. The integrals above are usually calculated as block summations from 360 to 830 nm, generally at 1-nm or 5nm intervals. A table of $\overline{x}, \overline{y}$, and \overline{z} , in 5-nm intervals can be found in the Appendix.

The 1931 chromaticity coordinates (x, y) are common coordinates for light-source colors and are represented graphically by the familiar "horseshoe" graph. All of the possible colors of light are contained inside the horseshoe shape, with the pure monochromatic spectral colors around the curved perimeter, the purples along the straight line at the bottom, and less-saturated colors in the interior. The various shades of white, which are of the most interest in illumination systems, occupy the central region.

Those white lights that have near-blackbody spectra (such as tungsten incandescent lamps) lie along the **Planckian locus**. The lower blackbody temperatures lie toward the red, and the higher temperatures toward the blue.

Color

Chromaticity Diagram

Two other coordinate systems are used to describe the chromaticity of light sources: the CIE 1960 UCS coordinate system (u, v), and the CIE 1976 UCS coordinate system (u', v'). Both attempt to portray equal perceived color differences by equal distances.

$$\begin{split} &u = 4X/(X+15Y+3Z) = 4x/(-2x+12y+3), \\ &v = 6Y/(X+15Y+3Z) = 6y/(-2x+12y+3), \\ &u' = 4X/(X+15Y+3Z) = 4x/(-2x+12y+3), \\ &v' = 9Y/(X+15Y+3Z) = 9y/(-2x+12y+3). \end{split}$$

The CIE 1960 UCS coordinate system is obsolete except for calculating correlated color temperature.

MASITC_01080407 MASIMO 2054 Apple v. Masimo

IPR2022-01300

Color Temperature and CCT

Any light source whose chromaticity coordinates fall directly on the Planckian locus has a **color temperature** equal to the blackbody temperature of the Planckian radiator with those coordinates. Color temperature is usually expressed in Kelvins (K). The concept of color temperature is especially useful for incandescent lamps, which very closely approximate a blackbody spectrum throughout the visible region. For these lamps, the color temperature also defines the spectrum in this region.

For white lights that don't have chromaticity coordinates that fall exactly on the Planckian locus but do lie near it, the **correlated color temperature (CCT)** is used. The CCT of a light source, also expressed in Kelvins, is defined as the temperature of the blackbody source that is closest to the chromaticity of the source in the CIE 1960 UCS (u, v) system. CCT is an essential metric in the general lighting industry to specify the perceived color of fluorescent lights and other nonincandescent white-light sources such as LEDs and high intensity discharge HID lamps.

The difference in perceived color is closely related to the reciprocal of CCT. The reciprocal is expressed in reciprocal megakelvin (MK)⁻¹, with one (MK)⁻¹ approximately equal to a just-noticeable color difference:

$$(MK)^{-1} = 10^6 / CCT$$
.

There are limitless different spectra, all with the same CCT, that may have little or no resemblance to the blackbody curve for that temperature or to each other.

There is no approved method for computing CCT nor is there a simple and accurate closed-form expression. One simple and accurate method is to use a program such as Excel with *solver* to find the blackbody temperature that minimizes the distance between its (u, v) coordinates and those of the light in question.

Dominant Wavelength and Purity

Colored light sources can be modeled as a mixture of a monochromatic source and a white light. The wavelength of this theoretical monochromatic source is called the **dominant wavelength**, λ_d , and is the perceived color of the light. The percent of the total power provided by the monochromatic source is the **purity**, p_e .

The choice of the "white point" is arbitrary. Very often, the default choice is an "equal energy white" (x = 0.3333, y = 0.3333).

MASITC_01080409 MASIMO 2054 Apple v. Masimo IPR2022-01300

Surface Color

The color of a surface, like that of a light source, can be quantified. The **reflectance factor**, $R(\lambda)$, of the surface is combined with the spectral density of the illumination, S_{λ} , and the CIE color matching functions, \bar{x} , \bar{y} , and \bar{z} , in the calculation of tristimulus values:

$$\begin{split} X &= k \int S_{\lambda}(\lambda) \cdot R(\lambda) \cdot \overline{x}(\lambda) \cdot d\lambda, \\ Y &= k \int S_{\lambda}(\lambda) \cdot R(\lambda) \cdot \overline{y}(\lambda) \cdot d\lambda, \\ Z &= k \int S_{\lambda}(\lambda) \cdot R(\lambda) \cdot \overline{z}(\lambda) \cdot d\lambda, \\ k &= \frac{100}{\int S_{\lambda}(\lambda) \cdot \overline{y}(\lambda) \cdot d\lambda}. \end{split}$$

Or, in summation form:

$$\begin{split} Y &= k \sum_{\lambda=380}^{780} S_{\lambda}(\lambda) \ R(\lambda) \ \overline{y}(\lambda), \qquad \qquad X &= k \sum_{\lambda=380}^{780} S_{\lambda}(\lambda) \ R(\lambda) \ \overline{x}(\lambda), \\ Z &= k \sum_{\lambda=380}^{780} S_{\lambda}(\lambda) \ R(\lambda) \ \overline{z}(\lambda) \ , \qquad \qquad k = 100 / \sum_{\lambda=380}^{780} S_{\lambda}(\lambda) \ \overline{y}(\lambda). \end{split}$$

The chromaticity of light sources is 2D, with the photometric value of luminous flux, illuminance, luminous intensity, or luminance playing the role of the third "dimension." However, the chromaticity of surfaces is 3D, with a "lightness" dimension included. Common 3D surface-color spaces are derived from the tristimulus values.

x, y, Y – CIE 1931 chromaticity plus Y tristimulus value
L*,u*,v* – CIE 1976 (L*u*v*) color space; CIELUV
L*,a*,b* – CIE 1976 (L*a*b*) color space; CIELAB
W*U*V*– CIE 1964 uniform space coordinates (obsolete except for the calculation of color rendering index)

MASITC_01080410

Color of Fluorescent Surfaces

The phenomenon of **fluorescence** is characterized by the absorption of light at one wavelength and the nearly instantaneous emission at a longer wavelength. Various surfaces of interest in illumination systems, such as road signs designed to convert the blue-rich skylight at twilight to more visible yellow, also exhibit intentional fluorescent properties to make them brighter or more detectable.

The calculation of the chromaticity of fluorescent surfaces has a degree of complexity that is not present for nonfluorescent surfaces. For fluorescent surfaces, the reflectance factor $R(\lambda)$ is replaced by the **Donaldson matrix**, $D(\mu,\lambda)$, where μ is the absorbed or excitation wavelength, and λ is the emission wavelength:

$$\begin{split} X &= k \sum_{\lambda=380}^{780} \sum_{\mu=300}^{780} S_{\mu}(\mu) \ D(\mu,\lambda) \ \overline{x}(\lambda), \\ Y &= k \sum_{\lambda=380}^{780} \sum_{\mu=300}^{780} S_{\mu}(\mu) \ D(\mu,\lambda) \ \overline{y}(\lambda), \\ Z &= k \sum_{\lambda=380}^{780} \sum_{\mu=300}^{780} S_{\mu}(\mu) \ D(\mu,\lambda) \ \overline{z}(\lambda). \end{split}$$

Note that for nonfluorescent surfaces, the Donaldson matrix collapses to the reflectance factor for the diagonal elements ($\mu = \lambda$), and is zero everywhere else.

The	normalization				
consta	nt,	k, i	s the		
same	as	for	non-		
fluores	cent	t sur:	faces.		

In fact, the reflectance factor can be thought of as a special case of the Donaldson matrix.

The details of computing the chromaticity of fluorescent surfaces can be found in ASTM Standard E2152-01, Standard Practice for Computing the Colors of Fluorescent Objects from Bispectral Photometric Data.

Color Rendering and CRI

The color of an object depends on both the object and the illuminating source. Some sources are better than others at rendering the colors of objects. This ability is quantified in a figure of merit called the color rendering index (CRI) for the source. The CRI is calculated by comparing chromaticity coordinates of eight the prescribed nonfluorescent test-color samples (specified by their spectral radiance factors) under the source being evaluated with the chromaticity coordinates of the same eight samples under a reference illuminant. The reference illuminant is a blackbody radiator (with the same CCT as the source) for sources with a CCT of less than 5000 K, and a phase of daylight (with the same CCT as the source) for sources with a CCT of 5000 K or higher. The distance between the two chromaticity coordinates for a particular test-color sample represents the color difference between the sample illuminated by the source being evaluated and the same sample illuminated by the reference illuminant. The general color rendering index, designated R_a , is the average distance (in W^* , U^* , V^* space) between the eight pairs of chromaticity coordinates (a pair for each test-color sample). It is normalized so a source that is identical to its reference illuminant has a CRI of 100, and a "warm white" fluorescent lamp has a CRI of about 50. Here are examples of typical CRI values for several illuminating sources:

Sunlight (CIE D65)	100
Tungsten lamp (CIE A)	100
Xenon	97
White light LED (blue + YAG)	83
Compact fluorescent lamp	80
Daylight fluorescent	75
Metal halide lamp	61
Warm white fluorescent	52
High-pressure sodium lamp	20
White light from RGB LED combination	20 to 65
White light from four LED combination	up to 90

Color

Calculating CRI and Problems with CRI

Complete details for calculating **CRI** are beyond the scope of this guide. The information is available in two CIE publications (both are necessary):

- CIE 13.3-1995, Method of Measuring and Specifying Color Rendering Properties of Light Sources
- CIE Publication 15:2004, Colorimetry, 3rd Edition

With these publications comes a software disk for calculating CRI from a light source spectral density. The publications and disk can be purchased from the CIE at www.cie.co.at/cie/index.html.

Work on the CRI began in the 1940s when widespread use of fluorescent tubes began for general lighting. The figure of merit has come under criticism lately for several reasons. Among them:

- The eight test-color samples are all moderate in saturation. CRI does not produce numbers that correspond well with observations on highly saturated colors.
- The CRI is considered to be less accurate when the test illuminant and the reference illuminant differ by more than 0.0054 (in u, v space). Many real illuminants are farther away than this from their respective reference illuminants.
- Many different illuminants, such as sunlight and tungsten lamps, have "perfect" CRIs near 100, yet they render colors quite differently.
- New white light sources, such as combinations of LEDs, seem to perceptually render colors far better than is predicted by their rather low CRIs.

The CIE is expected to issue a new recommendation for quantifying color rendering within the next several years.

Typical Source Parameters

Spectral densities for several common light sources are displayed on the following pages. The table below lists some of the relevant parameters for these sources.

Typical values for common illumination sources				
Source	Approx. CCT (K)	CRI (Ra)	Luminous Efficacy (lm/W)	
Tungsten [†]	2800 to 3200	100	12 to 20	
Sunlight	6500	100	100‡	
Daylight fluorescent	6360	75	55	
Warm white fluorescent	3000	52	60	
High-pressure sodium	2030	20	115	
Metal halide	4020	61	90	
Xenon	5000 to 6000	97	10 to 20	

[†] Tungsten lamps allow a great deal of control over these parameters. Guidelines for controlling tungsten lamps are detailed on the next page.

[‡] Lumens per radiated watt. All others are "wall-plug."

LEDs are becoming common illumination sources. They produce white light by using a blue LED and one or more phosphors. Depending on the phosphor used, they can have CCTs from less than 3000 K to in excess of 9000 K. The luminous efficacies also vary over a wide range, from 40 or 50 lm/W for high-flux devices and up to and above 100 lm/W for low-flux devices, with CRIs up to about 80 (R_a) . White light is also produced from LEDs by mixing the light from several single-color LEDs. LED lighting technology is changing extremely rapidly as newer devices are developed.

MASITC 01080414

Tungsten Lamps

Tungsten filament incandescent lamps, particularly tungsten halogen lamps, are often used in illumination systems. Paired with stable, current-controlled power supplies, they provide extremely stable sources. If the current is altered, the filament temperature changes, with a resulting change in filament resistance. Therefore, the voltage change is not linearly related to the current change. Similar nonlinear relationships hold for other characteristics of the lamp, such as power consumed, luminous flux output, efficacy (lumens/Watt), color temperature, and lifetime.

Tungsten halogen lamps should be operated between 95% and 105% of their **rated current**. Within this operating envelope, the relationships between the operating parameters are approximately exponential. Modifying the current to a value different from the rated current changes the other parameters according to the exponents shown in the table below:

Parameter	Exponent
Color temperature (K)	0.80
Lifetime (hours)	-25
Luminous efficacy	3.6
(lumens/Watt)	
Luminous flux (lumens)	6.5
Power (Watts)	2.9
Voltage (volts)	1.9

An example of a lamp operated at 5% over its rated current is shown below:

Parameter	Rated	Operated
Current	6.02 A	$6.02 \times 1.05 = 6.32$
Color temperature	2900 K	$2900 imes 1.05^{0.8} = 3015$
Lifetime	1000 hrs	$1000 imes 1.05^{-25} = 295$
Luminous efficacy	16 lm/W	$16 imes 1.05^{36} = 19$
Luminous flux	1040 lm	$1040 imes 1.05^{6}$ ⁵ = 1428
Power	$65~\mathrm{W}$	$65 imes 1.05^{29} = 75$
Voltage	10.8 V	$10.8 imes 1.05^{19} = 11.8$

MASITC_01080415

MASIMO 2054 Apple v. Masimo IPR2022-01300

Illumination

Tungsten and Sunlight

This page and those that follow show typical spectra of several common illumination sources.

350 400 450 550 600 650 700 750 500 wavelength (nm) Sunlight (CIE D65) 350 400 450 500 550 600 650 700 750 wavelength (nm)

PAGE 36 OF 154

Tungsten Lamp (CIE A)

MASITC_01080416 MASIMO 2054 Apple v. Masimo IPR2022-01300

Fluorescent Lamps

MASITC_01080417 MASIMO 2054 Apple v. Masimo IPR2022-01300

PAGE 37 OF 154

Illumination

H.P. Sodium and Metal Halide

MASITC_01080418 MASIMO 2054 Apple v. Masimo IPR2022-01300

Xenon and White LEDs

MASITC_01080419 MASIMO 2054 Apple v. Masimo IPR2022-01300

25

Light Emitting Diodes (LEDs)

LEDs are moderately narrowband emitters with an approximately Gaussian spectral shape. The spectrum of an LED is often expressed by a single wavelength, with four different single-wavelength descriptions in general use. The most common spectrum-based description is the peak wavelength, λ_p , which is the wavelength of the peak of the spectral density curve. Less common is the center wavelength, $\lambda_{0.5m}$, which is the wavelength halfway between the two points with a spectral density of 50% of the peak. For a symmetrical spectrum, the peak and center wavelengths are identical. However, many LEDs have slightly asymmetrical spectra. Least common is the centroid wavelength, λ_c , which is the mean wavelength. The peak, center, and centroid wavelengths are all derived from a plot of $S_{\lambda}(\lambda)$ versus λ . The fourth the dominant wavelength, λ_d , description. is a colorimetric quantity that is described in the section on color. It is the most important description in visual illumination systems because it describes the perceived color of the LED.

Spatially, LEDs, especially those in lens-end packages, are often described by their **viewing angle**, which is the full angle between points at 50% of the peak intensity.

MASITC_01080420 MASIMO 2054 Apple v. Masimo IPR2022-01300

Transmittance, Reflectance, and Absorptance

Several alternative methods describe the response of materials to illumination. One common approach is the ratio of the light that is transmitted, reflected, or absorbed to the incident light. This method describes a material by its **transmittance**, τ , its **reflectance**, ρ , or its **absorptance**, α . Do not confuse absorptance with **absorbance**, A, which is equivalent to **optical density (OD)** and is a conversion of transmittance or reflectance to a log scale. For example, 10% transmittance can be described as 1A, 1% as 2A, etc.

A material that produces intensity proportional to the cosine of the angle with the surface normal is called Lambertian. The radiance of a Lambertian surface is constant with viewing direction (since the projected area of a viewed surface is also proportional to the cosine of the angle with the surface normal). Furthermore, the directional distribution of scattered light is independent of the directional distribution of the incident illumination. It is impossible to tell, by looking at a Lambertian surface, where the incident light comes from. Perfectly Lambertian surfaces don't really exist, but many such materials. as matte paper, flat paint. and sandblasted metal (in reflection), as well as opal glass and sandblasted transmission), good quartz (in are Lambertian approximations over a wide range of incidence and view angles.

MASITC_01080421

Reflectance Factor and BRDF

28

A quantity sometimes confused with reflectance is the **reflectance factor**, *R*. The reflectance factor is defined in terms of a hypothetical **perfectly reflecting diffuser** (**PRD**), a surface that is perfectly Lambertian and has a 100% reflectance. The reflectance factor is the ratio of the amount of light reflected from the material to the amount of light that would be reflected from a PRD if similarly illuminated and similarly viewed.

Notes on reflectance (ρ) and the reflectance factor (R):

- For a Lambertian surface, ρ and R are identical.
- **Reflectance** must be between 0 and 1. The reflectance factor is not similarly bound. A highly polished mirror, for example, has near-zero R for any nonspecular incident and viewing angles, and a very high R (>1.0) for any specular incident and viewing angles.
- The reflectance factor is more closely related to the **bidirectional reflectance distribution function** (**BRDF**) than to reflectance. The BRDF is defined as the radiance of a surface divided by its irradiance:

BRDF =
$$L/E$$
.

• The reflectance factor measures per hemisphere (there are π projected steradians in a hemisphere) what the BRDF measures per projected steradian:

$$R = BRDF \cdot \pi.$$

Harvey / ABg Method

The Harvey or ABg method is used to parameterize scatter from a weakly scattering surface, which is typical for optical surfaces such as lenses and mirrors. It also can be used to model Lambertian surfaces and anisotropic (i.e., asymmetric) scatter. An example for a three-axis polished surface is provided here, which has a total integrated scatter (TIS or TS) of about 1.6%. The vertical scale represents the **BSDF**, for which an R(reflection) or T (transmission) can be substituted for the S (surface). The horizontal scale represents the absolute difference between $\beta_0 = \sin \theta_0$, or the specular direction, and $\beta = \sin \theta$, or any direction away from specular. Note that both axes are plotted in log space such that the rolloff slope is linear. The *ABg* parameters are:

- g is the slope of the roll-off as shown in the figure whose value of 0 defines a Lambertian surface.
- B is the roll-off parameter defined as

$$B = \left| \beta_{\text{rolloff}} \right|^g$$
.

A is the amplitude factor and can be found from

MASITC 01080423 **MASIMO 2054** Apple v. Masimo

IPR2022-01300

29

Directional Properties of Materials

The reflectance of a material can depend on the direction of the incident light. This dependence is often indicated by a number or letter.

- $\rho(0^{\circ})$: reflectance for normal incidence.
- $\rho(45^{\circ})$: reflectance for a 45-deg oblique incidence.
- $\rho(d)$ or $\rho(h)$: reflectance for diffuse illumination.

The **reflectance factor** of a material can depend on both the direction of illumination and the viewing geometry. This is usually indicated by two letters or numbers, the first indicating the incident geometry and the second the viewing geometry.

- R(0°/45°): the reflectance factor for normal incidence and a 45-deg oblique viewing (a common geometry for measuring the color of a surface).
- $R(0^{\circ}/d)$: the reflectance factor for normal incidence and diffuse (everything except the specular) viewing only.
- $R(8^{\circ}/h)$: the reflectance factor for near-normal incidence and hemispherical (everything, including the specular) viewing.
- $R(45^{\circ}/h)$: the reflectance factor for hemispherical illumination and a 45-deg oblique viewing.

The same notation used for reflecting materials can be applied to transmitting materials, where transmittance τ can be dependent on incident geometry. and the transmittance factor, T, on both the incident transmitting geometries. The of and use the transmittance factor is not as common as transmittance, reflectance, and the reflectance factor.

Some materials have reflecting properties that are not the same for every azimuthal angle, even for the same elevation angle, e.g., the specular geometry of mirrorlike surfaces has vastly different reflecting properties than any geometry with the same incident and reflecting elevation angles that are not both in the same plane with the surface normal.

MASITC_01080424

Retroreflectors—Geometry

Retroreflectors reflect incident light back toward the direction of the light source, operating over a wide range of angles of incidence. Typically they are constructed in one of two different forms, 90-deg corner cubes or high index-of-refraction transparent spheres with a reflective backing. Retroreflectors are used in transportation systems as unlighted night-time roadway and waterway markers, as well as in numerous optical systems, including lunar ranging. Some are made of relatively inexpensive plastic pieces or flexible plastic sheeting, and some are made of high-priced precision optics.

The performance of retroreflectors is characterized within a geometrical coordinate system, usually with three angles for the incident and viewing geometries and a fourth orientation angle for prismatic designs like corner cubes, which are not rotationally isotropic in their performance. All the geometric variations are described in detail in ASTM E808-01, *Standard Practice for Describing Retroreflection*, along with expressions for converting from one geometric system to another.

Two angles commonly used to specify the performance of retroreflectors are the **entrance angle**, β , and the **observation angle**, α . The entrance angle is the angle between the illumination direction and the normal to the retroreflector surface. High-quality retroreflectors work over fairly wide entrance angles, up to 45-deg or more (up to 90 deg for pavement marking). The observation angle, the angle between the illumination direction and the viewing direction, is generally very small, often one degree or less.

Another useful angle for interpreting the performance of retroreflectors is the **viewing angle**, υ , the angle between the viewing direction and the normal to the retroreflector surface.

MASITC_01080425 MASIMO 2054 Apple v. Masimo IPR2022-01300

Illumination

Retroreflectors—Radiometry

The performance of retroreflectors is quantified by several coefficients. These are the most common:

 R_{I} , coefficient of retroreflected luminous intensity,

$$R_I = \frac{I}{E_\perp},$$

where E_{\perp} is the illuminance on a plane normal to the direction of illumination, and I is the intensity of the illuminated retroreflector.

 R_A , coefficient of retroreflection,

$$R_A = rac{R_I}{A} = rac{I/A}{E_\perp},$$

where A is the area of the retroreflector.

 R_L , coefficient of retroreflected luminance,

$$R_L = \frac{R_A}{\cos \upsilon} = \frac{L}{E_\perp}$$

is the ratio of the luminance in the direction of observation to E_{\perp} .

 R_{Φ} , coefficient of retroreflected luminous flux:

$$R_{\Phi} = \frac{R_A}{\cos\beta} \, .$$

 R_{F} , retroreflectance factor

$$R_F = \frac{\pi \cdot R_I}{A \cdot \cos \beta \cdot \cos \upsilon} = \frac{\pi \cdot R_A}{\cos \beta \cdot \cos \upsilon} = \frac{\pi \cdot R_L}{\cos \beta}.$$

It is the retroreflectance factor, R_F that is numerically equivalent to the reflectance factor, R.

Retroreflectors are often specified by the coefficient of retroreflection, R_A , for various observation angles and entrance angles.

Values for R_A of several hundred (cd/m²)/lux are not uncommon, corresponding to reflectance factors up to and over 1000.

MASITC 01080426

MASIMO 2054 Apple v. Masimo IPR2022-01300

Lambertian and Isotropic Models

There are no direct "conversion factors" between the four basic quantities in illumination: flux, Φ ; irradiance, E; intensity, I; and radiance, L. But for many situations, knowledge of one factor allows the calculation of the others. Making this calculation usually requires knowledge of the directional properties of the illuminating source, or at least a fair model of these directional properties. The two most common models are isotropic and Lambertian.

An **isotropic source** is defined here as having intensity independent of direction. For a **Lambertian source**, the radiance is independent of direction and the intensity is therefore proportional to the cosine of the angle with the surface normal. A few nearly isotropic sources exist, such as a round, frosted light bulb, a frosted ball-end on a fiber, and a line filament (in one plane, anyway). However, most flat radiators, diffusely reflecting surfaces, and exit pupils of illuminating optical systems are more nearly Lambertian than isotropic. Reasonable predictions can be made by modeling them as Lambertian.

The model of directional illumination properties need only apply, of course, over the range of angles applicable to your particular situation. In many cases, the mutually contradictory models of an isotropic and a Lambertian source are used simultaneously. This is valid over small angular ranges where the cosine of the angle with the surface normal doesn't change much. This assumption is not all that restricting. For example, for a small Lambertian source illuminating an on-axis circular area, the error in flux caused by using an isotropic model is less than 1% for a subtended full angle of 22 deg [NA = 0.19, f/2.6], less than 5% for a full angle of 50 deg [NA = 0.42, f/1.2], and less than 10% for 70 deg [NA = 0.57, f/0.9]. However, for a full angle of 180 deg (a full hemisphere), the error is 100%!

> MASITC_01080427 MASIMO 2054 Apple v. Masimo IPR2022-01300

Illumination

Known Intensity

Consider a small source at a distance. For a **known intensity** that is essentially constant over all relevant directions, i.e., toward the illuminated area:

- where I is the intensity of the radiating area in the direction of the illuminated area;
- A_r is the radiating area;
- θ is the angle between the normal to the radiating area and the direction of illumination;
- $A_r \cos \theta$ is the projected radiating area as viewed from the illuminated area;
- A_i is the illuminated area;
- ξ (*xi*) is the angle between the normal to the illuminated area and the direction of illumination (assumed constant over this small angular range);
- *d* is the distance between the two areas (assumed to be constant);
- ω is the solid angle formed by the illuminated area when viewed from the radiating area (assumed to be small);
- $\Omega = \omega \cos\theta$ is the corresponding projected solid angle (for small solid angles);
- *E* is the irradiance at the illuminated area;
- Φ_i is the total flux irradiating the illuminated area; and L is the radiance of the radiating area.

$$E = \frac{I\cos\xi}{d^2}, \qquad \Phi_i = I\omega, \qquad \qquad L = \frac{I}{A_r\cos\theta}.$$

Known Flux and Known Radiance

If, in the same situation, the **flux** within the **solid angle** is known, then the intensity is

$$I = \Phi_i / \omega$$
,

the irradiance is

$$E = \Phi_i / A_i ,$$

and the radiance is

$$L = \frac{\Phi_i}{\omega A_r \cos \theta} = \frac{\Phi_i}{\Omega A_r}.$$

Consider the same situation, but not necessarily with a small radiating area or small illuminated area:

If the radiance is known and the radiating area is small, then

$$I = L A_r \cos \theta \, .$$

If $\cos\theta$ is essentially constant from all points on the radiating area to all points on the illuminated area, then

$$\Phi_i = L A_r \ \omega \cos \theta = L A_r \ \Omega \, .$$

If $\cos\theta$ varies substantially over the illuminated area, then the second form of this equation, using the projected solid angle, should be used.

Since there are π projected steradians in a hemisphere, the total flux radiated (for a Lambertian radiator) is

$$\Phi_r = L A_r \pi.$$

The irradiance at the illuminated area (E) is

$$E = \frac{\Phi_i}{A_i} = \frac{L A_r \Omega}{A_i} = \frac{L A_r \cos \theta \cos \xi}{d^2} = L \Omega_i,$$

where Ω_i is the projected solid angle of the radiating area when viewed from the illuminated spot.

MASITC 01080429

35