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PREFACE

With the passage of approximately nine years since publication of the first
edition, this text has been transformed from the status of a newcomer to a
mature representative of heat transfer pedagogy. Despite this maturation,
however, we like to think that, while remaining true to certain basic tenets, our
treatment of the subject is constantly evolving.

Preparation of the first edition was strongly motivated by the belief that,
above all, a first course in heat transfer should do two things. First, it should
instill within the student a genuine appreciation for the physical origins of the
subject. It should then establish the relationship of these origins to the
behavior of thermal systems. In so doing, it should develop methodologies
which facilitate application of -the subject to:a broad range of practical
problems, and it should cultivate the facility to perform the kind of engineer-
ing analysis which, if not exact, still provides useful information concerning
the design and/or performance of a particular system or process. Require-
ments of such an analysis include the ability to discern relevant transport
processes and simplifying assumptions, identify important dependent and
independent variables, develop appropriate expressions from first principles,
and introduce requisite material from the heat transfer knowledge base. In the
first edition, achievement of this objective was fostered by couching many of
the examples and end-of-chapter problems in terms of actual engineering
systems.

The second edition was also driven by the foregoing objectives, as well as
by input derived from a questionnaire sent to over 100 colleagues who used, or
were otherwise familiar with, the first edition. A major consequence of this
input was publication of two versions of the book, Fundamentals of Heat and
Mass Transfer and Introduction to Heat Transfer. As in the first edition, the
Fundamentals version included mass transfer, providing an integrated treat-
ment of heat, mass and momentum transfer by convection and separate
treatments of heat and mass transfer by diffusion. The Introduction version of
the book was intended for users who embraced the treatment of heat transfer
but did not wish to cover mass transfer effects. In both versions, significant
improvements were made in the treatments of numerical methods and heat
transfer with phase change.

In this latest edition, changes have been motivated by the desire to
expand the scope of applications and to enhance the exposition of physical
principles. Consideration of a broader range of technically important prob-
lems is facilitated by increased coverage of existing material on thermal
contact resistance, fin performance, convective heat transfer enhancement, and
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compact heat exchangers, as well as by the addition of new material on
submerged jets (Chapter 7) and free convection in open, parallel plate chan-
nels (Chapter 9). Submerged jets are widely used for industrial cooling and
drying operations, while free convection in parallel plate channels is pertinent
to passive cooling and heating systems. Expanded discussions of physical
principles are concentrated in the chapters on single-phase convection
(Chapters 7 to 9) and relate, for example, to forced convection in tube banks
and to free convection on plates and in cavities. Other improvements relate to
the methodology of performing a first law analysis, a more generalized lumped
capacitance analysis, transient conduction in semi-infinite media, and finite-
difference solutions.

In this edition, the old Chapter 14, which dealt with multimode heat
transfer problems, has been deleted and many of the problems have been
transferred to earlier chapters. This change was motivated by recognition of
the importance of multimode effects and the desirability of impacting student
consciousness with this importance at the earliest possible time. Hence,
problems involving more than just a superficial consideration of multimode
effects begin in Chapter 7 and increase in number through Chapter 13.

The last, but certainly not the least important, improvement in this
edition is the inclusion of nearly 300 new problems. In the spirit of our past
efforts, we have attempted to address contemporary issues in many of the
problems. Hence, as well as relating to engineering applications such as energy
conversion and conservation, space heating and cooling, and thermal protec-
tion, the problems deal with recent interests in electronic cooling, manufactur-
ing, and material processing. Many of the problems are drawn from our
accumulated research and consulting experiences; the solutions, which fre-
quently are not obvious, require thoughtful implementation of the tools of heat
transfer. It is our hope that in addition to reinforcing the student’s understand-
ing of principles and applications, the problems serve a motivational role by
relating the subject to real engineering needs. )

Over the past nine years, we have been fortunate to have received
constructive suggestions from many colleagues throughout the United States
and Canada. It is with pleasure that we express our gratitude for this input.

FrANK P. INCROPERA
West Lafayette, Indiana Davip P. DEWITT
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INTRODUCTION |
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Chapter 1 Introduction

From the study of thermodynamics, you have learned that energy can be
transferred by interactions of a system with its surroundings. These interac-
tions are called work and heat. However, thermodynamics deals with the end
states of the process during which an interaction occurs and provides no
information concerning the nature of the interaction or the time rate at which
it occurs. The objective of this text is to extend thermodynamic analysis
through study of the modes of heat transfer and through development of
relations to calculate heat transfer rates. In this chapter we lay the foundation
for much of the material treated in the text. We do so by raising several
questions. What is heat transfer? How is heat transferred? Why is it important to
Study it? In answering these questions, we will begin to appreciate the physical
mechanisms that underlie heat transfer processes and the relevance of these
processes to our industrial and environmental problems.

WHAT AND HOW?

A simple, yet general, definition provides sufficient response to the question:
What is heat transfer?

Heat transfer (or heat) is energy in transit due to a temperature difference.

Whenever there exists a temperature difference in a medium or between media,
heat transfer must occur.

As shown in Figure 1.1, we refer to different types of heat transfer
processes as modes. When a temperature gradient exists in a stationary
medium, which may be a solid or a fluid, we use the term conduction to refer to
the heat transfer that will occur across the medium. In contrast, the term
convection refers to heat transfer that will occur between a surface and a
moving fluid when they are at different temperatures. The third mode of heat
transfer is termed thermal radiation. All surfaces of finite temperature emit
energy in the form of electromagnetic waves. Hence, in the absence of an
intervening medium, there is net heat transfer by radiation between two
surfaces at different temperatures.

Conduction through a solid Convection from a surface Net radiation heat exchange
or a stationary fluid to a moving fluid between two surfaces
Ts Surface, T
rn, TN>T: g T> T 7
L ] Moving fluid, Thw ~
— JD‘ Surface, Ty
— q" ql” \T
e 9 P /i
—> J{—Ts g9 +—

Figure 1.1 Conduction, convection, and radiation heat transfer modes.
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1.2 Physical Origins and Rate Equations 3

1.2 PHYSICAL ORIGINS AND RATE EQUATIONS

As engineers it is important that we understand the physical mechanisms that
underlie the heat transfer modes and that we be able to use the rate equations
that quantify the amount of energy being transferred per unit time.

1.2.1 Conduction

X p=——

X

At mention of the word “conduction,” we should immediately conjure up
concepts of atomic and molecular activity, for it is processes at these levels that
sustain this mode of heat transfer. Conduction may be viewed as the transfer
of energy from the more energetic to the less energetic particles of a substance
due to interactions between the particles.

The physical mechanism of conduction is most easily explained by
considering a gas and using ideas familiar from your thermodynamics back-
ground. Consider a gas in which there exists a temperature gradient and
assume that there is no bulk motion. The gas may occupy the space between
two surfaces that are maintained at different temperatures, as shown in Figure
1.2. We associate the temperature at any point with the energy of the gas
molecules in the vicinity of the point. This energy is related to the random
translational motion, as well as to the internal rotational and vibrational
motions, of the molecules. Moreover, higher temperatures are associated with
higher molecular energies, and when neighboring molecules collide, as they are
constantly doing, a transfer of energy from the more energetic to the less
energetic molecules must occur. In the presence of a temperature gradient,
energy transfer by conduction must then occur in the direction of decreasing
temperature. This transfer is evident from Figure 1.2. The hypothetical plane
at x, is constantly being crossed by molecules from above and below due to
their random motion. However, molecules from above are associated with a
larger temperature than those from below, in which case there must be a net

T T, > Ty

o N 0w

Figure 1.2 Association of conduction heat transfer with diffusion of energy due to
molecular activity.
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Chapter 1  Introduction

transfer of energy in the positive x direction. We may speak of the net transfer
of energy by random molecular motion as a diffusion of energy.

The situation is much the same in liquids, although the molecules are
more closely spaced and the molecular interactions are stronger and more
frequent. Similarly, in a solid, conduction may be attributed to atomic activity
in the form of lattice vibrations. The modern view is to ascribe the energy
transfer to lattice waves induced by atomic motion. In a nonconductor, the
energy transfer is exclusively via these lattice waves; in a conductor it is also
due to the translational motion of the free electrons. We treat the important
properties associated with conduction phenomena in Chapter 2 and in Ap-
pendix A.

Examples of conduction heat transfer are legion. The exposed end of a
metal spoon suddenly immersed in a cup of hot coffee will eventually be
warmed due to the conduction of energy through the spoon. On a winter day
there is significant energy loss from a heated room to the outside air. This loss
is principally due to conduction heat transfer through the wall that separates
the room air from the outside air.

It is possible to quantify heat transfer processes in terms of appropriate
rate equations. These equations may be used to compute the amount of energy
being transferred per unit time. For heat conduction, the rate equation is
known as Fourier’s law. For the one-dimensional plane wall shown in Figure
1.3, having a temperature distribution T(x), the rate equation is expressed as

dT

‘= —k— 1
g’ i (1.1)

The heat flux ¢! (W/m?) is the heat transfer rate in the x direction per unit
area perpendicular to the direction of transfer, and it is proportional to the
temperature gradient, d7'/dx, in this direction. The proportionality constant k
is a transport property known as the thermal conductivity (W/m - K) and is a
characteristic of the wall material. The minus sign is a consequence of the fact
that heat is transferred in the direction of decreasing temperature. Under the
steady-state conditions shown in Figure 1.3, where the temperature distribu-

T
Ty

a—y T(x)

‘ ~x  Figure 1.3 One-dimensional heat transfer by conduction
L« L *)-l (diffusion of energy).
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1.2 Physical Origins and Rate Equations 5

tion is linear, the temperature gradient may be expressed as

ar T,-T,
L
and the heat flux is then
T, - Tl
¢ = —k=7
or
g =k e Byl 1.2)
u L L

Note that this equation provides a heat flux, that is, the rate of heat transfer
per unit area. The heat rate by conduction, g, (W), through a plane wall of
area A is then the product of the flux and the area, g, = ¢, - 4.

EXAMPLE 1.1

The wall of an industrial furnace is constructed from 0.15 m thick fireclay
brick having a thermal conductivity of 1.7 W/m - K. Measurements made
during steady-state operation reveal temperatures of 1400 and 1150 K at the
inner and outer surfaces, respectively. What is the rate of heat loss through a
wall which is 0.5 m by 3 m on a side?

SOLUTION

Known: Steady-state conditions with prescribed wall thickness, area, ther-
mal conductivity, and surface temperatures.

Find: Wall heat loss.

Schematic:

H=05m

Ty =1150 K 7Sk =17 Wm-K
T1=1400 K W=3m
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6 Chapter 1 Introduction
Assumptions:

1. Steady-state conditions.
2. One-dimensional conduction through the wall.
3. Constant properties.

Analysis:  Since heat transfer through the wall is by conduction, the heat
flux may be determined from Fourier’s law. Using Equation 1.2

AT 250 K
4/ =k =17W/m-Kx = 2833 W/nr’

0.15m

The heat flux represents the rate of heat transfer through a section of unit
area. The wall heat loss is then

q, = (HW)q;’ =(0.5m X 3.0m) 2833 W/m2=4250W <
Comments:

1. Note direction of heat flow.
2. Note distinction between heat flux and heat rate.

1.2.2 Convection

The convection heat transfer mode is comprised of two mechanisms. In
addition to energy transfer due to random molecular motion (diffusion), there is
also energy being transferred by the bulk, or macroscopic, motion of the fluid.
This fluid motion is associated with the fact that, at any instant, large numbers
of molecules are moving collectively or as aggregates. Such motion, in the
presence of a temperature gradient, will give rise to heat transfer. Because the
molecules in the aggregate retain their random motion, the total heat transfer
is then due to a superposition of energy transport by the random motion of
the molecules and by the bulk motion of the fluid. It is customary to use the
term convection when referring to this cumulative transport and the term
advection when referring to transport due to bulk fluid motion.

We are especially interested in convection heat transfer, which occurs
between a fluid in motion and a bounding surface when the two are at
different temperatures. Consider fluid flow over the heated surface of Figure
1.4. A consequence of the fluid—surface interaction is the development of a
region in the fluid through which the velocity varies from zero at the surface to
a finite value u_, associated with the flow. This region of the fluid is known as
the hydrodynamic, or velocity, boundary layer. Moreover, if the surface and
flow temperatures differ, there will be a region of the fluid through which the
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7

Velocity Temperature
distribution distribution
u(y) T(y)
*Q’” T
L > u(y) Heated L =Ty
surface

Figure 14 Boundary layer development in
convection heat transfer.

temperature varies from T, at y = 0 to T, in the outer flow. This region,
called the thermal boundary layer, may be smaller, larger, or the same size as
that through which the velocity varies. In any case, if 7, > T,_, convection heat
transfer will occur between the surface and the outer flow.

The convection heat transfer mode is sustained both by random molecu-
lar motion and by the bulk motion of the fluid within the boundary layer. The
contribution due to random molecular motion (diffusion) dominates near the
surface where the fluid velocity is low. In fact, at the interface between the
surface and the fluid (y = 0), the fluid velocity is zero and heat is transferred
by this mechanism only. The contribution due to bulk fluid motion originates
from the fact that the boundary layer grows as the flow progresses in the x
direction. In effect, the heat that is conducted into this layer is swept
downstream and is eventually transferred to the fluid outside the boundary
layer. Appreciation of boundary layer phenomena is essential to understand-
ing convection heat transfer. It is for this reason that the discipline of fluid
mechanics plays a vital role in our later analysis of convection.

Convection heat transfer may be classified according to the nature of the
flow. We speak of forced convection when the flow is caused by external
means, such as by a fan, a pump, or atmospheric winds. As an example,
consider the use of a fan to provide forced convection air cooling of hot
electrical components on a stack of printed circuit boards (Figure 1.5a). In
contrast, for free (or natural) convection the flow is induced by buoyancy
forces which arise from density differences caused by temperature variations in
the fluid. An example is the free convection heat transfer that occurs from hot
components on a vertical array of circuit boards in still air (Figure 1.56). Air
that makes contact with the components experiences an increase in tempera-
ture and hence a reduction in density. Since it is now lighter than the
surrounding air, buoyancy forces induce a vertical motion for which warm air
ascending from the boards is replaced by an inflow of cooler ambient air. It is
useful to note that, while we have presumed pure forced convection in Figure
1.5a and pure natural convection in Figure 1.5b, conditions corresponding to
mixed (combined) forced and natural convection may exist. For example, if
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Buoyancy-driven
flow

Hot components
on printed
circuit boards q”

wi
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| Vapor waterO @ o o > o i
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|

Hot plate

L © @

Figure 1.5 Convection heat transfer processes. (@) Forced convection. (b) Natural
convection. (¢) Boiling. (d) Condensation.

velocities associated with the flow of Figure 1.5a are small and /or buoyancy
forces are large, a secondary flow that is comparable to the imposed forced
flow could be induced. The buoyancy induced flow would be normal to the
forced flow and would have a significant effect on convection heat transfer
from the components. In Figure 1.5b mixed convection would result if a fan
were used to force air upward through the circuit boards, thereby assisting the
buoyancy flow, or downward, thereby opposing the buoyancy flow.

We have described the convection heat transfer mode as energy transfer
occurring within a fluid due to the combined effects of conduction and bulk
fluid motion. Typically, the energy that is being transferred is the sensible, or
internal thermal, energy of the fluid. However, there are convection processes
for which there is, in addition, latent heat exchange. This latent heat exchange
is generally associated with a phase change between the liquid and vapor states
of the fluid. Two special cases of interest in this text are boiling and
condensation. For example, convection heat transfer results from fluid motion
induced by vapor bubbles generated at the bottom of a pan of boiling water
(Figure 1.5¢) or by the condensation of water vapor on the outer surface of a
cold water pipe (Figure 1.5d).

Regardless of the particular nature of the convection heat transfer pro-
cess, the appropriate rate equation is of the form

g ST (1.3a)
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1.2 Physical Origins and Rate Equations 9

Table 1.1 Typical values of the convection heat transfer coefficient

h

PROCESS (W/mt - K)
Free convection

Gases 2-25

Liquids 50-1000
Forced convection

Gases 25-250

Liquids 50-20,000
Convection with phase change

Boiling or condensation 2500-100,000

where ¢, the convective heat flux (W /m?), is proportional to the difference
between the surface and fluid temperatures, 7, and T, respectively. This
expression is known as Newton’s law of cooling, and the proportionality
constant 4 (W/m? - K) is referred to as the convection heat transfer coefficient,
the film conductance, or the film coefficient. It encompasses all the parameters
that influence convection heat transfer. In particular, it depends on conditions
in the boundary layer, which are influenced by surface geometry, the nature of
the fluid motion, and an assortment of fluid thermodynamic and transport
properties. Moreover, any study of convection ultimately reduces to a study of
the means by which # may be determined. Although consideration of these
means is deferred to Chapter 6, convection heat transfer will frequently appear
as a boundary condition in the solution of conduction problems (Chapters 2 to
5). In the solution of such problems we presume 4 to be known, using typical
values given in Table 1.1.

When Equation 1.3a is used, the convection heat flux is presumed to be
positive if heat is transferred from the surface (7, > T_) and negative if heat
is transferred to the surface (T, > T,). However, if T, > T, there is nothing
which precludes us from expressing Newton’s law of cooling as

¢ =h(T, - T) (E:20)

in which case heat transfer is positive if it is to the surface.

1.2.3 Radiation

Thermal radiation is energy emitted by matter that is at a finite temperature.
Although we focus primarily on radiation from solid surfaces, emission may
also occur from liquids and gases. Regardless of the form of matter, the
emission may be attributed to changes in the electron configurations of the
constituent atoms or molecules. The energy of the radiation field is trans-
ported by electromagnetic waves (or alternatively, photons). While the transfer
of energy by conduction or convection requires the presence of a material
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10  Chapter 1 Introduction

medium, radiation does not. In fact, radiation transfer occurs most efficiently
in a vacuum,

The maximum flux (W/m?) at which radiation may be emitted from a
surface is given by the Stefan—Boltzmann law

q" = oT! (1.4)

where 7, is the absolute temperature (K) of the surface and o is the
Stefan—Boltzmann constant (o = 5.67 X 1078 W /m? - K*). Such a surface is
called an ideal radiator or blackbody. The heat flux emitted by a real surface is
less than that of the ideal radiator and is given by ’

¢" = eoT? 15)

where ¢ is a radiative property of the surface called the emissivity. This
property, whose value is in the range 0 < ¢ < 1, indicates how efficiently the
surface emits compared to an ideal radiator. Conversely, if radiation is
incident upon a surface, a portion will be absorbed, and the rate at which
energy is absorbed per unit surface area may be evaluated from knowledge of
a surface radiative property termed the absorptivity a. That is,

Tabs = ine (1.6)

where 0 < & < 1. Whereas radiation emission reduces the thermal energy of
matter, absorption increases this energy.

Equations 1.5 and 1.6 determine the rate at which radiant energy is
emitted and absorbed, respectively, at a surface. Determination of the net rate
at which radiation is exchanged between surfaces is generally a good deal more
complicated. However, a special case that occurs frequently in practice in-
volves the net exchange between a small surface and a much larger surface
that completely surrounds the smaller one (Figure 1.6). The surface and the
surroundings are separated by a gas that has no effect on the radiation
transfer. Assuming the surface to be one for which & = € (a gray surface), the

Air

T 1t
Net
radiation Qeony
exchange
9ad Convection

heat transfer

' Surroundings

at Toyr Surface of emissivity € and

area A at a temperature T

Figure 1.6 Radiation exchange between a surface and its
surroundings.

]

MASIMO 2160
Apple v. Masimo
IPR2022-01299



1.2 Physical Origins and Rate Equations 11

net rate of radiation heat exchange between the surface and its surroundings,
expressed per unit area of the surface, is

q;/ e 1 = (-j()(T;4 - T‘s‘\‘xr) (1.7)

In this expression, 4 is the surface area and e is its emissivity, while T, is the
temperature of the surroundings. For this special case, the area and emissivity
of the surroundings do not influence the net heat exchange rate.

There are many applications for which it is convenient to express the net

radiation heat exchange in the form
Grad = hrA(Ts T T;ur) (18)
where, from Equation 1.7, the radiation heat transfer coefficient h, is

h = eo(T, + T,)(T2 + T3, (19)
Here we have modeled the radiation mode in a manner similar to convection.
In this sense we have linearized the radiation rate equation, making the heat
rate proportional to a temperature difference rather than to the difference
between two temperatures to the fourth power. Note, however, that h,
depends strongly on temperature, while the temperature dependence of the
convection heat transfer coefficient 4 is generally weak.

The surface within the surroundings may also simultaneously transfer
heat by convection to the adjoining gas (Figure 1.6). The total rate of heat
transfer from the surface is then the sum of the heat rates due to the two
modes. That is,

q= 9eonv L 9rad

or,
q=hA(T, - T,,) + edo (T - T,) (1.10)

Note that the convection heat transfer rate g, is simply the product of the
flux given by Equation 1.3a and the surface area.

EXAMPLE 1.2

An uninsulated steam pipe passes through a room in which the air and walls
are at 25°C. The outside diameter of the pipe is 70 mm, and its surface
temperature and emissivity are 200°C and 0.8, respectively. If the coefficient
associated with free convection heat transfer from the surface to the air is
15 W/m? - K, what is the rate of heat loss from the surface per unit length of

pipe?
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12 Chapter 1 Introduction

SOLUTION

Known: Uninsulated pipe of prescribed diameter, emissivity, and surface
temperature in a room with fixed wall and air temperatures.

Find: Pipe heat loss per unit length, ¢’ (W /m).

Schematic:

Assumptions:

1. Steady-state conditions exist.

2. Radiation exchange between the pipe and the room is between a small
surface enclosed within a much larger surface.

Analysis:  Heat loss from the pipe is by convection to the room air and by
radiation exchange with the walls. Hence, from Equation 1.10, with 4 =
wDL,

g = h(sDL)(T, ~ T,)) + e(nDL)o(T} - T2,)
The heat loss per unit length of pipe is then

q = % =15 W/m? - K (7 X 0.07 m)(200 — 25)°C

+0.8(7 X 0.07m) 5.67 X 10™% W/m? - K* (473% — 298%) K*

q' =577 W/m + 421 W/m = 998 W /m 4
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1.3 The Conservation of Energy Requirement 13

Comments:

1. Note that temperature may be expressed in two ways (i.e., in °C or K
units) when evaluating the temperature difference for a convection (or
conduction) heat transfer rate. However, temperature must be ex-
pressed in kelvins (K) when evaluating a radiation transfer rate.

2. In this situation the radiation and convection heat transfer rates are
comparable because T, is large compared to 7, and the coefficient
associated with free convection is small. For more moderate values of
T, and the larger values of h associated with forced convection, the
effect of radiation may often be neglected. The radiation heat transfer
coefficient may be computed from Equation 1.9, and for the conditions
of this problem its value is 4, = 11 W/m? - K.

1.2.4 Relationship to Thermodynamics

13

At this point it is appropriate to take note of the fundamental differences that
exist between heat transfer and thermodynamics. Although thermodynamics is
concerned with the heat interaction and the vital role it plays in the first and
second laws, it considers neither the mechanisms that provide for heat ex-
change nor the methods that exist for computing the rate of heat exchange.
Thermodynamics is concerned with equilibrium states of matter, where an
equilibrium state necessarily precludes the existence of a temperature gradient.
Although thermodynamics may be used to determine the amount of energy
required in the form of heat for a system to pass from one equilibrium state to
another, it does not acknowledge that heat transfer is inherently a nonequilib-
rium process. For heat transfer to occur, there must be a temperature gradient,
hence thermodynamic nonequilibrium. The discipline of heat transfer there-
fore seeks to do what thermodynamics is inherently unable to do. It seeks to
quantify the rate at which heat transfer occurs in terms of the degree of
thermal nonequilibrium. This is done through the rate equations for the three
modes, expressed by Equations 1.1, 1.3, and 1.7.

THE CONSERVATION OF ENERGY REQUIREMENT

The subjects of thermodynamics and heat transfer are highly complementary.
For example, heat transfer is an extension of thermodynamics in that it
considers the rate at which energy is transported. Moreover, in many heat
transfer analyses the first law of thermodynamics (the law of conservation of
energy) plays an important role. It is therefore useful to consider general
statements for this law.
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14  Chapter 1 Introduction '

1.3.1 Conservation of Energy for a Control Volume

In our application of the conservation law, we first need to identify the control
volume, a region of space bounded by a control surface through which energy
and matter may pass. In the applications of this text, the region will be fixed,
implying the existence of a stationary and constant volume. Once the control
volume is identified, an appropriate time basis must be specified. There are
two options. Since the first law must be satisfied at each and every instant of
time ¢, one option involves formulating the law on a rate basis. That is, at any
instant, there must be a balance between all energy rates, as measured in joules
per second (W). Alternatively, the first law must also be satisfied over any time
interval At. For such an interval, there must be a balance between the amounts
of all energy changes, as measured in joules.

According to the time basis, first law formulations, which are well suited
for heat transfer analysis, may be stated as follows.

At an Instant (¢)

The rate at which thermal and mechanical energy enters a control volume, plus the
rate at which thermal energy is generated within the control volume, minus the rate
at which thermal and mechanical energy leaves the control volume must equal the rate
of increase of energy stored within the control volume.

Over a Time Interval (At)

The amount of thermal and mechanical energy which enters a control volume, plus
the amount of thermal energy which is generated within the control volume, minus the
amount of thermal and mechanical energy which leaves the control volume must equal
the increase in the amount of energy stored in the control volume.

If the inflow and generation of energy exceed the outflow, there will be an
increase in the amount of energy stored (accumulated) in the control volume;
if the converse is true, there will be a decrease in energy storage. If the inflow
and generation of energy equal the outflow, a steady-state condition must
prevail in which there will be no change in the amount of energy stored in the
control volume.

Consider applying energy conservation to the control volume shown in
Figure 1.7. The first step is to identify the control surface by drawing a dashed
line. The next step is to identify the energy terms. At an instant, these include
the rate at which thermal and mechanical energy enter and leave through the
control surface, E; and E,,. Also, thermal energy may enter the control |
volume due to conversion from other energy forms. We refer to this process as
energy generation, and the rate at which it occurs is designated as Eg The rate
of change of energy stored within the control volume, dE,, /dt, is designated as
E A general form of the energy conservation requirement may then be

i
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Figure 1.7 Conservation of energy for a
control volume. Application at an instant.

expressed on a rate basis as
dE

st B
dt = Esl

Equation 1.11a may be applied at any instant of time. The alternative
form that applies for a time interval At is obtained by integrating Equation
1.11a over time:

E,+E, - E, = AE, (1.11b)

E.+E -E,~= (1.11a)

In words this relation says that the amounts of energy inflow and generation
act to increase the amount of energy stored within the control volume, whereas
outflow acts to decrease the stored energy.

The inflow and outflow rate terms E,, and E,, are surface phenomena.
That is, they are associated exclusively with processes occurring at the control
surface, and the rate at which they occur is proportional to surface area. The
most common situation will involve energy inflow and outflow due to heat
transfer by the conduction, convection, and /or radiation modes. In a situation
involving fluid flow across the control surface, E,, and E_, also include
energy transported by the fluid into and out of the control volume. This energy
may be composed of potential, kinetic, and thermal forms. However, for the
heat transfer problems encountered in this text, the potential and kinetic
energy forms are negligible. The inflow and outflow terms may also include
work interactions.

The thermal energy generation rate term Eg is associated with the rate of
conversion from some other energy form (chemical, electrical, electromagnetic,
or nuclear) to thermal energy. It is a volumetric phenomenon. That is, it occurs
within the control volume, and its rate is proportional to the volume. For
example, an exothermic chemical reaction may be occurring, converting chem-
ical to thermal energy. The net effect is an increase in the thermal energy of
the control volume. Another source of thermal energy is the conversion from
electrical energy that occurs due to resistance heating when an electric current
is passed through a conductor. That is, if an electric current / passes through
a resistance R in the control volume, electrical energy is dissipated at a rate
I’R, which corresponds to the rate at which thermal energy is generated
(released) within the volume.

It is important not to confuse the physical process of energy storage with
that of energy generation. Although energy generation may certainly con-

MASIMO 2160
Apple v. Masimo
IPR2022-01299




16 Chapter 1 Introduction

tribute to energy storage, the two processes are fundamentally different.
Energy storage is also a volumetric phenomenon, but it is simply associated
with an increase (E, > 0) or decrease (E,, < 0) in the energy of the matter
occupying the control volume. Under steady-state conditions there is, of
course, no change in energy storage (E'sl = 0).

EXAMPLE 1.3

A long conducting rod of diameter D and electrical resistance per unit length
R’, is initially in thermal equilibrium with the ambient air and its surround-
ings. This equilibrium is disturbed when an electrical current I is passed
through the rod. Develop an equation that could be used to compute the
variation of the rod temperature with time during passage of the current.

SOLUTION

Known: Temperature of a rod of prescribed diameter and electrical resis-
tance changes with time due to passage of an electrical current.

Find: Equation that governs temperature change with time for the rod.

Schematic:
Lok Tsur—
—D )
Air — Eout
—
=
roresaa
I AAYAYE dul 1 Diameter,
I—p—-— | D
_M_.__ s
k— L N
Assumptions:

1. At any time ¢ the temperature of the rod is uniform.
Constant properties exist.

3. Radiation exchange between the outer surface of the rod and the
surroundings is between a small surface and a large enclosure.

Analysis: Since we are interested in determining a rate of change, the first
law should be applied at an instant of time. Hence, applying Equation 1.11a

A
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1.3 The Conservation of Energy Requirement 17

to a control volume of length L about the rod, it follows that
E,— E,, = E,

where energy generation is due to the electric resistance heating,
E,=IR,L

Energy outflow is due to convection and net radiation from the surface,
Equations 1.3a and 1.7, respectively,

Eoy = h(#DL)(T — T,,) + ea(aDL)(T* - T%,)

and the change in energy storage is due to the temperature change,
. d
E,= E(PVCT)

The term E,, is associated with the rate of change in the internal thermal
energy of the rod, where p and ¢ are the mass density and the specific heat,
respectively, of the rod material, and V is the volume of the rod, ¥V =
(7D?/4)L. Substituting the rate equations into the energy balance, it
follows that

aD?\ dT
I’R,L — h(aDL)(T - T,) — es(aDL)(T* - TZ.) = pc(T)LE
Hence
dT  I’R, - aDh(T - T,) — #Dea(T* - T%,)
= <
dt pc(wD2/4)

Comments: 'The above equation could be solved for the time dependence
of the rod temperature by integrating numerically. A steady-state condition
would eventually be reached for which d7/dr = 0. The rod temperature is
then determined by an algebraic equation of the form

#Dh(T — T,;) + mDea(T* — T%,) = I’R,

sur

EXAMPLE 14

Ice of mass M at the fusion temperature (T; = 0°C) is enclosed in a cubical
cavity of width W on a side. The cavity wall is of thickness L and thermal
conductivity k. If at time ¢ = 0, the outer surface of the wall is brought to a
temperature T; > T, obtain an expression for the time required to completely
melt the ice.
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18 Chapter 1 Introduction

SOLUTION

Known: Mass and initial temperature of ice. Dimensions, thermal conduc-
tivity, and outer surface temperature of containing wall.

Find: Expression for time needed to melt the ice.

Schematic:

/ 7 Section A~-4 ——¢

! [e——
T
A A4 Ein_* !

/ | |

’ Ice-water L
I.__w._J mixture (Tp

Assumptions:

1. Inner surface of wall is at T, throughout the process.

2. Constant properties.

3. One-dimensional conduction through each wall.

4. Conduction area of one wall may be approximated as W(L < W).

Analysis:  Since we must determine the melting time 1, the first law
should be applied over the time interval At = t,,- Hence, applying Equation
1.11b to a control volume about the ice-water mixture, it follows that

Ein . AEst
Since the temperature difference across the wall remains at (- 1)
throughout the melting process, the wall conduction rate is a constant
I,-T
f
9eond = k(6W2) L

in which case the amount of energy inflow is

O~ T
E, = k(6w )T}tm
The increase in energy stored within the control volume is due exclusively
to the change in latent energy associated with conversion from the solid to
liquid states. The amount of energy required to effect such change per unit
mass of solid is termed the latent heat of fusion h s~ Hence the increase in
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1.3 The Conservation of Energy Requirement 19

energy storage is
AE, = Mh,

Substituting into the first law expression, it follows that
Mh L
Im = Z—grdms — woy <
Wk (T, - 7))

Comments: Several complications would arise if the ice were initially
subcooled. The storage term would have to include the change in sensible
(internal thermal) energy required to take the ice from the subcooled to the
fusion temperature. During this process, temperature gradients would de-
velop in the ice.

1.3.2 The Surface Energy Balance

We will frequently have occasion to apply the conservation of energy require-
ment at the surface of a medium. In this special case the control surface
includes no mass or volume and appears as shown in Figure 1.8. Accordingly,
the generation and storage terms of the conservation expression, Equation
1.11a, are no longer relevant and it is only necessary to deal with surface
phenomena. For this case the conservation requirement then becomes

E,.-E, =0 (112)

Even though thermal energy generation may be occurring in the medium, the
process would not affect the energy balance at the control surface. Moreover,
this conservation requirement holds for both steady-state and transient condi-

tions.
1
} Tour
I Surroundings
1
| ”
1 —w Irad
) b Moving
fluid
T, L1l
|
| | Uoo, Teo
* .L T,
{LControl surfaces

Figure 1.8 The energy balance for conservation
of energy at the surface of a medium.
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20 Chapter 1 Introduction

In Figure 1.8 three heat transfer terms are shown for the control surface.
On a unit area basis they are conduction from the medium fo the control
surface (qgonq), convection from the surface to a fluid (g,,), and net
radiation exchange from the surface to the surroundings (q12q)- The energy
balance then takes the form

eond ~ Geony ~ faa = 0 (1.13)
and we can express each of the terms according to the appropriate rate
equations, Equations 1.2, 1.3a, and 1.7.

EXAMPLE 1.5

The hot combustion gases of a furnace are separated from the ambient air and
its surroundings, which are at 25°C, by a brick wall 0.15 m thick. The brick
has a thermal conductivity of 1.2 W/m - K and a surface emissivity of 0.8.
Under steady-state conditions an outer surface temperature of 100°C is
measured. Free convection heat transfer to the air adjoining this surface is
characterized by a convection coefficient & = 20 W/m? - K. What is the brick
inner surface temperature?

SOLUTION

Known: Outer surface temperature of a furnace wall of prescribed thick-
ness, thermal conductivity, and emissivity.

Find: Wall inner surface temperature.

Schematic:
Ty, = 25° C
Ty — T, = 100° C s »
l—e=108
|
i —prad
Combustion Geond —P :
gases .
: \’qconv
i T,=25C ,
k=12 W/mK—t— ! éﬁk?h:zowm K

E: 0.15m—>|
x

Air
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Assumptions:

1. Steady-state conditions.

2. One-dimensional heat transfer by conduction across the wall.

3. Radiation exchange between the outer surface of the wall and the

Analysis:  The inside surface temperature may be obtained by performing
an energy balance at the outer surface. From Equation 1.12

it follows that, on a unit area basis,

or, rearranging and substituting from Equations 1.2, 1.3a, and 1.7,

T, - T,
k - L 2 = h(TZ - Too) + 80'(TZ‘t B T;tr)
Therefore, substituting the appropriate numerical values
(T,-3M) K
12W/m - K———— =20W/m’ - K (373 - 298) K
0.15m
+0.8(5.67x 1078 W/m* - K4)(373% — 298%) K*
=1500 W/n? + 520 W /m? = 2020 W /m?
Solving for 7,
T, = 313K + —————(2020 W/m?) = 625 K = 352°C q
1 12W/m - K ( /0)
Comments:
1. Note that the contribution of radiation to heat transfer from the outer

2. When using energy balances involving radiation exchange and other
modes, it is good practice to express all temperatures in kelvin units.
This practice is necessary when the unknown temperature appears in
the radiation term and in one or more of the other terms.

1.3 The Conservation of Energy Requirement 21

surroundings is between a small surface and a large enclosure.

Ein - Eout =0

144 1" ” i
9eond ~ 9eonv — Grad = 0

surface is significant. The relative contribution would diminish, how-
ever, with increasing / and/or decreasing T,.

1.3.3 Application of the Conservation Laws: Methodology

In addition to being familiar with the transport rate equations described in
Section 1.2, the heat transfer analyst must be able to work with the energy
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22 Chapter 1 Introduction

conservation requirements of Equations 1.11 and 1.12. The application of
these balances is simplified if a few basic rules are followed.

1. The appropriate control volume must be defined, with the control surface
represented by a dashed line.

The appropriate time basis must be identified.

3. The relevant energy processes should be identified. Each process should be
shown on the control volume by an appropriately labeled arrow.

4. The conservation equation should then be written, and appropriate rate
expressions should be substituted for the terms in the equation.

In connection with applying the energy conservation equation (1.11) note
that this application may be in terms of a finite control volume or a
differential (infinitesimal) control volume. In the first case an equation would
be obtained that governs the gross behavior of the system. In contrast, for the
second case a differential equation would be obtained that could be solved for
conditions at each point in the system. Both types of control volume are used
extensively in this text.

14 ANALYSIS OF HEAT TRANSFER PROBLEMS: METHODOLOGY

A major objective of this text is to prepare you to solve engineering problems
that involve heat transfer processes. To this end numerous problems are
provided at the end of each chapter. In working these problems you will gain a
deeper appreciation for the fundamentals of the subject, and you will gain
confidence in your ability to apply these fundamentals to the solution of
engineering problems.

It is our conviction that there exists a preferred approach to problem
solving. In contrast to a somewhat random, “plug-and-chug” approach, we
advocate the use of a systematic procedure characterized by a prescribed
format. We consistently employ the procedure in all the examples of this text,
and we require our students to use it in their solution of problems. It consists
of the following steps.

1. Known: After carefully reading the problem, state briefly and concisely
what is known about the problem. Do not repeat the problem statement.
Find: State briefly and concisely what must be found.

3. Schematic: Draw a schematic of the physical system. If application of the
conservation laws is anticipated, represent the required control surface by
dashed lines on the schematic. Identify relevant heat transfer processes by
appropriately labeled arrows on the schematic.

4.  Assumptions: List all pertinent simplifying assumptions.
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5. Properties: Compile property values needed for subsequent calculations
and identify the source from which they are obtained.

6. Analysis: Begin your analysis by applying appropriate conservation laws,
and introduce rate equations as needed. Develop the analysis as com-
pletely as possible before substituting numerical values. Perform the
calculations needed to obtain the desired results.

7. Comments: Discuss your results. Such a discussion may include a sum-
mary of key conclusions, an inference of trends, and a critique of the
original assumptions.

The importance of following steps 1 through 4 should not be underesti-
mated. These steps provide the opportunity to systematically think about a
problem before effecting its solution.

RELEVANCE OF HEAT TRANSFER

In the vernacular of the time, heat transfer is indeed a relevant subject, not to
mention an inherently fascinating part of the engineering sciences. We will
devote much time to acquiring an understanding of heat transfer effects and to
developing the skills needed to predict heat transfer rates. What is the value of
this knowledge, and to what kinds of problems may it be applied?

Heat transfer phenomena play an important role in many industrial and
environmental problems. As an example, consider the vital area of energy
production and conversion. There is not a single application in this area that
does not involve heat transfer effects in some way. In the generation of
electrical power, whether it be through nuclear fission or fusion, the combus-
tion of fossil fuels, magnetohydrodynamic processes, or the use of geothermal
energy sources, there are numerous heat transfer problems that must be
solved. These problems involve conduction, convection, and radiation pro-
cesses and relate to the design of systems such as boilers, condensers, and
turbines. One is often confronted with the need to maximize heat transfer rates
and to maintain the integrity of materials in high-temperature environments.
One is also confronted with the thermal pollution problem associated with the
discharge of large amounts of waste heat from a power plant to the environ-
ment. Numerous heat transfer considerations relate to the design of cooling
towers to alleviate the environmental problems associated with this discharge.

On a smaller scale there are many heat transfer problems related to the
development of solar energy conversion systems for space heating and air
conditioning, as well as for electric power production. Heat transfer processes
also affect the performance of propulsion systems, such as the internal
combustion and rocket engines. Heat transfer problems arise in the design of
conventional space and water heating systems, in the design of incinerators
and cryogenic storage equipment, in the cooling of electronic equipment, in
the design of refrigeration and air conditioning systems, and in many other
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industrial problems. Heat transfer processes are also relevant to air and water
pollution and strongly influence local and global climate.

1.6 UNITS AND DIMENSIONS

The physical quantities of heat transfer are specified in terms of dimensions,
which are measured in terms of units. Four basic dimensions are required for
the development of heat transfer; they are length (L), mass (M), time (z), and
temperature (T'). All other physical quantities of interest may be related to
these four basic dimensions. :

In the United States it has been customary to measure dimensions in
terms of an English system of units, for which the base units are

DIMENSION UNIT

Length (L) - foot (ft)

Mass (M) > pound mass (Ib,,)
Time (t) - second (s)
Temperature (T) — degree Fahrenheit (°F)

The units required to specify other physical quantities may then be inferred
from this group. For example, the dimension of force is related to mass
through Newton’s second law of motion

il
F=—Ma (1.14)
8

where the acceleration a has units of feet per square second and g, is a
proportionality constant. If this constant is arbitrarily set equal to unity and
made dimensionless, the dimensions of force are (F) = (M) - (L)/(t)? and
the unit of force is

1 poundal = 11b,, - ft/s?

Alternatively, one could work with a system of basic dimensions that includes
both mass and force. However, in this case the proportionality constant must
have the dimensions (M) - (L)/(F) - ()% Moreover, if one defines the pound
force (lb;) as a unit of force that will accelerate one pound mass by 32.17
ft/s?, the proportionality constant must be of the form

g.=32171b,, - ft/Ib; - s*

The units of work may be inferred from its definition as the product of a
force times a distance, in which case the units are ft - Ib;. The units of work
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Table 1.2  SI base and supplementary units

QUANTITY AND SYMBOL UNIT AND SYMBOL
Length (L) meter (m)

Mass (M) . kilogram (kg)
Concentration (C) mole (mol)

Time (t) second (s)

Electric current (1) ampere (A)
Thermodynamic temperature (T)  kelvin (K)

Plane angle” (6) radian (rad)

Solid angle® (w) steradian (sr)

“Supplementary unit.

and energy are, of course, equivalent, although it is customary to use the
British thermal unit (Btu) as the unit of thermal energy. One British thermal
unit will raise the temperature of 1 Ib, of water at 68°F by 1°F. It is
equivalent to 778.16 ft - Ib;, which is termed the mechanical equivalent of heat.

In recent years there has been a strong trend toward worldwide usage of a
standard set of units. In 1960 the SI (Systéme International d’Unités) system
of units was defined by the Eleventh General Conference on Weights and
Measures and recommended as a worldwide standard. In response to this
trend, the American Society of Mechanical Engineers (ASME) has required
the use of SI units in all of its publications since July 1, 1974. For this reason
and because it is operationally more convenient than the English system, the
SI system is used for the calculations of this text. However, because for some
time to come, engineers will also have to work with results expressed in the
English system, you should be able to convert from one system to the other.
For your convenience conversion factors are provided on the inside back cover
of the text.

The SI base units required for this text are summarized in Table 1.2. With
regard to these units note that 1 mol is the amount of substance that has as
many atoms or molecules as there are atoms in 12 g of carbon-12 (*>C); this is
the gram-mole (mol). Although the mole has been recommended as the unit
quantity of matter for the SI system, it is more consistent to work with the
kilogram-mole (kmol, kg-mole). One kmol is simply the amount of substance
that has as many atoms or molecules as there are atoms in 12 kg of 2C. So
long as the use is consistent within a given problem, no difficulties arise in
using either mol or kmol. The molecular weight of a substance is the mass
associated with a mole or kilogram-mole. For oxygen, as an example, the
molecular weight .# is 16 g/mol or 16 kg/kmol.

Although the SI unit of temperature is the kelvin, use of the Celsius
temperature scale remains widespread. Zero on the Celsius scale (0°C) is
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Table 1.3  SI derived units for selected quantities

NAME EXPRESSION
QUANTITY AND SYMBOL FORMULA IN SI BASE UNITS
Force newton (N) m - kg/s? m - kg/s?
Pressure and stress  pascal (Pa) N/m? kg/m - §?
Energy joule (I) N-m m’ - kg/s?
Power watt (W) 1/s m? - kg/s>

Table 1.4 Multiplying prefixes

PREFIX ABBREVIATION MULTIPLIER
pico P 10712
nano n 107°
micro M 10-¢
milli m 1073
centi c 1072
hecto h 102
kilo k 10°
mega M 10°
giga G 10°
tera T 102

equivalent to 273.15 K on the thermodynamic scale,! in which case
T (K) = T (°C) + 273.15

However, temperature differences are equivalent for the two scales and may be
denoted as °C or K. Also, although the SI unit of time is the second, other
units of time (minute, hour, and day) are so common that their use with the SI
system is generally accepted.

The ST units comprise a coherent form of the metric system. That is, all
remaining units may be derived from the base units using formulas that do not
involve any numerical factors. Derived units for selected quantities are listed
in Table 1.3. Note that force is measured in newtons, where a 1-N force will
accelerate a 1-kg mass at 1 m/s%. Hence 1 N =1 kg - m/s% The unit of
pressure (N/m?) is often referred to as the pascal. In the SI system there is
one unit of energy (thermal, mechanical, or electrical), called the joule (J), and

! The degree symbol is retained for designation of the Celsius temperature (°C) to avoid
confusion with use of C for the unit of electrical charge (coulomb).
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1J =1 N - m. The unit for energy rate, or power, is then J /s, where one joule
per second is equivalent to one watt (1 J/s =1 W). Since it is frequently
necessary to work with extremely large or small numbers, a set of standard
prefixes has been introduced to simplify matters (Table 1.4). For example, 1
megawatt = 10 W, and 1 micrometer (pm) = 1076 m.

SUMMARY

Although much of the material of this chapter will be discussed in greater
detail, you should now have a reasonable overview of heat transfer. You
should be aware of the several modes of transfer and their physical origins.
Moreover, given a physical situation, you should be able to perceive the
relevant transport phenomena. The importance of developing this facility must
not be underestimated. You will be devoting much time to acquiring the tools
needed to calculate heat transfer phenomena. However, before you can begin
to use these tools to solve practical problems, you must have the intuition to
determine what is happening physically. In short, you must be able to look at
a problem and identify the pertinent transport phenomena. The example and
problems at the end of this chapter should help you to begin developing this
intuition.

You should also appreciate the significance of the rate equations and feel
comfortable in using them to compute transport rates. These equations,
summarized in Table 1.5, should be committed to memory. You must also
recognize the importance of the conservation laws and the need to carefully
identify control volumes. With the rate equations, the conservation laws may
be used to solve numerous problems involving heat transfer.

Table 1.5 Summary of heat transfer rate processes

TRANSPORT
EQUATION PROPERTY OR
MODE MECHANISM RATE EQUATION NUMBER COEFFICIENT
Conduction  Diflusion of energy ¢ (W/m?) = —k— (1.1) k (W/m - K)
due to random dx
molecular motion
Convection  Diffusion of energy ¢ (W/m?) = (T, — T,.) (1.33) h (W/m? - K)

due to random
molecular motion
plus energy transfer
due to bulk motion

(advection)
Radiation Energy transfer by ¢ (W/m?) = ea(T}} - Th) (L.7) €
electromagnetic org(W)=hA(T, - T,,.) (1.8) h, (W/m* - K)
waves
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EXAMPLE 1.6

A closed container filled with hot coffee is in a room whose air and walls are at
a fixed temperature. Identify all heat transfer processes that contribute to
cooling of the coffee. Comment on features that would contribute to a superior
container design.

SOLUTION

Known: Hot coffee is separated from its cooler surroundings by a plastic
flask, an air space, and a plastic cover.

Find: Relevant heat transfer processes.

Schematic:

Pathways for energy transfer from the coffee are as follows.

q;:
q;:
q;:
94
qs:

9e*
q7
qg:

Comments: Design improvements are associated with (1) use of alu-
minized (low emissivity) surfaces for the flask and cover to reduce net

gy 51

i

Air Room
R Plastic space air
flask Cover -]
Surroundings

“—Plastic flask

free convection from the coffee to the flask
conduction through the flask

free convection from the flask to the air
free convection from the air to the cover

net radiation exchange between the outer surface of the flask and the
inner surface of the cover

conduction through the cover
free convection from the cover to the room air

net radiation exchange between the outer surface of the cover and the
surroundings
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radiation, and (2) evacuating the air space or using a filler material to retard
free convection.

PROBLEMS
Conduction g
1.1 A heat rate of 3 kW is conducted through a section of an insulating material of

1.2

13

14

1.5

1.6

1.7

1.8

cross-sectional area 10 m? and thickness 2.5 cm. If the inmer (hot) surface
temperature is 415°C and the thermal conductivity of the material is 0.2 W /m - K,
what is the outer surface temperature?

A concrete wall, which has a surface area of 30 m? and is 0.30 m thick, separates
warm room air from cold ambient air. The temperature of the inner surface of the
wall is known to be 25°C, while the outer surface is at —15°C. The thermal
conductivity of the concrete is 1 W /m - K. What is the heat loss through the wall?
The heat flux through a wood slab 50 mm thick, whose inner and outer surface
temperatures are 40 and 20°C, respectively, has been determined to be 40 W /m?.,
What is the thermal conductivity of the wood?

The inner and outer surface temperatures of a glass window 5 mm thick are 15
and 5°C. What is the heat loss through a window that is 1 m by 3 m on a side?
The thermal conductivity of glass is 1.4 W/m - K.

A freezer compartment consists of a cubical cavity that is 2 m on a side. Assume
the bottom to be perfectly insulated. What is the minimum thickness of styrofoam
insulation (k = 0.030 W/m - K) which must be applied to the top and side walls
to ensure a heat load of less than 500 W, when the inner and outer surfaces are
—10 and 35°C?

What is the thickness required of a masonry wall having thermal conductivity
0.75 W/m - K if the heat rate is to be 80% of the heat rate through a composite
structural wall having a thermal conductivity 0.25 W/m - K and a thickness of
100 mm? Both walls are subjected to the same surface temperature difference.

A square silicon chip (k = 150 W/m - K) is of width W = 5 mm on a side and of
thickness 1 = 1 mm. The chip is mounted in a substrate such that its side and
back surfaces are insulated, while the front surface is exposed to a coolant.

—>
Coolant—>
—>

Circuits

If 4 W are being dissipated in circuits mounted to the back surface of the chip,
what is the steady-state temperature difference between back and front surfaces?
A gage for measuring heat flux to a surface or through a laminated material
employs thin-film, chromel—alumel (type K) thermocouples deposited on the
upper and lower surfaces of a wafer with a thermal conductivity of 1.4 W/m - K
and a thickness of 0.25 mm.
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80 Chapter 3 One-Dimensional, Steady-State Conduction

In this chapter we treat situations for which heat is transferred by diffusion
under one-dimensional, steady-state conditions. The term “one-dimensional”
refers to the fact that only one coordinate is needed to describe the spatial
variation of the dependent variables. Hence, in a one-dimensional system,
temperature gradients exist along only a single coordinate direction, and heat
transfer occurs exclusively in that direction. The system is characterized by
steady-state conditions if the temperature at each point is independent of time.
Despite their inherent simplicity, one-dimensional, steady-state models may be
used to accurately represent numerous engineering systems.

We begin our consideration of one-dimensional, steady-state conduction
by discussing heat transfer with no internal generation (Sections 3.1 to 3.3).
The objective is to determine expressions for the temperature distribution and
heat transfer rate in common geometries. The concept of thermal resistance
(analogous to electrical resistance) is introduced as an aid to solving conduc-
tion heat transfer problems. The effect of internal heat generation on the
temperature distribution and heat rate is then treated (Section 3.4). Finally,
conduction analysis is used to describe the performance of extended surfaces
or fins, wherein the role of convection at the external boundary must be
considered (Section 3.5).

3.1 THE PLANE WALL

For one-dimensional conduction in a plane wall, temperature is a function of
the x coordinate only and heat is transferred exclusively in this direction. In
Figure 3.1a, a plane wall separates two fluids of different temperatures. Heat
transfer occurs by convection from the hot fluid at T, ; to one surface of the
wall at T, ;, by conduction through the wall, and by convection from the other
surface of the wall at 7, , to the cold fluid at T, ,

We begin by considering conditions within the wall. We first determine
the temperature distribution, from which we can then obtain the conduction
heat transfer rate.

3.1.1 Temperature Distribution

The temperature distribution in the wall can be determined by solving the heat
equation with the proper boundary conditions. For steady-state conditions
with no distributed source or sink of energy within the wall, the appropriate
form of the heat equation, Equation 2.17, is

41Ty o

Hence, from Equation 2.2, it follows that, for one-dimensional, steady-state
conduction in a plane wall with no heat generation, the heat flux is a constant,
independent of x. If the thermal conductivity of the wall material is assumed to
be constant, the equation may be integrated twice to obtain the general
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T S

Hot fluid \ T2

To,1.R1
(@ Cold fuid
T, 2, h2
Tee, 1 Ts, 1 Ts, 2 Teo, 2
7>
2 1 L 1
hiA kA hoA

(b)

Figure 3.1 Heat transfer through a plane
wall. (a) Temperature distribution. (b)
Equivalent thermal circuit.

solution
T(x) = Cx + C, (3.2)

To obtain the constants of integration, C; and C,, boundary conditions must
be introduced. We choose to apply conditions of the first kind at x = 0 and
x = L, in which case

T(0)=T,, and T(L)=T,, /
Applying the condition at x = 0 to the general solution, it follows that
I,,=6G

Similarly, at x = L
T,,=CL+C,=CL+T,
in which case
T,—T,
i L
L 1
Substituting into the general solution, the temperature distribution is then

T(x) =T = L) =+ Ty (3.3)
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82 Chapter 3 One-Dimensional, Steady-State Conduction

From this result it is evident that, for one-dimensional, steady-state conduction
in a plane wall with no heat generation and constant thermal conductivity, the
temperature varies linearly with x.

Now that we have the temperature distribution, we may use Fourier’s law,
Equation 2.1, to determine the conduction heat transfer rate. That is,

kA
O STl = = —(T:v,l = 7;2) (3-4)

Note that A is the area of the wall normal to the direction of heat transfer
and, for the plane wall, it is a constant independent of x: The heat flux is then

9x

k
g =id= Z(T,,l -T.,) (3.5)

Equations 3.4 and 3.5 indicate that both the heat rate g, and heat flux g7 are
constants, independent of x.

In the foregoing paragraphs we have used the standard approach to
solving conduction problems. That is, the general solution for the temperature
distribution is first obtained by solving the appropriate form of the heat
equation. The boundary conditions are then applied to obtain the particular
solution, which is used with Fourier’s law to determine the heat transfer rate.
Note that we have opted to prescribe surface temperatures at x = 0 and
x = L as boundary conditions, even though it is the fluid temperatures, and
not the surface temperatures, that are typically known. However, since adjoin-
ing fluid and surface temperatures are easily related through a surface energy
balance, it is a simple matter to express Equations 3.3 to 3.5 in terms of fluid,
rather than surface, temperatures. Alternatively, equivalent results could be
obtained directly by using the surface energy balances as boundary conditions
of the third kind in evaluating the constants of Equation 3.2 (see Problem 31).

3.1.2 Thermal Resistance

At this point we note that a very important concept is suggested by Equation
3.4. In particular, there exists an analogy between the diffusion of heat and
electrical charge. Just as an electrical resistance is associated with the conduc-
tion of electricity, a thermal resistance may be associated with the conduction
of heat. Defining resistance as the ratio of a driving potential to the corre-
sponding transfer rate, it follows from Equation 3.4 that the thermal resistance
for conduction is

R

o (3.6)

1, cond

Similarly, for electrical conduction in the same system, Ohm’s law provides an
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electrical resistance of the form

R Es.l - E.r,2 L ' 37
¢ I " o4 (27)
The analogy between Equations 3.6 and 3.7 is obvious. A thermal resistance
may also be associated with heat transfer by convection at a surface. From
Newton’s law of cooling,

q=hA(T, - T,) (3.8)
the thermal resistance for convection is then

Lelopid (3.9)
{,conv q hA 2

R

Circuit representations provide a useful tool for both conceptualizing and
quantifying heat transfer problems. The equivalent thermal circuit for the plane
wall with convection surface conditions is shown in Figure 3.15. The heat
transfer rate may be determined from separate consideration of each element
in the network. That is,

T, -y Fy-Tp Fy-=T
qx _ 0,1 5,1 _ 5,1 5,2 _ 2 0,2 (310)
1/hA L/kA 1/h,A

In terms of the overall temperature difference, T, , — T, ,, and the total

thermal resistance, R, the heat transfer rate may also be expressed as
S Tm.z
R

ot

9. = (3.11)
Because the conduction and convection resistances are in series and may be
summed, it follows that

1 2 1

Ry=7—"+—+—
U A kA h,A

(3.12)

Yet another resistance may be pertinent if a surface is separated from
large surroundings by a gas (Section 1.2.3). In particular, radiation exchange
between the surface and its surroundings may be important, and the rate may
be determined from Equation 1.8. It follows that a thermal resistance for
radiation may be defined as

=i 1
ek e i i
t,rad qrs,d hrA (3 13)

where h, is determined from Equation 1.9. Surface radiation and convection
resistances act in parallel, and if T, = T, they may be combined to obtain a
single, effective surface resistance.
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1

Hot fluid T
o151 kp 2.
A
o= X Cold fluid
L L L L 1 T,k
hyA kaA EgA kcA L
T AN AN oA AN~
% Ty, Tor Ty R RS T

Figure 3.2 Equivalent thermal circuit for a series
composite wall.

3.13 ﬂe Composite Wall
/

Equivalent thermal circuits may also be used for more complex systems, such
as composite walls. Such walls may involve any number of series and parallel
thermal resistances due to layers of different materials. Consider the series
composite wall of Figure 3.2. The one-dimensional heat transfer rate for this
system may be expressed as

= Teo.l - Too,4 (3 14)
qx 2 Rt "
where T, , — T, , is the overall temperature difference and the summation
includes all thermal resistances. Hence,
Too,l . Tao,4
qx = ‘
[(L/mA) + (Laskad) + (Lp/kgd) + (Lo/KcA) + (1/h,A)]

(3.15)

Alternatively, the heat transfer rate can be related to the temperature differ-
ence and resistance associated with each element. For example,

T.l_];'.l 7..‘v,l_T'Z TZ_T3

a/md) " (La/kad) ~ (Lyp/kga) ~

With composite systems it is often convenient to work with an overall heat
transfer coefficient, U, which is defined by an expression analogous to Newton’s

q, = (3.16)
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law of cooling. Accordingly,
q, = UAAT (3.17)

where AT is the overall temperature difference. The overall heat transfer
coefficient is related to the total thermal resistance, and from Equations 3.14
and 3.17 we see that U4 = 1/R,,. Hence, for the composite wall of Figure
3.2,

1 1
U= =
Rod  [(U/m) + (Laska) + (La/ks) + (Le/ke) + (1/h4)]
(3.18)
In general, we may write
AT 1
Ry =2R, = 7 & 7 (3.19)

Composite walls may also be characterized by series—parallel configura-
tions, such as that shown in Figure 3.3. Although the heat flow is now

Ly Ly g
k(AT2i AATZ) i fAZT
T
G —P 1 L I
E ... S
k(A]2) k(A2
(b)

Figure 3.3 Equivalent thermal circuit for a
series—parallel composite wall.
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—qu;

Figure 3.4 Temperature drop due to thermal contact resistance.

two-dimensional, it is often reasonable to assume one-dimensional conditions.
Subject to this assumption, two different thermal circuits may be used. For
case (a) it is presumed that surfaces normal to the x direction are isothermal,
while for case (b) it is assumed that surfaces parallel to the x direction are
adiabatic. Different results are obtained for R, and the corresponding values
of g bracket the actual heat transfer rate. These differences increase with
increasing |k — kg, as two-dimensional effects become more significant.

3.1.4 Contact Resistance

Although neglected until now, it is important to recognize that, in composite
systems, the temperature drop across the interface between materials may be
appreciable. This temperature change is attributed to what is known as the
thermal contact resistance, R, . The effect is shown in Figure 3.4, and for a
unit area of the interface, the resistance is defined as

. TA =Ty

13ci T q;; (320)
The existence of a finite contact resistance is due principally to surface
roughness effects. Contact spots are interspersed with gaps that are, in most
instances, air filled. Heat transfer is therefore due to conduction across the
actual contact area and to conduction and /or radiation across the gaps. The
contact resistance may be viewed as two parallel resistances: that due to the
contact spots and that due to the gaps. The contact area is typically small, and
especially for rough surfaces, the major contribution to the resistance is made
by the gaps.
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Table 3.1 Thermal contact resistance for (a) metallic interfaces
under vacuum conditions and (b) aluminum interface (10-pm
surface roughness, 10° N /m?) with different interfacial fluids [1]

THERMAL RESISTANCE, R/, x 10* (m” - K/W)

(a) Vacuum Interface (b) Interfacial Fluid
Contact pressure 100 kN/m? 10,000 kKN/m*  Air 2.75
Stainless steel 6-25 0.7-4.0 Helium 1.05
Copper 1-10 0.1-0.5 Hydrogen  0.720
Magnesium 1.5-3.5 0.2-0.4 Silicone oil  0.525
Aluminum 1.5-5.0 0.2-0.4 Glycerine  0.265

For solids whose thermal conductivities exceed that of the interfacial
fluid, the contact resistance may be reduced by increasing the area of the
contact spots. Such an increase may be effected by increasing the joint
pressure and/or by reducing the roughness of the mating surfaces. The
contact resistance may also be reduced by selecting an interfacial fluid of large
thermal conductivity. In this respect, no fluid (an evacuated interface) elimi-
nates conduction across the gap, thereby increasing the contact resistance.

Although theories have been developed for the prediction of R7 ., the
most reliable results are those which have been obtained experimentally. The
effect of loading on metallic interfaces can be seen in Table 3.1a, which
presents the approximate range of thermal resistance values under vacuum
conditions. The effect of interfacial fluid on the thermal resistance of an
aluminum interface is shown in Table 3.15.

Contrary to the results of Table 3.1, many applications involve contact
between dissimilar solids and/or a wide range of possible interstitial (filler)
materials (Table 3.2). Any interstitial substance that fills the gap between
contacting surfaces and whose thermal conductivity exceeds that of air will
decrease the contact resistance. Two classes of materials that are well suited
for this purpose are soft metals and thermal greases. The metals, which include
indium, lead, tin, and silver, may be inserted as a thin foil or applied as a thin
coating to one-of the parent materials. Silicon-based thermal greases are
attractive on the basis of their ability to completely fill the interstices with a
material whose thermal conductivity is as much as 50 times that of air.

Unlike the foregoing interfaces, which are not permanent, many inter-
faces involve permanently bonded joints. The joint could be formed from an
epoxy, a soft solder rich in lead, or a hard solder such as a gold /tin alloy. Due
to interface resistances between the parent and bonding materials, the actual
thermal resistance of the joint exceeds the theoretical value (L/k) computed
from the thickness L and thermal conductivity k of the joint material. The
thermal resistance of epoxied and soldered joints is also adversely affected by
voids and cracks, which may form during manufacture or as a result of
thermal cycling during normal operation.
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Table 3.2 Thermal resistance of representative solid /solid interfaces

INTERFACE R, x 10* (m* - K/W) SOURCE
Silicon chip/lapped aluminum in air 0.3-0.6 [2]
(27-500 kN /m?)

Aluminum/aluminum with indium foil ~ 0.07 [1,3)
filler (~ 100 kN /m?)

Stainless /stainless with indium foil ~ 0.04 [1,3]
filler (~ 3500 kN /m?)

Aluminum/aluminum with metallic (Pb) 0.01-0.1 [4])
coating

Aluminum/aluminum with Dow Corning  ~ 0.07 [1,3]
340 grease (~ 100 kN /m?)

Stainless /stainless with Dow Corning ~ 0.04 [1,3]
340 grease (~ 3500 kN /m?)

Silicon chip /aluminum with 0.02-mm 0.2-0.9 [5]
€poxy

Brass/brass with 15 um tin solder 0.025-0.14 [6]

Comprehensive reviews of thermal contact resistance results and models
are provided by Snaith et al. [3], Madhusudana and Fletcher [7], and
Yovanovich [8].

EXAMPLE 3.1

A leading manufacturer of household appliances is proposing a self-cleaning
oven design that involves use of a composite window separating the oven
cavity from the room air. The composite is to consist of two high temperature
plastics (A and B) of thicknesses L, = 2L p and thermal conductivities
ka=015W/m-K and ky = 0.08 W/m - K. During the self-cleaning pro-
cess, the oven wall and air temperatures, T, and T,, are 400°C, while the room
air temperature T, is 25°C. The inside convection and radiation heat transfer
coefficients &, and 4, as well as the outside convection coefficient h,, are each
approximately 25 W /m? - K..What is the minimum window thickness, L =
Ly + Ly, needed to ensure a temperature that is 50°C or less at the outer
surface of the window? This temperature must not be exceeded for safety
reasons.

SOLUTION

Known: The properties and relative dimensions of plastic materials used
for a composite oven window, and conditions associated with self-cleaning
operation.
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Find: Composite thickness L, + Ly needed to ensure safe operation.

Schematic:
Composite
Oven window, L L
L‘cawty Ly=2Lg I" A_I B8
T, = 400 °C 3

b= 25 W/m?K

w @
T, = 400 °C ‘LJ7J7 |

hi = 25 W/m?-K

B, kg =008 W/m-K
A, ky =015 W/m+K

Lo =250C
Rir 5 _ 25 W/m2-K

Assumptions:

1. Steady-state conditions exist.

2. Conduction through the window is one-dimensional.

3. Contact resistance is negligible.

4. Radiation absorption within the window is negligible; hence no internal

heat generation (radiation exchange between window and oven walls
occurs at the window inner surface).

5. Radiation exchange between window outer surface and surroundings is
negligible.
6. Each plastic is homogeneous with constant properties.

Analysis: The thermal circuit can be constructed by recognizing that
resistance to heat flow is associated with convection at the outer surface,
conduction in the plastics, and convection and radiation at the inner
surface. Accordingly, the circuit and the resistances are of the following
form.

v

1/h,A

T
Iy=Ty
Ta

Lp/keah LglkgA

1/hA

Since the outer surface temperature of the window, T, ,, is prescribed, the
required window thickness may be obtained by applying an energy balance
at this surface. That is, from Equation 1.12

E,=E

in

out
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where, from Equation 3.19, with T, = iy,

E' Tﬂ_z-o
in— 4= ER,

and from Equation 3.8
Eout = q . hoA(Tr,o - Too)

The total thermal resistance between the oven cavity and the outer surface
of the window includes an effective resistance associated with convection
and radiation, which act in parallel at the inner surface of the window, and
the conduction resistances of the window materials. Hence

1 : AN N
+ + + —
1/h A~ 1/h,4 kad = kpd

SR, =

or

sp o L[_1 Ly , L
= — + — 4+ =
Al h +h, Kk, 2kg

Substituting into the energy balance, it follows that
Ta - T.;‘.o
(R h,) ™"+ (Laska) + (Lp/2Kky)

Hence, solving for L,,

_ Q)T = T )N~ T,) = (h+ )"

. hO(T-;‘,O - TOO)

AT (1/ks + 1/2ky)
0.04 m? KW__400—50) 002 m? - K/W
.04 m / 50 — 25 —0.02m* - K/

L — = 0.0418
A (1/0.15 + 1/0.16) m - K,/W o

Since Ly = L,/2 = 0.0209 m,
L=L,+ Ly=0.0627m = 62.7 mm N

Comments: The self-cleaning operation is a transient process, as far as the
thermal response of the window is concerned, and steady-state conditions
may not be reached in the time required for cleaning. However, the
steady-state condition provides the maximum possible value of T, , and
hence is well suited for the design calculation.
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EXAMPLE 3.2

A thin silicon chip and a 8-mm-thick aluminum substrate are separated by a
0.02-mm-thick epoxy joint. The chip and substrate are each 10 mm on a side,
and their exposed surfaces are cooled by air which is at a temperature of 25°C
and provides a convection coefficient of 100 W /m? - K. If the chip dissipates
10* W/m? under normal conditions, will it operate below a maximum
allowable temperature of 85°C?

SOLUTION

Known: Dimensions, heat dissipation, and maximum allowable tempera-
ture of a silicon chip. Thickness of aluminum substrate and epoxy joint.
Convection conditions at exposed chip and substrate surfaces.

Find: Whether maximum allowable temperature is exceeded.

Schematic:

Tw
Silicon chip 1th
. gi—p BT
Epoxy joint
(0.02 mm) R
Le
Aluminum
substrate Lek
l/h

Assumptions:

1. Steady-state conditions.

2. One-dimensional conduction (negligible heat transfer from sides of
composite).

3. Negligible chip thermal resistance (an isothermal chip).
Constant properties.
5. Negligible radiation exchange with surroundings.
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Properties: Table A.1, pure aluminum (T ~ 350 K): k = 238 W/m - K.

Analysis:  Heat dissipated in the chip is transferred to the air directly from
the exposed surface and indirectly through the joint and substrate. Perform-
ing an energy balance on a control surface about the chip, it follows that,
on the basis of a unit surface area,

9 =a +4q;
or
. E
=1 T.-T,
+
(/h) R+ (L/k) + (1/h)

-
9. =

To conservatively estimate T, the maximum possible value of R/, =09 X
10~* m? - K/W is obtained from Table 3.2. Hence

. -1
T.=T,+gq’ [h + RY + (L/k) + (V‘”J

or

T.=25°C + 10* W/m?

1 -1
0+ 2 K/W
X [10 (09 + 0.34 + 100) x 104] i 4
T, = 25°C + 50.3°C = 75.3°C a

Hence, the chip will operate below its maximum allowable temperature.

Comments: The joint and substrate thermal resistances are much less than
the convection resistance. The joint resistance would have to increase to the
unrealistically large value of 50 X 10™% m? - K/W, before the maximum
allowable chip temperature would be exceeded.

3.2

AN ALTERNATIVE CONDUCTION ANALYSIS

The conduction analysis of Section 3.1 was performed using the standard
approach. That is, the heat equation was solved to obtain the temperature
distribution, Equation 3.3, and Fourier’s law was then applied to obtain the
heat transfer rate, Equation 3.4. However, an alternative approach may be
used for the conditions presently of interest. Considering conduction in the
system of Figure 3.5, we recognize that, for steady-state conditions with no heat
generation and no heat loss from the sides, the heat transfer rate ¢, must be a
constant independent of x. That is, for any differential element dx, ¢, = q, , dce
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Adiabatic__
surface

Figure 3.5 System with a constant conduction heat transfer rate.

This condition is, of course, a consequence of the energy conservation require-
ment, and it must apply even if the area varies with position 4(x) and the
thermal conductivity varies with temperature k(7). Moreover, even though
the temperature distribution may be two dimensional, varying with x and y, it
is often reasonable to neglect the y variation and to assume a one-dimensional
distribution in x.

For the above conditions it is possible to work exclusively with Fourier’s
law when performing a conduction analysis. In particular, since the conduc-
tion rate is a constant, the rate equation may be integrated, even though
neither the rate nor the temperature distribution is known. Consider Fourier’s
law, Equation 2.1, which may be applied to the system of Figure 3.5. Although
we may have no knowledge of the value of g, or the form of T(x), we do
know that g, is a constant. Hence we may express Fourier’s law in the integral
form

q"fx:A‘Zz) - —fToTk(T)dT (3.21)

The cross-sectional area may be a known function of x, and the material
thermal conductivity may vary with temperature in a known manner. If the
integration is performed from a point x, at which the temperature T, is
known, the resulting equation provides the functional form of T(x). More-
over, if the temperature T = T, at some x = x, is also known, integration
between x, and x, provides an expression from which ¢, may be computed.
Note that, if the area A is uniform and k is independent of temperature,
Equation 3.21 reduces to

q, Ax
A

where Ax = x; — xoand AT =T, — T,

We frequently elect to solve diffusion problems by working with inte-
grated forms of the diffusion rate equations. However, the limiting conditions
for which this may be done should be firmly fixed in our minds: steady-state
and one-dimensional transfer with no heat generation.

= —kAT (3.22)
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EXAMPLE 3.3

The diagram shows a conical section fabricated from pyroceram. It is of
circular cross section with the diameter D = ax, where a = 0.25. The small
end is at x; = 50 mm and the large end at x, = 250 mm. The end tempera-
tures are T} =400 K and T, = 600 K, while the lateral surface is well
insulated.

Ty

re)

1. Derive an expression for the temperature distribution 7(x) in symbolic
form, assuming one-dimensional conditions. Sketch the temperature
distribution.

2. Calculate the heat rate ¢, through the cone.

SOLUTION

Known: Conduction in a circular conical section having a diameter D = ax,
where a = 0.25.

Find:

1. Temperature distribution T(x).
2. Heat transfer rate g,.

Schematic:

Gt

R 0.05m
Pyroceram 2 =025 m
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Assumptions:

1. Steady-state conditions.

2. One-dimensional conduction in the x direction.
3. No internal heat generation.

4. Constant properties.

Properties: Table A.2, pyroceram (500 K): k = 3.46 W/m - K.
Analysis:

1.

3.2 An Alternative Conduction Analysis 95

Since heat conduction occurs under steady-state, one-dimensional con-
ditions with no internal heat generation, the heat transfer rate g, is a
constant independent of x. Accordingly, Fourier’s law, Equation 2.1,
may be used to determine the temperature distribution

y daTr
qx = dx

With A = 7D2/4 = ma’x?/4 and separating variables
4q, dx

ma’x?

= —kdT

Integrating from x, to any x within the cone, and recalling that g, and
k are constants, it follows that

4q, rxdx
qz x—z' = -k TdT
mac Iy X T,
Hence
4q, 1 1 W(T - T
-—— + — P p— —
mal\ x x ( )
or solving for T
4q, [ 1 1
T(x)=T - ——|— - —
(x) Y nalk ( X x)

Although g, is a constant, it is as yet an unknown. However, it may be
determined by evaluating the above expression at x = x, where T(x,)
= T,. Hence
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and solving for ¢,
_ ma’k(T, - T,)
- 4[(1/x1) - (1/x2)]

Substituting for ¢, into the expression for T(x), the temperature
distribution becomes

qx

N

(/x) - (1/x;) ]
(/%) = (1/x,)

From this result, temperature may be calculated as a function of x and
the distribution is as shown.

T(x)=T+ (1, - T2)[

T(x)
Ty
Ty
x | ]
X9 X1
Note that, since dT/dx = —4q,/kma’x? from Fourier’s law, it follows

that the temperature gradient and heat flux decrease with increasing x.

2. Substituting numerical values into the foregoing result for the heat
transfer rate, it follows that

7(0.25)* X 3.46 W /m - K (400 — 600) K
(025) / ( ) =-212W <«

9x 1 1
4 ] —
0.05m 025m

Comments: When the parameter a increases, the one-dimensional assump-
tion becomes less appropriate. That is, the assumption worsens when the
cross-sectional area change with distance is more pronounced.

RADIAL SYSTEMS

Cylindrical and spherical systems often experience temperature gradients in
the radial direction only and may therefore be treated as one dimensional.
Moreover, under steady-state conditions with no heat generation, such systems
may be analyzed by using the standard method, which begins with the
appropriate form of the heat equation, or the alternative method, which begins
with the appropriate form of Fourier’s law. In this section, the eylindrical
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Hot fluid

Cold fluid

Ts, 2 T, 2

In(ry/1y) 1
Ts 2 h2mrL 2mkL hy2rryL

Figure 3.6 Hollow cylinder with convective surface conditions.

system is analyzed by means of the standard method and the spherical system
by means of the alternative method.

3.3.1 The Cylinder

A common example is the hollow cylinder, whose inner and outer surfaces are
exposed to fluids at different temperatures (Figure 3.6). For steady-state
conditions with no heat generation, the appropriate form of the heat equation,
Equation 2.20, is

! d(k £)=0 (3.23)

7; rdr

where, for the moment, k is treated as a variable. The physical significance of
this result becomes evident if ‘we also consider the appropriate form of
Fourier’s law. The rate at which energy is conducted across any cylindrical
surface in the solid may be expressed as

kAdT k(2 LdT 324
4=~k = —k@arL) S (329

where A = 2@rL is the area normal to the direction of heat transfer. From
Equations 3.23 and 3.24 it follows that the conduction heat transfer rate g,
(not the heat flux q.’) is a constant in the radial direction.

We may determine the temperature distribution in the cylinder by solving
Equation 3.23 and applying appropriate boundary conditions. Assuming the
value of k to be constant, Equation 3.23 may be integrated twice to obtain the
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general solution
T(r)=C/Inr+ G, (3.25)

To obtain the constants of integration C, and C,, we introduce the following
boundary conditions.

T(n) =T, and T(n) =T,,
Applying these conditions to the general solution, we then obtain
I,,=Clhnn+C and I.,=Chr+(

Solving for C, and C, and substituting into the general solution, we then
obtain

- Ty = En L
T(r) = _ln (ri7r) ln(r—z) + T, (3.26)

Note that the temperature distribution associated with radial conduction
through a cylinder is logarithmic, not linear, as it is for the plane wall under
the same conditions. The logarithmic distribution is sketched in the insert of
Figure 3.6.

If the temperature distribution, Equation 3.26, is now used with Fourier’s
law, Equation 3.24, we obtain the following expression for the heat transfer
rate

2""”‘(7;.1 = T;.z)
& In (ry/r,)

From this result it is evident that, for radial conduction in hollow cylinders,
the thermal resistance is of the form

In(ry/ry)
2nwLk

(3.27)

(3.28)

Rt.cond =

This resistance is shown in the series circuit of Figure 3.6. Note that since the
value of g, is independent of r, the foregoing result could have been obtained
by using the alternative method, that is, by integrating Equation 3.24.

Consider now the composite system of Figure 3.7. Recalling how we
treated the composite plane wall and neglecting the interfacial contact resis-
tances, the heat transfer rate may be expressed as

T,.—- T,

0,1 0,4
= 1 N In(r/n)  In(r/r)  In(r/r) 1
2ar Lh; 2ak, L 2wk gL 2nkcL 27r,Lh,

(3.29)

The foregoing result may also be expressed in terms of an overall heat transfer
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-~
/VTW, 1 h

1 In(rp/ry) In(r/ry) In (rg/75) 1

hi2wr L 2wkyL 2mkgl 2mkcL hg2mryL

Figure 3.7 Temperature distribution for a composite cylindrical wall.
coefficient. That is,

T,

- T
St UlAl(Too,l - Too,4) (3-30)

q, =
R o

where 4, = 2ar L and

U= 1 3 r n r n r rn 1 (331)
—+—Ih—=+—Ih—=+4+—In—
hy ka 1 ky nn ke n s hy

Equation 3.30 defines U in terms of the inside surface area A, of the
composite cylinder. This definition is arbitrary, and the overall coefficient may
also be defined in terms of A, or any of the intermediate areas. Note that

U4, = U4, = Uyd; = Ud, = (SR,)7! (3.32)

and the specific forms of U,, U;, and U, may be inferred from Equation 3.29.
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EXAMPLE 34

The possible existence of an optimum insulation thickness for radial systems is
suggested by the presence of competing effects associated with an increase in
this thickness. In particular, although the conduction resistance increases with
the addition of insulation, the convection resistance decreases due to increas-
ing outer surface area. Hence there may exist an insulation thickness that
minimizes heat loss by maximizing the total resistance to heat transfer.
Resolve this question by considering the following system.

1. A thin-walled copper tube of radius r; is used to transport a low tempera-
ture refrigerant and is at a temperature 7, that is less than that of the
ambient air at T, around the tube. Is there an optimum thickness
associated with application of insulation to the tube?

2. Confirm the above result by computing the total thermal resistance per
unit length of tube for a 10-mm-diameter tube having the following
insulation thicknesses: 0, 2, 5, 10, 20, and 40 mm. The insulation is
composed of cellular glass, and the outer surface convection coefficient is
5W/m?- K.

SOLUTION

Known: Radius r; and temperature T; of a thin-walled copper tube to be
insulated from the ambient air.

Find:

1. Whether there exists an optimum insulation thickness that minimizes
the heat transfer rate.

2. Thermal resistance associated with using cellular glass insulation of
varying thickness.

Schematic:
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Assumptions:

1. Steady-state conditions.

2. One-dimensional heat transfer in the radial (cylindrical) direction.

3. Negligible tube wall thermal resistance.

4. Constant properties for insulation.

5. Negligible radiation exchange between insulation outer surface and

surroundings.

Properties: Table A3, cellular glass (285 K, assumed): k = 0.055
W/m - K.

Analysis:

1. The resistance to heat transfer between the refrigerant and the air is
dominated by conduction in the insulation and convection in the air.
The thermal circuit is therefore

. T; To
7 ¢— —~"\WW—o—-MAM—o
In(r/r)) 1
2k 2mrh

where the conduction and convection resistances per unit length follow
from Equations 3.28 and 3.9, respectively. The total thermal resistance
per unit length of tube is then

In(r/r,) 1

R, = ——=

i 2uk 2arh
where the rate of heat transfer per unit length of tube is
o

oo L
R.r

tot

q =

An optimum insulation thickness would be associated with the value of
r that minimized ¢’ or maximized R',,. Such a value could be obtained
from the requirement that

dr
Hence
1 1
2akr  2wr’h -
or
k
"%
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To determine whether the foregoing result maximizes or minimizes the
total resistance, the second derivative must be evaluated. Hence

d*R',, 1 1
= — +
dr? 2akr®  a@rih
or,at r = k/h
d’R’,, 1 1 1 1 0
= S _SHlea_ o o
dr? w(k/h)Y\k 2k 27k’ /h?

Since this result is always positive, it follows that r = k/h is the
insulation radius for which the total resistance is a minimum, not a
maximum. Hence an optimum insulation thickness does not exist.

From the above result it makes more sense to think in terms of a
critical insulation radius

k

below which ¢ increases with increasing r and above which ¢’ de-
creases with increasing r.

2. With =5 W/m’- K and k = 0.055 W/m - K, the critical radius is
0.055 W/m - K

Iy ="Fmmea—e——=0.011m
SW/m - K

Hence r, > r; and heat transfer will increase with the addition of
insulation up to a thickness of
r,, — r,= (0.011 — 0.005) m = 0.006 m

The thermal resistances corresponding to the prescribed insulation
thicknesses may be calculated and are summarized as follows.

THERMAL
RESISTANCES
INSULATION INSULATION (m - K/W)
THICKNESS RADIUS
(r— r:) (mm) r (m) R::ond R/conv R/lo(
0 0.005 0 6.37 6.37
2 0.007 0.97 4.55 5.52
5 0.010 2.00 3.18 5.18
6 oy = 0,011 228 289 517
10 0.015 3.18 212 5.30
20 0.025 4.66 1.27 5.93
40 0.045 6.35 0.71 7.06
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3.3 Radial Systems 103

Comments:

1. The effect of the critical radius is revealed by the fact that, even for 20
mm of insulation, the total resistance is not as large as the value for no
insulation.

2. If r, <r,, asitis in this case, the total resistance decreases and the heat
rate therefore increases with the addition of insulation. This trend
continues until the outer radius of the insulation corresponds to the
critical radius. The trend is desirable for electrical current flow through
a wire, since the addition of electrical insulation would aid in transfer-
ring heat dissipated in the wire to the surroundings. Conversely, if
r; > r,, any addition of insulation would increase the total resistance
and therefore decrease the heat loss. This behavior would be desirable
for steam flow through a pipe, where insulation is added to reduce heat
loss to the surroundings.

3. For radial systems, the problem of reducing the total resistance through
the application of insulation exists only for small diameter wires or
tubes and for small convection coefficients, such that r, > r,. For a
typical insulation (k = 0.03 W/m - K) and free convection in air
(h =10 W/m? - K), r,, = (k/h) = 0.003 m. Such a small value tells us
that, normally, 7, > r,. and we need not be concerned with the effects of
a critical radius.

4. The existence of a critical radius requires that the heat transfer area
change in the direction of transfer, as for radial conduction in a
cylinder (or a sphere). In a plane wall, for example, the area perpendic-
ular to the direction of heat flow is constant and there is no critical
insulation thickness (the total resistance always increases with increas-
ing insulation thickness).

3.3.2 The Sphere

Now consider applying the alternative method to analyzing conduction in the
hollow sphere of Figure 3.8. For the differential control volume of the figure,
energy conservation requires that ¢, = q,, ,, for steady-state, one-dimensional
conditions with no heat generation. The appropriate form of Fourier’s law is

dT N
q,= —kA = —k(4nr )—; (3.33)

dr

where A = 47r? is the area normal to the direction of heat transfer,
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Chapter 3 One-Dimensional, Steady-State Conduction

Figure 3.8 Conduction in a spherical shell.

Acknowledging that ¢, is a constant, independent of r, Equation 3.33
may be expressed in the integral form

q, ndr T,
= = —fT *%(T) dT (3.34)

4oy r

Assuming constant k, we then obtain
4'”k(T;,1 T Tsz)
/n) - (Q/m)

Remembering that the thermal resistance is defined as the temperature differ-
ence divided by the heat transfer rate, we obtain

q, (3.35)

1 /(1 1
Rt.cond T e (336)

Note that the temperature distribution and Equations 3.35 and 3.36 could
have been obtained by using the standard approach, which begins with the
appropriate form of the heat equation.

Spherical composites may be treated in much the same way as composite
walls and cylinders, where appropriate forms of the total resistance and overall
heat transfer coefficient may be determined.

EXAMPLE 3.5

A spherical, thin-walled metallic container is used to store liquid nitrogen at
77 K. The container has a diameter of 0.5 m and is covered with an evacuated,
reflective insulation composed of silica powder. The insulation is 25 mm thick,
and its outer surface is exposed to ambient air at 300 K. The convection
coefficient is known to be 20 W/m? - K. The latent heat of vaporization and
the density of liquid nitrogen are 2 X 10° J/kg and 804 kg,/m’, respectively.

1. What is the rate of heat transfer to the liquid nitrogen?
2. What is the rate of liquid boil-off?
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3.3 Radial Systems 105

SOLUTION

Known: Liquid nitrogen is stored in a spherical container that is insulated
and exposed to ambient air.

Find:

1. The rate of heat transfer to the nitrogen.
2. The mass rate of nitrogen boil-off.

Schematic:

\ Vent
D\ﬁ Thin-walled spherical

container, 71 = 0.25 m

Insulation outer
surface,

ro=0275m

!

CE% T L : Liquid nitrogen
h =20 W/m2.K *
fm T, 1=77K
p = 804 kg/m?3
q hy =2 % 10° J/kg
Assumptions:

Steady-state conditions.
One-dimensional transfer in the radial direction.

3. Negligible resistance to heat transfer through the container wall and
from the container to the nitrogen.

Constant properties.

5. Negligible radiation exchange between outer surface of insulation and
surroundings.

Properties: Table A.3, evacuated silica powder (300 K): k = 0.0017
W/m - K.

Analysis:

1. The thermal circuit involves a conduction and convection resistance in
series and is of the form
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106 Chapter 3 One-Dimensional, Steady-State Conduction

T T2
4+—q

Rt, cond Rt, conv

where, from Equation 3.36,

. 1 1 1
treond T gk n r

and from Equation 3.9

5 1
t,conv h41rr22

The rate of heat transfer to the liquid nitrogen is then

T,,— T,

00,2 00,1

T (1/Ank)[(1/n) - (/r)] + (1/h4nrf)

q

Hence

g = [(300 — 77) K]

1 1 1
" | 47(0.0007W/m - K) | 025m 0.275m)

1
+ 2
(20 W/m? - K)47(0.275 m)” }
223
©17.02 + 0.05

2. Performing an energy balance for a control surface about the nitrogen,
it follows from Equation 1.12 that

q W =13.06 W N

.

Eln - Eout =0

where E,, = ¢ and E_, = mh g, is associated with the loss of latent

out

energy due to boiling. Hence
q—mhg, =0
and the boil-off m is
4
hfg
13.06 J /s

h=—— " _653x10 %k
"= 1% 10°1/kg &/s

m=
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3.4 Summary of One-Dimensional Conduction Results 107

The loss per day is
m = 6.53 X 107° kg/s X 3600 s/h X 24 h/day

i = 5.64 kg/day N
or on a volumetric basis
. m  5.64kg/day
= —=——"+3 " =0.007 m*/day = 7 lit
vV p 804 kg /7 m’/day ers/day

Comments:

1. R < R

t, conv t,cond*
2. With a container volume of (4/3)(wr}) = 0.065 m® = 65 liters, the
daily loss amounts to (7 liters /65 liters) 100% = 10.8% of capacity.

34

SUMMARY OF ONE-DIMENSIONAL CONDUCTION RESULTS

Many important problems are characterized by one-dimensional, steady-state
conduction in plane, cylindrical, or spherical walls without thérmal energy
generation. Key results for these three geometries are summarized in Table 3.3,
where AT refers to the temperature difference, T, ; — T, ,, between the inner
and outer surfaces identified in Figures 3.1, 3.6, and 3.8. In each case,
beginning with the heat equation, you should be able to derive the correspond-
ing expressions for the temperature distribution, heat flux, heat rate, and
thermal resistance.

Table 3.3 One-dimensional, steady-state solutions

to the heat equation with no generation

PLANE WALL CYLINDRICAL WALL* SPHERICAL WALL?

Heat d*T 1d{ dr 5 1 d/(  dT
equation P var\ ar Za\" ar)”

x In(r/r, 1= (n/r
T'emPera_ture T, - AT> T, + AT (r/n) T., - AT L/)_
distribution : L § In(r/r) ' 1= (n/x)
Heat ' AT kAT kAT
flux (¢") L rin(r/n) 2l@a/n) - 1/n)]
Heat B AT 2aLk AT 4ok AT
rate (¢) L In(r,/n) 1/n) = (1/n)
Thermal i In(r/n) A/n) - (1/n)
resistance (R, cona) kA 2wLk dmk
“The critical radius of insulation is 7, = k/A for the cylinder and ree = 2k/h for the sphere.
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108 Chapter 3 One-Dimensional, Steady-State Conduction
3.5 CONDUCTION WITH THERMAL ENERGY GENERATION

In the preceding section we considered conduction problems for which the
temperature distribution in a medium was determined solely by conditions at
the boundaries of the medium. We now want to consider the additional effect
on the temperature distribution of processes that may be occurring within the
medium. In particular, we wish to consider situations for which thermal energy
is being generated due to conversion from some other energy form.

A common thermal energy generation process involves the conversion
from electrical to thermal energy in a current-carrying medium (ohmic or
resistance heating). The rate at which energy is generated by passing a current
I through a medium of electrical resistance R, is

E, = I'R, (3.37)

If this power generation (W) occurs uniformly throughout the medium of
volume V, the volumetric generation rate (W /m?) is then

E, IR,
v = (3.38)

g =

Energy generation may also occur as a result of the deceleration and
absorption of neutrons in the fuel element of a nuclear reactor or exothermic
chemical reactions occurring within a inedium. Endothermic reactions would,
of course, have the inverse effect (a thermal energy sink) of converting thermal
energy to chemical bonding energy. Finally, a conversion from electromagnetic
to thermal energy may occur due to the absorption of radiation within the
medium. The process may occur, for example, because gamma rays are
absorbed in external nuclear reactor components (cladding, thermal shields,
pressure vessels, etc.) or because visible radiation is absorbed in a semitrans-
parent medium. Remember not to confuse energy generation with energy
storage (Section 1.3.1).

3.5.1 The Plane Wall

Consider the plane wall of Figure 3.9a, in which there is uniform energy
generation per unit volume (4 is constant) and the surfaces are maintained at
T, ; and T, ,. For constant thermal conductivity k, the appropriate form of the
heat equation, Equation 2.16, is

T g
w + ; =0 (3.39)
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g

1 il
T " ey
| N

(b)

©

Figure 3.9 Conduction in a plane wall with uniform heat
generation. (@) Asymmetrical boundary conditions. (b) Symmetrical
boundary conditions. (¢) Adiabatic surface at midplane.

The general solution is
g
T=- ﬂx2 + Cx + G, (3.40)

where C; and C, are the constants of integration. For the prescribed boundary
conditions,

T(-L)=T,,- and (L) =T,
The constants may be evaluated and are of the form

La-T, ‘ Tat T
¢ = '221_ “L and cz=?qEL2+ 55 g

in which case the temperature distribution is

gL (1 xz) I,-T,, x

T,q+ T,
T(x)=5-|1- 5 +

2 L 2

(3.41)
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110 Chapter 3 One-Dimensional, Steady-State Conduction

The heat flux at any point in the wall may, of course, be determined by using
Equation 3.41 with Fourier’s law. Note, however, that with generation the heat
flux is no longer independent of x.

The preceding result simplifies when both surfaces are maintained at a
common temperature, T, ; = T, , = T,. The temperature distribution is then
symmetrical about the midplane, Figure 3.9b, and is given by

gL? x?
T(x) = —(1 —w==|+T, (3.42)

2k 2

The maximum temperature exists at the midplane

gL?
T0)=T,= — + T,

Tt (3.43)

in which case the temperature distribution, Equation 3.42, may be expressed as

- 2
T -5 _ (i) (3.44)
T~ T, L

It is important to note that at the plane of symmetry in Figure 3.9b, the
temperature gradient is zero, (dT/dx),_, = 0. Accordingly, this plane may be
represented by the adiabatic surface shown in Figure 3.9¢. One implication of
this result is that Equation 3.42 also applies to plane walls that are perfectly
insulated on one side (x = 0) and maintained at a fixed temperature 7, on the
other side (x = L).

To use the foregoing results the surface temperature(s) 7, must be known.
However, a common situation is one for which it is the temperature of an
adjoining fluid, T, and not 7, which is known. It then becomes necessary to
relate T, to T,,. This relation may be developed by applying a surface energy
balance. Consider the surface at x = L for the symmetrical plane wall (Figure
3.9b) or the insulated plane wall (Figure 3.9¢). Neglecting radiation and
substituting the appropriate rate equations, the energy balance given by
Equation 1.12 reduces to

dr
-k

. =n(T,-T,) (3.45)

x=L

Substituting from Equation 3.42 to obtain the temperature gradient at x = L,
it follows that
4L
T, =T, + o (3.46)
Hence T, may be computed from knowledge of T, ., ¢4, L, and h.
Equation 3.46 may also be obtained by applying an overall energy
balance to the plane wall of Figure 3.9 or 3.9¢c. For example, relative to a
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3.5 Conduction with Thermal Energy Generation 111

control surface about the wall of Figure 3.9¢, the rate at which energy is
generated within the wall must be balanced by the rate at which energy leaves
via convection at the boundary. Equation 1.11a reduces to

E,=E,, (3.47)
or, for a unit surface area,
gL = h(TS - TOO) (3.48)

Solving for T,, Equation 3.46 is obtained.

Equation 3.46 may be combined with Equation 3.42 to eliminate 7, from
the temperature distribution, which is then expressed in terms of the known
quantities ¢, L, k, h, and T_. The same result may be obtained directly by
using Equation 3.45 as a boundary condition to evaluate the constants of
integration appearing in Equation 3.40 (see Problem 3.58).

EXAMPLE 3.6

A plane wall is a composite of two materials, A and B. The wall of material A
has uniform heat generation § = 1.5 X 10® W/m?, k, =75 W/m - K, and
thickness L, = 50 mm. The wall material B has no generation with k; = 150
W/m - K and thickness Ly = 20 mm. The inner surface of material A is well
insulated, while the outer surface of material B is cooled by a water stream
with 7, = 30°C and h = 1000 W/m? - K.

1. Sketch the temperature distribution that exists in the composite under
steady-state conditions.

2. Determine the temperature T, of the insulated surface and the temperature
T, of the cooled surface.

SOLUTION

Known: Plane wall of material A with internal heat generation is insulated
on one side and bounded by a second wall of material B, which is without
heat generation and is subjected to convection cooling.

Find:

1. Sketch of steady-state temperature distribution in the composite.

2. Inner and outer surface temperatures of the composite.
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112  Chapter 3 One-Dimensional, Steady-State Conduction

Schematic:

T,=30°C
h = 1000 W/m2-K

117

7, = 1.5x 106 W/m®
9n / Water

k= 75 W/m- K
kg = 150 W/m - K
4g=0

Assumptions:

1. Steady-state conditions.

2. One-dimensional conduction in x direction.

3. Negligible contact resistance between walls.

4. Inner surface of A adiabatic.

5. Constant properties for materials A and B.

Analysis:

1. From the prescribed physical conditions, the temperature distribution
in the composite is known to have the following features, as shown.

(a) Parabolic in material A.

(b) Zero slope at insulated boundary.

(¢) Linear in material B.

(d) Slope change = ky/k, = 2 at interface.

The temperature distribution in the water is characterized by

(e) Large gradients near the surface.

T(x) @
To °

T
To[~

|
|
|
|
I
|
|
|
|

0 Ly, Lp+Lg
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3.5 Conduction with Thermal Energy Generation 113

The outer surface temperature 7, may be obtained by performing an
energy balance on a control volume about material B. Since there is no
generation in this material, it follows that, for steady-state conditions
and a unit surface area, the heat flux into the material at x = L, must
equal the heat flux from the material due to convection at x = L, + Ly,
Hence

q" =h(, - T,) ey

The heat flux ¢” may be determined by performing a second energy
balance on a control volume about material A. In particular, since the
surface at x = 0 is adiabatic, there is no inflow and the rate at which
energy is generated must equal the outflow. Accordingly, for a unit
surface area,

GLs = q" (2)

Combining Equations 1 and 2, the outer surface temperature is

gL
T,=T, +—
2 00 h
1.5 x 10 W/m® % 0.05 m
T, = 30°C + = 105°C 4

1000 W/m? - K
From Equation 3.43 the temperature at the insulated surface is

i

T i
O 2k

+ T (3)
where T, may be obtained from the following thermal circuit.

T Ty T
¢"—» —MN—— NW—0

) v
Reond, 8 Réony

That is,
Tl = Too + (R::’ond,B + R’c’tmv)q"

where the resistances for a unit surface area are

” LB ’”
Rcond,B - k_ Rconv s ;
B
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114  Chapter 3 One-Dimensional, Steady-State Conduction

Hence

0.02m 1

T, = 30°C +

X1.5 X 10 W/m’® x 0.05 m
T, = 30°C + 85°C = 115°C
Substituting into Equation 3,

p 15X 10 W/m*(0.05 m)? soC
= + o
£ 2x75W/m- K

T, = 25°C + 115°C = 140°C

Comments:

circuit element.
2. (I, -T,)/T, - T,) = R,,./R,

cond, B

=T.5.

+
150 W/m-K = 1000 W/m*- K

1. Material A, having heat generation, cannot be represented by a thermal

3.5.2 Radial Systems

Heat generation may occur in a variety of radial geometries. Consider the
long, solid cylinder of Figure 3.10, which could represent a current-carrying
wire or a fuel element in a nuclear reactor. For steady-state conditions the rate
at which heat is generated within the cylinder must equal the rate at which
heat is convected from the surface of the cylinder to a moving fluid. This
condition allows the surface temperature to be maintained at a fixed value

of T.

To determine the temperature distribution in the cylinder, we begin with
the appropriate form of the heat equation. For constant thermal conductivity

Cold fluid q,

Figure 3.10 Conduction in a solid cylinder with
uniform heat generation.
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k, Equation 2.20 reduces to
o a 0 3.49
—_— — |+ == i
rdr ’ dr k ( )
Separating variables and assuming uniform generation, this expression may be
integrated to obtain

dT g

— =——y24C 3.50

"dr T (3.50)

Repeating the procedure, the general solution for the temperature distribution
becomes

T(r) = —%r2+ Clnr+ ¢, (3.51)
To obtain the constants of integration C; and C,, we apply the boundary
conditions

dT

—| =0 and T(r,)=T,
dr|,_,

The first condition results from the symmetry of the situation. That is, for the
solid cylinder the centerline is a line of symmetry for the temperature distribu-
tion and the temperature gradient must be zero. Recall that similar conditions
existed at the midplane of a wall having symmetrical boundary conditions
(Figure 3.9b). From the symmetry condition at r = 0 and Equation 3.50, it is
evident that C, = 0. Using the surface boundary condition at r = r, with
Equation 3.51, we then obtain

C =T + 2 (3.52)

2 s 4k o .

The temperature distribution is therefore

gr? . r?
4k \" . r?
Evaluating Equation 3.53 at the centerline and dividing the result into Equa-
tion 3.53, we obtain the temperature distribution in nondimensional form

T(r) = + T, (3.53)

T(r) - T, r\?
— T o1-|—- 3.54

- 5] 69
where T, is the centerline temperature. The heat rate at any radius in the
cylinder may, of course, be evaluated by using Equation 3.53 with Fourier’s

law.
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To relate the surface temperature, T, to the temperature, T, , of the cold
fluid, either a surface energy balance or an overall energy balance may be
used. Choosing the second approach, we obtain

a(mriL) = h@ar,L)(T, - T.)
or

T =T ar 3.55

= + — .

L= T+ o (3.55)
The foregoing approach may also be used to obtain the temperature

distribution in solid spheres and in cylindrical and spherical shells for a variety

of boundary conditions.

EXAMPLE 3.7

Consider a long solid tube, insulated at the outer radius r, and cooled at the
inner radius r,, with uniform heat generation ¢ (W /m*) within the solid.

1. Obtain the general solution for the temperature distribution in the tube.

In a practical application a limit would be placed on the maximum
temperature that is permissible at the insulated surface (r = r,). Specify-
ing this limit as T, identify appropriate boundary conditions that could be
used to determine the arbitrary constants appearing in the general solu-
tion. Determine these constants and the corresponding form of the tem-
perature distribution.

3. Determine the heat removal rate per unit length of tube.

If the coolant is available at a temperature T, obtain an expression for
the convection coefficient that would have to be maintained at the inner
surface to allow for operation at prescribed values of T, and 4.

SOLUTION

Known: Solid tube with uniform heat generation is insulated at the outer
surface and cooled at the inner surface.

Find:

General solution for the temperature distribution T(r).

Appropriate boundary conditions and the corresponding form of the
temperature distribution.

3. Heat removal rate.

Convection coefficient at the inner surface.
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Schematic:

7 ':._i_: ] I
A ft
Coolant \/

To, h
Assumptions:
1. Steady-state conditions.
2. One-dimensional radial conduction.
3. Constant properties.
4. Uniform volumetric heat generation.
5. Outer surface adiabatic.
Analysis:

1. To determine T(r), the appropriate form of the heat equation, Equa-
tion 2.20, must be solved. For the prescribed conditions, this expression
reduces to Equation 3.49, and the general solution is given by Equation
3.51. Hence this solution applies in a cylindrical shell, as well as in a
solid cylinder (Figure 3.10).

2. Two boundary conditions are needed to evaluate C; and C,, and in this
problem it is appropriate to specify both conditions at r,. Invoking the
prescribed temperature limit,

(r,) =T, ey
and applying Fourier’s law, Equation 3.24, at the adiabatic outer
surface

dT 3 5

)" @)
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Using Equations 3.51 and 1, it follows that

TO:—Z[%rD+Clnr+C2 (3)

Similarly, from Equations 3.50 and 2

q
- — + 4
g 9)

Hence, from Equation 4,
q .

Cl s ﬁro

()
and from Equation 3

q g
=T+ Erﬁ - ﬁ"oz Invr, (6)
Substituting Equations 5 and 6 into the general solution, Equation 3.51,
it follows that

. . r,

T(r)—T+ik(r —r)—2—qk-roln— )

3. The heat removal rate may be determined by obtaining the conduction
rate at r, or by evaluating the total generation rate for the tube. From
Fourier’s law

. dr
@ = "

Hence substituting from Equation 7 and evaluating the result at 7,

4 qr
'(r) = —k2ar| — —r + — =
q,(r;) kvrr,( AT

2
o

r

|- eiti-) @

Alternatively, because the tube is insulated at r,, the rate at which heat
is generated in the tube must equal the rate of removal at 7;. That is, for
a control volume about the tube, the energy conservation requnrement
Equatlon 1.11a, reduces to E, — E,,, = 0, where E, = ga(r2 — r?)L
and E_, = g/l = q,(r)L Hence

q:(r,-) = —mg(r} = r?) ©)

4. Applying the energy conservation requirement, Equation 1.12, to the
inner surface, it follows that

’ —_ ’
9cond = 9conv
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or
'n'cj(ro2 — r‘-z) = h2ar (T, — T,)
Hence
Y .
- Q( o i ) (10)
(T, - T,,)

where T, may be obtained by evaluating Equation 7 at » = r,.

Comments: Note that, through application of Fourier’s law in part 3, the
sign on g/(r;) was found to be negative, Equation 8, implying that heat flow
is in the negative r direction. However, in applying the energy balance, we
acknowledged that heat flow was out of the wall. Hence we expressed g.,.4
as —gq/(r,) and we expressed ¢/, in terms of (T; — T.), rather than
(T, = T)-

3.5.3 Application of Resistance Concepts

3.6

We conclude our discussion of heat generation effects with a word of caution.
In particular, when such effects are present, the heat transfer rate is not a
constant, independent of the spatial coordinate. Accordingly, it would be
incorrect to use the thermal resistance concepts and the related heat rate
equations developed in Sections 3.1 and 3.3.

HEAT TRANSFER FROM EXTENDED SURFACES

The term extended surface is commonly used in reference to a solid that
experiences energy transfer by conduction within its boundaries, as well as
energy transfer by convection (and/or radiation) between its boundaries and
the surroundings. Such a system is shown schematically in Figure 3.11. A strut

92 I_TZ N
T

L
T, h a
—D conv
Fluid —> /v
—>
-7
e s
q’ . T(x) Ty Ty
T1>T> T

Figure 3.11 Combined conduction and
convection in a structural element.
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120 Chapter 3 One-Dimensional, Steady-State Conduction

is used to provide mechanical support to two walls that are at different
temperatures. A temperature gradient in the x direction sustains heat transfer
by conduction internally, at the same time that there is energy transfer by
convection from the surface.

Although there are many different situations that involve combined
conduction—convection effects, the most frequent application is one in which
an extended surface is used specifically to enhance the heat transfer rate
between a solid and an adjoining fluid. Such an extended surface is termed a
fin.

Consider the plane wall of Figure 3.12a4. If T, is fixed, there are two ways
in which the heat transfer rate may be increased. The convection coefficient 4
could be increased by increasing the fluid velocity, and/or the fluid tempera-
ture T, could be reduced. However, many situations would be encountered in
which increasing A to the maximum possible value is either insufficient to
obtain the desired heat transfer rate or the associated costs are prohibitive.
Such costs are related to the blower or pump power requirements needed to
increase h through increased fluid motion. Moreover, the second option of
reducing T, is often impractical. Examining Figure 3.12b, however, we see
that there exists a third option. That is, the heat transfer rate may be increased
by increasing the surface area across which the convection occurs. This may be
done by employing fins that extend from the wall into the surrounding fluid.
The thermal conductivity of the fin material has a strong effect on the
temperature distribution along the fin and therefore influences the degree to
which the heat transfer rate is enhanced. Ideally, the fin material should have a
large thermal conductivity to minimize temperature variations from its base to
its tip. In the limit of infinite thermal conductivity, the entire fin would be at
the temperature of the base surface, thereby providing the maximum possible
heat transfer enhancement.

You are already familiar with several fin applications. Consider the
arrangement for cooling engine heads on motorcycles and lawnmowers or for
cooling electric power transformers. Consider also the tubes with attached fins

(a) (b)

Figure 3.12 Use of fins to enhance heat transfer from a
plane wall. (@) Bare surface. (b) Finned surface.
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Liquid flow

Gas flow

Figure 3.13  Schematic of typical finned-tube heat exchangers.

used to promote heat exchange between air and the working fluid of an air
conditioner. Two common finned-tube arrangements are shown in Figure 3.13.

Different fin configurations are illustrated in Figure 3.14. A straight fin is
any extended surface that is attached to a plane wall. It may be of uniform
cross-sectional area, or its cross-sectional area may vary with the distance x
from the wall. An annular fin is one that is circumferentially attached to a
cylinder, and its cross section varies with radius from the centerline of the
cylinder. The foregoing fin types have rectangular cross sections, whose area
may be expressed as a product of the fin thickness ¢ and the width w for
straight fins or the circumference 277 for annular fins. In contrast a pin fin, or
spine, is an extended surface of circular cross section. Pin fins may also be of
uniform or nonuniform cross section. In any application, selection of a
particular fin configuration may depend on space, weight, manufacturing, and
cost considerations, as well as on the extent to which the fins reduce the

I (7 || (s
7 |/ .

Lor  (a) Lox  (p © Lox

- @
Figure 3.14  Fin configurations. () Straight fin of uniform cross section. () Straight
fin of nonuniform cross section. (¢) Annular fin. (4) Pin fin,
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122 Chapter 3 One-Dimensional, Steady-State Conduction

surface convection coefficient and increase the pressure drop associated with
flow over the fins.

3.6.1 A General Conduction Analysis

As engineers we are primarily interested in knowing the extent to which
particular extended surfaces or fin arrangements could improve heat dissipa-
tion from a surface to the surrounding fluid. To determine the heat transfer
rate associated with a fin, we must first obtain the temperature distribution
along the fin. As we have done for previous systems, we begin by performing
an energy balance on an appropriate differential element. Consider the ex-
tended surface of Figure 3.15. The analysis is simplified if certain assumptions
are made. We choose to assume one-dimensional conditions in the longitudi-
nal (x) direction, even though conduction within the fin is actually two
dimensional. The rate at which energy is convected to the fluid from any point
on the fin surface must be balanced by the rate at which energy reaches that
point due to conduction in the transverse (y,z) direction. However, in
practice the fin is thin and temperature changes in the longitudinal direction
are much larger than those in the transverse direction. Hence we may assume
one-dimensional conduction in the x direction. We will consider steady-state
conditions and also assume that the thermal conductivity is constant, that
radiation from the surface is negligible, that heat generation effects are absent,
and that the convection heat transfer coefficient 4 is uniform over the surface.

Applying the conservation of energy requirement, Equation 1.11a, to the
differential element of Figure 3.15, we obtain

qx = qx+dx + dqconv (356)

Figure 3.15 Energy balance for an extended surface.
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From Fourier’s law we know that

dT
q, = —kA,— (3.57)
dx
where A, is the cross-sectional area, which may vary with x. Since the
conduction heat rate at x + dx may be expressed as

dq,
qx+dx = q + d_ dx (358)
it follows that
kA, — il -k d dT d 3.59)
Dx+ax — — L‘dx d C dx X ( &
The convection heat transfer rate may be expressed as
dqeon, = hdA(T - T,,) (3.60)

where dA, is the surface area of the differential element. Substituting the
foregoing rate equations into the energy balance, Equation 3.56, we obtain

d | dT\ hdd,
E(A‘E) kdx(T L) =0
or
d*T (1 dA,\dT |1 hdd, :
T+ ZK)E;‘(A -1y =0 (3.61)

This result provides a general form of the energy equation for one-dimensional
conditions in an extended surface. Its. solution for appropriate boundary
conditions would provide the temperature distribution, which could then be
used with Equation 3.57 to calculate the conduction rate at any x.

3.6.2 Fins of Uniform Cross-Sectional Area

To solve Equation 3.61 it is necessary to be more specific about the geometry.
We begin with the simplest case of straight rectangular and pin fins of uniform
cross section (Figure 3.16). Each fin is attached to a base surface of tempera-
ture T(0) = T, and extends into a fluid of temperature T,,.

* For the prescribed fins, 4, is a constant and 4, = Px, where A is the
surface area measured from the base to x and P is the fin perimeter.
Accordingly, with d4,/dx = 0 and dA,/dx = P, Equation 3.61 reduces to

d*T kP
el e P (3.62)

To simplify the form of this equation, we transform the dependent variable by
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P=2w+2t P=7rD2
A= wt Ac=mD*4

(a) (b)

Figure 3.16 Straight fins of uniform cross section. (a) Rectangular
fin. (b) Pin fin.

defining an excess temperature 0 as
0(x)=T(x)-T, (3.63)

where, since T, is a constant, df/dx = dT/dx. Substituting Equation 3.63
into Equation 3.62, we then obtain

d%4 i
w - m 0 =0 (3.64)
where
hP
A 3.65
m? = o (3.65)

c

Equation 3.64 is a linear, homogeneous, second-order differential equa-
tion with constant coefficients. Its general solution is of the form

B(x) = Cle™ + Cpe™™ (3.66)

By substitution it may be readily verified that Equation 3.66 is indeed a
solution to Equation 3.64.

To evaluate the constants C, and C, of Equation 3.66, it is necessary to
specify appropriate boundary conditions. One such condition may be specified
in terms of the temperature at the base of the fin (x = 0)

6(0)=T,-T_ =6, (3.67)

The second condition, specified at the fin tip (x = L), may cotrespond to any
one of four different physical situations.
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Fluid, T,
Tb /qconv
[ M
- ar | =
5,55 ; kAcdeE}! |—PhAJTL) - T.)
A
6y
8(x)
0 1
0 7

Figure 3.17 Conduction and convection in a fin
of uniform cross section.

The first condition, case A, considers convection heat transfer from the fin
tip. Applying an energy balance to a control surface about this tip (Figure
3.17), we obtain

hA,[T(L T,| = —kA
C[ ( ) 00] Cdx i
or
h0(L) = —k i 3.68
( ) ¢ x=L ( ’ )

That is, the rate at which energy is transferred to the fluid by convection from
the tip must equal the rate at which energy reaches the tip by conduction
through the fin. Substituting Equation 3.66 into Equations 3.67 and 3.68, we
obtain, respectively,

8,=C, +C, (3.69)
and

h(Cre™ + Coe™™t) = km(Cye™™t — Cie™")
Solving for C; and C,, it may be shown, after some manipulation, that

6  coshm(L —x)+ (h/mk)sinh m(L — x)
6, cosh mL + (h/mk ) sinh mL

(3.70)

The form of this temperature distribution is shown schematically in Figure
3.17. Note that the magnitude of the temperature gradient decreases with
increasing x. This trend is a consequence of the reduction in the conduction
heat transfer ¢,(x) with increasing x due to continuous convection losses from
the fin surface.
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We are also interested in the total heat transferred by the fin. From
Figure 3.17 it is evident that the fin heat transfer rate ¢, may be evaluated in
two alternative ways, both of which involve use of the temperature distribu-
tion. The simpler procedure, and the one which we will use, involves applying
Fourier’s law at the fin base. That is,

ar
9r=4qp = _kAc;;

df

—kd,—

(3.71)

x=0 x=0

Hence, knowing the temperature distribution, 6(x), g, may be evaluated,
giving

sinh mL + (h/mk) cosh mL
=/ 72
9y = (hPkA. b, coshmL + (h/mk) sinh mL (372)

However, conservation of energy dictates that the rate at which heat is
transferred by convection from the fin must equal the rate at which it is
conducted through the base of the fin. Accordingly, the alternative formula-
tion for g, is

9= [ HT() - T] a4,

g, = fAha(x) dA, (3.73)

where A, is the total, including the tip, fin surface area. Substitution of
Equation 3.70 into Equation 3.73 would yield Equation 3.72.

The second tip condition, case B, corresponds to the assumption that the
convective heat loss from the fin tip is negligible, in which case the tip may be
treated as adiabatic and

de

| =0 (3.74)

x=L
Substituting from Equation 3.66 and dividing by m, we then obtain
Cie™l — Ce™t =0

Using this expression with Equation 3.69 to solve for C; and C, and substitut-
ing the results into Equation 3.66, we obtain

6  coshm(L — x)

0_,, - cosh mL (3.75)

Using this temperature distribution with Equation 3.71, the fin heat transfer
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rate is then

q, = |hPkA 8, tanh mL

(3.76)

In the same manner, we can obtain the fin temperature distribution and
heat transfer rate for case C, where the temperature is prescribed at the fin tip.
That is, the second boundary condition is 6(L) = 6,, and the resulting

expressions are of the form

6 (6,/8,)sinhmx + sinhm(L — x)
0, sinh mL

[hPKA_6,

coshmL — 8,/8,
sinh mL

I

s

(3.77)

(3.78)

The very long fin, case D, is an interesting extension of these results. In
particular, as L — oo, §, — 0 and it is easily verified that

q,= [hPKkA_6,

(3.79)

(3.80)

The foregoing results are summarized in Table 3.4. A table of hyperbolic

functions is provided in Appendix B.1.

Table 3.4 Temperature distribution and heat loss for fins of uniform cross section

TIP CONDITION TEMPERATURE FIN HEAT
CASE (X=1L) DISTRIBUTION 6/6, TRANSFER RATE ¢
A f"“"f"“‘i"“ heat coshm(L — x) + (h/mk) sinh m(L — x) sinh mL + (h/mk) cosh mL
ransler:
RO(L) = —kd8/dx] - cosh mL + (h/mk) sinh mL cosh mL + (h/mk) sinh mL
(3.70) 3.72)
B Adiabatic: coshm(L — x)
d8/dx|my =0 cosh mL S
(3.75) (3.76)
c Prescribed (6,./8,) sinh mx + sinh m(L — x) (cosh mL — 6, /6,)
temperature: - M
oLy =16, sinh mL sinh mL
(3.77) (3.78)
D Infinite fin (L — oo0): ]
8(L) =0 ¢ M
(3.79) (3.80)
6=T-T, m? = hP/kA,
0,=60)=T,-T, M= [hPkA0,
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128 Chapter 3 One-Dimensional, Steady-State Conduction

Analysis of fin thermal behavior is, of course, a good deal more complex
if the fin is of nonuniform cross section. For such cases the second term of
Equation 3.61 must be retained, and the solutions are no longer in the form of
simple exponential or hyperbolic functions. The development of such solutions
is beyond the scope of this text (although working results are presented in the
following section), and the interested student is referred to Schneider [3].

EXAMPLE 3.8

A very long rod 25 mm in diameter has one end maintained at 100°C. The
surface of the rod is exposed to ambient air at 25°C with a convection heat
transfer coefficient of 10 W/m? - K.

1. What are the heat losses from rods constructed of pure copper and type
AISI 316 stainless steel?

2. Estimate how long the rods must be to be considered infinite.

SOLUTION

Known: A long circular fin exposed to ambient air.
Find:

1. Heat loss ¢ when rod is fabricated from copper or stainless steel.
2. How long rods must be to assume infinite length.

Schematic:

?}, =100°C J‘/[/T‘” S

w h =10 W/m2.K
= ;]
,| [k,L—>oo,D=2.5cm

Assumptions:

1. Steady-state conditions.

2. One-dimensional conduction along the rod.
3. Constant properties.
4

Negligible radiation exchange with surroundings.
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5. Uniform heat transfer coefficient.
6. Infinitely long rod.

Properties: Table A.l, copper [T = (T, + T,)/2 = 62.5°C = 335 K]: k
=398 W/m - K. Table A.l, stainless steel, AISI 316 (335 K): k=14
W/m - K.

Analysis:

1. From Equation 3.80 the heat loss is

q; = (hPkA 6,

Hence for copper,

g = [10 W/m?- K X 7 X 0.025m

T 12
X398 W/m - K X -(0.025 m)’[ (100 — 25)°C

=294W <

and for stainless steel,

g;=[10W/m? - K x 7 X 0025 m

T 1/2
X14W/m - K x -(0.025 m)’| (100 — 25)°C

=55W <

2. Since there is no heat loss from the tip of an infinitely long rod, an
estimate of the validity of this approximation may be made by compar-
ing Equations 3.76 and 3.80. To a satisfactory approximation, the
expressions provide equivalent results if tanh mL > 0.99 or mL > 2.65.
Hence a rod may be assumed to be infinitely long if

=, 2.65 s kA \'"?
> = — =2,
S m ( hP )
For copper,
398 W/m - K X (/4)(0.025 m)* |
m- T 4 m
L, =265 =132m <
10 W/m? - K X 7(0.025 m)
MASIMO 2160

Apple v. Masimo
IPR2022-01299




130  Chapter 3 One-Dimensional, Steady-State Conduction
For stainless steel,

14 W/m - K x (7/4)(0.025 m)* |

m - w ! m

L, =265 - 02 q
& 10 W/m? - K X 7(0.025 m) e

Comments: The foregoing results suggest that the fin heat transfer rate
may be accurately predicted from the infinite fin approximation if mL >
2.65. However, if the infinite fin approximation is to accurately predict the
temperature distribution T(x), a larger value of mL would be required.
Note the effect of thermal conductivity on ¢, and L.

3.6.3 - Fin Performance

Recall that fins are used to increase the heat transfer from a surface by
increasing the effective surface area. However, the fin itself represents a
conduction resistance to heat transfer from the original surface. For this
reason, there is no assurance that the heat transfer rate will be increased
through the use of fins. An assessment of this matter may be made by
evaluating the fin effectiveness ;. It is defined as the ratio of the fin heat
transfer rate to the heat transfer rate that would exist without the fin. Therefore

9

g = 3.81)
g hAc, b0b (

where 4, is the fin cross-sectional area at the base. In any rational design the
value of e, should be as large as possible, and in general, the use of fins may
rarely be justified unless g2 2.

Subject to any one of the four tip conditions that have been considered,
the effectiveness for a fin of uniform cross section may be obtained by dividing
the appropriate expression for g, in Table 3.4 by h4_ ,6,. For the infinite fin
approximation (case D), the result is

kP

- (3.82)

£f=

and several important trends may be inferred. Obviously, fin effectiveness is
enhanced by the choice of a material of high thermal conductivity. Aluminum
alloys and copper come to mind. However, although copper is superior from
the standpoint of thermal conductivity, aluminum alloys are the more com-
mon choice because of additional benefits related to lower cost and weight.
Fin effectiveness is also enhanced by increasing the ratio of the perimeter to
the cross-sectional area. For this reason the use of thin, but closely spaced, fins
is preferred in most engineering applications.
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Equation 3.82 also suggests that the use of fins can better be justified
under conditions for which the convection coefficient 4 is small. Hence from
Table 1.1 it is evident that the need for fins is stronger when the fluid is a gas
rather than a liquid and particularly when the surface heat transfer is by free
convection. If fins are to be used on a surface separating a gas and a liquid,
they are generally placed on the gas side, which is the side of lower convection
coefficient. A common example is the tubing in an automobile radiator. Fins
are applied to the outer tube surface, over which there is flow of ambient air
(small %), and not to the inner surface, through which there is flow of water
(large h). Note that, if e, > 2 is used as a criterion to justify the implementa-
tion of fins, Equation 3.82 yields the requirement that (kP/hA )"/ > 4.

Equation 3.81 provides an upper limit to e,, which is reached as L
approaches infinity. However, it is certainly not necessary to use very long fins
to achieve near maximum heat transfer enhancement. When an adiabatic tip
condition is considered, Equation 3.76 and Table B.1 tell us that 98% of the
maximum possible fin heat transfer rate is achieved for mL = 2.3. Hence, it
would make little sense to extend the fins beyond L = 2.3/m.

Fin performance may also be quantified in terms of a thermal resistance.
Treating the difference between the base and fluid temperatures as the driving
potential, a fin resistance may be defined as

)
R, = £ (3-83)
4y

Dividing Equation 3.83 into the expression for the thermal resistance of the
exposed base

1
R, ,= ", (3.84)
and substituting from Equation 3.81, it follows that
Rr b
=t (3.85)
i Rl,f

Hence, the fin effectiveness may be interpreted as a ratio of thermal resis-
tances, and to increase e, it is necessary to reduce the conduction/convection
resistance of the fin. If the fin is to enhance heat transfer, its resistance must
not exceed that of the exposed base.

Another measure of fin thermal performance is provided by the fin
efficiency ;. The maximum driving potential for convection is the temperature
difference between the base (x = 0) and the fluid, §, = T, — T,.. Hence, the
maximum rate at which a fin could dissipate energy is the rate that would exist
if the entire fin surface were at the base temperature. However, since any fin is
characterized by a finite conduction resistance, a temperature gradient must
exist along the fin and the above condition is an idealization. A logical
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definition of fin efficiency is therefore

PNl 7
/ nA, 6,

Qmax

(3.86)

where A, is the surface area of the fin. For a straight fin of uniform cross
section and an adiabatic tip, Equations 3.76 and 3.86 yield

M tanh mL tanh mL
hPLO, mL

= (3.87)

Referring to Table B.1, this result tells us that n; approaches its maximum and
minimum values of 1 and 0, respectively, as L approaches 0 and co.

In lieu of the somewhat cumbersome expression for heat transfer from a
straight rectangular fin with an active tip, Equation 3.72, it has been suggested
that approximate, yet accurate, predictions may be obtained by using the
adiabatic tip result, Equation 3.76, with a corrected fin length of the form
L,= L +(t/2) [9] Hence, with tip convection the fin heat rate may be
approximated as

q;= M tanh mL, (3.88)
and the corresponding efficiency as
tanh mL, (3.89)
= mlL :

=4

Errors associated with the approximation are negligible if (hr/k) < 0.0625
[10]. If the fin width is much larger than its thickness, w > ¢, the perimeter
may be approximated as P = 2w, and

np\'/? 21\ 2
L£=( ) L

L.= —_—
m [4 kAL. c

kt

Multiplying numerator and denominator by LY/? and introducing a corrected
fin profile area, 4 » = L., it follows that

2h
kA,

1,2

mL, = L (3.90)

c

Hence, as shown in Figure 3.18, the efficiency of a rectangular fin with tip
convection may be represented as a function of L32(h/kd )/

Although the foregoing discussion has been limited to fins of uniform
cross section, other geometries are commonly used. However, with 4, now a
function of x and 4, varying nonlinearly with x, exact solutions to Equation
3.61 become much more difficult to obtain. However, the results of such
solutions may still be represented graphically, as shown in Figures 3.18 and
3.19. A straight triangular (y ~ x) fin is attractive because, for equivalent heat
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Figure 3.18 Efficiency of straight fins (rectangular, triangular, and
parabolic profiles).
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Figure 3.19 Efficiency of annular fins of rectangular profile.
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dissipation, it requires much less volume (fin material) than -a rectangular
profile. In this regard, heat dissipation per unit volume, (g/V);, is largest for
a parabolic (y ~ x?) profile. However, since (gq/ V), for the parabolic profile
is only slightly larger than that for a triangular profile, its use can rarely be
Justified in view of its much larger manufacturing costs. The annular fin of
rectangular profile is commonly used to enhance heat transfer to or from
circular tubes.

In Figures 3.18 and 3.19 fin efficiencies are plotted as a function of the
parameter L}/*(h/kA,)'/* inferred for the straight rectangular fin. For the
annular fin, Figure 3.19, a corrected fin length is used to represent the effects
of convection from the fin tip. Fin efficiencies obtained from the figures may
be used to calculate the actual fin heat transfer rate from the expression

dr = NyQmax = M40, (3.91)

where, respectively, surface areas for the rectangular, triangular, parabolic, and
annular fins may be approximated as

Af(recl) = 2WLc (392&)
/12 12
Ay = 2W[L2 + (5) } (3.92b)
2 172
Aspan = 2.05w[L2 + (E) } (3.93a)
Afanmy = 27(15, = ) (3.93b)

Extended surfaces find use in numerous engineering applications. For
comprehensive discussions of thermal effects, the treatments by Schneider [10]
and by Kern and Kraus [11] should be consulted.

3.6.4 Overall Surface Efficiency

In contrast to the fin efficiency ny, which characterizes the performance of a
single fin, the overall surface efficiency n, characterizes an array of fins and the
base surface to which they are attached. Representative arrays are shown in
Figure 3.20, where S designates the fin pitch. In each case the overall efficiency
is defined as

4q; 4q;

M AT TE Ty

Imax x Mlab

where g, and 4, are the total heat rate and exposed area of the finned and
unfinned surfaces. The maximum possible heat rate would result if the entire
fin surface, as well as the exposed base, were maintained at T,.

(3.94)

MASIMO 2160
Apple v. Masimo
IPR2022-01299



3.6 Heat Transfer from Extended Surfaces 135

| 1
T{f

T,

-

Figure 3.20 Representative fin arrays. (a) Rectangular fins.
(b) Annular fins.

Decomposing the total surface area into contributions due to the fin and
base (unfinned) surfaces (4, = 4, + 4,), the total heat rate may be expressed
as

q, = hA,8, + h4d;7,0, (3.95)

where 7, is the efficiency of a single fin. Hence,
4
g = h[(4, - 4)) + 4]0, = k4, |1 = —2(1 = m/) |6, (3.96)
t
Combining Equations 3.96 and 3.94, it follows that

A
n,=1--L(1-m) (3.97)
AI

From knowledge of n,, Equation 3.94 may be used to calculate the total heat
rate for a fin array.

EXAMPLE 3.9

The cylinder barrel of a motorcycle is constructed of 2024-T6 aluminum alloy
and is of height H = 0.15 m and outside diameter D = 50 mm. Under typical
operating conditions the outer surface of the cylinder is at a temperature of
500 K and is exposed to ambient air at 300 K, with a convection coefficient of
50 W/m? - K. Annular fins of rectangular profile are typically added to
increase heat transfer to the surroundings. Assume that five such fins, which
are of thickness ¢ = 6 mm, length L = 20 mm and equally spaced, are added.
What is the increase in heat transfer due to addition of the fins?
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SOLUTION

Known: Operating conditions of a finned motorcycle cylinder barrel.
Find: Increase in heat transfer associated with using fins.
Schematic:

Engine head
cross section
(2024 T6 Al alloy)

) , Ty = 500 K
H=015m FZZ) ] T, = 300 K

/ k=50 W/m?-K
m q

<— Air
J—

ry=25mm
L =20 mm
—rg =45 mm

Assumptions:

Steady-state conditions.

One-dimensional radial conduction in fins.
Constant properties.

No internal heat generation.

Negligible radiation exchange with surroundings.

SR ol o

Uniform convection coefficient over outer surface (with or without
fins).

Properties: Table A.1, 2024-T6 aluminum (T = 400 K): k=186 W/m - K.
Analysis:  With the fins in place, the heat transfer rate is

9=4q9,%tq,
From Equation 3.91, the fin heat transfer rate is

qr= Ny D max

where N is the number of fins and from Equations 3.91 and 3.93b

qmax = 2'”h(r220 - rlz)(Tb - Too)
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Heat transfer from the exposed cylinder surface is
qp = hA, (T, — T,)
where
A, = (H — Nt)(27ry)
Hence
q = Noh2n(rZ — r2)(T, - T,,) + h(H — Nt)Q2ar,)(T, - T.,)

The fin efficiency may be obtained from Figure 3.19 with

! t
re =1+ 5 =0048m, L=L+5=0023m

h )1/2 0.15
kA, '

Hence from Figure 3.19, u, = 0.95. It follows that

.
262192, 4,=Lt=138x10""m’, LY

51

g =5{0.95 x 50 W/m® - K x 2[(0.048” - 0.025%) m?] x (500 — 300) K}
+ 50 W/m? - K (0.15 — 5 X 0.006)(27 X 0.025) m* X (500 — 300) K

Hence
q= 5{100.22} W + 188.50 W = 690 W <

Without the fins, the heat transfer rate is
yo = A, (T, — T,)

where
A,,=HX2an

Hence

4,, = SOW/m? - K (0.15 X 27 x 0.025) m* (200K) =236 W <

Comments:

1. Although the fins significantly increase heat dissipation from the cylin-
der, considerable improvement could still be obtained by increasing the
number of fins (by reducing both ¢ and the separation between fins).

2. Alternatively, heat transfer from the fin array could be obtained from
Equations 3.94 and 3.97. With 4,= N2'rr(r2£ r2) = 0.0527 m* and
A, = A;+ (H — Nt)Q2mr) = 00716 m?, Equa[mn 3.97 yields n,=1
- 0. 736(1 — 0.95) = 0.963. Hence, from Equauon 3.94, q,= n,h4,0,
or g, = 0.963 X 50 W/m? - K X 0.0716 m* X 200 K = 690 W.
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138  Chapter 3 One-Dimensional, Steady-State Conduction
3.6.5 Fin Contact Resistance

If fins are machined as an integral part of the wall from which they extend,
there is no contact resistance at their base. However, more commonly, fins are
manufactured separately and are attached to the wall by a metallurgical or
adhesive joint. Alternatively, the attachment may involve a press fit; for which
the fins are forced into slots machined on the wall material. In such cases,
there is a thermal contact resistance, R, ., which may adversely influence
overall thermal performance. In manufacturing, care must be taken to render
R, . <R, -

EXAMPLE 3.10

Heat transfer from a transistor may be enhanced by inserting it in an
aluminum sleeve (k = 200 W /m - K) having 12 integrally machined longitu-
dinal fins on its outer surface. The transistor radius and height are rp=2mm
and H = 6 mm, respectively, while the fins are of length L = ry — r, = 10 mm
and uniform thickness ¢ = 0.7 mm. The thickness of the sleeve base is
¥, —r; = 1 mm, and the contact resistance of the sleeve—transistor interface is
R}, =107° m’* - K/W. Air at T, = 20°C flows over the fin surface, provid-
ing a uniform convection coefficient of & = 25 W /m? - K.

1. Assuming one-dimensional transfer in the radial direction, sketch the
equivalent thermal circuit for heat transfer from the transistor case (r=r)
to the air. Clearly label each resistance.

2. Evaluate each of the resistances in the foregoing circuit. If the temperature
of the transistor case is 7) = 80°C, what is the rate of heat transfer from
the sleeve?

SOLUTION

Known: Dimensions of finned aluminum sleeve inserted over a transistor.
Contact resistance between sleeve and transistor. Surface convection condi-
tions and temperature of transistor case.

Find:

1. Equivalent thermal circuit.

2. Rate of heat transfer from sleeve.
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Schematic:

Transistor ———— ! Rio Ty
]__ | -
i T

Sleeve with l
longitudinal fins —

=1
— r2—=

N— g

Assumptions:

1. Steady-state conditions.

2. One-dimensional radial conduction.
3. Constant properties.

4. Negligible radiation.

Analysis:

1. The circuit accounts for the contact resistance, conduction in the sleeve,
convection from the exposed base, and conduction—convection from
the fins. (

Rpase

V& T

Rsleeve

Riins
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140  Chapter 3 One-Dimensional, Steady-State Conduction

2. Thermal resistances for the contact joint and sleeve are

R R, 107* m? - K/W B3KW
“¢" 2anH 27 (0.002m)(0.006 m) /
In(r,/r) In(3/2)
- = =0.054K
sleeve = 2 mkH 27 (200 W /m - K)(0.006 m) O5SaRS B

For a single fin, R, = 6,/q;, where from Table 3.4,

sinh mL + (h/mk) cosh mL
b cosh mL + (h/mk) sinh mL

q,= (hPk4,)"*8

With
P=2H+1t)=134mm = 00134 m
A, =tX H=142x10"5 n?

1/2

hP 25W/m? - K % 0.013¢ m
=200m™!

T kA, | 200W/m-Kx42x10 6’

m

mL=20m"! %X 0.0l m = 0.20

h 25W/m? - K
mk  20m~" X 200 W/m - K

= 0.00625

and
(hPkA,)? = (25 W/m?- K X 0.0134 m
X200 W/m - K X 4.2 X 1076 m?)"/
= 0.0168 W/K

use of Table B.1 yields, for a single fin,
1.020 + 0.00625 x 0.201

- =293K/W
Rin = 30168 W/K (0.201 + 0.00625 x 1.020) /
Hence, for 12 fins,
fin
s = =244K/W
Rf]ns 12 24 K/
MASIMO 2160
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For the exposed base,
R 1
base " h(2mr, — 12t)H

1
25 W,/m? - K (27 X 0.003 — 12 X 0.0007) m X 0.006 m

Ry = 638 K/W
With
R = [(244) 71+ (638) Y] " = 235K /W
it follows that
R, = (13.3 + 0.054 + 23.5) K/W = 36.9 K/W
and

T,~T, (80 —20)°C

_ g _ —163W
= "R, 36.9 K/W

Comments:

1. The sleeve resistance is negligible, but the contact resistance is signifi-
cant relative to that of the fins.

2. Without the finned sleeve, the convection resistance of the transistor
case is R, = (2mr,Hh)™! = 531 K/W. Hence, there is considerable
advantage to using the fins.

3. The fin efficiency is n, = 0.988.

4. If an adiabatic fin tip is assumed, tanh mL = 0.197 and R, = 302.
Hence, the fin resistance is within 3% of that obtained for the actual
convecting tip.

3.7

SUMMARY

Despite the inherent mathematical simplicity, one-dimensional, steady-state
heat transfer occurs in numerous engineering applications. Although one-
dimensional, steady-state conditions may not apply exactly, the assumptions
may often be made to obtain results of reasonable accuracy. You should
therefore be thoroughly familiar with the means by which such problems are
treated. In particular you should be comfortable with the use of equivalent
thermal circuits and with the expressions for the conduction resistances that
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142 Chapter 3 One-Dimensional, Steady-State Conduction

pertain to each of the three common geometries. You should also be familiar
with how the heat equation and Fourier’s law may be used to obtain tempera-
ture distributions and the corresponding fluxes. The implications of an inter-
nally distributed source of energy should also be clearly understood. Finally,
you should appreciate the important role that extended surfaces can play in
the design of thermal systems and should have the facility to effect design and
performance calculations for such surfaces.
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PROBLEMS

Plane Wall

3.1  Consider the plane wall of Figure 3.1 separating hot and cold fluids at tempera-
tures T, , and T, ,, respectively. Using surface energy balances as boundary
conditions at x =0 and x = L (see Equation 2.27), obtain the temperature
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226 Chapter 5 Transient Conduction

In our treatment of conduction we have gradually considered more compli-
cated conditions. We began with the simple case of one-dimensional, steady-
state conduction with no internal generation, and we subsequently considered
complications due to multidimensional and generation effects. However, we
have not yet considered situations for which conditions change with time.

We now recognize that many heat transfer problems are time dependent.
Such unsteady, or transient, problems typically arise when the boundary
conditions of a system are changed. For example, if the surface temperature of
a system is altered, the temperature at each point in the system will also begin
to change. The changes will continue to occur until a steady-state temperature
distribution is reached. Consider a hot metal billet that is removed from a
furnace and exposed to a cool airstream. Energy is transferred by convection
and radiation from its surface to the surroundings. Energy transfer by conduc-
tion also occurs from the interior of the metal to the surface, and the
temperature at each point in the billet decreases until a steady-state condition
is reached. Such time-dependent effects occur in many industrial heating and
cooling processes.

To determine the time dependence of the temperature distribution within
a solid during a transient process, we could begin by solving the appropriate
form of the heat equation, for example, Equation 2.13. Some cases for which
solutions have been obtained are discussed in Sections 5.4 to 5.8. However,
such solutions are often difficult to obtain, and where possible a simpler
approach is preferred. One such approach may be used under conditions for
which temperature gradients within the solid are small. It is termed the lumped
capacitance method.

5.1 THE LUMPED CAPACITANCE METHOD

A simple, yet common, transient conduction problem is one in which a solid
experiences a sudden change in its thermal environment. Consider a hot metal
forging that is initially at a uniform temperature 7, and is quenched by

immersing it in a liquid of lower temperature T, < T; (Figure 5.1). If the
quenching is said to begin at time ¢ = 0, the temperature of the solid will

Eout= acony

Figure 5.1 Cooling of a hot metal forging.
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5.1 The Lumped Capacitance Method ~ 227

decrease for time ¢ > 0, until it eventually reaches 7. This reduction is due to
convection heat transfer at the solid-liquid interface. The essence of the
lumped capacitance method is the assumption that the temperature of the
solid is spatially uniform at any instant during the transient process. This
assumption implies that temperature gradients within the solid are negligible.

From Fourier’s law, heat conduction in the absence of a temperature
gradient implies the existence of infinite thermal conductivity. Such a condi-
tion is clearly impossible. However, although the condition is never satisfied
exactly, it is closely approximated if the resistance to conduction within the
solid is small compared with the resistance to heat transfer between the solid
and its surroundings. For now we assume that this is, in fact, the case.

In neglecting temperature gradients within the solid, we can no longer
consider the problem from within the framework of the heat equation. Instead,
the transient temperature response is determined by formulating an overall
energy balance on the solid. This balance must relate the rate of heat loss at
the surface to the rate of change of the internal energy. Applying Equation
1.11a to the control volume of Figure 5.1, this requirement takes the form

_Eoul =E, (5.1)
or

daT
—hA(T—-T,) = chZ (5.2)

Introducing the temperature difference
8=T-—T, (5.3)

and recognizing that (d8/dt) = (dT/dt), it follows that
oVe df
hA, dt

Separating variables and integrating from the initial condition, for which 1 = 0
and T(0) = T, we then obtain

oVe ,9dl
LY, LU
hA g 0 0
where
0,=T —T, (5.4)

Evaluating the integrals it follows that

pVe 6,
", In i t (5.5)
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Te1 T2 T3 T4

Figure 5.2 Transient temperature response of
lumped capacitance solids corresponding to
different thermal time constants 7,.

or

6 T-T, hA,
g ﬁ = exp (ch)t] (5.6)
Equation 5.5 may be used to determine the time required for the solid to reach
some temperature T, or, conversely, Equation 5.6 may be used to compute the
temperature reached by the solid at some time .

The foregoing results indicate that the difference between the solid and
fluid temperatures must decay exponentially to zero as ¢ approaches infinity.
This behavior is shown in Figure 5.2. From Equation 5.6 it is also evident that
the quantity (pVe/hA,) may be interpreted as a thermal time constant. This
time constant may be expressed as

R (57)
where R, is the resistance to convection heat transfer and G, is the lumped
thermal capacitance of the solid. Any increase in R, or C, will cause a solid to
respond more slowly to changes in its thermal environment and will increase
the time required to reach thermal equilibrium (8 = 0).

It is useful to note that the foregoing behavior is analogous to the voltage
decay that occurs when a capacitor is discharged through a resistor in an
electrical RC circuit. Accordingly, the process may be represented by an
equivalent thermal circuit, which is shown in Figure 5.3. With the switch closed
the solid is charged to the temperature 6, When the switch is opened, the
energy that is stored in the solid is discharged through the thermal resistance
and the temperature of the solid decays with time. This analogy suggests that
RC electrical circuits may be used to determine the transient behavior of
thermal systems. In fact, before the advent of digital computers, RC circuits
were widely used to simulate transient thermal behavior.
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t=0

t<0

g #; Ci=pVe= %Rt=h%
—— 8

EY
]
(=]

i1

Figure 5.3 Equivalent thermal circuit for a
lumped capacitance solid.

To determine the total energy transfer Q occurring up to some time z, we
simply write

0= fo'th=hA:f0'0dz

Substituting for # from Equation 5.6 and integrating, we obtain

Oj= (ch)0.-[1 -exp(—f)] (5.82)

f

The quantity Q is, of course, related to the change in the internal energy of the
solid, and from Equation 1.11b

—Q=AE, (5.8b)

For quenching Q is positive and the solid experiences a decrease in energy.
Equations 5.5, 5.6, and 5.8a also apply to situations where the solid is heated
(8 < 0), in which case Q is negative and the internal energy of the solid
increases.

VALIDITY OF THE LUMPED CAPACITANCE METHOD

From the foregoing results it is easy to see why there is a strong preference for
using the lumped capacitance method. It is certainly the simplest and most
convenient method that can be used to solve transient conduction problems.
Hence it is important to determine under what conditions it may be used with
reasonable accuracy.

To develop a suitable criterion consider steady-state conduction through
the plane wall of area A (Figure 5.4). Although we are assuming steady-state
conditions, this criterion is readily extended to transient processes. One
surface is maintained at a temperature 7, ; and the other surface is exposed to
a fluid of temperature T, < T, ;. The temperature of this surface will be some

MASIMO 2160
Apple v. Masimo
IPR2022-01299




230 Chapter 5 Transient Conduction

To,h Figure 54 Effect of Biot number on
??1& steady-state temperature distribution in a
plane wall with surface convection.

intermediate value, T, ,, for which T,, < T, , < T, ;. Hence under steady-state
conditions the surface energy balance, Equation 1.12, reduces to

kA
L
where k is the thermal conductivity of the solid. Rearranging, we then obtain

(Ts,l - Ts,z) = hA(Tsz - Too)

T =T L/kA) R hL
5 v = ( / ) = cond e (5.9)
T;.E 5 Too (1/!}114) Rmnv k

The quantity (AL /k) appearing in Equation 5.9 is a dimensionless param-
eter. 1t is termed the Biof number, and it plays a fundamental role in
conduction problems that involve surface convection effects. According to
Equation 5.9 and as illustrated in Figure 5.4, the Biot number provides a
measure of the temperature drop in the solid relative to the temperature
difference between the surface and the fluid. Note especially the conditions
corresponding to Bi << 1. The results suggest that, for these conditions, it is
reasonable to assume a uniform temperature distribution across a solid at any
time during a transient process. This result may also be associated with
interpretation of the Biot number as a ratio of thermal resistances, Equation
5.9. If Bi << 1, the resistance to conduction within the solid is much less than the
resistance to convection across the fluid boundary layer. Hence the assumption of
a uniform temperature distribution is reasonable.

We have introduced the Biot number because of its significance to
transient conduction problems. Consider the plane wall of Figure 5.5, which is
initially at a uniform temperature 7; and experiences convection cooling when
it is immersed in a fluid of 7, < 7. The problem may be treated as one
dimensional in x, and we are interested in the temperature variation with
position and time, T(x,t). This variation is a strong function of the Biot
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T(x,0)=T; ——| [—I’ T(x,0)=T;

1A
P MmN
. ! ] e T J/- \

[ ]

=

T . N7,
I 1 -L L -L VL -L L
-L | L
% Bi <1 Bix1 Bi>>1

T=T(t) T=T(x, t) T = T(x,t)

Figure 5.5 Transient temperature distribution for different Biot numbers in a plane
wall symmetrically cooled by convection.

number, and three conditions are shown in Figure 5.5. For Bi < 1 the
temperature gradient in the solid is small and T(x, ¢) = T(¢). Virtually all
the temperature difference is between the solid and the fluid, and the solid
temperature remains nearly uniform as it decreases to T,.. For moderate to
large values of the Biot number, however, the temperature gradients within the
solid are significant. Hence T = T(x, ¢). Note that for Bi > 1, the tempera-
ture difference across the solid is now much larger than that between the
surface and the fluid.

We conclude this section by emphasizing the importance of the lumped
capacitance method. Its inherent simplicity renders it the preferred method for
solving transient conduction problems. Hence, when confronted with such a
problem, the very first thing that one should do is calculate the Biot number. If
the following condition is satisfied

<01 (5.10)

the error associated with using the lumped capacitance method is small. For
convenience, it is customary to define the characteristic length of Equation 5.10
as the ratio of the solid’s volume to surface area, L, = V/A4,. Such a definition
facilitates calculation of L, for solids of complicated shape and reduces to the
half-thickness L for a plane wall of thickness 2L (Figure 5.5), to r,/2 for a
long cylinder, and to r,/3 for a sphere. However, if one wishes to implement
the criterion in a conservative fashion, L_ should be associated with the length
scale corresponding to the maximum spatial temperature difference. Accord-
ingly, for a symmetrically heated (or cooled) plane wall of thickness 2L, L,
would remain equal to the half-thickness L. However, for a long cylinder or
sphere, L_ would equal the actual radius r,, rather than r,/2 or r,/3.
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Finally, we note that, with L, = V/A4,, the exponent of Equation 5.6 may
be expressed as

hAt  ht  RL, k t hL, ar

pVe pcL, TEE:TE

or
hAt .
7 Bi- Fo (5.11)
where
ot
Fo = F . (512)

is termed the Fourier number. It is a dimensionless time, which, with the Biot
number, characterizes transient conduction problems. Substituting Equation
5.11 into 5.6, we obtain

b _I-L% Bi-F 513
oi_Ti_Tw_exp( L 0) ( )
EXAMPLE 5.1

A thermocouple junction, which may be approximated as a sphere, is to be
used for temperature measurement in a gas stream. The convection coefficient
between the junction surface and the gas is known to be h = 400 W/m?: K,
and the junction thermophysical properties are k = 20 W/m - K, ¢ = 400
J/kg - K, and p = 8500 kg/m’. Determine the junction diameter needed for
the thermocouple to have a time constant of 1 s. If the junction is at 25°C and
is placed in a gas stream that is at 200°C, how long will it take for the junction
to reach 199°C?

SOLUTION

Known: Thermophysical properties of thermocouple junction used to mea-
sure temperature of a gas stream.

Find:

1. Junction diameter needed for a time constant of 1 s.
2. Time required to reach 199°C in gas stream at 200°C.
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Schematic:
-Leads
B
7, = 200°C
h = 400W/m*-K Thermocouple| & = 20 W;m l'((
—0> " junction c=400J/kg*
- T; = 25°C | p=8500 kg/m?

Gas—s;{;m l-(— 1)—-[

Assumptions:

1. Temperature of junction is uniform at any instant.

2. Radiation exchange with the surroundings is negligible.
3. Losses by conduction through the leads are negligible.
4. Constant properties.

Analysis:

1. Because the junction diameter is unknown, it is not possible to begin
the solution by determining whether the criterion for using the lumped
capacitance method, Equation 5.10, is satisfied. However, a reasonable
approach is to use the method to find the diameter and to then
determine whether the criterion is satisfied. From Equation 5.7 and the
fact that A, = 7D? and V = 7D%/6 for a sphere, it follows that

1 pnD?

=———X——
" wap? " 6

Rearranging and substituting numerical values,

6h, 6 X 400 W/m*- K % 1s on e =2
=— = =7.06 X 10 <
pc 8500 kg/m’ X 400 J/kg - K o

With L, = r,/3 it then follows from Equation 5.10 that

h(r/3) 400 W/m?-K X 3.53 X 107 m

— 235 %104
T Tk 3x20W,/m- K R

Accordingly, Equation 5.10 is satisfied (for L,=r,, as well as for
L,=r,/3) and the lumped capacitance method may be used to an
excellent approximation.
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2. From Equation 5.5 the time required for the junction to reach T =

199°C is
»0('!1433/6)61 L-T, e T-T,
T h(=D?) "T-1, 6k "T-T,
8500 kg/m* X 7.06 X 10™* m x 400 J /kg - K 1 25 — 200
{ =
6 X 400 W/m? - K " 199 — 200
t=152s =51 <

Comments: Heat losses due to radiation exchange between the Jjunction
and the surroundings and conduction through the leads would necessitate
using a smaller junction diameter to achieve the desired time response.

5.3 GENERAL LUMPED CAPACITANCE ANALYSIS

Although transient conduction in a solid is commonly initiated by convection
heat transfer to or from an adjoining fluid, other processes may induce
transient thermal conditions within the solid. For example, a solid may be
separated from large surroundings by a gas or vacuum. If the temperatures of
the solid and surroundings differ, radiation exchange could cause the internal
thermal energy, and hence the temperature, of the solid to change. Tempera-
ture changes could also be induced by applying a heat flux at a portion, or all,
of the surface and /or by initiating thermal energy generation within the solid.
Surface heating could, for example, be applied by attaching a film or sheet
electrical heater to the surface, while thermal energy could be generated by
passing an electrical current through the solid.

Figure 5.6 depicts a situation for which thermal conditions within a solid
may be simultaneously influenced by convection, radiation, an applied surface

Surroundings s,

0,6V, T0O) = T:T

I
I
I
I
|
I
I
|
|
I

Agp Asan)

Figure 5.6 Contral surface for general
lumped capacitance analysis.
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heat flux, and internal energy generation. It is presumed that, initially (z = 0),
the temperature of the solid (7;) differs from that of the fluid, T,,, and the
surroundings, Ty, and that both surface and volumetric heating (g, and ¢)
are initiated. The imposed heat flux g/ and the convection-radiation heat
transfer occur at mutually exclusive portions of ‘the surface, 4., and A, ),
respectively, and convection-radiation transfer is presumed to be from the
surface. Applying conservation of energy at any instant ¢, it follows from
Equation 1.11a that

. dT
q;IA.r,h + Eg - (qgonv + q;;d)A.r(c, r) = PVCI (514)
or, from Equations 1.3a and 1.7,
. dr
@A, + By = [W(T - T,) + eo(T* = T )] Ao,y = pVe—  (5.19)

dt

Unfortunately, Equation 5.15 is a nonlinear, first-order, nonhomoge-
neous, ordinary differential equation which cannot be integrated to obtain an
exact solution.! However, exact solutions may be obtained for simplified
versions of the equation. For example, if there is no imposed heat flux or
generation and convection is either nonexistent (a vacuum) or negligible
relative to radiation, Equation 5.15 reduces to

dT
pVCE = —EAs.ro(T4 Ts‘:lr) (5 16)
Separating variables and integrating from the initial condition to any time ¢, it
follows that

A, o v dT
e fodz fT—T4 — (5.17)

sur

Evaluating both integrals and rearranging, the time required to reach the
temperature T becomes

T, -:-T’

Tp— T

sur

T + T;
L~ T,

sur

T T,
+2{tan“(?—) — tan~! T )]} (5.18)

This expression cannot be used to evaluate T explicitly in terms of ¢, 7}, and
T,,., nor does it readily reduce to the limiting result for 7, = 0 (radiation to

pVe
o n

' An approximate, finite-difference solution may be obtained by discretizing the time
derivative (Section 5.9) and marching the solution out in time.
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deep space). Returning to Equation 5.17, it is readily shown that, for 7., = 0

sur ’

(5.19)

An exact solution to Equation 5.15 may also be obtained if radiation may
be neglected and 4 is independent of time. Introducing a reduced temperature,
0=T-—T,, where di/dt = dT/dt, Equation 5.15 reduces to a linear, first-
order, nonhomogeneous differential equation of the form

i 6-b=0 5.20)
S + —_ = .

ar " (
where a = (hd, ./pVc) and b = [(q'A4, , + Eg)/ch]. Although Equation
5.20 may be solved by summing its homogeneous and particular solutions, an
alternative approach is to eliminate the nonhomogeneity by introducing the
transformation

b

=6 - 21
o=g-- (521)

Recognizing that d6’/dt = df/dt, Equation 5.21 may be substituted into
(5.20) to yield

do’

— tab’ =0 (5.22)

Separating variables and integrating from 0 to ¢ (8/ to 8", it follows that

’

5/ = P (—at) ; (5.23)

1

or substituting for §’ and 6,

IT=T. = (b/a) _

m = exp(—at) (5.24)
Hence,

F=T, 3 b/a ] )

T-T. =exp(—at) + 7:_Tm[ —exp(—at)] (5.25)

As it must, Equation 5.25 reduces to (5.6) when b = 0 and yields T'= T, at
t=10. As t — o0, Equation 5.25 reduces to (T - T,) = (b/a), which could
also be obtained by performing an energy balance on the control surface of
Figure 5.6 for steady-state conditions.
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5.4 Spatial Effects 237
5.4 SPATIAL EFFECTS

Situations frequently arise for which the lumped capacitance method is inap-
propriate, and alternative methods must be used. Regardless of the particular
form of the method, we must now cope with the fact that gradients within the '
medium are no longer negligible.

In their most general form, transient conduction problems are described
by the heat equation, Equation 2.13 for rectangular coordinates or Equations
2.20 and 2.23, respectively, for cylindrical and spherical coordinates. The
solution to these partial differential equations provides the variation of tem-
perature with both time and the spatial coordinates. However, in many
problems, such as the plane wall of Figure 5.5, only one spatial coordinate is
needed to describe the internal temperature distribution. With no internal
generation and the assumption of constant thermal conductivity, Equation
2.13 then reduces to

a*r 14T 5

Ix?  a Ot (6325}

To solve Equation 5.26 for the temperature distribution 7(x, t), it is
necessary to specify an initial condition and two boundary conditions. For the
typical transient conduction problem of Figure 5.5, the initial condition is

T(x,0) =T, (5.27)
and the boundary conditions are
or 0 (5.28
dx x=0 - ' )
and
aT
—k— =h[T(L,t) - T,] (5.29)
x|, ._,

Equation 5.27 presumes a uniform temperature distribution at time ¢ = 0;
Equation 5.28 reflects the symmetry requirement for the midplane of the wall;
and Equation 5.29 describes the surface condition experienced for time ¢ > 0.
From Equations 5.26 to 5.29, it is evident that, in addition to depending on x
and ¢, temperatures in the wall also depend on a number of physical parame-
ters. In particular

T=7T(x,t,T,T,, L, k,a,h) (5.30)

s s Loo

The foregoing problem may be solved analytically or numerically. These
methods will be considered in subsequent sections, but first it is important to
note the advantages that may be obtained by nondimensionalizing the govern-
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238 Chapter 5 Transient Conduction

ing equations. This may be done by arranging the relevant variables into
suitable groups. Consider the dependent variable 7. If the temperature differ-
ence 6 = T — T, is divided by the maximum possible temperature difference
6,= T, — T, a dimensionless form of the dependent variable may be defined
as

it

* =
y ¥,

1]
2| =

(5.31)

Accordingly, §* must lie in the range 0 < 6* < 1. A dimensionless spatial
coordinate may be defined as

= 5.32
X (5.32)

where L is the half-thickness of the plane wall, and a dimensionless time may
be defined as
= = =3 (5.33)

where * is equivalent to the dimensionless Fourier number, Equation 5.12.
Substituting the definitions of Equations 5.31 to 5.33 into Equations 5.26
to 5.29, the heat equation becomes

a%*  96*

FrY = Fo (5.34)
and the initial and boundary conditions become

8% (x*,0) = 1 (5.35)

a0*

= 0 (5.36)
and

ag*

o | = —Bif*(1, t*) (5.37)

where the Biot number is Bi = hL/k. In dimensionless form the functional
dependence may now be expressed as

9* = f(x*, Fo, Bi) (5.38)

Recall that this functional dependence, without the x* variation, was obtained
for the lumped capacitance method, as shown in Equation 5.13.

Comparing Equations 5.30 and 5.38, the considerable advantage associ-
ated with casting the problem in dimensionless form becomes apparent.
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5.5 The Plane Wall with Convection 239

Equation 5.38 implies that for a prescribed geometry, the transient temperature
distribution is a universal function of x*, Fo, and Bi. That is, the dimensionless
solution assumes a prescribed form that does not depend on the particular
value of T, T,, L, k, a, or h. Since this generalization greatly simplifies the
presentation and utilization of transient solutions, the dimensionless variables
are used extensively in subsequent sections.

5.5 THE PLANE WALL WITH CONVECTION

Exact, analytical solutions to transient conduction problems have been ob-
tained for many simplified geometries and boundary conditions and are well
documented in the literature [1-4]. Several mathematical techniques, including
the method of separation of variables (Section 4.2), may be used for this
purpose, and typically the solution for the dimensionless temperature distribu-
tion, Equation 5.38, is in the form of an infinite series. However, except for
very small values of the Fourier number, this series may be approximated by a
single term and the results may be represented in a convenient graphical form.

5.5.1 Exact Solution

Consider the plane wall of thickness 2 L (Figure 5.7a). If the thickness is small
relative to the width and height of the wall, it is reasonable to assume that
conduction occurs exclusively in the x direction. If the wall is initially at a
uniform temperature, 7(x,0) = T, and is suddenly immersed in a fluid of
T,, # T, the resulting temperatures may be obtained by solving Equation 5.34
subject to the conditions of Equations 5.35 to 5.37. Since the convection
conditions for the surfaces at x* = +1 are the same, the temperature distribu-
tion at any instant must be symmetrical about the midplane (x* = 0). An

| l—T(r, 0 =T T(rn0) =T;
|

T,

154

(a) (6)

Figure 5.7 One-dimensional systems with an initial uniform
temperature subjected to sudden convection conditions. (a) Plane
wall. (b) Infinite cylinder or sphere.
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240 Chapter 5 Transient Conduction

exact solution to this problem has been obtained and is of the form [2}
o0
0% = Y C,exp(—¢2Fo)cos (§,x*) (5.39a)
n=1
where the coefficient C, is
4sin ¢,

G = 28, + sin (28,) (5.39b)

and the discrete values (eigenvalues) of {, are positive roots of the transcen-
dental equation

{,tan§, = Bi (5.39c)

The first four roots of this equation are given in Appendix B.3.

5.5.2 Approximate Solution

It can be shown (Problem 5.24) that for values of Fo > 0.2, the infinite series
solution, Equation 5.39a, can be approximated by the first term of the series.
Invoking this approximation, the dimensionless form of the temperature
distribution becomes

8* = C,exp (—$7Fo) cos (§,x*) (5.40a)
or

6* = 0*cos ({,x*) (5.40b)
where 6} represents the midplane (x* = 0) temperature

8% = C,exp (—{1Fo) J (5.41)

An important implication of Equation 5.40b is that the time dependence of the
temperature at any location within the wall is the same as that of the midplane
temperature. The coefficients C; and {; are evaluated from Equations 5.39b
and 5.39c, respectively, and are given in Table 5.1 for a range of Biot numbers.

5.5.3 Total Energy Transfer

In many situations it is useful to know the total energy that has left the wall
up to any time ¢ in the transient process. The conservation of energy
requirement, Equation 1.11b, may be applied for the time interval bounded by
the initial condition (z = 0) and time ¢ > 0

E, - Eou! = AEst (542)
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Table 5.1 Coefficients used in the one-term approximation

to the series solutions for transient one-dimensional conduction

INFINITE
PLANE WALL CYLINDER SPHERE
& $ It
Bi (rad) (o) (rad) C (rad) G

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.03 0.1732 1.0049 0.2439 1.0075 0.2989 1.0090
0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.05 0.2217 1.0082 0.3142 1.0124 0.3852 1.0149
0.06 0.2425 1.0098 0.3438 1.0148 04217 1.0179
0.07 0.2615 1.0114 0.3708 1.0173 0.4550 1.0209
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.09 0.2956 1.0145 0.4195 1.0222 0.5150 1.0268
0.10 0.3111 1.0160 0.4417 1.0246 0.5423 1.0298
0.15 0.3779 1.0237 0.5376 1.0365 0.6608 1.0445
0.20 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.25 0.4801 1.0382 0.6856 1.0598 0.8448 1.0737
0.30 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0932 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0185 1.1346 1.2644 11713
0.7 0.7506 1.0919 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1490 1.1725 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.0769 1.1795 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7201
5.0 1.3138 1.2402 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8674
8.0 1.3978 1.2570 2.1286 1.5526 2.7654 1.8921
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2881 1.5919 2.9857 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 23572 1.6002 3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990

“Bi = hL/k for the plane wall and hr,/k for the infinite cylinder and sphere. See Figure 5.7.
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242  Chapter 5 Transient Conduction

Equating the energy transferred from the wall Q to E_,, and setting E,, = 0
and AE, = E(1) — E(0), it follows that
Q= -[E(1) - E(0)] (5.43)

or

0= —/pc[T(r, ) —T]av (5.43b)

where the integration is performed over the volume of the wall. It is conve-
nient to nondimensionalize this result by introducing the quantity

Q, = pcV(T, — T,) (5.44)

which may be interpreted as the initial internal energy of the wall relative to
the fluid temperature. It is also the maximum amount of energy transfer which
could occur if the process were continued to time ¢ = co. Hence, assuming
constant properties, the ratio of the total energy transferred from the wall over
the time interval ¢ to the maximum possible transfer is

Q —[7(r,1) - T av _
I R
Employing the approximate form of the temperature distribution for the plane

wall, Equation 5.40b, the integration prescribed by Equation 5.45 can be
performed to obtain

sin
Q _, _sng,

:—/f(l - 6%) dv (5.45)

0, A

where 6 can be determined from Equation 5.41, using Table 5.1 for values of
the coefficients C; and §,.

(5.46)

5.5.4 Graphical Representations

Graphical representations of the approximate relations for the transient tem-
perature distribution and energy transfer were first presented by Heisler [5]
and Grober et al. [6]. The graphs have been widely used for nearly four
decades; in addition to offering computational convenience, they illustrate the
functional dependence of the transient, dimensionless temperature distribution
on the Biot and Fourier numbers.

Results for the plane wall are presented in Figures 5.8 to 5.10. Figure 5.8
may be used to obtain the midplane temperature of the wall, 7(0, ¢) = T,(z),
at any time during the transient process. If 7, is known for particular values
of Fo and Bi, Figure 5.9 may be used to determine the corresponding
temperature at any location off the midplane. Hence, Figure 5.9 must be used
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Figure 59 Temperature distribution in a plane wall of
thickness 2L [5]. Used with permission.

in conjunction with Figure 5.8. For example, if one wishes to determine the
surface temperature (x* = +1) at some time ¢, Figure 5.8 would first be used
to determine 7, at . Figure 5.9 would then be used to determine the surface
temperature from knowledge of T,. The procedure would be inverted if the
problem were one of determining the time required for the surface to reach a
prescribed temperature.

10
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Figure 5.10 Internal energy change as a function of time for a plane wall of
thickness 2L [6]. Adapted with permission.
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Absence of the Fourier number in Figure 5.9 implies that the time
dependence of any temperature off the midplane corresponds to the time
dependence of the midplane temperature. This result is, of course, a conse-
quence of the approximation that led to Equation 5.40b and is valid for all but
the earliest stages of the transient process (Fo > 0.2).

Graphical results for the energy transferred from a plane wall over the
time interval ¢ are presented in Figure 5.10. These results were generated from
Equation 5.46. The dimensionless energy transfer Q/Q, is expressed exclu-
sively in terms of Fo and Bi.

Because the mathematical problem is precisely the same, the foregoing
results may also be applied to a plane wall of thickness L, which is insulated
on one side (x* = 0) and experiences convective transport on the other side
(x* = +1). This equivalence is a consequence of the fact that, regardless of
whether a symmetrical or an adiabatic requirement is prescribed at x* = 0,
the boundary condition is of the form d6* /dx* = 0.

RADIAL SYSTEMS WITH CONVECTION

For an infinite cylinder or sphere of radius r, (Figure 5.7b), which is at an
initial uniform temperature and experiences a change in convective conditions,
results similar to those of Section 5.5 may be developed. That is, an exact
series solution may be obtained for the time dependence of the radial tempera-
ture distribution; a one-term approximation may be used for most conditions;
and the approximation may be conveniently represented in graphical form.
The infinite cylinder is an idealization that permits the assumption of one-
dimensional conduction in the radial direction. It is a reasonable approxima-
tion for cylinders having L/r, > 10.

5.6.1 Exact Solutions

Exact solutions to the transient, one-dimensional form of the heat equation
have been developed for the infinite cylinder and for the sphere. For a uniform
initial temperature and convective boundary conditions, the solutions [2] are
as follows.

Infinite Cylinder In dimensionless form, the temperature is

0 = Y. G exp (~52F0) h(8,r) (5.47a)

n=1
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246 Chapter 5 Transient Conduction

where
2 Jl(gn)
C= o ————— 5.47b
;'n Juz(gra} + le(g-u) ( )
and the discrete values of {, are positive roots of the transcendental equation
Jl. (g n )
¢ = Bi (5.47c)
JG ( §n )

The quantities J; and J, are Bessel functions of the first kind and their values
are tabulated in Appendix B.4. Roots of the transcendental equation (5.47c)
are tabulated by Schneider [2].

Sphere Similarly, for the sphere

o* = f‘. CneXP(—KfFo)g = sin (§,r*) (5.48a)
n=1 n
where
4ISin(§u) - g'n €Os (g‘n)]
n = 2¢, — sin 2¢) (5.48Db)

and the discrete values of {, are positive roots of the transcendental equation
1—¢,cotl, = Bi (5.48¢)

Roots of the transcendental equation are tabulated by Schneider [2].

5.6.2 Approximate Solutions

For the infinite cylinder and sphere, Heisler [5] has shown that for Fo > 0.2,
the foregoing series solutions can be approximated by a single term. Hence, as
for the case of the plane wall, the time dependence of the temperature at any
location within the radial system is the same as that of the centerline or
centerpoint.

Infinite Cylinder The one-term approximation to Equation 5.47 is

9% = C, exp (—t2Fo) Jy(§,r*) (5.49a)
or
* = g*J,(¢,r%) (5.49b)
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5.6 Radial Systems with Convection 247
where 8 represents the centerline temperature and is of the form
8} = C exp(—7Fo) (5.49¢)

Values of the coefficients C, and {, have been determined and are listed in
Table 5.1 for a range of Biot numbers.

Sphere From Equation 5.48a, the one-term approximation is

1
0* = C, exp (—{fFo)F sin (§;7%) (5.50a)
1

or

0*

1
0:5'17 sin (§;7*) (5.50b)

where 0* represents the center temperature and is of the form

o

6* = C, exp (—{2Fo) (5.50c)

Values of the coefficients C; and {, have been determined and are listed in
Table 5.1 for a range of Biot numbers.

5.6.3 Total Energy Transfer

As in Section 5.5.3, an energy balance may be performed to determine the
total energy transfer from the infinite cylinder or sphere over the time interval
At = t. Substituting from the approximate solutions, Equations 5.49b and
5.50b, and introducing Q, from Equation 5.44, the results are as follows.

Infinite Cylinder

Q =1 26, J (5.51)
Qo - {1 l(gl) .
Sphere
34*
2 - 2 i) — fucos (@) (55
Qo g’l

Values of the center temperature 8 are determined from Equation 5.49¢ or
5.50c, using the coefficients of Table 5.1 for the appropriate system.
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Figure 5.12 Temperature distribution in an infinite cylinder
of radius r, [5]. Used with permission.

5.6.4 Graphical Representation

Graphical representations similar to those for the plane wall (Figures 5.8 to
5.10) have also been generated by Heisler [5] and Grdber et al. [6] for an
infinite cylinder and a sphere. Results for the infinite cylinder are presented in
Figures 5.11 to 5.13, and those for the sphere are presented in Figures 5.14 to
5.16. Note that, with respect to the use of these figures, the Biot number is

(1)(9) bl Af//f ’,// f ‘/;" il FJ f
55 UL,
o7 F ,/ /I /
06 g :
S SN S
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02 /LU // A A / 1L
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Figure 5.13 Internal energy change as a function of time for an infinite cylinder of
radius r, [6]. Adapted with permission.
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Figure 5.15 Temperature distribution in a sphere of radius
r, [5]. Used with permission.

defined in terms of r,. In contrast recall that, for the lumped capacitance method,
the characteristic length in the Biot number is customarily defined as r,/2 for the
cylinder and r,/3 for the sphere. ’

In closing it should be noted that the Heisler charts may also be used to
determine the transient response of a plane wall, an infinite cylinder, or a
sphere subjected to a sudden change in surface temperature. For such a
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% 05 ,} L/C:é%gj gf,gayc-? Y ’?/-x. NZ._‘Q%_'&,Z-_‘IQI ‘&‘
0 =
0.4 R4 Al /
03 % / /J Pl
: 77T 7 i U
02 A1W V. g 4 1
0.1 ﬁj i ﬁ"* VA A
IS 81t 2 i e
o e | |
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.?r_;!) E ] BL2F0

Figure 5.16 Internal energy change as a function of time for a sphere of radius 7,
[6]. Adapted with permission.
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252 Chapter 5 Transient Conduction

condition it is only necessary to replace T, by the prescribed surface tempera-
ture 7, and to set Bi~! equal to zero. In so doing the convection coefficient is
‘tacitly assumed to be infinite, in which case T, = T..

EXAMPLE 5.2

Consider a steel pipeline (AISI 1010) that is 1 m in diameter and has a wall
thickness of 40 mm. The pipe is heavily insulated on the outside, and before
the initiation of flow, the walls of the pipe are at a uniform temperature of
—20°C. With the initiation of flow, hot oil at 60°C is pumped through the
pipe creating a convective surface condition corresponding to 4 = 500
W,/m? - K at the inner surface of the pipe.

1. What are the appropriate Biot and Fourier numbers 8 min after the
initiation of flow?

2. At ¢ = 8 min, what is the temperature of the exterior pipe surface covered
by the insulation?

3. What is the heat flux ¢” (W/m?) to the pipe from the oil at s = 8 min?
How much energy per meter of pipe length has been transferred from the
oil to the pipe at t = 8 min?

SOLUTION

Known: Wall subjected to sudden change in convective surface condition.
Find:

1. Biot and Fourier numbers after 8 min.

2. Temperature of exterior pipe surface after 8 min.

3. Heat flux to the wall at 8 min.

4. Energy transferred to pipe per unit length after 8 min.

Schematic:

T(x, 0) =

T;==20°C T(L, ¢)

T(, t) — T, = 60°C

) h =500 W/m?+K
Insulation ———:#:

Steel, AISI 1010 —j— ? T T

0il
L=40
< “mm >
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5.6 Radial Systems with Convection 253
Assumptions:

1. Pipe wall can be approximated as plane wall, since thickness is much
less than diameter.

2. Constant properties.
3. Outer surface of pipe is adiabatic.

Properties: Table A.l, steel type AISI 1010 [T = (—20 + 60)°C/2 ~
300 K]: p=7823 kg/m’, ¢=434 J/kg-K, k=639 W/m-K,
a =188 X10~¢ m?/s.

Analysis:

1. At ¢t=28 min, the Biot and Fourier numbers are computed from
Equations 5.10 and 5.12, respectively, with L. = L. Hence

hL 500 W/m? - K x 0.04 m

Bi= = &owm-K

=0.313 <

at 188 x 1075 m*/s X 8 min X 60 s/min
FO = —2 bl ) el 564 <
L (0.04 m)

2. With Bi = 0.313, use of the lumped capacitance method is inappropri-
ate. However, since transient conditions in the insulated pipe wall of
thickness L correspond to those in a plane wall of thickness 2L
experiencing the same surface condition, the desired results may be
obtained from the charts for the plane wall. Using Figure 5.8, with
Bi~1 = 3.2, it follows that

o

0, T,=T,

i I 0

6, T(0,1)-T,
=(—)—z0.22

Hence after 8 min, the temperature of the exterior pipe surface, which
corresponds to the midplane temperature of a plane wall, is
T,=T(0,480s) ~ T, + 0.22(T,— T.))
T, = 60°C + 0.22(—20 — 60)°C =~ 42°C d

3. Heat transfer to the inner surface at x = L is by convection, and at any
time ¢ the heat flux may be obtained from Newton’s law of cooling.
Hence at ¢t = 480 s,

q/(L,480s) = gy = h[T(L,480s) - T,]

The surface temperature T(L, 480 s) may be obtained from Figure 5.9.
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254 Chapter 5 Transient Conduction
For the prescribed conditions
—=1 and Bit'=32

it follows that

0(L,480s) T(L,480s) — T, o~
6,(480s)  T,(480s) - T,

Hence
T(L,480s) = T, + 0.86[T,(480s) — T, ]
T(L,480s) = 60°C + 0.86[42 — 60]°C = 45°C
The heat flux at ¢ = 8 min is then
gy = 500 W/m? - K (45 — 60)°C = — 7500 W/m? N

4. The energy transfer to the pipewall over the 8-min interval may be
obtained from Figure 5.10 and Equation 5.44. With

Bi = 0.313 Bi%*Fo = 0.55

it follows that

g = (.78

9,
Hence
0 =0.78pcV(T,— T,)
or with a volume per unit pipe length of V’ = #DL,
Q' = 0.78pcaDL(T, — T,,)
Q' = 0.78 X 7823 kg/m’® X 434 J /kg - K
X a7 X1m X 0.04m (-20 — 60)°C
Q' = -27%x10"J/m N

Comments:

1. The minus sign associated with ¢” and Q’ simply implies that the
direction of heat transfer is from the oil to the pipe (into the pipe wall).

2. Since Fo > 0.2, the one-term approximation can be used to calculate
wall temperatures and the total energy transfer. The midplane tempera-
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5.6 Radial Systems with Convection 255

ture can be determined from Equation 5.41

@ oo

9x = = Cyexp (—{2Fo)

where, with Bi = 0.313, C; = 1.047 and ¢{; = 0.531 rad from Table 5.1.
With Fo = 5.64,

* = 1.047 exp [ - (0.531 rad)” X 5.64] = 0.214

This result is in good agreement with the value of 0.22 obtained from
Figure 5.8. Hence,

T(0,8 min) = T, + *(T, — T,)) = 60°C + 0.214(—20 — 60)°C = 42.9°C

which is within 2% of the value determined from the Heisler chart.

3. Using the one-term approximation for the surface temperature, Equa-
tion 5.40b with x* = 1 has the form

* = @*cos (§)
T(L,t)=T,+ (T, — T,)0*cos(¢)
T(L,8 min) = 60°C + (—20 — 60)°C X 0.214 X cos (0.531 rad)
T(L,8 min) = 45.2°C

which is within 1% of the value determined from the Heisler chart.

4. The total energy transferred during the transient process can be deter-
mined from the result associated with the one-term approximation,
Equation 5.46.

sin
2 _, s,
Qa “1
[0) sin (0.531 rad)
Q_a_l_ WXO.214—0.80

which is within 3% of the value determined from the Grober chart.

EXAMPLE 5.3

A new process for treatment of a special material is to be evaluated. The
material, a sphere of radius r, = 5 mm, is initially in equilibrium at 400°C in a
furnace. It is suddenly removed from the furnace and subjected to a two-step
cooling process.
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256 Chapter 5 Transient Conduction

Step 1 Cooling in air at 20°C for a period of time ¢, until the center
temperature reaches a critical value, T,(0, 7,) = 335°C. For this situation,
the convective heat transfer coefficient is #, = 10 W/m? - K.

After the sphere has reached this critical temperature, the second step is

initiated.

Step 2 Cooling in a well-stirred water bath at 20°C, with a convective heat

transfer coefficient of &, = 6000 W/m? - K.

The thermophysical properties of the material are p = 3000 kg/m’ k = 20

W/m - K, ¢ =1000 J/kg - K, and a = 6.66 X 1076 m?/s.

1. Calculate the time 7, required for step 1 of the cooling process to be

completed.

2. Calculate the time ¢, required during step 2 of the process for the center
of the sphere to cool from 335°C (the condition at the completion of step

1) to 50°C.

SOLUTION

Known: Temperature requirements for cooling a sphere.

Find:

1. Time ¢, required to accomplish desired cooling in air.

2. Time ¢, required to complete cooling in water bath.

Schematic:
T, =20°C T, =20°C
| hg =10 W/m?-K | By = 6000 W/m?-K
— —>
Air —1 Water —{>
—— —>

.

'ﬁ———Sphere, fo=5mm ——=
p = 3000 kg/m3
t Lopmgopeg | C=1M/eK T; =335 °C

- -6
Tol0, 1) =336°C  a@= fr-]fgfsx 1077 | 10, £,) = 50°C
k=20 W/m-K
Step 1 Step 2
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5.6 Radial Systems with Convection 257
Assumptions:

1. One-dimensional conduction in r.
2. Constant properties.

Analysis:

1. To determine whether the lumped capacitance method can be used, the
Biot number is calculated. From Equation 5.10, with L, = r,/3,

h,r,  10W/m?: K X 0.005m

= 8. 04
3k 3X20W/m- K 8331

Bi =

Accordingly, the lumped capacitance method may be used, and the
temperature is nearly uniform throughout the sphere. From Equation
5.5 it follows that

pVe 0, pre T —T,
t, = In— = n
haAa' 00 3hn T;I = Tcn

where V = (4/3)7r> and A, = 4ar2. Hence

3000 kg/m’ X 0.005 m x 1000 I/kg - K 400 - 20
a= 3% 10W/m?- K %335 -20

94 s
<
2. To determine whether the lumped capacitance method may also be

used for the second step of the cooling process, the Biot number is
again calculated. In this case

w o

3k IX20W/m-K

o h,r, 6000 W/m?- K x 0.005 m
l= =

= 0.50

and the lumped capacitance method is not appropriate. However, to an
excellent approximation, the temperature of the sphere is uniform at
t =t, and the Heisler charts may be used for the calculations from
t=1t,tot=1,+t, Using Figure 5.14 with

JO. 20W/m - K -
LT, T 6000W/mi-K X 0005m
6, T,-T, 50-20 -
6, T,-T, 335-2
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258 Chapter 5 Transient Conduction
it follows that Fo = 0.80, and

r? (0.005 m)*

666 x 10 mijs o0 <

Comments:

1. If the temperature distribution in the sphere at the conclusion of step 1
were not uniform, the Heisler chart could not be used for the calcula-
tions of step 2.

2. The surface temperature of the sphere at the conclusion of step 2 may
be obtained from Figure 5.15. With

"
Bi~!'=0.67 and —=1
rO
a("o) _ T(’“o) = Too ~0.52
b, T—T, ’
Hence

T(r,) = 20°C + 0.52(50 — 20)°C = 36°C

The variation of the center and surface temperature with time is then as
follows.

400

Bw
8 8

T(r, t) (°C)

8

(=}

0 ta totty ¢

3. For the step 2 transient process in water, the one-term approximation is
appropriate for determining the time z,, at which the center tempera-
ture reaches 50°C, that is, T'(0,¢,) = 50°C. Rearranging Equation
5.50c,

Fo= —

1 [6 1 [1 7(0,4)-T,
S |=-Fsh| X —F—F—
§1 Cl g.l Cl T; - Tm

Using Table 5.1 to obtain the coefficients for Bi =1/0.67 = 1.50
(C, = 1.376 and §; = 1.800 rad) and substituting appropriate tempera-
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5.7 The Semi-Infinite Solid 259

tures, it follows that
1 l 1 (50 — 20)°C
= _ % _
(1.800 rad)® | 1376 ~ (335 — 20)°C

0.82

Substituting for 7, and «, it follows that ¢, = 3.1 s, which is within 3%
of the value of 3.0 s obtained from the Heisler chart.

5.7 THE SEMI-INFINITE SOLID

Another simple geometry for which analytical solutions may be obtained is the
semi-infinite solid. Since such a solid extends to infinity in all but one direction,
it is characterized by a single identifiable surface (Figure 5.17). If a sudden
change of conditions is imposed at this surface, transient, one-dimensional
conduction will occur within the solid. The semi-infinite solid provides a useful
idealization for many practical problems. It may be used to determine tran-
sient heat transfer near the surface of the earth or to approximate the transient
response of a finite solid, such as a thick slab. For this second situation the
approximation would be reasonable for the early portion of the transient,
during which temperatures in the slab interior (well removed from the surface)

are uninfluenced by the change in surface conditions.

The heat equation for transient conduction in a semi-infinite solid is given
by Equation 5.26. The initial condition is prescribed by Equation 5.27, and the

interior boundary condition is of the form

T(0,t) =T, (5.53)
Case (1) Case (2) Case (3)
T(x,0)=T; T(x, 0)=T; T(x,0)=T;
T(O, t) = T =k 0T/0x|, ¢ = q, —k 0T/0x1 = h[ T, — T(0, 1))
Ts— . T, b
9o
- 17
F—=-x —=x F—==x
T(x,t)
T} T,
/ ‘ \ t
T; \\\ T; XL T;
x x X

Figure 5.17 Transient temperature distributions in a semi-infinite solid for three
surface conditions: constant surface temperature, constant surface heat flux, and
surface convection.

MASIMO 2160
Apple v. Masimo
IPR2022-01299



260 Chapter 5 Transient Conduction

Closed-form solutions have been obtained for three important surface condi-
tions, instantaneously applied at ¢z = 0 [1, 2]. These conditions are shown in
Figure 5.17. They include application of a constant surface temperature
T, # T,, application of a constant surface heat flux ¢/, and exposure of the
surface to a fluid characterized by T, # T, and the convection coefficient .
The solutions are summarized as follows.

Case 1 Constant Surface Temperature

T(0,1) = T, (5.54)
T(x,t) =T, x
——— =ceif 5.55
-1, (zm) (5.55)
T KT, - T) (5.56)
’” )= —k— e .
4 (1) ax |,_o Vrat
Case 2 Constant Surface Heat Flux
9 =4q; (5.57)
2q; (at/7)'"” -x*\  gx x
T(x,t) - T = — — erf 5.58
ol —8; k P\ Yot Kk C( 21/&7) (5.58)
Case 3 Surface Convection
aT
—k—| =hn[T, - 1(0,1)] (5.59)
ax x=0

—[exp h% + %)Herfc(z‘/xa + @)] (5.60)

The quantity erf w appearing in Equation 5.55 is the Gaussian error function,
which is tabulated in Section B.1 of Appendix B. The complementary error
function, erfc w, is defined as

effcw=1—erfw

Temperature histories for the three cases are also shown in Figure 5.17.
Carefully note their distinguishing features. For case 3 the specific temperature
histories computed from Equation 5.60 are plotted in Figure 5.18. Note that
the curve corresponding to h = oo is equivalent to the result that would be
obtained for a sudden change in the surface temperature to T, = T,. That is,
for h = oo the second term on the right-hand side of Equation 5.60 goes to
zero, and the result is equivalent to Equation 5.55.
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5.7 The Semi-Infinite Solid 261

-7
T.-T,

Figure 5.18 Temperature histories in a semi-infinite
solid with surface convection [2]. Adapted with
permission.

A |
ka, PA ;ﬂ)
e N

Figure 5.19 Interfacial contact between two
semi-infinite solids at different initial
temperatures.

X

An interesting permutation of case 1 results when two semi-infinite solids,
initially at uniform temperatures T, ; and Ty, are placed in contact at their
free surfaces (Figure 5.19). If the contact resistance is negligible, the require-
ment of thermal equilibrium dictates that, at the instant of contact (z = 0),
both surfaces must assume the same temperature 7;, for which Ty ; < T, <
T, ;. Since T, does not change with increasing time, it follows that the
transient thermal response and the surface heat flux of each of the solids is
determined by Equations 5.55 and 5.56, respectively.

The equilibrium surface temperature of Figure 5.19 may be determined
from a surface energy balance, which requires that

95 a=40n (5.61)

Substituting from Equation 5.56 for ¢}, and g; 3 and recognizing that the x
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262 Chapter 5 Transient Conduction

coordinate of Figure 5.19 requires a sign change for g, it follows that

—kA(T: - TA,i) kB(Ts - TB,i)

= 5.62
(e (nag) 66
or, solving for T,
kpe)X>T, i+ (kpe)y*T, ;
_ (k00T + (kpo)y°T,, B

(kpe)* + (kpe)y?

Hence, the quantity m = (kpc)*/? is a weighting factor which determines
whether T, will more closely approach T, ,(m, > my) or Ty ;(my > m,).

EXAMPLE 54

In laying water mains, utilities must be concerned with the possibility of
freezing during cold periods. Although the problem of determining the tem-
perature in soil as a function of time is complicated by changing surface
conditions, reasonable estimates can be based on the assumption of a constant
surface temperature over a prolonged period of cold weather. What minimum
burial depth x,, would you recommend to avoid freezing under conditions for
which soil, initially at a uniform temperature of 20°C, is subjected to a
constant surface temperature of —15°C for 60 days?

SOLUTION

Known: Temperature imposed at the surface of soil that is initially at
20°C.

Find: The depth x,, to which the soil has frozen after 60 days.

Schematic:

Atmosphere [—T, ==15°C

Soil
T;=20°C

i) =0°C

Assumptions:

1. One-dimensional conduction in x.
2. Soil is a semi-infinite medium.
3. Constant properties.
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5.8 Multidimensional Effects 263

Properties: Table A.3, soil (300 K): p = 2050 kg/m’, k = 0.52 W/m - K,
c=1840J/kg - K, a = (k/pc) = 0.138 X 1076 m?/s.

Analysis:  The prescribed conditions correspond to those of case 1 of
Figure 5.17, and the transient temperature response of the soil is governed
by Equation 5.55. Hence at the time ¢ = 60 days after the surface tempera-
ture change,

T(xﬂl’t) - ?.:F xm
=erf( )
T,-T, 2at
or
G 429 = et
20-(-15) *er(z\/a)

Hence from Appendix B.1

Xm

Wat

= 0.40
and
x,, = 0.80Var = 0.80(0.138 X 10~° m?/s X 60 days X 24 h/day
X 3600 s/h)"/* = 0.68 m q

Comments: The properties of soil are highly variable, depending on the
nature of the soil and its moisture content.

5.8

MULTIDIMENSIONAL EFFECTS

Transient problems are frequently encountered for which two- and even
three-dimensional effects are significant. Solution to a class of such problems
can be obtained from the one-dimensional results of Sections 5.6 and 5.7.

Consider immersing the short cylinder of Figure 5.20, which is initially at
a uniform temperature 7, in a fluid of temperature T,  # T,. Because the
length and diameter are comparable, the subsequent transfer of energy by
conduction will be significant for both the r and x coordinate directions. The
temperature within the cylinder will therefore depend on r, x, and ¢.

Assuming constant properties and no generation, the appropriate form of
the heat equation is, from Equation 2.20,

1 d( dT a*r 14T
——|r— |+t ===
r 8r( 8r) x?>  a dt
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) _ o) 0050
[T 8
0% = C(r*, t*) x P(x*, t%)

Figure 5.20 Two-dimensional, transient conduction in a short cylinder. (a) Geometry.
(b) Form of the product solution.

where x has been used in place of z to designate the axial coordinate. A
closed-form solution to this equation may be obtained by the separation of
variables method. Although we will not consider the details of this solution, it
is important to note that the end result may be expressed in the following
form.

T(r,x,t)—T, T(x,t)-T, T(r,t) - T,

T —-T T.-T Plane T.-T Infinite
! ® i s wall ' L cylinder

That is, the two-dimensional solution may be expressed as a product of
one-dimensional solutions that correspond to those for a plane wall of thick-
ness 2L and an infinite cylinder of radius r,. These solutions are available
from Figures 5.8 and 5.9 for the plane wall and Figures 5.11 and 5.12 for the
infinite cylinder. They are also available from the one-term approximations
given by Equations 5.40 and 5.49.

Results for other multidimensional geometries are summarized in Figure
5.21. In each case the multidimensional solution is prescribed in terms of a
product involving one or more of the following one-dimensional solutions.

T(x,1) - T,

S(x,t) = o
i o

(5.64)
Semi-infinite
solid

T(x, 1)~ T,
T,—-T,

! oo

P(x,1) = (5.65)

Plane
wall

C(r,t) E—T(;i); Ts

I o

Infinite (5 66)
cylinder

The x coordinate for the semi-infinite solid is measured from the surface,
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Cr, t)

f—=7o *'l

o S @
S(x1, t) P(x, t) P(xy,t)P(xg, t) C(r, t)S(x, t)

I-—rp|_

Infinite .
(d) Semi-infinite (e) rectangular (f) Semi-infinite
plate bar cylinder
S(xg, t)P(xy, )P(xg, t) P(x1, t) P(xp, )P(x3, t) C(r, t)P(x, t)
x3

x{ I )
5

gty Aoy -
(g) Semi-infinite (h)  Rectangular (i) Short cylinder
rectangular bar parallelepiped

Figure 5.21 Solutions for multidimensional systems expressed as
products of one-dimensional results.

whereas for the plane wall it is measured from the midplane. In using Figure
5.21 the coordinate origins should be carefully noted. The transient, three-
dimensional temperature distribution in a rectangular parallelepiped, Figure
5.21h, is then, for example, the product of three one-dimensional solutions for
plane walls of thicknesses 2L,, 2L,, and 2L,. That is,

T(xy, Xy x50 t) = T,
=1

=P(x;,t) - P(x,,1) - P(x5,1)
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The distances x,, x,, and x, are all measured with respect to a rectangular
coordinate system whose origin is at the center of the parallelepiped.

The amount of energy Q transferred to or from a solid during a multidi-
mensional transient conduction process may also be determined by combining
one-dimensional results, as shown by Langston [7].

EXAMPLE 5.5

In a manufacturing process stainless steel cylinders (AISI 304) initially at
600 K are quenched by submersion in an oil bath maintained at 300 K with
h =500 W/m? - K. Each cylinder is of length 2L = 60 mm and diameter
D = 80 mm. Consider a time 3 min into the cooling process and determine
temperatures at the center of the cylinder, at the center of a circular face, and
at the midheight of the side.

SOLUTION

Known: Initial temperature and dimensions of cylinder and temperature
and convection conditions of an oil bath.

Find: Temperatures T(r, x, t) after 3 min at the cylinder center, T(0,0,
3 min), at the center of a circular face, T(0, L, 3 min), and at the midheight
of the side, 7(r,,0,3 min).

Schematic:

7o = 40 mm T, L,y)

T(r, x,0)=T; = 600 K
L = 30[ - T(r0, 0, 1)

L=30mm

Cylinder,
AIS! 304 —0
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Assumptions:

1. Two-dimensional conduction in » and x.
2. Constant properties.

Properties: Table A.l, stainless steel, AISI 304 [T = (600 + 300)/2 =
450 K]: p = 7900 kg/m?, ¢ =526 J/kg K, k=174 W/m-K, a =
k/pc =419 X 107¢ m?/s.

Analpsis:  The solid steel cylinder corresponds to case i of Figure 5.21, and
the temperature at any point in the cylinder may be expressed as the
following product of one-dimensional solutions.

T(r,x,t) =T,

T—T. = P(x,1)C(r, 1)

where P(x, t) and C(r,t) are defined by Equations 5.65 and 5.66, respec-
tively. Accordingly, for the center of the cylinder,

7(0,0,3 min) — T,  T(0,3 min) — T, T(0,3 min) — T,

T - T T-T Plane T —T Infinite
! *© i - wall ! = cylinder

Hence, for the plane wall, with

k 174 W/m - K
BiTl=—= . =116
AL 500 W/m* -+ K X 0.03m
F at 419 x 107 m*/s X 180 s
0 = —_—= =
12 (0.03 m)?
it follows from Figure 5.8 that
0 7(0,3 min) = T,
o Q ~*0.64
0,- T; — Tm Plane
wall
Similarly, for the infinite cylinder, with
k 174W/m - K
Bi7l=-—-= 2 =0.87
hr, 500 W/m"- K X 0.04m
ar 419% 107 m?/s X 180 s
Fo = 3 = =

o

(0.04 m)*
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it follows from Figure 5.11 that

o

9 T,-T, Infinite Si05

! cylinder

0 7(0,3 min) — T,

Hence, for the center of the cylinder,

7(0,0,3 min) — 7,

= 0.64 X 0.55 = 0.35
-1,

7(0,0,3 min) = 300 K + 0.35(600 — 300) K = 405 K <

The temperature at the center of a circular face may be obtained from the
requirement that

T(0,L,3min) - 7,, T(L,3min) — T,
T,- T, T T=T,

T(0,3 min) — T,

Plane T=T Infinite
wall ¢ = cylinder

where, from Figure 5.9 with (x/L) =1 and Bi~! = 1.16,

9(L) T(L,3min) - T,
6,  T(0,3min) — T,

o

~0.68

Plane
wall

Hence

T(L,3 min) - T, T(L,3 min) — T, 7(0,3 min) — T,

T; - Tao Plane - T(O, 3 mln) - Tw Plane T: - Tw Plane
wall wall wall
T(L,3 min) — T,
—_— ~ (.68 X 0.64=0.44
T,- - Too Plane
wall
Hence
TOL3min) = T 44% 055 = 0.24
= 0.44 X 0.55 = 0.
T;' e Too
7(0, L,3 min) =~ 300 K + 0.24(600 — 300) K ~ 372K <

The temperature at the midheight of the side may be obtained from the
requirement that

T(r,,0,3min) — T,, T(0,3min) — T, T(r,,3 min) — T,
I,-T, - I,=T, Plane T,— T, Infinite
wall cylinder
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where, from Figure 5.12 with (r/r,) = 1 and Bi ™! = 0.87,

6(r,) T(r,,3min) — T,
9, T(0,3min) — T,

o

= 0.61

Infnite
cylinder

Hence

T(r,,3 min) — T,
Tiﬁ Too

T(r,,3 min) — T,
mfnite  T(0,3 min) — T,

cylinder

Infinite
cylinder

7(0,3 min) — T,
T=T,

Infinite
cylinder

o0

T(r,,3 min) — T,
R =~ 0.61 X 0.55 = 0.34

T.— T Infinite

! ® cylinder

Hence
T 0 3min) = T 0 64 % 0.34 ~ 022
= 0.64 X 0.34 = (.

h=T

7(r,,0,3 min) = 300 K + 0.22(600 — 300) K =~ 366 K <
Comments:

1. Verify that the temperature at the edge of the cylinder is T(r,, L,
3 min) = 345 K.

2. The one-term approximations can be used to calculate the dimension-
less temperatures read from the Heisler charts. For the plane wall, the
midplane temperature can be determined from Equation 5.41

f

6 = ?0 = C, exp (—¢2Fo)

where, with Bi = 0.862, C; = 1.109 and {; = 0.814 rad from Table 5.1.
With Fo = 0.84,

8
2| =1.109exp [ (0.814 rad)® x 0.84] = 0.636
A b
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The surface temperature can be evaluated using Equation 5.40b

o* 6
@ = 0—0 = cos ({;x*)
with x* =1 to give

6*(1, Fo)  6(L,¢)
)

o @

= cos (0.814 rad X 1) = 0.687

For the infinite cylinder, the centerline temperature can be determined
from Equation 5.49c.

8
0% = =2 = Cyexp(— fFo)

0’
where, with Bi = 1.15, C; = 1.227 and {; = 1.307 from Table 5.1. With
Fo =047,
9, :
2l =1109exp [~ (1.307 rad)® x 0.47] = 0.550
¢ | eytinder

The surface temperature can be evaluated using Equation 5.49b

g* /)
i Jo(&r*)

with r* =1 and the value of the Bessel function determined from
Table B4,
0*(1, Fo)  0(L,1)
o

a a

= J,(1.307 rad x 1) = 0.616

The one-term approximations are in good agreement with results from
the Heisler charts.

5.9 FINITE-DIFFERENCE METHODS

Analytical solutions to transient problems are restricted to simple geometries
and boundary conditions, such as those considered in the preceding sections.
Extensive coverage of these and other solutions is treated in the literature
[1-4]. However, in many cases the geometry and/or boundary conditions
preclude the use of analytical techniques, and recourse must be made to

MASIMO 2160
Apple v. Masimo
TPR2022-01299



5.9 Finite-Difference Methods 271

finite-difference methods. Such methods, introduced in Section 4.4 for steady-
state conditions, are readily extended to transient problems. In this section we
consider explicit and implicit forms of finite-difference solutions to transient
conduction problems. More detailed treatments, as well as related algorithms,
may be found in the literature [8-10].

5.9.1 Discretization of the Heat Equation: The Explicit Method

Once again consider the two-dimensional system of Figure 4.5. Under tran-
sient conditions with constant properties and no internal generation, the
appropriate form of the heat equation, Equation 2.15, is

19T 9*T 9T

To obtain the finite-difference form of this equation, we may use the central-
difference approximations to the spatial derivatives prescribed by Equations
4.31 and 4.32. Once again the m and n subscripts may be used to designate
the x and y locations of discrete nodal points. However, in addition to being
discretized in space, the problem must be discretized in time. The integer p is
introduced for this purpose, where

t=pAt (5.68)

and the finite-difference approximation to the time derivative in Equation 5.67
is expressed as

oT| TR - TR

— B —— (5.69)

at |, . At
The superscript p is used to denote the time dependence of T, and the time
derivative is expressed in terms of the difference in temperatures associated
with the new (p + 1) and previous (p) times. Hence calculations must be
performed at successive times separated by the interval A¢, and just as a
finite-difference solution restricts temperature determination to discrete points
in space, it also restricts it to discrete points in time.

If Equation 5.69 is substituted into Equation 5.67, the nature of the
finite-difference solution will depend on the specific time at which tempera-
tures are evaluated in the finite-difference approximations to the spatial
derivatives. In the explicit method of solution, these temperatures are evalu-
ated at the previous (p) time. Hence Equation 5.69 is considered to be a
forward-difference approximation to the time derivative. Evaluating terms on
the right-hand side of Equations 4.31 and 4.32 at p and substituting into
Equation 5.67, the explicit form of the finite-difference equation for the
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272  Chapter 5 Transient Conduction
interior node m, n is

m m,n

1 T, T, el Toe o 2TF

o At (Ax)?

i+ T 1 —2TE
LI : .
(Ay)?

Solving for the nodal temperature at the new (p + 1) time and assuming that
Ax = Ay, it follows that

(5.70)

Trf,tul = Fo(Tr5+1,n + Trf—l,n + Trf,n+1 h Tmp,n—l)
+(1- 4Fo)T,,’;‘,, (5.711)
where Fo is a finite-difference form of the Fourier number

a At

0= ——= (5.712

(8x)? ‘
If the system is one-dimensional in x, the explicit form of the finite-difference
equation for an interior node m reduces to

T2+ = Fo(T2,, + T2 ) + (1 — 2Fo)T? (5.73)

Equations 5.71 and 5.73 are explicit because unknown nodal temperatures
for the new time are determined exclusively by known nodal temperatures at
the previous time. Hence calculation of the unknown temperatures is straight-
forward. Since the temperature of each interior node is known at =0
(p = 0) from prescribed initial conditions, the calculations begin at ¢ = Ar
(p = 1), where Equation 5.71 or 5.73 is applied to each interior node to
determine its temperature. With temperatures known for ¢ = A¢, the appropri-
ate finite-difference equation is then applied at each node to determine its
temperature at ¢t =2Ar (p =2). In this way, the transient temperature
distribution is obtained by marching out in time, using intervals of At.

The accuracy of the finite-difference solution may be improved by de-
creasing the values of Ax and Atr. Of course, the number of interior nodal
points that must be considered increases with decreasing Ax, and the number
of time intervals required to carry the solution to a prescribed final time
increases with decreasing Ar. Hence, the computation time increases with
decreasing Ax and At. The choice of Ax is typically based on a compromise
between accuracy and computational requirements. Once this selection has
been made, however, the value of A7 may not be chosen independently. It is,
instead, determined by stability requirements.

MASIMO 2160
Apple v. Masimo
IPR2022-01299



5.9 Finite-Difference Methods 273

An undesirable feature of the explicit method is that it is not uncondition-
ally stable. In a transient problem, the solution for the nodal temperatures
should continuously approach final (steady-state) values with increasing time.
However, with the explicit method, this solution may be characterized by
numerically induced oscillations, which are physically impossible. The oscilla-
tions may become unstable, causing the solution to diverge from the actual
steady-state conditions. To prevent such erroneous results, the prescribed
value of At must be maintained below a certain limit, which depends on Ax
and other parameters of the system. This dependence is termed a stability
criterion, which may be obtained mathematically [8] or demonstrated from a
thermodynamic argument (see Problem 5.69). For the problems of interest in
this text, the criterion is determined by requiring that the coefficient associated
with the node of interest at the previous time is greater than or equal to zero. In
general, this is done by collecting all terms involving 7,2 , to obtain the form
of the coefficient. This result is then used to obtain a limiting relation
involving Fo, from which the maximum allowable value of A¢ may be
determined. For example, with Equations 5.71 and 5.73 already expressed in
the desired form, it follows that the stability criterion for a one-dimensional
interior node is (1 — 2Fo) > 0, or

Fo<! (5.74)
and for a two-dimensional node, it is (1 — 4Fo) > 0, or

Fo <

PN

(5.75)

For prescribed values of Ax and e, these criteria may be used to determine
upper limits to the value of Az.

Equations 5.71 and 5.73 may also be derived by applying the energy
balance method of Section 4.4.3 to a control volume about the interior node.
Accounting for changes in thermal energy storage, a general form of the
energy balance equation may be expressed as

E,+E =E, (5.76)

In the interest of adopting a consistent methodology, it is again assumed that
all heat flow is into the node.

To illustrate application of Equation 5.76, consider the surface node of
the one-dimensional system shown in Figure 5.22. To more accurately deter-
mine thermal conditions near the surface, this node has been assigned a
thickness which is one-half that of the interior nodes. Assuming convection
transfer from an adjoining fluid and no generation, it follows from Equation
5.76 that

Ax T§*t — Ty

kA
_ TP — (TP — TP = pcd—
hA(Too To)+ Ax(Tl 0) pc P At
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| |
e |1
—PlES‘I

9eony I ,\r’} cond ﬁ-l %x l(—Ax *>l

Figure 5.22 Surface node with convection and one-dimensional
transient conduction.

or, solving for the surface temperature at ¢ + At,

2h At
pclAx

n 2a At
Iy = (Tw_%p)+W(Tlp_T0p)+n)P

Recognizing that (24 At/pec Ax) = 2(h Ax/k)(a At/Ax?) = 2BiFo and
grouping terms involving T¢f, it follows that

T§*! = 2Fo(Tf + BiT,) + (1 — 2Fo — 2BiFo)TY (5.77)
The finite-difference form of the Biot number is
hildx
Bi = = (5.78)

Recalling the procedure for determining the stability criterion, we require
that the coefficient for T be greater than or equal to zero. Hence

1 —2Fo—2BiFo>0
or

Fo(1+ Bi) <! (5.79)

Since the complete finite-difference solution requires the use of Equation 5.73
for the interior nodes, as well as Equation 5.77 for the surface node, Equation
5.79 must be contrasted with Equation 5.74 to determine which requirement is
‘ the more stringent. Since Bi > 0, it is apparent that the limiting value of Fo
for Equation 5.79 is less than that for Equation 5.74. To ensure stability for all
| nodes, Equation 5.79 should therefore be used to select the maximum allow-
able value of Fo, and hence Az, to be used in the calculations.
| Forms of the explicit finite-difference equation for several common ge-
| ometries are presented in Table 5.2. Each equation may be derived by
| applying the energy balance method to a control volume about the corre-
| sponding node. To develop confidence in your ability to apply this method,
you should attempt to verify at least one of these equations.
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276  Chapter 5 Transient Conduction
EXAMPLE 5.6

A fuel element of a nuclear reactor is in the shape of a plane wall of thickness
2L =20 mm and is convectively cooled at both surfaces, with A& = 1100
W/m? - K and T, = 250°C. At normal operaling power, heat is generated
uniformly within the element at a volumetric rate of ¢, = 107 W/m'. A
departure from the steady-state conditions associated with normal operation
will occur if there is a change in the generation rate, Consider a sudden change
to ¢,=2x10" W/m and use the explicit finite-difference method to
determine the fuel element temperature distribution after 1.5 s. The fuel
element thermal properties are k = 30 W/m - K and a = 5 x 10" m? /s,

SOLUTION

Known: Conditions associated with heat generation in a rectangular fuel
element with surface cooling.

Find: Temperature distribution 1.5 s after a change in operating power.

Schematic:
Fuel element1 oS i
=1x m i )
gé =2 x 107 W/m3 :;1 T = 250°C
@ =5 x 10-6 m2/s A k = 1100 W/m2 - K
k=30 Wim-K q
Symmetry adiabat 1 T?? Coolant
i : 4 5 1|
m = 1= m gm+1 4 I 50
e | o | o ) o ° ’a
KoV 3|
—»! B le— —p B |l «—
4cond : [aVy 2 : Geond Yeond ad l(Iconv
i Es' I L = 10 mm 'Eg i
1 ' i H

Ll ’ el

Assumptions:

1. One-dimensional conduction in x.
2. Uniform generation.
3. Constant properties.

Analysis: A numerical solution will be obtained using a space increment of
Ax =2 mm. Since there is symmetry about the midplane, the nodal
network yields six unknown nodal temperatures. Using the energy balance
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method, Equation 5.76, an explicit finite-difference equation may be derived
for any interior node m.

kA T.‘m 1 Tp kA TH-I A A AA TJ’H'I T:-f
+ = . = -
Ax Ax g4 ax = paaxe At
Solving for T?*! and rearranging,
. Ax 2 :
T?*'=Fo|TE_ + T2, + d( P ) + (1 -2Fo)T? (1)
This equation may be used for node 0, with 7,?_, = T2, as well as for

nodes 1, 2, 3, and 4. Applying energy conservation to a control volume
about node 5,

(T — T7) + kA 2T AAx PEn a1
— A= = g
( 0 5) Ax 4 e 2 & At
or
A Ax)?
TP* = 2Fo|T} + BT, + Q(Zk) + (1 — 2Fo — 2BiFo)T? (2)

Since the most restrictive stability criterion is associated with Equation
2, we select Fo from the requirement that

Fo(1 + Bi) <}
Hence, with

hAx 1100 W/m’ - K (0.002m) _
Bi = = 0.0733
k 30 W/m - K

it follows that
Fo < 0.466

or

Fo(Ax)®  0.466(2 X 10~* m)’
At = < ) <0.373s
a 5% 107" m°/s

To be well within the stability limit, we select Atz = 0.3 s, which corre-
sponds to

5% 107°m?/s(0.3s
Fo= /8 )=0.375
(2x107? m)
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Substituting numerical values, including § = ¢, = 2 x 107 W /m’, the nodal
equations become

TP = 0.375(2T7 + 2.67) + 0.250T7

TP = 0.375(Tf + T + 2.67) + 0.250T7

TP = 0.375(TF + T + 2.67) + 0.250T7

TP = 0.375(TF + T + 2.67) + 0.250T7

TP = 0.375(T7 + T + 2.67) + 0.250T7

TP = 0.750(Tf + 19.67) + 0.195T7

To begin the marching solution, the initial temperature distribution
must be known. This distribution is given by Equation 3.42, with 4=4q.
Obtaining T, = 7} from Equation 3.46,

Pl gL 707G 10" W/m® X 0.01 m
= + — = °C +
ST Ty 1100 W/m? - K

= 340.91°C

it follows that

2

. X
T(x) = 16.67(1 - F) + 340.91°C

Computed temperatures for the nodal points of interest are shown in the
first row of the accompanying table.

Using the finite-difference equations, the nodal temperatures may be
sequentially calculated with a time increment of 0.3 s until the desired final
time is reached. The results are illustrated in rows 2 through 6 of the table
and may be contrasted with the new steady-state condition (row 7), which
was obtained by using Equations 3.42 and 3.46 with § = 4,

Tabulated nodal temperatures

0 L L n T T

0 357.58 35691 35491 351.58 34691 340.91
0.3 35808 35741 35541 35208 34741 34141
0.6 35858 35791 35591 352.58 34791 1341.88
0.9  359.08 35841 35641 353.08 34841 34235
12 35958 35891 35691 35358 348.89 342.82
1.5 360.08 359.41 357.41 35407 34937 343.27
0 46515 463.82 459.82 45315 443.82 431.82

SUIAL»)NP—'O*B
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Comments: Tt is evident that at 1.5 s, the wall is in the early stages of the
transient process and that many additional calculations would have to be
made to reach steady-state conditions with the finite-difference solution.
The computation time could be slightly reduced by using the maximum
allowable time increment (Az = 0.373 s), but with some loss of accuracy. In
the interest of maximizing accuracy, the time interval should be reduced
until the computed results become independent of further reductions in At.

592 Discretization of the Heat Equation: The Implicit Method

In the explicit finite-difference scheme, the temperature of any node at 1 + At
may be calculated from knowledge of temperatures at the same and neighbor-
ing nodes for the preceding time t. Hence, determination of a nodal tempera-
ture at some time is independent of temperatures at other nodes for the same
time. Although the method offers computational convenience, it suffers from
limitations on the selection of Arz. For a given space increment, the time
interval must be compatible with stability requirements. Frequently, this
dictates the use of extremely small values of Az, and a very large number of
time intervals may be necessary to obtain a solution.

A reduction in the amount of computation time may often be realized by
employing an implicit, rather than explicit, finite-difference scheme. The
implicit form of a finite-difference equation may be derived by using Equation
5.69 to approximate the time derivative, while evaluating all other tempera-
tures at the new (p + 1) time, instead of the previous ( p) time. Equation 5.69
is then considered to provide a backward-difference approximation to the time
derivative. In contrast to Equation 5.70, the implicit form of the finite-difference
equation for the interior node of a two-dimensional system is then

1Tt -T2,  TRH L+ TR, - 2T

a Y (Ax)?

TPl + TEAL, —2Tp]
2
(ay)

Rearranging and assuming Ax = Ay, it follows that

(5.86)

(1 + 4Fo)T2*! — Fo(Tptl, + Te*L  + TZhL, + T2RL) = T2,
(5.87)

From Equation 5.87 it is evident that the new temperature of the m, n
node depends on the new temperatures of its adjoining nodes, which are, in
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general, unknown. Hence, to determine the unknown nodal temperatures at
¢ + A, the corresponding nodal equations must be solved simultaneously. Such
a solution may be effected by using Gauss—Seidel iteration or matrix inversion,
as discussed in Section 4.5. The marching solution would then involve simulta-
neously solving the nodal equations at each time ¢ = Ar, 24t ..., until the
desired final time was reached.

Although computations involving the implicit method are more compli-
cated than those of the explicit method, the implicit formulation has the
important advantage of being unconditionally stable. That is, the solution
remains stable for all space and time intervals, in which case there are no
restrictions on Ax and Ar. Since larger values of At may therefore be used
with an implicit method, computation times may often be reduced, with little
loss of accuracy. Nevertheless, to maximize aceuracy, Af should be sufficiently
small to ensure that the results are independent of further reductions in its
value,

The implicit form of a finite-difference equation may also be derived from
the energy balance method. For the surface node of Figure 5.22, it is readily
shown that

(1 + 2Fo + 2FoBi)T{ ™' — 2FoT?*! = 2FoBiT,, + s (5.88)
For any interior node of Figure 5.22, it may also be shown that

(1 + 2Fo)Tp*! — Fo(T2*} + Tpil) = T2 (5.89)
Forms of the implicit finite-difference equation for other common geometries
are presented in Table 5.2. Each equation may be derived by applying the
energy balance method.

EXAMPLE 5.7

A thick slab of copper initially at a uniform temperature of 20°C is suddenly
exposed to radiation at one surface such that the net heat flux is maintained at
a constant value of 3 X 10° W /m’. Using the explicit and implicit finite-
difference techniques with a space increment of Ax = 75 mm, determine the
temperature at the irradiated surface and at an interior point that is 150 mm
from the surface after 2 min have clapsed. Compare the results with those
obtained from an appropriate analytical solution.

SOLUTION

Known: Thick slab of copper, initially at a uniform temperature, is sub-
jected to a constant net heat flux at one surface.

J
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Find:

1. Using the explicit finite-difference method, determine temperatures at
the surface and 150 mm from the surface after an elapsed time of 2
min.

Repeat the calculations using the implicit finite-difference method.
3. Determine the same temperatures analytically.

Schematic:
g, =3 x 105 Wm?
| I |
! ! m-1 P m Im + 1
0 = lg e & , ©

rad P —>
% 1 |q‘cond Jeond : = Heand

| I

L. ax =¥ Ax = 75 mm e
Assumptions:

1. One-dimensional conduction in x.

Thick slab may be approximated as a semi-infinite medium with
constant surface heat flux.

3. Constant properties.

Properties: Table A.1, copper (300 K): k=401 W/m-K, a =117 X
1076 m?/s.

Analysis:
1. An explicit form of the finite-difference equation for the surface node

may be obtained by applying an energy balance to a control volume
about the node.

PURTL il S F et
"4+ = g
4 A M N
or
gy Ax
Ty = 2Fo + 77| + (1 - 2F0)Ty

The finite-difference equation for any interior node is given by Equa-
tion 5.73. Both the surface and interior nodes are governed by the
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stability criterion

Fo <

[N

Noting that the finite-difference equations are simplified by choos-
ing the maximum allowable value of Fo, we select Fo = 3. Hence

(4x)* 1 (0.075m)

= = e o
M= = S T x 108 w2
With
”A 3% 10° W/m? (0.075 m
L0 /m{ ) _ s6.1°¢

k 401 W/m - K
the finite-difference equations become

T+ T2,

T¢*!=561°C+ Tf  and TP+ = >

for the surface and interior nodes, respectively. Performing the calcula-
tions, the results are tabulated as follows.

Explicit finite-difference solution for Fo = 1

P 1(s) T T h L T
0 0 20 20 20 20 20
1 24 76.1 20 20 20 20
2 48 76.1 481 20 20 20
3 72 104.2 48.1 341 20 20
4 96 104.2 69.1 341 271 20
5 120 125.3 69.1 481 271 20

After 2 min, the surface temperature and the desired interior tempera-
ture are T = 125.3°C and T, = 48.1°C.

Note that calculation of identical temperatures at successive times
for the same node is an idiosyncrasy of using the maximum allowable
value of Fo with the explicit finite-difference technique. The actual
physical condition is, of course, one in which the temperature changes
continuously with time. The idiosyncrasy is eliminated and the accu-
racy of the calculations is improved by reducing the value of Fo.

To determine the extent to which the accuracy may be improved
by reducing Fo, let us redo the calculations for Fo —= (A1 =12 5). The

A
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finite-difference equations are then of the form
TP+ = 1(56.1°C + T7) + 3Tf
gt = %(Tn’;+l +Th_,) + 3T%

and the results of the calculations are tabulated as follows.

Explicit finite-difference solution for Fo = 1/4

rp 1t T h . T 7 T Ts T T
0 0 20 20 20 20 20 20 20 20 20
1 12 48.1 20 20 20 20 20 20 20 20
2 24 62.1 210 20 20 20 20 20 20 20
3 36 72.6 340 218 20 20 20 20 20 20
4 48 814 406 244 204 20 20 20 20 20
5 60 89.0  46.7 215 21.3 20.1 20 20 20 20
6 72 95.9 52.5 30.7 22.6 204 200 20 20 20
7 84 102.3 579 34.1 241 20.8 20.1 20.0 20 20
8 96 108.1 63.1 376 25.8 21.5 203 20.0 20.0 20
9 108 113.7 68.0  41.0 27.6 222 20.5 20.1 20.0 20.0

=
(=3

120 118.9 726 444 296 232 20.8 20.2 20.0 20.0

After 2 min, the desired temperatures are T, = 118.9°C and T, =
44.4°C. Comparing the above results with those obtained for Fo = 3, it
is clear that by reducing Fo we have eliminated the problem of
recurring temperatures. We have also predicted greater thermal pene-
tration (to node 6 instead of node 3). An assessment of the improve-
ment in accuracy must await a comparison with results based on an
exact solution.

Performing an energy balance on a control volume about the surface
node, the implicit form of the finite-difference equation is

TP - Tp+! Ax TP —T¢
TR TP A
or,

kAx

Arbitrarily choosing Fo = (At = 24 s), it follows that

(1 + 2Fo)T*! — 2FoTP*! = + 17

TP — TP+l =561 + Ty
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From Equation 5.89, the finite-difference equation for any interior node
is then of the form

— TPt + 4T2 - Trtl = o7

Since we are dealing with a semi-infinite solid, the number of
nodes is, in principle, infinite. In practice, however, the number may be
limited to the nodes that are affected by the change in the boundary
condition for the time period of interest. From the results of the explicit
method, it is evident that we are safe in choosing nine nodes corre-
sponding to 7;, 7y, ..., Ty. We are thereby assuming that, at ¢ = 120 s,
there has been no change in T,

We now have a set of nine equations that must be solved simulta-
neously for each time increment. Using the matrix inversion method,
we express the equations in the form [A][T] = [C], where

2 -1 0 0 0 0 0 0 o0
-1 4 -1 0 0 0 0 0 o0
06 -1 4 -1 0 0 0 0 o0
0 0 -1 4 -1 0 0 0 0
[4]=] 0 0 0 -1 4 -1 0 0 o
0 0 0 0 -1 4 -1 0 o0
6 0 0 o0 o0 -1 4 -1 0
0o 0 o0 o0 0 0 -1 4 -1
6 0 o o 0o 0 0 -1 4
[56.1+ 17 ]
277
2ipr
Pl g
[c] = | 217
217
277
R
| 278 + TP |

Note that numerical values for the components of [C | are determined
from previous values of the nodal temperatures. Note also how the
finite-difference equation for node 8 appears in matrices [4] and [C].
A table of nodal temperatures may be compiled, beginning with
the first row (p = 0) corresponding to the prescribed initial condition,
To obtain nodal temperatures for subsequent times, the inverse of the
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5.9 Finite-Difference Methods 285

coefficient matrix [4]~! must first be found. At each time p + 1, it is
then multiplied by the column vector [C], which is evaluated at p, to
obtain the temperatures TP *%, T2*%,..., T*". For example, multiply-
ing [4]7} by the column vector corresponding to p = 0,

76.1 ]
40
40
40
[C],-0=]40
40
40
40
60

the second row of the table is obtained. Updating [C], the process is
repeated four more times to determine the nodal temperatures at 120 s.
The desired temperatures are T, = 114.7°C and T, = 44.2°C.

Implicit finite-difference solution for Fo = }

‘9 L T L & L % T T T

0 20.0 200 20.0 200 20.0 20.0 20.0 20.0 20.0
24 524 28.7 223 20.6 20.2 20.0 20.0 20.0 200
48 74.0 39.5 26.6 221 20.7 20.2 20.1 20.0 20.0
72 90.2 50.3 32.0 24.4 21.6 20.6 20.2 20.1 20.0
96 103.4 60.5 38.0 274 229 211 204 20.2 20.1

120 1147 700 442 30.9 24.7 219 20.8 203 20.1

w b WD~ O

3. Approximating the slab as a semi-infinite medium, the appropriate
analytical expression is given by Equation 5.58, which may be applied
to any point in the slab.

Zq;‘(arﬂr)l/z x? q’x ; x
- ex L erfc ( e )

T(x,t)— T =
(x, 1) ! 4ot

At the surface, this expression yields

2 X 3 % 10° W/m?

7(0,120's) — 20°C =
(0,1205) 401 W/m - K

(117 X 10~ m?/s X 120s/m)""”

or

7(0,120 s) = 120.0°C <
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286 Chapter 5 Transient Conduction

At the interior point (x = 0.15 m)

2 X 3 x10°W/m?

7(0.15 m, 120's) — 20°C=
(5, H205) 401 W/m - K

x (117 x 107% m?/s X 120 s/7)""

(0.15 m)* 3x10°W/m? x 0.15m
X T X7 X 10 mi/s X 1208 401 W/m-K
0.15m
X |1 —erf | — =454°C <
2/117 X 1078 m?/s x 120s
Comments:

1. Comparing the exact results with those obtained from the three approx-
imate solutions, it is clear that the explicit method with Fo = 1/4
provides the most accurate predictions.

METHOD T, = T(0,1205) T, = T(0.15m,120s)
Explicit (Fo = 1) 1253 43.1
Explicit (Fo = 1) 1189 444
Implicit (Fo = 1) 1147 442
Exact 120.0 45.4

This is not unexpected, since the corresponding value of At is 50%
smaller than that used in the other two methods.

2. Although computations are simplified by using the maximum allowable
value of Fo in the explicit method, the accuracy of the results is seldom
satisfactory.

3. Note that the coefficient matrix [A] is tridiagonal. That is, all elements
are zero except those which are on, or to either side of, the main
diagonal. Tridiagonal matrices are associated with one-dimensional
conduction problems. In such cases the problem of solving for the
unknown temperatures is greatly simplified, and stock computer pro-
grams may readily be obtained for this purpose.

4. A more general radiative heating condition would be one in which the
surface is suddenly exposed to large surroundings at an elevated tem-
perature T, . (Problem 5.84). The net rate at which radiation is trans-
ferred to the surface may then be calculated from Equation 1.7.
Allowing for convection heat transfer to the surface, application of
conservation of energy to the surface node yields an explicit finite-
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difference equation of the form

Tf — T Ax T§H -TF
=S R e el

eo| T3, — (T)Y] + h(T,, - TF) + & i > o

sur
Use of this finite-difference equation in a numerical solution is compli-
cated by the fact that it is nonlinear. However, the equation may be
linearized by introducing the radiation heat transfer coefficient 4,
defined by Equation 1.9, and the finite-difference equation is

TP — TP Ax TP* - TP
~T?) + h(T, — Tf) + k—— =2 0

P e 1]
ne(T, Ax 2 At

sur
The solution may proceed in the usual manner, although the effect of a
radiative Biot number (Bi, = h, Ax/k) must be included in the stabil-
ity criterion and the value of A, must be updated at each step in the
calculations. If the implicit method is used, 4, is calculated at p + 1,in
which case an iterative calculation must be made at each time step.

510 SUMMARY

Transient conduction occurs in numerous engineering applications, and it is
important to appreciate the different methods for dealing with it. There is
certainly much to be said for simplicity, in which case, when confronted with a
transient problem, the first thing you should do is calculate the Biot number.
If this number is much less than unity, you may use the lumped capacitance
method to obtain accurate results with minimal computational requirements.
However, if the Biot number is not much less than unity, spatial effects must
be considered, and some other method must be used. Analytical results are
available in convenient graphical and equation form for the plane wall, the
infinite cylinder, the sphere, and the semi-infinite solid. You should know
when and how to use these results. If geometrical complexities and/or the
form of the boundary conditions preclude their use, recourse must be made to
finite-difference methods. With the digital computer, such methods may be
used to solve any conduction problem, regardless of complexity.
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PROBLEMS

Qualitative Considerations
5.1 Consider a thin electrical heater attached to a plate and backed by insulation.
Initially, the heater and plate are at the temperature of the ambient air, 7.
Suddenly, the power to the heater is switched on giving rise to a constant heat flux
g (W/m?) at the inner surface of the plate.

Insulation Plate

Power
leads

(a) Sketch and label, on T-x coordinates, the temperature distributions: initial,
steady-state, and at two intermediate times.
(b) Sketch the heat flux at the outer surface g;'(L, t) as a function of time.

5.2 The inner surface of a plane wall is insulated while the outer surface is exposed to
an airstream at T, . The wall is at a uniform temperature corresponding to that of
the airstream. Suddenly, a radiation heat source is switched on applying a uniform
flux ¢’ to the outer surface.

4—qsfort>0

RS

L> x L

(a) Sketch and label, on T-x coordinates, the temperature distributions: initial,
steady-state, and at two intermediate times.

(b) Sketch the heat flux at the outer surface ¢//(L, t) as a function of time.

Insulation
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