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PREFACE
 
 

Heat Transfer has been written for undergraduates in mechanical, aerospace, nuclear,
and chemical engineering programs. Apart from the usual lower-division mathemat-
ics and science courses, the preparation required of the student is introductory
courses in fluid mechanics and thermodynamics, and preferably the usual junior-
level engineering mathematics course. The ordering of the material and the pace at
whichit is presented have been carefully chosen so that the beginning student can
proceed from the most elementary concepts to those that are moredifficult. As a re-
sult, the book should prove to be quite versatile. It can be used as the text for an
introductory course during the junior or senior year, although the coverageis suffi-
ciently comprehensive for use as a reference work in laboratory and design courses,
and by the practicing engineer.

Throughout the text, the emphasis is on engineering calculations, and each topic
is developed to a point that will provide students with the tools needed to practice
the art of design. The worked examplesnot only illustrate the use of relevant equa-
tions but also teach modeling as both an art and science. A supporting feature of
Heat Transferis the fully integrated software available from the Prentice-Hall web-
site at www.prenhall.com. The software is intended to serve primarily as a tool for
the student, both at college and after graduation in engineering practice. The pro-
gramsare designed to reduce the effort required to obtain reliable numericalresults
and thereby increasethe efficiency and effectiveness of the engineer. I have found
the impact of the software on the educational process to be encouraging.It is now
possible to assign more meaningful and interesting problems, because the students
need not get bogged downin lengthy calculations. Parametric studies, which are the
essence of engineering design, are relatively easily performed. Of course, computer
programs are not a substitute for a proper understanding. The instructor is free to
choose the extent to which the software is used by students because of the unique
exact correspondence between the software and the text material. My practice has
been to initially require students to perform various hand calculations, using the
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computer to give immediate feedback. For example, they do not have to wait a week
or two until homework is returned to find that a calculated convective heat transfer

coefficient was incorrect because a property table was misread.
The extent to which engineering design should be introduced in a heat transfer

course is a controversial subject. It is my experience that students can be best intro-
duced to design methodology through an increased focus on equipment suchas heat
exchangers: Heat Transfer presents more extensive coverage of exchanger design
than do comparable texts. In the context of such equipment one can conveniently in-
troduce topics such as synthesis, parametric studies, trade-offs, optimization, eco-
nomics, and material constraints. The computer program HEX2assists the student to
explore the consequences of changing the many parameters involved in a design
process. If an appropriate selection of this material is taught, I am confident that Ac-
creditation Board for Engineering and Technology guidelines for design content will
be met. More important, I believe that engineering undergraduates are well served by
being exposed to this material, even if it means studying somewhatless heat trans-
fer science.

Morethan 300 new exercises have been addedfor this edition. They fall into two
categories: (1) relatively straightforward exercises designed to help students under-
stand fundamental concepts, and (2) exercises that introduce new heat transfer tech-
nology and that have a practical flavor. The latter play a very important role in mo-
tivating students; considerable care has been taken to ensure that they are realistic in
terms of parameter values and focus onsignificant aspects of real engineering prob-
lems. The practical exercises are first steps in the engineering design process and
many have substantial design content. Since environmental considerations have re-
quired the phasing out of CFC refrigerants, R-12 and R-113 property data, worked
examples and exercises, have been replaced with corresponding material for R-22
and R-134a.

Heat Transfer contains the following chapters and appendixes:

. Elementary Heat Transfer

Steady One-Dimensional Heat Conduction

Multidimensional and Unsteady Conduction

. Convection Fundamentals and Correlations

1

2

3

4

5. Convection Analysis

6. Thermal Radiation

7. Condensation, Evaporation, and Boiling

8 . Heat Exchangers

A. Property Data

B. Units, Conversion Factors, and Mathematics

C. Charts
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Inafirst course, the focus is always on the key topics of conduction, convec-
tion, radiation, and heat exchangers. Particular care has been taken to order the
material on these topics from simpler to more difficult concepts. In Chapter 2
one-dimensional conduction andfins are treated before deriving the general partial
differential heat conduction equation in Chapter 3. In Chapter 4 the studentis taught
how to use convection correlations before encountering the partial differential equa-
tions governing momentum and energy conservation in Chapter 5. In Chapter6 ra-
diation properties are introduced onatotal energy basis and the shape factoris in-
troduced as a geometrical concept to allow engineering problem solving before
having to deal with the directional and spectral aspects of radiation. Also, wherever
possible, advanced topics are located at the ends of chapters, and thuscan beeasily
omitted in a first course.

Chapter 1 is a brief but self-contained introduction to heat transfer. Students are

given an overview of the subject and some material needed in subsequent chapters.
Interesting and relevant engineering problems can then be introducedat the earliest
opportunity, thereby motivating student interest. All the exercises can be solved
without accessing the property data in Appendix A.

Chapters 2 and 3 present a relatively conventional treatment of heat conduction,
though the outdated and approximate Heissler and Gréber charts are replaced by
exact charts and the computer program COND2.Thetreatmentof finite-difference
numerical methods for conduction has been kept concise and is based on finite-
volume energy balances. Students are encouraged to solve the difference equations
by writing their own computer programs, or by using standard mathematics software
such as Mathcad or MATLAB.

In keeping with.the overall philosophy of the book, the objective of Chapter 4 is
to develop the students’ ability to calculate convective heat transfer coefficients. The
physics of convectionis explainedin a brief introduction, and the heattransfer coef-
ficient is defined. Dimensional analysis using the Buckingham pi theorem is used to
introduce the required dimensional groups andto allow a discussion of the impor-
tance of laboratory experiments. A large numberofcorrelation formulas follow; in-
structors can discuss selected geometrical configurations as class time allows, and
students can use the associated computer program CONVtoreliably calculate heat
transfer coefficients and skin friction coefficients or pressure drop for a wide range
of configurations. Being able to do parametric studies with a wide variety of corre-
lations enhancesthe students’ understanding more than can be accomplished by hand
calculations. Design alternatives can also be explored using CONV.

Analysis of convection is deferred to Chapter 5: simple laminar flows are consid-
ered, and high-speed flowsare treated first in Section 5.2, since an understanding of
the recovery temperature concept enhances the students’ problem-solving capabili-
ties. Each of the topics in Sections 5.3 through 5.8 are essentially self-contained, and
the instructor can select as few or as manyas required.

Chapter 6 focuses on thermal radiation. Radiation properties are initially defined
on a total energy basis, and the shape factor is introduced as a simple geometrical
concept. This approach allows students to immediately begin solving engineering ra-
diation exchange problems. Only subsequently need they tackle the moredifficult di-
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rectional and spectral aspects of radiation. For gas radiation, the ubiquitous Hottel
charts have been replaced by the more acciirate methods developed by Edwards; the
accompanying computer program RAD3 makestheir use particularly simple.

The treatment of condensation and evaporation heat transfer in Chapter 7 has
novel features, while the treatment of pool boiling is quite conventional. Forced con-
vection boiling and condensation is taken far enough tofacilitate calculation of both
pressure drop and heat transfer. Heatpipes are dealt with in somedetail, enabling stu-
dents to calculate the wicking limit and to analyze the performance of simple gas-
controlled heatpipes.

Chapter 8 expands the presentation of the thermal analysis of heat exchangers
beyond the customary and includes regenerators and the effect of axial conduction
on thermal performance. The treatment of heat exchanger design includes the calcu-
lation of exchanger pressure drop, thermal-hydraulic design, heat transfer surface
selection for compact heat exchangers, and economic analysis leading to the calcu-
lation of the benefit-cost differential associated with heat recovery operations. The
computer program HEX2 serves to introduce students to computer-aided design of
heat exchangers.

The author and publisher appreciate the efforts of all those who provided input
that helped develop and improve the text. We remain dedicated to furtherrefining the
text in future editions, and encourage you to contact us with any suggestions or com-
ments you might have.

A. F. Mills

amills @ucla.edu

Bill Stenquist
Executive Editor

william_stenquist@prenhall.com
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NOTES TO

THE INSTRUCTOR
AND STUDENT
 

 

These notes have been prepared to assist the instructor and student and should be
read before the text is used. Topics covered include conventions for artwork and
mathematics, the format for example problems, organization of the exercises, com-
ments on the thermophysical property data in Appendix A, and a guide for use of
the accompanying computer software.

ARTWORK
=

Conventions used in the figures are as follows.

 

—_—P Conduction or convection heat flow

——)P Radiation heat flow

——_— Fluid flow

MATHEMATICAL SYMBOLS

Symbols that may needclarification are as follows.

= Nearly equal

= Of the same order of magnitude
All quantities in the term to theleft of the bar are evaluated at x[x
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xii NOTES TO THE INSTRUCTOR AND STUDENT

EXAMPLES
asss...

Use of standard format for presenting the solutions of engineering problems is a
good practice. The format used for the examples in Heat Transfer, which is but one
possible approach,is as follows.

Problem statement

Solution

Given:

Required:

Assumptions:1.
2. etc.

Sketch (when appropriate)

Analysis (diagrams when appropriate)

Properties evaluation

Calculations

Results (tables or graphs when appropriate)

Comments

1.

2. ete.

It is always assumedthat the problem statement precedes the solution (as in the
text) or that it is readily available (as in the Solutions Manual). Thus, the Given
and Required statements are concise and focus on the essential features of the
problem. Under Assumptions, the main assumptions required to solve the problem
are listed; when appropriate, they are discussed further in the body of the solution.
A sketch of the physical system is included when the geometry requires clarifica-
tion; also, expected temperature profiles are given when appropriate. (Schematics
that simply repeat the information in the problem statements are used sparingly. I
know that many instructors always require a schematic. My viewis that students need
to develop an appreciation of whenafigure or graph is necessary, because artworkis
usually an expensive componentof engineering reports. For example,I seelittle use
for a schematic that shows a 10 m length of straight 2 cm—O.D. tube.) The analysis
may consist simply of listing some formulas from the text, or it may require setting
up a differential equation and its solution. Strictly speaking, a property should not
be evaluated until its need is identified by the analysis. However, in routine calcula-
tions, such as evaluation of convective heat transfer coefficients, it is often convenient

MASIMO2159

Apple v. Masimo
IPR2022-01299



MASIMO 2159 
Apple v. Masimo 

IPR2022-01299

NOTES TO THE INSTRUCTOR AND STUDENT xiii

to list all the property values taken from an Appendix A table in one place. The
calculations then follow with results listed, tabulated, or graphed as appropriate.
Under Comments, the significance of the results can be discussed, the validity of
assumptions further evaluated, or the broader implications of the problem noted.

In presenting calculations for the examples in Heat Transfer, I have rounded off
results at each stage of the calculation. If additional figures are retained for the
complete calculations, discrepancies in the last figure will be observed. Since many
of the example calculations are quite lengthy, I believe my policy will facilitate
checking a particular calculation step of concern. As is common practice, I have
generally given results to more significant figures than is justified, so that these
results can be conveniently used in further calculations. It is safe to say that no
engineering heat transfer calculation will be accurate to within 1%, and that most
experienced engineers will be pleased with results accurate to within 10% or 20%.
Thus, preoccupation with a third or fourth significant figure is misplaced (unless
required to prevent error magnification in operations such as subtraction).

EXERCISES
MM

The diskette logo next to an exercise statement indicates that it should be solved using
the Heat Transfer software, and that the sample solution provided to the instructor
has been prepared accordingly. There are many additional exercises that can be
solved using the software but that do not have the logo designation. These exercises
are intended to give the student practice in hand calculations, and thus the sample
solutions were also prepared manually.

The exercises have been ordered to correspond with the order in which the material
is presented in the text, rather than in some increasing degree of difficulty. Since
the range of difficulty of the exercises is considerable, the instructor is urged to
give students guidance in selecting exercises for self-study. Answers to all exercises
are listed in the Solutions Manual provided to instructors. Odd- and even-numbered
exercises are listed separately; the instructor may chooseto give eitherlist to students
to assist self-study.

PROPERTY DATA’ 

A considerable quantity of property data has been assembled in Appendix A. Key
sources are given as references or are listed in the bibliography. Since Heat Trans-
fer is a textbook, my primary objective in preparing Appendix A wasto provide
the student with a wide range of data in an easily used form. Wheneverpossible,
I have used the most accurate data that I could obtain, but accuracy was not al-
ways the primary concern. For example, the need to have consistent data over a
wide range of temperature often dictated the choice of source. All the tables are in
SI units, with temperature in kelvins. The computer program UNITS can be used
for conversions to other systems of units. Appendix A should serve most needs of the
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student, as well as of the practicing engineer, for doing routine calculations. If a
heat transfer research project requires accurate and reliable thermophysical property
data, the prudent researcher should carefully check relevant primary data sources.

SOFTWARE

ee

The Heat Transfer software has a menu that describes the content of each program.
The programsare also described at appropriate locations in the text. The input format
and program use are demonstrated in example problemsin the text. Use of the text
index is recommended for locating the program déscriptions and examples. There
is a one-to-one correspondence between the text and the software. In principle, all
numbers generated by the software can be calculated manually from formulas, graphs,
and data given in the text. Small discrepancies may be seen when interpolation in
graphsor property tables is required, since someof the data are stored in the software
as polynomial curvefits.

The software facilitates self-study by the student. Practice hand calculations can
be immediately checked using the software. When programs such as CONV, PHASE,
and BOILare used, properties evaluation and intermediate calculation steps can also
be checked whenthe final results do not agree.

Since there is a large thermophysical property database stored in the software
package, the programscan also be conveniently used to evaluate these properties for
other purposes. For example, in CONV both the wall and fluid temperatures can be
set equal to the desired temperature to obtain property values required for convection
calculations. We can even go one step further when evaluating a convective heat
transfer coefficient from a new correlation not contained in CONV:if a corresponding
item is chosen, the values of relevant dimensionless groups can also be obtained from
CONV,further simplifying the calculations.
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2 CHAPTER 1 ELEMENTARY HEAT TRANSFER

1.1 INTRODUCTION
ESS_—

The process of heat transfer is familiar to us all. On a cold day we put on more
clothing to reduce heattransfer from our warm body to cold surroundings. To make
a cup of coffee we may plug in a kettle, inside which heat is transferred from
an electrical resistance element to the water, heating the water until it boils. The
engineering discipline of heat transfer is concerned with methods of calculating
rates of heat transfer. These methods are used by engineers to design components
and systems in whichheat transfer occurs. Heat transfer considerations are important
in almost all areas of technology. Traditionally, however, the discipline that has
been most concerned with heat transfer is mechanical engineering because of the
importance of heat transfer in energy conversion systems, from coal-fired power
plants to solar water heaters.

Many thermal design problems require reducing heat transfer rates by providing
suitable insulation. The insulation of buildings in extreme climates is a familiar
example, but there are many others. The space shuttle has thermaltiles to insulate
the vehicle from high-temperature air behind the bow shock wave during reentry
into the atmosphere. Cryostats, which maintain the cryogenic temperatures required
for the use of superconductors, must be effectively insulated to reduce the cooling
load on the refrigeration system. Often, the only way to ensure protection from
severe heating is to provide a fluid flow as a heat “sink.” Nozzles of liquid-fueled
rocket motors are cooled by pumping the cold fuel through passages in the nozzle
wall before injection into the combustion chamber. A critical componentin a fusion
reactor is the “first wall” of the containment vessel, which must withstand intense
heating from the hot plasma. Such walls may be cooled by a flow of helium gas or
liquid lithium. .

A commonthermal design problem is the transfer of heat from one fluid to another.
Devices for this purpose are called heat exchangers. A familiar example is the
automobile radiator, in which heat is transferred fromthe hot engine coolant to cold
air blowing through the radiator core. Heat exchangers of many different types are
required for power production and by the process industries. A power plant, whether
the fuel be fossil or nuclear, has a boiler in which water is evaporated to produce
steam to drive the turbines, and a condenser in which the steam is condensed to
provide a low back pressure on the turbines and for water recovery. The condenser
patented by James Watt in 1769 more than doubled the efficiency of steam engines
then being used andset the Industrial Revolution in motion. The common vaporcycle
refrigeration or air-conditioning system has an evaporator where heat is absorbed at
low temperature and a condenser whereheatis rejected at a higher temperature. On a
domestic refrigerator, the condenseris usually in the formof a tube coil with cooling
fins to assist transfer of heat to the surroundings. Anoil refinery has a great variety
of heat transfer equipment, includingrectification columns and thermal crackers.
Manyheat exchangersare usedto transfer heat from one process stream to another,
to reduce the total energy consumption by the refinery.

Often the design problem is one of thermal control , that is, maintaining the operat-
ing temperature of temperature-sensitive components within a specified range. Cool-
ing ofall kinds ofelectronic gearis an example of thermal control. The development
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of faster computers is now severely constrained by the difficulty of controlling the
temperature of very small components, which dissipate large amounts of heat. Ther-
mal control of temperature-sensitive components in a communicationssatellite or-
biting the earth is a particularly difficult problem. Transistors and diodes must not
overheat, batteries must not freeze, telescope optics must not lose alignment due to
thermal expansion, and photographs must be processed at the proper temperature to
ensure high resolution. Thermal control of space stations of the future will present
even greater problems, sincereliable life-support systems also will be necessary.

From the foregoing examples, it is clear that heat transfer involves a great variety
of physical phenomenaand engineering systems. The phenomena mustfirst be under-
stood and quantified before a methodology for the thermal design of an engineering
system can be developed. Chapter 1 is an overview of the subject and introduces key
topics at an elementary level. In Section 1.2, the distinction between the subjects of
heat transfer and thermodynamics is explained. Thefirst law of thermodynamicsis
reviewed, and closed- and open-system forms required for heat transfer analysis are
developed. Section 1.3 introduces the three important modes of heat transfer: heat
conduction, thermalradiation, and heat convection. Some formulas are developed
that allow elementary heat transfer calculations to be made. In practical engineer-
ing problems, these modes of heat transfer usually occur simultaneously. Thus, in
Section 1.4, the analysis of heat transfer by combined modesis introduced. There-
mainder of Chapter 1 deals with changes that occur in engineering systemsas a result
of heat transfer processes. In Section 1.5, the first law is applied to a very simple
model closed system to determine the temperature response of the system with time.
In Section 1.6, the first law for an open system is used to determine the change in
temperatureof a fluid flowing through a simple heat exchanger. Appropriate relations
are developed that allow the design engineer to evaluate the exchanger performance.
Finally, in Section 1.7, the International System of units (SI) is reviewed, and the
units policy that is followed in the text is discussed.

HEAT TRANSFER AND ITS RELATION TO THERMODYNAMICS

Whena hot object is placed in cold surroundings, it cools: the object loses internal
energy, while the surroundings gain internal energy. We commonly describe this
interaction as a transfér of heat from the object to the surrounding region. Since the
caloric theory of heat has been long discredited, we do not imagine a “heat substance”
flowing from the object to the surroundings. Rather, we understand that internal
energy has been transferred by complex interactions on an atomic or subatomic
scale. Nevertheless, it remains commonpractice to describe these interactions as
transfer, transport, or flow, of heat. The engineering discipline of heat transfer is
concerned with calculation of the rate at which heat flows within a medium, across
an interface, or from one surface to another, as well as with the calculation of
associated temperatures.

It is important to understand the essential difference between the engineering
discipline of heat transfer and what is commonly called thermodynamics. Classical
thermodynamics deals with systems in equilibrium. Its methodology may be used
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CHAPTER 1 ELEMENTARY HEAT TRANSFER

to calculate the energy required to change a system from one equilibrium state to an-
other, but it cannot be used to calculate the rate at which the change may occur. For
example, if a 1 kg ingot of iron is quenched from 1000°C to 100°C in anoil bath,
thermodynamicstells us that the loss in internal energy of the ingot is mass (1 kg) x
specific heat (~450 J/kg K) temperature change (900 K), or approximately 405 kJ.
But thermodynamics cannot tell us how long we will have to wait for the tempera-
ture to drop to 100°C. The time depends on the temperature of the oil bath, physical
properties ofthe oil, motion of the oil, and other factors. An appropriate heat transfer
analysis will consider all of these.

Analysis of heat transfer processes does require using some thermodynamics con-
cepts. In particular, the first law of thermodynamicsis used, generally in particularly
simple forms since work effects can often be ignored. The first law is a statement
of the principle of conservation of energy, which is a basic law of physics. This
principle can be formulated in many ways by excluding forms of energy that are
irrelevant to the problem underconsideration, or by simply redefining what is meant
by energy. In heat transfer, it is common practice to refer to the first law as the
energy conservation principle or simply as an energy or heat balance when no work
is done. However, as in thermodynamics, it is essential that the correct form of the
first law be used. The student must be able to define an appropriate system, recog-
nize whether the system is open or closed, and decide whether a steady state can
be assumed. Some simple forms of the energy conservation principle, which find
frequent use in this text, follow.

A closed system containing a fixed mass of a solid is shown in Fig. 1.1. The
system has a volume V [m?], and the solid has a density p [kg/m*]. There is heat
transfer into the system at a rate of Q [J/s or W], and heat may be generated within
the solid, for example, by nuclear fission or by an electrical current, at a rate QO, [W].
Solids may be taken to be incompressible, so no work is done by or on the system.
The principle of conservation of energy requires that over a time interval At [s],

Changein internal energy _ Heat transferred Heat generated
within the system into the system within the system

AU = OAt+Q,At (1.1)

Dividing by At andletting At go to zero gives

dU
+ Qy7 =Q+Q

System boundary

Figure 1.1 Application of the energy
conservation principle to a closed system.
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The system contains a fixed mass (pV); thus, we can write dU = pVdu, where u
is the specific internal energy [J/kg]. Also, for an incompressible solid, du = c, dT,
where c, is the constant-volumespecific heat[J/kg K], and T [K] is temperature. Since
the solid has been taken to be incompressible, the constant-volume and constant-
pressure specific heats are equal, so we simply write du = c dT to obtain

dT : :

pve7- = Q+Q (1.2)

Equation (1.2) is a special form of the first law of thermodynamicsthat will be used
often in this text. It is written on a rate basis; that is, it gives the rate of change
of temperature with time. For some purposes, however, it will prove convenient to
return to Eq. (1.1) as a statement ofthe first law.

Ww

 
Reference elevation

Figure 1.2 Application of the energy conservation principle to a steady-flow open system.

Figure 1.2 shows an open system (or control volume), for which a useful form of
the first law is the steady-flow energy equation. It is used widely in the thermody-
namic analysis of equipment such as turbines and compressors. Then

2 . .

dln S92] = O40 (1.3)
where m [kg/s] is the mass flow rate, h [J/kg] is the specific enthalpy, V [m/s] is
velocity, g [m/s’] is the gravitational acceleration, z is elevation [m], Q [W] is the
rate of heat transfer, as before, and W [W] is the rate at which external (shaft) work
is done on the system.' Notice that the sign convention here is that external work
done on the system is positive; the opposite sign convention is also widely used.
The symbol AX means Xou— Xin, or the change in X, Equation (1.3) applies to a pure

! Equation (1.3) has been written as if A, V, and z are uniform in the streams crossing the control volume boundary.
Often such an assumption can be made;if not, an integration across each stream is required to give appropriate averagevalues,
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substance when conditions within the system, such as temperature and velocity, are
unchanging over some appropriate time interval. Heat generation within the system
has not been included. In many types of heat transfer equipment, no external work
is done, and changes in kinetic and potential energy are negligible; Eq. (1.3) then
reduces to

mAh = Q (1.4)

The specific enthalpy / is related to the specific internal energy u as

h=ut+Py (1.5)

where P [N/m? or Pa] is pressure, and v is specific volume [m?/kg]. Two limit forms
of Ah are useful. If the fluid enters the system at state 1 and leaves at state 2:

1. For ideal gases with Pv = RT,

Ta

Ah = | c, aT (1.62)T\

where R [J/kg K] is the gas constant and c, [J/kg K] is the constant-pressure
specific heat.

2. For incompressible liquids with p = 1/v = constant
T2

P,—PAh = [ cdT +41 (1.6b)p|

where c = c, = ¢,. The second term in Eq.(1.65)is often negligible.

Equation (1.4) is the usual starting point for the heat transfer analysis of steady-state
open systems.

The second law of thermodynamics tells us that if two objects at temperatures
T, and T> are connected, and if 7, > 7), then heat will flow spontaneously and
irreversibly from object 1 to object 2. Also, there is an entropy increase associated
with this heat flow. As Tz approaches T,, the process approaches a reversible pro-
cess, but simultaneously the rate of heat transfer approaches zero, so the processis
oflittle practical interest. All heat transfer processes encountered in engineering are
irreversible and generate entropy. With the increasing realization that energy supplies
should be conserved,efficient use of available energy is becoming an important con-
sideration in thermal design. Thus, the engineer should be aware of the irreversible
processes occurring in the system under development and understand that the opti-
mal design may be one that minimizes entropy generation due to heat transfer and
fluid flow. Most often, however, energy conservation is simply a consideration in the
overall economic evaluation of the design. Usually there is an important trade-off
between energy costs associated with the operation of the system and the capital
costs required to construct the equipment.
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1.3 MODES OF HEAT TRANSFER
|

In thermodynamics, heat is defined as energy transfer due to temperature gradients
or differences. Consistent with this viewpoint, thermodynamics recognizes only two
modesof heat transfer: conduction and radiation. For example, heat transfer across
a steel pipe wall is by conduction, whereas heat transfer from the sun to the earth
or to a spacecraft is by thermal radiation. These modes of heat transfer occur on a
molecular or subatomicscale. In air at normal pressure, conduction is by molecules
that travel a very short distance (~ 0.65 4m) before colliding with another molecule
and exchanging energy. On the other hand, radiation is by photons, which travel
almost unimpeded through the air from one surface to another. Thus, an important
distinction between conduction and radiation is that the energy carriers for conduc-
tion have a short mean free path, whereas for radiation the carriers have a long
mean free path. However, in air at the very low pressures characteristic of high-
vacuum equipment, the mean free path of molecules can be much longer than the
equipment dimensions, so the molecules travel unimpeded from one surface to an-
other. Then heat transfer by molecules is governed by laws analogous to those for
radiation.

A fluid, by virtue of its mass and velocity, can transport momentum.In addition,
by virtue of its temperature, it can transport energy. Strictly speaking, convection is
the transport of energy by bulk motion of a medium (a movingsolid can also con-
vect energy in this sense). In the steady-flow energy equation, Eq. (1.3), convection of
internal energy is contained in the term mAh, whichis ontheleft-hand side of the
equation, and heat transfer by conduction and radiation is on the right-hand side,
as Q. However,it is common engineering practice to use the term convection more
broadly and describe heat transfer from a surface to a movingfluid also as convection,
or convective heat transfer, even though conduction and radiation play a dominant
role close to the surface, where the fluid is stationary. In this sense, convection is
usually regarded as a distinct mode of heat transfer. Examples of convective heat
transfer include heat transfer from the radiator of an automobile or to the skin of

a hypersonic vehicle. Convection is often associated with a change of phase, for
example, when water boils in a kettle or when steam condenses in a power plant
condenser. Owing to the complexity of such processes, boiling and condensation are
often regarded as distinct heat transfer processes.

The hot water home heating system shown in Fig. 1.3 illustrates the modes of
heat transfer. Hot water from the furnace in the basement flows along pipes to ra-
diators located in individual rooms. Transport of energy by the hot water from the
basement is true convection as defined above; we do notcall this a heat transfer
process. Inside the radiators, there is convective heat transfer from the hot water
to the radiator shell, conduction across the radiator shell, and both convective and
radiative heat transfer from the hot outer surface of the radiator shell into the room.

The convection is natural convection: the heated air adjacent to the radiator sur-
face rises due to its buoyancy, and coolerair flowsin to take its place. The radiators
are heat exchangers. Although commonly used, the term radiator is misleading since
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Figure 1.3. A hot-water home heating system illustrating the modesof heat transfer.

heat transfer from the shel! surface can be predominantly by convection rather than by
radiation (see Exercise 1-20). Heaters that transfer heat predominantly by radiation
are, for example, electrical resistance wire units.

Each of the three important subject areas of heat transfer will now be introduced:
conduction, in Section 1.3.1; radiation, in Section 1.3.2; and convection, in Section
1.3.3.

1.3.1 Heat Conduction

On a microscopic level, the physical mechanisms of conduction are complex, encom-
passing such varied phenomena as molecular collisions in gases, lattice vibrations
in crystals, and flow of free electrons in metals. However, if at all possible, the
engineer avoids considering processes at the microscopic level, preferring to use
phenomenological laws, at a macroscopic level. The phenomenological law gov-
erning heat conduction was proposed by the French mathematical physicist J. B.
Fourier in 1822. This law will be introduced here by considering the simple problem
of one-dimensional heat flow across a plane wall—for example, a layer of insula-
tion.” Figure 1.4 shows a plane wall of surface area A and thickness L, with its face
at x = 0 maintained at temperature 7; and the face at x = L maintained at 7>.
The heat flow Q through the wall is in the direction of decreasing temperature: if

2 In thermodynamics, the term insulated is often used to refer to a perfectly insulated (zero-heat-flow or adiabatic)
surface. In practice, insulation is used to reduce heat flow and seldom can be regarded as perfect.
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Conductivity k

 
Figure 1.4 Steady one-dimensional conduction across a plane wall, showing the
application of the energy conservation principle to an elemental volume Ax thick.

T, > T, Q is in the positive x direction.’ The phenomenological law governing this
heat flow is Fourier’s law of heat conduction, which states that in a homogeneous
substance, the local heat flux is proportional to the negative of the local temperature
gradient:

Q
—-— = d xAd an q

dT

ax (1.7)

where q is the heat flux, or heat flow per unit area perpendicularto the flow direction
[W/m*], T is the local temperature [K or °C], and x is the coordinate in the flow
direction [m]. When d7/dx is negative, the minus sign in Eq. (1.7) gives a positive
q in the positive x direction. Introducing a constant of proportionality k,

aT

q=—k Ix (1.8)

where k is the thermal conductivity of the substance and, by inspection of the
equation, must have units [W/m K]. Notice that temperature can be given in kelvins
or degrees Celsius in Eq. (1.8): the temperature gradient does not depend on which
of these units is used since one kelvin equals one degree Celsius (1 K = 1°C). Thus,
the units of thermal conductivity could also be written [W/m °C], but this is not the
recommended practice when using the SI system of units. The magnitude of the
thermal conductivity k for a given substance very much depends on its microscopic
structure and also tends to vary somewhat with temperature; Table 1.1 gives some
selected values of k.

3 Notice that this Q is the heat flow in the x direction, whereasin the first law, Eqs. (1.1)-(1.4), QO is the heat transfer
into the whole system. In linking thermodynamicsto heat transfer, some ambiguity in notation arises when common
practice in both subjects is followed.
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Table 1.1. Selected values of thermal conductivity at 300 K (~25°C).

 

k

Material W/m K

Copper 386
Aluminum 204

Brass (70% Cu, 30% Zn) 111
Mild steel 64

Stainless steel, 18-8 15

Mercury 8.4
Concrete 1.4

Pyrex glass 1.09
Water 0.611

Neoprene rubber 0.19
Engine oil, SAE 50 0.145
White pine, perpendicular to grain 0.10
Polyvinyl chloride (PVC) 0.092
Freon 12 0.071

Cork 0.043

Fiberglass (medium density) 0.038
Polystyrene 0.028
Air 0.027

Note: Appendix A contains more comprehensive data.

Figure 1.4 shows an elemental volume AV located between x and x + Ax; AV
is a closed system, and the energy conservation principle in the form of Eq. (1.2)
applies. If we considera steady state, then temperatures are unchanging in time and
dT/dt = 0; also, if there is no heat generated within the volume, Q, = 0. Then
Eq. (1.2) states that the net heat flow into the system is zero. Since heat is flowing
into AV across the face at x, and out of AV across the face at x + Ax,

Ol. = Ole +x
or

Q = Constant

But from Fourier’s law, Eq. (1.8),

. T

dx

The variables are separable: rearranging and integrating across the wall,

- L T>

g | dx = - | k dTA Jo T

where QO and A have been taken outside the integral signs since both are constants.
If the small variation of k with temperature is ignored for the present we obtain

MASIMO 2159

Apple v. Masimo
IPR2022-01299



MASIMO 2159 
Apple v. Masimo 

IPR2022-01299

1.3 MODES OF HEAT TRANSFER 11

: kA

Q= Th —T,) =
= T>

LIkA

 

(1.9)

Comparison of Eq. (1.9) with Ohm’s law, / = E/R, suggests that AT = T, — Tz
can be viewed asa driving potential for flow of heat, analogousto voltage being the
driving potential for current. Then R = L/kA can be viewed as a thermalresistance
analogousto electrical resistance.

If we have a composite wall of two slabs of material, as shown in Fig. 1.5, the
heat flow through each layer is the same:

Yi-T™ | I2—-T; 

Co TilkyA ~ LylkgA
Rearranging,

~|La
—|=7, -T.Q | ka‘] i-Th

| Bp
7 /= 2-7:Q i| 2-73

Adding eliminates the interface temperature 7):

»{ La Le
— +—|=T7,-Tafm a) -_-

or

T, — T3 AT
_ _ _AT 1.10O= ThA +LplkpA  Ra+Rp (208)

Usingthe electrical resistance analogy, we would view the problem as two resistances
in series forming a thermalcircuit, and immediately write

AT

Ry + Rp
Q= (1.108)

 
Figure 1.5 The temperature distribution for steady conduction
across a composite plane wall and the corresponding thermalcircuit.
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EXAMPLE 1.1 Heat Transfer through Insulation

A refrigerated container is in the form of a cube with 2 m sides and has 5 mm-thick aluminum
walls insulated with a 10 cm layer of cork. During steady operation, the termperatures on the
inner and outer surfaces of the container are measured to be —5°C and 20°C, respectively.
Determine the cooling load onthe refrigerator.

Solution

Given: Aluminum container insulated with 10 cm-—thick cork.
-

Required: Rate of heat gain.

Assumptions: 1. Steady state.
2. One-dimensional heat conduction (ignore corner effects).

Equation (1.10) applies:

A L: where R = —
O- RFR kA
 

Let subscripts A and B denote the aluminum wall and
cork insulation, respectively. Table 1.1 gives k, =
204 W/mK, kg = 0.043 W/mK. We suspectthat the
thermal resistance of the aluminum wall is negligible,
but we will calculate it anyway. For one side of area
A = 47’, the thermal resistarices are

 
La (0.005 m) -

R, = “4 = —————_= 6.13 x 10°° K/w
4 kA (204 W/m K)(4 m?)

10R, = 22 ong) = 0.581 K/W
keA (0.043 WimK)(4 m?)

Since Rg is five orders of magnitude less than Rg, it can be ignored. The heat flow for a
temperature difference of T; — T, = 20 — (—5) = 25K,is

AT 25 K

O- &% ~ 0581KW ae
Forsix sides, the total cooling load on the refrigerator is 6.0 x 43.0 = 258 W,

Comments

1. In the future, when it is obvious that a resistance in a series network is negligible,
it can be ignored from the outset (no effort should be expended to obtain data for its
calculation).

2. The assumption of one-dimensional conduction is good because the 0.1 m insulation
thickness is small compared to the 2 m-—long sides of the cube.
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3. Notice that the temperature difference T; — T, is expressed in kelvins, even though 7,
and T, were given in degrees Celsius.

4. We have assumed perfect thermal contact between the aluminum and cork; that is,
there is no thermal resistance associated with the interface between the two materials
(see Section 2.2.2).

1.3.2. Thermal Radiation

All matter and space contains electromagnetic radiation. A particle, or quantum, of
electromagnetic energy is a photon, and heattransfer by radiation can be viewed
either in terms of electromagnetic wavesor in terms of photons. The flux of radiant
energy incident onasurfaceis its irradiation, G [W/m?]; the energy flux leaving a
surface due to emission andreflection of electromagnetic radiation is its radiosity,
J [W/m?]. A black surface (or blackbody) is defined as a surface that absorbs all
incidentradiation, reflecting none. As a consequence,all of the radiation leaving a
black surface is emitted by the surface and is given by the Stefan-Boltzmann law
as

J = E, = oT* (1.11)
where E, is the blackbody emissive power, 7 is absolute temperature [K], and o
is the Stefan-Boltzmann constant (~ 5.67 < 1078 W/m? K‘). Table 1.2 shows how
E, = oT*increases rapidly with temperature.

Table 1.2 Blackbody emissive power oT“ at various temperatures.  

 
Surface Temperature Blackbody Emissive Power

K W/m?

300 (room temperature) 459
1000 (cherry-red hot) 56,700
3000 (ampfilament) 4,590,000
5760 (sun temperature) 62,400,000   

Figure 1.6 shows a‘convex black object of surface area A, in a black isothermal
enclosure at temperature T). At equilibrium, the object is also at temperature 7), and
the radiation flux incident on the object must equal the radiation flux leaving:

GiA, = JiA, = oTHA,
Hence

G, = oT; (1.12)
and is uniform over the area. If the temperature of the object is now raised to 7),
its radiosity becomes oT;' while its irradiation remains oT.>} (because the enclosure
reflects no radiation). Then the net radiant heat flux through the surface, qi, is the
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Irradiation G

Surface area A,

Convex black
object

Black isothermal
enclosure, 2

Radiosity J
 

Figure 1.6 A convex black object (surface 1) in a black isothermal enclosure (surface 2).

radiosity minus the irradiation:

q= J a G, (1.13)
or

q = oT} — oT; (1.14)

where the sign convention is such that a net flux away from the surface is positive.
Equation (1.14) is also valid for two large black surfaces facing each other, as shown
in Fig. 1.7.

The blackbody is an ideal surface. Real surfaces absorb less radiation than do
black surfaces. The fraction of incident radiation absorbed is called the absorptance
(or absorptivity), a. A widely used model of a real surface is the gray surface,
which is defined as a surface for which @ is a constant, irrespective of the nature of
the incident radiation. The fraction of incident radiation reflected is the reflectance

(or reflectivity), p. If the object is opaque, that is, not transparent to electromagnetic
radiation, then

A 1=6 (1.15)

1
2  

Figure 1.7 Examples of two
1 2 large surfaces facing each other.
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Table 1.3 Selected approximate values of emittance, ¢ (total hemispherical values at
normal temperatures). 

 Surface Emittance, ¢

Aluminum alloy, unoxidized 0.035
Black anodized aluminum 0.80

Chromium plating 0.16
Stainless steel, type 312, lightly oxidized 0.30
Inconel X, oxidized 0.72

Black enamel paint 0.78
White acrylic paint 0.90
Asphalt 0.88
Concrete 0.90
Soil 0.94

Pyrex glass 0.80 

Note: More comprehensive data are given in Appendix A. Emittance is very dependent on surface finish: thus. values
obtained from various sources may differ significantly.

Real surfaces also emit less radiation than do black surfaces. The fraction of the

blackbody emissive power oT* emitted is called the emittance (or emissivity), ¢.7
A gray surface also has a constant value of ¢, independentof its temperature, and,
as will be shown in Chapter 6, the emittance and absorptance of a gray surface are
equal: ‘

€ =a (gray surface) (1.16)

Table 1.3 shows some typical values of ¢ at normal temperatures. Bright metal
surfaces tend to have low values, whereas oxidized or painted surfaces tend to have
high values. Values of a and p can also be obtained from Table 1.3 by usingEqs.
(1.15) and (1.16),

If heat is transferred by radiation between two gray surfaces of finite size, as
shownin Fig. 1.8, the rate of heat flow will depend on temperatures T; and T and
emittances &) and &2, as well as the geometry. Clearly, someof the radiation leaving
surface 1 will not be intercepted by surface 2, and vice versa. Determining the rate
of heat flow is usually quite difficult. In general, we may write

Qin = A\Ay(oT — oTS) (1.17)

 
Figure 1.8 Radiation heat transfer

€2, T2, Az between twofinite gray surfaces.

4 Both the endings -ance and -ivity are commonly used for radiation properties. In this text, -ance will be used for
surface radiation properties. In Chapter 6, -ivity will be used for gas radiation properties.
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where Q)is the net radiant energy interchange (heat transfer) from surface 1 to
surface 2, and “> is a transfer factor, which depends on emittances and geometry.
For the special case of surface 1 surrounded by surface 2, where either area A, is
small compared to area Az, or surface 2 is nearly black, “A, = €) and Eq. (1.17)
becomes

Ow = &A\(oT} — oT?) (1.18)

Equation (1.18) will be derived in Chapter 6. It is an important result and is often
used for quick engineering estimates.

The 7* dependence ofradiant heat transfer complicates engineering calculations.
When 7; and T> are not too different, it is convenient to linearize Eq. (1.18) by
factoring the term (#7; — oT}) to obtain

Ow = eAyo(T? + TT + TT; — Tr)

~ 8A\o(4T,, (Ti — To)

for T; = T>, where T,, is the mean of T; and 7>. This result can be written more
concisely as

Or = Ath, (T; — T2) (1.19)

where h, = 4,073 is called the radiation heat transfer coefficient [W/m? K]. At
25°C (= 298 K),

h, = (4)81(5.67 x 1078 W/m? K*)(298 K)
or

h, = 6¢8,;Wim? K

This result can be easily remembered: The radiation heat transfer coefficient at room
temperature is about six times the surface emittance. For 7; = 320 K and T, =
300 K, the error incurred in using the approximation of Eq. (1.19) is only 0.1%; for
T, = 400 K and 7, = 300 K,the error is 2%.

EXAMPLE 1.2 Heat Loss from a Transistor

Anelectronic package for an experiment in outer space contains a transistor capsule, which
is approximately spherical in shape with a 2 cm diameter. It is contained in an evacuated
case with nearly black walls at 30°C. The only significant path for heat loss from the capsule
is radiation to the case walls. If the transistor dissipates 300 mW, what will the capsule
temperature beif it is (i) bright aluminum and (ii) black anodized aluminum?

Solution

Given: 2 cm—diameter transistor capsule dissipating 300 mW.

Required: Capsule temperature for (1) bright aluminum and(ii) black anodized aluminum.

Assumptions: Model as a small gray body in large, nearly black surroundings.
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Equation (1.18) is applicable with

Qr = 300 mW

T, = 30°C = 303K

and 7, is the unknown.  
On i &\A\(oT; i oT?)

0.3 W = (€,)(7)(0.02 m)*[oT# — (5.67 X 107° W/m’ K*)(303 K)*]

Solving,

9oT} = 478 + 239
&|

(i) For bright aluminum (¢ = 0.035 from Table 1.3),

oT} = 478 + 6828 = 7306 W/m*

T, = 599 K (326°C)

(ii) For black anodized aluminum (e = 0.80 from Table 1.3),

oT} = 478 + 298 = 776 Wim?

T, = 342 K (69°C)

Comments

1. The anodized aluminum gives a satisfactory operating temperature, but a bright alu-
minum capsule could not be used since 326°C is far in excess of allowable operating
temperatures for semiconductor devices.

2. Note the use of kelvins for temperature in this radiation heat transfer calculation.

1.3.3 Heat Convection

As already explained, convection or convective heat transfer is the term used to
describe heat transferfrom a surface to a moving fluid, as shown in Fig. 1.9. The
surface maybethe inside ofa pipe, the skin of a hypersonic aircraft, or a water-air in-
terface in a cooling tower. The flow maybeforced, as in the case of a liquid pumped

aH
46 8°ew 4
waite
 

 Figure 1.9 Schematic of
convective heat transfer to

afluid at temperature T,,
flowing at velocity V past a
surface at temperature T,.
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through the pipe or air on the flight vehicle propelled through the atmosphere. On the
other hand, the flow could be natural (or free), driven by buoyancy forces arising
from a density difference, as in the case of a natural-draft cooling tower. Either
type of flow can be internal, such as the pipe flow, or external, such as flow over
the vehicle. Also, both forced and natural flows can be either /aminar or turbulent,
with laminar flows being predominant at lower velocities, for smaller sizes, and for
more viscous fluids. Flow in a pipe becomes turbulent when the dimensionless group
called the Reynolds number, Rep = VD/v, exceeds about 2300, where V is the
velocity [m/s], D is the pipe diameter [m], and v is the kinematic viscosity of the
fluid [m?/s]. Heat transfer rates tend to be much higher in turbulent flows than in
laminar flows, owing to the vigorous mixing of thé fluid. Figure 1.10 shows some
commonly encountered flows.

The rate of heat transfer by convection is usually a complicated function of surface
geometry and temperature, the fluid temperature and velocity, and fluid thermophys-
ical properties. In an external forced flow, the rate of heat transfer is approximately
proportional to the difference between the surface temperature T, and the temperature
of the free stream fluid T,. The constant of proportionality is called the convective
heat transfer coefficient /:,:

qs = HeAT (1.20)

where AT = T, — T-, q; is the heat flux from the surface into the fluid [W/m7],
and A, has units [W/m? K]. Equation (1.20) is often called Newton’s law of cooling
but is a definition of h, rather than a true physical law. For natural convection, the
situation is more complicated. If the flow is laminar, g, varies as AT: if the flow
is turbulent, it varies as AT“. However, westill find it convenient to define a heat
transfer coefficient by Eq. (1.20); then fA, varies as AT' for laminar flows and as
AT'® for turbulent ones.

An important practical problem is convective heat transfer to a fluid flowing
in a tube, as may be found in heat exchangers for heating or cooling liquids, in
condensers, and in various kinds of boilers. In using Eq. (1.20) for internal flows,
AT = T, — T,, where T, is a properly averaged fluid temperature called the bulk

.temperature or mixed medn temperature and is defined in Chapter 4. Here it is
sufficient to note that enthalpy in the steady-flow energy equation, Eq. (1.4), is also
the bulk value, and 7; is the corresponding temperature. If the pipe has a uniform
wall temperature 7, along its length, and the flow is laminar (Rep = 2300), then
sufficiently far from the pipe entrance, the heat transfer coefficient is given by the
exact relation

k
¢ = 3.66— 21h 7 (1.21)

where k is the fluid thermal conductivity and D is the pipe diameter. Notice that
the heat transfer coefficient is directly proportional to thermal conductivity, inversely
proportional to pipe diameter, and—perhaps surprisingly—independent of flow ve-
locity. On the other hand, for fully turbulent flow (Re, 2 10,000), A, is given
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Laminar flow Turbulent flow

<C
(6)

(a)

\ i
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Turbulent——

Hot wall Cold wall

  
() 7)

Figure 1.10 Some commonly encountered flows. (a) Forced flow in a pipe, Rep = 50,000.
The flow is initially laminar because of the “bell-mouth” entrance but becomesturbulent

downstream. (6) Laminar forced flow over a cylinder, Rep = 25. (c) Forced flow through
a tube bank as found in a shell-and-tube heat exchanger. (d) Laminar and turbulent natural
convection boundary layers on vertical walls. (e) Laminar natural convection about a heated
horizontal plate. (f) Cellular natural convection in a horizontal enclosed fluid layer.
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approximately by the following, rather complicated correlation of experimental data:

V°SK°8( pe, )a
he = 0.023 D204 (1.22)

In contrast to laminar flow, h, is now strongly dependent on velocity, V, but only
weakly dependent on diameter. In addition to thermal conductivity, other fluid prop-
erties involved are the kinematic viscosity, v; density, p; and specific heat, c,. In
Chapter 4 wewill see how Eq. (1.22) can be rearranged in a more compact form by
introducing appropriate dimensionless groups. Equations (1.21) and (1.22) are only
valid at some distance from the pipe entrance and indicate that the heat transfer co-
efficient is then independentof position along the pipe. Near the pipe entrance, heat
transfer coefficients tend to be higher, due to the generation of large-scale vortices
by upstream bends or sharp corners and the effect of suddenly heating the fluid.

Figure 1.11 shows a natural convection flow on a heated vertical surface, as
well as a schematic of the associated variation of h, along the surface. Transition
from a laminar to a turbulent boundary layer is shown. In gases, the location of
the transition is determined bya critical value of a dimensionless group called the

eyashornumber. The Grashof numberis defined as Gr, = (@AT)gx?/v*, whereAT = — T,, g is the gravitational acceleration [m/s”], x is the distance fromthe soar of the surface where the boundary layer starts, and 6 is the volumetric
coefficient of expansion, which for an ideal gas is simply 1/7, where T is absolute
temperature [K]. On a vertical wall, transition occurs at Gr, ~ 10°. Forair, at
normal temperatures, experiments show that the heat transfer coefficient for natural
convection on a vertical wall can be approximated by the following formulas:

 

 
 
 
 
 

Turbulent

h, © Constant

(for a gas)

%

3=

a Transition
Heated =

wall g Gr, = 109
z

Laminar

he ax-l/

 
Edge of

boundary layer

Heat transfer coefficient, h,

Figure 1.11 A natural-convection boundary layer on a vertical wall, showing the variation
of local heat transfer coefficient. For gases, transition from a laminarto turbulent flow
occurs at a Grashof numberof approximately 10°; hence x, = [10° v°/BATg]'”.
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Laminar flow: h,=1.07(AT/x)!* W/m? K 10* < Gr, < 10° (1.23a)

Turbulent flow: A, = 1.3(AT)'? W/mn’?K 10°< Gr, <10'~—(1.235)

Since these are dimensional equations, it is necessary to specify the units of h,, AT,
and x, which are [W/m* K], [K], and [m], respectively. Notice that h, varies as
x~™* in the laminarregion but is independent ofx in the turbulent region.

Usually the engineer requires the total heat transfer from a surface and is not too
interested in the actual variation of heat flux along the surface. For this purpose, it is
convenient to define an average heat transfer coefficient h. for an isothermal surface
of area A by the relation

Q = h.A(T, ~ Te) (1.24)

so that the total heat transferrate, QO, can be obtained easily. The relation between
h, and h, is obtained as follows: For flow over a surface of width W and length L,
as shown in Fig. 1.12,

dQ =h(T, —T.)W dx
L

Q = | h(T; — T.)W dx0)

or

. 1/4Q= | he aa)acr, — T.), where A = WL, dA = Wdx (1.25)0

if (T, — T.) is independentof x. Since T, is usually constant, this condition requires
an isothermal wall. Thus, comparing Eqs. (1.24) and (1.25),

_ 14he= | h,dA (1.26)0A

Figure 1.12 An isothermal
surface used to define the

average convective heat
transfer coefficient h,.
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Table 1.4 Orders of magnitude of average convective heat transfer coefficients. 

he
Flow and Fluid W/m? K

Free convection, air 3-25
Free convection, water 15-1000
Forced convection, air 10-200
Forced convection, water 50-10,000

Forced convection, liquid sodium 10,000-—100,000
Condensing steam 5000-50,000
Boiling water 3000-100 ,000 

The surface may not be isothermal; for example, the surface may beelectrically
heated to give a uniform flux q, along the surface. In this case, defining an average
heat transfer coefficient is more difficult and will be dealt with in Chapter 4. Table
1.4 gives some order-of-magnitude values of average heat transfer coefficients for
various situations. In general, high heat transfer coefficients are associated with high
fluid thermal conductivities, high flow velocities, and small surfaces. The high heat
transfer coefficients shown for boiling water and condensing steam are due to another
cause: as we will see in Chapter 7, a large enthalpy of phase change (latent heat) is
a contributing factor.

The complexity of most situations involving convective heat transfer precludes
exact analysis, and correlations of experimental data must be used in engineering
practice. For a particular situation, a number of correlations from various sources
might be available, for example, from research laboratories in different countries.
Also, as time goes by, older correlations may be superseded by newer correlations
based on more accurate or more extensive experimental data. Heat transfer coeffi-
cients calculated from various available correlations usually do not differ by more
than about 20%, but in more complex situations, much larger discrepancies may
be encountered. Such is the nature of engineering calculations of convective heat
transfer, in contrast to the more exact nature of the analysis of heat conduction or of
elementary mechanics, for example.

EXAMPLE1.3 Heat Loss through Glass Doors

The living room of a ski chalet has a pair of glass doors 2.3 m high and 4.0 m wide. On
a cold morning, the air in the room is at 10°C, and frost partially covers the inner surface
of the glass, Estimate the convective heat loss to the doors. Would you expect to see the
frost form initially near the top or the bottom of the doors? Take v = 14 x 10°° m?/s for
the air.
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Solution

Given: Glass doors, width W = 4 m, height L = 2.3 m.

Required: Estimate of convective heat loss to the doors.

Assumptions: 1. Inner surface isothermal at T, = 0°C.
2. The laminar to turbulent flow transition

occurs at Gr, = 10°.

Equation (1.24) will be used to estimate the heat loss. The
inner surface will be at approximately O°C since it is only
partially covered with frost. If it were warmer, frost couldn’t
form; and if it were much colder, frost would cover the glass
completely. There is a natural convection flow downthe door
since T, = 10°C is greater than T, = 0°C. Transition from a
laminar boundary layer to a turbulent boundary layer occurs
when the Grashof number is about 10°. For transition at
X = Xr,

Tz = 10°C 
ad

Gr = 10? = BAD8%«. og = 1/7 for an ideal gasmn

1/3
 

= = 0.82 mXe 10°»? J'° —_ F(10°)(14 x 10° m2/s?
(A7/T)g (10/278)(9.81 m/s?) 

where the average of T, and T, has been used to evaluate 8. The transition is seen to take
place about onethird of the way down the door. _

We find the average heat transfer coefficient, h,, by substituting Eqs. (1.23a,b) in Eq.
(1.26):

mle
A

| h, dA; A= WL, dA = Wdx0h.

] L
—| h.dxAl

Xu de

| 1.07(AT/x)"* dx +| 1.3447)"dr]0 . tr

= (1/L)[(1.07)(4/3)AT 4x34 + (1.3)AT)PAL — xu)]

= (1/2.3)[(1.07)(4/3)(10)!4(0.82)°* + (1.3)(10)!7(2.3 — 0.82)]

= (1/2.3)(2.19 + 4.15]

= 2.75 Wim’ K

Then, from Eq. (1.24), the total heat loss to the dooris

Q =h,.AAT = (2.75 Wim’ K)(2.3 X 4.0 m2)(10 K) = 253 W
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1.4

CHAPTER 1 ELEMENTARY HEAT TRANSFER

Comments

1. The local heat transfer coefficient is larger near the top of the door, so that the rela-
tively warm room air will tend to cause the glass there to be at a higher temperature
than further down the door. Thus, frost should initially form near the bottom of the
door.

2. In addition, interior surfaces in the room will lose heat by radiation through the glass
doors.

COMBINED MODES OF HEAT TRANSFER
GB

Heat transfer problems encountered by the design engineer almost always involve
more than one modeof heattransfer occurring simultaneously. For example, consider
the nighttime heat loss through the roof of the house shown in Fig. 1.3. Heat is
transferred to the ceiling by convection from the warm room air, and by radiation
from the walls, furniture, and occupants. Heat transfer across the ceiling and its
insulation is by conduction, across the attic crawlspace by convection andradiation,
and across the roof tile by conduction. Finally, the heat is transferred by convection
to the cold ambient air, and by radiation to the nighttime sky. To consider realistic
engineering problems, it is necessary at the outset to develop the theory required to
handle combined modes of heattransfer.

1.4.1 Thermal Circuits

The electrical circuit analogy for conduction through a composite wall was introduced
in Section 1.3.1. We now extend this concept to include convection and radiation as
well. Figure 1.13 shows a two-layer composite wall of cross-sectional area A with the
layers A and B having thickness and conductivity Ly, k,4 and Lz, kz, respectively.
Heatis transferred from a hotfluid at temperature 7; to the inside of the wall with
a convective heattransfer coefficient h,,;, and away from the outside of the wall to
a cold fluid at temperature 7, with heat transfer coefficient h,,.

 
Figure 1.13 The temperature distribution for steady heat transfer
across a composite plane wall, and the corresponding thermalcircuit.
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Newton’s law of cooling, Eq. (1.20), can be rewritten as

AT

1/h,A

 
Q= (1.27)

with 1/h,A identified as a convective thermal resistance. At steady state, the heat flow
through the wall is constant. Referring to Fig. 1.13 for the intermediate temperatures,

= Tj T; — Tr TI, — 73 T; — T,1 e = = 7 1.282 WheiA  LalksA—LglkpA Whoo (1.28)
 

Equation (1.28) is the basis of the thermal circuit shown in Fig. 1.13. The total
resistance is the sum of four resistances in series. If we define the overall heat

transfer coefficient U by the relation

Q = UA(T; — T,) (1.29)

then 1/UA is an overall resistance given by

1 1 La La 1 
=HH 1.30UA heiA|kaA kpA Ico (1.30¢)

or, since the cross-sectional area A is constant for a plane wall,

1 1 L L 1
— =—+44 84 (1.305)
  

U hei Ka Ke hhevo

Equation (1.29) is simple and convenient for use in engineering calculations. Typ-
ical values of U [W/m? K] vary over a wide range for different types of walls and
convective flows.

Figure 1.14 shows a wall whose outer surface loses heat by both convection and
radiation. For simplicity, assume that the fluid is at the same temperature as the
surrounding surfaces, T,. Using the approximate linearized Eq. (1.19),

Qtad

 
qT

 
Figure 1.14 A wall that loses heat by both conduction and
radiation; the thermal circuit shows resistances in parallel.
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AT

Vh,A

with 1/h,A identified as a radiative thermal resistance. We now have tworesistances
in parallel, as shown in Fig. 1.14. The sum ofthe resistances is

L l
Se-oto

kA hA+h,A

 

Ord = (1.31)

or

1 L 1
— = sh eee 1.32UA kA (he + hyJA “ ( )

so that the convective and radiative heat transfer coefficients can simply be added.
However, often the fluid and surrounding temperatures are not the same, or the
simple linearized representation of radiative transfer {Eq. (1.19)] is invalid, so the
thermal circuit is then more complex. When appropriate, we will write h = h. + h,
to account for combined convection and radiation.°

 

EXAMPLE 1.4 Heat Loss through a Composite Wall

The walls of a sparsely furnished single-room cabin in a forest consist of two layers of
pine wood, each 2 cm thick, sandwiching 5 cm offiberglass insulation. The cabin interior
is maintained at 20°C when the ambientair temperature is 2°C. If the interior and exterior
convective heat transfer coefficients are 3. and 6 W/m? K, respectively, and the exterior surface
is finished with a white acrylic paint, estimate the heat flux through the wall.

Solution

Given: Pine wood cabin wall insulated with 5 cm of fiberglass.

Required; Estimate of heat loss through wall.

Assumptions: |. Forest trees and shrubs are at the ambient air temperature, T, = 2°C.
2. Radiation transfer inside cabin is negligible since inner surfaces of walls,

roof, and floor are at approximately the same temperature.

From Eq. (1.29), the heat flux through the wall is

Q = UT; -T,7 ( )q=

From Eqs. (1.30) and (1.32), the overall heat transfer coefficientis given by

1 1 fn La + Le 7 Le i |
U hej ka kp Ke eo + Ryo)

 

5 Notice that the notation used for this combined heat transfer coefficient, h, is the same as that used for enthalpy.
The student mustbe careful not to confuse these two quantities. Other notation is also in common use, for example,
@ for the heat transfer coefficient and i for enthalpy.

MASIMO 2159

Apple v. Masimo
IPR2022-01299



MASIMO 2159 
Apple v. Masimo 

IPR2022-01299

1.4 COMBINED MODES OF HEAT TRANSFER

The thermal conductivities of pine wood, perpendicu-
lar to the grain, and of fiberglass are given in Table 1.1
as 0.10 and 0.038 W/m K, respectively. The exterior ra-
diation heat transfer coefficient is given by Eq. (1.19) as

hyo = 4eoT?

where « = 0.9 for white acrylic paint, from Table 1.3,
and T,, = 2°C = 275 K (since we expect the exterior
resistance to be small). Thus,

Ig = 4(0.9)(5.67 X 107-8 W/m? K*)(275 K)?
= 4.2 Wim’ K

1 1 0.02 0.05 0,02 1+ — ———es——-
U 3 0.10 0.038 0.10 6+4.2

= 0.333 + 0.200 + 1.316 + 0.200 + 0.098

 

= 2.15 (W/m’K)7!

U = 0.466 W/m’? K

Then the heat flux g = U(T; — T,) = 0.466(20 — 2) = 8.38 Wim’.
The thermal circuit is shown below.

20°C

1 0.02 0.05
  

  

Comments

1. The outside resistance is seen to be 0.098/2.15 ~ 5% of the total resistance; hence, the

outside wall of the cabin is only about 1 K above the ambient air, and our assumption
of T,, = 275 K for the evaluation of h,, is adequate.

2. The dominantresistance is that of the fiberglass insulation; therefore, an accurate cal-
culation of g depends mainly on having accurate values for the fiberglass thickness and
thermal conductivity. Poor data or poor assumptions for the other resistances havelittle
impact on the result.

1.4.2 Surface Energy Balances

Section 1.4.1 assumed that the energy flow Q across the wall surfaces is contin-
uous. In fact, we used a procedure commonly called a surface energy balance,
which is used in various ways. Some examples follow. Figure 1.15 shows an opaque
solid that is losing heat by convection and radiation to its surroundings. Two imag-
inary surfaces are located on each side of the real solid-fluid interface: an s-surface

3A 0.10A 0.038A 0.104

27

20°C
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Solid

Figure 1.15 Schematic of a surface energy
balance, showing the m- and s-surface in
the solid and fluid, respectively.

 
in the fluid just adjacent to the interface, and an m-surface in the solid located such
that all radiation is emitted or absorbed between the m-surface and the interface.
Thus, energy is transferred across the m-surface by conduction only. (The choice of
s and m to designate these surfaces follows an established practice. In particular, the
use of the s prefix is consistent with the use of the subscript s to denote a surface
temperature T; in convection analysis.) Thefirst lawas applied to the closed system
located between m- and s-surfaces requires that >’ OQ = 0; thus,

Qeond ~ Qeony — Ora =0 (1.33)
or, for a unit area,

Gcond — Geonv — Grad = 0 (1.34)

where the sign convention for the fluxes is shown in Fig. 1.15. If the solid is
isothermal, Eq. (1.33) reduces to

Qeonv + Orac =0 (1.35)
which is a simple energy balance on the solid. Notice that these surface energy
balances remain valid for unsteady conditions, in which temperatures change with
time, provided the mass contained between the s- and m-surfaces is negligible and
cannotstore energy.

  

EXAMPLE 1.5 Air Temperature Measurement

A machine operator in a workshop complainsthat the air-heating systemis not keeping the air
at the required minimumtemperature of 20°C. To support his claim, he showsthat a mercury-
in-glass thermometer suspended froma rooftruss reads only 17°C. The roof and walls of the
workshop are made of corrugated iron and are not insulated; when the thermometeris held
against the wall, it reads only 5°C. If the average convective heat transfer coefficient for the
suspended thermometeris estimated to be 10 W/m” K, what is the true air temperature?

Solution

Given: Thermometer reading a temperature of 17°C.

Required: True air temperature.

Assumptions: Thermometer can be modeled as a small gray body in large, nearly black
surroundings at 5°C.
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Let 7, be the thermometer reading, T, the air tem-
perature, and 7,, the wall temperature. Equation
(1.35) applies,

Qeonv + om =0

since at steady state there is no conduction within
the thermometer. Substituting from Eqs. (1.24) and
(1.18),

h,A(T, — Te) + eoA(T4 — T4) = 0

 
From Table 1.3, e = 0.8 for pyrex glass. Canceling A,

10(290 — T.) + (0.8)(5.67)(2.90* — 2.784) = 0

Solving,

T, = 295 K = 22°C

Comments

1. Since T, > 20°C, the air-heating system appears to be working satisfactorily.

2. Our model assumesthat the thermometer is completely surrounded by a surface at 5°C:
actually, the thermometer also receives radiation from machines, workers, and other
sources at temperatures higher than 5°C, so that our calculated value of T, = 22°C is
somewhat high.

1.5 TRANSIENT THERMAL RESPONSE
WM

The heat transfer problems described in Examples 1.1 through 1.5 were steady-state
problems; that is, temperatures were not changing in time. In Example 1.2, the
transistor temperature was steady with the resistance (J*R) heating balanced by the
radiation heat loss. Unsteady-state or transient problems occur when temperatures
change with time. Such problemsare often encountered in engineering practice, and
the engineer may be required to predict the temperature-time response of a system
involved in a heat transfer process. If the system, or a component of the system, can
be assumed to havea spatially uniform temperature, analysis involves a relatively
simple application of the energy conservation principle, as will now be demonstrated.

1.5.1. The Lumped Thermal Capacity Model

If a system undergoingatransient thermal response to a heat transfer process has a
nearly uniform temperature, we may ignore small differences of temperature within
the system. Changesin internal energy of the system can then be specified in terms
of changes of the assumed uniform (or average) temperature of the system. This
approximation is called the lumped thermal capacity model.° The system might be

6 The term capacitance is also used, in analogy to an equivalent electrical circuit.
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a small solid component of high thermal conductivity that loses heat slowly to its
surroundings via a large external thermal resistance. Since the thermal resistance to
conduction in the solid is small comparedto the external resistance, the assumption
of a uniform temperatureis justified. Alternatively, the system mightbe a well-stirred
liquid in an insulated tank losing heat to its surroundings, in which case it is the
mixing of the liquid by thestirrer that ensures a nearly uniform temperature. In either
case, once we have assumed uniformity of temperature, we have no further need for
details of the heat transfer within the system—that is, of the conduction in the solid
component or the convectionin the stirred liquid. Instead, the heat transfer process
of concern is the interaction of the system with the surroundings, which might be
by conduction, radiation, or convection. “

Governing Equation and Initial Condition

For purposes of analysis, consider a metal forging removed from a furnace at
temperature 7) and suddenly immersedin an oil bath at temperature T,, as shown in
Fig. 1.16. The forging is a closed system, so the energy conservation principle in the
form of Eq. (1.2) applies. Heatis transferred out of the system by convection. Using
Eq. (1.24) the rate of heat transfer is h,A(T — T,.), where h, is the heat transfer
coefficient averaged overthe forging surface area A, andTis the forging temperature.
There is no heat generated within the forging, so that Q, = 0. Substituting in
Eq. (1.2):

aT —
—~ = -h,.A(T —T,pV dt ( )

dT —hhA 
HA oVe (T - T.) (1.36)

whichis a first-order ordinary differential equation for the forging temperature, T,
as a function of time, ¢. Oneinitial condition is required:

1=0: T=% (1.37)

Figure 1.16 A forging immersed
in an oil bath for quenching.
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Solution for the Temperature Response

A simple analytical solution can be obtained provided we assumethat the bath is
large, so T, is independentof time, and that h.A/pVc is approximated by a constant
value independent of temperature. Thevariables in Eq. (1.36) can then be separated:

dT _ _hA
T —T, pVc

  

Writing dT = d(T —T,), since T, is constant, and integrating with T = 7p att = 0,

T Piss he t

  

 

~m U-Te pVe Jo

TT; h.A
In- — =

To = Ty pVc

T- T. _ eo icAlpVoyt _ e tite (1.38)
To ~ T.

where f, = pVclh.A [s] is called the time constant of the process. When t = fo,
the temperature difference (T — T,) has dropped to be 36.8% ofthe initial difference
(Ty —T,). Ourresult, Eq. (1.38), is a relation between two dimensionless parameters:
a dimensionless temperature, T* = (T —T.)/(Tp — Te), which varies from | to 0; and
a dimensionless time, t* = t/te = h,At/pVc, which varies from 0 to %. Equation
(1.38) can be written simply as

T* =e" (1.39)

and a graph of T* versus r* is a single curve, as illustrated in Fig. 1.17.

0.368Dimensionlesstemperature,T* 
=i A

«= pe

c 

Dimensionless time, * = - =

Figure 1.17 Lumped thermal capacity temperature
response in terms of dimensionless variables T* and r*.
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Methods introduced in Chapter 2 can be used to deduce directly from Eqs. (1.36)
and(1.37) that T° must be a function of * alone [i.e., T* = f(1*)] without solving
the equation, Of course, the solution also gives us the formof the function. Thus, the
various parameters, ., c, p, and so on, only affect the temperature response in the
combination f", and not independently. If both /, and c are doubled, the temperature
at lime ¢ is unchanged. This dimensionless parameter 1" is a dimensionless group
in the same sense as the Reynolds number, but it does not have a commonly used
name.

Validity of the Model “

We would expect our assumption of negligible temperature gradients within the
system to be valid when the internal resistance to heat transfer is small compared
with the external resistance. If L is some appropriate characteristic length of a solid
body, for example, V/A (which for a plate is half its thickness), then

Internal conduction resistance LIk,A _ h.L
External convection resistance WhpA ky

  
(1.40)

where k, is the thermal conductivity of the solid material. The quantity h,L/k;
[W/m? K][m}/[W/n K]is a dimensionless group called the Biot number, Bi. More
exact analyses of transient thermal response of solids indicate that, for bodies resem-
bling a plate, cylinder, or sphere, Bi < 0.1 ensures that the temperature at the center
will not differ from that at the surface by more than 5%; thus, Bi < 0.1 is a suitable
criterion for determining if the assumption that the body has a uniform temperature
is justified, If the heat transfer is by radiation, the convective heat transfer coefficient
in Eq. (1.40) can be replaced by the approximate radiation heat transfer coefficient
h, defined in Eq. (1.19).

In the case of the well-stirred liquid in an insulated tank, it will be necessary to
evaluate the ratio

Internal convection resistance /h.iA _ U
41External resistance 1/UA hej (1.41)

 

where U is the overall heat transfer coefficient, for heat transfer from the inner
surface of the tank, across the tank wall and insulation, and into the surroundings.
If this ratio is small relative to unity, the assumption ofa uniform temperature in the
liquid is justified.

The approximation or model used in the preceding analysis is called a lumped
thermal capacity approximation since the thermal capacity is associated with a
single temperature. There is an electrical analogy to the lumped thermal capac-
ity model, owing to the mathematical equivalence of Eq. (1.36) to the equation
governing the voltage in the simple resistance-capacitance electrical circuit shown
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= FE=0 = T*=0

Figure 1.18 Equivalent electrical and thermal circuits for the
lumped thermal capacity model of temperature response.

in Fig. 1.18,

dE E

a RO =

with the initial condition E = Ey at t = 0 if the capacitor is initially charged to a
voltage Eo. The solution is identical in form to Eq. (1.38),

E =
= e RC

Eo

and the time constant is RC, the product of the resistance and capacitance [or C/(1/R),
the ratio of capacitance to conductance, to be exactly analogous to Eq. (1.38)].

EXAMPLE1.6 Quenching of a Steel Plate

A steel plate 1 cm thick is taken from a furnace at 600°C and quenchedin a bath ofoil at
30°C. If the heat transfer coefficient is estimated to be 400 W/m? K, how long will it take
for the plate to cool to 100°C? Take k, p, and ¢ for the steel as 50 W/m K, 7800 kg/m?, and
450 J/kg K,respectively.

Solution

Given: Steel plate quenched in an oil bath.we

Required: Time to cool from 600°C to 100°C.

Assumptions: Lumped thermal capacity model valid.

First the Biot number will be checked to see if the lumped thermal capacity approximation
is valid. For a plate of width W, height H, and thickness L,

V_ WHL iL
A 2WH 2

where the surface area of the edges has been neglected.
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_ h.(L/2) a

(400 W/m’ K)(0.005 m)
50 W/mK

so the lumped thermal capacity model is applicable. The time
constant f, is0.04 < 0.1 us—L

_ p¥e _ p(Li2)e _ (7800 kg/m*)(0.005 m)(450 kg K) _
h.A h, (400 W/m" K)

 

Substituting T, = 30°C, T) = 600°C, T = 100°C in Eq. (1.38) gives

100 — 30 = ns.
600 — 30

Solving,

t= 92s

Comments

The use of a constant value of h, may be inappropriate for heat transfer by natural con-
vection or radiation (see Section 1.5.2).

1.5.2 Combined Convection and Radiation

The analysis of Section 1.5.1 assumesthat the heattransfer coefficient was constant
during the cooling period. This assumption is adequate for forced convection but
is less appropriate for natural convection, and when thermal radiation is significant.
Equation (1.23) shows that the natural convection heat transfer coefficient h, is
proportional to AT" for laminar flow and to AT"? for turbulentflow. The temperature
difference AT = T — T, decreases as the body cools, as does h,. Radiation heat
transfer is proportional to (T* — T#) and hence cannot be represented exactly by
Newton’s law of cooling. We now extend our lumped thermal capacity analysis to
allow both for a variable convective heat transfer coefficient and for situations where
both convection and radiation are important.

Governing Equation and Initial Condition

Figure 1.19 shows a body that loses heat by both convection and radiation. For
a small gray body in large, nearly black surroundings also at temperature T,, the
radiation heat transfer is obtained from Eq. (1.18) as QO = eAo(T* — T4). As in
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Qconv = h,A (T-T,)

Figure 1.19 Schematic of a body
; losing heat by convection and radiation

Qraq = €A(T4— TS) for a lumped thermal capacity model.

Section 1.5.1, the energy conservation principle Eq. (1.2) becomes

dT —
pVc— = —h.A(T — T.) — eAo(T* — T4)

 

dt

or

aT hA eAo
— = -——(T ~T.) - —~(1* - T} 1.43Be = 4) (1.43)

The initial condition is again

t=0: T=T) (1.44)

This first-order ordinary differential equation has no convenient analytical solution
even when the convective heat transfer coefficient h, is constant as in forced con-
vection. However, Eq. (1.43) can be solved easily using a numericalintegration pro-
cedure. For this purpose, it can be rearranged as

dT hA
—+—(T-T.) = 0 1.45At pve! ) (1.45)
h=h, +h, = BUT —T.)" +oe(T? + T2\(T + T.) (1.46)

where (7* — T+) has been factored, as was done in deriving Eq. (1.19). For forced
convection, n = 0, B = h,; for laminar natural convection n = 1/4 and B is a con-
stant [for example, for a plate of height L, Eq. (1.23a) gives B = (4/3)(1.07)/L"4].
Equation (1.46) defines a total heat transfer coefficient that accounts for both convec-
tion and radiation and changes continuously as the body cools. To put
Eq. (1.45) in dimensionless form, we use the dimensionless variables introduced
in Section 1.5.1:

* Tf, . t

ToT,’ t i. (1.47a,b)
The definition of the time constant ft, poses a problem since h is not a constant as
before. We choose to define ¢, in terms of the value of A at time tf = 0, when the
body temperature is To,

 

V Ve
t= pe =eTae (1.48)

oA (B(Tp — Te)" + oe(Tg + T2)(To + Te )A
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Equation (1.45) then becomes

T* T*a
 

=( 1.49dt * ho ( )
with the initial condition

tw=0: Te =1 (1.50)

Computer Program LUMP

Numerical integration is appropriate for this problem. The computer program
LUMPhasbeen prepared accordingly. LUMPsolves Eq. (1.49), that is, it obtains
the temperature response of a body that loses heat by convection and/or radiation,
based on the lumped thermal capacity model. The required input constant B is defined
inEq. (1.46). Any consistent system of units can be used. The output can be obtained
either as a graph or as numerical data.

EXAMPLE 1.7 Quenching of an Alloy Sphere

A materials processing experiment under microgravity conditions on the space shuttle réquires
quenching in a forced flow of an inert gas. A 1 cm—diameter metal alloy sphere is removed
from a furnace at 800°C andis to be cooled to 500°C by a flow of nitrogen gas at 25°C.
Determine the effect of the convective heat transfer coefficient on cooling time for 10 <h, <
100 W/m? K.Properties of the alloy include: p = 14,000 kg/m’; c = 140 J/kgK; « = 0.1.
The surrounds can be taken as nearly black at 25°C.

Solution

Given: A metal alloy sphere to be quenched.

Required: Effect of convective heat transfer coefficient on cooling time.

Assumptions: 1. Lumped thermal capacity model valid.
2. Constant convective heat transfer coefficient.

The computer code LUMPcanbe usedto solve this problem.
The required inputs are: N2Ty and T, = 1073, 298 | ae | |

B =h, = 10 (repeat for 20, 30, 50, 100)
n=0

o = 5.67 x 10°8

e=0.1  
Final value of ¢*: try * = 1

 
The required dimensionless temperature is

T-T, _ 773-298T= =
Ty—T. 1073 — 298

= 0.613
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and the code is used to obtain the corresponding dimensionless time t*. For a sphere V/A =
(7D?7/6)/(7D?) = D/6, so that the time constant is

 _ pve _ p(Di6)c _ (14, 000)(0.01/6)(140)
“IgA ho h, + (5.67 X 10-8), 1)(10732 + 2982)(1073 + 298)

__3267
h. + 9.64

The actual time is f = f*t,. Results obtained using LUMPare tabulated below.

h. te t
Wim? K t* s s

10 0.59 166 98
20 0.55 110 61
30 0.53 82 43

50 0.52 55 29
100 0.51 30 15

Comments

1. Only two significant figures have been given since high accuracy is not warranted for
the problem.

2. The heat transfer coefficient does not have a strong effect on t*. Why?

3. For the lumped thermal capacity model to be valid, the Biot number should beless
than 0.1. The worst case is with h, = 100 W/m’Kat'time ¢ = 0, giving ty = 109.6
and 0.1 > (109.6)(0.01/6)/k,, that is, k, > 1.8 W/mK, which certainly will be true for
a metal alloy.

HEAT EXCHANGERS
mm

In Section 1.5, we considered problems in which the temperature of a system changed
with time as a result of heat transfer between the system and its surroundings. We
now consider problems in which the temperature of a fluid changesasit flows through
a passage as a result of heat transfer between the passage walls and the fluid. These
problems are encountered in the analysis of heat exchanger performance. A heat
exchanger is a device that facilitates transfer of heat from one fluid stream to an-
other. Power production, refrigeration, heating and air conditioning, food processing,
chemical processing, oil refining, and the operation of almostall vehicles depends
on heat exchangers of various types. The analysis and design of heat exchangers
is the subject of Chapter 8. The analysis of a very simple heat exchanger config-
uration is presented here to introduce some of the basic concepts underlying heat
exchanger analysis and associated terminology. These concepts will prove useful in
the development and application of heattransfer theory in chapters preceding Chapter
8—particularly in Chapters 4 and 5, which deal with convection.
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1.6.1 Single- and Two-Stream Exchangers

One important classification of heat exchangers is into single-stream exchangers
and two-stream exchangers. A single-stream exchanger is one in which the tem-
perature of only one stream changes in the exchanger; examples include many types
of evaporators and condensers found in powerplants and refrigeration systems. A
power plant condenser is shown in Fig. 1.20. A two-stream exchanger is one in
which the temperatures of both streams change in the exchanger; examples include
radiators and intercoolers for automobile engines, and oil coolers for aircraft engines.
Figure 1.21 shows an oil cooler, which has a counterflow configuration; that is, the
streams flow in opposite directions in the exchanger,

In the analysis of heat exchangers, a useful first step is to draw a sketch of
the expected fluid temperature variations along the exchanger. Figure 1.22a is such
a sketch for the power plant condenser. The hot stream is steam returning from
the turbines, which condenses at a constant temperature 7;,. This is the saturation
temperature corresponding to the pressure maintained in the condenser shell. The
cold stream is cold water from a river, ocean, or cooling tower, and its temperature

Non-Condensable Offtakes Vent Duct & Drip Roof

Main Expansion Joint (_ lier — alike}
B. F.\P.T. Exhaust Duct

MELGlaston : -F E ss

[ee Heaters

eo
Load CarryingMembers

Circulating Water Nozzle

Mewesay Condensate SumpaEes) with Screen

 
Figure 1.20 A power plant condenser. (Courtesy Senior Engineering Co.
[formerly Southwestern Engineering], Los Angeles, California.)
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Figure 1.21 A small single-pass
shell-and-tube two-stream heat

exchanger,typically used for
cooling oil or water. (Photograph
courtesy of the Young Radiator
Company, Racine, Wis.)

Tc increases as it flows through the exchanger. Figure 1.22b shows the sketch for
the oil cooler. The hot stream is oil from the engine, and the cold stream is coolant
water. Notice that in this counterflow configuration, the cold stream can leave the
exchanger at a higher temperature than the hot stream!

A point that might confuse the beginning student is that there are actually two
streams in many single-stream exchangers. The definition simply requires that the
temperature of only one stream changes in a single-stream exchanger. It is this
feature that makes the analysis of single-stream exchangers particularly simple, as
will now be demonstrated. In Section 1.5, the system analysis was based on the

Steam in

Water oe, Water
in out

j= | x=Lx Condensate
out

Te, out

Tein

x

(a)

Water in

i——
—x

Water out

Try. in

Te, out

Ty, out
Toin

x

(b)

Figure 1.22 Temperature variations along heat exchangers.
(a) A power plant condenser. (b) A counterflow oil cooler.
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energy conservation principle in the form ofthefirst law of thermodynamics applied
to a closed system. In contrast, the system analysis that follows is based on the first
law applied to an open system.

1.6.2 Analysis of a Condenser

Figure 1.23a shows a simple single-tube condenser. Pure saturated vapor enters the
shell at the top and condenseson a single horizontal tube. The condensate formsa thin
film on the outside of the tube, drops off the bottom, and leaves the shell through
a drain. The vapor condenses at the saturation temperature corresponding to the
pressurein the shell. Hence, the condensatefilm surface temperature is T,,(P). Figure
1.23b shows the temperature variation across the tube wall and the corresponding
thermal circuit. The enthalpy of condensation is transferred by conduction across the
thin condensate film, by conduction across the tube wall; and by convection into the
coolant. As a result, the coolant temperature rises as it gains energy flowing along
the tube. The vapor flow rate is denoted m, [kg/s] and the coolant flow rate mc
(the hot and cold streams, respectively).

(Vapor)

MaheinControl volume for
exchanger energy balance

 

 
Insulation

EO
io oes a

 

 
 

 

mMcohein —> —> chcoou

 

Mfgout
(Condensate)

(a)

Tc Tat

Reoolant Ryall Reondensate 
Condensate (dD)film

Figure 1.23. (a) Schematic of a single-tube condenser. (b) The temperature variation
across the tube wall and the thermal circuit for heat transfer across the tube wall.
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The Exchanger Energy Balance

An energy balance on the exchanger as a whole is formulated by writing down
the steady-flow energy equation for a control volume enclosing the exchanger(the
dashed line in Fig. 1.23a). If the exchangeris well insulated, there is no heat loss to
the surroundings, and Eq. (1.4) requires that the enthalpy inflow equal the enthalpy
outflow:

Mma hy in + Mche jin = Mahe out + Mche,out

where A is specific enthalpy [J/kg] and subscripts “in” and “out” denote inlet and
outlet values, respectively. Rearranging gives

Mc(he ou — Ac,in) = Mx(Ag,in — Ay, out) (1.51)

If we assume a constant specific heat for the coolant and that the condensate leaves
at the saturation temperature, Eq. (1.51) becomes

MeCyc(Tc ou — Te,in) = Ma hee (1.52)

where hy, is the enthalpy of vaporization for the vapor. When the coolant flow rate
mc and inlet temperature Tcj, are known, Eq. (1.52) relates the coolant outlet
temperature T¢ ou. to the amount of vapor condensed m,,.

Governing Equation and Boundary Condition

To determine the variation of coolant temperature along the exchanger, we make
an energy balance on a differential element of the exchanger Ax long and so derive
a differential equation with x as the independent variable and Tc as the dependent
variable. When the steady-flow energy equation, Eq. (1.4), is applied to the control
volume of length Ax, shown in Fig. 1.24 as a dotted line, the contribution to Q
due to x-direction conduction in the coolant is small and can be neglected. Thus, the

UPAX(Teat - To)Condensate

 

 
 

MoepcTcls McepcTclx+ ax

Figure 1.24 An elemental

control volume Ax long for
application of the steady-flow
energy equation to a condenser
coolant stream.

 SSSG5
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CHAPTER 1 ELEMENTARY HEAT TRANSFER

coolant flow rate times its enthalpy increase must equal the heat transfer across the
tube wall:

Mc Cpc (Telx+ax ~ Te|x) = UPAx (Tat ~ Tc)

where U [W/m* K]is the overall heat transfer coefficient for heat transfer from the
vapor to the coolant, and Y [m] is the perimeter of the tube wall. Thus, Ax is
the surface area of the tube element with length Ax. For a circular tube P = wD
where D is the pipe diameter. Dividing by Ax,

Tels +Ax Te |.Mc Cyc (Feleea— Tel) = UP (Tya — Tc) va

and letting Ax — 0, gives

. aT,

teCpe = UP (Tsat — Tc)
Rearranging,

dT, UP

Tet eg Tt — Te) = 0 (1.53)
x MeCnc

Equation (1.53) is a first-order ordinary differential equation for Tc (x); it requires
one boundary condition, which is

x=0: To =Tein (1.54)

Temperature Variation

To integrate Eq. (1.53), let @ = Tya — Te; then dTc/dx = —d6/dx, and the
equation becomes

dé UP
— +——# =0
dx=MeCpc

If U is assumed constant along the exchanger,the solution is

6 = Ae UPMine cpc)x

whereAis the integration constant. Substituting for @ and using the boundary con-
dition, Eq. (1.54) gives the integration constant:

Tso — Tc,in = Ae? = A

Thus, the solution of Eq. (1.53) is

Tea — To = (Tse — TeindeC7670 (1.55)

which is the desired relation Tc(x), showing an exponential variation along the
exchanger. Of particular interest is the coolant outlet temperature T,C,out Which is
obtained byletting x = L, the length of the exchanger, in Eq. (1.55):

Tat ~ Teout = (Tsat ~ Tc,indeU7Eeepe) (1.56)
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Exchanger Performance Parameters

The product of perimeter and length PL is the area of the heat transfer surface.
The exponent in Eq. (1.56) is, of course, dimensionless,

an _ (Wim? Kyfm}{m] _ | “) -1 [ke/s]/kgK] | J

 

 m cepc

since a watt is a joule per second. This dimensionless groupis called the number
of transfer units, with abbreviation NTU and symbol N,,.’ For a given mcCpc, the
larger U, , or L, the greater the NTU of the exchanger. Thus, the NTU can be
viewed as a measure of the heat transfer “size” of the exchanger. Equation (1.56)
can then be rearranged as

Tea, — Te,ou -N,
aS“Coot Nn 1.57Tsat Tein ° ( )

Thus, if Tsa, Tc,in, and the NTU of the exchanger are known, Tc,our can be calculated.
But we find it convenientto rearrange Eq. (1.57) by subtracting each side from unity
to obtain

Tat — Te,oui -—Neeer
Psat = Tein “

or

T, out — Fi in -
oonOSNe (1.58)
Tat ~ Tein

Now, evenif the exchanger wereinfinitely long, the maximum outlet temperature of
the coolant would be T;(see Fig. 1.224). Thus, the left-hand side of Eq. (1.58)
is the ratio of the actual temperature rise of the coolant (To,ou — Tc.in) divided by
the maximum possible rise for an infinitely long exchanger (Ty, — Tc,in) and can be
viewed as the effectiveness of the exchanger, for which we use the symbol e. Our
result is therefore

e=1-—e Nw (1.59)

Equation (1.59) indicates that the larger the numberoftransfer units of the exchanger,
the higher its effectiveness. Although a high effectiveness is desirable, as the length
of an exchanger increases, so does the cost of materials for its construction and the
pumping powerrequired by the coolant flow. Thus, the goal of the design engineer
is to maximize the effectiveness subject to the constraints of construction (capital)
costs and power(operating) costs. In practice, values of ¢ between 0.6 and 0.9 are
typical.

7 NTUis also widely used as the symbol for numberoftransfer units.
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~ From steam tables, the enthalpy of vaporization at

CHAPTER 1 ELEMENTARY HEAT TRANSFER

 

EXAMPLE 1.8 Performance of a Steam Condenser

A steam condenser is 4 m long and contains 2000, 5/8 inch nominal-size, 18 gage brass tubes
(1.59 cm O.D., 1.25 mm wall thickness). In a test 120 kg/s of coolant water at 300 K is
supplied to the condenser, and when the steam pressure in the shell is 10,540 Pa, condensate
is produced at a rate of 3.02 kg/s. Determine the effectiveness of the exchanger and the
overall heat transfer coefficient. Take the specific heat of the water to be 4174 J/kg K.

Solution

Given: A shell-and-tube steam condenser. a

Required: Theeffectiveness, e, and overall heat transfer coefficient, U.

Assumptions: U is constant along the exchanger so that Eq. (1.59) applies.

my = 3.02 ke/s

The hot-stream temperature 7} is the saturation
temperature corresponding to the given steam pres-
sure of 10,540 Pa; from steam tables (see Table 320 K 7
A.12a in Appendix A of this text) Ty, = 320.0 K. Gout
Wefirst find the coolant water outlet temperature T
from the exchanger energy balance Eq. (1.52):

Mc Cpc (Teout ~ Tein) = My hey 300 K 
Ton = 320 K is hig = 2.389 X 109 J/kg.

(120 kg/s)(4174 Jk&K)(Tcou — 300 K) = (3.02 kg/s)(2.389 x 10° J/kg)

Solving gives Toon = 314.4 K.
The effectiveness, e, is then obtained from Eq. (1.58) as

_ Te.out ~ Tein _ 314.4 a 300= —— = 0.720
Toa = Tein 320 — 300

and the numberof transfer units, from Eg. (1.59), is

1, te UPL
l-e 1 — 0.720 , Mclpc

  

Nw = In

Solving for the UPL product,

UPL = 1.27thclpc = (1.27)(120 kg/s)(4174 J/kg K) = 6.36 x 10° W/K

If we choose to base the overall heat transfer coefficient on the outside of the tubes, then,
for N tubes, the heat transfer area PL is

PL = NaDL = (2000)(2r)(1.59 X 107? m)(4 m) = 400 m”’

UPLUPL = 6.36 X 105/400 = 1590 Win? KHence, U
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Comments

We could have performed these calculations by considering a single tube of the tube
bundle, for which the coolant flow is (120/2000) kg/s and the heat transfer area is simply
mDL, But commonpractice is always to consider the exchanger as a whole, as we have done
here.

1.6.3 Other Single-Stream Exchangers

Simple evaporators and boilers are also single-stream exchangers, where the cold
stream is an evaporating or boiling liquid and the hot stream supplies the enthalpy of
vaporization. Such exchangers will be analyzed in Chapter 8. Heat transfer to a fluid
stream may also be a concern in problemsthat do not involve heat exchangers. The
exhaust gas stack cooled by a crosswind, shown in Fig. 1.25, can also be viewed
as a single-stream heat exchanger, since only the exhaust gas temperature changes
with location up the stack. Thus, the analysis of Section 1.6.2, properly interpreted,
applies (see Exercise 1-52). Single-stream heat exchangertheory also will be used
in Chapters 4 and 5 in the examination of convective heattransfer in internal flows.

Ty, out

 
 

(KT) ——>

Figure 1.25 An exhaust gas
TH.in stack cooled by a crosswind.

DIMENSIONS AND UNITS

Dimensions are physical properties that are measurable—for example, length, time,
mass, and temperature. A system of units is used to give numerical values to dimen-
sions. The system most widely used throughout the world in science and industry
is the International System of units (SI), from the French name Systéme International
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d’Unités. This system was recommendedat the General Conference on Weights and
Measures of the International Academy of Sciences in 1960 and was adopted by the
U.S. National Bureau of Standards in 1964. In the United States, the transition from

the older English system of units to the SI system has been slow and is not complete.
The SI system is used in science education, by engineering professional societies,
and by many industries. However, engineers in some more mature industriesstill
prefer to use English units, and, of course, commerce and trade in the United States
remains dominated by the English system. We buy pounds of vegetables, quarts
of milk, drive miles to work, and say that it is a hot day when the temperature
exceeds 80°F. (Wine is now sold in 750 mlbottles, though, which is a modest step
forward!) .

In this text, we will use the SI system, with which the student has become
familiar from physics courses. For convenience, this system is summarized in the
tables of Appendix B. Base and supplementary units, such as length, time, and plane
angle, are given in Table B.1a; and derived units, such as force and energy, are given
in Table B.1b. Recognized non-SI units (e.g., hour, bar) that are acceptable for use
with the SI system are listed in Table B.1c. Multiples of SI units (e.g., kilo, micro)
are defined in Table B.1d. Accordingly, the property data given in the tables of
Appendix A are in SI units. The student should review this material andis urged to
be careful when writing down units. For example, notice that the unit of temperature
is a kelvin (not Kelvin) and has the symbol K (not °K). Likewise, the unit of power
is the watt (not Watt). The symbolfor a kilogram is kg (not KG). Anissue that often
confuses the studentis the correct use of Celsius temperature. Celsius temperature is
defined as (T — 273.15) where T is in kelvins. However, the unit “degree Celsius”
is equal to the unit “kelvin” (1°C = 1 K).

Notwithstanding the wide acceptance of the SI system of units, there remains a
need to communicate with those engineers (or lawyers!) whoarestill using English
units. Also, component dimensions, or data for physical properties, may be avail-
able only in English or cgs units. For example, most pipes and tubes used in the
United States conform to standard sizes originally specified in English units. A 1
inch nominal-size tube has an outside diameter of 1 in. For convenience, selected

dimensions of U.S. commercial standard pipes and tubes are given in SI units in
Appendix A as Tables A.14a and A.14b, respectively. The engineer must be able
to convert dimensions from one system of units to another. Table B.2 in Appendix
B gives the conversion factors required for most heat transfer applications. The pro-
gram UNITSis based on Table B.2 and contains all the conversion factors in the
table. With the input of a quantity in one system of units, the output is the same
quantity in the alternative units listed in Table B.2. It is recommended that the
student or engineer perform all problem solving using the SI system so as toeffi-
ciently use the Appendix A property data and the computer software. If a problem
is stated in English units, the data should be converted to SI units using UNITS;
if a customer requires results in units other than SI, UNITS will give the required
values.
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1.8 CLOSURE

MM

Chapter 1 had two main objectives:

1. To introduce the three important modesof heattransfer, namely, conduction,
radiation, and convection.

2. To demonstrate how thefirst law of thermodynamics is applied to engineering
systems to obtain the consequences of a heat transfer process.

For each mode of heat transfer, some working equations were developed, which,
though simple, allow heat transfer calculations to be made for a wide variety of
problems. Equations (1.9), (1.18), and (1.20) are probably the most frequently used
equations for thermal design. Anelectric circuit analogy was shown to be a useful
aid for problem solving when more than one mode ofheat transfer is involved. In
applying the first law to engineering systems, both a closed system and an open
system were considered. In thefirst case, the variation of temperature with time was
determined for a solid of high conductivity or a well-stirred fluid. In the second
case, the variation of fluid temperature with position along a heat exchanger tube
was determined.

The student should be familiar with some of the Chapter 1 concepts from previous
physics, thermodynamics, and fluid mechanics courses. A review of texts for such
courses is appropriate at this time. Many new concepts were introduced, however,
which will takealittle time and effort to master. Fortunately, the mathematics in
this chapter is simple, involving only algebra, calculus, and the simplestfirst-order
differential equation, and should present no difficulties to the student. After suc-
cessfully completing a selection of the following exercises, the student will be well
equipped to tackle subsequent chapters.

A feature of this text is an emphasis on real engineering problems as examples
and exercises. Thus, Chapter | has somewhat greater scope and detail than the
introductory chapters found in most similar texts. With the additional material, more
realistic problems can be treated in subsequent chapters. Conduction problems in
Chapters 2 and 3 have morerealistic convection and radiation boundary conditions.
Convective heat transfer coefficients for flow over tube bundles in Chapter 4 are
calculated in the appropriate context of a heat exchanger. Similarly, condensation
heat transfer coefficiénts in Chapter 7 can be discussed in the context of condenser
performance. Throughout the text are exercises that require application of thefirst
law to engineering systems, for it is always the consequences of a heat transfer
process that motivate the engineer’s concern with the subject.

Two computer programs accompany Chapter 1. The program LUMPcalculates tem-
perature response using the lumped thermal capacity model of Section 1.5. When heat
loss is by convection and radiation simultaneously, the problem does not have an ana-
lytical solution. However, a numericalsolutionis easily obtained; LUMP demonstrates
the value of writing a computerprogram in such situations. It is most importantthat the
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engineer be aware of the potential of the PC as an engineering tool and take the
initiative to use the PC when appropriate. The program UNITS is a simple units
conversion tool] that allows unit conversions to be made quickly andreliably.

 

es|=EXERCISES

I-1. Solve the following ordinary differential equations:

. a
() = + By =0x

d
Gi) 2 + By+a=0

dx

2
7 y 2

(iii) 5—Ay

d*y
iv) —— +A’y =0(iv) ax? y

dy 2
(v) pea = 0

where a, B, and A are constants.

1-2. A low-pressure heat exchanger transfers heat between two helium streams, each
with a flow rate of mm = 5 X 1077 kg/s. In a performancetest the cold stream
enters at a pressure of 1000 Pa and a temperature of 50 K, and exits at 730 Pa
and 350 K.

(i) If the flow cross-sectional area for the cold stream is 0.019 m?, calculate
the inlet and outlet velocities.

(ii) If the exchanger can be assumed to be perfectly insulated, determine the
heat transfer in the exchanger. For helium, c, = 5200 J/kg K.

1-3. A shell-and-tube condenser for an ocean thermal energy conversion and fresh
water plant is tested with a water feed rate to the tubes of 4000 kg/s. The water
inlet and outlet conditions are measured to be P; = 129 kPa, T,; = 280 K; and
P, = 108 kPa, T, = 285 K.

(i) Calculate the heat transferred to the water.
(ii) If saturated steam condenses in the shell at 1482 Pa, calculate the steam

condensation rate.

For the feed water, take p = 1000 kg/m’, c, = 4192 J/kg K. (Steam tables are
given as Table A.12a in Appendix A.)

1-4. A pyrex glass vessel has a 5 mm-—thick wall and is protected with a 1 cm—thick
layer of neoprene rubber. If the inner and outer surface temperatures are 40°C

MASIMO 2159

Apple v. Masimo
IPR2022-01299

  



MASIMO 2159 
Apple v. Masimo 

IPR2022-01299

 CHAPTER

3
 

 

MULTIDIMENSIONAL

AND UNSTEADY

CONDUCTION

CONTENTS Nee

3.1 INTRODUCTION

3.2. THE HEAT CONDUCTION EQUATION

3.3. MULTIDIMENSIONAL STEADY CONDUCTION

3.4 UNSTEADY CONDUCTION

3.5 MOVING-BOUNDARY PROBLEMS

3.6 NUMERICAL SOLUTION METHODS

3.7 CLOSURE

MASIMO2188

Apple v. Masimo
IPR2022-01299



MASIMO 2159 
Apple v. Masimo 

IPR2022-01299

  
144

3.1

CHAPTER 3 MULTIDIMENSIONAL AND UNSTEADY CONDUCTION

INTRODUCTION
WM

3.2

The analyses of steady one-dimensional heat conduction in Chapter 2 wererelatively
simple but nevertheless gave results that are widely used by engineers for the design
of thermal systems. In general, however, heat conduction can be unsteady; thatis,
temperatures change with time. An example is heat flow through the cylinder wall
of an automobile engine. Also, heat conduction can be multidimensional; that is,
temperatures vary significantly in more than one coordinate direction. An exampleis
heat loss from a hotoil line buried underneath the ground. Heat conduction can also
be simultaneously unsteady and multidimensional, for example, when a rectangular
block forging is quenched.

In Chapter 2, each new analysis commenced with the application of the first law
to an elemental volume to yield the governing differential equation. In Chapter 3,
our approach will be different. We will derive a partial differential equation that
governs the temperature distribution in a solid under very general conditions; we
will then start each analysis by choosing the form of this equation appropriate to the
problem underconsideration. This general heat conduction equation is derived in
Section 3.2, where boundary and initial conditions as well as solution methods are
discussed. Solution methods are broadly divided into two groups: (1) classical math-
ematical methods, and (2) numerical methods. Classical mathematical methods are
demonstrated in Section 3.3 for multidimensional steady conduction, and in Section
3.4 for unsteady conduction. In particular, the method of separation of variables is
used, which leads to the need to construct Fourier series expansions. Section 3.5
introduces the analysis of a special class of conduction problems, in which there is a
moving boundary —for example, solidification of ice from water. Numerical methods
commonly used to solve the heat conduction equation include the finite-difference
method, the finite-element method, and the boundary-element method. In Section
3.6, use of the finite-difference method is demonstrated for steady two-dimensional
conduction, unsteady one-dimensional conduction, and a moving-boundary problem.

The classical mathematical methods used to solve the heat conduction equation
mightat first appear intimidating to the student. However, these methodsrely on con-
cepts normally studied in freshman- and sophomore-level mathematics courses, such
as partial differentiation, integration, and second-order ordinary differential equa-
tions. Sufficient detail is given in the analyses for the student to proceed step by step
without having to refer to a text on advanced engineering mathematics. Those stu-
dents who havealready hada junior- or senior-level engineering mathematics course
should find the mathematics straightforward (and even perhaps old-fashioned!).

THE HEAT CONDUCTION EQUATION
We

In this section, the energy conservation principle and Fourier’s law of heat conduction
are used to derive various formsofthe differential equation governing the temperature
distribution in a stationary medium. The types of boundary and initial conditions
encountered in practical problems are then discussed and classified. Finally, various
methods available for solving the equation are introduced.
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3.2.1 Fourier’s Law as a Vector Equation

Chapter 2 used one-dimensional forms of Fourier’s law of conduction. In general,
the temperature in a body may vary in all three coordinate directions, which requires
a more general form of Fourier’s law. For simplicity, we will restrict our attention
to isotropic media, for which the conductivity is the same in all directions. Most
materials are isotropic. Exceptions include timber, which has different values of
thermal conductivity k along and perpendicular to the grain, and pyrolytic graphite,
for which the value of k can vary by an order of magnitude in different directions.
For an isotropic medium, Fourier’s law in terms of Cartesian coordinates is

OT oT OT
om ’ qq = ‘SD ’ Qa = ke (3.1)

where q, is the componentofthe heat flux in the x direction, d7/dx is the partial
derivative of T(x, y, z, 1) with respect to x, and so on. As indicated in Fig. 3.1, Eq.
(3.1) can be written more compactly in vector form as

q = -kVT (3.2)

where q is the conduction heat flux vector, and VT is the gradient of the scalar
temperature field. In Cartesian coordinates,

q = ig, + jg + kq,

OT oT oT
im +j— +k—
Ox oy OZ

VT

 
Figure 3.1 Vector representation
of Fourier’s law of heat conduction.

3.2.2 Derivation of the Heat Conduction Equation

The general heat conduction equation will first be derived in a Cartesian coordi-
nate system. Subsequently, the result will be written in cylindrical and spherical
coordinates.oremates MASIMO2159
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Derivation in Cartesian Coordinates

Figure 3.2 depicts an elemental volume Ax by Ay by Az located in a solid. The
energy conservation principle, Eq. (1.2), applied to the elemental volumeas a closed
system gives

oT : .

p(AxAyAz)c—— =Q0+Q, (3.3)

where the time derivative is a partial derivative, since T is also a function of the
spatial coordinates x, y; andz.

The term Q represents heat transfer across the volume boundaries by conduction.
The rate of heat inflow across the face at x is

qx|yAy Az

and the outflow across the face at x + Ax is

dxlrrarAyAz

The net inflow in the x direction is then

(Grlx — Arlx tardy Az

The outflow heat flux can be expanded in a Taylorseries as
g

:as5xoe + Higher-order termsdx lr+ax Axle +

Substituting and dropping the higher-order terms givesthe net inflow in the x direction
as

-py Ar AvAz

Figure 3.2 Three-dimensional
Cartesian elemental volume

OvWAxAyAz in a solid for derivation of
the heat conduction equation.
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Similar terms arise from conduction in the y and z directions. Thus, the net heat
transfer into the volume by conduction is

/ ag, dq ag.{-aA anyaOX oy az]

The rate of generation of thermal energy within the volume Q, is simply
O!"AxAyAz

where ol" [W/m] is the rate of internal or volumetric heat generation introduced inyv

Section 2.3.4. Substituting in Eq. (3.3) and dividing by AxAyAz gives

poe = — (24 4 24 4 94
ot Ox ay OZ

 
+ Qo." 

Introducing Fourier’s law, Eq. (3.1), for g,, gy, and q,,

oT oO oT O oTpe= (A) o [a2tome —|k— Aint 3.4or Ox\ dx dy\dy 0z\ dz Q, (3-4) 
Notice that the thermal conductivity k has been left inside the derivatives since, in
general, k is a function of temperature. However, we usually simplify heat conduction
analysis by taking k to be independent of temperature; k is then also independent of
position, and Eq. (3.4) becomes

oT PT fT S&T
k| —~ + —

ot ax? dy? gz?pe— = + | + QO." (3.5)
Whenthere is no internal heat generation, Qi" = 0, and Eq. (3.5) reduces to

2 5) 2

(2oT er 3.9Ot Ox? dy? @z?

where a = k/pc [m?/s] is a thermophysical property of the material called thé ther-
maldiffusivity. Table 3.1 gives selected values of the thermal diffusivity, Additional
data are given in Appendix A, as are values for k, p, and c, from which a can be
calculated. Equation (3.6) is called Fourier’s equation (or the heat or diffusion equa-
tion) and governs the’temperature distribution T(x, y, z, f) in a solid. The relevance
of the thermal diffusivity can be seen in Fourier’s equation: when there is no internal
heat generation, it is the only physical property that influences temperature changes
in the solid. The thermal diffusivity is the ratio of thermal conductivity to a vol-
umetric heat capacity: the larger a, the faster temperature changes will propagate
through the solid.

For a timewise steady state, d/dt = 0, and Eq. (3.5) reduces to Poisson’s equa-
tion:

OT PT &PT Qi"
ax? + dy? * Oz? k ew
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148 CHAPTER 3 MULTIDIMENSIONAL AND UNSTEADY CONDUCTION

Table 3.1 Selected values of thermal diffusivity at 300 K (~25°C). (Other values may
be calculated from the data given in Appendix A.) 

a

Material m?/s x 10°

Copper 112
Aluminum 84

Brass, 70% Cu, 30% Zn 34.2

Air at 1 atm pressure 22.5
Mild steel 18.8

Mercury 4.43
Stainless steel, 18-8 3.88

Fiberglass (medium density) 1.6
Concrete 0.75

Pyrex glass 0.51
Cork 0.16
Water 0.147

Engine oil, SAE 50 0.086
Neoprene rubber 0.079
White pine, perpendicular to grain 0.071
Refrigerant R-12 0.056
Polyvinylchloride (PVC) 0.051 

Note: This table should be read as a X 10° m/s = Listed value; for example, for copper a = 112 x 1076 m?/s.

Finally, for a steady state and no internal heat generation, d/dt = 0,Q!" = 0, so
2 2 2

Ter eT eT _, as
ax? dy?—dz?

which is Laplace’s equation.The Fourier, Poisson, and Laplace equations are partial differential equations and |
have been thoroughly studied by mathematicians [1,2,3]. They are important because
each is the governing equation for many different physical phenomenain fields
as diverse as heat conduction, mass diffusion, electrostatics, and fluid mechanics.

Solutions of Laplace’s equation are called potential or harmonic functions.

Other Coordinate Systems

The solution of partial differential equations is simpler when boundary conditions
are specified on coordinate surfaces, for example, x = Constant in the Cartesian
coordinate system. Thus, for conduction problems in cylindrical or spherical bod-
ies, the Cartesian coordinate system is inappropriate. Such problems require heat
conduction equations in terms of the cylindrical and spherical coordinate systems
shownin Fig. 3.3. We can proceed in a number of ways. The most direct approach
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Zz
:

T(r, $, 2)

—_
y

xf ¢

T(r, 8,9) 

 
() (b)

Figure 3.3 (a) Cylindrical coordinate system, r, @, z, and an elemental volume.
(b) Spherical coordinate system, r, 6, @, and an elemental volume.

is to repeat our derivation using appropriate volume elements, as shownin Fig. 3.3.
Alternatively, we can transform the equations already derived in Cartesian coordinates
to cylindrical or spherical coordinates; Exercises 3-1, 3-2, and 3—4 illustrate these
procedures. To present the results in compact form, we introduce the del-squared or
Laplacian operator. In Cartesian coordinates,

v= x ae ay a
Ox?—dy?—dz?

and Eq. (3.5) becomes

pe = kVrT+Qi" (3.9)
Writing the heat conduction equation in any coordinate system then simply requires
the proper expression for V?. For cylindrical coordinates r, @, z,

lof oa 1?
v= —}]}+ ——— + — 3.10ror oa read? dz? (3.10)
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For spherical coordinates r, 0, ,

lo 0 | 0 0 ] a
v= —— 27|4gn @ —|4 ——__ —_ 11r2 or 4 “| r?sin@ 00 [sin 5| r2 sin? 0 dd? ous

Two additional useful relations are

1a/ 0 ? 12a
—-—fr—| = —~- + -— (3.12a)
ror\ or or? ror

1 0 0 a 20
—2 {P| 24242 (3.125)
r? or or or? ror

As a final comment regarding the heat conduction equation, it is noted that
Fourier’s law, Eq. (3.2), is a vector equation; thus, the heat conduction equation
is most efficiently derived using the methods of vector calculus. Such a derivation
is required as Exercise 3-3.

3.2.3 Boundary and Initial Conditions

In solving heat conduction problems in Chapters 1 and 2, boundary and initial
conditions were used to evaluate integration constants. We now classify the types of
boundary andinitial conditions required to solve heat conduction problems.

Boundary Conditions

In Chapters 1 and 2, it was shown howpractical heat conduction problems involve
adjacentregions that may be quite different. For example, in Example 2.4, a uranium
oxide nuclear fuel rod is enclosed in a Zircaloy-4 sheath and cooled by flowing water.
Heatis generated within the fuel and flows by conductionto the fuel-sheath interface,
by conduction across the sheath to the sheath-water interface, and by convection into
the water. To analyze such problems,it is necessary to specify thermal conditions
at solid-solid and solid-liquid interfaces. In general, it is required that both the heat
flux and the temperature be continuous across an interface (although when a contact
resistance model is used, as described in Section 2.2.2, the effect is to have a
discontinuity in temperature). Thus, the solutions of the heat conduction equation in
each region are coupled.

When analyzing more difficult heat transfer problems, we often find it conve-
nient to uncouple the regions and consider each region independently. The boundary
condition is then simply one of specified temperature. Considering the coordinate
surface x = L andreferring to Fig. 3.4a,

T\e-1 = T; (3.13)

which is called a first-kind or Dirichlet boundary condition.
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@) (e)

Figure 3.4 Types of boundary conditions. (a) First kind, or Dirichlet. (b) Second kind,
or Neumann. (c) Third kind, or mixed. (d) Fourth kind, or radiation. (e) Phase change.

Sometimes it is convenient to apply a boundary condition at a surface where the
heat flux is known. Referring to Fig. 3.45,

2 = 4s (3.14)
Ox x=L

which is called a second-kind or Neumann boundary condition. Often the known
heat flux is zero, such as at a plane of symmetry, or approximately zero, such as
when the adjoining region is a good insulator.

Another commonly encountered situation is one in which the adjacent region is
a fluid and we wish to describe heat transfer to the fluid using Newton’s law of
cooling. Referring to Fig. 3.4c,

OT
—k— =h, (Tle=1 — Te) (3.15)

Ox x=L
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whichis the third-kind or mixed boundary condition. Notice that Eq. (3.15) involves
both the value of the dependent variable and that of its derivative at the boundary.
Similarly, if there is heat loss by thermal radiation into adjacent surroundings (see
Fig. 3.4d), using Eq. (1.17),

oT
—k— = oF {T\_, —T* 3.1ax|._, oF (T\t_, —T: (3.16)

whichis a fourth-kind or radiation boundary condition.'(Note, however, that some
texts refer to the third-kind boundary condition as a radiation boundary condition, a
practice with historical precedent but preferably avoided.)

There are other, more complex boundary conditions encountered in practice. The
contact resistance described in Section 2.2.2 is one example. Another exampleis
when there is a change of phase at the interface, such as ice melting or steam
condensing. Figure 3.4e¢ represents the surface of a block of ice melting in warm
water. The s- and u-surfaces are oneither side andinfinitesimally close to the actual
water-ice interface. Thus, the s-surface is in water, and the u-surfaceis in solid ice.
Only the temperature is the sameat the s- and u-surfaces; in general, the physical
properties and temperature gradients are different. If the ice is melting at a rate per
unit area rn" [kg/m* s] and the interface is imagined to be fixed in space, then ice
flows toward the interface, and water flows away at the melting rate. Application
of the steady-flow energy equation to the control volume bounded by the u- and
S-surfaces gives

oToT
n''(h, — hy) = —k—| —|-k—ae ) Ox |, Ox  | (3.17)

for m" positive. Equation (3.17) can be rearranged as

_ aT
+ mm" hy. (3.18)Ox  i

where hy, = h, — h, is the enthalpy of fusion of the ice. Equation (3.18) can be
interpreted as stating that the heat conducted from the warm water to the interface
must balance both the heat conducted away from the interface into the cold ice and
the heat required to melt the ice.

Initial Conditions

Transient heat conduction problems usually require specification of an initial con-
dition, which simply means that the temperature throughout the region must be
known at some instant in time before its subsequent variation with time can be

' This simple form is strictly valid only when the surroundings are isothermal and have a uniform emittance. More
general situations are treated in Chapter6.
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determined. An exception is when the temperature varies periodically, for example,
conduction in a spacecraft orbiting the earth. Then a periodic condition must be
imposed on the solution.

3.2.4 Solution Methods

During the 19th century, considerable progress was made in developing mathemati-
cal methods for solving the various forms of the heat conduction equation. Thefirst
major contribution was by J. Fourier. His book, published in 1822 [4], developed
the use of the method of separation of variables, which leads to the need to ex-
press an arbitrary function in a Fourier series expansion. Subsequently, transform
methods—particularly the use of the Laplace transform—as well as other methods of
classical mathematics were widely used. Thetreatise on heat conduction by Carslaw
and Jaeger [5] contains an extensive compilation of solutions obtained usingclassical
mathematical methods. Use of these methods usually requires that (1) the bounding
surfaces be ofrelatively simple shape, (2) the boundary conditions be of simple math-
ematical form, and (3) the thermophysical properties be constant. Notwithstanding
these limitations, many analytical results have wide engineering utility. Analytical
solutions are useful benchmarks for checking the accuracy of numerical methods of
solution. Also, the exercise of obtaining an analytical solution gives valuable insight
into the essential features of heat transfer by conduction.

Morerecently, numerical methods, including finite-difference and finite-element
methods, have been developedthat allow solutions to be easily obtained for problems
involving unusual shapes, complicated boundary conditions, and variable thermo-
physical properties. An early example wasthe application of the numerical relaxation
method to steady heat conduction by H. Emmons in 1943 [6]. However, with the
advent of the modern high-speed computer in the 1960s, numerical methods have
been greatly improved. The wide availability of the personal computerin the 1980s
hasled to the marketing of versatile computer programs. These can be used to solve a
great variety of heat conduction problems without requiring the user to have detailed
knowledge of the numerical methods involved.

Some other methods have been used to obtain solutions to heat conduction prob-
lems. Two graphical methods, the flux plotting method and the Schmidt plot, are
described in some heat transfer texts. Thefirst is used for steady two-dimensional
conduction and involves the free-hand sketching of isotherms andlines of heat flow;
the latter is used for transient conduction and is the graphical equivalent to a finite-
difference numerical method. A number of analog methods have also been used.
Since Laplace’s equation also governs electrical potential fields, two-dimensional
steady conduction problems have been solved by making voltage and current mea-
surements in appropriate shapes cut out of graphite-coated paper of high electrical
resistance [7]. Before digital computers were developed, the analog computer or
“differential analyzer” was used to solve heat conduction problems [8].

Methods of mathematical analysis are demonstrated in Sections 3.3 through 3.5,
and finite-difference methods are dealt with in Section 3.6.
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3.3. MULTIDIMENSIONAL STEADY CONDUCTION

One-dimensional steady conduction was dealt with in Chapter 2. Although the sim-
ple analytical results obtained are very useful, they have obvious limitations. Often
the heat flow is multidimensional, that is, in two or three directions. For example,
consider the furnace shownin Fig. 3.5. If the insulation is thin compared to the
furnace dimensions, the assumption of one-dimensional heat flow is adequate (see
Example 1.1). High-temperature furnaces, however, require thick insulation to re-
duce heat loss; in these furnaces, the heat flow through the edges is two-dimensional,
and through the cornersit is three-dimensional. Multidimensional steady conduction
with no internal heat generation is governed by Laplace’s equation. The classical ap-
proach to solving Laplace’s equationis the separation ofvariables method: Section
3.3.1 uses a simple two-dimensional problem to demonstrate this approach. Often
we are concerned with conduction between two isothermal surfaces, all other sur-
faces present being adiabatic. A conduction shape factor can be defined for such
configurations, and a compilation of useful shape factors is given in Section 3.3.3.

 
Figure 3.5 An insulated furnace.

3.3.1 Steady Conduction in a Rectangular Plate

The relatively simple problem of two-dimensional steady heat conduction in a rec-
tangular plate will be used to demonstrate the method of separation of variables for
solving Laplace’s equation.

The Governing Equation and Boundary Conditions

Figure 3.6 depicts a thin rectangular plate with negligible heat loss from its
surface. Temperature variations across the plate in the z direction are assumed to
be zero (6*7'/dz?_ = 0), and the thermal conductivity is assumed to be constant.
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Figure 3.6 Boundary conditions for
two-dimensional steady conduction
in a rectangular plate.

 
The temperature distribution T(x, y) is then governed by the two-dimensional form
of Laplace’s equation:

eT FT _
Ox? dy? — (3.19)

 

To demonstrate the method of solution, we will first consider a model problem
and later demonstrate how our solution can also be used to construct solutions for

practical situations. Thus, we choose the boundary conditions shown in Fig. 3.6,
namely,

x=0, O<y<b: T=0

y=0, O<x<a: T=0 (3.20a)

x=a, O<y<b: T=0

y=b, O<x<a: T=T, (3.205)

The zero values for the boundary conditions, Eqs. (3.20a), will simplify the problem
withoutloss of generality. Such boundary conditions are homogeneous. In general, a
differential equation or boundary condition is said to be homogeneousif a constant
times a solution is also a solution, that is, if T, is a solution, CT; is also a solution.
The boundary condition Eq. (3.20b) looks simple, but we shall see that it actually
makes solution of the problem quite difficult.

Solution for the Temperature Distribution

To use the method of separation of variables, we first assume that the function
T(x, y) can be expressed as the product of a function of x only, X(x), and a function
of y only, Y(y):

T(x, y) = X(x)Y(y) (3.21)

Substitution in Eq. (3.19) gives

a°*x ad’y

Y Ax +X dy?
where total derivatives have replaced the partial derivatives, since X is a function
of independentvariable x only, and Y is a function of independentvariable y only.
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Rearranging,

1 d?X 1 d’Y
sa Si 3.22X dx? Y dy? (3.22)

Since each side of Eq. (3.22) is a function of a single independent variable, the
equality can hold only if both sides are equal to a constant, which can be positive,
negative, or zero. Using hindsight, the constant will be chosen to be a positive num-
ber A”. The reason for this choice will be discussed later. Two ordinary differential
equations are thus obtained,

a +x =0 oxy =0
which have the solutions

X =BcosAx + C sin Ax Y = De" + Ee”

Substituting in Eq: (3.21) gives a tentative solution for T(x, y):

T(x, y) = (B cos Ax +C sin Ax)(De *” + Ee”’) (3.23)

Applying boundary conditions Eqs. (3.20a) and taking care to ensure that the x- and
y-dependences remain,

x=0: B(De”+Ee’%)=0;  thus,B = 0

y=0: CsnAx(D+E£) = 0; thus,E = —D

x =a: CD sin rAa(e~*”— e*”) = —2CDsin Aa sinh Ay = 0

This requires that sin Aa =0, which has the roots A, =n7/a, forn =0, 1, 2, 3,....
These values of A are called the eigenvalues or characteristic values of the problem.
There is a distinct solution for each eigenvalue, each with its own constant. Writing
the constant —2CD for the nth solution as A,,

T, (x,y) = A, sin sinh; on = 0,1,2,3,... (3.24)a a

Equation (3.19) is a linear differential equation, so its general solution is a sum of
the series of solutions given by Eq. (3.24):

BTsinh (3.25)a

 

T(x, y) = > An sin
n=1 a

where the solution for n = 0 has been deleted since sinhO = 0. We now apply the
last boundary condition, Eq. (3.20b), which requires that at y = b,

nib 
co

_ nwKx .

T\y-) =T; = > A, sin —— sinhan=]
(3.26)a

that is, the constant 7, must be expressed in terms of an infinite series of sine
functions, or a Fourier series.
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Construction of a Fourier Series Expansion

In general, the temperature distribution along the boundary y = b will be some
arbitrary function f(x), and the required expansion is then

= nWXx nwb
= C,, sin —; Cyr = An sinh — 3.27f(x) a sin — sinh — (3.27)

The constants C,, are determined as follows. Multiply Eq. (3.27) by sinnax/a, and
integrate term by term from x = 0 to x = a:

AW a
a

Xx WX . AWK
dx = C, sin — sin —dx +°--+

a 0 a a 0
C,, sin’ (=) dxa

 

[ F(x) sin0

WOdx fon (3.28)
 

sin
 7 . marxtoot | C,, sin0 a

Using standard integral tables, wefind:

|| nmx | marxsin sin dx =
0 a a

=O forn #m

| sin (“* \ax —0 a 2%

Thus, only the nth term on the right-hand side of Eq. (3.28) remains, and solving
for C, gives

a

sin(narx/a — max/a) _ sin(nax/a + mix/a)  

  2(ntr/a — ma/a) 24nn/a+mm/a) |o

nwx 1. 2nax)*i , _: a
a 2 ajo 2

    

c,=2 | F(x) sin ax (3.29)a Jo a

The set of sine functions sin wx/a, sin 27x/a,..., sinnax/a,...is said to be
orthogonal over the interval 0 = x = a, because the integral of sin max/a sin
niax/a is zero if m # n. As shown in texts on applied mathematics [2,3], if
the function f(x) is piecewise continuous, it can always be expressed in terms of
a uniformly converging series of orthogonal functions. The cosine function is also
orthogonal over an appropriate interval, as are many otherfunctions, including Bessel
functions and Legendre polynomials.

Temperature Distribution for f(x) = T,

For the function f (x) equal to a constant value T,, the integral in Eq. (3.29) can
be evaluated analytically:

a
2

C,=-—a
T,a nNWX 2

= T;— [1 - (-1)"]nT  nT 0
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and from Eq. (3.27),

AL = ©)"C5 T fl —(-1)")]
sinh(nab/a) — narsinh(nab/a)

Substituting into Eq. (3.25) gives the desired temperature distribution for steady
conduction in a rectangular plate:

foe}

2[1-—(-1)"] . nax ..ntry
T(x,y)= Ts > = h —— .(~y) nar sinh (narb/a) sn a sn a (3.30)

 

n=l

Lines of constant temperature, or isotherms, are shown in Fig. 3.7. The tempera-
ture discontinuities at the top corners are physically unrealistic since an infinite heat
flow is implied. In fact, the heat flow across the plate edge at y = b, evaluated
from Eq. (3.30) using Fourier’s law, is infinite. Thus, the isothermsin the vicinity of
these corners correspond to a mathematical problem only; in real physical problems,
there might be a very marked variation in temperature along the edges near these
corners, but there cannot be an actual discontinuity.

Since the variables in the partial differential equation, Eq. (3.19), did separate,
and because a solution could be foundto satisfy the boundary conditions, the method
of solution has been successful. If a negative constant is chosen for Eq. (3.22), the
boundary conditions cannotbesatisfied. Use of a negative constant just reverses the
roles of the independent variables x and y, and the negative constant is appropriate
if the temperature T, is specified on the edge x = a.

| Figure 3.7 Isotherms for conduction
in a rectangular plate obtained from

0 12 3 4 5 6 7 8 9 10 x Eq. (3.30); a = b = 10, T, = 100.

 
Generalization Using the Principle of Superposition

Laplace’s equation is a linear differential equation. A useful consequence of this
property is that the solution of a problem with complicated boundary conditions can
be constructed by adding solutions for problems having simpler boundary conditions.
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To illustrate the procedure, consider a problem wherethe plate temperature is spec-
ified along two edges.If the boundary conditions Eqs. (3.20) are replaced by those
shownin Fig. 3.8,

=0, 0<y<b: T=0

=0, O<x<a: T=0

=a, O<y<b: T= fii)

y=b, O0<x<a: T= fo(x)

SeSf
the superposition principle can be usedas follows. Let T(x, y) = T(x, y)+To(x, y),
where 7; and 7; satisfy

PT, PT PT,—OPT.
—l,5*l_9 aea
ax?—dy? Ox?—dy?

x=0,y =0,y=5b:T, =0 x=0,y =0,x% =a:T, =0

x= a:T, = fily) y = b:T, = frlx)

Addition of the equations and boundary conditions shows that T = T, + T> satisfies
the original problem. Clearly, this approach can be extended to a problem where the
temperature is specified on three or all four sides.

Figure 3.8 Rectangular plate with
nonhomogeneous boundary conditions
specified on two edges.

 
 

EXAMPLE3.1 Heat Flow across a Neoprene Rubber Pad

A long neoprene rubber pad of width a = 2 cm and height b = 4 cm is a component of
a spacecraft structure. Its sides and bottom are bonded to a metal channel at temperature
T, = 20°C, and the temperature distribution along the top can be approximated as a simple
sine curve, T = T, + T,, sin(wx/a), where T,, = 80 K. Determine the heat flow across the
pad per meter length.

Solution

Given: Long rubber pad with a rectangular cross section.

Required: Heat flow across pad for given boundary conditions.

Assumptions: Two-dimensional, steady conduction.
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100

T=20+ 80 sin (x/a)°C

y Aa
x

f By
b

| 20
a xka-| ; }

Conservation of energy requires that at steady state, the heat flow across the top surface equal
the heat flow out across the sides and bottom; thus,

. a a oT

Q =| qyly=» ax -| -k—| dx0 0 oy

The sides and bottom of the pad can be taken to have a temperature of 20°C. Thus, T is the
solution of Laplace’s equation that satisfies the boundary conditions

 y=b

x=0,x =a,y=0: T=T,

y=b: T = T. +T,sin—
Let T; = T — T,; then 7; satisfies the boundary conditions

x=0,x=a,y=0: T, =0

y=b: T; = Tp, sin
Equation (3,25) satisfies the homogeneous boundary conditions. Applying the boundary con-
dition at y = b gives

IX ° NT nwb
Ti\y=5 = Ti, Sin — = A, sin —— sinh ——ily b m a >, n a a

which can besatisfied if

Tn .
sinh (arb/a)’.

A; = Ag = Az = °°: =0

That is, only the first term of the infinite series is required. Hence,

T -T, = T, = Ty sin Sinha)
a sinh(ab/a)

oT __. (ala) sin(mx/a)
a |,-, " ‘tanh(arbla)
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: ‘ oT
a —k—on |S = Tink (cos 7 — cos 0) = — 2Tnk

tanh(ab/a) ~ tanh(b/a) 
For T,, = 80 K, k = 0.19 W/m K (Table A.2), and b/a = 2.0, the heat flow is

(2)(80)0.19) 30.4
tanh2r 1.0000 Wm

 
Q=

Comments

Notice that in the limit of large b/a, tanh mb/a — 1 and Q is independent of b/a; even
for a square pad, b/a = 1, tanh 7 = 0.996. In the opposite limit of b/a — 0, we can use
the expansion tanh x = x — x°/3 + ++: to obtain

_2Tnka__ (2)(80)(0.19)(0.02)ian, — F831 W/
mb (77)(0.04) a

whichis the result for one-dimensional heat flow across a thin wall. For a 1 m length of pad,

. a ak _ xQ= i gdx = -| 5 (Te + Tnsin = ~ 7, )dx
kT,, [°

= =| on i, we eeb do a ab

which agrees with the result obtained above.

3.3.2 Steady Conduction in a Rectangular Block

Consider a rectangular block with boundary conditions, which cause the temperature
to vary in all three coordinate directions, x, y, and z. For an assumed constant
thermal conductivity, the temperature distribution T(x, y, z) is governed by the three-
dimensional form of Laplace’s equation:

PT PT &T

0x2 dy? z?

 

= 0 (3.31)

Again the method of separation of variables can be used and T(x, y, z) taken to have
the form

T(x, y,Z) = X(x)Y(Q)Z(z)

The analysis proceeds as for the rectangular plate in Section 3.3.1, but the mathe-
matics is very cumbersome, even for the simplest of boundary conditions. In prac-
tice, one cannot expect a simple behavior of the boundary conditions over a three-
dimensional object, and the numerical methods of solution described in Section 3.6
are more appropriate than analytical methods.
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162 CHAPTER 3 MULTIDIMENSIONAL AND UNSTEADY CONDUCTION

Table 3.2 Shape factors for steady-state conduction for use in Eq. (3.32), OQ = kSAT; AT = T,-T.
(See also the bibliography for Chapter 3.) 

Configuration

1. Plane wall

qT ;
Area A

L

2. Concentric cylinders

 

Shape Factor

SL>

 

2aL——————_L_

In(r2/r))

Note there is no steady-state solution for
ry — ©, i.e., for a cylinder in an infinite
medium.

 

  
L> rz

~ 4a
3.C tri here:——ttoncentric spheres (a) ir = Wns

aeif) (b) 4ar, for r, > @
2aL

4. Eccentric cylinders im

i (2 +r? - “|cosh™!|—__1_——
2rire

L => rr

2nL a
aaronnape— > 1.40.93In@/by 0.0502 1H!

2aL a
——__—_ for — < 1.4
0.785In(alb)

L>a

Zab a>2r
In(0.54a/r)
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Table 3.2 (Concluded)
 

Configuration Shape Factor

; 4ar,

7. Buried sphere i= 1,/th
T;

aees For h — ©, the result for item 3(b) is
orey recovered

Medium atinfinity also at T, 

2aL

cosh’ '(h/r,)

2aL

In(2h/r\)

8. Buried cylinder

for h > 3r, 
For h/r, > ©, 5S — 0 since steady flow
is impossible
 

    

 

 

Medium atinfinity also at T> L>pr,

h -0.59 h —0.0789. Buried rectangular beam 2.756L| Inj 1 + — (|a

LP

at >ici+a

Medium atinfinity also at T, L>>h,a,b

10. The edge of adjoining walls 0.54W for W > L/S

Te (W is the inner edge)

a
rT Wey

11. The corner of three adjoining walls 0.1SZ for W > L/S

 
12. Disk area on the adiabatic surface of a semi-infinite solid 4r

exe
“<P

Medium atinfinity at T, 
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3.3.3 Conduction Shape Factors

Many multidimensional conduction problems involve heat flow between two sur-
faces, each of uniform temperature, with any other surfaces present being adiabatic.
The conduction shape factor, S, is defined such that the heat flow between the
surfaces, O, is

QO = kSAT (3.32)

where k is the thermal conductivity and AT is the difference in surface temperatures;
S is seen to have the dimensions of length. The results we have already obtained for
one-dimensional conduction can also be expressed in terms of the shape factor. For
example, a plane slab of area A and thickness L has S = A/L from Eq. (1.9). Table
3.2 lists shape factors for various configurations.

Some points to note when using Table 3.2 are:

1. There is no internal heat generation: Q'"” = 0.

2. The thermal conductivity, k, is constant.

3. The two surfaces should be isothermal. If these temperatures are not prescribed,
but are intermediate temperatures in a series thermal circuit, the isothermal con-
dition may not be satisfied. The surfaces will generally be isothermal when the
component in question has the dominant thermal resistance. Example 3.3 illus-
trates this point.

4. Special care must be taken with the configurations involving an infinite medium.
For example, in item 7, not only the plane surface but also the medium at in-
finity must be at temperature 7>.

5. Item 8 is often used incorrectly for calculating heat loss or gain from buried
pipelines. It is essential that the deep soil be at the same temperature as the
surface, which is a condition seldém metin reality. Also, the buried pipeline
problem often involves transient conduction.

6. The shape factors given in items 10 and 11 were developed by the physicist I.
Langmuir and coworkers in 1913 for calculating the heat loss from furnaces.
Example 3.2 illustrates their use.

 

EXAMPLE3.2 Heat Loss from a Laboratory Furnate

A small laboratory furnace is in the form of a cube and is insulated with a 10 cm layer of
fiberglass insulation, with an inside edge 30 cm long. If the only significant resistance to
heat flow across the furnace wall is this insulation, determine the power required for steady
operation at a temperature of 600 K whenthe outer casing temperature is 350 K. The thermal
conductivity of the fiberglass insulation at the mean temperature of 475 K is approximately
0.11 W/m K.
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Solution

Given: Insulated laboratory furnace.

Required: Power required for operation at 600 K.

Assumptions: 1. Steady state.
2. The outer convective resistance is

negligible.
T)=350 K

The shape factors given as items 1, 10, and 11 of
Table 3.2 should be used, assuming independent par-
allel paths for heat flow throughthe 6 sides, 12 edges,
and 8 corners of the enclosure. Thus, if L is the
insulation thickness and W the inside edge,

 
Q=kATS

k(T, — T2)[6W7/L + (12)(0.54)W + (8)(0.15)L]

(0.11)(600 — 350){(6)(0.3)°/(0.1) + (12)(0.54)(0.3) + (8)(0.15)(0.1)]

= (0.11)(250)[5.40 + 1.94 + 0.12]

= 205 W

i

Comments

If an effective area for heat flow A. is defined by the equation for one-dimensional heat
flow,

» _ kAa(T; — Tr)
g= L

then Ag = 6W? + (12)(0.54)WL + (8)(0.15)L? = 0.746 m2. Notice that Agr is significantly
less than either the arithmetic average of the inner and outer areas, 1.02 m2, or the value
midway through the wall, 0.96 m2.

a

EXAMPLE3.3 Heat Loss from a Buried Oil Line
An oil pipeline has an outside diameter of 30 cm and is buried with its centerline 1 m below
ground level in damp soil. The line is 5000 m long, and the oil flows at 2.5 kg/s. If the
inlet temperature of the oil is 120°C and the groundlevel soil is at 23°C, estimate the oil
outlet temperature andthe heatloss (i) for an uninsulated pipe, and(ii) if the pipe is insulated
with a 15 cm layer of insulation with conductivity k = 0.03 W/m K. Takethe soil thermal
conductivity as 1.5 W/m K andtheoil specific heat as 2000 J/kg K.

Solution

Given: Buriedoil pipeline.

Required: Oil outlet temperature and heat loss if (i) uninsulated, (ii) insulated.
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Assumptions: 1. Steady state.
2. Deep ground temperature same as surface temperature.
3. Negligible resistance of the pipe wall and for convection from theoil.
4. Isothermal surface exposed to soil.

(i) Equation (3.32), QO = kS AT, can be used for the heat loss, with 23°C

the shape factor obtained from Table 3.2, item 8: Te J
h 1.0
— = — = 6.67 >3 i]

rn 0.15 - ) {Hence, 7 A-
9 = 30

Sa 2aL _ (2ar)(S000) = 12,130 m cm
In(2h/r)) In(2 * 1/0.15)

The temperature difference between the oil and the ground surface AT decreases continu-
ously in the flow direction, so how do we use Eq. (3.32)? We recognize that this problem
is similar to the single-stream heat exchanger analyzed in Section 1.6 because the ground
temperature is constant along the pipeline. We could eas-
ily perform an analysis similar to that of Section 1.6.2;
however, with a little thought, we can simply reinter-
pret the results of Section 1.6.2 for the problem at hand.
Equation (1.59), for the effectiveness, is  e=1l—-e%

where now

Actual temperature change Tin — TouEé ia"= SESE
Maximum possible temperature change Tin — T;

To specify the numberoftransfer units, N,, = UPL/ic,, recall that the heat transfer for
an element of exchanger Ax long was

AQ = UPAxAT

while for the pipeline it is

27Ax

AQ =kASAT;=AS = Tay
 

Thus, U#Ax can be replaced by KAS, or UPL by ks:  
x : ' 2UPL — kS _ (1.5)(12,130) = 3.64 AQ =UPAXATNu = = : ~

‘ Cp mMCp (2.5)(2000) =KkAS AT

 

e=1-—e%% = 0.974

Tox = Tin — (Tin — T;) = 120 — 0.974(120 — 23) = 25.5°C

The heat loss is equal to the enthalpy given up bytheoil,

Q= mMCp(Tin — Tour) = (2.5)(2000)(120 — 25.5) = 472 kW
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(ii) This problem cannot be solved exactly using the shape factor concept, since, when the
insulation is added to the pipe, the outer surface of the insulation will not be isothermal.
However, to get some idea of the effect of the insulation, we will assume an isothermal
surface. Then for two resistances in series, -

1 _ In(rs/r,) 1
UPL kink Keon

In(r/r,) _  In(0.30/0.15)
Qakinsl  (227)(0.03)(5000)

  

= 7.35 X 10-4 (W/K)!
 

1.0

- = 03 = 3.33 > 3; hence
2a _ (27)(S000) 

= = eee = 16,560In(Qh/rs)  In(2 X 1/0.3) m
l

= —______ = 0.403 x 10°* (W/K)'koiS  (1.5)(16, 560) (W/K)
 

= (7.35 + 0.40)1074; UPL = 1290 WK
 

UPL

1290
" “~ (2.5)(2000)

Tou = 120 — 0.227(120 — 23) = 98.0°C

Q = (2.5)(2000)(120 — 98.0) = 110 kW

= 0.258; e = 1—¢°*8 = 0,227

Comments

Thepipeline is located on a tropical island where the annual ground temperature variation
is relatively small, so a steady-state analysis is reasonably valid. Problems concerning the
freezing of buried waterpipes often require a transient analysis because of ground temperature
variations (see Exercise 3-39).

3.4 UNSTEADY CONDUCTION

ee
In unsteadyor transient conduction, temperature is a function of both time and spatial
coordinates. In the absenceofinternal heat generation, the temperature responseof a
body is governed by Fourier’s equation. Again the methodof separation of variables
is useful, and examplesof its use are given in Sections 3.4.1 and 3.4.3. The method,
however, fails under certain circumstances — for example, when the medium extends
to infinity. Then possible methods include the use of Laplace transforms or a simi-
larity transformation of the partial differential equation into an ordinary differential
equation. The latter method is demonstrated in Section 3.4.2. Analytical results of
unsteady conduction tend to be complicated and awkward to use. Thus, where possi-
ble, approximate solutions of adequate accuracy will be indicated. Often the results
are conveniently presented in graphical form for rapid engineering calculations.
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3.4.1 The Slab with Negligible Surface Resistance

Figure 3.9 showsa slab 2L thick.It is initially at a uniform temperature 7, and at
time ¢ = 0 the surfaces at x = +L and x = —L are suddenly lowered to temper-
ature T,. Such a situation is encountered in practice when a poorly conducting slab
is suddenly immersed in a liquid for which the convective heat transfer coefficient
is very large, that is, under conditions where the convective resistance to heat trans-
fer is negligible. Note that this situation is the opposite limit to that considered in
Section 1.5, for which the lumped thermal capacity model was applicable. In that
case, the Biot number Bi = A,L/k had to be small; for this case, the Biot number
must be large. In addition to its practicalutility, the solution of this problem allows
a simple demonstration of some important features of transient conduction.

The Governing Equation and Conditions

With no internal heat generation and an assumed constant thermal conductivity,
Fourier’s equation, Eq. (3.6), applies. Since the temperature does not vary in the y
and z directions,

oT PTSSS a
ot Ox?

(3.33)

which is the governing differential equation for T(x, t) and must be solved subject
to the initial condition

£=0: T=T) (3.34a)

The symmetry of the problem allows the differential equation to be solved in the
region 0 = x < L, for which the appropriate boundary conditions are

oT
x=0: —=0 (3.345)

Ox

x=L: T=T, (3.34c)

Equation (3.345) follows from the symmetry of the temperature profile about the
plane x = 0, or equivalently, from the condition that there can be no heat flow
across this plane.

Figure 3.9 Coordinate system for the analysis
of unsteady conduction in an infinite slab.
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Dimensional Analysis

Before an attempt is made to solve Eq. (3.33), it is helpful to perform a di-
mensional analysis. We begin by constructing suitable dimensionless independent
and dependent variables. Suitable choices for x and T are n = x/L and @ =
(T — T.)\MT) — T,), since n and @ will both vary betweenzero and unity. However,
there is no obvious time scale for the problem that can be used to make ¢ dimen-
sionless, so we will let the differential equation itself indicate an appropriate choice.
Transforming Eq. (3.33) with

x = Ly; dx =Ldyn

T = (%) — T,)0 + T,; dT = (To — T,)d0

gives

00=a(Ty —T,) 0
(To — T;)— =a

Ot L- ane
or

00 0
HAat/L?) dr?

Thus, we choose ¢ = t/(L*/a) as dimensionless time, and theresult is
06 30

4 = i? (3.35)
Theinitial and boundary conditions transform into

£=0: =1 (3.364)

n = 0: < =0 (3.36b)
n=l: @6=0 (3.36c)

There are no parametersin the transformed statementof the problem,so the solution is
simply 6(f, 7). The dimensionless time variable ¢ is also commonly called the Fourier
number, Fo = at/L?. Notice that the Fourier number can also be written as Fo = t/tes
t, = L*/a is a characteristic time (time constant) for this conduction problem. The
behaviorof the solution will depend onthe value off relative to t,, that is, on whether
Fo is much smaller than unity, of order unity, or much larger than unity. The relation
9 = O(¢, 7) is a statementofthe similarity principle for this problem, a conceptintro-
duced in Section 2.4.5. We now knowthat the solution for the dimensionless temper-
ature 8 will be a function of dimensionless time ¢ and dimensionless position 7 only.

Solution for the Temperature Response

Asin Section 3.3.1, for steady conduction in a rectangular plate, the method of
separation of variables will be used to solve the partial differential equation. We
assumethat the function @(¢, 7) can be expressed as the product of a function of ¢
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only, Z(£), arid a function of y only, H (7):

 

Ag, 0) = Z(¢)H(m) (3.37)

Substitution in Eq. (3.35) yields
2

dé dn?

where total derivatives have replaced partial derivatives, since Z is a function of
independent variable ¢ only, and H is a function of independent variable 7 only.
Rearranging gives

1dZ  1a°H
Zdfé H dy

x

(3.38)
 

Since each side of Eq. (3.38) is a function of a single independent variable, the
equality can hold only if both sides are equal to a constant. To satisfy the boundary
conditions, this constant must be a negative number, which will be written —A’.
Twoordinary differential equations are obtained:

dZ d?H

dé dx

which have the solutions

Z=Cye*! H =Cy cos An + C3 sin An

+H =0
 

Hence,

0,9) = eA cos An + B sin An)

where A = C)Cy and B = C,C3. Applying boundary condition Eq. (3.365),

00
— = e *S(—AX sin An + BA cos AN),=0 = O
on n=0

which requires that B = 0. Next, applying boundary condition Eq. (3.36c) gives

6|,=1 = Ae*cos An|,~1 = 0

which requires that cosA = 0, or A, = (n + 1/2)a7,n = 0,1,2,3,.... The A, are
the eigenvalues for this problem, and the solution corresponding to the nth eigenvalue
may be written as

6n,(f, n) _ A,etarms bod
1

n+ 3 TN (3.39)  
The general solution to Eq. (3.35) is the sum of the series of solutions given by Eq.
(3.39):

A(6,m) = >Ape17"cos
n=0  e 5i (3.40)
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The constants A, are determined from the initial condition, Eq. (3.36a):
= 1

O\r=0 = A, cos[(u + —|an = 1a0=DvAncos[n+3) rn
That is, a constant must be expressed in termsofaninfinite series of cosine functions,
which again is a Fourier series expansion. More generally, Ale-0 = f (nm) is an
arbitrary function of 4, and the required expansion is then

f(m) = 24 cos|n + ha (3.41)
Determination of the constants A, follows the procedure demonstrated in Section
3.3.1. The result is

andn (3.42)

~ 7? folia —~ tial\" 2)", ~ Ge de
Substituting in Eq. (3.40) gives the solution for the temperature distribution,

1

An = 2| Fln)oos|n 4: 2  
Por f(m) = 1, An  

 

=. 2-1)" 2g? 1
@ , _ —_ (nt 1/2)°97' +H 3.4(¢, 7) > +VDe cos|n+5) an (3.43)

or, in terms of temperature T(x, t), Fourier number Fo = at/L, and x/L,

T -T, =. 2(-1)" ~(n+ 1/29? R 1\ x
= — en ae + =|r~— 44Ty-T, aint iyn° CONE OT, (6.44)

whichis plotted in Fig. 3.10.

 

  
Figure 3.10 Temperature response in a slab with
negligible surface resistance, calculated from Eq. (3.44).
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The Surface Heat Flux

Of particular interest is the rate of heat transfer out of the slab. The surface heat
flux at x = L is obtained from Fourier’s law and Kq. (3.44) as

 oT
qs = —k—

ox x=L

- 2(—1)" 7 22 0 1 xX
= —k(Th— T é (n+ 1/2) a°Fo _7 42 ae(Zo 2Gaye+ 12yr- ax|r\" 2) "L\,_,    

= -k(To 1)> gee2-1)" sinner sewer 4 (n + 1/2)ar L

_ 2k(To — Ts) ¥ port l)?n? Fo (3.45)
L n=

or

a aie T;) en(2)? Fo 4 7Ga!2)? Fo 4 eOm/2)Fo + (10/2)Fo +:- 
Table 3.3 gives the first four terms in the series for values of the Fourier number
Fo = at/L? equal to 0.01, 0.1, 0.2, 0.3, and 1.0. It can be seen that the series
converges rapidly unless the Fourier number is very small. For Fo = 0.2, only the
first term in the series need be retained, and

n= 2k(not) 7(7/2)? Fo (3.46)
with an error of less than 2%. Since Fo = at/L?, Eq. (3.46) is a solution valid for
long times.

For small values of the Fourier number(that is, soon after the slab is immersed
in the liquid), the series converges slowly, and sufficient terms must be retained for
an accurate result. However, in the limit Fo — 0, there is the simple mathematical
result:

Table 3.3. Thefirst four terms of the series of Eq. (3.45) for the surface heat flux of a
slab with negligible surface resistance.

Fo e —(a/2)?Fo eBnl2)Fo e76ni2)Fo ednl2)2Foeeeee

0.01 0.9756 0.8009 0.5396 0.2985
0.1 0.7813 0.1085 0.0021 ~ 10>
0.2 0.6105 0.0118 ~ 1076
0.3 0.4770 0.0013
1.0 0.0848 ~ 107°
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oO

_ 2 pd l
de (n+1/2)*a* Fo _ =; Fo > 0

; 2ar'2 Fo!a

Substituting in Eq. (3.45) gives

k (To ~ T;)
qs~“ania (3.47)

which can be used for Fo = 0.05. Equation (3.47) is thus a valid solution for short
times. Figure 3.10 shows that for sufficiently short times, the temperature changes
in a thin region near the surface only, while the temperature of the slab interior
remains unaffected. The heat conduction process is confined to this thin region, and
the thickness ofthe slab is of no consequence: notice that L does not appear in Eq.
(3.47). It is this fact that motivates the analysis of the semi-infinite solid in Section
3.4.2.

Nonsymmetrical Boundary Conditions

In our analysis, we specified the same temperature on both sides of the slab.
Symmetry allowed the problem to be solved in the half slab, 0 = x < L; upon
transformation, the boundary condition at 7 = 1 was 6 = 0, that is, homogeneous.
If we now specify a temperature T, at x = L and T, at x = —L, as shown inFig.
3.11, how do we proceed?It is not possible to define a dimensionless temperature 0
such that 8 = 0 on both boundaries, and without homogeneous boundary conditions,
it is not possible to obtain an eigenvalue problem as before. To get aroundthis hurdle,
we reduce the problem to the superposition of a steady and a transient problem. Let
T(x, t) = T\(x) + T2(x, t) such that

 aT, dT» PT,
dx? ot Ox?

x=L: T, =T, x=L,-L: T, =

x=-L: Ti =T, t=0: %h=%-T,

T,-Tyx Tr, +Ty “ 2,2 1\ x
_ 5 Ss 5 5 a —(n+1/2)*ar* Fi aeT, = 7 Lt. Th = D Ane "eosin + 5 ary  

Figure 3.11 Schematic for the analysis of
unsteady conduction in a slab with unequal
surface temperatures.
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and the constants A, must be determined from

7 1\ x T,-Ty x Ty +Ty
An + -|)7— = T, —— — : .mt con 5)"; 7 G : (3.48)

Figure 3.12 illustrates this superposition technique.

 

 
Transient

sey problemproblem

Figure 3.12 Schematic of superposition of solutions for
a slab with unequal surface temperatures.

 

EXAMPLE3.4 Transient Steam Condensation on a Concrete Wall

In a postulated nuclear reactor accident scenario, a concrete wall 20 cm thick at an initial
temperature of 20°C is suddenly exposed on both sides to pure steam at atmospheric pressure,
If the thermal resistance of the condensate flowing down the wall is negligible, estimate the
rate of steam condensation on 160 m? wall area after (i) 10 s, (ii) 10 min, and (iii) 3 h.

Solution

Given: Concrete wall suddenly exposed to steam.

Required: Rate of steam condensation at various times.

Assumptions: 1. Thermal resistance of condensate negligible. T, = 100°C
2. Pure steam, Ts (1 atm) = 100°C.

The first step is to calculate the time constant for the wall,
t, = L?/a. From Table A.3, we take @ = 0.75 X 10~° m’/s
for concrete. Then

1i (.1y¥= — = _,— = x 4te z 0.75 x 10-6 1.33X10" s (3.7 h)
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Ga) rt = 10s:

Fo = t/t, = 10/1.33 x 10* = 7.5x 10-4 < 0.05. Thus, Eq. (3.47) applies. The condensation
rate is rm = q;A/hy. where hy is the enthalpy of vaporization of steam at 100°C. From steam
tables (for example, Table A.12a), hyg = 2.257 X 10° J/kg. Also required is the conductivity
of concrete, which from Table A.3 is 1.4 W/m K.

GA kT, - ThA _ (1.4)(100 — 20)(160)
A= See = Eee = ——_—_, 64” ly (raty®hg~[w(0.15 X 10-(10)]"2(2.257 x 10 104 ers

Gi) ¢ = 10 min:

Fo = #/t, = (10)(60)/1.33 x 10* = 0.0451 < 0.05. Thus, Eg. (3.47) remains valid. Since
qs and, hence, m decrease like t~!”, the condensation rate is now

-12

m= 1.64] = 0.212 kg/s
(ii) t = 3h:

Fo = t/t, = (3)(3600)/1.33 x 10* = 0.812 > 0.2. Equation (3.46) now applies, and the
condensationrate is

. KT, = To)A —eainjtro_(2)(1-4)(100 — 20)(160) _cnr20 suo= Sa een Fo SNEeorPPO8I) = 9.0214 ke” Lp (0.10)(2.257 x 105) ° 0214 kg/s

Comments

These estimates may be regarded as upper limits: in practice the steam is likely to contain
some noncondensables, such as air, and condense at a temperature lower than 100°C. The
problem is then one involving simultaneous heat and mass transfer.

3.4.2 The Semi-Infinite Solid

In Section 3.4.1, we saw that for sufficiently short times, temperature changesdid not
penetrate far enoughinto the slab for the thickness of the slab to have any effect on
the heat conduction process. Suchsituations are encountered in practice. One method
of case-hardeningtool steel involves rapid quenching from a high temperature for a
short time. Only the metal close to the surface is rapidly cooled and hardened; the
interior cools slowly after the quenching process and remains ductile. Thus, during
the quenching process, the interior temperature remains unchanged, and the precise
thickness and shape of the tool is irrelevant. The conduction process is confined
to a thin region near the surface into which temperature changes have penetrated.
Thus, it is useful to have formulas giving the temperature distribution and heat flow
for various kinds of boundary conditions that are applicable to these penetration
problems.
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The Governing Equation and Conditions

An appropriate model for penetration problemsis transient conduction in a semi-
infinite solid, as shown in Fig. 3.13. If we assume constant thermal conductivity,
no internal heat generation, and negligible temperature variations in the y and z
directions, Eq. (3.6) again reduces to

oT PT
— =a-—> 4at ax? ana

If the solid is initially at a uniform temperature Tp, the appropriate initial condition
is ‘

t=0: T=Tp) (3.50a)

The left face of the solid is suddenly raised to temperature T, at time zero and held
at that value. The two required boundary conditions are then

x=0: T=T, (3.505)

x70 TT) (3.50c)

It is the second boundary condition, Eq. (3.50c), that makes this problem different
from the slab problem of Section 3.4.1.

Solution for the Temperature Distribution

It might at first appear that the separation of variables solution method can be used
once again. As in the slab analysis of Section 3.4.1, the variables are separable in the
differential equation, Eq. (3.49). However, a necessary requirement for completing
the solution is that the boundary conditions of the eigenvalue problem be specified
on coordinate surfaces, and x = © is not a coordinate surface of the Cartesian
coordinate system. Instead, we proceed as follows.

 
T(x,t

T(x,0) = Tp Oa)
T(,t)=T, T;

t

T
0 x

Figure 3.13 Coordinate system and expected temperature profiles for transient
conduction in a semi-infinite solid with a step change in surface temperature.
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We first normalize the dependent variable T(x, t) for algebraic convenience.
Defining 6 = (T — Ty)(T, — To), the problem statement transforms into

” = act (3.51)
t=0: @=0 (3.52a)

x=0: 6=1 (3.525)

x>ow §@—>0 (3.52¢)

This mathematical problem can be reduced to the solution of an ordinary differential
equation for 6. The independent variable in this equation is called a similarity
variable and is an appropriate combination of x and t. One way to discover the
combination is based on physical reasoning and dimensional considerations. Figure
3.13 shows the expected temperature profiles as a function of time as the heat
penetrates into the solid. We can arbitrarily define some penetration depth 6, for
example, the location where 6 = 0.01 or 0.001. Then 6 is clearly a function of
time ¢ and thermal diffusivity a: the larger a, the deeper the penetration at a given
time. Notice that the problem statement, Eqs. (3.51) and (3.52), contains no other
quantities on which 6 can depend. Time has units [s], and thermal diffusivity has
units [m/s]. The only combination of these two variables that will give the required
units of [m] for the penetration depth is (ar)'”. For the temperature profile to be a
function ofa single variable, distances into the solid must be scaledto this penetration
depth. Thus, we will choose

x

wherethe factor of 4" has beeninserted for future algebraic convenience. Eq. (3.51)
is transformed by careful use of the rules of partial differentiation. The required
differential operators are

06_dé on
ot dy ot

*
 — 26;
» ay\ 2t(4at)!?

 
  

a _ 40 dn] _ 40/_1
ax dy ox|, dn\(4ar)'?

PO 1 d’@ an| _ 1 ao
Ox?—(4at)!? dn? dx|,  (4at) dn? 

Notice that we have written the derivatives of 6 with respect to 7 as total derivatives
since we have assumedthat @ is a function of 7 alone. Substituting in Eq. (3.51)
gives

x dO a d0
2t(4at)'2 dn  (4at) dr?
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which simplifies to

dé d°0

1g | aen dn

 
(3.54)

Equation (3.54) is a second-order nonlinear ordinary differential equation, which
requires two boundary conditions. Transforming Eqs. (3.52) gives

n=0: @=1, since 7 = 0 when x = 0 (3.55a)

nao ¢@=90, since 7 — © when x > %, or tf > 0 (3.55D)

Since both the transformed equation and conditions do not depend on x or f, the
similarity transformation has been successful. Let d@/dy = p; then Eq. (3.54)
becomesthe first-order equation

dp
—?2? —

NP dn
or

a
<P = -2n dy = -dy?

Pp

Integrating once,

dé 2
—-=Ce7?

P dn 1€

Integrating again,

4 26= ci e"“dut+C, (3.56)0

where u is a dummy variable for the integration. The integration constants are evalu-
ated from the boundary conditions, Eq. (3.55), From Eq. (3.55a), 8 = 1 at n = 0;
hence, C) = 1. From Eq. (3.555), @ > 0 as 4 > &,

0= ci eodu +10

The definite integral is given by standard integral tables as a'/2; hence,

qr? 2

0=C 1 > +1 or Cy = 7)

Substituting back in Eq. (3.56) gives the temperature distribution as

 T —T 2/7 2
6 = =1-—~| ed 3.87T, —To rit I cu 3.5)
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The function (2/a!’") ie edu is called the error function, erf 7. For our purposes,
it is more convenient to use the complementaryerror function, erfc 7 = 1—erf 7,
whichis tabulated as Table B.4 in Appendix B. Then

T- To x

T.=T = erfc Gary (3.58)
 

Equation (3.58) is plotted as Fig. 3.14. Since the temperature profiles at any time
fall on a single curve when plotted as 6(7), they are said to be self-similar, which
is why 7 is called the similarity variable for the problem.

The Surface Heat Flux

Theheat flux at the surface is found from Eq. (3.58) using Fourier’s law and the
chain rule of differentiation,

oT
is = —k—4 Ox  x=0

a 2 7"
= -k(T, ~T)—|1-——|edk(Ts~To) 1 a i e “\

2 > 41= _ _ akT, m)| ain’ Ta...
K(T; — To)
aon (3.59)qs =

whichis identical to the short-time solution for the slab problem, Eq. (3.47).
Solutionsof the semi-infinite solid problem for other kinds of boundary conditions

are also useful. A selection follows.

 

 

Figure 3.14 Dimensionless
temperature response in a

semi-infinite solid with a step

   
0.0 0.5 1.0 1.5 2.0 change in surface temperature,

Similarity variable, 7 = x/(4at)!/2 Eq. (3.58).
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Constant Surface Heat Flux

If at time t = 0 the surface is suddenly exposed to a constant heat flux g,—
for example, by radiation from a high-temperature source —the resulting temperature
response is

1/2

etAaT —To = — xerfc4s (se (3.60)k 7  
Xx

(4ar)¥?

This temperature response is shown in Fig. 3.15.

T(x,0) = Tp

-kOT/Ax| x20 = 4s nenx,t

Tp
ace xx

Figure 3.15 Temperature response in a semi-infinite solid
exposed to a constant surface heat flux, Eq. (3.60).

Convective Heat Transfer to the Surface

If at time t = O the surface is suddenly exposedtoafluid at temperature T,, with
a convective heat transfer coefficient h,, the resulting temperature response is

T —To x hexlk H(helkPat x he 12——_— = ——,; ° fk)! arfc|———. + —(at 3.61T.-T (at) erfcl GanatZe|G6)
as shown in Fig. 3.16.

T(x,0) = To

-kAT/9x|, 9 = helTe- 10, 9] T(x,1)

t

Tesh

To
[=> x

Figure 3.16 Temperature response in a semi-infinite
solid suddenly exposed to a fluid, Eq. (3.61).
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Surface Energy Pulse

If an amountof energy E per unit area is released instantancously on the surface
at t = 0 (e.g., if the surface is exposed to an energy pulse from a laser), and none
of this energy is lost from the surface, the resulting temperature response is

E 7
T — Ty = ————e 0 (3.62)

pe(mar)'?

as shown in Fig. 3.17.  T(x,0) = To
lim g,At=E TOst)

1Aro0

E~N t

-—= To
x x

Figure 3.17 Temperature response in a semi-infinite solid after an
instantaneousrelease of energy on the surface, Eq. (3.62).

Periodic Surface Temperature Variation

The surface temperature varies periodically as (T, — To) = (T. - T)sin wt, as
shownin Fig. 3.18. The resulting periodic (long-time) temperature responseis

T -T,
o _ et@iay'?

Ti — Tp

Notice how the amplitude of the temperature variation decays into the solid expo-
nentially, while a phase lag x(w/2a)!? develops.

sinfwt — x(w/2a)!] (3.63)

Td

T,~ Tp = (T#—Tp) sin ot

  
Figure 3.18 Periodic surface temperature variation for a semi-infinite
solid: instantaneous temperature profile at t = t,, Eq. (3.63).
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T

7
\okHIN

Contact of Two Semi-Infinite Solids

Tg

 Figure 3.19 Contact of two

\ semi-infinite solids: instantaneous
temperature profile at t = t, for
kp > ky.

Now consider two semi-infinite solids, A and B. of different materials with uni-
form temperatures T, and Tg, brought together at time ¢ = 0, as shownin Fig. 3.19.
The solution of this problem showsthat the interface temperature 7; is constant in
time and is given by

7 _ f; _ ksf(aza)" _ cece"T;-Ts ka (kpc),

with corresponding erfc function temperature distributions in each solid. For example,
if solid A is a carbon steel with k = 48 W/m K anda = 13.3X 10~¢ m?/sat 100°C,
and solid B is neoprene rubber with k = 0.19 W/m K anda = 0.079 x 1076 m?/s at
0°C, the interface temperature T; is calculated to be 95.1°C. This is much closer to
the initial temperature of the steel than to that of the rubber. Equation (3.64) shows
whya high-conductivity material at room temperature feels colder to the touch than
does a low-conductivity material at the same temperature.

 
(3.64)

The instantaneous heat flux at the surface g,(t) can be found from Eqs. (3.61)
through (3.63) by applying Fourier’s law. The derivation of Eq. (3.63) is given as Ex-
ercise 3-37. The other solutions are best obtained using Laplace transforms[5,9].

Computer Program CONDI

CONDI calculates the thermal response of a semi-infinite solid initially at tem-
perature 7). There is a choice of five boundary conditions imposed at time ¢ = 0:

1. The surface temperature is changedto 7;.

2. A heat flux g; is imposed on the surface.

3. The surface is exposed to a fluid at temperature T,, with a convective heat
transfer coefficient h,.

4. An amount of energy E is released instantaneously at the surface.

5. The surface temperature varies periodically as T, — T) = (Tf — Tp) sinwt.

Plotting options include T(x), T;(t), or qs(t), which can be chosen appropriately.
The analysis for boundary condition 1 was given in Section 3.4.2. The temperature
responses for boundary conditions 2 through 5 are given as Eqs. (3.60) through
(3.63), respectively.
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EXAMPLE3.5 Cooling of a Concrete Slab

A thick concrete slab initially at 400 K is sprayed with a large quantity of water at 300 K.
How long will the location 5 cm below the surface take to cool to 320 K?

Solution

Given: Hot concrete slab sprayed with water at 300 K.

Required: Rate of cooling 5 cm below surface.

Assumptions: |. The rate of spraying is sufficient to maintain the surface at 300 K.
2. The slab can be treated as a semi-infinite solid.

Equation (3.58) applies and can be written as

T — To _ x
6 = erf here 6 = ~——,y= =—erfc 9 where T.—Tp n (4at)'2

_ 320-400 _ 4
300 —400

Thus, 0.8 = erfc y; from Table B.4, y = 0.179.

x?t
 

~ 4a7?

From Table A.3, a for concrete is 0.75 10~° m?*/s. Thus, the required time is

(0.05) ;=Tayexe10-201708 70U x a
’ (4)(0.75 * 107-°)(0.179)" 2.60X10" s Th

Comments

1. A temperature penetration depth 6, may be defined 400 %

as the location where the tangent to the temperature if
profile at x = 0 intercepts the line T = 400 K, as
shownin the figure. The temperature gradient at x =
0 is found by differentiating Eq. (3.58):

  
TK

_ oT _Te-Te _ 1. =To
OX |.-0 (mat)?

320

Hence, 8, = 1.772(at)!2 = 1.772(0.75 X 1076 x }
2.60 x 104)? = 0.247 m. 300";

2. Check ¢ using COND1.

EXAMPLE3.6 Radiative Heating of a Firewall

A 15 cm-thick concrete firewall has a black silicone paint surface. The wall is suddenly
exposed to a radiant heat source that can be approximated as a blackbody at 1000 K. How
long will it take for the surface to reach 500 K if the initial temperature of the wall is 300 K?
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Solution

Given: Concrete firewall exposed to radiant heat source.

Required: Temperature response of surface.

Assumptions: 1. Wall can be modeled as a semi-infinite solid.

2. Negligible temperature drop across the paint layer.
3. Negligible heat capacity of the paint layer.
4, An absorptance a = 0.9 for high-heat black silicone paint (Table A.5a);

negligible radiation emitted by the wall.

Equation (3.60) evaluated at x = 0 is 500
1/2

qs|4at
T, — T) = —|—

TK
or

t

p= 7) Ee = Tok)’
a 24s

300

From Table A.3, the required concrete properties are 0 x
k = 1.4 Wim K and @ = 0.75 X 107° m?/s.

Since the surface temperature is low comparedto the radiation source temperature, we can
neglect radiation emitted by the surface, so

gs = aoT* = (0.9)(5.67 X 1078)(1000)* = 51.0 x 10? W/m’

-_ 7 (500 — 300)(1.4)]?
0.75 x 10-6|(2)(51.0 x 103)

 
= 31.68

Comments

1, At most, eoT* = (0.9)(5.67 x 10-*)(500*) = 3.19 X 103 W/m?, whichis only 6% of
q; andis justifiably neglected in making this engineering estimate.

2. Check to see if the temperature drop and heat capacity of the paint layer are negligi-
ble. Choose an appropriate thickness and properties.

3. To check whether the assumption of a semi-infinite
solid is valid, we estimate a penetration depth 5,:

T, == T

—(0T/Ax), <1

T; —Tp

q;/k

_ 500 — 300
(51.0 x 103)/(1.4)

5, =

  
0.0055 m (5.5 mm), which is small.
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Solution Using COND1

The required input in SI units is:

Boundary condition = 2

Plot option = 2 (7, versus t)

trange for plot = 0, 60

Thermal conductivity = 1.4

Thermal diffusivity = 0.75 x 107°

Initial temperature JT, = 300

Surface heat flux g, = 51.0 x 10°

From the graph of 7, versus t, f = 32 (seconds) when T, = 500 (kelvins),

Comments

1. A more accurate answer can be obtained from CONDIby adjusting the t-range.

2. Any consistent units can be used in COND1. With SI units, temperature may be in
kelvins or degrees Celsius.

 

EXAMPLE3.7 Thermal Responseof Soil

On a tropical island, a large refrigerated shed has been operating at 5°C for a number of
years. It is then put out of service; a wood floor is removed, and ambient air at 27°C is
allowedto circulate freely through the shed. How long will it take for the ground 1 m below
the surface to reach 15°C? Assume a convective heat transfer coefficient of 3.0 W/m? K, and
use thermal properties of a wet soil (k = 2.6 W/m K, a = 0.45 X 107* m?/s).

Solution

Given: Groundinitially at 5°C, exposed to air at 27°C.

Required: Temperature response 1 m below surface.

Assumptions: 1. Semi-infinite solid model valid.

2. The*initial temperature is uniform (i.e., 5°C for an appreciable distance
below the surface).

Equation (3.61) applies:

  

 

T—Ty x h PEA x h,= erfi — ghoxk Hhclk) at arg + “(qtyT.-T ~ (ay? ° oe Gatye +

T-T 15-5 he_3.0 7
==>" = 0.4545, 2 = 22 = 1.154 m"!, =1ha 27-5 k 2.6 m _——

An iterative solution is required, but how do we make a reasonable first guess for t? A lower
limit is obtained if we use only the first term of Eq. (3.61), which corresponds to h, > ©,
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T, = T,.

0.4545 = erfc n

From Table B.4, 7 = 0.53.

l
= t = 2.0x 10° s

¥

0.53 = ——— = ;
(4ar)!? (4 X 0.45 & 10-6)!2

The actual time will be greater than 2.0 x 10° s; taking t = 4 x 10° s as a first guess, the
following table summarizes theresults:

“

 Time, t a Tp
sx10%=7, —T,

4 0.368

5 0.415
6 0.452

6.05 0.4540
6.06 0.4545

Hence, t = 6.06 X 10° s (~70 days)

Comments

1. If the solution is done by hand, care must be taken to evaluate the erfc function accu-
rately. COND1 will perform the required calculations rapidly and reliably.

2. The long time required suggests that problems involving conduction into the ground.are
almost always transient problems.

 

EXAMPLE 3.8 Temperature Fluctuations in a Diesel Engine Cylinder Wall

A thermocouple is installed in the 5 mm-thick cylinder wall of a stationary diesel engine,
| mm below the inner surface. In a particular test, the engine operates at 1000 rpm, and
the thermocouple reading is found to have a mean value of 322°C and an amplitude of
0.79°C. If the temperature variation can be assumed to be approximately sinusoidal, estimate
the amplitude and phase difference of the inner-surface temperature variation. Take a =
12.0 x 10°° m?/s and k = 40 W/mKfor the carbon steel wall.

Solution

Given: Thermocoupleinstalled in diesel engine cylinder wall.

Required: Amplitude and phase difference of inner-surface temperature.

Assumptions: Model wall as a semi-infinite solid.
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At first it would appear that the analysis of Sec-
tion 3.4.2 does not apply to this problem. The
cylinder wall is not very thick, and since the outer
surface is cooled, there will be a temperature gra-
dient through the wall. However, if the tempera-
ture wave is damped out in a very short distance
from the surface, Eq. (3.63) can be used to esti-
mate the amplitude decay and phaselag:

T-—Tp

TE: =Ta5

_ 2,
= e2a)" sinfet — x(@/2a)'?]

  
104.71000

= 27|——| = 104.7 rad/s; 2) = {104-7__w | 60 rad/s; (w/2a) (mare x 10-5)
1/2

| = 2089 m™!
If (T* — Ty) is the amplitude of the temperature variation,

- —T - eve(alae)? = g~(0.001)2089) _ g 494
Ts — To

Thus,

. fe a= 0.79
T*—Ty = 2 = —— = 6,38°C
 

0.124 0.124

The phase lag is x(@/2a)!” = 2.09 rad = 120 degrees.

Comments

Use COND1to examine some spatial and temporal temperature profiles.

3.4.3 Convective Cooling of Slabs, Cylinders, and Spheres

We now consider the more general problem of transient conduction in three common
shapes: the infinite slab, the infinite cylinder, and the sphere, with surface cooling
(or heating) by convection. The slab problem will be analyzedfirst, and the results

will be generalized to the cylinder and sphere.

Analysis for the Slab

In Section 3.4.1, we considered the temperature response T(x, t) of a slab sud-
denly immersed in a fluid under conditions where the convective heat transfer re-
sistance is negligible, that is, Bi = .L/k is large. On the other hand, the lumped
thermal capacity model of Section 1.5 applies when the conduction resistance in the
slab is negligible, that is, the Biot number is small. We now consider the general
case where the convection and conductionresistances are of comparable magnitudes,
giving a Biot numberof order unity. The slab and coordinate system are shown in
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Figure 3.20 Schematic of a slab

suddenly immersed in a fluid.

 
Fig. 3.20. We again define 7 = x/L and £ = at/L?, but now we define the
dimensionless temperature @ in terms of the initial slab temperature Ty and fluid |
temperature T, as @ = (T — T,)/(Tp — T.). The analysis proceeds as in Section 3.4.1
to obtain

6(f,) = e-**(Acos An + Bsinan)

The boundary condition, Eq. (3.365), is as before; namely, 00/dn|n-0 = 0, so
B = 0 and

0(f,n) = Ae”? cos An (3.65)
However, the second boundary condition is now obtained from the requirement that
the heat conduction at the surface of the solid equal the heat convection into the
fluid:

oT
=4 = = =A T,ax h(T| yb )x=L 

which transforms into

 k 00
~ 7 aT = h|q=1

Lon n=l
or

06
= —! = Bidly=1 (3.66)

on h=1 
We see once again how the Biot number Bi = h,L/k occurs naturally when the
convective boundary condition is put in dimensionless form. Substituting Eq. (3.65)
into Eq. (3.66) gives

Ae) sind = BiAe~*’S cosa
or

Xr
A= 3.67cot Bi ( )

which is a transcendental equation with an infinite numberof roots or eigenvalues.
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Figure 3.21 Graphical solution of the transcendental equation, Eq. (3.67): cotA = A/Bi.

Figure 3.21 shows a plot of Eq. (3.67); for a given value of the Biot number, the
eigenvalues A, (n = 1, 2, 3,...) can be calculated. To each of the eigenvalues
corresponds a solution with eigenfunction cos A,» and arbitrary constant A,. Their
sum is the general solution:

A(f,) = >~ Ane§ cos Ann (3.68)
n=1

The constants A, are evaluated from the initial condition, Eq. (3.36a):

6(0, 9) = >Ancosdn7 = 1
n=)

Thus, a Fourier series expansion in terms of the eigenfunctions cos \,,9 is required.
The details are required as Exercise 3-56, andthe result is

2sin A,

 

A, = ————__ 69An + sin A, cos A, 6.99)
The solution in terms of temperature, Fourier number, and x/L is

T-T. =. yp 2sin A, x
= 410 —__________—€0$An = -70re 2a? TF sink, cok, (3.70)n=l]

Figure 3.22 shows a plot of Eq. (3.70) for Bi = 3.0. Notice how the tangents to
the temperature curvesat the surface all intersect at a commonpoint, the location of
which is given by boundary condition, Eq. (3.66).

In addition to the temperature distribution,it is often useful to know thefractional
energy loss ®, which is the actual energy loss in time t divided by the total loss in
cooling completely to the ambient temperature. An energy balance on unit area of
the half slab gives

 

peL(Iy—T.)  pcL(Ty — Te) T= Te
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1.0

 
T-Te Th-T-   

  
  Dimensionlesstemperature,9    

0.0 0.2 0.4 0.6 0.8 1.0 1,333

Dimensionless coordinate, 7 = x/L

Figure 3.22 Temperature profiles for convective cooling
of a slab calculated from Eq. (3.70); Bi = 3.0.

where T is the volume-averaged temperature. Evaluating T from Eq. (3.70) gives

= 2sinA sin A
®=]- —AyFo_NNAn SINAn 3.71>, 7 An + Sina, COSA, A, ( )

Figure 3.23 showsa plot of Eq. (3.71) for various values of the Biot number.

 

Fractionalenergyloss,®   
Fourier number, Fo= at/L?

Figure 3.23 Fractional energy loss ® as a function of Fourier numbera ¢/L? for convective
cooling of a slab calculated from Eq. (3.71). Biot number Bi = 0.3, 1, 3, and 10.
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cfr at py. _ hcR _r _ ot _ ftcR

N= qr Foss, Bi= ke 1= pn Fo R Bi=——

Slab Cylinder Sphere

Figure 3.24 Schematic for the generalized solution of the temperature
response of a convectively cooled slab, cylinder, or sphere.

Generalized Form of the Solution

It is convenient to have a general form ofthe solution applicable to a slab, cylinder,
or sphere. Referring to Fig. 3.24,

6 = >Ane™*®f,(AnT) (3.72)
n=1

®=1-8=1->Ae*PB, (3.73)
n=1

with the eigenvalues given by

Slab: BicosA — AsinA = 0 (3.74a)

Cylinder: AJ(A) — BiJo(A) = 0 (3.745)

Sphere: AcosA + (Bi-—1)sinA = 0 (3.74c)

For the slab, y = x/L, Fo = at/L*, and Bi = h,L/k, as before; for the cylinder
and sphere, 7 = r/R, Fo = at/R?, and Bi = h.R/k. Table 3.4 gives A,, f,, and
B,,. In Eq. (3.74b) Jo and J; are Bessel functionsof the first kind, of orders 0 and
1, respectively. These functions are defined and tabulated in Appendix B.

Notice that the characteristic lengths used to define the Biot numberare the slab
half-width, L, and cylinder or sphere radius, R. Recall that in the lumped thermal
capacity analysis of Section 1.5, we defined the characteristic length as volume/area,
V/A. For aslab, V/A = L, so the Biot numbers are the same. However, for the cylin-
der and sphere, V/A = R/2 and R/3, respectively, and the Biot numberdefinitions
are different.
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Table 3.4 The constants A, and B, and the function fn for the transient thermal response
of slabs, cylinders, and spheres.  

  Geometry A, (A,) B, (Ay) Siar

sina, sin A, x
b a —— _A, + sin A, cos A, Ay cos (r, *)
. Ji(A,) Jin) r

Cylind —=- 2—= Jy {Ay =“ue dy WeA,) + FPO, h, 0(dng)
Spher 5 sind, — A, cos A, 3 sin A, — A, cos A, sin [A,,(7/R)]e 2 = ee

P A, — sin A, cos A, AB A, (7/R)  

Computer Program COND2

The generalized form ofthe solution described above is implemented in COND2.
The program computes the eigenvalues from Eqs. (3.74) using Newton’s method.
Up to 40eigenvaluesare calculated in order to meet a specified accuracy of 1074
in the dimensionless temperature @. For very short times, more than 40 eigenvalues
are required to obtain the desired accuracy. Thus, for Fourier number Fo < 1073,
COND] should be used, since the semi-infinite solid model is quite appropriate
for such short times. The output can be obtained as numerical data, a plot of the
temperature profile, 0(7), or a plot of the fractional energy loss as a function of
time, (Fo).

Approximate Solutions for Long Times

In Section 3.4.1, it was shownthat the series solution converged rapidly for long
times, and for Fo > 0.2, onlythe first term of the series need be retained for 2%
accuracy. Usually we are most interested in the temperature at the center of the body
(x = 0 orr = 0), where the response is slowest. Denoting the dimensionless center
temperature as 6. = (T. — T.)(To — T.) and retaining only the first term of Eq.
(3.72) gives

6. = Aye A Fo, Fo > 0.2 (3.75)
since f;(A;n) = 1 for 7 = 0. Whenonly thefirst term of the series is retained, the
shapeof the temperature distribution is unchanging with time. Thus, the temperature
at any location is simply related to the center temperature as

8 = 6. fi(Ary), Fo > 0.2 (3.76)

Similarly, retaining only one term in Eq. (3.73), the fractional energy loss is

® = 1-B,4,, Fo > 0.2 (3.77)
Table 3.5 gives values of A*, A,, and B, as a function of Biot number.
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Table 3.5 Constants in the one-term approximation for convective cooling of slabs,
cylinders, and spheres.  

 

 

Slab

Bi x A B, Bi 2 A B,

0.02 0.01989 1.0033 0.9967 2 1.160 1.180 0.8176
0.04 0.03948 1.0066 0.9934 4 1.600 1.229 0.7540
0.06 0.05881 1.0098 0.9902 6 1.821 1.248 0.7229
0.08 0.07790 1.0130 0.9871 8 1.954 1.257 0.7047
0.10 0.09678 1.016 0.9839 10 2.042 1.262 0.6928
0.2 0.1873 1.031 0.9691 20 2.238 1.270 0.6665
0.4 0.3519 1.058 0.9424 30 2.311 1.272 0.6570
0.6 0.4972 1.081 0.9192 40 2.321 1.272 0.6521
0.8 0.6257 1.102 0.8989 50 2.371 1.273 0.6490
1.0 0.7401 1.119 0.8811 100 2.419 1.273 0.6429

00 2.467 1.273 0.6366

Cylinder
Bi Mi A, B, Bi Ni A, B,

0.02 0.03980 1.0051 0.9950 2 2.558 1,338 0.7125
0.04 0.07919 1.010 0.9896 4 3.641 1.470 0.6088
0.06 0.1182 1.015 0.9844 6 4.198 1.526 0.5589
0.08 0.1568 1.020 0.9804 8 4.531 1.553 0.5306
0.10 0.1951 1.025 0.9749 10 4.750 1.568 0.5125
0.2 0.3807 1.049 0.9526 20 5.235 1.593 0.4736
0.4 0.7552 1.094 0.9112 30 5.411 1.598 0.4598
0.6 1.037 1.135 0.8753 40 5.501 1.600 0.4527
0.8 1.320 1.173 0.8430 50 5.556 1.601 0.4485
1.0 1.577 1.208 0.8147 100 5.669 1,602 0.4401

@0 5.784 1.602 0.4317

Sphere
Bi Ay A, B, Bi vt Ay B,

0.02 0.05978 1.0060 0.9940 2 4,116 1.479 0.6445
0.04 0.1190 1.012 0.9881 4 6.030 1.720 0.5133
0.06 0.1778 1.018 0.9823 6 7.042 1.834 0.4516
0.08 0.2362 1.024 0.9766 8 7.647 1.892 0.4170
0.10 0.2941 1.030 0.9710 10 8.045 1.925 0.3952
0.2 0.5765 1.059 0.9435 20 8.914 1.978 0.3500
0.4 1.108 1.116 0.8935 30 9,225 1.990 0.3346
0.6 1.599 1.171 0.8490 40 9.383 1.994 0.3269
0.8 2.051 1.224 0.8094 50 9.479 1.996 0.3223
1.0 2.467 1.273 0.7740 100 9.673 1.999 0.3131

20 9.869 2.000 0.3040
Sat
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Figure 3.25 Fractional energy loss ® at a Fourier number (dimensionless time) of
Fo = 0.2 for the slab, cylinder, and sphere: effect of Biot number Bi. The one-term
approximation is valid above each curve.

 
 
 
 

 
 
 
 
 
 

 
 

 

The single-term approximation is useful because it is valid during much of the
cooling period. Figure 3.25 shows the fractional energy loss ® at Fo = 0.2 asa
function of Bi for the three shapes. Thefraction of the cooling period over which
the approximation is valid increases as the Biot number and surface-area/volume
ratio (sphere-cylinder-slab) decrease. The single-term approximation is also used for
problems in which the fluid temperature T, changes slowly with time. It is then
useful to define an interior heat transfer coefficient for conduction into the body
for use in a thermal-circuit representation of the complete system. This concept is
developed and used in Exercises 3-81 through 3-84.

Temperature Response Charts

Graphs of the various solutions for convective cooling, known as temperature
response charts, were indispensable to engineers until handheldcalculators and per-
sonal computers becamestandard tools. Charts for the series solution were given by
Gurney and Lurie [10] as early as 1923, but better examples are now available. Per-
haps the best widely available selection of charts is found in the Handbook of Heat
Transfer Fundamentals [11]. In addition to charts for the convective cooling problem
discussed here, Reference [11] gives charts for numerous other cooling and heating
problems. For example, there are charts for radiation heating, conduction with in-
ternal heat generation, and composite solids. These charts were first published by
Schneider in 1963 [12].
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Heisler published charts for the one-term approximate solution in 1947 [13].
Heisler-type charts are found in many textbooks and are widely used. However,
such charts have three major limitations:

1. The charts are invalid for Fo < 0.2.

2. The charts are often difficult to read accurately for Fo < 1.

3. The cooling process is nearly complete overa large region of the charts. For
example, for a sphere with Bi = 1, it is 90% complete for Fo = 1.

Appendix C contains temperature response charts for convective cooling. Two
types of charts for the slab, cylinder, and sphere are given. Figure C.1 gives the
temperature response of the body center (x = 0 or r = 0), and Fig. C.2 gives
the fractional energy loss ® as a function of time. Both figures are based on the
complete solution and are thus valid for all values of Fourier number. The curves for
Bi = 1000in Fig. C.1 correspond to negligible convective resistance and, hence, to
a prescribed surface temperature 7, = T,.

Problem-Solving Strategy

Our solutions for convective cooling (or heating) of slabs, cylinders, and spheres
can be organized in the form of a problem-solving strategy. The basic problem is
one where the heat transfer coefficient is known, and the temperature orfractional
heat loss must be calculated at a given time. Then we may proceed as follows:

1. Calculate the lumped thermal capacity model Biot number.” If Bi < 0.1, the
lumped thermal capacity solution of Section 1.5 applies.

2. If Bi > 0.1, calculate the Fourier number. If Fo < 0.05, the semi-infinite solid
solution, Eq. (3.61), applies. A handheld calculator or COND1 can be used.

3. If Bi > 0.1 and 0.05 < Fo < 0.2, the complete series solution, Eqs. (3.72)
and (3.73), applies. COND2or the temperature response charts in Appendix C
should be used.?

4. If Bi > 0.1 and Fo > 0.2, the long-time approximate solution, Eqs. (3.75)
through (3.77), applies. COND2 can be used if available. Otherwise, the tem-
perature response charts or a handheld calculator will suffice.

Sometimes a problem may be posed in such a mannerthat the foregoing procedure
cannot be followed exactly (as will be the case in Examples 3.9 and 3.10). Also, as
in all engineering problem solving, the required accuracyofaparticular calculation
should be viewed in the context of the complete problem. It is of little value to
obtain @ or ® to even two-figure accuracy when the model is a poor simulation of

2 Bi = h.(V/A)/k; V/A = L for an infinite slab, R/2 for an infinite cylinder, and R/3 for a sphere.
> For a slab, the required value of Bi was calculated in step 1. For a cylinder and sphere, the required values
are two and three times larger, respectively.
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the real engineering problem. The major source of error here is in the specification
of the heat transfer coefficient. Not only is it difficult to specify a value of h, with
less than 10% error, but in many cooling problems, h, is not a constant as assumed
by the model. For example, when the cooling is by natural convection, Eq. (1.23)
shows that A, is proportional to (T, — T,) to the 1/4 power for laminar flow, and
to the 1/3 power for turbulent flow. Thus, h, must be estimated at some average
temperature difference.

 

EXAMPLE3.9 Annealing of Steel Plate ‘

Whensteel plates are thinned by rolling, periodic reheating is required. Plain carbonsteel
plate 8 cm thick, initially at 440°C, is to be reheated to a minimum temperature of 520°C
in a furnace maintained at 600°C. If the sum of the convective and radiative heat transfer

coefficients is estimated to be 200 W/m? K, how long will the reheating take? Take k = 40
W/m K and a = 8.0 x 10~¢ m/s forthe steel.

Solution

Given: Steel plate, thickness 2L = 8 cm.

Required: Temperature response of the center of the plate.

Assumptions: The heat transfer coefficient is constant at 200 W/m? K.

Wefirst calculate the time constant for the heating process:

Db (0.04)f — se = 2= 2>Bxiow—200s

which tells us the order of magnitudeof the time required, namely, a few minutes (not seconds
and not hours). Next we calculate the Biot number:

AL (200)(0,040) 2k 40 °Bi =

Since Bi > 0.1, the lumped thermal capacity model should not be used. Since we cannot
calculate the Fourier numberyet(it is the answerto the problem), the complete series solution
will be used. The minimum temperature is at the center of the plate, and the desired value
of @ is

T.-T, — 520-600 _== = ———_= 0,50
& Ty -T. 440 — 600
 

Using the temperature response chart, Fig. C.1a in Appendix C,

Fo = 3.9; t = t, Fo = (200)(3.9) = 780 s (13 min)

Since Fo > 0.2, we could have used the one-term approximation, Eq. (3.75):

6. =0.5 = Ae"

From Table 3.5 for Bi = 0.2, A? = 0.1873 and A, = 1.031. Solving, Fo = 3.86.
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Solution Using COND2

The required inputs are:

Geometry = 1 (slab)
Bi = 0.2

Output option = 2 (@ vs. y plot)
Fo = (must guess anditerate)
7y range = 0, |

A few iterations will give Fo = 3.9 for 6. = 0.50.

 

EXAMPLE3.10 <A Pebble Bed Air Heater

A pebble bed for storing thermal energy in a solar heating system has pebbles that can be
approximated as 6 cm-—diameter spheres. The bed is initially at 350 K before cold air at
280 K is admitted to the bed. If the heat transfer coefficient is 80 W/m? K, how long will it
take the pebbles at the inlet of the bed to lose 90% of their available energy? Take k = 1.6
W/m K and a = 0.7 X 107° m?/s for the pebbles.

Solution

Given: Hot pebbles suddenly exposedto a coldair stream.

Required; Time for pebbles at inlet to lose 90% oftheir available energy.

Assumptions: Pebbles are spherical.

280 K air
——————o™ 

Wefirst calculate the time constant for the cooling process:

RR (0.03%
t= in 07%10%= 1286 s (21 min)

Next we calculate the lumped thermal capacity model Biot number:

Bi = h,(R/3) _ (80)(0.03/3) 05
k 1.6

Since Bi > 0.1, the lumped thermal capacity method cannot be used. Although we suspect
that Fo > 0.2 for ® = 0.9, we can conveniently use the complete series solution given as
the temperature response chart, Fig. C.2c of Appendix C. For Bi = h,.R/k = (3)(0.5) = 1.5
and ® = 0.9, the chart gives Bi’ Fo = 1.5. Thus,

Fo = 1.5/Bi’ = 1.5/1.5)? = 0.67

t = t, Fo = (1286)(0.67) = 860 s (~ 14 min)
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Since Fo > 0.2, we could have used the one-term approximate solution as follows. From Eq.
(3.77), ® = 1 — B,6,. For Bi = 1.5, interpolation in Table 3.5 gives B; = 0.70. Thus,

0.9 = 1 — (0,70)8, or 6, = 0.143

By Eq. (3.75), 6. = Aje™“*, For Bi = 1.5, interpolation in Table 3.5 gives A? = 3.33,
A, = 1.38.

0.143 = (1.38)e703Fe or Fo = 0.68

which agrees well with the chart solution.

Solution using COND2

The required inputis:

Geometry = 3 (sphere)
Bi = 1.5

Output option = 1 (Numerical data), or 3 (® vs. Fo plot)
Fo range = 0, |

Fo = 0.67 for ® = 0.9.

Comments

Therelatively short time of 14 min does not mean that warm air cannot be obtained for a
long period. The bedis a regenerative heat exchanger(see Section 8.5): a temperature “wave”
passes slowly through the bed, and the useful operating time is the time taken for this wave
to break through the outlet end of the bed.

3.4.4 Product Solutions for Multidimensional Unsteady Conduction

Consider a long rectangular bar, with sides 2L; and 2L, wide, that is initially at
temperature 7 and suddenly immersedin a fluid at temperature T,. The heat transfer
coefficients on the sides are h,, and h.2. The task is to determine the temperature
distribution T(x, y, t). Again, a dimensionless temperature 6 = (T — T,)/(T>) — T.)
is defined. The governing equation and appropriate initial and boundary conditions
in a coordinate system such that -—L,; = x = L,,-L. = y S Ly are

06 70 #0
— = aa fo 3.78ot (¢ 2 ay? | ( )
t=0: @=1

00 00
x =0 — =0; y=0 — =0

Ox oy

06 00
x =L;: —k— = h,.@; y=ly -—k— = ho

Ox oy
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If the separation of variables method is to be used, one might assume a product
solution of the form

A(t, x,y) = 7(t)X(x)Y(y)

where the functions 7(t), X(x), and Y(y) are to be determined as before. However,
it will now be shown that the solution can be expressed as the product of known
solutions for the infinite slab. Consider two slabs of thickness 2L, and 2L,, for
which the dimensionless temperature governing equations and boundary conditions
are

  

 

Ty Te T, -— Te
0, = 4, =
Ty Te * 1) Te

10 ro 06 06
<= g@— <2? = g@2 (3.79a,b)
at ax? Ot dy?

t=0 6, =1 t=0 6, = 1

00 og
x-0: — y=0: —=

Ox oy

rT 0
x=Lyp —k— =hgO,) y= Ly: —k— = hob

Ox 0

The product of the solutions of these two problemssatisfies the original problem.
Let

a(t, x, y) = Ait, X)O2(t, y)

Then

0 PO PO 7705
<= 65: A. z _ =2 (3.80a,b)
Ox ax- ay- ay*

  

06 og 00
36 _ 4 082 | »401 (3.81)
ot ot ot

Substituting Eqs. (3.79a,b) into Eq. (3.81),

08 JOs a0,
3, 7 al\"i=, a
ot dy ax?

Then substituting from Eqs. (3.80a,b) gives

30 (S si=a

 

  

at \ax? ay?

whichis the original differential equation, Eq. (3.78). Also, the initial and boundary
conditions become
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t=0: 600, x,y) = 10, x)6200, y) = (DC) = |

 

360 30
x=0: —=6— =6x0=0

Ox Ox

00 0
y=0: —=6,— =6,x0=0

dy oy
ae 30, |

aee an -K52 = Oo(he1 01) = NeiOx OX

30 16\

y =ley ao = ar[-«5 " = 61(he282) = feoay dy

which are the original conditions. Figure 3.26 shows a schematic of the product
solution.

Shapes amenable to productsolutions of this type are shown in Table 3.6. Langston
[14] has recently shown howthe product rule can be applied to obtain the fractional
energy loss. If the shape is formed by the intersection of two bodies, for example,
the short cylinder of item 4 in Table 3.6, the fractional energy loss is

P= ®, + ®,(1 _ ®,) a ®, + ®, _ ®,®, (3.82a)

where subscripts 1 and 2 refer to the infinite slab and infinite cylinder, respectively. If
the shape is formed by the intersection of three bodies, for example, the rectangular
block of item 6 in Table 3.6, then

® = ®, + &(1 — O,) + ®3(1 —(1 — ®) (3.825)

 
hen

Figure 3.26 Schematic of the product solution procedure for the

temperature response of a convectively cooled long rectangular bar.
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Table 3.6 Shapes amenable to product solutions. Caution: The dimensionless temperatures S, P,
and C are evaluated at the same value of actual time (not Fourier number).

Basic solutions

Semi-infinite solid Infinite plane slab Infinite cylinder
S(x,t) P(x,t) C(r,t)

(T — Tp)
Eg. (3.61); | — ——-= Eq. (3.70) Eg. (3.72)7 (T. — To) 4 =

1. Infinite rectangular bar 2. Semi-infinite plate 3. Semi-infinite cylinder
6 = P@,tD)P(,f) 6 = S(«,HP(,t) 6 = S(x,HC(r,t)

y

4. Finite cylinder 5. Semi-infinite rectangular bar 6. Rectangular block
6 = P(x,t)C(r,t) 6 = S(z,t)P(x,t)P(y,t) 6 = P@,t)PO,1)PC,t)

|

7. Two-dimensional corner 8. Three-dimensional corner 9. Finite-width corner

6 = S(,HS(,1) 8 = S(x,HS0,HS8(z,0 0 = P@,ASO,DS(z,t)

 
Notice that these product solutions are not applicable when

1. The initial temperature of the body is nonuniform.

2. The fluid temperature T, is not the same onall sides of the body.

 

3. The surface boundary conditions are of the second kind.

The requirement that the initial temperature of the body be uniform is, of course,
the specified initial condition for the solutions given by Eqs. (3.72) and (3.73).
However, the beginning student often overlooks this point in problem solving.
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EXAMPLE3.11 Sterilization of a Can of Vegetables

A can of vegetables 10 cm in diameter and 8 cm high is to be sterilized by immersion
in saturated steam at 105°C. If the initial temperature is 40°C, what will be the minimum
temperature in the can after 80 minutes? Also, calculate the total heat transfer to the can in
this period.

Solution

Given: Can of vegetables to be sterilized in steam.

Required: (i) Minimam temperature in can after 80 minutes, and
(ii) total heat transfer.

Assumptions: 1. The heat transfer coefficient for condensing
steam is very large; hence, Bi > ~,

2. Nocirculation inside can.

3. Thermal diffusivity of contents approximates
that of water.

 
(i) Since Bi — ©, the lumped thermal capacity model cannot be used. Item 4 of Table
3.6 applies, with the minimum temperature at the center of the can. The thermal diffusivity
is evaluated at a guessed average temperature of 360 K; using the data in Table A.8 of
Appendix A, k = 0.676 W/m K, p = 967 kg/m?, c = 4200 J/kg K; hence, a = k/pc =
(0.676)/(967)(4200) = 0.166 X 10~° m?/s. The two Fourier numbersare:

at — (0.166 x 10°*)(4800)
VL (0.04)

 
Slab with 4 cm half-width: Fo; = = 0.498

at — (0.166 x 107°)(4800)
R? (0.05)?

 
Infinite cylinder of 5 cm radius: Fo, = = 0.319

Then 6, = P(0,1)C(O,t), where P(O,t) and C(O, t) can be obtained from Fig. C.1la and b
of Appendix C or by using COND2. Using the charts with Bi = 1000, P(0,1) = 0.38 and

 

C(O, t) = 0.27.

T..— T,
6, = =—= = P(0,1)C(, t)

To = I.

T, — 105
—— = (0.38)(0.27); ing, T, = 98.3°40 — 105 ( )(O.27); solving 98.3°C

(ii) The total heat transfer is related to the fractional energy gain as

Q= DpcV(T. — To)

where V is the volume of the can and ® = ©,+ ®,—©®,®, from Eq. (3.82a). Using COND2
or Fig. C.2a and 6 with Bi = 50, ®, = 0.75, ®) = 0.88. Thus,

® = 0.75 + 0.88 — (0.75)(0.88) = 0.97

Q = (0.97)(967)(4200)(2r)(0.05)"(0.08)(105 — 40) = 161 kJ
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Comments

Although the heat transfer coefficient for condensing steam is large (see Chapter 7), it
is not infinite. Using the curves for the largest values of Bi available in the charts gives
satisfactory estimates for this problem.

MOVING-BOUNDARY PROBLEMS
 

There are many engineering problems that involve heat conduction in a region
bounded by a moving surface. Examples include solidification of a melt to form
a crystal, growth of a vapor bubble in a superheated liquid, and ablation of a heat
shield on a reentry vehicle. There is usually either a phase change or chemicalre-
action at the surface. In the case of a phase change, a boundary condition of the
form of Eq. (3.18) is appropriate. For a chemical reaction, the boundary condition
is considerably more complicated and may involve mass transfer as well as heat
transfer considerations. In this brief introduction to the analysis of moving-boundary
problems, exact solutions to two rather simple problems are demonstrated.

3.5.1 Solidification from a Melt

Consider a liquid, initially at its solidification temperature T,, suddenly exposed
to a surface at temperature T; < T, located at z = 0, as shown in Fig. 3.27. A
solidification front then moves upward, and the expected temperature profile when
the front is at z = s is shown. Let 06 = (T — T;)(T, — T;); assuming constant
properties, the temperature in the solid is governed by Fourier’s equation,

a = act (3.83)
with initial and boundary conditions

t=0: 6=1 (3.84a)

z=0: 6=0 (3.845)

z=s: @=1 (3.84c)

  Liquid

     
  
  

  niquevoordinateaeons,a
i s Tr instantaneous temperature profile.
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The unknownlocation of the interface is determined from the interface energy bal-
ance, Eq. (3.18). Since there is no temperature gradient in the liquid phase, Eq.
(3.18) reduces to

oT
O=k—| +m"Ng (3.85)

Oz u

where m" (kg/m? s] is the solidification rate and is negative to be consistent with
Eq. (3.18). With respect to the interface, the liquid flows across in the negative z
direction. The speed at which the front movesis

ds m"
Ve—=-— .= 3 (3.86)

Substituting for T and m” in Eq. (3.85) gives

00

kK(T, — T;) az — phk,V = 0 (3.87)u

Based on our experience with the semi-infinite solid problem of Section 3.4.2,
we might suspect that the solution has the form

z

6 = Aerf (dat) (3.88)
We know Eq. (3.88) satisfies the differential equation; the task is to see if it can
fit the initial and boundary conditions. Equations (3.84a) and (3.846) are satisfied
since erf © = 1 and erf 0 = 0; Eq. (3.84c) requires that

i
Aerf ———~ =ert Gani72

which is possible only if s is proportional to t'/2. To simplify the algebra, weset
s = d(4at)'/*, where A is a constant yet to be determined. Then A = 1/ erf A, so
that Eq. (3.88) gives the temperature distribution 7(z, ¢) as

C=-T _ a1 erf{z/(4at)!/?]
T, — T; erf A

Also,

ds a \1/2
=—=Al-— 3.89U dt (7) ( )

the speed of the front.
The constant A is now determined from the interface energy balance, Eq. (3.87).

After some algebra (see Section 3.4.2 for differentiation of the error function), we
obtain

m'!/2ye" ef A =es—Ti) (3.90)
hfs
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The right-hand side of this equation is a dimensionless group that characterizes heat
transfer during phase change;it is called the Jakob number,Ja, or the Stefan num-
ber for a solid-liquid phase change. Equation (3.90) is an implicit relation for \ =
(Ja) but is easily solved by specifying a range of \ values and then calculating the
corresponding values of Ja. Figure 3.28 was prepared in this way.

Often the Jakob numberis quite small; for example, when ice forms from water
with 7, —7; = 10K, the Jakob numberis 0.058. For small Jakob numbers, e*” erf A
can be approximated as (2/'”)A; then

Ja 1/2 Jaa 1/2
A={([=] ; V = |{[— 3.91a)sy(2 oan

This result corresponds to a linear temperature variation across the solid, as can be
seen by substituting d0/dz = 1/s and V = ds/dt in Eq. (3.87) to give

 

 

ds 238
dt ss

or

sds =aJadt

sg

g
5a

3
a

   
“0 0.2 0.4 06 08 1.0 1.2 1.4

Figure 3.28 Solution of Eq. (3.90), namely, 7!7Ae*’ erf X = Ja.
The Jakob number Ja =c(T, — TWh.
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Integrating,

s* = 2aJat (3.92)

Equation (3.92) is called a parabolic growth law by metallurgists. Substituting back
in Eq. (3.86) gives

12

v= ea2t

which is the same as Eq. (3.91). Notice thatif, at the outset, we had simply assumed
steady-state conduction, a linear temperature variation would have been obtained.
Thus, the conduction can be said to be quasi steady, even though temperatures in
the solid are changing with time. In terms of the physics of the problem, we are
neglecting the heat loss required to cool the solid below the solidification temperature,
T,, in comparison with the enthalpy of fusion. The solid is said to be subcooled since
its temperature is below the solid-liquid equilibrium value, T;.

In closing, it is worthwhile to note that although the analytical solution Eq. (3.91)
is for a very simple phase change problem, the result that the interface moves at a
speed proportionalto (a/t)!” is foundto apply in other geometries and in more com-
plex situations (for example, bubble growth in some boiling heat transfer processes).

 

EXAMPLE3.12 An Ice-Making Process

In an ice-making process, water at 5°C flows over a plate cooled by refrigerant at — 10°C.
Whenthe ice layer is 2 mm thick, it is scraped off the plate, and the process repeats itself.
Estimate the time interval required between scrapings. Take the overall heat transfer coefficient
from the refrigerant to the plate-ice interface as 900 W/m? K. The enthalpy of fusion of ice
is 335 kJ/kg.

Solution

Given: An ice-making process.

Required: Time to form anice layer 2 mm thick.

Assumptions: 1. One-dimensional solidification.
2. Quasi-steady conduction across the ice layer.
3. Sensible heat loss of the water cooling from 5°C to 0°C is small compared

with the enthalpy of fusion.

Ice

Metal plate 
Refrigerant at 7, = -10°C

MASIMO2159

Apple v. Masimo
IPR2022-01299



MASIMO 2159 
Apple v. Masimo 

IPR2022-01299

 

3.5 MOVING-BOUNDARY PROBLEMS 207

We have shown that the Jakob number for ice formation is small; hence, the conduction
across the ice layer can be taken as quasi steady. We cannot use Eq. (3.92) for the thickness
of the layer since 7; is not a constant in this problem. However, we can proceedin a similar
manner. The surface energy at the ice-water interface is

  
 

 

 

7 IT
ko] =k) +m"h,

a s XR tw

OT . . ‘
k a. 0 if the sensible heat loss of the water is neglected

oT T, —T, . . .
k—| = -g = —— for two resistances in series

az |, sik + 1/

er dsmm” = —p—
Pat

Substituting above,

h ds _ ‘1, ~T,
rear sik + WO

This differential equation is easily solved. Separating variables and rearranging,

aa = E + a)
Integrating with s = 0 att = 0,

Th=To Ss
ply. 2k OU

From Table A.2 for ice at O°C, p = 910 kg/m?, k = 2.22 Wim K.

(O—(—10))  _ (0,002)?__0,002.t= ———+—— t = 95(910)(335 x 105), (22.22) 900” 99 8

Comments

1. A more complete solution for this type of problem is given by London and Seban
[15].

2. The student should think about the design of an ice-making machine based onthis
process.

3.5.2 Steady-State Melting Ablation

Ablative heat shields are widely used to protect structures from high heat fluxes.
Heat shields are made from a great variety of materials, including refractory metals
such as tungsten, Teflon, graphite, and silica-phenolic composites. The heat trans-
fer analysis of a simple melting ablatoris straightforward if it can be assumedthatthe
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Figure 3.29 A silica-phenolic nosecone
after arc-jet testing, showing evidence of
melting ablation. (Photograph courtesy
of Mr. J. Courtney, TRW Systems,
Redondo Beach.)

 
liquid melt is removed as fast as it is formed. On a reentry vehicle, the friction
and pressure forces will cause the melt to flow backward over the vehicle, leaving
only a thin film of negligible thermal resistance. The heat shield in Fig. 3.29 shows
evidence of undergoing melting ablation. Alternatively, in some situations, gravity
forces may be sufficient to ensure that the liquid drains quickly from the solid surface.

We consider the one-dimensional model of melting ablation shown in Fig. 3.30.
It is assumed that the imposed heat flux g, is a constant and is unaffected by the
ablation process (most often g, is affected by the ablation, and a coupled problem
involving both the gas and solid phases must be considered). After time t = 0, there
will be an initial transient as temperaturesin the solid rise until a quasi-steady state is
attained, with the surface temperature 7, at x = 0 equal to the melting temperature.
The melting rate is again denoted 7" [kg/m? s], and the surface recedesat a constant

  

 
 

i Melting point) —

 
 

 
 

To ee Figure 3.30 Schematic of
Su o x one-dimensional melting ablation.
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speed m"/p, where p is the density of the solid. The relation between m" and q,
can be obtained without knowing the temperature profile in the solid, as will now
be demonstrated.

Figure 3.31 shows a control volume located between s- and o-surfaces. The s-
surface is in the gas phase just adjacent to the solid. The o-surfaceis a fixed distance
from the interface and is located deep enough into the solid for the temperature
gradient there to be negligible. A u-surface is located in the solid phase adjacent
to the gas-solid interface. Molten material is imagined to leave through the sides of
the control volume between the s-surface and the interface at the rate rn” [kg/m?s].
Mass conservation requires that solid material should flow across the o-surface also
at the rate n"". The steady-flow energy equation, Eq. (1.4), applied to the s-o control
volume of cross-sectional area A, requires that:

Mass flow rate X Change in enthalpy = Netrate of heat inflow

m"A(hs — ho) = qsA ~ 0

where h, is the enthalpy of molten material at the interface temperature T,, and h,
is the enthalpy of solid material at temperature 7,. The enthalpy of phase changeis
hy; then h; — h, = hg, where h, is the enthalpy of solid material at temperature
T, (= T,), and

qs = ma" [hes + (hy ~ hy)]

 
or

ett qs
= SS 3.93Nes + (hy ~ hy) ( )

If the specific heat of the solid is taken to be constant, the final result is

i! is (3.94)~ hes + cp (T; - To)

The speed at which the solid surface recedes is simply m"/p.

Figure 3.31 Control volumefor the
application of mass and energy conservation
principles to steady-state melting ablation.
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 oVAle+ Ag

ale+ag

Figure 3.32 Elemental control volume in
i € €+h€ a coordinate system located on the moving
é boundary for one-dimensional ablation.

To obtain the temperatureprofile in the solid, it is necessary to solve an appropriate
form of the heat conduction equation. It is convenient to usefirst principles to derive
a special form of the equation for which the coordinate axes are located on the
moving surface, as shown in Fig. 3.32. The coordinate € is taken to be positive
measuredinto the solid, so that the velocity V at which the solid moves (from right
to left) has a negative value. For steady ablation, the temperature at any location é
is unchanging with time. Application of the steady-flow energy equation, Eq. (1.4),
to the elemental control volume AAé located between é and € + A& requires that:

Massflow rate x Change in enthalpy = Net rate of heat inflow by conduction

pVAlh|e+ag —h],] = GAle — GAle.ng
Dividing by AAé andletting AE — 0 gives

dh dq
dE dé

But

dT

q= hE and dh = c,dT
Substituting and rearranging,

d dT dT
— |k —~| — pVc,— = 0 3.95

Taking the thermal conductivity k to be constant and c, = cy, = c gives the equation
governing the temperature distribution T(&):

a°T _VaT_sa k
cera 7% 8A (3.96)

Appropriate boundary conditions for this second-order ordinary differential equation
are

€é=0: T=T,; €-«s T-T, (3.97a,b)
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The solution of Eq. (3.96) is

T= CeVine + C2

and whenthe constants are evaluated from the boundary conditions, the result is

T =T;

T, ~ T,

Thatis, the temperature profile shows a simple exponential decay. The heat flux into
the solid at the u-surface can be obtained using Fourier’s law:

dT Vv
Qu = —k — = —k(T, — T,)|—|) = —pcV(T, — To) (3.99)

dé |p-o a

An energy balance on the control volume located between the s- and u-surfaces
will show that g, differs from g, by the enthalpy of phase change absorbed at the
interface.

Notice that Eq. (3.96) could have been derived from the heat conduction equation
for one-dimensional transient conduction, Eq. (3.33), by an appropriate change of
variables (see Exercise 3-89).

= Var. (V is negative) (3.98)g

EXAMPLE3.13 Ablation of Stainless Steel

In an experiment to study laser heating, a stainless steel componentis exposed to a powerful
laser beam, and a jet of argon gas impinging on the surface sweeps away the molten metal.
The componentis initially at 300 K, andafter a short transient the surface is measured to
recedeat a rate of 230 zm/s. Estimate the total heat flux to the surface and the penetration of
the thermal response into the solid. The stainless steel properties include p = 7800 kg/m’,
c = 600 J/kg K, a = 4.0 X 10°° m’/s, hy, = 2.7 X 10° J/kg, and a melting temperature of
1670 K.

Solution

Given: Rate of surface recession of ablating stainless steel.

Required: Surface heat flux and depth of penetration of thermal response.

Assumptions: 1. One-dimensional heatflow.
2. Steady-state ablation.
3. The melt layer is thin enough for there to be a negligible temperature drop

acrossit,

4. No chemical reactions, since the argonis inert.

The surface heat flux can be obtained from Eq. (3.94). Solving for g,,

qs = m"[hg + ¢,(T; — To)I

= {(7800)(230 x 10~°)[2.7 x 10° + 600(1670 — 300)]}

1.96 X 10° W/m? (1.96 MW/m’)
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Referring to the figure, we we can take 6, to be an estimate T,
of the thermal penetration. Differentiating Eq. (3.98),

dé|29 a

a 4.0 x 107°

6; a x=y a230.0x10-6= 0.017 m (1.7 cm)

Comments
Ti

The depth of thermal penetration is seen to be small. - 6 oO

NUMERICAL SOLUTION METHODS
Mm

Although many simple steady-state and transient heat conduction problems can be
solved analytically, solutions for more complex problems are best obtained numer-
ically. Numerical solution methods are particularly useful when the shape of the
solid is irregular, when thermal properties are temperature- or position-dependent,
and when boundary conditions are nonlinear. Numerical methods commonly used
include the finite-difference method, the finite-element method, and the boundary-
element method. Thefinite-difference method was the first numerical method to be

used extensively for heat conduction. It remains a popular method, not because it is
superior to other methods for heat conduction, but because it is easier to implement
and is also the most useful numerical solution method for heat convection problems.

Thefirst step in a finite-difference solution procedure is to discretize the spatial
and time coordinates to form a mesh of nodes. Next, finite-difference approximations
are madeto the derivatives appearing in the heat conduction equation to convert the
differential equation to an algebraic difference equation. Alternatively, the difference
equation can be constructed by applying the energy conservation principle directly
to a volume element surrounding the node. In steady-state problems, a set of linear
algebraic equations is obtained with as many unknownsas the numberof nodes in the
mesh. These equations can be solved by matrix inversionor by iteration. For transient
conduction, temperatures at the current time step may be found directly using values
at the preceding time step. In some formulations, iteration may be required, since
values at the current time step are also involved. In the first applications of finite-
difference methods to heat conduction, the calculations were done by hand, limiting
consideration to a coarse mesh with relatively few nodes. Because the accuracy of a
finite-difference approximation increases with numberof nodes, these solutions were
inadequate.

The availability of mainframe digital computers in the late 1950s completely
changedthe picture, and by the 1960s, engineers could use as fine a grid as was nec-
essary to meet their requirements. The 1970s saw increased use of the programmable
calculator to obtain finite-difference solutions to heat conduction problems, which
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meant that an engineer would write a computer program for the specific problem
under consideration. In the 1980s and 1990s, powerful personal computers have
becomeavailable. Furthermore, there is no longer the need, noris it cost-effective,
for engineers to write their own computer programs to implementa finite-difference
solution method. There are many standard computer programs available for this
purpose. Some examplesare listed at the end of this chapter [16-19]. Thus, in Section
3.6, finite-difference methods are presented with the modest objective of giving the
student an appreciation of the essential ideas involved, so that the available computer
programscan be usedintelligently. Any serious endeavor to develop engineering tools
based on finite-difference solution procedures should be preceded by an appropriate
course in numerical analysis.

Finite-element methods are widely used in structural mechanics and are also appli-
cable to heat conduction problems. An object is divided into discrete spatial regions
calledfinite elements. The most common two-dimensional elementis the triangle, and
the most common three-dimensional element is the tetrahedron. The finite-element

method allows the heat conduction equation to be satisfied in an average sense over
the finite element; thus, the elements can be muchlarger than the control volumes
used in finite-difference methods. The use of triangles or tetrahedrons for elements
allows the approximation of complex and irregularly shaped objects. Application of
the method leads to a set of algebraic equations, which are solved by matrix inver-
sion or iteration. Compared to finite-difference methods, the formulation of these
equations is considerably more involved and requires more effort, as does writing a
computer program to implement the procedure. However, once written, finite-element
computer programs tend to be more versatile than their finite-difference counterparts.
Choice of which methodto use is perhaps dictated by the objective rather than by the
intrinsic virtues of the method. For example, calculation of temperature variations
in solids is often required for the purpose of determining thermal stresses. Since the
finite-element method is preeminent for stress calculations, many standard computer
codes use the finite-element method to calculate both temperatures and stresses in
one package.

A newer developmentis the boundary-element method, in which the boundary of
the object is divided into finite elements, and there is no need to consider the interior
at all. Although this methodis attractive for simpler heat conduction problems, its
versatility and generality have yet to be established.

3.6.1 A Finite-Difference Method for Two-Dimensional Steady Conduction

Consider two-dimensional steady conduction with volumetric heat generation and
constant thermal properties. Using Cartesian coordinates, Fig. 3.33 shows a finite
control volume Ax by Ay of unit depth surrounding node (m, n) within the solid.
The m and n indices denote x and y locations, respectively, in a uniform mesh of
node points. For convenience, we will use compass directions to denote the faces of
the element (N, S, E, and W). The energy conservation principle, Eq. (1.2), applied
to the finite control volume reduces to

0=0+9,
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mnt

Figure 3.33 Finite control volume
Ax by Ay by 1 surrounding node
(m,n) at the location (x,y) used to
derive the difference equation for
two-dimensional steady conduction.

 
The heattransfer Q is by conduction across the four faces of the element; thus,

0 = Orlw + Als — Qele — Qylv + 4Q, (3.100)

since the sign convention in Eq. (1.2) requires heat transfer into the system to be
positive. The heat conduction across the left-hand face of the elementis

: oT
cw = —k 2] AyeQ.|w 3x \y >

To approximate the derivative of T(x, y) we will assumea linear temperature gradient
between the nodes (m — 1, n) and (m,n); then

: Tina — Tm-1.91
Ox|w = —k mn = 1, Ay

which is seen to be positive for T,,~1,. > Tm,n. Similarly, for the right-hand, bottom,
and top faces,

Dinvin, ~ Disa
Ox\e = kTAY

- Dasa ~~ Dina

Q,|s = eeeT
/ Tin, —Ty nQy|y = ~k—Ax

y Ay
wn

The internal heat generation is simply Q! times the volume of the element:

AQ, = Q)"AxAy-1
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Substituting in Eq. (3.100), multiplying by Ax/kAy, and rearranging,
ryt

21 + BYEmn = Tin + Tain + BTnnt+ Tnet) + o Ax? (3.101)
 

where 8 = (Ax/Ay)* is a geometric mesh factor. For a square mesh Ax = Ay,
8 = 1, and no internal heat generation,

ATnn = TFninti Tn+1,n + Tnn-1 + Tin-1,n (3.102)

which simply states that the temperature at each node is the arithmetic average of
the temperatures at the four nearest neighboring nodes.

 
Figure 3.34 Nodal mesh for steady conduction in a rectangular plate.

Boundary Conditions

Figure 3.34 shows a complete mesh for a rectangular plate of dimensions X,Y.
There are M node points in the x direction and N node points in the y direction.
If the boundary condition is one of prescribed temperature, the temperatures at the
boundary nodes are known.If the boundary condition is one of prescribed heat flux
or convection, then the finite-difference form of the condition is obtained by making
an energy balance ona finite control volume adjacent to the boundary. For example,
consider the convection boundary condition shownin Fig. 3.35, and assume Q,” = 0
for simplicity,

Net heat conduction,Heat convection across _
into the volume face atx = 0
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Figure 3.35 Finite control volume used

to derive the difference equation for a
convective boundary condition at x = 0:

 
~ two-dimensional steady conduction.

Asbefore,

Orle = —peatAy

Oyls = —kHaste ax

Q,|vy = —kFaniaTe “
and

Oxlo = he(Te — Ty n)Ay

Substituting in the energy balance and taking Ax = Ay,

h-Ax
k

 1

Ton + Fin + Ty n41) ~ 2T\,n 7 (T. ~ Tin) =0

A mesh Biot numberis defined as Bi = h,Ax/k; then solving for T,,, gives

1 1 :
Tin =24Bi T2,n 7 Tint + Tin+) + BiT, (3.103)

Table 3.7 gives similar results for a variety of boundary conditions, including interior
and exterior corners. In this table, a simplified node numbering scheme is used for
clarity.
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Table 3.7 _Finite-difference approximations for steady-state conduction, square mesh. 

1. Interior node

Plane surface,
convection

Plane wall,
knownheatflux

Exterior corner,
convection

Interior corner,
convection

 
1

To a qi t Tat Ts + 1)

 

 
 

Interior node
near a curved

non-isothermal
surface

 

 

 

1 1 :

To — 2+Bi T, + ga + Ts) + Bil.

Bi = fear

1 I qs Ax= =T,+ -(T) + Ts) +To 2°! qt 3) Ik

(for an adiabatic surface or plane of symmetry
set g, = 0)

 

 

 

 

 

 

  

 

1 1 ;To = 1+Bi cn + 1) + BiT,|
h, Ax

Bi = —
1 TR

i = ; Ty + Ty + LT, + Ty) + BIT0 34Bi 2 3 3 1 4 lie
h. Ax

Bi = —, k

l Ti ThT. = ———— +° aoecs 1+b
Te Ty

a(l+a) b(1+b)
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 T(0,y)

Figure 3.36 Schematic of rectangular
T (x,0) plate with prescribed edge temperatures.

Solution Procedures

Consider the simplest case of a rectangular plate with prescribed boundary temper-
atures, as shownin Fig. 3.36. Referring to Fig. 3.34, the plate has dimensions X and
Y, with M and N nodesin the x and y directions, respectively; then Ax = X/(M —1),
Ay = YAN —1). Equation (3.102) is a set of (M —2) x (N — 2) linear algebraic equa-
tions in the (M — 2) x (N — 2) unknowninterior nodal temperatures T,,,. If a coarse
mesh is chosen sothat there are relatively few nodes, matrix inversion or Gaussian
elimination can be usedto solve the equation set. In writing a computer program to
effect the solution,all that is required is to call on a standard subroutine. However,
the accuracy ofa finite-difference method will increase as the mesh size is reduced
(provided round-off error in the numerical computations is not introduced). Thus,
typically many nodes will be used, perhaps 100 or more. Then matrix inversion is
uneconomical, and more sophisticated elimination methods should be used to take
advantage of the sparseness of the matrix generated by the simple finite-difference
approximations described here. Such methods are widely used in practice. Alterna-
tively, iterative solution methods can be used. A simple and easily programmediter-
ative method is Gauss-Seidel iteration, which proceeds as follows:
1. A reasonable initial guess T°,is made for each of the unknowninterior nodalm,n

temperatures. This is iteration zero.

2. New values 7), are calculated by applying Eq. (3.102) to each node sequen-
tially. Initial T° values or, if available, new T! values are substituted in the
right-hand side of the equation.

3. The mesh is swept repeatedly until, at iteration k, the temperatures at each
node are seen to change by less than a prescribed small amount,

l _ ein
a <e (3.104)  

The finite-difference solution is then said to have converged to the exact solu-
tion of the difference equation.

The system of linear algebraic equations, Eq. (3.102), is diagonally dominant;
that is, when written in matrix form, the largest elements on each row of the co-
efficient matrix are on the main diagonal. The Gauss-Seidel procedure applied to
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such a system always converges uniformly to the proper solution and never becomes
unstable; however, for a large number of equations, the convergence can be slow.
Many methods have been devised to obtain faster convergence, for example, the
alternating-direction implicit and successive over-relaxation methods. Such methods
are described in the references listed in the bibliography at the end of the text.

Surface Heat Flux

Once the temperature field is obtained, it is sometimes necessary to determine
the heat flux at a boundary surface. We make an energy balance onafinite control
volume adjacent to the boundary, as shown in Fig. 3.37, and proceed as in the
derivation of the boundary condition, Eq. (3.103).

Net heat conduction_Heat flux across
into the volume face atx =O 0

As before,

- Th a" T, n
cs 4 —k —————-Ag le Ax y

: Tin — Tin-1 Ax
= -—kkQ,|s Ay 2

T) n+l —_ T; n Ax
a —k —qwxX~ —Orn Ay 2

and

Orlo _ qs Ay

Intl

Figure 3.37 Finite control volume used to
derive a difference equation for the surface

x=0 heat flux: steady two-dimensional conduction.
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Substituting in the energy balance, taking Ax = Ay, and solving for q, gives
k 1

i= 7 2T\n — Ton - 5p Fin-1 + Ti,n+1) (3.105)

Equation (3.105) is simply item 3 of Table 3.7 rearranged to give g,. Equation (3.105)
is quite general; however, for a convective boundary condition, the surface heat can
be just as easily calculated from Newton’s law of cooling as g, = h.(T, — Tin).

 

EXAMPLE3.14 Steady Conduction in a Square Plate

An 8 X 8 cm square plate has one edge maintained at 100°C; the other three edges are
maintained at 0°C. Use the finite-difference method to determine the temperature distribution
in the plate. Compare the result with the exact solution given in Section 3.3.1.

Solution

Given: Square plate with edge temperatures prescribed.

Required: Steady-state temperature distribution using the finite-difference method.

Assumptions: Temperatures are constant across the thickness of the plate to give a two-
dimensional problem.

The figure shows the mesh and the prescribed temperatures along the edges. There are nine
interior nodes, but symmetry about the centerline results in only six unknown temperatures,
whichare labeled 7,, 7,,..., Ts as shown. From Eq. (3.102), these temperatures are given
by

1

T, = 4% + T, +0 + 100)
1

T) = gta + T, + T, + 100)
1

Ty = 70s +l +0+ Ts)
1

T4 = gs + Ts + Ts + Tr)
1

T; = yO + 1s +0+ Ts)  
1

Ts = qt Ts + Ts + Ts)

For an initial guess, a linear variation in y is assumed, and the preceding equations are
evaluated in order, using latest available values. For example, when T, is evaluated, the
new value of 7, just obtained is used. The process is repeated until the convergence is
satisfactory. The following table shows16 iterations. Also shownis the exact solution obtained
by evaluating Eq. (3.30).

MASIMO 2159

Apple v. Masimo
IPR2022-01299



MASIMO 2159 
Apple v. Masimo 

IPR2022-01299

 

3.6 NUMERICAL SOLUTION METHODS 221

Temperature Ti T Ts T4 Ts T¢
Initial guess, °C 75 75 50 50 25 25
Iteration level:

k= 56.25 65,62 32.81 39.06 14.45 16.99
k=2 49.61 59.57 25.78 32.03 10.69 13.35
k=4 44.61 54.43 20.51 26.76 8.02 10.70
k = 8 42.97 52.79 18.86 25.11 7.20 9.88

k = 16 42.86 52.68 18.75 25.00 7.14 9.82
Exact solution 43,20 54.05 18.20 25.00 6.80 9.54
Percent error 0.80 2.54 3.01 0.00 5.08 2.93

Comments

1. Notice that the center temperature, T,, is the average of the edge temperatures.

2. At the corners where the temperature is discontinuous, the average value of 50°C can
be assigned. Assigning the average value of 50°C at the corners ensures a zero net heat
flow into the corner control volume; however, these values are not used in the calculations.

3.6.2 Finite-Difference Methods for One-Dimensional Unsteady Conduction

Consider one-dimensional unsteady conduction with no internal heat generation and
constant properties. Figure 3.38 showsa finite control volume Ax - 1-1 surrounding
node m at location x in the solid. Figure 3.39 shows the mesh where the time
coordinate is discretized in steps At and the index i denotes time. The energy
conservation principle, Eq. (1.1), is applied to the finite control volume overa time
interval At, from time step i to step (i + 1):

AU = QAt (3.106)

The increase in internal energy from time step i to step (i + 1) is

AU = pc(Ax + 1-+1)(Ti*! - Ti)
The conduction over the time interval Ar is taken as

QO,|wAt _ _ pln ~ Tn=1 (4 . 1)At
Ax

O,|gAt _ — pint 7 En (y . 1)At
Ax

where the fluxes have been evaluated at time step i. Substituting in Eq. (3.106),

Figure 3.38 Finite control volume
Ax by 1 by 1 surrounding node
m at location x used to derive

the difference equation for one-
dimensional unsteadf¥ASEMOiad59
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Figure 3.39 Nodal mesh
for one-dimensional unsteady
conduction.

 
dividing by Ar, and rearranging gives

Tit) = FoTi_, + Ti4,) +—2Fo)T! (3.107)hi

where Fo = aAt/Ax? is the mesh Fourier number. Equation (3.107) is an explicit
relation for T/*', the temperature of node m at the (i + 1)th time step, in terms
of temperatures at the previous time step. In this explicit method, no iteration is
required. Using giveninitial temperatures at time t = 0, T°, the new temperatures,
T,,, can be calculated. Temperatures at the boundary nodes 0 and M are fixed by
the specified boundary conditions. The process is then repeated, marching forward
in time.

Although simple, the explicit method has a major drawback: the allowable size
of time step is limited by stability requirements. To avoid divergent oscillations in
the solution, the coefficient for 7), in Eq. (3.107) must not be negative. That is,

Fo = (3.108)NIlRe
Since the spatial discretization step Ax is usually chosen to give a desired spatial
resolution of the temperature profile, Eq. (3.108) sets a limit on the timestep:

Ax?
Arts ——

2a

If the boundary condition is other than that of prescribed temperature, the associ-
ated stability requirement is more stringent than Eq. (3.109). Consider the convective
boundary conditionillustrated in Fig. 3.40. An energy balance requires that, during
the time step Ar,

(3.109)

Increase in internal _ Net conduction,Convection across
energy within volume into volume boundary
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Figure 3.40 Finite control volume used
to derive the difference equation for a
convective boundary condition at x = 0:

one-dimensional unsteady conduction.

 
or

pea -1)(7)*! -— Tj) = kd: purToAt + h.(1->1(Ti — Tj)At
Rearranging and solving for the new nodal temperature, 7j*?,

Tj*! = 2Fo(7j + BiT/) + (1 — 2Fo —2FoBi)7j (3.110)

where again Bi = h,Ax/k. For stability, the coefficient of T{ must not be negative:
1 — 2Fo —2FoBi = 0

or

1<=

Fo = x + BD (3.111)
Since the Biot numberis positive, Eq. (3.111) is always a more stringent stability
condition than Eq. (3.108).

The stability criterion limits At to no more than (Ax)’/2a, and less if the mesh
Biot numberis not small. Thus, if we wish to improve accuracy by halving the mesh
size Ax, the time step Ar must be divided by four. For accurate solutions using a fine
spatial mesh size, alternative methods are available. The implicit method evaluates
the conduction fluxes at time step (i + 1) rather than at step i:

i+]_pitQ,|wAt = — ptTt= La Lat
P+)  pitl. T. T,

Q,|zAt =-k a ne (1: 1)At

The new form of Eq. (3.107) is
Fo(Tit) + Tit!) + Th

1+ 2Fo

There are three unknown temperatures in each nodal equation. The set of algebraic
equations is tridiagonal; that is, when written in matrix form, all the elements of
the coefficient matrix are zero except for those that are on or to either side of the
main diagonal. To advance the solution through each time step, Gauss-Seidel iter-
ation works well.* At time step (i + 1), the nodal equations are swept repeatedly

Tit = (3.112)

4 Direct methods, such as successive substitution, may also be used when the equationsetis tridiagonal.
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226 CHAPTER 3 MULTIDIMENSIONAL AND UNSTEADY CONDUCTION

until convergence to sufficient accuracy is obtained. The implicit method is uncon-
ditionally stable, and the choice of the time step size At is dictated by accuracy
rather than stability considerations. As mentioned in Section 3.6.1, there are itera-
tion schemesthat give faster convergence than Gauss-Seideliteration, and these may
be found in numerical methods texts. When the boundary condition is other than that
of prescribed temperature, an energy balance must be used at the boundary control
volumes, as was shownfor the explicit method, but with spatial derivatives evalu-
ated at time step (i + 1). Table 3.8 lists both explicit and implicit forms for a variety
of boundary conditions. Table 3.9 lists corresponding results for two-dimensional
unsteady conduction.

In addition to the explicit and implicit methods, a third method often used is the
Crank-Nicolson method. Whereas the explicit method evaluates conduction fluxes
at the old time step i, and the implicit method uses the new time step (i + 1), the
Crank-Nicolson method uses an average of the values at time steps i and (i + 1).
The nodal equation js then more complicated (see Exercise 3-128). For a given mesh
size, the Crank-Nicolson method gives more accurate results than either the explicit
or implicit methods. Althoughoscillations can occur, they never becomeunstable.

 

EXAMPLE3.15 Convective Heating of a Resin Slab

An 8 cm-thick slab of resin is to be cured under an array ofair jets at 100°C, as shown
in the accompanying sketch. If the initial temperature of the resin is 20°C, determine the
temperature of the back face after one hour. Take the heat transfer coefficient as 40 W/m? K,
and for the resin p = 2600 kg/m’, c = 800 J/kg K, k = 1.0 W/m K.

Solution

Given: Slab, convectively heated on one face.

Required: Back face temperature after one hour.

Assumptions: 1. The back face is well insulated.
2. The heattransfer coefficient h, is uniform over the surface, and k, p, and

c are constant.

3. Edge losses are negligible.

T= 100°C
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The explicit finite-difference method will be used. Let Ax = 2 cm; then the mesh size—based
Biot numberis

a h,.Ax _ (40)(0.02) _
Bi= = Tq 7 08

The stability criterion, Eq. (3.111), is

I |
Fo = ———— = ———— = 0.277
°*20+Bi 21 +0.8)

Choose Fo = 0.25, so that the time step is

Fo(Ax)*__(0.25)(0.02)? ;=~ = Wpeagosweeny~ 2088 G.“ a 1.042600 X 800) 8 s 3.47 min)
Equation (3.107) fot the interior nodes becomes

Ty= [1 ~ 2)(0.25)]T;, + 0.257),1 + Ts)

= 0.57, + 0.25(T,mt nnap T+)

and Eq. (3.110) for the surface node is

T;*' = (2)(0.25)(Tj + 0.87.) + [1 — 2(0.25) — 20.25)(0.8)] 7;

= 0.5(7] + 0.87,) + 0.17;

To obtain an appropriate equation for node 4 at the adiabatic surface, we simply set Bi = 0
in Eq. (3.110) to obtain

T,*' = (2)(0.25)Tj + [1 — (2)0.25)]7) = 0.5(7! + Ti)

The initial condition is T = 20°C; thus, the temperaturesat the first time step are

Tj) = 0.5[20 + (0.8)(100)] + 0.1(20) = 52
T}| = 0.5(20) + 0.25(20 + 20) = 20
T; = 0.5(20) + 0.25(20 + 20) = 20
T; = 0.5(20) + 0.25(20 + 20) = 20

Ty = 0.5(20 + 20) = 20

and at the second time step,

T; = 0.5[20 + (0.8)(100)] + 0.1(52) = 55.2
T? = 0.5(20) + 0.25(52 + 20) = 28.0
T; = 0.5(20) + 0.25(20 + 20) = 20
T? = 0.5(20) + 0.25(20 + 20) = 20
T; = 0.5(20 + 20) = 20

and so on. The results for 20 time steps obtained using a programmable hand calculator
are given in the following table. Also shownis the surface temperature Ty, calculated using
computer program COND2, whichis essentially exact.
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Time Time To T, To T; T, To (exact)

step min °C °C °C °C °C °C

0 0.00 20.00 20.00 20.00 20.00 20.00 20.00

1 3.47 52.00 20.00 20.00 20.00 20.00 46.32
2 6.93 55.20 28.00 20.00 20.00 20.00 53.30
3 10.40 59.52 32.80 22.00 20.00 20.00 57.68

4 13.87 62.35 36.78 24,20 20.50 20.00 60.85
5 17.33 64.63 40.03 26.42 21.30 20.25 63.32
6 20.80 66.48 42.78 28.54 22.32 20.78 65.33

i 24.27 68.04 45.14 30.54 23.49 21.55 67.01
8 27.73 69.37 47.22 32.43 * 24.77 22.52 68.45

9 31.20 70.55 49.06 34.21 26.12 23.64 69.71
10 34.67 71.58 50.72 35.90 27.52 24.88 70.82
11 38.13 72.52 52.23 37.51 28.96 26.20 71.81
12 41.60 73.37 53.62 39.05 30.41 27.58 72.72
13 45.07 74.15 54.92 40.53 31.86 28.99 73.54

14 48.53 74.87 56.13 41.96 33.31 30.43 74.31
15 52.00 75.55 57.27 43,34 34.75 31.87 75.02
16 55.47 76.19 58.36 44.68 36.18 33.31 75.69
17 58.93 76.80 59.40 45.97 37.59 34.75 76.32
18 62.40 77.38 60.39 47.23 38.97 36.17 76.92
19 65.87 77.93 61.35 48.46 40.34 37.57 77.50
20 69.33 78.47 62.27 49.65 41.67 38.95 78.05

Comments

Notice that, for this crude calculation using Ax = 2 cm, the stability criterion is not
a significant limitation on the time step. However, if Ax were reduced to, say, 0.5 cm to
improve spatial resolution of the temperature profile, At becomes only 13 s. Even this time
step poses no problem to present-day persotial computers.

 

EXAMPLE3.16 Quenching of a Slab with Nucleate Boiling

A 4 cm-thick slab ofsteel initially at 500 K is immersed in a water bath at 310 K and Latm.
Under these conditions, nucleate boiling (see Chapter 7) occurs on the slab surface; the heat
transfer coefficient is very large and is strongly dependent on temperature difference. An ap-
propriate empirical equation for h, under these conditions ish, = 140(7 — Tea)? Wim? K,
whereT,q: is the saturation temperature (boiling point). Determine the temperature profile across
the slab for a period of 30 s. For the steel, take k = 54 W/mK, a = 1.5 X 10°° m’/s.

Solution

Given: Slab immersed in water; fiucleate boiling on surface.

Required: Temperature profiles.

Assumption: Edge effects negligible to give a one-dimensional problem.
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Theimplicit finite-difference method will be used for this problem, and the results will be ob-
tained using a computer. Since the prob-
lem is symmetrical aboutthe center plane |
of the slab, node M = 21 is located on |
the center plane as shown. Choosing a

|t
1 j2 |3 L

time step of 1 s, the mesh Fourier num- 2 a2
ber is

aAt—(1.5 x 10°5)(1)
° Ae (0.02/20)

Temperatures at the interior nodes m = 2,...,M —1are given by Eq. (3.112):
: I : . .

Tit _ 15 Tit + Tis + Tim I ue Dus) | ( m+i m D |
1 ; ; .

7 31 [1544 + Th) + T,,|
The temperature at node M is given in Table 3.8, item 4:

Tit —————— 2 15 Titl + Tiw= THepasg UTA+ Thr]
: 1 . :

Ty! = = [307391 + T3,]31

The temperature at the surface node m =|is given in Table 3.8, item 2, with T, replaced
by Tyat!

ist 2(15)(73*! + BiTsa) + Ti
' 1 + 2(15) + (2)(15) Bi

The Biot numberis not a constant in this problem and, whenthe implicit formulation is used,
must be evaluated at the current time step:

— h,Ax _ 140(T)*! — Ty)?(0.02/20)
Bi= 54
 

= 2.59 X 10-7°(T)7) = Tra)?

Thus,

30(T;*! + 2.59 x LOTT! = To)? Toa) + Ti
31 + 7.78 x 10-2(T/*! — Ty)?

Since T/*! appears on both sides ofthis equation,it should be solved for byiteration. A flow
diagram for a simple program based on Gauss-Seidel and Newtoniteration follows. Sample
results are given in the accompanyingtable.

 i+] _
T;

Node 1 6 11 16 21
Location x, cm 0 0.5 1.0 1.5 2.0
Nodal temperatures, K:

t= 0s 500.0 500.0 500.0 500.0 500.0
1 394.9 471.0 492.0 497.6 498.8
2 390.8 451.2 481.2 492.8 495.6
5 387.6 425.8 455.1 472.4 478.0

10 385.4 409.4 429.3 442.4 447.0
20 382.5 393.3 402.3 408.2 410.2
30 380.5 385.6 389.8 392.6 393.5
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START

Readinitial values

Begin Gauss-Seideliteration

 

 
 
  
 

 
 

 
 

 2 Fo (Ti+!+BiT,.)+T/
1+2 Fo +2 FoBi

Compute nonlinear boundary
condition by Newtoniteration

Ut) =pOF
?

Fo (TEEN + lets1) fede1+2 Fo

i+] i

ritis 1+2 FoTitl=

 
 

 
 

Comments

1. The effect of Ax and Ar on the accuracy of the solution should be explored.

2. The task of writing a computer program is given as Exercise 3-130.

3.6.3 Resistance-Capacitance (RC) Formulation

A useful alternative to the formulations for finite-difference numerical methods pre-
sented in the previous sections is the resistance-capacitance formulation. Consider
multidimensional unsteady conduction with internal heat generation andvariablether-
mal properties. Figure 3.41 shows the node ofinterest, m, surrounded by a volume
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Figure 3.41 Finite control volume
AV,, surrounding node m, with thermal
resistances R,,,,: resistance-capacitance

2 formulation.

AV,, of thermal capacitance C,, = PmCnAV». The surrounding nodes are denoted
n, and conduction from the volume AV, into volume AYV,, is expressed in terms of
a thermal resistance R,,,. An energy balance on volume AYV,, over the time interval
At gives

Ti +] Ti Ti - Ti
Cu cu an = mn + "AVin 3.113Ar haRann @; ( )an

where the superscript refers to the time step, as before. Equation (3.113) is an explicit
formulation. Although written for an interior node, Eq. (3.113) can also be applied
to boundary nodes with the resistances R,,, evaluated accordingly. The concepts
involved here are, of course, identical to those introduced for elementary thermal
networks in Sections 1.4 and 2.3. Notice that when properties are temperature-
dependent, the capacitance C,,, resistances R,»,, and source Q." are evaluated at
time step i to preserve the explicit formulation. If an implicit formulation is desired,
the driving potentials (7,, — T,,) must be evaluatedat time step (i + 1). However, to
have a fully implicit formulation, C,,, Rinn, and Qu" must also be evaluated at time
step (i + 1), which can slow downtherequired iteration procedure. Thus, the explicit
formulation is usually preferred when this resistance-capacitance representation is
used.

Solving Eq. (3.113) for Ti+! gives

At | ;|- fstn +a

 
rit = (3.114)   O!"AV a So a

Again, a satisfactory condition for stability is that the coefficient of T’, should not
be negative:

 At 1
1- — =0 3.115Cn — Rnn (3-15)
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The resistance-capacitance representation is usually applied to problems that have
complicated boundary conditions, that require a variation in the size and shape of
volumes AV,,, or for which thermal properties are temperature-dependent. Thus, the
stability criterion must be evaluated for each node, and a time step chosen such that

Cn

>(U/Rmn)
a min

(3.116)

That is, it is the most restrictive nodal equation that controls the allowable time step.
Table 3.10 gives the volumes AV,, and resistances R for interior nodes in the

Cartesian, cylindrical, and spherical coordinate systems shown in Fig. 3.42. Table
3.11 shows examples for boundary nodes in Cartesian coordinates.

The resistance-capacitance representation is also widely applied to systems-level
thermal analysis. Figure 3.43 shows how a complicated system is divided into ele-
ments. At this level, the representation is equivalent to the lumped thermal capacity
approach of Section 1.5. The major advantage of the RC representation is the ver-
satility of resulting computer programs. The equation-solving routines can be written

&

Ry
x

as

 
(b) Cylindrical (c) Spherical

Figure 3.42 Finite control volumes AV,, and resistances R in Cartesian,

cylindrical, and spherical coordinates for the resistance-capacitance formulation.
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Table 3.10 Internal nodal resistances in Cartesian, cylindrical, and spherical coordinates.

Coordinate System  

   

   

 

 

Cartesian Cylindrical Spherical

Coordinates X,Y, Z 40,2 r, , 0

Indices m,n,l m,n, l m,n, l

Volume element Ax Ay Az r, ArAdAz r2 sin 0ArAg@AG

R Ax Ar Ar
me Ay Azk (rm + Ar/2)AbAzk (Ym + Ar/2)? sin OADA 6K

R Ax Ar Ar
us AyAzk (Mm — Ar/2)AdAzk (7m — Ar/2)? sin OAbAGK

R Ay ry Ad Ad sin 0
" Ax Azk Ar Azk Ar A6k

R Ay r,Ad Ad sin 0
= Ax Azk Ar Azk Ar A6k

R Az Az A@
* Ax Ayk rn AArk sin(@ + A@/2)ArAgk

R Az Az A@é
~ Ax Ayk rm A@Ark sin(@ — A6/2)ArAdk 

in terms of the very general capacitance C,, and resistances R,,,, with specialization
of these quantities relegated to subroutines prepared for a particular problem. It is
usualpractice to also allow for the possibility of radiation heat transfer between the
volume elements; Eq. (3.113) then becomes

7 7 Te Dn; ~~ Ti i, _ r;, Aut
Cm At = > Reond + > Rad + Q, AV, (3.117)nin n man

where Ron? and R™4 are conduction andradiation resistances, respectively. Referring
to Section 1.3.2, Eq.‘(1.17) becomes

Qin = AnAimo(Ts ~ T;)

= AnFamo(T? + T2)(Tp + TMT, — Tn)

Hence,

rad |
mun Ay, Fimo(T? + T2)(T, 7 Ty)at (3.118)

In general, the transfer factors Y,,, depend on the geometry and emittancesofall the
surfaces making up an enclosure andare difficult to calculate. However, computer
programs are available for this purpose (or simple approximations are used).
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Table 3.11 Control volumesand resistances for two-dimensional Cartesian coordinates,
Ax = Ay.

Item Configuration

l.

Control Volume and Resistances

  
 

 
Exterior corner, convection

 
Interior corner, convection

 

 

 

 

 

 

 

AV = (Ax)?

1

Roy = Ror = Ros = Rog = k

(Ax)?
AV =

2

1 2

Ro. = Ee Ron = Ro = k
1

R =>
Oe h.Ax

(Ax)?AV =
2

1 2

Ro = ke Roo = Ro3 = k

Q, = q,Ax

(Ax)?AV =7 4

R Ro = 2
OL = No. = k

1
Roe =>=—l

°e hhAx

3(Ax)?AV =
4

2

Ror = Rog = k
1

Ro. = Rox = k
1

R =
Oe h, Ax
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Radiator panel

Heatpipe

Condenser  
 

Two-phase fluid in

Minlt), Xip(th, Tig aeink node
Two-phase/ . |

single-phase interface Radiator panel nodes 
Heatpipe condenser nodes 

 Liquid out. Heatpipe evaporator nodes
Mou(O, Tour) Condenser wall nodes

Fluid nodes
 

(a) (d)

Figure 3.43 RC representation of a spacecraft heat rejection
system. (a) The physical system. (b) The nodal network.

Computer programsbased on the resistance-capacitance representation have found
very wide industrial use, particularly in the aerospace industry. Popular examples
include SINDA [16] and MITAS [17]. Although simple in concept, these programs
have been refined over many years andare efficient, reliable, and convenient to use.
Other software that can be used for conduction calculations include PHOENICS[18]
and COMPACT[19].
 

EXAMPLE3.17 Asymmetrical Heating of a Cylindrical Rod

A long, 9 cm—diameter ceramic rod, initially at 20°C, is exposed to a radiation heat flux on
one side such that g, = 5000cos ¢, 270° < ¢@ < 90°, and is insulated on the other side,
gs = 0, 90° < # < 270°. Determine the temperature response of the rod. For the ceramic,
take p = 3000 kg/m’, k = 5 W/mK,andc = 800 J/kg K.

Solution

Given: Ceramic rod heated on one side, insulated on the other.

Required: Temperature response, T(r, @, ft).

Assumptions: 1. Constant properties.
2. No axial variation of temperature.
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‘ “

Theexplicit resistance-capacitance formulation described in Section 3.6.3 will be used. Equa-
tion (3.114) gives the temperatures at the interior nodes; for Q’” = 0,

At 1 \,,,At i
1GDR) t GR |

Choosing Ar = 1 cm, Ad = 30° = 0.5236 rad, and Az = 1 m, Table 3.10 gives the
volume element as

AV = fnArAdAz = rq, (0.01)(0.5236)(1) = 5.236 X 10777,

and C,, = pcAV,, = (3000)(800)(5.236 x 1073)r,, = 1.257 X 1047,,. Also from Table 3.10,
the nodal resistances are

  i+]
T, ~~   

 Re Ar _ 0.01 _ 3.820 x 1073
On + Ar/DAGAZK—(7m + 0.005)(0.5236)(1)(5) rm + 0.005

R= Ar _ 0.01 _ 3.820 x 1073
(7, — Ar/2)AdAzk (rn — 0.005)(0.5236)(1)(5) 1, — 0.005

hn A @ Vin (0 ' 5236)=C= 1 .Rus=ArAck~©.0DUG)~LOA?
Ria- = Ray = 10.477,

A surface node for 270° < @ < 90° is shown in the accom-
panying figure. For this half-volume,

Cn = 3(1.287 x 10*)(0.045)  
= 282.8

Ar 0.01
SS...=9549 Xx -2Ro=G)— Ar/DAdbAck~0.045 —0.005\0.5236(D5) 1?*10

_ __roAb__ (0.045)(0.5236) _ 549sat
(Ar/2)(Az)(k) - (0.005)(1)(5)

R,- = Ray = 0.9425

QO, = qpr,AbAz = (5000 cos $)(0.045)(0.5236)(1) = 117.8c0s @
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The same values of C,,, Roi, Ri+, and R,— apply to the surface nodes for 90° < d < 270°,
but O, = 0.

Thestability criterion for the explicit method is given by Eq. (3.116):

Cy< {StaAt + [s (L/Riyy)|on

The minimum value is obtained for r,, = 0.005 m, for which

  

 
Cn _ (1.257 x 10*)(0.005)

>,,C/Rnn) (0.005 + 0.005) 4 (0.005 — 0.005) 1 \ 1
(3.820 x 10-3) (3.820 x 10-3)_© (10.47)(0.005)©(10.47)(0.005)

= 1.545

Hence, choose At = 1.0 s,

Sample results are shown below,

Time Nodal temperatures, °C

[s] 35 32 2 5 25 15a

0 20.0 20.0 20.0 20.0 20.0 20.0
60 32.9 20.6 20.0 20.0 26.5 20.0

120 39.4 22.8 20.1 20.0 29.9 20.2
180 44.3 25.4 20.6 20.1 32.8 20.7
240 48.4 28.0 21.3 20.3 35.4 21.3
300 52.0 30.5 22.2 20.6 37.8 22.2
360 55.1 32.8 23.2 21.2 40.1 23.2
420 58.0 35,1 24.4 21.9 42.3 24.3
480 60.6 37.2 25.7 22.8 44.4 25.6
540 63.0 39.3 27.1 23.8 46.5 26.9
600 65.3 41.3 28.5 25.0 48.5 28.3

 

 
3.6.4 A Finite-Difference Method for Moving-Boundary Problems

Finite-difference methods have proven invaluable for analyzing moving-boundary
problems. One important application has been the calculation ofthe thermal response
of ablative heat shields on reentry vehicles. It is doubtful whether Project Apollo
could have been successful without the use of such methods for the design of the
heat shield on the command module. As an example, we will consider a simple
one-dimensional transient ablation problem, The coordinate system is fixed to the
surface so that the solid can be imagined to flow at a negative velocity V through the
plane at x = 0, as shownin Fig. 3.44. A finite control volume Ax - 1+ 1 surrounds
node m at location x. An energy balance on the control volume over time interval
At requires that

Increase in internal Net conduction,Net inflow
‘i =. + (3.119)energy within volume into volume of enthalpy
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Figure 3.44 Finite control volume Ax by 1 by 1 surrounding node m at location x
used to derive the difference equation for one-dimensional transient ablation.

Notice that Eq. (3.119) is a special form of the unsteady-flow energy equation for
an open system. The increase in internal energy from time step 7 to step (i + 1) is

AU = pe(Ax + 1+ 1)(T)*! — Ti)

To obtain an implicit formulation, the conduction heat flows are evaluated at time
step (i + 1):

Tit a Tit
Qx|wAt = —k-*——"—1(1- 1)At

Ax

. Titl _ Tit
Q,|gAt = — kmlam -1)At

Ax

The enthalpy flow poses a special problem. Perhaps the obvious approachis to write

Tit + Tit}

mnh|wAt = pov(1 -1)At
i+] Titt
ese

mh\|eAt = pev-—(1 -1)At
where the enthalpy flows across the planes at x — Ax/2 and x + Ax/2 have been
evaluated in terms of the average temperature of adjacent nodes. This approach
leads to what is called a central-difference scheme. On physical grounds, however,
the enthalpy flow across a plane can be influenced by the temperature on the upwind
side only; the temperature on the downwind side should not have an influence. Thus,
the upwind-difference scheme requires that the enthalpy flows be written as

tnh|wAt = pcVTj* (1+ DAt
mh|gAt = peVTiA) (1+ At

for velocity V negative, as is the case for our problem. Accuracy andstability
considerations dictate which scheme is most appropriate. In fact, it is a common
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Practice to use a hybrid scheme in which central differencing is used when the
velocity V is small, and upwind differencing is used when V is large. For simplicity,
we will use the central-difference scheme only. Substituting in Eg. (3.119) and
rearranging gives

Fo(Tnn + Tht) — (1/2) FoPe(Tit — Tit!) + Ti
1+2Fo

where Pe is the mesh Peclet number, which is defined as Pe = VAx/a. It is, in
fact, the mesh Peclet numberthat determines whethercentral or upwinddifferencing
should be used: upwind differencing should be used when|Pe| > 2.

it]
|
 

(3.120)

Boundary Conditions

Formulation of the finite-difference forms of the boundary conditionsis similar to
the procedure used for the implicit method described in Section 3.6.2. For the front
face, shownin Fig. 3.45a, an energy balance requires that

pe ‘1: ] (T3*! — Tj) = (Arlo - Oxle}At + (riah|o — mhz) At
it] _ pit

Ty" =T%
Ax (-L)Oxlo = as(1-1); Orle = —k

i+] i+]
I + TyT

mhlo = peVTi*'(1- 1); mh\g = pcV ; (1-1)
Substituting and rearranging,

2Fo(T/*! + qsAx/k) — FoPe Ti+! + 7 

 
if= 3.121° 1 + 2Fo—FoPe ( )

Zero heat flow

MM41

(a) Front-face node (b) Node M

Figure 3.45 Nodal network andfinite control volume for formulation
of finite-difference forms of boundary conditions for one-dimensional
transient ablation. (a) Front-face node. (b) Node M.
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Referring to Fig. 3.45b we place node m = M at x = L, for L chosensufficiently
large to ensure zero heat flow. An appropriate finite difference form of this boundary
condition can be derived in a number of ways. For example, the temperature at the
mirror-image node (M + 1) can be set equal to the temperature at node (M — 1) to
give a zero temperature gradient at x = L,

Ty = Ty

Substituting in Eq. (3.120) form = M,

DROWa_i WeTit! _
7 1+2Fo (3.122)

Notice that this result is also given as item 4 of Table 3.8. Example 3.18 illustrates
the implementation of this finite-difference solution procedure.

EXAMPLE3.18 Dust Erosion of a Plastic Heat Shield

A very thick plastic heat shield, initially at 0°C, is exposed simultaneously to a heat flux of
160 kW/m? from a high-temperature radiation sourceandto a dust blast that erodes the surface
at a rate of 0.1 mm/s. Determine the temperature response of the shield. For the plastic, take
property values of p = 1200 kg/m?, k = 0.3 W/m K,and a = 0.015 X 10° m’/s.

Solution

Given: Transient conduction with a specified surface ablation rate.

Required: Temperature profiles T(x,t)

Assumptions: 1, One-dimensional conduction.
2. Constant properties.
3. The heat flow does not penetrate deeper than 2 mm.

Choose Ax = 0.1 mm, L = 2mm,and At = 0.15;
then the mesh size—based Fourier numberis

adr — (0.015 x 10°)(0.1) _
= ae axioy 22

and the mesh size~based Peclet numberis

_ Vax _ (-10™)(00-4) _
 

 

an 0.015 x 10-6 el

Equation (3.120) for the interior nodes m = 1, 2,..., 19 is

pitl O.1S(Thi+ Teh) — (/2)0.15)—-0.667)(T3), — Tht) + Ty,
7 1 + (2)(0.15)

0.1539T!*! + 0.07690T!*! + 0.7692T'mol m
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Equation (3.121) for the front-face node, m = 0, is

— (2)0.15)[7)*! + (160 x 107)(10~4)0.3)] — (0.15)(—0.667)Tj*! + Tj
- 1 + (2)(0.15) — (0.15)(—0.667)

11.43 + 0.28577!*! + 0.71437)

   i+l
Ty

Equation (3.122) for node m = 20, is

— ROASTS + Ti
1 + (2)(0.15)

= 0.23087{3' + 0.76927),

i+l
Tro

As in Example 3.16, the Gauss-Seidel method can be used to solve the nodal equations.
Sample temperature profiles are shown in the following table. Also given is the quasi-steady
solution obtained from Eqs. (3.98) and (3.99), First, from Eq. (3.99),

Qu = —peViT, ~ To)

Ww _ 7 Oe _ og (0.015 x 107*)(160 x 10°)
pv °° Ook (0.3)(— 10-4) — =eT, = Ty) -

 

and from Eq. (3.98),

T = Ty + (T, — Toe= 0+ (80 — O)e~ 10 * £0.015x10-$ = 80¢ ~557E °C

Time Nodal temperatures, °C

s 0 2 4 6 8 10 12 14 16 18 20

  

 

49.9 3.7 0.2 0.0 >

0
|

2 : . . .
3 68.0 11.8 1.6 0.2 0.0 >
4 71.6 14.0 2.3 0.3 0.0 =>

5 74.0 15.6 2.9 0.5 0.1 0.0 =>
6 75.6 16.7 3.3 0.6 0.1 0.0 =>
8 77,5 18.1 4.0 0.8 0.1 0.0 =>

10 78.5 18.9, 4.4 1.0 0.2 0.0 =>
15 79.6 19.7 4.8 1.1 0.3 0.1 0.0 =>
20 79.9 19.9 4.9 1.2 0.3 0.1 0.0 >
25 80.0 20.0 5.0 1.2 0.3 0.1 0.0 >
00 80.0 21.1 5.6 1.5 0.4 0.1 0.0 >

Comments

The mesh size Peclet number is 0.667, so use of the central-difference scheme for the
convective term was appropriate.
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3.7

CHAPTER 3) MULTIDIMENSIONAL AND UNSTEADY CONDUCTION

CLOSURE
 

The temperature distribution in a solid is governed by the general heat conduction
equation. This partial differential equation can be solved using classical mathematical
methods or using numerical methods. In either case, considerable effort is required
to obtain the solution for a particular problem.

The use of the classical separation-of-variables method was demonstrated for both
steady multidimensional conduction and unsteady one-dimensional conduction. The
method of superposition of solutions was used to build up the solution of a problem
with complicated boundary conditions from solutions for simple boundary conditions.
A useful product rule allows the temperature response of a number of shapes of
finite dimensions to be obtained as a product of the responses of simpler shapes with
infinite dimensions. For example, the responseforafinite-length cylinder is obtained
from the response of an infinite cylinder and an infinite slab. The conduction shape
factor is convenient for calculating two-dimensional heat conduction between two
isothermal surfaces. Solutions for conduction into a semi-infinite solid are always
applicable for times short enough for the penetration of the thermal response to be
small compared to the body dimensions. The computer program COND1 is a useful
tool for such calculations. Determining the temperature response of convectively
cooled (or heated) slabs, cylinders, and spheres is made simple by the computer
program COND?andbythe availability of results in graphical form as temperature
response charts. }

Whenthe shape ofa solid is irregular, or when boundary conditions are complex,
solutions to the heat conduction equation are best obtained numerically. Standard
computer programsfor this purpose are widely available, and such programs should
be used for any serious thermal design activity. Thus, numerical methods were not
presented in great detail. Only the finite-difference method was considered, and then
only with the objective of conveying the essential ideas involved. Actually, the heat
conduction equation is one of the easiest equations to solve numerically, and even
the simplest methods yield satisfactory results. At this level, the ideas involved
are almost intuitive. However, any serious effort to develop versatile and efficient
computer programs to solve the heat conduction equation should be preceded by an
appropriate course in numerical analysis, so that questions concerning stability, rate
of convergence, and accuracy are properly handled.

Many heat conduction problems involve a moving boundary. Both analytical and
numerical solution methods were demonstrated for two such problems. Numerical
methods are particularly relevant because some important moving-boundary prob-
lems, such as the ablation of a heat shield on a reentry vehicle, can involve strongly
varying thermal properties, complicated surface boundary conditions, and chemical
reactions. We chose to use coordinate axes fixed to the moving surface for the abla-
tion problem in Sections 3.5.2 and 3.6.4. This approach has the effect of giving a
convection term in the governing differential equation, Eq. (3.96) or (3.119), even
though a solid rather than a fluid is involved. Similar terms will arise in the analysis
of convection in Chapter 5.
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EXERCISES

Derive the general heat conduction equation in cylindrical coordinates by apply-
ing the first law to the volume element shownin Fig. 3.3a.

Derive the general heat conduction equation in spherical coordinates by apply-
ing the first law to the volume element shownin Fig. 3.35.

Use the methods of vector calculus to derive the general heat conduction equa-
tion. (Hint: Apply the first law to a volume V with surface S, and use the Gauss
divergence theorem to convert the surface integral of heat flow across S to a
volume integral over V.)

The cylindrical and spherical coordinate systems are examples of orthogonal
curvilinear coordinates. In general, we can denote these coordinates by u,, u2, U3,
which are defined by specifying the Cartesian coordinates x, y, z as

x = x(Uy, U2, U3)

y = y(Uy, Ua, U3)

Z=Z(t, Uo, U3)

A coordinate system is orthogonal when the three families of surfaces u, =
Const, u2 = Const, u3 = Const are orthogonal to one another. The figure
shows an elemental parallepiped whose faces coincide with planes u, or u2
or u3 =- Const, with edge lengths h,du,, hpdu2, hydu3 where hy, ho, hy are
called the metric coefficients. The length of a diagonal is given by

ds? = hiduit + hedui + hiduy

In terms of these coordinates, the components of the

temperature gradient are KJ hy dus
1 oT 1 oT 1 oT </

hy Ou, , hy Ou,’ hg Ou; [2
hy dug iy du,
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