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Preface
At the time of the publication of the !rst edition of this book, there was a  signi!cant 

interest in laser beam shaping for industrial applications and research. A signi!cant 

amount of this work was not published for proprietary reasons. At that time, people 

began to publish their work on beam shaping. The interest in laser beam shaping 

increased dramatically in the following years. This is due to the increase in the 

number of laser applications that can bene!t from shaping the beam, the increase in 

research in laser beam shaping techniques and the corresponding increase in the lit-

erature, and the advances in optical component fabrication technology. The purpose 

of this edition is to update the book to include signi!cant developments in laser beam 

shaping theory and techniques.

After the Introduction chapter, Chapter 2 presents the underlying electromagnetic 

theory and mathematical techniques applicable to beam shaping. This chapter is very 

fundamental and has one minor correction or change. Chapter 3 is a new chapter that 

presents the theory of optimal beam splitting gratings (fan-out gratings). Chapter 4 is 

a new chapter that addresses the theory and application of vortex beams. Chapter 5 

(former Chapter 3) presents the diffraction approach to single-mode Gaussian beam 

shaping and includes experimental results. The major changes in this chapter are the 

inclusion of a new section on wavelength dependence of the problem and an expan-

sion of Appendix B. The methods, theory, and application of geometrical optics are 

discussed in Chapter 6 (former Chapter 4). This chapter is expanded signi!cantly to 

include the author’s research that was not available at the time of the !rst edition. 

Optimization-based techniques are presented in Chapter 7 (former Chapter 5). This 

chapter is greatly revised around the techniques based on the use of current opti-

cal software packages. Beam shaping using diffractive diffusers is introduced in 

Chapter 8 (former Chapter 6). This chapter is signi!cantly revised. Chapter 9 is a 

new chapter that presents the theory of beam shaping based on the use of microlens 

diffusers. Multiaperture beam integration systems, including experiment and design, 

are presented in Chapter 10 (former Chapter 7). The major change in this chapter is 

the addition of a new section on channel integrators. Chapter 11 is a new chapter that 

discusses the generation of light ring patterns using axicons. This chapter includes 

a technique for the generation of rectangular line light patterns. Beam pro!le mea-

surement technology is addressed in Chapter 12 (former Chapter 9). This chapter 

is signi!cantly updated. Chapter 13 (former Chapter 8) discusses the application of 

geometrical optics methods to classical (nonlaser) shaping problems.

The material in these chapters gives the reader a working understanding of the 

fundamentals of laser beam shaping techniques. It also provides insight into the 

potential application of laser beam pro!le shaping in laser system design.

The book is intended primarily for optical engineers, scientists, and students 

who have a need to apply laser beam shaping techniques to improve laser pro-

cesses. It should be a valuable asset to someone who researches, designs, procures, 

10



x Preface

or assesses the need for beam shaping with respect to a given application. Due to 

the broad treatment of theory and practice in the book, we think that it should also 

appeal to scientists and engineers in other disciplines.

I express my gratitude to the contributing authors whose efforts made the book 

 possible. It was a pleasure working with the staff of Taylor & Francis Group books. 

Finally, I express my appreciation to the very helpful project coordinator, Laurie 

Schlags.

Fred M. Dickey

FMD Consulting, LLC
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1 Introduction

Todd E. Lizotte and Fred M. Dickey

Beam shaping is the process of redistributing the irradiance and phase of a beam 

of optical radiation. The beam shape is de!ned by the irradiance distribution. The 

phase of the shaped beam is a major factor in determining the propagation proper-

ties of the beam pro!le. For example, a reasonably large beam with a uniform phase 

front will maintain its shape over a considerable propagation distance. Beam shaping 

technology can be applied to both coherent and incoherent beams.

Arguably, there exists a preferred beam shape (irradiance pro!le) in any laser 

application. In industrial applications, the most frequently used pro!le is a uniform 

irradiance with steep sides, $at-top beam. This is due to the fact that the same inter-

action (physics) is accomplished over the illuminated area. Flat-top beams also have 

applications in laser printing. However, this is not the only pro!le of interest. Laser 

disk technology uses a focused beam with minimized side lobes to eliminate cross 

talk. Other patterns of interest in applications include shaped lines, rings, and array 

patterns. Some of the major applications of laser beam shaping are discussed in 

detail in Laser Beam Shaping Applications.1

Although the laser was invented in 1960, there were only about eight papers 

on laser beam shaping that appeared in the literature before 1980. A brief history 

and overview of laser beam shaping is given in the 2003 Optics & Photonics News 

paper “Laser Beam Shaping.”2 The rate of the appearance of laser beam shaping 

papers grew linearly, but slowly, until about 1995 when the rate increased dramati-

cally. There is evidence that considerable research and development work on laser 

beam shaping was done in the period before 1995, but was not published for propri-

etary reasons. Starting in 2000 and continuing to the present, there have been 14 

International Society for Optics and Photonics (SPIE) laser beam shaping confer-

ences.3–16 The history of laser beam shaping is treated by Shealy in Chapter 9 of 

Laser Beam Shaping Applications.
A $at-top laser irradiance pro!le can be obtained by expanding the beam to obtain 

a pattern with the desired degree of uniformity. This approach intrudes very large 

losses in energy throughput. In almost all beam shaping applications, it is desirable 

to minimize the losses. The two major beam shaping techniques for producing a 

uniform beam are !eld mapping and beam integrators (homogenizers). These tech-

niques can be designed to have very low losses.

Field mapping is the technique of using a phase element to map the laser beam 

into a uniform beam (or other pro!le) in a given plane. Field mappers are appli-

cable to single-mode (spatially coherent) lasers. Producing vortex beams is also an 
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2 Laser Beam Shaping

example of !eld mapping. The individual lenslets in beam integrators function as 

!eld mappers.

Beam integrators break up the input beam into smaller beamlets that are directed 

to overlap in the output plane with the desired shape. They frequently consist of a 

lenslet array and a primary lens. Beam integrators can also be implemented using 

a re$ective tube and focusing the laser beam on the input aperture of the tube. This 

approach is called a channel integrator. Beam integrators are especially applicable to 

low spatial coherence beams. The low spatial coherence of the input beam reduces the 

speckle pattern that is inherent in the output of beam integrators. There cases when it 

is useful to apply beam integrators to spatially coherent beams when the speckle can 

be tolerated. It is interesting to note that optical con!gurations that can be considered 

beam integrators were introduced long before the advent of the laser.17,18

The ability to do beam shaping is limited by uncertainty principle of quantum 

mechanics, or equivalently the time–bandwidth product inequality associated with 

signal processing. Mathematically, the uncertainty principle is a constraint on the 

lower limit of the product of the root-mean-square width of a function and its root-

mean-square bandwidth. It can be directly applied to the beam shaping problem 

because of the Fourier transform relation in the Fresnel integral used to describe 

the beam shaping problem. In fact, the uncertainty principle is generally applicable 

to diffraction theory. Applying the uncertainty principle to the general diffraction 

problem associated with laser beam shaping, one obtains a parameter β of the form

 β
λ

= C
r y

z

0 0  (1.1)

where:

r0 is the input beam half-width
y0 is the output beam half-width

C is a constant that depends on the exact de!nition of beam widths

z is the distance to the output plane

The parameter β is also obtained when applying the method of stationary phase to 

diffraction problems.

The value of β must be suf!ciently large for successful beam shaping to be accom-

plished. It should be noted that the system designer has some design control over β 

by specifying r0  or, possibly, the other three parameters in Equation 1.1. Because of 

its fundamental nature, β is applicable to !eld mappers and beam integrators.

It is commonly stated that when β is large the problem can be treated using geo-

metrical optics. This is true for !eld mapping systems designed to produce $at-top 

pro!les. However, techniques such as diffractive diffusers inherently require the use 

of diffraction theory in the design process. In addition, diffraction theory is useful in 

determining some general properties of beam shapers. An example is the wavelength 

independence of some !eld mapping con!gurations (see Chapter 5).

In no case can quality beam shaping be accomplished if β is small. It is suggested 

that this parameter be considered in the initial stage of any beam shaping system 

design.

17



3Introduction

As stated earlier and clearly de!ned in the subsequent chapters, the theory, 

 calculations, and strategies for designing laser beam shaping systems have come a 

long way. Although success in the application of beam shaping does not only come 

from knowing how to calculate a design and understanding the guiding parameters 

such as β, it simply provides a working baseline of knowledge.

When an engineer or a development team considers the integration of optics into 

a process, they need to take into account a number of primary as well as ancillary 

variables that start at the process and work backward through the optical system to 

the laser source itself. Failure is inevitable if beam shaping is considered simply as 

an off-the-shelf product that is easy to integrate. Consideration of a new beam shaper 

design or the purchase of an off-the-shelf beam shaping product must be approached 

carefully since the beam shaper’s performance is dependent on the stability of the 

laser source itself. Offering a considerable number of challenges due to the dynamic 

nature of laser processes simple changes to duty cycle often result in pointing insta-

bility, divergence shifts, beam intensity distribution, and power $uctuations, to name 

a few. All of the variables identi!ed need to be scrutinized and prioritized so that the 

beam shaper can be designed and con!gured with an appropriate set of precondition-

ing optics or enough axes of adjustment to provide !ne-tuning if required.19 These 

items are only part of what it takes to be successful; a willingness to tackle the hard-

est problems !rst is the only true guarantee.

Since the introduction of lasers into the industrial marketplace, those of us 

involved in its application have been in a technology race, whether we like it or not. 

Driving innovation is the key to success for technologists, but that innovation in 

many cases is found by simply searching for insight from existing successes within 

the scienti!c community or other markets where similar technology is applied. That 

insight can take many forms such as exposure to existing and past technologies or 

merely taking calculated risks by blazing a new trail by pulling together various 

technologies and integrating them into a new solution. Whether applying old or new 

ideas, innovation of beam shaping technology requires identifying the parameters 

within the context of a laser process that matter and moving through them systemati-

cally to deliver an elegant solution.

Below are two examples that highlight the development of “diffractive and refrac-

tive” laser beam shaping technology over the past 20 years and hit upon this theme. 

From a historical perspective, the examples were selected to illustrate the progres-

sion and impact of laser beam shaping on the industrial laser system marketplace. No 

attempt has been made to select speci!c technological milestones of equal impor-

tance nor should the reader consider these items critical in terms of a grand historical 

record. These examples are simply moments in time where insight gained by early 

adopters led to experimentation and the evolution of laser beam shaping within the 

industrial laser and laser materials processing !eld. Let us explore a few exemplar 

beam shaper solutions that were brought to market, which is the point where true 

innovation ends, as well as demonstrated.

As mentioned earlier, !eld mappers are phase elements that redistribute laser light 

to form a new desired irradiance and phase pro!le. These phase elements commonly 

take two highly ef!cient forms, either traditional refractive phase elements, such as cus-

tom aspheric lenses (>96% ef!cient), or diffractive elements, such as diffractive lenses 
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4 Laser Beam Shaping

(>85% ef!cient), where the phase coef!cients are compressed into 2Π surface reliefs. 

Figure 1.1 shows a Gaussian to round $at-top diffractive !eld mapping beam shaper ele-

ment. In many cases, these diffractive optics are based upon an aspheric phase design. It 

should be stated that fabrication plays a major role in the ef!ciency of such !eld mappers 

and during the early 1990s the costs for fabricating these elements were signi!cant; 20 

years later, these elements are now manufactured at scale with competitive pricing that 

has made them available for lower cost laser marking applications.

Although numerous far- and near-infrared (FIR/NIR) lasers such as CO2 and 

Nd:YAG have bene!ted from more traditional beam shaping and !eld mapping 

aspheric systems, frequency tripled and quadrupled diode-pumped solid-state (UV 

DPSS) lasers (355 and 266 nm, respectively) have bene!ted from !eld mappers to 

a greater degree. As UV DPSS lasers began to be adopted into larger volume laser 

system markets, it quickly became necessary to begin employing !eld mappers to 

improve process performance. Immediate gains in process stability and overall 

material removal quality were demonstrated. Finding a home within high volume 

microelectronics packaging manufacturing, industrial ultraviolet (UV) laser tools 

utilizing !eld mappers led to the rapid level of microminiaturization of numerous 

consumer electronics and commercial products. By providing uniform intensities, 

very small features can be produced.

As !eld mapper-based beam shapers were employed, the UV DPSS laser system 

began shifting from a traditional focal point machining technique to a higher precision 

imaging technique.20 Optical imaging is the most widely used beam delivery technique 

in the laser micromachining world. Optical imaging is the preferred method because it 

offers a high-!nesse process that creates accurate and controllable structures into the 

surfaces of a wide variety of organic and inorganic materials. De!ned by an image 

placed on a mask, the desired structures are optically transferred from the mask to 

the surface. The design of the beam delivery system is based on the lens imaging 

equation; however, the calculation of most importance, is the demagni!cation required 

to achieve the optimum energy density on target for the material being processed to 

FIGURE 1.1 Gaussian to round $at-top diffractive !eld mapping beam shaper element.
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5Introduction

produce precision ablated microstructures. The demagni!cation ratio determines the 

conjugate distances of the optical imaging system, that is to say the object (mask) dis-

tance to the lens and the image distance to the target plane. The optical system reduces 

the mask design by this factor; therefore, when generating the mask artwork, the fea-

ture desired on target is multiplied by the magni!cation factor. Figure 1.2 shows an 

assembled beam shaping and imaging beam delivery for a UV DPSS marking appli-

cation installed on an automation system. The UV beam delivery systems geared for 

UV DPSS laser micromachining applications have four basic functions once the laser 

beam exits the laser itself: (1) improve the uniformity of the laser beam, (2) illuminate 

a !xed aperture or mask plane, (3) reduce/demagnify and project the mask image onto 

the target material, and (4) control the energy density at the target.

In most cases, the output intensity pro!le of the UV DPSS laser is Gaussian or 

TEM00 mode. For precision micromachining such as drilling or thin-!lm pattern-

ing, the transformation of the Gaussian laser beam into a $at-top intensity pro!le 

was the watershed moment, where the quality and accuracy of laser-based processes 

FIGURE 1.2 An assembled beam shaping and imaging beam delivery for a UV DPSS 

marking application installed on an automation system.
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6 Laser Beam Shaping

truly began to be demonstrated. Microvias that are laser-drilled into microelectronic 

 packaging and laser thin-!lm patterning for solar cells and $at panel displays were 

key markets where the bene!ts of laser beam shaping were initially realized in the 

late 1990s and continue even today.

Two examples of common designs include !eld mappers for transforming 

 single- mode Gaussian laser beams into a round or square $at-top intensity distribu-

tion  pro!le. Figure 1.3 shows a Gaussian and super Gaussian pro!le. Within the !eld 

of microvia drilling of printed circuit boards (PCBs), the Gaussian output of a UV 

DPSS laser beam is shaped into a round $at-top intensity distribution and demagni-

!ed by using an optical imaging system to achieve the appropriate energy density 

to either ablate a thin metal !lm or polymer dielectric layers that make up a PCB 

assembly. Figure 1.4 shows a 30, 40, and 50 μm blind microvia in a PCB. Conversely, 

a square $at-top intensity pro!le can be used to pattern thin !lms to form struc-

tures such as pixel arrays or to precisely cut circuits for repairing advanced displays. 

Figure 1.5 shows an electrical grounding strap that was laser deleted using a square 

Gaussian Super Gaussian

N = 1

N = 10

2N

I ∝ e
2

r

w
0

FIGURE 1.3 A Gaussian and super Gaussian pro!le distribution as an example of the 

desired transformation for many industrial beam shaping applications.

FIGURE 1.4 Microvia hole drilling on a PCB with 30, 40, and 50 μm diameters (left to 

right). These are possible using a UV DPSS $at-top laser beam.
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7Introduction

$at-top beam and the energy density was tailored so that only the strap was removed 

leaving the underlying material undamaged.

Depending on the laser system setup, the imaged beam can precisely drill or 

pattern materials with such !nesse as to minimize or negate any thermal damage 

to the surrounding material. Therefore, precise and tailored to the material being 

processed, !eld mappers have enabled new opportunities for precision micromanu-

facturing that could not have been possible 20 years ago.

The arrival of integrator technology for laser materials processing was under 

the radar and developed in earnest when major challenges were encountered 

with the introduction of excimer lasers into the marketplace. During these early 

years,  integrator development was kept secret until patent !lings revealed their 

 implementation. Many of these innovations were championed by laser system devel-

opers who were seeking solutions to improve excimer laser beam uniformity for 

large !eld size high-precision laser processes. In nearly all applications, excimer 

laser output uniformity is critical for high-precision applications.21 During the early 

1980s, to create a uniform irradiance beam pro!le, engineers were limited to either 

improving the performance of the laser itself, at a hefty price, or utilizing optical 

techniques. Modi!cation of the laser meant trade-offs; increased uniformity at the 

sacri!ce of pulse energy or power and that still did not guarantee the best uniformity.

At this time the excimer laser was !nding new applications within semiconduc-

tor processing such as lithography and gaining ground in the promising !eld of laser 

micromachining. These early adopters were exposed to similar integrator designs 

used within illumination systems for lamp-based exposure tools, such as those pro-

duced by Oriel Instruments Corporation (Stratford, CT), which were generally simple 

lens array integrator designs.22 The earliest and relatively successful example of an 

industrial excimer laser application that would not have been possible without the use 

of beam integrators, besides the semiconductor lithography market, was laser anneal-

ing of silicon. Patented by XMR, Inc. (Houston, TX) in 1986 and issued in 1988 as 

FIGURE 1.5 A grounding strap deletion using a square $at-top laser beam.
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8 Laser Beam Shaping

US Patent 4,733,944, the design is one of a handful of instances of an imaging beam 

integrator for a  high-volume industrial laser process requiring absolute stability and 

uniformity. What was unique about the design at the time was the fact that the spot 

size produced could be selectively adjusted in size at the working plane. Adjustability 

allowed variation of the energy density on target, tailoring it to an optimum setting 

and process area. Figure 1.6 is an example of an XMR design from the actual system.

From this point, the design of laser beam integrators began to take the form of 

specialized optical con!gurations with further enhancements and re!nements to 

meet the needs of ever-demanding laser micromachining processes. In 1994 the 

integration of UV excimer lasers for laser micromachining of $uidic structures 

was being exploited for consumer and medical device products. One such prod-

uct was the production of nozzle plates and $uidic channels for inkjet printers. 

Although personal inkjet printers had entered the marketplace in 1988, it was 

not until 1991 when inkjet printer manufacturers had begun to seriously consider 

excimer lasers as a means to reduce the costs of forming precision inkjet nozzle 

plates, which were upward of $4.00 each to manufacture. Figure 1.7 shows an 

example of an inkjet nozzle plate with integrated $uidic channels imaged and 

ablated into polyimide.

At that time, manufacturing nozzle plates to micron accuracies was not an easy 

task and they were costly to manufacture using traditional lithography and nickel 

electroforming techniques. It was clear in the early days of process development that 

the design of excimer beam delivery optics, physical system con!guration, methods 

of optical beam shaping, and laser material interaction would play signi!cant roles 

in producing inkjet nozzle plates. Due to higher demands for quality and the criti-

cal nature of providing consumers with exceptionally reliable products, the excimer 

processes needed to be robust and repeatable to a 3σ or better level.23

FIGURE 1.6 A beam integrator design from the mid-1980s manufactured by XMR, Inc.
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9Introduction

Matching the laser process optics to resolve the nozzle and $uidic channel features 

to micron tolerances within the desired material was the goal. To complicate matters, 

inkjet nozzle arrays have dimensional requirements upward of 15 × 2 mm in size 

(L × W), which made the selection of beam shaping technology to provide uniformity 

across the entire image plane at a uniform energy density the most critical aspect of 

the excimer micromachining system. Figure 1.8 shows how the  implementation of an 

imaging lens array beam integrator evolved in less than 10 years (ca. 1994). Larger 

in size and its zooming feature allowing larger illumination !eld sizes at the mask 

plane demonstrates how the integrator design had progressed into a useful and ver-

satile tool for large-!eld ablation applications. Incorporating beam preconditioning 

optics, in this case an anamorphic cylindrical lens telescope, the output beam of the 

excimer was shaped from a rectangular shape into an optimized square con!gura-

tion for illuminating the zoomable cross-cylindrical lens beam integrator. The beam 

integrator design was also more advanced than earlier designs, with an adjustable 

zoom for both axes of the beam, allowing the illumination !eld at a mask plane to be 

both uniform in intensity and dimensionally optimum. The shaped beam illuminated 

a mask that de!ned the features being produced. The numerical aperture of the beam 

integrator was designed to match the numerical aperture of the !nal imaging lens 

system allowing the mask design to be imaged onto the material to be processed. As 

the !rst excimer laser inkjet nozzle drilling system came online, the cost of inkjet 

nozzle plates had dropped to less than $0.20 a unit—a signi!cant milestone for that 

industry that would not have been achieved without an integrator-based beam shaper 

design.

Since that time, further advancements have made it possible to take an excimer 

beam with a beam size of ~20 × ~10 mm (L × W) and transform it into a uni-

form beam of ~140 × ~5 mm, another example of how the integrator continues to 

evolve. Figure 1.9 shows a beam exposed on !lm at various attenuation factors 

FIGURE 1.7 An inkjet nozzle plate with integrated $uidic channels imaged and ablated 

into polyimide.
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10 Laser Beam Shaping

25%–100% intensity. This particular design is used in an excimer laser step and 

scan ablation tool to achieve an on-target ablation !eld size of ~35 × ~1.25 mm; 

based on a 4× demagni!cation the laser beam integrator produced an illumina-

tion !eld size at the mask plane of ~140 × ~5 mm.

When looking for the most dominant market segment that has bene!ted from 

beam shaping, you simply need to review history. As a rule of thumb, if you want to 

understand where technology will be 10 years into the future, you need to only look 

backward 20 years into the past. Within our optical community we tend to think that 

beam shaping innovations just came out of nowhere, but in reality there were great 

challenges that spurred development by pioneers in our !eld. Each chapter within 

this book is a testament to those pioneers and represents their continued impact on 

our laser beam shaping community.

∼140 mm∼5 mm

FIGURE 1.9 An integrator-shaped excimer laser beam exposed on a !lm at various attenua-

tion factors: 25%–100% intensity (top to bottom). The integrator design produces an illumina-

tion !eld size at the mask ~140 × ~5 mm.

FIGURE 1.8 An advanced imaging excimer laser beam integrator design that is zoomable 

in the short and long axis (X–Y), allowing it to be tailored for the illumination !eld size at 

the mask plane.
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14 Laser Beam Shaping

2.1 INTRODUCTION

In this chapter, we present the basic mathematics and physics that are required to 

understand the theory of lossless beam shaping. Figure 2.1 shows the physical situation 

that we are concerned with. We assume that a parallel beam of coherent light enters 

an aperture at the plane z = 0. At the aperture, the light gets refracted by a combina-

tion of a Fourier transform lens with focal length f and a beam shaping lens. We are 

interested in the irradiance of the beam at the focal plane z = f. The separation of the 

refractive elements at the aperture into a Fourier transform lens and a beam shaping 

lens is convenient for our analysis, and sometimes convenient in practice, but it should 

be emphasized that these two lenses could in fact be combined into a single lens.

The beam shaping problem is concerned with how to choose the beam shaping 

lens so that we can transform a beam with an initial irradiance distribution at the 

plane z = 0 into a beam with a desired irradiance distribution at the focal plane z = f. 
We assume that the beam shaping lens is lossless. This means that it does not absorb 

2.7 Geometrical Theory of Beam Shaping ........................................................... 71
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Phase
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FIGURE 2.1 A schematic of the basic beam shaping system. A parallel beam of light enters 

the aperture where it encounters a Fourier transform lens, and then the beam shaping element. 

We choose the beam shaping element so that the output at the focal plane has the desired 

intensity distribution.
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15Mathematical and Physical Theory of Lossless Beam Shaping

or block out any of the energy of the incoming beam. If we assume that the laws of 

geometrical optics apply, it is possible to transform any initial distribution into any 

desired output distribution, provided only that the total energy of the incoming and 

outgoing beams are the same. When we include the effects of diffraction, it is in 

general not possible to accomplish our goal exactly.

One of the major themes of this chapter is to determine the scaling properties of 

beam shaping systems (What happens when we make our system bigger or smaller, 

or change the wavelength?). In particular, we need to know when the laws of geomet-

rical optics can successfully be applied to designing our system. Due to our emphasis 

on scaling, we choose to write many of our functions in terms of dimensionless 

coordinates. For example, if the incoming beam has a radially symmetric Gaussian 

irradiance distribution, many authors would write the irradiance distribution as

 I r g r( ) ( )=  (2.1a)

where:

 g r r R( ) /= −e 2 2
 (2.1b)

Here, the parameter R determines the basic scale of the irradiance distribution. In 

this chapter, we would prefer to write this irradiance distribution as

 I r g r R( ) ( )/=  (2.2a)

where:

 g( )ξ ξ= −e 2
 (2.2b)

It might appear simpler to say that the initial irradiance is given by g(r), rather than 

saying it is given by g(r/R). However, when we consider the scaling properties, the 

second form is much more powerful. In particular, if we say that the initial distribu-

tion is given by g(r/R), then it will be much clearer how to apply the analysis of a 

system with distribution g(r/R1) to a system with distribution g(r/R2).

This approach is motivated by the practice commonly used in $uid mechanics 

of writing equations in dimensionless form [1,2]. This approach in $uid mechanics 

allows us to show that different physical systems will have the same behavior, pro-

vided only that certain “dimensionless parameters” are the same. For example, when 

$uid $ows past a sphere, the behavior of the $ow depends on the Reynolds number:

 Re = RU0
ν

 (2.3)

where:

R is the radius of the sphere

U0 is the velocity far from the sphere

ν is the kinematic viscosity

If two $ows have the same Reynolds number, the patterns of $uid $ow will be identi-

cal, after rescaling our coordinates. However, if the Reynolds numbers are different, 
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16 Laser Beam Shaping

the $ow patterns will look dramatically different. For example, in one case the $ow 

may be turbulent, and in the other case it may not.

Ideas similar to these can be applied to the theory of beam shaping. Suppose that 

our initial irradiance distribution is given by g(x/R,y/R), and our desired output irra-

diance distribution is given by Q(x/D,y/D). The parameter R gives the characteristic 

length of the incoming beam, and D is the characteristic length of the output beam. 

If the wavelength of the light is λ, and we are imaging our output at a distance f from 

the aperture, the dimensionless parameter

 β
π

λ
=
2 RD

f  (2.4)

is very important to understanding beam shaping. In particular, suppose that we 

design a lens that solves the beam shaping problem in the geometrical optics limit, 

and now we analyze how this lens works when the wavelength is !nite. We will see 

that the irradiance distributions of two beam shaping systems will be geometrically 

similar, provided only that they have the same shape functions g(s,t), and Q(s,t), and 

the parameters β for the two systems are the same. This means that we can transform 

the irradiance distribution of one system into the irradiance distribution of the other 

system by merely rescaling our axes. In particular, one system will suffer from dif-

fraction effects if and only if the other system (with identical β) also does.

Geometrical optics is a short wavelength approximation, so it is clear that we 

would like β to be large in order for geometrical optics to hold. We will see that if β 
is large it is relatively simple to do beam shaping, but if it is small, the uncertainty 

principle of signal analysis shows that it is essentially impossible.

Another important feature in determining the dif!culty of a beam shaping prob-

lem is the continuity of the beam shaping lens. If the surface of the element designed 

using geometrical optics is in!nitely differentiable, we will not need a very high 

value of β to achieve good results. To be more precise, the effects of diffraction will 

die down like 1/β2 as β gets to be large. However, if the lens has a discontinuity in 

its third derivative, the effects of diffraction will die down like 1/  in parts of the 

image plane, and hence we will need a much larger value of β in order to approach 

the geometrical optics limit. If the lens has discontinuities in the !rst or second 

derivatives, we will need to use even larger values of β before we can ignore the 

effects of diffraction.

If the input beam is smooth (such as Gaussian), the continuity properties of the 

lens designed using geometrical optics are controlled by the continuity of the desired 

output beam. If one has a good understanding of geometrical beam shaping, it is 

not too dif!cult to see how the continuity of the desired output beam will affect the 

continuity of the lens. However, if one is not familiar with this theory, the results can 

be somewhat surprising. For example, Figure 2.2 shows examples of three desired 

output beams. One might naively think that all of these beams have abrupt discon-

tinuities in them, so they may all lead to equally dif!cult beam shaping problems. It 

turns out, however, that the output in Figure 2.2a will lead to an in!nitely differen-

tiable lens, the beam in Figure 2.2b leads to a lens with a discontinuity in the second 
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FIGURE 2.2 (a–c) Examples of three desired output distributions. The outputs get progres-

sively harder to achieve when diffraction effects are taken into account.
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18 Laser Beam Shaping

derivative, and the lens required to produce the output beam in Figure 2.2c will have 

a discontinuity in the !rst derivative. These outputs (Figure 2a–c) get progressively 

harder to achieve.

This entire chapter is devoted to understanding the points we have just discussed. 

We feel that it is worth writing them down as succinctly as possible.

In the geometrical optics approximation, it is possible to turn a beam with 

a given initial distribution into a beam with any desired output distribu-

tion, provided only that the total energy of the input and output beams are 

the same.

Diffraction effects make it impossible to do beam shaping exactly when 

we take into account the !nite wavelength of light. For given shapes of 

the input and output beams, the parameter β = 2πRD/λf determines the 

dif!culty of the beam shaping problem. If β is large, then the laws of geo-

metrical optics will be a good approximation.

If the surface of the element designed using geometrical optics has discon-

tinuities in its !rst, second, or third derivatives, then we will need higher 

values of β in order for geometrical optics to be a good approximation.

In Section 2.2, we discuss some mathematical prerequisites for understanding the 

theory of beam shaping. After a brief summary of the basics of Fourier transforms, 

we prove the uncertainty theorem from signal analysis. In Section 2.7, this theorem 

will be used to show why it is impossible to do a good job of beam shaping when β 
is small. Section 2.2 also includes a discussion of how to use the Hankel transform 

in order to obtain radially symmetric Fourier transforms. This is important when 

analyzing the effects of diffraction on radially symmetric problems.

In Section 2.3, we outline the theory of stationary phase, with an emphasis on 

how discontinuities in the higher derivatives of the phase function can slow down the 

convergence. In Section 2.8, we use the method of stationary phase in order to obtain 

the large β approximation to the diffractive theory of beam shaping. We will see that 

the !rst term in the stationary phase approximation is equivalent to the geometrical 

optics approximation. We also use the method of stationary phase in Section 2.5 in 

order to analyze the errors introduced by making the Fresnel approximation.

Sections 2.4 through 2.6 discuss the electromagnetic theory necessary to under-

stand beam shaping. Section 2.4 presents a review of Maxwell’s equations, Section 2.5 

discusses the geometrical optics limit with an emphasis on Fermat’s principle, and 

Section 2.6 discusses the theory of Fresnel diffraction. Fresnel diffraction theory 

allows us to turn the physical problem of beam shaping into a mathematical problem 

involving Fourier transforms.

In Sections 2.7 and 2.8, we bring all of our tools together and discuss the the-

ory of beam shaping. Section 2.7 presents the theory of beam shaping in the geo-

metrical optics limit, and Section 2.8 discusses the theory of beam shaping with 

diffraction effects taken into account. When the diffractive equations for beam 

shaping are written in dimensionless form, the importance of the parameter β will 

become evident. We will use the method of stationary phase to analyze the large 

β limit of the equations. The fact that our geometrical optics solution is based on 
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19Mathematical and Physical Theory of Lossless Beam Shaping

a stationarity condition (Fermat’s principle) and our large β approximation is also 

based on a stationarity condition (stationary phase), causes these two analyses to 

look almost identical. We end Section 2.8 by giving some examples that illustrate 

the principles concerning the importance of β and the smoothness of the shape of 

the lens.

2.2 MATHEMATICAL PRELIMINARIES

2.2.1 BASIC FOURIER ANALYSIS

The theory of Fresnel diffraction will allow us to write our beam shaping problem 

as a problem in Fourier analysis. For this reason, it is impossible to understand our 

theoretical treatment of beam shaping if one is not familiar with some of the basic 

concepts from Fourier analysis. We will use both one- and two-dimensional Fourier 

analyses throughout the text.

There are several de!nitions of the Fourier transform used in the literature. The 

differences are very minor, concerning only the sign of the complex exponential 

and the constant in front of the integral. However, these differences can be annoy-

ing when one is using a table of Fourier transforms or applying theorems such 

as Parseval’s equality. The de!nition used here is probably the most commonly 

used [3,4].

De#nition 1. The Fourier transform of a function f(x) is de$ned as

 F Tf x f x xx( ) ( ) ( )ω ω= = −

−∞

∞

∫ e di  (2.5)

An almost identical de!nition holds for two-dimensional functions.

De#nition 2. The Fourier transform of a function f(x,y) is de$ned as

 F Tf x y f x y x yx y
x yx y( , ) ( , ) ( , ) ( )ω ω ω ω= = − +

−∞

∞

−∞

∞

∫∫ e d di
 (2.6)

The following are some well-known theorems in Fourier analysis that will be used 

throughout this chapter.

Theorem 1. One-dimensional Fourier inversion theorem— If F(ω) 

is the Fourier transform of f(x), then

 f x T F F x( ) ( ) ( )=   =
−

−∞

∞

∫1 1
2ω
π

ω ωωe di  (2.7)
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Theorem 2. Two-dimensional Fourier inversion theorem— If F(ωx,ωy) 

is the Fourier transform of f(x,y), then

 f x y T F Fx y x y
x y

x yx y( , ) ( , ) ( , ) ( )=   =
− +

−∞

∞

−∞

∫1
2

1
4ω ω ω ω ω ω

π
ω ωe d di

∞∞

∫  (2.8)

Theorem 3. One-dimensional Parseval’s equality—A function f(x) 

and its Fourier transform F(ω) satisfy

 | ( ) | | ( ) |F f x xω ω π2 22
−∞

∞

−∞

∞

∫ ∫=d d  (2.9)

Theorem 4. Two-dimensional Parseval’s equality—A function f(x,y) 

and its Fourier transform F(ωx,ωy) satisfy

 F f x y x yx y x y( , ) | ( , ) |ω ω ω ω π

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫ ∫∫=
2 2 24d d d d  (2.10)

Theorem 5. One-dimensional Fourier convolution theorem—Suppose 
F(ω) and G(ω) are the Fourier transforms of the functions f(x) and g(x), 
respectively. The inverse Fourier transform of F(ω)G(ω) is given by

 T F G f g x−

−∞

∞

  = −∫1 ( ) ( ) ( ) ( )ω ω ξ ξ ξd  (2.11)

Theorem 6. Two-dimensional Fourier convolution theorem— Suppose 
F(ωx,ωy) and G(ωx,ωy) are the Fourier transforms of the 
functions f(x,y) and g(x,y). The inverse Fourier transform 
of F(ωx,ωy)G(ωx,ωy) is given by

 T F G f g x yx y x y
−

−∞

∞

  = − −∫1 ( , ) ( , ) ( , ) ( , )ω ω ω ω ξ η ξ η ξd dη  (2.12)

Theorem 7. Transforms of derivatives— The Fourier transform of the 
derivative is given by

 T f
x i Fd

d








 = ω ω( )  (2.13)
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Theorem 8. Transforms of partial derivatives— The Fourier transforms 
of the partial derivatives are given by

 T f
x i Fx x y
∂

ω ω ω
∂









 = ( , )  (2.14)

and

 T f
y i Fy x y
∂

∂









 = ω ( )ω ,ω  (2.15)

Although the Cauchy–Schwartz inequality is not really a theorem in Fourier analy-

sis, we will need it in our proof of the uncertainty principle, and hence now state it.

Theorem 9. The Cauchy–Schwartz inequality (for in$nite integrals)— For 
any function f(x) and g(x), we must have

 f x g x x f x x g x x( ) ( ) ( ) ( )d d d
−∞

∞

∞

∞

∞

∞

∫ ∫ ∫
2

2 2
≤

− −

 (2.16)

The two sides are equal if and only if there is a constant λ such that f(x) = λg(x).

2.2.2 THE UNCERTAINTY PRINCIPLE AND THE SPACE BANDWIDTH PRODUCT

In this section, we discuss the space bandwidth product and the uncertainty principle 

of signal analysis [5]. This discussion is crucial to understanding the theory of beam 

shaping. As we shall see in later sections, in a beam shaping system, the space band-

width product is related to the parameter β discussed in Section 2.1. In Section 2.8, 

we will use the uncertainty principle to show that it is impossible to do a good job of 

beam shaping if β is small.

The Heisenberg uncertainty principle of quantum mechanics [6] states that the 

product of the uncertainty in position and the uncertainty in momentum must be 

greater than h/2π:

 ∆ ∆p x h
> 2π  (2.17)

To make this precise, we must de!ne precisely what we mean by Δx and Δp. This 

principle was one of Heisenberg’s basic assumptions in his development of matrix 

mechanics. However, it can also be derived by assuming the wave mechanics of 

Schrödinger. The derivation of the result depends on the fact that the wave function 

for momentum is the Fourier transform of the wave function for position, and on the 

subject of this section, the uncertainty principle from Fourier analysis.

All of our derivations will be limited to one-dimensional functions and their 

transforms, but almost identical derivations apply for two-dimensional transforms. 
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22 Laser Beam Shaping

Once we have derived the one-dimensional results, we will state the  two-dimensional 

results without proof. We now de!ne the uncertainty in f(x) and F(ω).

De#nition 3. The uncertainty in f(x) and its transform F(ω) are given by

 ∆ f
x f x x

f x x
= −∞

∞

−∞

∞

∫
∫

2 2

2

| ( ) |

| ( ) |

d

d
 (2.18)

and

 ∆

ω ω

ω
F

F

F

= −∞

∞

−∞

∞

∫

∫

2 2

2

| ( ) |

| ( ) |

d

d

ω

ω

 (2.19)

The uncertainty principle concerns the product of these two quantities and is simply 

related to the space bandwidth product.

De#nition 4. The space bandwidth product of a function f(x) is de$ned as

 Space bandwith product = ∆ ∆f F  (2.20)

It should be noted that the space bandwidth product of a function does not depend on 

the scaling of the function.

Lemma 1. For any nonzero constant a and nonzero real number b, the space 

bandwidth product of af(bx) is the same as the space bandwidth product of f(x).

We are now ready to state the uncertainty principle of signal analysis.

Theorem 10. One-dimensional uncertainty principle— For any square 
integrable function f(x), the space bandwidth product must be 
greater than 1/2. In other words,

 ∆ ∆ ≥f F
1
2  (2.21)

Proof. The Cauchy–Schwartz inequality implies that

 xf f
x x x f x x f

x x( ) ≤
−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫
d
d d d d

d d
2

2 2
2

| ( ) |  (2.22)
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Clearly,

 xf f
x x xf f

x x( ) ≥ ( )
−∞

∞

−∞

∞

∫ ∫
d
d d d

d d
2 2

Re  (2.23)

We can write

 Re | ( ) |xf f
x x x f f

x f f
x x f x xd

d d d
d

d
d d d

−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫= +








 = −

1
2

1
2

2  (2.24)

The inequalities (2.22 and 2.23) now imply

 
1
4

2
2

2 2
2

| ( ) | | ( ) |f x x x f x x f
x xd d d

d d
−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫≤  (2.25)

Since the Fourier transform of df/dx is iωF(ω), Parseval’s equality implies that

 
d
d d df
x x F

2
2 21

2=

−∞

∞

−∞

∞

∫∫ π
ωω ω| ( ) |  (2.26)

The inequality (2.25) can now be written as

 
1
4
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2

2
2

2 2 2 2| ( ) | | | ( ) | | ( ) |f x x x f x x Fd d d
−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫≤
π

ω ωω  (2.27)

Using Parseval’s equality, we can write this as

 

1
4

1
2

1
2

2 2

2 2

π
ω

π

| ( ) | | ( ) |

| ( ) |

F f x x

x f x x

d d

d

ω

−∞

∞

−∞

∞

−∞

∞

∫ ∫

∫≤ ωω ω2 2| ( ) |F ω d
−∞

∞

∫

 (2.28)

If we now divide both sides of this inequality by the left-hand side, we arrive at the 

desired result. QED

Lemma 2. We have Δf ΔF = 1/2 if and only if the function f(x) is a real Gaussian, 
f x A x( ) = −e α

2
 where α is a real number.

Proof. In order to get an equality in the uncertainty relation, we must have an 

equality in the Cauchy–Schwartz inequality in Equation 2.22. This implies that 

df/ dx = −2xλf, and hence f x A x( ) .=
−e λ

2
 It is also necessary that we get an equality 

in Equation 2.23. This will be the case if and only if f f x( / )d d  is real, which will 

be true if and only if λ is real. QED
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Although the space bandwidth product can never be less than 1/2, there is no 

limitation to how big it can be. For example, the function f x x( ) = ei 2
 has an in!nite 

space bandwidth product.

Suppose we change the phase of the function f(x) by multiplying it by the phase 

function eiq(x). How should we choose the phase q so that the function f(x)eiq(x) has a 

minimum space bandwidth product? Note that the phase function does not change 

the uncertainty in x, but it does change the uncertainty in ω. This question has impli-

cations for the depth of the !eld of a laser beam shaping system. The following theo-

rem gives a very simple answer to this question.

Theorem 11. The function q(x) that minimizes the space bandwidth product of 
f(x)eiq(x) is the one that makes the phase of f(x)eiq(x) constant.

Proof. The only integral in the space bandwidth product that changes with the function 

q(x) is the integral

 ω ω2 2| ( ) |G dω
−∞

∞

∫  (2.29)

where:

G(ω) is the Fourier transform of f(x)eiq(x)

Let f(x)eiq(x) = A(x)eiψ(x), where A(x) is a positive real function. Parseval’s equality and 

the formula for the Fourier transform of a derivative show that

 ω ω π ψ2 2
2

2| ( ) | ( ) ( )G x A x xxω d d
d e di

−∞

∞

−∞

∞

∫ ∫=    (2.30)

The last integral can be written as

 2 2
2

2
2 2

π
ψ

π
d
d

d
d d d

d
A
x A x x x A

x
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≥










−∞

∞

∫ ( )
−−∞

∞

∫ dx  (2.31)

This clearly implies that this integral, and hence the space bandwidth product, is 

minimized by choosing the function ψ so that it is constant. QED

This theorem will be used in Section 3.3 when discussing the collimation of 

beams.

We now summarize how these results apply for two-dimensional functions. In 

two dimensions, the uncertainty will be de!ned as

 ∆ f
x y f x y x y

f x y x y
( ) =

+
−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫
∫∫

2
2 2 2

2

( ) | ( , ) |

| ( , ) |

d d

d d
 (2.32)
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 ( )
( ) | ( , ) |

| ( , ) |
∆

ω ω ω ω

ω ω
F

x y x y x y

x y x y

F

F
2

2 2 2

2
=

+
−∞

∞

−∞

∞

−

∫∫ d d

d d

ω ω

ω ω
∞∞

∞

−∞

∞

∫∫
 (2.33)

The space bandwidth product is once again de!ned as Δf ΔF. The two-dimensional 

uncertainty principle gives the following theorem:

Theorem 12. Two-dimensional uncertainty principle— For any square integrable 
function f(x,y), the space bandwidth product must be greater than 1. 

In other words,

 ∆ ∆f F ≥ 1  (2.34)

2.2.3 SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATES

When you take the Fourier transform of a function f(x,y) that has radial symme-

try, you end up with a Fourier transform F(ωx,ωy) that has radial symmetry in the 

Fourier domain. That is, if we can write

 f x y g r( ) ( ), =  (2.35)

where:

r x y= +2 2

Then we can write

 F Gx y( , ) ( )ω ω α=  (2.36)

where:

α ω ω= +x y
2 2

The transformation that takes the function g(r) into the function G(α) is known as a 

Hankel transform [4]. This transform allows us to !nd the two-dimensional Fourier 

transform of a radially symmetric function by performing a one-dimensional inte-

gral. The Hankel transform can be very useful when analyzing diffraction effects in 

beam shaping problems with radial symmetry.

To understand Hankel transforms, it is necessary to be familiar with an identity in 

the theory of Bessel functions. To understand this identity, we begin by considering 

the reduced wave equation in polar coordinates:

 ∇ + =
∂
∂

∂
∂









 +

∂
∂

+ =2 2
2

2
2

21 1 0p k p r r r p
r r

p k p
φ

 (2.37)

If we assume solutions of the form:

 p r f r m( , ) ( )φ φ= ei  (2.38)
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we !nd that the function f(r) must satisfy
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2
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r k fd

d
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d









 − + =  (2.39)

If g(r) is a solution to

 
1 0

2
2r r r g

r
m g
r gd

d
d
d









 − + =  (2.40)

then f(r) = g(kr) is a solution to Equation 2.39.

Equation 2.40 is known as Bessel’s equation. The solutions that are regular at 

r = 0 are called Bessel functions, which can be written as Jm(r). If we were interested 

in the waves emitted from a circular cylinder, we would not require that the solution 

was !nite at r = 0, but that as r → ∞ the solution represented only outgoing waves. 

In this case, we would use the solution to Bessel’s equation, H krm
1 ( ). This is known 

as the Hankel function of the !rst kind. Our goal is to understand the Hankel trans-

form as a circularly symmetric Fourier transform. For this purpose we only need 

the regular solutions to Bessel’s equation, which means we only need to consider the 

function Jn(kr), where n is an integer.

One of the most elegant ways of approaching the theory of Bessel functions [7] 

is through the use of an integral identity, which we will now derive. This identity 

allows us to derive almost all of the most commonly known properties of Bessel 

functions such as their asymptotic behavior for large indices, asymptotic behavior for 

large argument, recursion formulas, and the behavior near the origin. This identity 

is almost the only property of Bessel functions that will be needed to understand the 

Hankel transform.

The integral identity can be derived by considering the function

 F x y x( , ) = ei  (2.41)

This clearly satis!es the two-dimensional reduced wave equation

 ∇ + =
2 0F F  (2.42)

We can express this in terms of polar coordinates, and then expand the function in a 

Fourier series. If we do this, we !nd that

 e ei ir
k

k

k
a rcos ( )( )θ =

=−∞

∞

∑ θ  (2.43)

From our discussion at the beginning of the section, we know that this last in!nite 

sum will satisfy the reduced wave equation if the functions ak(r) satisfy Bessel’s 

equation. Due to the rotational symmetry of the reduced wave equation, it can 

be shown that in order for this in!nite sum to satisfy the reduced wave equation 

it is  necessary that each individual term satisfy the reduced wave equation. This 

means that it is necessary (not just suf!cient) that the functions ak(r) satisfy Bessel’s 
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 equation. It is also clear that they must be bounded at r = 0. It follows that they are 

multiples of the Bessel functions Jk(r). We will in fact de!ne the Bessel functions so 

that the multiplicative factor is unity. This gives us the result

 e ei ir
k

k

k
J rcos ( )(θ) =

=−∞

∞

∑ θ  (2.44)

Using the fact that the right-hand side is the Fourier expansion of the function eircos(θ), 

we arrive at the identity

 J rk
r k( ) [ cos= −

−

∫
1
2π θe di ]( )θ θ

π

π

 (2.45)

2.2.4 HANKEL TRANSFORMS

The Fourier transform of f(x,y) can be written as

 F f x y x yx y
x yx y( , ) ( , )( )ω ω ω ω= − +

−∞

∞

−∞

∞

∫∫ e d di
 (2.46)

Suppose we write both the original function f(x,y) and the Fourier transform in 

terms of polar coordinates:

 ( ) [ ( ) ( )], ,x y r= cos sinθ θ  (2.47)

 ( , ) [cos( ),sin )]ω ω φ φx y = α (  (2.48)

The Fourier transform can be written as

 F f r r rr( ) ( , )cos( )α φ θθ φ

π

π

, e d di= − −

−

∞

∫∫ α θ
0

 (2.49)

If the function f(x,y) is independent of θ, then the transform F(α,ϕ) will be independent 

of ϕ. It follows that we can write

 F f r r rr( ) ( )cos( )α θ

π

π

= −

−

∞

∫∫ e d di α θ

0
 (2.50)

If we perform the integral with respect to θ !rst, and use the integral representation 

of J0, we get

 F J r f r r r( ) ( ) ( )α α=

∞

∫2 0
0

π d  (2.51)
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The function F(α) is known as the Hankel transform of the function f(r). We can 

apply the same steps to show that the inverse Hankel transform is given by

 f r J kr F k k k( ) ( ) ( )=

∞

∫ 0
0

d  (2.52)

2.3 METHOD OF STATIONARY PHASE

2.3.1 BASIC IDEA OF STATIONARY PHASE

The method of stationary phase [8] is an asymptotic method, !rst used by Stokes 

and Kelvin, for evaluating integrals whose integrands have a very rapidly varying 

phase. The method is very important in the theory of dispersive wave propagation 

where it motivates the concept of group velocity [9,10]. In the theory of beam shap-

ing, it can be used to derive the geometrical optics limit from the theory of Fresnel 

diffraction, and more importantly, it gives us bounds on when the geometrical theory 

is applicable.

We will now give a brief heuristic derivation of the lowest order term in the 

approximation. Suppose we have an integral of the form:

 H fq( ) ( )( )γ ξξ=
−∞

∞

∫ e diγ ξ  (2.53)

and we are interested in evaluating this integral for large values of γ. Intuitively, we 

expect that intervals where the function γq(ξ) is changing rapidly will give negligible 

contributions to this integral. If the derivative of q vanishes at ξ = ξ0, we expect the 

main contribution to come from the region very near ξ0. To a !rst approximation we 

can write

 H f q q( ) ( ) ( ) ( )( ) /γ ξ ξ ξ ξ ξ≈ ′′ −

−∞

∞

∫0 20 0 0 2e e di iγ γ ξ  (2.54)

We have arrived at this expression by assuming that the major contribution comes 

from a small region around ξ0, and hence, we have approximated the function f(ξ) 

as being constant and equal to f(ξ0). We have also expanded the function q(ξ) in a 

Taylor series about ξ0, keeping only the terms up to the quadratic. The integral can 

now be evaluated analytically to give

 H f q
q( ) ( ) | ( ) |

/ ( )γ ξ
π

γ ξ

ξ≈
′′

0 4
0

0 2e ei iµπ γ  (2.55)

where:

 µ
ξ

=












sgn d
d
2

2
0

q( )
ξ

ξ

 (2.56)
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Here, we have assumed that there is exactly one point where the phase is stationary. 

If there is more than one point, then we must sum over all points that are stationary 

in order to get our asymptotic expansion. If there are no stationary points, then the 

integral will die down exponentially fast with γ provided the functions q(ξ) and f(ξ) 

are in!nitely differentiable, and the function f(ξ) and all of its derivatives decay as 

|ξ| → ∞. If there is no stationary point, but the function f(ξ) has a discontinuity in it, 

we are at least guaranteed that the integral dies down like 1/γ as γ → ∞. It is not too 

dif!cult to make this heuristic derivation more rigorous.

2.3.2 RATE OF CONVERGENCE OF THE METHOD OF STATIONARY PHASE

In our discussion of beam shaping, we will see that the lowest order term in the stationary 

phase approximation to the diffraction integral gives us the geometrical optics approxi-

mation. In this case, the parameter β discussed in Section 2.1 will serve as our large 

parameter in the phase of the integrand. To understand what sorts of errors are produced 

when we use the geometrical optics approximation, we need to know the higher order 

terms in the method of stationary phase. It is not important for us to have exact expres-

sions for the higher order terms, but we need to know how fast they die down with γ.
The subject of how to correct the lowest order term in the method of stationary 

phase gets somewhat technical, so we feel that it is best if we begin by summarizing 

the main results. In our analysis of beam shaping, we will have another parameter in 

our phase function, so our integrals will be of the form:

 H x fq x( , ) ( )( , )γ ξξ=
−∞

∞

∫ e diγ ξ  (2.57)

where:

ξ represents a point on the aperture

x represents a point at the focal plane

The function q(ξ,x) will be proportional to the travel time required to get from a 

point ξ on the aperture to a point x in physical space. In practice, ξ and x will be 

two-dimensional vectors, but we assume they are scalars here in order to simplify 

the presentation. This one-dimensional case will be directly relevant for the case 

where our input and output beams can be written as a direct product of two one-

dimensional distributions.

Let ξ0(x) be the point at which the phase is stationary. We will show that if the 

functions q(ξ,x) and f(ξ) are in!nitely differentiable at the stationary point ξ0(x), and

 
∂

∂
≠

2
2

0

0q x( , )ξ

ξ
ξ

 (2.58)

then the next order correction dies down like 1/γ3/2. This gives us an expression of 

the form:

 H x A x iB x( , ) ( ) ( )
/ /γ = + +

γ γ
1 2 3 2  (2.59)
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In this case, the relative error between the !rst-order term and the exact solution will 

die down like l/γ. If the function f(ξ) is real, then the functions A(x) and B(x) will have 

the same phase. This implies that the relative error between |H(x,γ)|2 and the value 

predicted by the !rst term in the method of stationary phase will be O(1/γ2).

This expression will remain valid provided the functions f(ξ) and ∂2q/∂ξ2 are dif-

ferentiable at ξ0(x). If these functions are continuous, but not differentiable at some 

point x*, then at the point x*, the next order term in the method will be of the form:

 H x A x B x( , ) ( ) ( )
/

∗
∗ ∗

= + +γ
γγ

1 2  (2.60)

We see that in this case, the relative error between the !rst-order term and the exact 

solution will die down like 1/γ1/2. Furthermore, in this case, the functions A(x) and 

B(x) are not phase shifted by 90° when f(ξ) is real. This means that the relative error 

between |H(x,γ)|2 and the term predicted by the !rst term in the method of station-

ary phase will be O( / ).1  This means that we will need a much larger value of γ 

before the !rst-order term is a good approximation. In terms of our beam shaping 

problem, this will imply that if the surface of the beam shaping lens designed using 

geometrical optics has a discontinuity in the third derivative, then we will require 

much larger values of β in order for the results of geometrical optics to be a good 

approximation.

Suppose that at some point x0, the function f(ξ) or ∂2q/∂ξ2 is discontinuous at 

ξ0(x0). Since the !rst-order term in the method of stationary phase requires us to 

know f(ξ) and ∂2q(ξ,x)/∂ξ2 at ξ0(x), it is clear that we need to modify the results of 

the lowest order term in our stationary phase approximation when x  =  x0. More 

importantly, the method of stationary phase will hold for values of x near x0, but 

the convergence near these points will be dramatically affected. The analysis of 

this situation is based on the Fresnel integral [11], and we see that this situation is 

related to the diffraction by a semi-in!nite half plane. As with that case, we end up 

getting oscillations near the point x0. For the beam shaping problem, this implies 

that if the surface of the lens designed using geometrical optics has a discontinuity 

in the second derivative, then we will get even worse convergence, and this will be 

accompanied by oscillations in the amplitude. When the surface of the lens has a 

discontinuity in the !rst derivative, the convergence toward the geometrical optics 

limit is affected even more dramatically.

Clearly, if the discontinuities are small enough, they will have little effect on the 

convergence toward the geometrical optics limit. For example, the elements are often 

manufactured by approximating the element by a piecewise constant element. This 

should not be any problem if the steps are small enough.

So far, we have assumed that the second derivative of q(ξ,x) does not vanish at 

the stationary point ξ0(x). In optics, points where this condition is violated are said 

to lie on a caustic surface. Suppose we have a point source of light whose rays get 

refracted by an inhomogeneous medium. It is possible that at certain points in the 

medium we might have more than one ray arriving from this point source, or pos-

sibly none at all. The surfaces separating regions where there are different numbers 

of rays are known as the caustic surfaces. When we analyze the diffraction integral 
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using the method of stationary phase, we !nd that on the caustic surface the second 

derivative of q(ξ,x) vanishes.

We are not so much interested in computing the integral for H(x,γ) right at a point 

where the stationary point ξ0 has a vanishing second derivative. Instead, we are 

interested in analyzing the integral H(x,γ), for x near x0, where

 
∂

∂
=

= ( )

2 0
2

0 0

0q x
x

( , )ξ

ξ
ξ ξ

 (2.61)

In optics, the point x0 would be a point on the caustic surface. We would !nd that for 

points on one side of x0, there are no stationary points, and on the other side there are 

two stationary points. In order to understand the behavior of H(x,γ) near such points 

we need to include cubic terms in the Taylor series expansion of the phase near the 

stationary point, and this analysis is based on the Airy integral.

We will not give any further discussion of the Airy integral or caustics since when 

discussing beam shaping we do not present any examples where caustics occur in 

the classical sense of the word. All of the problems we analyze lead to lenses whose 

phase functions do not have in$ection points. However, in some of the lenses, the 

phase function grows linearly as we move far away from the center of aperture. This 

results in a situation where the caustic occurs at a value of ξ0 = ∞.

2.3.3 A PRELIMINARY TRANSFORMATION

In our analysis of the higher order terms in the method of stationary phase, we will 

begin by analyzing the situation where q(ξ) = ξ2. This leads us to consider integrals 

of the form:

 P f( ) ( )γ ξ γξ=
−∞

∞

∫ e di 2
ξ  (2.62)

By making a preliminary transformation, we can transform the analysis of the inte-

gral in Equation 2.53

 H fq( ) ( )( )γ ξγ ξ=
−∞

∞

∫ e di ξ  (2.63)

into the analysis of this simpler problem. To do this we assume that q(ξ) has a single 

stationary point at ξ0. In this case, we can introduce a new variable s such that

 s q q2 0= −µ ξ ξ[ ( ) ( )]  (2.64)

 µ
ξ

=








sgn d

d
2 0q( )
ξ

 (2.65)
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in the neighborhood of ξ0. By making the change of variables s q q( ) [ ( ) ( )] ,ξ ξ ξ= −µ 0  

we end up with an integral of the form:

 H f s s sq s( ) ( )γ ξξ µγ= ( )( )

−∞

∞

∫e e d
d di iγ ξ0 2

 (2.66)

This gives us an integral of the same form as in Equation 2.62, but with the function

 g s f s s( ) ( )= ( )ξ
d
d
ξ

 (2.67)

replacing the function f(ξ).

When we apply the method of stationary phase to the integral in Equation 

2.62, we see that there is a stationary point at ξ = 0. The continuity properties of 

f(ξ) are important in determining how quickly the !rst-order term in the method 

of stationary phase converges toward the exact answer. For the general case, it is 

important to know the continuity properties of the function g(s). A  discontinuity 

in the kth derivative of g(s) can arise by the kth  derivative of f(ξ) being 

 discontinuous at ξ  =  ξ0, or by the kth derivative of dξ/ds being  discontinuous 

at s = 0. The derivatives of ξ(s) depend on the derivatives with respect to ξ of 

q(ξ) at ξ0. These derivatives can be calculated using implicit differentiation. In 

particular, note that

 2s s qd
d

d
dξ

µ
ξ

=  (2.68)

If we evaluate this at ξ = ξ0, we !nd that both sides of this equation vanish and we 

have not determined any derivatives. However, if we differentiate once more with 

respect to ξ, we get

 2 2
2 2

2
2
2

d
d

d
d

d
d

s s s q
ξ ξ

µ
ξ









 + =  (2.69)

and when we evaluate this at ξ = ξ0, we get

 2 0
2 2 0

2
d
d

d
d

s q( ) ( )ξ ξ
ξ

µ
ξ









 =  (2.70)

This gives us two possible values of ds(ξ0)/dξ. We can choose either sign we want 

to. When we take further derivatives, we !nd that the (dk/dξk)s(ξ0) is determined by 

the derivatives of q(ξ) up to k + 1. This means that (dk/dsk) ξ(0) is also determined 

by these same derivatives. Finally, we see that the derivatives of g(s) up to k will be 

continuous only if the derivatives of q up to k + 2 are continuous. In particular, we 

see that the function g(s) will have a continuous !rst derivative if and only if the 

derivative of f(ξ) and the third derivative of q(ξ) are both continuous.
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2.3.4 GENERALIZED FUNCTIONS

Before discussing the higher order terms in the method of stationary phase, we 

consider some relevant concepts from the theory of generalized functions [12]. The 

Dirac delta function and its derivatives are examples of generalized functions. The 

de!nition of these functions often arises as in!nite integrals whose integrands do not 

decay at in!nity. For example, the delta function is the inverse Fourier transform of 

a constant, and hence is de!ned by a divergent integral:

 δ ω( )x x=

−∞

∞

∫
1
2π ωe di  (2.71)

One way of thinking of this function is to imagine that it is de!ned by taking the 

inverse Fourier transform of e−αω2
, and then letting α → 0. The function that we get 

by doing this is the Dirac delta function. Even though it is a rather unusual function, 

it is extremely useful in practice.

In !nding the higher order terms for the method of stationary phase, it will be 

useful to consider the integrals

 Rk
k( )γ ξγ=

−∞

∞

∫ e di ξ ξ
2

 (2.72)

These integrals can be confusing since if γ is real then the integrands of these inte-

grals do not approach zero as ξ → ∞. However, if we evaluate these integrals over a 

!nite interval, and let the region of integration go to in!nity, we !nd that these are in 

fact convergent integrals. Furthermore, if we give γ a very small positive imaginary 

part, then the integrands approach zero. After evaluating these integrals we could 

then let the imaginary part go to zero. When we let the imaginary part go to zero we 

!nd that all of the integrals Rk are well de!ned. We could also get the integrals by 

taking the derivatives of the integral R0(γ) with respect to γ. If we do this, we !nd that

 R i R
k

k
+ =2

d
dγ  (2.73)

Due to the asymmetry of the integrand, we get

 R kk = 0 for  isodd  (2.74)

Carrying out this process, we !nd that the !rst few of these integrals are given by

 R C
0

0
1 2( ) /γ =
γ

 (2.75)

 R1 0( )γ =  (2.76)

 R iC
2

0
3 22( ) /γ
γ

=  (2.77)
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where:

 C0 4
= eiπ /

π  (2.78)

We will also be concerned with the integrals

 Sk
k( )γ γξ=

∞

∫ξ ξe di 2

0
 (2.79)

We can use the same sort of reasoning on these integrals. If k is even, then

 S R kk k( ) ( )γ γ=
1
2  for  even  (2.80)

However, unlike Rk these integrals do not vanish when k is odd. In particular, when 

k = 1

 S i
1 2( )γ =

γ
 (2.81)

The rest of the integrals can be evaluated using

 S i Sk k+ = −2( ) ( )γ γ
d
dγ  (2.82)

2.3.5 HIGHER ORDER TERMS IN THE METHOD OF STATIONARY PHASE

We begin our analysis of the higher order terms in the method of stationary phase by 

considering the special case

 H f( ) ( )γ ξγξ=
−∞

∞

∫ e di 2
ξ  (2.83)

This has the stationary point at ξ = 0. To obtain the !rst term in the method of 

stationary phase, we argued that the major contribution to this integral came from 

the region around ξ = 0. For this reason we expanded f(ξ) in a Taylor series about 

ξ = 0, and then kept only the !rst term in the series. It makes sense that we should 

get more accurate answers if we keep more terms in the Taylor series. For example, 

if we kept three terms in the Taylor series, this would lead to an approximation of 

the form:

 H f R f R f R( ) ( ) ( ) ( ) ( ) ( ) ( )γ γ γ γ≈ + + +0 0 1
2

0
0 1

2
2 2

d
d

d
dξ ξ

 (2.84)

where:

Rk(γ) are the integrals that are discussed in Section 2.3.4
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We conclude that the higher order approximations for H(γ) can be written as

 H f i f( ) ( ) ( )/γ ≈ +








 +e d

d
iπ π

γ γ ξ
4

2
0 4

0
 (2.85)

In this special case, this shows that the next order term in the method of stationary 

phase dies down like 1/γ3/2, provided that f(ξ) is suf!ciently differentiable.

If the derivative of f(ξ) has a discontinuity at ξ = 0, then if we keep two terms in 

our Taylor series about ξ = 0, we end up with an expression

 H f R f f( ) ( ) ( ) ( ) ( )
γ γ γξ γξ≈ + + ++ −

∞

−∞

∞

∫ ∫0 0 0
0

0

2 2d
d e d d

d e di i
ξ

ξ ξ
ξ

ξ ξ  (2.86)

We can write this as

 H x f R S f f( , ) ( ) ( ) ( ) ( ) ( )
γ

ξ ξ
≈ + −









 +

+ −0 0 0
0 1γ γ

d
d

d
d  (2.87)

Using our values of R0 and S1 we get

 H f i f f( ) ( ) ( ) ( )/γ
π
γ

≈ + −








 +

+ −0 2
0 04e d

d
d
d

iπ
γ ξ ξ

 (2.88)

We see that if f(ξ) has a discontinuous derivative at ξ = 0, then the relative error 

between the !rst-order term and the exact answer will die down like 1/γ 1/2. This is 

much slower than when the derivative of f(ξ) is continuous.

As we noted earlier, the general case where q(ξ) is not quadratic can be trans-

formed into the quadratic case, but with the function f(ξ) replacing the function g(s) 
in Equation 2.67. We saw that the function g(s) will have a discontinuous derivative 

if the function f(ξ) has a discontinuous derivative, or if q(ξ) has a discontinuous third 

derivative. It follows that as long as the !rst derivative of f(ξ) and the third derivative 

of q(ξ) are continuous, then the next order term in the method of stationary phase 

will die down like 1/γ 3/2. If either of these derivatives is discontinuous, then the next 

order term will die down like 1/γ. This can be used to justify our earlier statement 

concerning the effect of a discontinuity in the third derivative of the lens surface on 

the rate of convergence toward the geometrical optics limit.

2.3.6 LOWER ORDER DISCONTINUITIES IN THE PHASE FUNCTIONS

When the functions f(ξ) or (d2/dξ2)q(ξ,x) are discontinuous, we can get very slow 

convergence from the !rst term in the stationary phase approximation. We will begin 

with a simple example illustrating this point. By suitably changing coordinates, more 

general problems can in fact be related to this simple example.
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Consider the integral

 V x x( , ) ( )γ ξ= −

∞

∫
1 2

0π
ξγe di  (2.89)

This is a special case of our general problem where q(ξ,x) has a quadratic depen-

dence on ξ and f(ξ) = 1 for ξ > 0 and 0 for ξ < 0. This is an example where the func-

tion f(ξ) is discontinuous.

If we apply the method of stationary phase to this integral, we see that there is no 

stationary point for x < 0 and that the method predicts that the integral is indepen-

dent of x for x > 0. More speci!cally, the method predicts

 V x x( ),γ ≈ <0 0for  (2.90)

 V x x( , ) /
γ

γ
≈ >

1 04e foriπ  (2.91)

In the stationary phase approximation, the magnitude of V(x,γ) is a multiple of the 

Heaviside function.

 | ( , ) |V x xγ
2 0 0≈ <for  (2.92)

 | ( , ) |V x xγ
γ

2 1 0≈ >for  (2.93)

We now consider this integral in more detail. A simple change of variables allows 

us to write

 V x x( , ) ( )/
/

γ = −
1
1 2

1 2
γ

γFr  (2.94)

where:

 Fr e di( )s tt

s
=

∞

∫
1 2

π
 (2.95)

The function Fr(s) is known as a complex Fresnel integral. Figure 2.3 shows a plot of 

the intensity |Fr(s)|2 of the function Fr(s). This graph shows that for x < 0 the func-

tion V(x,γ) has a monotonic decay toward zero, whereas for x > 0 we get an oscilla-

tory approach toward the constant value of 1. We see that if  γx 1, then V(x,γ) 

will agree very well with the stationary phase solution. The difference between the 

exact solution and the stationary phase solution is that the stationary phase solution 

approximates the lower limit of the integrand as being equal to −∞. Since γ ≫ 1, this 

is usually a good approximation, but when x is close to zero, this is not so good. This 

is the root of the slow convergence of the method of stationary phase for all problems 

that have a discontinuity in f(ξ) or d2q/dξ2.
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We can understand the behavior of Fr(s) by considering the behavior of Fr(s) for 

large values of |s|. For s ≫ 0, we can integrate by parts to show that

 Fr e e di
i

( )s i
s it ts

t

s
= +

∞

∫
1

2
1

2
2

2

π π
 (2.96)

This shows that

 Fr ei( )s i
s O s

s= +










1
2

12
2

π
 (2.97)

Similarly, for s = 0, we can write

 Fr e e di i( ) /s tt
s

= −
−∞
∫π 4 1 2

π
 (2.98)

An integration by parts now shows that

 Fr e ei i( ) /s i
s O z

s= − +










π 4
2

1
2

12

π
 (2.99)

When we compute the amplitude |Fr(s)|2, we see that

 | ( ) |Fr fors
s

s2
2

1
4 0= +
π

⋯ ≫  (2.100)

and

 | ( ) | sin( )Fr fors
s

s
s2

2
1 4 0= −

−









π/

π
 (2.101)
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FIGURE 2.3 A plot of the function |Fr(s)|2 that models the intensity when light gets dif-

fracted by a plane.
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We see that the solution approaches its asymptotic value much slower for s = 0 than 

for s ≫ 0, and that it approaches it in an oscillatory fashion. This is only the asymp-

totic behavior, but it gives quite an accurate picture of the function Fr(s).
This shows that the function V(x,γ) will have oscillations for x > 0, and be smooth 

for x < 0. Note that the convergence for large values of γ will be very slow if x is near 0, 

since x  will be relatively small in this case as γ → ∞.

A very slight generalization of this problem is to consider the function

 V x s ss x s x( , ) ( ) ( )γ γ γ= +−

∞

−

∞
∫ ∫e d e di i2 2

0

0
α  (2.102)

This reduces to the previous problem when α = 0. When α is nonzero, we can ana-

lyze this problem in a similar fashion. In this case, we see that we will get oscilla-

tions on both sides of x = 0, but the oscillations will be bigger on the side where the 

stationary phase solutions predict that V is bigger. Generalizing further, we see that 

when we have an integral of the form:

 H x fq x( , ) ( ),γ ξγ ξ= ( )

−∞

∞

∫ e di ξ  (2.103)

and f(ξ) has a discontinuity at ξ*, then we need to break the integral up into two parts.

 H x f fq x q x( , ) ( ) ( ), ,
*

*
γ ξ ξξ γ ξ= +( )

−∞

( )
∞

∫ ∫e d e di iγ

ξ

ξ

ξ ξ  (2.104)

Suppose that the function q(x,ξ) has a stationary point at ξ(x), and that ξ(x*) = ξ*. 

When we apply the reasoning behind the method of stationary phase to the integral 

from ξ* to ∞, we get

 e d e ei i iγ

ξ

ξ ξ
ξq x q x x q x xf f x, , ( ) / , ( )

*
( ) ( )ξ γ γ
ξ ξ( )

∞

  ∫ ≈ ( ) 1 2 2d { } − 

∞

∫
/ ( )

*

d dξ

ξ

ξ
2 2

ξ ξ x
 (2.105)

We now make the substitution

 s q x x x2
2

2
21

2=
  − γ

ξ

ξ
ξ

d
d
, ( ) ( )ξ  (2.106)

This gives us the approximation

 e d e
d

i iγ

ξ

ξξ
ξ

q x q x xf f x
q x x

( , ) , ( )

*
( ) ( )

/ , ( )
ξ γξ ξ

π

γ

∞

 ∫ ≈ ( )
 2

2

dd

Fr

ξ2

( )*s  (2.107)

53



39Mathematical and Physical Theory of Lossless Beam Shaping

where:

 s x q x x* * ( ) , ( )
= − 

 ξ
γ

ξ
ξ

ξ

d
d

2
2 2  (2.108)

If s* = 0, we can make the approximation

 F s( ) ( )* /
≈ −∞ =Fr eiπ 4  (2.109)

and we get back the !rst term in the method of stationary phase. However, if ξ(x) 

is too close to ξ*, this will not be a very good approximation unless γ is extremely 

large. However, our results should be good if we keep s* in our expression rather 

than replacing it by −∞. This is exactly what we did in our analysis of the integral 

in Equation 2.89.

As in our analysis of Equation 2.89, we can patch up our approximation for points 

x such that ξ(x) ≈ ξ* by using the Fresnel integral. If we were to do this in the general 

case, the formulas would get extremely cumbersome. However, it is clear that in this 

general case we will get the same qualitative behavior as in Equation 2.89.

2.3.7 METHOD OF STATIONARY PHASE IN HIGHER DIMENSIONS

The method of stationary phase carries over to higher dimensional integrals. In par-

ticular, suppose we have an integral of the form:

 H f q( ) ( , ) ( , )γ ξη γ ξ η=
−∞

∞

−∞

∞

∫∫ e d di ξ η  (2.110)

Once again if the function q(ξ, η) has a stationary point where

 ∇ =q( , )ξ η0 0 0  (2.111)

then the major contribution to the integral will come from points right around this 

stationary point, and we can approximate the integral by

 H f q Q( ) ( , ) , / ( , )γ ξ η ξ η ξ η≈ ( )

−∞

∞

−∞

∞

∫∫0 0 1 20 0e e d di iγ γ ξ η  (2.112)

where:

 

Q q q( , ) ( , ) ( ) ( , ) ( )( )ξη
ξ η

ξ ξ +
ξ η

η
ξ ξ η η=

∂

∂
−

∂

∂ ∂
− −

+
∂

2 0 0
2 0 2 0 0

0 0

2

ξ ξ
2

2

qq( , ) ( )ξ η
η η0 0

2 0 2
∂

−
η

 (2.113)
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This integral can be evaluated to give

 H if
J

q( ) ( , )
( , )

( , )γ
ξ η

ξ η

γ ξ η≈
2 0 0

0 0
0 0π

γ
ei  (2.114)

where:

 J q q q q( , ) ( , ) ( , ) ( , ) ( ,
ξ η

ξ η ξ η ξ η

η

ξ η
0 0

2 0 0
2

2 0 0
2

2 0 0 2 0=
∂

∂

∂

∂
−
∂

∂ ∂

∂

ξ η ξ

00)
∂ ∂ξ η

 (2.115)

2.4 MAXWELL’S EQUATIONS

2.4.1 THE GOVERNING EQUATIONS

The theory of beam shaping is based on diffraction theory, which is itself based on 

electromagnetic !eld theory. For this reason we will now review basic electromag-

netic theory [13]. The governing equations of electromagnetic !eld theory are as 

follows:

 ∇×
∂

∂
=E +

1
c t
B 0  (2.116a)

 ∇× −
∂

∂
=B J1

c t c
E 4π

 (2.116b)

and

 ∇⋅ =E 4πρ  (2.117a)

 ∇⋅ =B 0  (2.117b)

where:

E and B are the electric and magnetic !elds, respectively

ρ and J are the charge and current densities, respectively

The densities ρ and J are related to each other through the law of conservation of 

charge.

 
∂

∂
+∇ ⋅ =

ρ

t
J 0  (2.118)

Equation 2.116a is the differential form of Faraday’s principle of electromagnetic 

induction, and Equation 2.116b describes both Ampere’s law and Maxwell’s dis-

placement current. Equation 2.117a is known as Gauss’s law, and Equation 2.117b 

describes the fact that there is no such thing as a magnetic monopole. It should be 

noted that the second set of Maxwell’s equations almost follows from the !rst set. If 

we take the divergence of Equation 2.116a and b, use the fact that the divergence of 

a curl is zero, and use the law of conservation of charge, we get
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∂

∂
∇ ⋅ =
t

B 0  (2.119)

and

 
∂

∂
∇ ⋅ − =

t
( )E 4 0πρ  (2.120)

We see that if the second set of Maxwell’s equations is true initially, then the !rst set 

requires that they be true for all time.

We are frequently concerned with wave propagation through some medium such 

as air, water, or glass. In this case, there is an interaction between the charge distribu-

tions and the electromagnetic !eld. This interaction is usually taken into account by 

assuming that the electric !eld induces a polarization charge P such that the charge 

density is given by

 ρ = −∇ ⋅P  (2.121)

Assuming that there are no other charges apart from those induced by the electric 

!eld, this gives us the following equation:

 ∇⋅ + =( )E P4 0π  (2.122)

The assumption is typically made that the polarization is given by

 P E= χ  (2.123)

Gauss’s law can now be written as

 ∇⋅ =D 0  (2.124a)

where:

 D E= ε  (2.124b)

and

 ε = +1 4πχ  (2.124c)

The linearity between the polarization and the electric !eld is usually valid unless 

the electric !eld gets to be very large. Here we have also assumed that the medium is 

isotropic, so there are no preferred directions. In a nonisotropic medium, the polar-

ization is related to the applied electric !eld by a symmetric second rank tensor. 

In order to describe the phenomenon of birefringence in crystals, it is necessary 

to use the general tensor form for the polarization. (This tensor is diagonal for the 

special case of an isotropic medium.) This relation between the electric !eld and the 

polarization also assumes that the polarization depends only on the local value of 

the electric !eld. Using such a theory, it is not possible to describe the rotation of the 

polarization !eld by an optically active material.
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A similar approximation is used to take into account the effect of currents that 

are produced by the magnetic !eld. In this case, the currents in the material induce a 

polarization current M such that the current is given by

 J MM c= ∇×  (2.125)

It follows that the magnetic !eld must satisfy

 ∇× −
∂

∂
= ∇×B E M1 4c t π  (2.126)

If we introduce the quantity H de!ned by

 H B M= − 4π  (2.127)

then assuming that the only currents are those arising from the induced current JM, 

we can write

 ∇× −
∂

∂
=H 1 0c t

E
 (2.128)

In the simplest case, it is assumed that the !elds B and H are linearly proportional 

to each other:

 B H= µ  (2.129)

For most materials that are used in optics the linear relation between the B and H 

!elds is totally satisfactory. In fact, the constant μ is very nearly equal to unity for 

most materials of optical interest.

We now collect the macroscopic form of Maxwell’s equations in a linear isotropic 

material:

 
1 0c t
∂

∂
−∇× =

D H  (2.130a)

 
1 0c t
∂

∂
+∇× =

B E  (2.130b)

 ∇⋅ =D 0  (2.131a)

 ∇⋅ =B 0  (2.131b)

where:

 D E= ε  (2.132a)

 B H= µ  (2.132b)

We have omitted any sources of charges and currents other than those produced by 

the interaction of the !elds with the materials.
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2.4.2 WAVE EQUATION

Our analysis of diffraction effects in Section 2.6 is based on the fact that in a linear, 

homogeneous, and isotropic medium, each component of the electric and magnetic 

!elds satis!es the wave equation. We now give a derivation of this fact. We begin by 

deriving an equation for E that does not assume that ε and μ are constants.

To begin with, we write Equation 2.130b as

 
1 1 0c t
∂

∂
+ ∇× =

H E
µ

 (2.133)

We now take the curl of this equation and use Equation 2.130a to arrive at the result:

 
∂
∂

= − ∇× ∇×










2
2

2 1 1E Et c
ε µ

 (2.134)

This is the form of the wave equation for E in a medium where ε and μ are not 

assumed to be constants. If we assume that μ is constant, we can write this equation as

 
∂

∂
= − ∇×∇×

2
2 1E Et c
εµ

 (2.135)

We can simplify this equation by using the identity ∇ × ∇ × A = −∇2A + ∇∇·A, 

along with the fact that ∇·E = 0 (assuming that ε is constant). For a homogeneous 

medium, this gives us the equation

 
∂

∂
= ∇

2
2

2
2E Et

c
εµ

 (2.136)

This shows that each component of the electric !eld satis!es the wave equation. If 

the !elds are time harmonic, with frequency ω, the spatial dependence of the electric 

!eld must satisfy

 k 2 2 0E E+∇ =  (2.137)

where:

 k c=
ωεµ

 (2.138)

We refer to this equation as the reduced wave equation or the Helmholtz equation.

Similar arguments show that the !eld H satis!es

 
∂
∂

= − ∇× ∇×










2
3

2 1 1H Ht c
µ ε

 (2.139)

Note that this is not quite the same as Equation 2.134 for E since we have put ε inside 

the curl and μ outside the curl. However, if μ and ε are constants, we once again 

arrive at the conclusion that each component of H (and hence B) will satisfy the 

scalar wave equation.
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2.4.3 ENERGY FLUX

We will now derive an expression for the $ux of energy in an electromagnetic !eld. 

If we dot Equation 2.130a with respect to E, and Equation 2.130b with respect to H, 

and add the results, we get the following equation:

 
1
2 0c t

∂

∂
⋅ + ⋅ − ⋅∇× + ⋅∇× =( )E D B H E H H E  (2.140)

If we use the identity

 ∇⋅ × = ⋅∇× − ⋅∇×( )A B B A A B  (2.141)

We see that

 
1
2 0c t

∂

∂
⋅ + ⋅ +∇ ⋅ × =( ) ( )E D B H E H  (2.142)

When putting in integral form, this equation can be written as

 
1
2c V s

V S

d
dt ( ) ( )E D B H E H n⋅ + ⋅ = − × ⋅∫ ∫d d  (2.143)

where:

n is the outward facing normal to the surface

This equation can be interpreted as the fact that the quantity 1/2c(E·D + B·H) is the 

energy density, and E × H is the $ux of energy. The interpretation of 1/2c(E·D + B·H) 

as the energy density of the !eld is actually clearer when we include charges in 

Maxwell’s equations. In this case, we would have to add a term to these equations 

that would represent the change in kinetic energy of the particles in the system. The 

vector

 S E H= ×c  (2.144)

is referred to as the Poynting vector.

We will use the Poynting vector to justify the fact that the rays in geometrical 

optics are in fact the direction that energy is begin transported.

2.5 GEOMETRICAL OPTICS

2.5.1 FERMAT’S PRINCIPLE

To understand our discussion of beam shaping, it is essential to know how to 

use the laws of geometrical optics. Although understanding the derivation of the 

basic principles clearly leads to a deeper understanding, this is not essential for 

our presentation. For this reason, we begin by stating the basic principles and 

showing how we use them. Once this is done, we will discuss the derivation of 

the principles.
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Our treatment of geometrical optics is based on Fermat’s principle [11]. Fermat’s 

principle is often stated as saying that the ray that gets from point a to point b will 

take the path that minimizes the travel time. This is a very concise statement of 

the principle, but it is not technically correct. Rather than saying that the true path 

minimizes the travel time, we need to say that the true path is stationary with respect 

to travel time. In many situations, the travel time is in fact minimized, but it is not 

always the case.

Before discussing what stationarity means in geometrical optics, we 

will clarify what we mean by stationarity in a simpler setting. The function 

F(x,y) = (x ‒ x0)
2 + (y ‒ y0)

2 has a minimum at (x,y) = (x0,y0). A necessary  condition 

that it has a minimum at (x0,y0) is that the partial derivatives of F vanish at (x0,y0). 
The vanishing of the partial derivatives is equivalent to saying that the function F(x,y) is 

stationary at (x0,y0). Another way of putting this is to say that if we take any numbers 
( , )x y , then

 F x x y y F x y O( , ) ( , ) ( )0 0 0 0 2 0+ + = + →ε ε ε as ε  (2.145)

At a point that is not stationary, we would have F x x y y F x y O( , ) ( , ) ( )0 0 0 0+ + = +ε ε ε  

as ε → 0. In order for a function to have a minimum at (x0,y0) it must be stationary, 

but stationarity does not imply that the function is a minimum. For example, the 

function

 F x y x y( , ) = − −2 2  (2.146)

is stationary at (0,0), but it has a maximum rather than a minimum. The function

 F x y x y( , ) = −2 2  (2.147)

is stationary at (0,0), but it has neither a minimum nor a maximum.

Returning to geometrical optics, we will parameterize curves going from point 

a to b by a parameter s such that 0 ≤ s ≤ 1. Let x(s) = [x(s),y(s),z(s)] be a curve such 

that x(0) = a and x(1) = b. We will denote the travel time along this curve as

 T sx( )  = Travel time  (2.148)

Suppose that x0(s) is the true path that a light ray takes to get from a to b. The station-

arity condition implies that for any functions x( )s  such that x x( ) ( ) ,0 1 0= =

 T s s T s O[ ( ) ( )] [ ( )] ( )x x x0 0 2
+ = +ε ε  (2.149)

Fermat’s principle applies in an enormous variety of situations. Many times we put 

constraints on the travel paths. For example, we can use Fermat’s principle to show 

that the angle of incidence equals the angles of re$ection for a light ray bouncing off 

a mirror. In this case, we use the constraint that a ray goes from point a to b after 

!rst touching a surface.

If a light ray gets from point a to b by !rst passing through an intermediate point 

c, it can be shown that the paths from a to c and from c to b must each be stationary.
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We will now give some concrete examples illustrating Fermat’s principle. The 

!rst few examples that we give are not directly relevant to the beam shaping  problem, 

but the last example is absolutely essential to understanding our discussion of beam 

shaping.

Example 1

Suppose we have a medium that has a constant speed of light. For a ray to get from 
point a to b in the least amount of time, it is clear that it must travel in a straight 
line. Since the travel path to get from point a to b is a minimum, it is clear that 
it is also stationary. It can be shown that in this case, straight lines are the only 
stationary paths.

Example 2

Suppose the plane z = 0 separates medium I with a velocity of cI from medium 
II with velocity cII. What path does a light ray take to get from point a in medium 
I to point b in medium II? From our last example, we already know that the path 
must be a straight line in each medium. For simplicity, we will assume that the light 
ray travels in the plane y = 0. Suppose that a = (x1,0,z1) and b = (x2,0,z2). Suppose 
that in going from point a to b, the ray goes through c = (ξ,0,0) on the interface 
between the two media. We do not know the value of ξ ahead of time, but it can 
be determined using Fermat’s principle. The total travel time to get from point 
a to b by going through c is

 T
c

x z
c

x z( )ξ ξ ξ= −( ) + + −( ) +
1 1

1

2

1
2

2

2

2
2

I II

 (2.150)

In order for the travel time to be stationary, we must have

 
d

d

T

ξ
= 0  (2.151)

This implies that

 sin( ) sin( )θ θI

I

II

IIc c
=  (2.152)

where:

 sin( )θ
ξ

ξ
I =

−

−( ) +

x

x z

1

1

2

1
2

 (2.153)

 sin( )
( )

θ
ξ

ξ
II =

−

− +

x

x z

2

2
2

2
2

 (2.154)

This is equivalent to Snell’s law of refraction.
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Example 3

Suppose we would like to design a mirror that focuses all of the light rays coming 
from point a to b. For simplicity, we will consider this problem to take place in 
two dimensions. We also assume that the speed of light is constant throughout our 
medium. Suppose a ray comes from point a at an angle of θ with the horizontal. 
Suppose that this ray bounces off the mirror at a point p(θ) and then goes to the 
point b, let T(θ) be the travel time to get from point a to p(θ) and then to point b. 
In order for Fermat’s principle to hold, we must have

 
d

d

T

θ
= 0  (2.155)

This means that if q1 is any point on the mirror, then the distance from point a to 
q1 plus the distance from point q1 to b must be the same as for any other point q2 

on the mirror. This implies that the mirror must in fact have the shape of an ellipse, 
with foci at points a and b.

It should be noted that as we move the point a off to ∞, this ellipse ends up 
turning into a parabola. This gives us the solution of how to focus rays coming in 
from ∞ to a single point b.

Example 4

When using Fermat’s principle for parallel beams of light, it is necessary to be 
familiar with the following argument. Suppose we have a parallel beam of rays 
coming in from ∞. We can think of such rays as coming from a very distant point 
source. Suppose the point source is at p =  (‒L,0,0). Assuming a homogeneous 
medium, the time to get from point p to a point (x,y,z) is given by

 T x y z
c

x L y z( , , ) ( )= + + +
1 2 2 2  (2.156)

As L → ∞, we can make the approximation

 T x y z
c
L x O

L
( , , ) = + +





















1 1
 (2.157)

This shows that the travel time to get to any point in space (x,y,z) is independent of 
y and z. When applying Fermat’s principle, the travel time L/c will not matter since 
it is the same for all paths. We will use this fact whenever we are applying Fermat’s 
principle to rays that are coming in parallel.

Example 5

We now give an example that shows that the ray paths do not always minimize 
the travel time, but they are still stationary with respect to travel time. Suppose we 
have a cylindrical mirror (Figure 2.4) whose surface is given by

 ( ) ( ) ( ), ,x y R= − ≤ ≤[ ]cos sinθ θ
π

θ
π

2 2
 (2.158)

62



48 Laser Beam Shaping

We are interested in "nding the paths of rays that are coming in parallel from 
x = −∞. As we have already mentioned, this can be thought of as rays coming 
from a distant source at p = (−L,0) where L is very large. The travel time to get 
from p to a point on the surface of the mirror R[cos(θ),sin(θ)], and then to a point 
(x,y) is (assuming L ≫ 1)

 T
c
L R x R y R( ) cos( ) cos( ) sin( )θ θ θ θ= + + −  + − { }1 2 2

 (2.159)

Given a point (x,y) the equation dT/dθ  =  0 will determine where the ray that 
reaches (x,y) re#ects off the mirror. For simplicity, we will limit ourselves to points 
such that y = 0. In this case, we can write the stationarity condition as

 
d

d

sinT R

c

x

x R Rθ
= − +

−[ ] +















( )

cos( ) sin ( )

θ

θ θ
1

2 2 2
 (2.160)

The above equation has the solution

 sin( )θ = 0  (2.161)

or

 x x R R2 2 2 2= −[ ] +cos( ) sin ( )θ θ  (2.162)

The above equation can be written as

 x
R

=
2 cos( )θ

 (2.163)

For any value of x, the "rst equation (2.162) gives us the solution θ = 0. However, 
the second equation (2.163) will have no solutions if x < R/2, and will have two 
solutions if x > R/2. When we look throughout the x–y plane, we "nd that there 
will be a region that has three re#ected rays reaching each point, and another 
region with only one re#ected ray reaching each point. The curve separating the 

FIGURE 2.4 A schematic of light being re$ected by a cylindrical mirror. In the shaded 

region, there are two rays that reach each point by a single re$ection off the mirror. Outside 

of this region, there is only one ray that reaches each point by a single re$ection.
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two regions is an example of a caustic surface. These caustic surfaces are easily 
observed since the irradiance at the surface becomes much larger than at a typical 
point in the plane. This particular situation can be observed when looking into a 
cup of tea or a bowl of sugar under the light from a concentrated source such as 
an incandescent light bulb.

Note that not all of the rays have minimum travel time. If we compute d2T/dθ2, 
we get

 

d

d

2

2 2 2 2

2

1
T R

c

x

x R R

R

θ
θ

θ θ
= − +

−  +
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 (2.164)

If we restrict our attention to the ray that hits the mirror at θ = 0, we have
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d
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c
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x R
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| |θ
= − +
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  (2.165)

This shows that if x > R/2, then the travel time is a minimum, but if x < R/2, the 
travel time is in fact a local maximum.

Example 6

This example plays a large role in our theory of beam shaping since it shows that 
our Fourier transform lens has a quadratic time delay, and hence a quadratic phase 
function. Suppose we would like to place a lens at x = 0 that focuses all of the 
rays coming in from x = −∞ to a single point at (x,y) = (f,0). We will make several 
approximations. To begin with, we assume that the lens is thin. This means that 
the rays that enter the lens at (0,y) emerge at very nearly the same point. We can 
model the effect of the lens by saying that it introduces a time delay of tL(y). This 
means that a ray that enters the lens at (0,y) takes a time tL(0,y) to emerge from the 
lens. In practice, this time delay can be introduced by making the lens out of a 
material that has a different index of refraction than the medium that the rays are 
traveling in, and by varying the thickness of the lens.

We would like to determine the function tL(y) such that all of the rays from ∞ 
get focused to the point (f,0). The time for a ray to go from a distant point (−L,0) to 
a point (0,y) and then to the point (f,0) is approximately

 t y
c
L f y t yL( ) ( )= + +( ) +1 2 2

 (2.166)

Here we have made the approximation that L ≫ 1, and used the simpli"ed expres-
sion for the distance from (−L,0) to (0,y). We will now make the paraxial approxi-
mation. This assumes that all points on the lens satisfy y f2 2 1/ . In this case, we 
can approximate the square root using
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 f f
y

f
2 2

2

2
+ ≈ +y  (2.167)

Using this approximation, we can write

 t y
c
L f

y

f
t yL( ) ( )≈ + +









 +

1

2

2

 (2.168)

Fermat’s principle requires that the path that gets from (−L,0) to (f,0) must be 
 stationary with respect to all nearby paths. This implies that

 
d

d
 for all 

t

y
y= 0  (2.169)

This means that we must have t(y) = constant, and hence

 t y
y

fc
L( ) = −

2

2
 (2.170)

This shows that in the paraxial approximation, we must use a quadratic lens to 
focus an initially parallel beam of rays to a point.

2.5.2 EIKONAL EQUATION

The laws of geometrical optics can be derived as a high-frequency approximation to 

the solutions of Maxwell’s equations. The rays of light are related to the direction of 

energy propagation. There is a very strong connection between Fermat’s principle 

and the method of stationary phase. Both the method of stationary phase and the 

laws of geometrical optics are high-frequency limits; they both are centered about 

the phase of the wave !eld and use a stationarity condition.

Before considering the high-frequency limit of Maxwell’s equations, we will 

begin by considering the high-frequency limit of the scalar wave equation. Suppose 

we have a solution p(x,ω) to the following equation:

 ∇ + =
2

2
2 0p c pω

( )x  (2.171)

This is the time-harmonic wave equation, also known as the reduced wave equation. 

We are interested in determining the behavior of these solutions for large values of ω. 

In particular, we ask what solutions that are coming from a single point source look 

like. The theory of Green’s functions shows that the general high-frequency limit 

(not necessarily from a point source) can be built up by integrating over many such 

point sources. If the velocity is constant, we know that the point source solutions can 

be written as

 p A r
r c

( , )
/

x ω =
eiω

 (2.172)
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Here r2 = x2 + y2 + z2. This solution has a very rapidly varying phase (it varies more 

rapidly the bigger ω is), and a slowly varying amplitude (that is independent of ω). 

In the case of variable c(x), we assume that even though the amplitude may not be 

completely independent of ω, it depends very weakly on ω. Generalizing to the case 

of nonhomogeneous media, in the high-frequency limit, we will assume that p(x,ω) 

can be written as

 p A( , ) ( ) ( )x x xω ωφ= ei  (2.173)

This is only the !rst term in an asymptotic expansion. The general solution needs to 

include corrections to the amplitude that depend on ω.

We can write

 ∇ = ∇ + ∇( )p A Aiω ωφ φei  (2.174)

Using this equation, we can now write

 ∇ =∇⋅∇ = ∇ + ∇ ⋅∇ + ∇ − ∇ ⋅∇2 2 2 22p p A i A i A A( )ω φ ω φ ω φ φ ωφei  (2.175)

If we substitute this expression into Equation 2.171 and keep only the highest order 

term in Ω, we !nd that

 | | ( )∇ =φ 2
2

1
c x  (2.176)

This equation is usually referred to as the eikonal equation. The next higher order 

term gives us the following equation:

 2 02∇ ⋅∇ + ∇ =A Aφ φ  (2.177)

This equation can be written as

 ∇⋅ ∇ =( )A2 0φ  (2.178)

The fact that this equation can be written in divergence form suggests that the quan-

tity A2∇ϕ is the $ux of some quantity that is conserved. When we apply these argu-

ments to optical systems, we will see that this quantity is in fact proportional to the 

$ux of energy.

We mentioned that the general high-frequency approximation can be built up by 

integrating or summing over a family of point sources. As a simple example, if our 

wave !eld comes from two point sources, the high-frequency limit of the wave !eld 

will look like

 p A A( , ) ( ) ( )( ) ( )x x xx xω ωφ ωφ= +1 21 2e ei i  (2.179)

It should be mentioned that even for a single point source, there may be points in 

space where the high-frequency limit consists of a sum of terms as in the previous 

equation. This will be the case if the rays are bent so that more than one ray from the 
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same source reaches the same point. The surfaces separating the regions where there 

are different numbers of rays are the caustic surfaces.

2.5.3 EIKONAL EQUATION AND MAXWELL’S EQUATIONS

In the previous section, we derived the eikonal equation from the scalar wave equa-

tion. Each component of the electromagnetic wave !eld satis!es this equation; so 

it is not surprising that the eikonal equation also arises when considering the high-

frequency limit of Maxwell’s equations. In this section, we will derive the eikonal 

equation using Maxwell’s equations, and we will see that Poynting’s theorem shows 

that the energy of the electromagnetic !eld is in fact being propagated normal to the 

surfaces of constant phase. The derivation of the eikonal equation from Maxwell’s 

equations is almost identical to the analysis of monochromatic plane waves given in 

most textbooks on electrodynamics [12].

The time-harmonic Maxwell’s equations are

 
i cω

1 0
0
D H− ∇ × =

 
(2.180a)

 i cω
1 0
0
B E+ ∇ × =  (2.180b)

where:

 D E= ε( )x  (2.181a)

 B H= µ( )x  (2.181b)

Similar to our derivation of the eikonal equation for the scalar wave equation, we 

assume a solution of the form:

 E x E x x( , ) ( ) ( )ω ωφ= 0 ei  (2.182)

 H x H x x( , ) ( ) ( )ω ωφ= 0 ei  (2.183)

Substituting this expression into Maxwell’s equations and using the vector identity

 ∇ × = ∇ × + × ∇[ ( ) ( )] ( ) ( ) ( ) ( )f f fx A x x A x A x x  (2.184)

we get

 i c iω ω
ε

φ
0

0 0 0 0E H H− ∇ × + × ∇( ) =  (2.185a)

 i c iω ω
µ

φ
0

0 0 0 0H E E+ ∇ × + × ∇ =( )  (2.185b)
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If we only keep the highest order terms in ω in this equation, we get

 
ε

φ
c0

0 0 0E H− × ∇ =  (2.186a)

 
µ

φ
c0

0 0 0H E+ × ∇ =  (2.186b)

If we dot each of these equations with ∇ϕ, we !nd that

 E0 0⋅∇ =φ  (2.187)

 H0 0⋅∇ =φ  (2.188)

If we dot Equation 2.186a with respect to H0 or Equation 2.186b with respect to E0, 

we !nd that

 E H0 0 0⋅ =  (2.189)

If we eliminate H0 from Equation 2.186a and b, we !nd that

 
µ

φ φ
c

c
0

0 0 0 0E E+ × ∇ × ∇ =( )  (2.190)

Using the identity

 ( ) ( ) ( )a b c b a c a b c× × = ⋅ − ⋅  (2.191)

we !nd that this can be written as

 
εµ

φ φ φ φ
c02

0 0 0 0E E E− ∇ ⋅∇ − ∇ ⋅∇( ) =  (2.192)

Using the fact that E0 · ∇ϕ = 0, this can be written as

 E x0 2
1 0

c ( ) − ∇ ⋅∇








 =φ φ  (2.193)

where:

 c
c2 02( )x =
εµ

 (2.194)

We see that we have once again arrived at the eikonal equation.

The direction of energy $ux is given by the Poynting vector:

 S E H= ×c  (2.195)

Using the fact that E and H are orthogonal to each other, and also to ∇ϕ, it follows 

that this vector is in the direction of ∇ϕ. We see that the direction of energy $ux is in 

fact normal to the surfaces of constant phase.
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2.5.4 FIRST-ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

The theory of ray tracing from the eikonal equation is a special case of the solution 

of nonlinear !rst-order partial differential equations [14,15]. In this section, we will 

give a brief outline of this theory. Suppose we have an equation of the form:

 F x y z p q r( ), , , , , = 0  (2.196a)

where:

 p x=
∂

∂

φ
 (2.196b)

 q y=
∂

∂

φ
 (2.196c)

 r z=
∂

∂

φ
 (2.196d)

For optical applications, we are especially concerned with the case where

 F x y z p q r p q r c( , , , , , ) ( )= + + −










1
2

12 2 2
2 x  (2.197)

which is just the eikonal equation. In this section, we will consider the case for a gen-

eral function F rather than limiting ourselves to the eikonal equation. Our analysis 

could be extended to the case where the function F also depends on the function ϕ, 

but that case is just a bit more complicated, and it never arises in optical applications, 

so we will not consider it here.

Suppose we know the function ϕ and all of its !rst derivatives at some point 

(x0,y0,z0). Is it possible to determine the solution ϕ in the neighborhood of the point 

(x0,y0,z0)? In particular, is it possible to determine the second derivatives of the func-

tion ϕ at the point (x0,y0,z0)? If we take the derivatives of our equation with respect to 

x, y, and z, we end up with the following equations:
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The partial derivatives of p, q, and r can all be expressed in terms of the six second-

order partial derivatives of ϕ:
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By differentiating our equation F(x,y,p,q,r) = 0, we have arrived at three equations 

for the six second-order partial derivatives of ϕ. Clearly, we do not have enough equa-

tions to determine the second-order partial derivatives. The question now arises: Is it 

possible to determine the derivatives p, q, and r in a particular direction? It turns out 

that this is in fact possible. To do this, we use the fact that

 ∂
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=
∂

∂ ∂
=
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∂ ∂
=
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y x y t x
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2 2φ φ  (2.200a)

Similarly,
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It follows that Equation 2.198a can be written as
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Similarly, by switching the order of the other mixed partial derivatives, we can get
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and
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These equations can be written as
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These equations show that although we do not know the derivatives of p, q, and r 
in any arbitrary direction, we do know the derivatives in the direction a = (∂F/∂p, 

∂F/∂q, ∂F/∂r). This suggests that there may be special curves [x(s),y(s),z(s)] such that 

we can determine [p(s),q(s),r(s)]. In particular, if

 x F
p=
∂

∂
 (2.203)

 y F
q=
∂

∂
 (2.204)

 z F
r=

∂

∂
 (2.205)

then we have

 p F
x= −
∂

∂
 (2.206)

 q F
y= −
∂

∂
 (2.207)

 r F
z= −

∂

∂
 (2.208)

The function ϕ changes according to the following equation:

 φ
φ φ φ
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∂
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+
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+
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= + + =

∂
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+

∂

∂
+

∂

∂x x y y z z px qy rz p F
p q F

q r F
r  (2.209)

This is a seventh-order ordinary differential equation (ODE) for the unknowns 

(x,y,z,p,q,r,ϕ). We can solve this system of equations provided we specify initial val-

ues of (x,y,z,p,q,r,ϕ). It should be noted that we cannot specify these values arbi-

trarily, but must require that they satisfy the equation F(x,y,z,p,q,r) = 0.

In optics the function ϕ is the phase of our wave !eld. The curves [x(s),y(s),z(s)] 
along which we propagate our solution are known as the rays. In optics they are what 

we intuitively think of as being the rays of light. If we know the phase ϕ(x,y,z) on 

some plane z = z0, then we can parametrically map out the phase in all of space by 

tracing all the rays from the plane z = z0.

This process of tracing out the phase !eld assumes that one and only one ray passes 

from a given point (x,y,z) to the plane z = z0. In practice, it is possible that no rays pass 

through some points, and multiple rays pass through other points. The surfaces separat-

ing regions with different numbers of rays are once again the caustic surfaces.

Example 7

We will now apply this theory to the eikonal equation where

 F x y z p q r p q r
c

( , , , , , )
( )

= + + −
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 (2.210)
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We will use the shorthand notation p = (p,q,r) and x = (x,y,z). The theory we have 
just derived shows that
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d
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p

s
=  (2.211a)
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c

c
= −

∇

3
 (2.211b)

and

 dφ

ds c
=

1
2( )x

 (2.211c)

where p is required to satisfy the initial condition

 p p. =
1
2c

 (2.212)

We can eliminate p from this equation to get
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∇  (2.213)

Note that the equation for ϕ can be written as

 d

d

|φ

s c
=

|

( )

x

x
 (2.214)

This equation can be interpreted that the change in ϕ in going from x(s0) to x(s1) is 
the travel time to get from x(s0) to x(s1) along the curve x(s).

Example 8

The system of Equation 2.213 is in some ways the simplest set of equations we 
could write down for the paths of the light rays. However, it suffers from one prob-
lem. The equations are not invariant under a change of parameterization. If we 
parameterize our curves by ξ = ξ(s), we will end up getting a different differential 
equation for x(ξ) than for x(s). The solutions will result in the same curve in physi-
cal space, but the differential equations will be different. Unless one is extremely 
concerned with the aesthetic properties of their equations, this is not a real prob-
lem. However, it turns out that the equations that we derive using Fermat’s prin-
ciple will be invariant under a change of parameterization, and hence it will be 
dif"cult to compare the two sets of equations unless we write Equation 2.213 so 
that they are also invariant.

To do this, we note that the "rst of Equation 2.212 requires that

 | | | |x p= =
1

c
 (2.215)

It follows that along our solution curve, we have

 | | ( )x xc = 1  (2.216)
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It follows that we will not change the solutions to Equation 2.211 if we divide the 
left-hand side by | | ( )x xc . In this case, we get the following equations:

 1

| | ( )x x
x p

c
=  (2.217)

 1 1
3| | ( )x x

p
c

c
c

= − ∇  (2.218)

Now if we eliminate p from these equations, we end up with the system of the 
following equations:
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∇  (2.219)

This is the "nal system of equations that we will use to compare to the curves 
obtained by using Fermat’s principle. Note that if we make a change of variables 
ξ = ξ(s), the differential equation in terms of ξ will be identical to the differential 
equation in terms of s.

2.5.5 FERMAT’S PRINCIPLE WITHOUT REFLECTIONS

In Example 8, we derived the equations for the path x(s) that a light ray follows in an 

inhomogeneous medium. We will now show that the path that gets from point x0 to x1 

is stationary with respect to the travel time between these two points. Suppose we 

have a curve x(s) such that x(s0) = x0 and x(s1) = x1. The time to get from point x0 to 

point xl may be written as

 T c s
s
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= ⋅∫ x x x
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1 1
( ) d  (2.220)

The !rst variation of this integral may be written as

 δ
δ δT c

c
c s

s

s
=

⋅

⋅
−

∇ ⋅
∫

x x
x x x x x
( ) | | ( )

0

1

2 x d  (2.221)

If we integrate by parts to get rid of the derivative with respect to δx, and if we 

require that δx vanish at the end points, we !nd that

 δT s c
c

c s
s

s
= −












+

∇










⋅∫

d
d dx

x x x x x ( ) | | ( )2
0

1

δ  (2.222)

If the path is stationary, then this integral must vanish for all functions δx, and hence 

x must satisfy the following equation:

 
1

3c s c
c

c( ) | | ( )x x
x

x x
d
d | |









 = −

∇
 (2.223)
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This is identical to Equation 2.219, which was derived using the eikonal equation, 

and requiring that the equation be invariant under a change of parameterization.

2.5.6 FERMAT’S PRINCIPLE FOR REFLECTING SURFACES

In our analysis of beam shaping systems, we will not consider any cases where 

the rays re$ect off mirrors. However, since it may sometimes be desirable to use 

re$ecting surfaces in beam shaping systems, we now consider Fermat’s principle for 

re$ecting surfaces. Suppose we have a surface S de!ned parametrically by x = f(ξ1,ξ2). 

Suppose that a ray goes from the point x0 to the point xl, but !rst bounces off the 

surface S. The theory of waves shows that at the point where the rays get re$ected by 

the surface, the following conditions hold:

The normal to the surface, the incident ray, and the re$ected ray all lie in 

the same plane.

The incident and re$ected rays make the same angle with respect to the 

normal to the surface.

We now show that these conditions can be derived by assuming that the path from 

x0 to x1 that touches the surface S is stationary with respect to travel time. Suppose 

we have a path that goes from x0 to x1 after !rst touching some point q = f(ξ1,ξ2) on 

the surface S. Clearly, the paths from x0 to q and from q to x1 must themselves be sta-

tionary. It follows that to determine the true path we only need to determine the point 

q on the surface S. In particular, suppose ϕ(x,z) gives the travel time to get from the 

point x to the point z. We have shown that the travel time ϕ(x,z) is in fact a solution 

to the eikonal equation. The total travel time from x0 to xl is given by

 T = ( )  + ( ) φ ξ ξ φ ξ ξx f x0 1, , , ,1 2 1 2f  (2.224)

If this travel time is stationary, then we must have

 
∂

∂
⋅ + = =

f p p
ξk

k( ) ,i r for0 1 2  (2.225)

where:

 p x q
qi
0=

∂

∂

φ( , )
 (2.226a)

and

 p x q
qr
1=

∂

∂

φ( , )
 (2.226b)

are the incident and the re$ected ray vectors, respectively.

Note that the vectors pi and pr must satisfy |p| = 1/c(q), and hence we must have 

|pi| = |pr|. Let n be the normal to the surface S at f(ξ1,ξ2), and let t1 and t2 be the two 
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independent tangent vectors to the surface. These vectors can be written as linear 

combinations of the vectors ∂ ∂f / ξ1 and ∂ ∂f / ξ2 , and hence Equation 2.225 shows that 

the tangential components of pi and pr must be negatives of each other. That is, if

 p n t ti i i 1 i+ += a b c 2  (2.227)

then

 p n t tr r i 1 i= − −a b c 2  (2.228)

Furthermore, in order for pr and pi to have the same magnitude, we must have ai = ar. 

This shows that pi, pr, and n all lie in the same plane. Furthermore,

 p n p ni r⋅ ⋅=  (2.229)

and hence the vectors pi and pr make the same angle with respect to n. This is pre-

cisely what we wanted to prove.

2.6 FOURIER OPTICS AND DIFFRACTION THEORY

2.6.1 FRESNEL DIFFRACTION THEORY

Fresnel diffraction theory plays an important role in the theory of beam shaping 

since it allows us to access the validity of the geometrical optics approximation. 

Through the theory of Fresnel diffraction, we will be able to turn our physical optics 

problem into a mathematical problem concerning Fourier transforms. After giving a 

derivation of the Fresnel approximation, we will outline the conditions necessary for 

it to be a good approximation.

The Fresnel approximation is concerned with the wave !eld for z > 0 produced 

when an incoming wave passes through an aperture at z = 0. In general, the aperture 

may contain an optical element that changes the amplitude or phase of the incom-

ing wave. Elementary theories of diffraction usually are concerned with the !eld far 

from the aperture, and in a narrow solid angle normal to the aperture. The theory of 

Fresnel diffraction can be outlined in three basic steps.

 1. Write down an exact expression for determining the wave !eld for all values 

of z > 0 provided one knows the wave !eld at the plane of the aperture z = 0.

 2. Use a paraxial approximation that simpli!es this expression assuming the 

observation point is near the axis.

 3. Compute the wave !eld away from the aperture by using the !rst two steps 

along with a very simple assumption concerning the !eld in the plane of the 

aperture. The assumption is that at the aperture the wave !eld is equal to the 

undisturbed incoming wave !eld (modi!ed by any optical element inside 

the aperture), and zero everywhere else.

The !rst step can be carried out rigorously. The second step can be justi!ed quite 

well using simple asymptotics. The third step is by far the hardest to justify, but it 

can be argued that it is plausible provided the aperture is large compared to the wave-

length of the incoming light.
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We begin with a discussion of the Fresnel approximation for the scalar wave 

 equation. Physically, we can think of this equation arising from the equations of 

acoustics. When we present the vector theory of diffraction, we will see that this 

theory can be used to determine the various components of the electric !eld, but a 

slight error occurs in the component of the !eld normal to the aperture. This error is 

not big as long as we are near the axis.

2.6.2 A FOURIER APPROACH TO DIFFRACTION THEORY

We suppose that the function u(x,y,z) satis!es the Helmholtz equation:

 ∇ + =
2 2 0u k u  (2.230a)

where:

 k =
2π
λ

 (2.230b)

where:

λ is the wavelength

The function u must also satisfy the boundary condition:

 u x y f x y( ) ( ), , ,0 =  (2.230c)

and

 u x y z z( ), ,  has no incoming waves as → ∞  (2.230d)

This last boundary condition, sometimes referred to as the Sommerfeld radiation 

condition, is a somewhat subtle condition, but it is quite straightforward to imple-

ment when doing analytical work. It requires that as z → ∞ all of the waves will be 

traveling away from z = 0, not toward it.

We choose to solve these equations by spatially Fourier transforming the function 

u(x,y,z) in the x and y directions. Let

 U k k z u x y z x yx y
k x k yx y( , , ) ( , , )= − +( )

−∞

∞

−∞

∞

∫∫ e  d di
 (2.231)

be the Fourier transform of u, and F(kx,ky) be the Fourier transform of f(x, y). The 

function U must satisfy the following equations:

 
d
d
2
2

2 2 2 0U
z k k k Ux y+ − − =( )  (2.232a)

 U k k F k kx y x y( , , ) ( , )0 =  (2.232b)

 U k k z zx y( , , ) has only outgoing waves as → ∞  (2.232c)
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The solution to this set of equations can be written as

 U k k z F k k k k kx y x y
z

x y( , , ) ( , )= − −ei 2 2 2  (2.233)

The sign of the square root must be chosen so that the !eld decays as z → ∞, and 

there are no incoming waves from in!nity. To ensure this, we must choose the posi-

tive square root for k k kx y
2 2 2 0− − >  and choose it so that i k k kx y

2 2 2 0− − <  for 

k k kx y
2 2 2 0− − < .

We can now inverse Fourier transform this to get

 u x y z F k k k kk x k y
x y

kz k k k k
x yx y x y( , , ) ( , )( ) / /

= + − −

−

1
4 2

1 2 2 2 2

π
e e d di i

∞∞

∞

−∞

∞

∫∫  (2.234)

We have now accomplished the !rst step in deriving the Fresnel approximation; we 

have derived an exact expression for the !eld u in terms of its value at z = 0.

This form for the !eld is sometimes used in diffraction theory. However, both 

analytical and numerical works are usually much simpler if the square root is 

approximated by

 1 1 2
2
2

2
2

2 2
2− − ≈ −

+k
k

k
k

k k
k

x y x y
 (2.235)

This approximation is referred to as the paraxial or Fresnel approximation. Using 

this approximation, we can write

 U k k z F k kx y x y
kz z k k kx y( , , ) ( , ) ( / )

=
− +e ei i 2 2 2

 (2.236)

Assuming the paraxial approximation, the Fourier convolution theorem tells us 

that the !eld u(x,y,z) can be written as the convolution of f(x,y) with the inverse 

Fourier transform of e ei ikz z k k kx y− +( ) /2 2 2
. The inverse Fourier transform e ei ikz z k k kx y− +( ) /2 2 2

 

is i k z kz k z x y( / ) ( / )( )2 2 2 2
π e ei i + . It follows that we can write

 u x y z i k
z fkz k x y z( , , ) ( , ) ( ) ( ) /

=
− + −





−∞

∞

−∞

∞

∫2
2 2 2

π
ξ ηe e d di i

ξη
ξ η

∫∫  (2.237)

It is often convenient to write this as

 
u x y z ik

z

f

kz k x y z

k

( , , )

( , )

( ) /

( ) /

=

×

+

−∞

∞

−∞

∞

+∫∫

2
2 2

2 2

2

2

π
e e

e

i i

iξ η ξ η zz k x y ze d di− +( ) /ξ η ξ η

 

(2.238)

This is usually referred to as the Fresnel approximation [16]. This approximation can 

greatly simplify both analytical and numerical calculations.
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2.6.3 FOURIER OPTICS

We will now consider what happens when the beam passes through a lens of focal 

length f at the aperture. We claim that modifying the !eld at the aperture by the 

phase factor e i− +k x y f( ) /2 2 2  is equivalent to passing the beam through a lens with focal 

length f. Note that if we had a beam of light coming in from in!nity, then the !eld of 

the incoming light would be constant over the aperture.

 f x k A( , ) = eiψ  (2.239)

At the plane z = f, the !eld would be given by

 u x y f ik
f A kf k x y f k x y f( , , ) ( ) / ( ) /= + − +

−∞

∞

−∞
∫2

2 2 2
π

ξ ηψ ξ ηe e e e d di i i i
∞∞

∫  (2.240)

which can be written as

 u x y f i k
f A kx

f
ky
f

kf k x y f( , , ) ,( ) /=










+2 2 2 2π
δψe e ei i i  (2.241)

This formula assumes that the aperture is in!nitely large, and hence goes beyond the 

limits of validity of the Fresnel approximation. However, we could consider the case 

of an aperture of !nite diameter, and we would get a more complicated but similar 

result, namely, that the !eld at z = f is all concentrated near the origin (x,y) = (0,0). 

This is exactly what a lens of focal length f would do to an incoming !eld of this sort.

We now consider the case where the incoming beam is not necessarily constant 

at the aperture, but is equal to f(x,y). We assume that at the aperture z = 0, we have a 

lens with focal length f, which modi!es the phase of the incoming beam by the factor 

e i− +k x y f( ) /2 2 2 . In this case, the output will be given by

 

u x y z ik
z

f

kz k x y z

k

( , , )

( , )

( ) /

( ) /

=

×

+

−∞

∞

−∞

∞

+∫∫

2
2 2

2 2

2

2

π

ξ η

e e

e

i i

iξ η zz k f k x y ze e d di i− + − +( ) / ( ) /ξ η ξ η ξ η
2 2 2

 (2.242)

The output at the focal plane is given by

 u x y z ik
f fkz k x y f k x y f( , , ) ( , )( ) / ( ) /= +

−∞

∞

− +∫2
2 2 2

π
ξ η ξ ηξ ηe e e d di i i

−−∞

∞

∫  (2.243)

which can be written as

 
ik
f F kx

f
ky
f

kf k x y f
2

2 2 2
π

e ei i ( ) / ,+ 







  (2.244)

where:

F(ωx,ωy) is the Fourier transform of the function f(x,y)
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We see that except for the term outside of the integral, the !eld distribution is given 

by the Fourier transform of the incoming !eld distribution. Note that the x and y 

dependence of the term outside of the integral has only a phase dependence. It fol-

lows that if we are only concerned with the irradiance distribution, then we can in 

fact ignore the terms outside of the integral.

2.6.4 LIMITS OF VALIDITY OF THE FRESNEL APPROXIMATION

We now comment on the errors introduced by making the Fresnel approximation. 

We should emphasize that we are only considering the errors introduced in the prob-

lem of approximating the !eld u(x,y,z) assuming we know the !eld at z = 0. In a real 

diffraction problem, we do not know the !eld at z = 0, but approximate it as being 

the incoming wave !eld.

We will now brie$y summarize the conditions under which the Fresnel approxi-

mation can be assumed to be valid. In what follows R will be the effective dimension 

of the aperture and λ will be the wavelength of the light. We assume that the aper-

ture lies in the plane z = 0, and that we are evaluating the !eld at a point [d cos(θ), 

d sin(θ),z].
The Fresnel approximation always assumes that

 R  (2.245)

Assuming that this restriction holds, a summary of the conditions for the validity of 

the Fresnel approximation is as follows:

The Fresnel approximation will be valid for all values of d if

 N R
zF =

2 isnot smallπ

λ

2
 (2.246)

The amplitude of the wave predicted by the Fresnel approximation will be 

valid even if NF 1, provided

 d z/ 1  (2.247)

Both the phase and amplitude predicted by the Fresnel approximation will 

be valid when NF 1, if

 d
z kz
4
4

1  (2.248)

It should be noted that for the most part we are only concerned with the irradiance 

of the !eld, so the phase errors introduced by the Fresnel approximation for large 

values of z will not be important to us. For this reason, we will be justi!ed in using 

the Fresnel approximation provided R ≫ λ, and that d/z ≪ 1.

We will analyze the two-dimensional case where the aperture and !eld is inde-

pendent of the y coordinate. The three-dimensional case is conceptually no more 

dif!cult, but the notation and the algebraic manipulations are simpler in two dimensions. 
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We will assume that the incoming wave !eld is equal to f(x) at the aperture z = 0. If 

F(kx) is the Fourier transform of f(x), then the !eld is given by

 u x z F k kk x
x

kz k k
xx x( , ) ( ) /= −

−∞

∞

∫
1
2

1 2 2

π
e e di i  (2.249)

In analyzing the Fresnel approximation, we !nd it fruitful to consider a family of 

problems where the form of the function f(x) stays the same, but the scaling of the 

function changes. In particular, we will set

 
f x g x

R( ) = 







  

(2.250)

This includes the situation where the function f(x)  =  1 inside the aperture and 0 

elsewhere. In this case, the parameter R would be the characteristic dimension of the 

aperture. The Fourier transform of f(x) can be written as

 F k RG k Rx x( ) ( )=  (2.251)

where:

G(α) is the Fourier transform of g(x)

The !eld for z > 0 can be written as

 u x z R G Rk kk x
x

kz k k
xx x( , ) ( ) /= −

−∞

∞

∫
1
2

1 2 2

π
e e di i  (2.252)

If we make the change of variables

 ξ = Rkx  (2.253)

we can write this integral as

 u x z Gx R kz Rk( , ) ( )( / ) /( )= −

−∞

∞

∫
1
2

1 2 2

π
ξ ξξe e di iξ  (2.254)

If g(ξ) is a well-behaved function, the Fourier transform G(ξ) goes to zero as |ξ| → ∞. 

It follows that our answers will not be very sensitive to how we approximate the term 

1 2 2− ξ /( )kR  when ξ is large. This means that we only need to approximate this 

well for ξ = O(1). We now make the approximation that

 kR 1  (2.255)

This is the !rst approximation that will be made when doing the Fresnel approxima-

tion. This is equivalent to assuming that the aperture is much bigger than the wave-

length, an assumption that will have to hold in order to carry out the general plan of 
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diffraction theory. Under this assumption, it is reasonable to expand the square root 

in a Taylor series:

 kz kR kz kR kR1 1 2 8
2

2
2

2
4

4− = − + +










ξ ξ ξ
( ) ( ) ( )  (2.256)

If we ignore the third term and all of the remaining terms in the Taylor series, we 

will end up with the Fresnel approximation. We will now see when we can ignore 

these terms, and what sorts of errors we will make when we ignore them. Note that 

assuming that kR ≫ 1 and ξ = O(1), these terms will always be small compared to 

the !rst two terms. However, it is possible that if kz ≫ 1, then they will not necessar-

ily be small. For simplicity, we will now keep the !rst three terms, and see when we 

can ignore the third term. The conditions for ignoring this term will be the same as 

for ignoring all of the remaining terms. If we keep the !rst three terms in the Taylor 

series, we get

 u x y Gkz N x Rk( , ) ( ) / / /
=

− ( ) − + − ( )



{ }

−∞

∞
∗1

2
1 1 2 82 4 2

π
ξ

ξ ξ ξe ei i F

∫∫ dξ  (2.257)

where:

 N kR
zF =
2

 (2.258)

is known as the Fresnel number and

 x xkR
z

∗
=  (2.259)

We see that if

 
1 1 12 2 3 3N k R

z
R k RF

=  (2.260)

then we can ignore the third term in the Taylor series. This means that if we are close 

to the aperture then the Fresnel approximation will be valid (assuming kR ≫ 1). In 

this case, there is no restriction on the value of x. If 1/NF is not large, then the Fresnel 

approximation will hold. This case is not that interesting, because it is essentially 

the case when the geometrical optics approximation holds and diffraction effects are 

unimportant.

We now consider the much more interesting case when NF is small. In this case, 

the phase in the integrand is multiplied by the large parameter 1/NF, and we can 

apply the method of stationary phase to the integral.

The phase will be stationary at the point ξ0 satisfying

 − + − =∗x kRξ
ξ

0
03

22 0( )  (2.261)
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The method of stationary phase predicts that the !eld will be given by

 u x z N Gkz N( , ) ( )/ /
≈

′′

− ( )1
2

24
0

0
1 0

π

π

ψ
ξπe e ei i F Fi ψ

 (2.262)

where:

 ψ ξ
ξ ξ

0 0
02 04

2 22 8= − + −∗x k R  (2.263)

and

 ′′ = −ψ
ξ

0
02

2 21 3
2k R  (2.264)

This is the result predicted by the method of stationary phase assuming that 
NF 1 when we keep the !rst three terms in the Taylor series expansion of 

1 2 2k kx / . We would like to know how this compares to the answer we would get 

if we only kept the !rst two terms (the Fresnel approximation).

In the Fresnel approximation, we would have

 ξ0 = ∗x  (2.265)

We will have been justi!ed in ignoring the cubic term in the equation for ξ0, provided

 
x
k R

2
2 2 1  (2.266)

This is equivalent to requiring that

 
x
z
2
2 1  (2.267)

This means that the stationary point when we include the higher order term will be 

nearly the same as the stationary point for the Fresnel approximation, provided the 

opening angle from the midpoint of the aperture to the point (x,z) is small.

From the form of the answer in Equation 2.262, we see that if we are not concerned 

with the phase errors, our answer will be accurate provided we have approximated 

ξ0 well. This means that the amplitude of the Fresnel approximation will agree with 

the amplitude of the answer obtained by keeping three terms in the Taylor expan-

sion provided x z2 2 1/ , and NF 1. However, in order for the phase of the answer 

predicted by the Fresnel approximation to agree with the more re!ned answer, it is 

necessary that we also approximate ψ0/NF well. The value ψ0/NF predicted by the 

Fresnel approximation is

 
ψ

ξ
ξ0

0
021
2N N x

F F
≈ − +











∗
 (2.268)

This will be a good approximation to the more re!ned answer, provided that

 
1 1

4
2 2N
x
k RF

 (2.269)
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This can be written as

 
x
z kz
4
4

1
 (2.270)

This agrees with the results we have already summarized concerning the errors in 

the Fresnel approximation.

2.6.5 VECTOR THEORY OF DIFFRACTION

The theory we have presented so far is limited to the scalar wave equation. In optics, we 

are concerned with the vector !elds, the electric and magnetic !elds. We begin by out-

lining the most naive, but nearly correct, approach to the vector theory. We know that 

each component of the electric and magnetic !elds satis!es the scalar wave equation. 

Just as in the scalar theory, we can assume that the !eld in the aperture is the same as the 

incoming !eld, and that the !elds vanish elsewhere in the plane of the aperture. Using 

the scalar theory, we could compute each component of the electric and magnetic !elds.

What are some possible dif!culties with this approach? Just because each indi-

vidual component of the !eld satis!es the wave equation it does not mean that the 

vector !eld satis!es Maxwell’s equations. If each component of the !eld were chosen 

exactly right at the plane of the aperture, then this would be the case. However, the 

assumption that we have made for the !elds at the aperture are not necessarily con-

sistent with the correct !elds. For this reason, we may end up getting inconsistent 

!elds in the far !eld.

As an example of an inconsistency, suppose that z = 0 is the plane of the aperture, 

and that the incoming !eld is a plane wave propagating in the z direction. The naive 

approach to vector diffraction theory would imply that the z components of E and B 

vanish at the aperture, and hence vanish everywhere. A thorough analysis of this 

situation shows that the z components of the !elds do not vanish identically.

This example merely shows that the results of scalar diffraction theory cannot be 

exactly right. However, the theory was never intended to give exact answers. Just because 

the !elds are inconsistent does not necessarily mean that they are worse approximations 

than a theory where the !elds satisfy Maxwell’s equations. However, the theory that 

takes into account the vector nature of the !elds is in fact more accurate for large angles.

A more consistent approach to the vector theory can be obtained by noting that it 

is not possible to arbitrarily specify all three components of E and B at the aperture. 

It is only necessary to specify the tangential electric !elds at the aperture. We now 

argue that once these !elds are known, we know Ex and Ey for z > 0, and we can then 

determine Ez and B.

Clearly both Ex and Ey satisfy the scalar wave equation. It follows that if we know 

these components at z = 0, then we can determine them everywhere for z > 0. Once 

we know Ex and Ey, we can use the following equation to determine Ez up to an arbi-

trary additive function f(x,y):

 
∂

∂
+
∂

∂
+
∂

∂
=

E
x

E
y

E
z

x y z 0  (2.271)
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Assuming that we have a !nite-sized aperture, the !eld E, and in particular the 

 function Ez, must approach zero as z → ∞. This fact allows us to determine this 

arbitrary function f(x,y). It follows that we can determine Ez. We can now determine 

B by taking the curl of E and using Faraday’s law. It follows that we can determine 

all the components of both E and B once we specify the tangential components of 

E at the aperture.

The vector theory of diffraction [17] approximates the tangential components of 

the electric !eld using scalar diffraction, but then computes the z component based 

on these !elds. We will restrict ourselves to the case where the incoming wave has no 

z component of the electric !eld. In this case, the scalar theory of diffraction predicts 

that the diffracted !eld will also have no z component of the electric !eld. We will 

now show that in this situation the z component of the electric !eld can be ignored 

provided we are only interested in small angles, a condition that we have already 

assumed in making the Fresnel approximation.

Suppose that at the plane of the aperture the tangential components of the electric 

!eld are given by

 
E x y E x y g x

R
y
R g x

R
y
Rx y x y( , , ), ( , , ) , , ,0 0  =





























  

(2.272)

The x and y components of the electric !eld each satisfy the scalar wave equation. By 

Fourier transforming the wave equation, we can conclude that
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 (2.273)

and
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 (2.274)

where:

Gx(kx,ky) and Gy(kx,ky) are the Fourier transforms of gx(x, y) and gy(x, y), respectively

Using the fact that ∇ ⋅ E = 0, we can write the !eld Ez as

 E x y z R k k k kz
k x k y

x y
z k k k

x yx y x y( , , ) ( , )( )= + − −

−∞

∞

∫
1

4 2
2 2 2 2

π
e e d di i

Γ

−−∞

∞

∫  (2.275)

where:

 Γ k k
k k k

k G k R k R k G k R k Rx y
x y

x x x y y y x y, , ,( ) =
− −

( ) + ( ) 
1

2 2 2  (2.276)
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These are exact expressions assuming that we know the tangential electric !eld at 

the plane of the aperture.

The expression for Ez is very similar to the expressions for Ex and Ey except that 

it has k k k kx x y/ 2 2 2  multiplying Gx, and k k k ky x y/ 2 2 2  multiplying Gy. 

Under the conditions for the Fresnel approximation, we can make the following 

approximation:

 
k

k k k
k
k

x

x y

x
2 2 2− −

=  (2.277)

and

 
k

k k k
k
k

y

x y

y
2 2 2− −

=  (2.278)

The Fresnel approximation is based on the assumption that kx/k and ky/k are both 

small in the region of interest. It follows that the factors multiplying Gx and Gy will 

always make the term Ez negligible compared to Ex and Ey.

For example, if the Fresnel number is small, then we can evaluate these integrals 

using the method of stationary phase. We could put these integrals in dimensionless 

form and arrange things so that there was a large parameter multiplying the phase. 

However, we can take a shortcut and note that in the Fresnel approximation, the 

phases of the integrands are given by

 φ = + −
+k x k y z k k
kx y

x y
2 2

2  (2.279)

The phase will be stationary when

 
x k z

k
x− = 0

 
(2.280)

and

 
y k z

k
y

− = 0
 (2.281)

This shows that when we apply the method of stationary phase, the z component of 

the electric !eld can be related to the other two components by

 E x y z x
z E x y z y

z E x y zz x y( , , ) ( , , ) ( , , )≈ +  (2.282)

This shows that provided |x/y| ≪ 1, and |y/z| ≪ 1, the z component of the electric 

!eld will be negligible compared to the tangential components. This was based 

on the assumption that the Fresnel number was small. If the Fresnel number is 

of order 1, we can show that the z component will be small provided only that 

kR ≪ 1.
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2.7 GEOMETRICAL THEORY OF BEAM SHAPING

2.7.1 ONE-DIMENSIONAL THEORY

In this section, we present a theory of beam shaping based on geometrical optics. 

Special cases of this theory may be found in the literature on geometrical beam 

shaping [18]. The theory we present is not the most general one using geometri-

cal optics since we assume that the rays are moved around continuously, and in a 

very orderly manner. In the geometrical optics limit, it is possible to accomplish the 

same goal by moving the rays around in a discontinuous and less orderly manner, 

but when we analyze beam shaping using diffraction theory we will see that this is 

very undesirable. We believe that it is very dif!cult to improve on a beam shaping 

system designed by the techniques described in this section. However, some systems 

designed this way will work very well, whereas others will work very poorly. One 

must go beyond the geometrical theory and use diffraction theory in order to under-

stand why this is so. That will be the subject of Section 2.7.2.

We begin by considering the beam shaping problem in one dimension. This 

theory is directly applicable to cases where the incoming beam has an irradiance 

distribution that is the direct product of two one-dimensional distributions. A two-

dimensional function f(x,y) is the direct product of one-dimensional functions if

 f x y f x f y( , ) ( ) ( )= 1 2  (2.283)

If both the input and the desired output can be written as a direct product, then the 

problem can be decomposed into two one-dimensional beam shaping problems. This 

is the case when we try to turn a Gaussian beam into a rectangular $at-top beam.

We suppose that an incoming parallel beam of light has an irradiance distribution 

of I(x/R), and at the plane z = 0 the beam passes through a phase element that refracts 

the beam. We would like to determine the phase element such that the irradiance 

distribution at the plane z = f is given by (AR/D)Q(x/D), where A is a constant chosen 

so that the energy of our light beam is conserved.

In our analysis, we assume that the aperture contains a lens of focal length f, plus 

an additional optical element that allows us to shape the beam. In practice these two 

optical elements can be combined into a single optical element, but this may not be 

a desirable feature if one wants to use the same element to shape the beam at several 

different focal planes. We suppose that our beam shaping element introduces a phase 

shift of (RD/fc)ϕ(x/R) at the plane z = 0, where c is the speed of light. The goal of our 

analysis is to determine the function ϕ such that the beam at the plane z = f has the 

desired shape. This analysis is carried out in three steps:

Determine the constant A that determines the irradiance of the output 

beam. This is accomplished by requiring that the total energy of the output 

beam is the same as the energy of the incoming beam.

Determine a function that maps rays at the plane of the aperture into rays at 

the focal plane. In particular, we determine a function α(ξ) such that a ray 

that passes through the aperture at x = Rξ passes through the focal plane at 

x = Dα(ξ). This step can be carried out by requiring that the energy of any 
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bundle of rays that enters the aperture is the same as the energy of the same 

bundle of rays as they pass through the focal plane.

Determine the function ϕ(ξ) that gives us the phase shift introduced by our 

beam shaping element. Once we know the function α(ξ), this step can be 

carried out by requiring that the time for a ray to get from z = −∞ to the 

focal plane is consistent with Fermat’s principle.

At this point, the reader may feel annoyed by our introduction of the lengths R and D. 

For example, it would be simpler if we said that the input beam had the irradiance 

I(x) rather than I(x/R). However, the lengths R and D have been included in the de!ni-

tion of our irradiance pro!les, our normalization constant A, and our phase shift ϕ in 

order to bring out certain scaling properties of beam shaping. These scaling proper-

ties will be especially important in Section 2.7.2 when we discuss diffraction effects.

To carry out the !rst step in this process, we note that the energy of the incoming 

beam can be written as

 E I
s

R
s R I s sin d d=









 =

−∞

∞

−∞

∞

∫∫ ( )  (2.284)

The energy of the outgoing beam can be written as

 E AR
D Q s

D s AR Q s sout d d=








 =

−∞

∞

−∞

∞

∫ ∫ ( )  (2.285)

If we equate these two expressions, we arrive at the result

 A

I s s

Q s s

= −∞

∞

−∞

∞

∫
∫

( )

( )

d

d
 (2.286)

We have accomplished the !rst of our three steps. We now determine the function 

α(ξ) using the conservation of energy.

 I
s

R
s A

R

D
Q

s

D
s

R D

−∞ −∞
∫ ∫







 =











ξ α ξ

d d
( )

 (2.287)

This is a mathematical statement of the fact that the energy of all of the rays with 

initial x coordinates less than Rξ must have the same energy as all of the rays at the 

focal plane that have x coordinate less than Dα(ξ). A simple change of variables 

gives us the following equation:

 I s s A Q s s

−∞ −∞
∫ ∫=

ξ α ξ

( ) ( )
( )

d d  (2.288)

As long as the functions I(s) and Q(s) are both positive, it is clear that the function 

α(ξ) is uniquely determined by this equation. This follows from the fact that for a 
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given value of ξ we can increase the value α until the integral on the right equals the 

integral on the left. Since Q(ξ) > 0, it is clear that for any value of ξ there is only one 

value of a such that the two integrals will be equal.

The functions I(s) and Q(s) are both nonnegative, but it is possible that they could 

vanish on certain intervals. This would be the case if we were trying to transform 

a beam into a beam that had a core of zero irradiance (such as an annulus). In this 

case, we could have a whole interval of points α that are assigned to the same point ξ. 

This degenerate case can be thought of as a limiting case of when the functions I(s) 
and Q(s) are both positive.

Equation 2.288 determines the functions α(ξ). However, there are a few motiva-

tions for differentiating this equation to get

 AQ I( ) ( )α
α

ξ
ξ

d
d =  (2.289)

This gives us a differential equation for the function α(ξ). One way of solving this 

differential equation is to integrate this equation once to get back to Equation 2.288. 

However, if one needs to solve the equation numerically, it may be more convenient 

to solve the differential equation than to solve Equation 2.288. Another motivation 

for writing down the differential equation is that when we make the stationary phase 

approximation to diffraction theory we end up with this differential equation. Yet 

another motivation comes from the fact when we consider problems that are neither 

one dimensional nor radially symmetric; we must revert to a differential equation 

that is analogous to Equation 2.289.

In the energy equation (2.288), we have assumed that the orientation of the incom-

ing rays is the same as the orientation of the rays at the focal plane z = f. By this we 

mean that incoming rays with ξ ≪ 0 get mapped into rays with α ≪ 0 at the focal 

plane, and incoming rays with ξ ≫ 0 get mapped into rays with α ≫ 0 at the focal 

plane. It is possible to reverse the orientation of the rays so that incoming rays with 

ξ ≫ 0 end up at the focal plane with α ≪ 0 and vice versa. In this case, the energy 

equation can be written as

 I
s

R
s A

R

D
Q

s

D
s

R

D









 =











−∞

∞

∫ ∫
ξ

α ξ

d d
( )

 (2.290)

Changing variables in the integrals gives us the following equation:

 I s s A Q s s( ) ( )
( )

d d=
∞

−∞
∫∫
α ξ

ξ

 (2.291)

If we differentiate this equation, we get

 AQ I( ) ( )α
α

ξ
ξ

d
d = −  (2.292)

These two solutions will give identical irradiance distributions as long as we evalu-

ate the irradiance at the plane z = f. However, as we move away from the plane z = f, 
these two solutions have very different properties. When we apply the method of 
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stationary phase, the two different types of solutions appear by choosing different 

signs of the phase function. These will also be discussed in Section 3.4.5.

The solutions derived using Equation 2.288 or 2.291 are the only ones that allow 

us to shape the beam so that the rays are moved around in a continuous fashion, and 

the function ξ(α) [the inverse of α(ξ)] is single valued. When we study the effects of 

diffraction, we will see that beam shaping systems that do not satisfy these require-

ments will suffer much more from the effects of diffraction than ones that do.

We have now completed the !rst two steps in our analysis, and we are ready to 

determine the function ϕ(ξ). We assume that the rays that enter the aperture are com-

ing in parallel. For our purposes, it is simpler to assume that rays are coming from a 

distant point source at (0,−L), and we will then let L → ∞. The travel time for a ray 

to get from the point source to a point (Dα, f) is of three types:

The time tL(ξ) to get from the source at (0,−L) to a point (Rξ,0) on the 

aperture

The time tdelay(ξ) to get through the Fourier transform lens and the beam 

shaping element at (Rξ, 0)

The time tf (ξ,α) to get from a point (Rξ,0) on the aperture to a point (Dα,f) 
at the focal plane

The total travel time is given by

 t t t tL f( , ) ( ) ( ) ( , )ξ α ξ ξ ξ α= + +delay  (2.293)

Fermat’s principle requires that the travel time of a ray that starts out at (0,−L), 

passes through the aperture at (Rξ,0), and ends up at (Dα,f) must be stationary. This 

means that it must be stationary compared with the travel time of any nearby ray. In 

particular, it will be stationary with respect to the travel time of a ray that goes from 

(0,−L), passes through the aperture at (Rξ + Rdξ,0), and then goes straight to the 

point (Dα,f). In order for this to be so, we must have

 
∂

∂
=

t( , )ξ α

ξ
0  (2.294)

We will now see that this equation allows us to determine ϕ(ξ).

The travel time tL is given by

 t c L c L LL ( )ξ ξ
ξ

= + ≈ +










1 1
2

2 2
2

 (2.295)

In the limit as L → ∞ we end up with the equation

 
∂

∂
=

ξ
ξtL ( ) 0  (2.296)

The travel time tdelay(ξ) is given by

 t R
fc

RD
fcdelay( ) ( )ξ ξ ξ= − +2

2

2 φ  (2.297)
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The !rst term on the right gives the time delay introduced by the transform lens, and 

the second term gives the time delay introduced by the beam shaping element.

Taking the derivative of this, we get

 
∂

∂
= − +

∂

∂ξ
ξ ξ

ξ
ξt R

fc
RD
fcdelay( ) ( )

2
φ  (2.298)

The travel time tf(ξ,α) is given by

 t c f R Df ( , )ξ α ξ α= + −( )
1 2 2

 (2.299)

The paraxial approximation assumes that D f2 2 2 1/ , and R f2 2 2 1/  so that we 

can make the following approximation:

 ε
ε2
2

+( ) ≈ +f f
f

2
2  (2.300)

In this approximation, we get

 t f
c

D R
fcf ( , ) ( )

ξ α
α ξ

= +
− 2

2  (2.301)

and hence

 
∂

∂
= −( )

ξ
ξ α ξ αt R

fc R Df ( , )  (2.302)

Combining our expressions for ∂ ∂ + +( )/ ξ t t tL fdelay , we end up with the very simple 

equation:

 
d
d
φ

ξ
ξ

α= ( )  (2.303)

Assuming we know the function α(ξ), the function ϕ(ξ) can be determined by 

quadrature.

We now collect our beam shaping equations into a single set of equations. Given 

the functions I(s) and Q(s), the phase function ϕ(ξ) is determined by !rst calculating 

the constant A

 A

I s s

Q s s

= −∞

∞

−∞

∞

∫
∫

( )

( )

d

d
 (2.304a)

and then solving the differential equation to determine α(ξ):

 AQ I( ) ( )α
α

ξ
ξ

d
d = ±  (2.304b)
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The sign in this equation depends on whether we have reversed the orientation of 

the rays. Finally, the function ϕ(ξ) is obtained by solving the differential equation:

 
d
d
φ

ξ
α ξ= ( )  (2.304c)

A very simple scaling property of these equations will now be pointed out. If we 

determine a beam shaping system for the lengths D and f, then we can use the same 

phase function (RD/fc)ϕ(ξ) for a new beam shaping system with lengths D1 and f1, 

provided D1/f1 = D/f. This means that we can change the scale of our system by 

merely using a different quadratic lens, without changing the optical element deter-

mined by ϕ. This follows from the fact that the function α(ξ) is independent of the 

D, f, and R. It follows that the function ϕ(ξ) is also independent of these quantities. 

Clearly, the function (RD/fc)ϕ(ξ) will not change as long as we keep the ratio D/f 
!xed.

2.7.2 DIRECT PRODUCT DISTRIBUTIONS

Once again the theory of the Section 2.7.1 can be applied here when both the input 

and the desired output can be written as direct products. That is, we can use the 

theory of Section 2.7.1 if we can write

 I x y I x I y,( ) ( ) ( )= 1 2

and

 Q x y Q x Q y,( ) ( ) ( )= 1 2

In this case, the phase function of the beam shaping element can also be written as 

a direct product.

 ϕ ϕ ϕx y x y,( ) ( ) ( )= 1 2

One very important example of this is when the input is a circular Gaussian,

 
I x y

x y( , ) /
=

− +( )e 2 2 2

and the output is a rectangular $at-top beam:

 
Q x y x

A
y
B,( ) 

















= Rect Rect

where:

 Rect( ) | |x x= ≤1 1  

 Rect( ) | |x x= >0 1  
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2.7.3 RADIALLY SYMMETRIC PROBLEMS

We now derive a geometrical theory of beam shaping that applies when we are 

trying to convert a radially symmetric beam with irradiance pro!le I(r/R) into a 

radially symmetric beam with irradiance pro!le that is proportional to Q(r/D). We 

assume that the desired output beam has the irradiance (AR2/D2)Q(r/D). As in the 

one-dimensional case, we begin by computing the normalization constant A. The 

total energy of the incoming beam is given by

 E I
s

R
s s R sI s sin d d=









 =

∞ ∞

∫ ∫2 2
0

2

0
π π ( )  (2.305)

The energy of the output beam is given by

 E AR
D sQ s

D s AR sQ s sout d d=








 =

∞ ∞

∫ ∫
2
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0

2

0
( )  (2.306)

If we require that the energy of the incoming beam is the same as the outgoing beam, 

we must have

 A

sI s s

sQ s s

=

∞

∞

∫

∫
0

0

( )

( )

d

d
 (2.307)

We now determine the function α(ξ) such that a ray that encounters our optical 

 element at (Rξ,0) ends up at (Dα,f).
The conservation of energy now implies that

 I
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s s
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D
sQ

s

D
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 =











∞∞

∫∫ d d
2

2
α ξ( )

 (2.308)

This equation is a mathematical statement of the fact that the energy of the rays 

that encounter the plane z = 0 with r > Rξ is the same as the energy of the rays that 

encounter the focal plane with r > Dα(ξ).

A simple change of variables gives us the equations

 I s s z A sQ s s( ) ( )
( )

d d=
∞ ∞

∫ ∫
ξ α ξ

 (2.309)

Just as in the one-dimensional case, we can argue that Equation 2.309 uniquely 

determines the function α(ξ). As in the one-dimensional case, it may be convenient 

to differentiate this equation to get a differential equation for α(ξ).

 A Q Iα α
α

ξ
ξ ξ( ) ( )d

d =  (2.310)

92



78 Laser Beam Shaping

This equation assumes that the ray that starts at the axis of symmetry ends up at the 

axis of symmetry at z =  f. In analogy to the one-dimensional case, we could also 

consider the case where the ray that started on the axis is sent out in!nitely far from 

the axis when z = f. We could devise an optical element that did this, but it would 

necessarily be quite degenerate and suffer from diffraction effects.

Now that we know the function α(ξ), we can use Fermat’s principle to determine 

the optical thickness ϕ(r/R) that can actually accomplish this beam shaping.

Once again, let −r2/2fc + RDϕ(r/R)/fc be the time delay introduced by our optical 

element, and z = f be the imaging plane. Fermat’s principle requires that

 
dφ
∂

=
ξ

α ξ( )  (2.311)

This is exactly the same equation we used in the one-dimensional case. Since we 

know the function α(ξ), we can determine the function ϕ(ξ) by quadrature.

Once again we can argue that the function ϕ is independent of the parameters 

D and f, and hence the time delay (RD/fc)ϕ(r/R) depends on D and f only through the 

ratio D/f.

2.7.4 MORE GENERAL DISTRIBUTIONS

So far we have considered one-dimensional (applicable to direct product pro!les) 

and radially symmetric beam shaping. In this section, we outline how one would 

determine an optical element that turns an incoming irradiance pro!le I(x/R,y/R) 

into an irradiance distribution that is proportional to Q(x/D,y/D) at the image plane f.
The solution to this problem is much more dif!cult than the ones we have already 

encountered. We do not have any !rsthand experience in actually doing this, but 

feel that it is worth writing down the equations that would allow one to solve this 

problem.

We begin by assuming that the irradiance distribution at the focal plane f is equal 

to (AR2/D2)Q(x/D,y/D). In order for the energy of input beam to be the same as the 

output beam we must have

 A

I s t s t

Q s t s t

= −∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫
∫∫

( , )

( , )

d d

d d
 (2.312)

We now write down an equation for the conservation of energy of any bundle of rays. 

Suppose rays that encounter the optical element at (s,t,0) end up at (x(s,t),y(s,t),f). To 

conserve energy, we must have

 I s t AQ x s t y s t J s t( ) ( ( ) ( )) ( ), , , , ,= ±  (2.313a)

where

 J s t x
s

y
t

x
t

y
s( , ) = ∂

∂

∂

∂
−
∂

∂

∂

∂
 (2.313b)

This is the generalization of the differential form of the energy equations that we 

have written down previously. It can be justi!ed by noting that the rays in the area 
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s < x < s + ds, t < y < t + dt get mapped into a region with area J(s,t)ds dt at the 

focal plane.

If the time delay produced by our beam shaping element is given by (RD/fc)ϕ(x/R, 

y/R), then Fermat’s principle shows us that the function ϕ(s,t) must satisfy

 
∂

∂
=

φ

s x s t( , )  (2.314a)

 
∂

∂
=

φ

t y s t( , )  (2.314b)

These two equations can be derived almost identically to the one-dimensional and 

radial cases. We need two equations because we need to guarantee that the path is 

stationary with respect to changes in both the x and y directions. Using this last set 

of equations, we can write our energy equation as

 I s t AQ
s t s t s t
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∂
∂

∂
∂










∂
∂

∂
∂

−
∂
∂ ∂






















φ φ φ φ φ2
2

2
2

2 2



 (2.315)

This is a nonlinear partial differential equation for the function ϕ(s,t). For the special 

cases where the pro!les are radially symmetric, or can be written as direct products, 

we end up with our previous results. In general, it is not clear that this equation is 

enough to determine the function ϕ(s,t). In order to get a feel for this equation we 

consider a linearized version of this equation. We will see that the linearized equa-

tions end up giving us an equation that is very similar to Poisson’s equation. We will 

see that the linearized equations give us a well-posed mathematical problem, indi-

cating that the same will likely be true of the full nonlinear equations.

In order to get a linearized system of equations, we suppose that the function I(s,t) 
is almost identical to the function Q(x,y). This would imply that the function (x(s,t), 
y(s,i)) is very nearly equal to (s, t), and hence

 φ( , )s t s t
≈

+2 2

2  (2.316)

This means that the function ϕ is merely reversing the phase difference caused by the 

lens that focuses the beam at z = f. We will now assume that

 Q x y I x y P x y( ) ( ) ( ), , ,= + δ  (2.317)

where:

δ is a very small number

We also assume that

 A a= +1 δ  (2.318)

and

 φ( , ) ( , )s t s t s t=
+

+
2 2

2 δψ  (2.319)
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To !rst order in δ, we can write
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If we expand Equation 2.315 to !rst order in δ, we end up with the following equation:

 P s t aI s t
s t

I( , ) ( , )+
∂
∂

+
∂
∂









 + ∇ ⋅∇ =

2
2

2
2 0ψ ψ

ψ  (2.322)

which can be written as

 ∇⋅ ∇  = − −I s t P s t aI s t( ) ( ) ( ), , ,ψ  (2.323)

If we integrate these equations over the x–y plane, we !nd that the left-hand side van-

ishes (assuming ψ vanishes at ∞), and hence the constant a must be chosen so that

 P s t s t a I s t s t( , ) ( , )∫∫∫ ∫+ + =

−∞

∞

−∞

∞

−∞

∞

d d d d 0  (2.324)

Once we have chosen a in this way, we can uniquely solve for ψ if we require that ψ 

vanishes at ∞.

The fact that we can solve the linearized equations is an excellent sign that the 

nonlinear equation (2.315) will uniquely determine the function ϕ.

2.7.5 EXAMPLES

We will now present some concrete examples from the geometrical theory of beam shap-

ing. Some of these examples are important for their own sake, but other examples are 

presented to illustrate some of the dif!culties that can arise when applying the geometri-

cal theory. The dif!culties will not appear until we analyze them using diffraction theory.

Example 9: Turning a Gaussian into a Flat-Top Beam—I

Let

 I s s( ) = −e
2

 (2.325)

and

 Q s s( ) | |= <1 1for  (2.326)

 Q s s( ) | |= >0 1 for  (2.327)
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The normalization of the energy requires that

 e d−

−∞

∞

=∫ s s A
2

2  (2.328)

or

 A =
π

2
 (2.329)

The function α(ξ) must satisfy

 Q( )α
α

ξ π

ξd

d
e= −2 2

 (2.330)

As long as |α| < 1, this can be written as

 d

d
e

α

ξ π
= −2 2ξ  (2.331)

The solution to the above equation can be written as

 α ξ ξ( ) ( )= erf  (2.332)

where:

 erf e d( )ξ

ξ

= −∫
2 2

0
π

s s  (2.333)

Since |α| < 1 for −∞ < ξ < ∞, we conclude that we do not need to consider the 
case where Q(α) = 0.

We now use the equation

 
d

d
erf

φ

ξ
ξ= ( )  (2.334)

to "nd the solution

 φ
π

( ) ( )ξ ξ
π

ξ ξ= + −










−2

2

1

2

1

2

2

erf e  (2.335)

This example has been presented without any reference to the scalings R and D. If 
we were trying to turn a beam with the initial distribution I(x/R) into a beam with 
distribution Q(x/D) at the focal plane f, then our beam shaping element would 
need to introduce a phase delay of (RD/fc)ϕ(x/R).

Example 10: Turning a Gaussian into a Flat-Top Beam—II

We consider the same problem as in Example 9. However, this time we present a 
solution that reverses the order of the rays.

The function α(ξ) must satisfy

 Q( )α
α

ξ π

ξd

d
e= − −2 2

 (2.336)
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As long as |α| < 1, this can be written as

 
d

d
e

α

ξ

ξ= − −2 2

π
 (2.337)

The solution to this equation can be written as

 α ξ ξ( ) ( )= − erf  (2.338)

We now use the equation

 
d

d
erf

φ

ξ
ξ= − ( )  (2.339)

to "nd the solution

 φ( ) ( )ξ
π

ξ
π

ξ ξ= − + −










−2

2

1

2

1

2

2

erf e  (2.340)

Example 11: Turning a Radial Gaussian into a Radial Flattop

We now consider the problem of turning a radial Gaussian into a radial #attop. In 
particular, suppose I s s( ) = −e

2

, and

 Q s s( ) = <1 1 if  (2.341)

 Q s s( ) = >0 1if  (2.342)

In this case, we must choose the constant A so that

 A s ssπ = −

∞

∫ e d
2

0

 (2.343)

It follows that

 A =
1

2π
 (2.344)

Equation 2.310 implies

 α
α

ξ
πξ ξd

d
e= −2

2

 (2.345)

If we require that α(0) = 0, this equation implies that

 α ξ ξ( ) = − −2 1
2

π e  (2.346)

Equation 2.311 for ϕ now implies that

 φ π( )ξ

ξ

= − −∫2 1
2

0

e ds s  (2.347)
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Example 12: Turning a Gaussian into a Stairstep

We consider the case where the input beam is a Gaussian

 I s s( ) = −e
2

 (2.348)

and the desired output beam is a stairstep function.

 Q s s( ) | |= <γ α0  (2.349)

 Q s s( ) | |= < <1 10α  (2.350)

 Q s s( ) | |= >0 1  (2.351)

This situation is clearly symmetrical, so that the phase function ϕ(ξ) = ϕ(−ξ), and 
α(−ξ) = −α(−ξ). For this reason, we will only concern ourselves with "nding ϕ and 
α for ξ > 0.

The normalization condition requires that

 A =
− +

π

α γ2 1 20( )
 (2.352)

There will be a point ξ0 that separates the rays that get sent into the "rst step from 
those that get sent into the second step. We do not know this point ahead of time, 
but must calculate its value given the parameters γ and α0. The function α(ξ) must 
satisfy

 
d

d
e for

α

ξ γ
ξ ξξ= <−1 2

0
A

 (2.353)

This equation is valid for α < α0. We also have

 
d

d
e for

α

ξ
ξ ξξ= >−1 2

0
A

 (2.354)

This equation is valid for α0 < α < 1.
The "rst of these equations can be integrated from 0 to ξ0 to give

 erf ( )ξ
π

γα0 0

2
= A  (2.355)

This is not an explicit expression for ξ0, but it can very quickly be determined 
using an iterative method such as Newton’s method. Once we have determined ξ0 
and A, we have explicit expressions for α(ξ). We can now determine the function 
ϕ(ξ) by solving the following equations

 
d

d

1
e for

2

2 0

φ

ξ γ
ξ ξ

ξ
= <

−

A

2
 (2.356)

 
d

d
e

2

2 0

1 2φ

ξ
ξ ξξ= <−

A
for  (2.357)
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along with the requirements

 φ( )0 0=  (2.358)

and the requirement that ϕ and its derivative are continuous at ξ0. These equa-
tions are almost identical for those of turning a Gaussian into a #attop. Let ϕ0(ξ) 
be given by

 φ0
2

1

2

1

2

2

( ) ( )ξ ξ
π

ξ ξ= + −−erf e  (2.359a)

Then the phase function for the stairstep can be written as

 φ φ( ) ( )ξ
γ

ξ ξ ξ= <
1

0 0
A

for  (2.359b)

and

φ ξ
γ

φ φ ξ( ) ( ) ( ) ( ) ( )( ) ( )= + − + − −










1
1 1

2
0 0 0 0 0

A
γ ξ γ ξ ξ γ ξ

π
erf  for ξξ ξ> 0  (2.359c)

Example 13: Numerical Solutions for Symmetrical Pro"les

There are many situations where it is very cumbersome, or impossible, to obtain 
closed form analytical solutions for the function ϕ(ξ). However, it is not dif"cult to 
write a computer code that solves for ϕ. We now consider how to write a code for 
the special case where both I(s) and Q(s) are symmetric with respect to re#ections 
in s. That is,

 I s I s( ) ( )= −  (2.360a)

and

 Q s Q s( ) ( )= −  (2.360b)

In this case, we can argue that

 α ξ α ξ( ) ( )− = −  (2.361a)

and

 φ ξ φ ξ( ) ( )− =  (2.361b)

This means that we can solve for α and ϕ on the interval ξ > 0, and this will allow 
us to determine these functions everywhere.

We now outline how one can use an ODE solver to determine the function ϕ, 
given the functions Q(s) and I(s). In order to do this we "rst determine the constant A.

 A

I s s

Q s s

= −∞

∞

−∞

∞

∫
∫

( )

( )

d

d

 (2.362)
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In many situations, this constant can be determined analytically, even when the 
function ϕ(ξ) cannot. In these situations, one can analytically compute A. In gen-
eral, one can use the ODE solver to compute the integrals in both the numerator 
and the denominator. Once the constant A has been determined, we use the ODE 
solver to solve the following initial value problems:

 
d

d

α

ξ
ξ= ±

1

AQ
I

( )
( )

α
 (2.363a)

 
d

d

φ

ξ
α ξ= ( )  (2.363b)

Either sign can be taken in the "rst of these equations. As we have already men-
tioned, each sign corresponds to a physically different solution.

These initial conditions for these equations can be written as

 α( )0 0=  (2.364a)

 φ( )0 0=  (2.364b)

These equations can now be integrated out to any value of ξ that you want. A plot 
of ϕ(ξ) can be made by outputting the values as the integration proceeds.

2.8 DIFFRACTIVE THEORY OF LOSSLESS BEAM SHAPING

2.8.1 SCALING PROPERTIES

We now present a theory of lossless beam shaping that is based on diffraction theory 

[19]. In the geometrical theory of beam shaping, it is possible to turn a beam with 

one irradiance distribution into a beam with any desired irradiance distribution, 

provided only that the energies of the incoming and outgoing beams are the same. 

However, when diffraction effects are taken into account, this is no longer possible. 

The geometrical theory is valid provided the wavelength is small. The major goal of 

this section is to quantify what we mean by a small wavelength. As in our discussion 

of geometrical beam shaping, we are interested in turning a beam with an incoming 

irradiance distribution of I(x/R,y/R) at the plane z = 0 into a beam with an irradiance 

distribution of Q(x/D,y/D) at the plane z = f. We will see that the parameter

 β
π

λ
=
2 RD
f  (2.365)

is a dimensionless measure of how small the wavelength λ is. If this parameter is 

large, then the results from the geometrical theory of beam shaping should be valid. 

If it is small, then diffractive effects will be important. The parameter β is one, but 

not the only, measure of how dif!cult our beam shaping problem is. We will see that 

the smoothness properties of our input and output beam is another important mea-

sure of the dif!culty of the beam shaping problem.
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Suppose that at the plane z = 0 the incoming wave !eld is given by g(x/R,y/R), 

and we have an aperture that has a lens with focal length f along with an additional 

phase element ψ(x/R,y/R). The theory of Fourier optics shows us that the wave !eld 

at z = f is given by

 

U x y f i f

g x
R

y
R

f f
kf k x y f

x R y R

f f( , , )

,

( ) /

/ , /

=

×










+

(

1 2 2 2
λ

ψ

e e

e

i i

i )) − +( )

−∞

∞

−∞

∞

∫∫ e d dik x x y y ff f x y/

 (2.366)

We would like to determine a function ψ such that the output U(xf,yf) satis!es

 | ( , ) | ,U x y A R
D Q x

D
y
Df f

f f2
2
2=









  (2.367)

where:

The function Q determines the shape of the desired irradiance distribution

D determines the scale of the desired irradiance distribution

A is a scaling factor that guarantees that the energy of the output beam is the same 

as that of the incoming beam

At this point, our problem has the parameters λ = 2π/k, f, R, and D, and it is not clear 

what we mean when we say the wavelength is small. We can collect all of our param-

eters into a single parameter by introducing dimensionless coordinates. In particular, 

assuming we could choose ψ so that our desired output had exactly the right shape, 

we would have

 | ( , ) | ,G AQx y
x yω

π
β

ω
β

ω
β

ω 2
2
2

4
=









  (2.368a)

where:

 G gx y x y( , ) ( , ) ( ) ( , )ω ω ξ η ξ ηω ω η β ξ η= − +

−∞

∞

−∞

∞

∫∫ e e d di iξ φ  (2.368b)

where:

 
ξ =

x
R  

(2.369a)

 
η =

y
R  

(2.369b)

 
ωx fx Rk

f=
 

(2.369c)

 
ωy fy Rk

f=
 

(2.369d)

 ψ ξ η β ξ η( , ) ( , )= φ  (2.369e)
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We have chosen to write the phase as βϕ rather than as ψ. This will be convenient 

when we are doing the large β approximation. We will refer to Equation 2.368a and b 

as the dimensionless beam shaping equation. Given the function g, the function Q, 
and the parameter β, our goal is to determine a constant A and a function ϕ(ξ,η) such 

that Equation 2.368a and b is satis!ed. This statement of the beam shaping prob-

lem is very nice because we have collected all of our parameters into the single 

 parameter β.

2.8.2 ONE-DIMENSIONAL BEAM SHAPING

As in the theory of geometrical beam shaping, we now consider problems where the 

incoming beam g(ξ,η) and the desired output Q(s,t) can be written as a direct prod-

uct. This allows us to separate the beam shaping problem into two one-dimensional 

problems. In particular, we are trying to !nd a function ϕ and a constant A such that 

for a given g(ξ), Q(s), and β, we have

 | ( ) |G A Qω
π
β

ω
β

2 2
=









  (2.370a)

where:

 G g( ) ( ) ( )ω ξ ξωξ β ξ= −

−∞

∞

∫ e e di i φ  (2.370b)

In general, it is not possible to choose ϕ so that Equation 2.370a and b is satis-

!ed exactly. For example, if β is small, then we would need the Fourier transform 

of g( ) ( )ξ φei ξ  to be very concentrated around the origin. This would contradict the 

uncertainty principle. To make this statement more precise, we can apply the uncer-

tainty principle to the function g( ) ( )ξ β ξei φ  and its desired Fourier transform to get

 ∆ ∆ ≥g G
1
4  (2.371)

where:

 ∆G

G

G

= −∞

∞

−∞

∞

∫

∫

ω ω ω

ω ω

2 2

2

| ( ) |

| ( ) |

d

d
 (2.372)

and

 ∆g

g

g

= −∞

∞

−∞

∞

∫
∫

ξ2 2

2

| ( ) |

| ( ) |

ξ ξ

ξ ξ

d

d
 (2.373)
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If we could choose ϕ so that we accomplished our beam shaping exactly, we would 

have

 | ( ) |G A Qω
π

β
ω
β

2 2
=









  (2.374)

This would imply that

 ∆ ∆G Q= β2  (2.375)

where:

 ∆Q

Q

Q

= −∞

∞

−∞

∞

∫

∫

ω ω ω

ω ω

2 2

2

| ( ) |

| ( ) |

d

d
 (2.376)

and hence

 β2 1
4∆ ∆g Q ≥  (2.377)

This inequality cannot be satis!ed if β is too small. It should be evident that if β is 

very small, then it will not even be possible to turn the beam into a pro!le that is 

even near the desired pro!le. This shows that it is not possible to do a good job of 

beam shaping if the parameter β is small. We now consider the case where β is large, 

and show that in this case if we choose ϕ to be the function obtained from using 

geometrical beam shaping, then this will nearly satisfy our beam shaping problem.

We begin our analysis of the beam shaping problem by commenting on our deci-

sion to write the phase delay as βϕ(ξ). This scaling will allow us to use the method 

of stationary phase to determine the behavior for large values of β. It should be noted 

that this scaling predicts that the phase function grows linearly with the frequency of 

light that we are using, a result that would hold if we designed a lens based on geo-

metrical optics, and kept the same lens for all frequencies of light.

If we use the variable

 α
ω

β
=  (2.378)

our beam shaping problem can be written as follows: given the function g, the function Q, 

and the parameter β, try to determine the constant A and the function ϕ such that

 G g( ) ( ) ( )α ξ ξβ ξ αξ= − 

−∞

∞

∫ e di φ
 (2.379a)

 | ( ) | ( )G AQα
π

β
α2 2

=  (2.379b)
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The integral in Equation 2.379a is in a form that can be evaluated using the method 

of stationary phase. To lowest order in β, the method of stationary phase shows us 

that the integral is given by

 G g( ) ( )
( )

/ { [ ( )] ( )}α π
ξ α

β ξ α
π β ξ α ξ≈

 
′′  

−e ei i4 2φ α

φ
 (2.380)

where the function ξ(α) is determined implicitly by the following equation:

 
d
dξ ξ α αφ ( )  − = 0  (2.381a)

If we have chosen ϕ so that the beam has the desired output, then we have

 AQ g( ) ( )
( )α
ξ α

ξ α
=

 
′′  

2

φ
 (2.381b)

With a little bit of manipulation, we can make these equations identical to the equa-

tions for geometrical beam shaping. To do this, we begin by differentiating Equation 

2.381a with respect to α. This gives us the following equation:

 
d

d
d
d

2
2 1φ ξ α

ξ
ξ α
α

( ) ( )  =  (2.382)

Using this equation, Equation 2.381b can be written as

 
d
d
ξ α

α
ξ α

( ) ( ) ( )g AQ2 =  (2.383)

If we use the fact that the irradiance of the incoming beam is given by |g(ξ)|2 = I(ξ), 

we get the system of equations:

 
d
d
ξ

α
ξ αI AQ( ) ( )=  (2.384a)

 
d
dξ ξ α αφ ( )  − = 0  (2.384b)

If we integrate Equation 2.384a from −∞ to ∞, we !nd the normalization condition:

 A

I

Q

= −∞

∞

−∞

∞

∫
∫

( )

( )

ξ ξ

α α

d

d
 (2.384c)

These equations are identical to Equation 2.304a–c, derived using the geometrical 

theory of beam shaping.
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2.8.3 TWO-DIMENSIONAL BEAM SHAPING

We will now quickly summarize how our results can be extended to apply to arbitrary 

beam shape problems, that is, ones that are not separable. In general, we want to !nd 

a function ϕ(ξ,η) such that

 G x y g x y( , ) ( ) ,
= ( ) − − 

−∞

∞

−∞

∞

∫∫ ξ ξ η
β ξ η ξ ηe d di φ

 (2.385a)

 | ( , ) | ( , )G x y AQ x y2
2
2

4
=

π

β
 (2.385b)

An argument almost identical to that used in the separable case shows that the uncer-

tainty principle requires that

 β2 1∆ ∆g Q ≥  (2.386a)

where:

 ∆g

g

g

=
+

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫
∫∫

( ) | ( , ) |

| ( , ) |

ξ η ξ η ξ η

ξ η ξ η

2 2 2

2

d d

d d
 (2.386b)

and

 ∆Q
x y x y x y

x y x y

Q

Q
=

+
−∞

∞

−∞

∞

−∞

∞

∫∫

∫

( ) | ( , ) |

| ( , ) |

ω ω ω ω ω ω

ω ω ω ω

2 2 2

2

d d

d d
−−∞

∞

∫
 (2.386c)

As in the separable case, this inequality cannot be satis!ed if β is too small. We 

now consider the limit of the integral in Equation 2.385a as β → ∞. Using the two-

dimensional method of stationary phase, we !nd that

 | ( , ) | ( , ) | ( , ) |G x y J g2
2

2 0 0
0 0 24

≈
π

β ξ η
ξ η  (2.387)

where (ξ0,η0) are determined implicitly by the stationarity conditions:

 

∂

∂
=

ξ
ξ ηφ( , )0 0 x

 

(2.388a)

 
∂

∂
=

η
ξ ηφ( , )0 0 y  (2.388b)
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and the function J is de!ned by

 J( , ) ( , ) ( , ) ( , )
ξ η

ξ η
ξ

ξ η
η

ξ η
ξ η

0 0
2 0 0

2
2 0 0

2
2 0 0

2
=
∂

∂
∂

∂
−

∂
∂ ∂











φ φ φ
 (2.389)

If we use the stationarity conditions, we can write the function J as

 J x y x y( , ) ( , ) ( , ) ( , ) ( , )
ξ η

ξ η

ξ

ξ η

η

ξ η

η

ξ η

ξ
0 0

0 0 0 0 0 0 0 0=
∂

∂

∂

∂
−
∂

∂

∂

∂
 (2.390a)

If we require that the function |G(x, y)|2 has the desired output, we arrive at the fol-

lowing equation:

 I AQ x y J( , ) ( , ) ( , )ξ η ξ η0 0 0 0=  (2.390b)

These last two equations along with the stationarity conditions in Equation 2.388a 

and b are identical to the two-dimensional equations that we derived using geometri-

cal optics.

2.8.4 RADIALLY SYMMETRIC PROBLEMS

In the section on geometrical beam shaping, we considered problems that have radial 

symmetry. We now consider how to analyze these problems for the effect of dif-

fraction. Problems with radial symmetry can be considered as a special case of the 

general theory of two-dimensional beam shaping. These problems are important 

enough that they deserve some special attention. Suppose both the input beam g and 

the desired output beam Q have radial symmetry. In this case, the phase function ϕ 
will also have radial symmetry, and we can replace our two-dimensional Fourier 

transforms with Hankel transforms (Section 2.2.3). The theory of Hankel transforms 

shows that our beam shaping problems can be phrased as follows.

Given a function g(ξ), a function Q(α), and a parameter β, !nd a function ϕ(ξ) 

such that

 G g J( ) ( ) ( )( )α π ξ ξ αξ ξβ ξ=
∞

∫2 0
0

e di φ  (2.391a)

satis!es

 | ( ) |G AQα
π
β

α
β

2
2
2

4
=









  (2.391b)

We already know that a lens designed using the !rst-order term in the stationary 

phase approximation gives the same lens as the one designed using geometrical 

optics. Since radially symmetric problems are special cases of the two-dimensional 

case, if we design a radially symmetric lens using the large β limit, we should get 

the same lens as and when we design it using geometrical optics. We conclude that 

the function ϕ(ξ) can be obtained by using the techniques described in the section on 
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the geometrical theory of beam shaping. Once we have obtained this function, we 

can use Equation 2.391a and b to see how our system performs with a !nite value of 

β. To carry this out in practice, we have used ODE solvers in order to compute the 

function ϕ and to perform the integration in the de!nition of the Hankel transform.

2.8.5 CONTINUITY OF ϕ

We have seen that the !rst term in the method of stationary phase is identical to the 

results obtained using geometrical optics. In order for us to know how well the geo-

metrical optics approximation is working, it is necessary to understand the next order 

term in the stationary phase approximation. We discussed the higher order terms in 

the method of stationary phase in Section 2.3. There we saw that if the functions ϕ 

and g are in!nitely differentiable, then the next order term in the method of station-

ary phase is 1/β times the size of the !rst term. However, if the third derivative of 

ϕ (or g) is discontinuous, then the next order term will only be 1/  times smaller 

than the !rst-order term. If ϕ has a discontinuity in a lower derivative, we get even 

worse convergence.

We now consider what class of functions Q(α) will lead to discontinuities in 

the phase function ϕ(ξ) designed by using geometrical optics. We will assume that 

the function I(ξ) is smooth (such as a Gaussian). Equation 2.384a–c shows that the 

derivative of ϕ has the same continuity properties as the function α(ξ). If we take the 

derivative of Equation 2.384a with respect to ξ, we !nd

 A
Q

Q
Id

d
d
d

d
d

d
dα

α
ξ

α
α
ξ ξ









 +












=

2 2
2( )  (2.392)

We see that if the function Q(α) has a discontinuous derivative at a point α = α(ξ0) 

where I(ξ0) ≠ 0, then this will lead to a discontinuity in the second derivative of α 
with respect to ξ, and hence to a discontinuity in the third derivative of ϕ. It fol-

lows that discontinuities in the derivatives of Q or I will slow down the convergence 

toward the geometrical optics limit.

Note that we excluded the case where the discontinuity in Q occurs at a point 

where I vanishes. In this case, we must have dα/dξ = 0, and when we look at our 

expression for the second derivative of a, we !nd that it does not have a discon-

tinuity. Similar arguments hold for the case where Q itself is discontinuous at a 

point where I vanishes. A very important example of this is the case where one 

turns a Gaussian pro!le into a $at-top beam. In that case, the phase function is 

in!nitely differentiable, even though the function Q(α) has a discontinuity in it. 

This is because the discontinuity in Q occurs as ξ → ∞, and hence at a point 

where I(ξ) = 0.

For the case where the incoming distribution I(ξ) is a Gaussian, we see that dis-

continuities in the !rst derivative of Q will lead to discontinuities in the third deriva-

tive of ϕ, unless the discontinuity in Q occurs at an extremity. By an extremity, we 

mean a point where the rays reaching this point have come from points in!nitely far 

off the axis.
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2.8.6 ONE-DIMENSIONAL EXAMPLES

In order to illustrate the principles of beam shaping, a computer code was written 

that allows us to compute the function ϕ as well as the effects of using a !nite value 

of β. In these examples, we calculate

 G g( ) ( ) ( )α ξ ξβ ξ αξ= − 

−∞

∞

∫ e di φ
 (2.393)

by using an ODE integrator. When an analytical expression for ϕ cannot be found, 

we compute ϕ with the ODE integrator as we are computing the integral. We output 

the quantity

 Γ( , ) | ( ) |α β
π

β
α=

2 2A G  (2.394)

where:

 A

I

Q

= −∞

∞

−∞

∞

∫
∫

( )

( )

ξ ξ

α α

d

d
 (2.395)

If the effects of diffraction are negligible, the function Γ(α,β) should be very close 

to Q(α).

We could have used a code that computed the function ϕ using the technique 

described in the section on geometrical beam shaping, and then fed this input into a 

fast Fourier transform for computing the effects of a !nite value of β.

In all of the examples we present, we will use the function

 g( ) /ξ ξ= −e 2 2  (2.396)

and hence

 I( )ξ ξ= −e 2
 (2.397)

Example 14: Turning a Gaussian into a Flattop

We want to turn the output beam into a #attop with

 Q( ) | |α α= <1 1 for  (2.398)

 Q( ) | |α α= >0 1 for  (2.399)

We have already considered this example in the section on geometrical beam 
shaping, where it was shown that the function ϕ is given by

 φ
π

( ) ( )ξ ξ
π

ξ ξ= + −










−2

2

1

2

1

2

2

erf e  (2.400)
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We will be able to see the effects of having a "nite value of β. Figure 2.5a shows plots 
of Γ(α,β) for various values of β. We see that for β = 2 the answer does not look at 
all like a square pulse, whereas for β = 32 the answer is starting to look very good.

Figure 2.5b shows a plot of the function ϕ(ξ).

Example 15: A Polynomial Output—I

We will now let the output beam be a polynomial that has a hump in it.

 Q( ) ( )( ) | |α α α δ α= − + <1 12 2  for  (2.401)

 Q( ) | |α α= >0 1 for  (2.402)
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FIGURE 2.5 (a) The intensity distribution for different values of β for the problem of turn-

ing a one-dimensional Gaussian into a $at-top beam (Example 14). (b) A plot of the function 

ϕ(ξ) that accomplishes this exactly in the geometrical optics limit.
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The constant A is easily computed to be

 A =
+

15

4 20

π

δ
 (2.403)

We will choose δ = 1, for this example. Once we know the constant A, we use the 
ODE solver to compute the function ϕ and the function Γ(α,β) for various values of β. 
Figure 2.6a shows plots of Γ(α,β) for various values of β. Once again, the results 
are not good for β = 2, but get progressively better as we increase the value of β. 
A careful analysis of the data shows that the relative error

 e( , )
( , ) ( )

α β
α β α

α
=

−

( )
Γ Q

Q
 (2.404)

is going to zero like 1/β everywhere except right at the endpoints α = ±1.
Figure 2.6b shows a plot of the function ϕ(ξ).
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FIGURE 2.6 (a) The intensity distribution for different values of β for the problem of 

 turning a Gaussian into the output Q(α) = (1 − α2)(l + α2) for |α| < 1, Q(α) = 0 for |α| > 1. 

(b) A plot of the function ϕ(ξ) that accomplishes this in the geometrical optics limit.
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Example 16: A Polynomial Output—II

This example is the same as the last example except that we have chosen a 
value of δ  =  0.25 in the function Q(α). This causes the function Q to have 
two humps in it. Figure 2.7a shows plots of Γ(α,β) for various values of β, and 
Figure 2.7b shows a plot of the function ϕ(ξ). The relative error is dying down 
faster than 1/β2 almost everywhere. Once again right at the ends (α = ±1), we 
do not get this behavior, and in the middle (α = 0) the convergence is some-
what slower than 1/β2. The slow convergence at this point does not appear to 
be illustrating any fundamental principle, but appears to go away if we choose 
a large enough value of β.
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FIGURE 2.7 (a) The intensity distribution for different values of β for the problem of 

 turning a Gaussian into the output Q(α) = (1 − α2)(l/4 + α2) for |α| < 1 and Q(α) = 0 for 

|α| > 1. (b) A plot of the function ϕ(ξ) that accomplishes this in the geometrical optics limit.
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Example 17: A Triangle Function

Here we consider the case of a triangular function given by

 Q( ) | | | |α α α= −1  for < 1  (2.405)

 Q( )α α= 0 1 for | | >  (2.406)

This discontinuity in the derivative of the function Q(α) at α  =  0 causes the 
 function ϕ to have a discontinuity in its third derivative. Figure 2.8a shows plots 
of the function Γ(α,β) for various values of β. At the point α = 0, the convergence 
toward the function Q(α) can be seen to be going like 1/ . Figure 2.8b shows a 
plot of the function ϕ(ξ).
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FIGURE 2.8 (a) The intensity distribution for different values of β for the problem of turn-

ing a Gaussian into a triangle function Q(α) = 1 − |α| for |α| < 1 and Q(α) = 0 for |α| > 1. 

(b) A plot of the function ϕ(ξ) that accomplishes this in the geometrical optics limit.
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Example 18: A Stairstep Function—I

We now consider the case where Q(α) is a stair step function.

 Q( ) | |α γ α= < for
1

2
 (2.407a)

 Q( )α α= <1
1

2
for | | < 1 (2.407b)

 Q( ) | |α α= 0 for >1 (2.407c)

In this example, we choose γ = 3/4. The discontinuity in the function Q at α = ±1/2 
causes the function ϕ to have a discontinuity in its second derivative. Figure 2.9a 
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FIGURE 2.9 (a) The intensity distribution for different values of β for the problem of turning a 

Gaussian into a step function Q(α) = 3/4 for |α| < 1/2, Q(α) = 1 for 1/2 < |α| < 1, and Q(α) = 0 

for |α| > 1. (b) A plot of the function ϕ(ξ) that accomplishes this in the geometrical optics limit.
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shows plots of the function Γ(α,β). The convergences toward the solution Q(α) is 
extremely slow. Figure 2.9b shows a plot of the function ϕ(ξ).

Example 19: A Stairstep Function—II

This is the same as in the last example except we choose the parameter γ in the 
function Q to be equal to zero. This causes the function Q to have a discontinuity 
in the "rst derivative. Figure 2.10a shows plots of the function Γ(α,β). We see that 
the convergence toward Q(α) is extremely slow in this case. Figure 2.10b shows 
a plot of ϕ(ξ).
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FIGURE 2.10 (a) The intensity distribution for different values of β for the problem of 

turning a Gaussian into a step function Q(α) = 0 for |α| < 1/2, Q(α) = 1 for 1/2 < |α| < 1, 

and Q(α) = 0 for |α| > 1. (b) A plot of the function ϕ(ξ) that accomplishes this in the geo-

metrical optics limit.
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2.8.7 AN AXISYMMETRIC EXAMPLE

In Section 2.7.5 on geometric beam shaping, we considered the problem of turning 

a circular Gaussian beam into an axisymmetric $at-top beam. In this case, the input 

beam g(ξ,η) is given by

 g( , )ξ η ξ η= − −e 2 2
 (2.408)

and the desired output is given by

 Q x y x y( , ) = + <1 12 2 for  (2.409)

 Q x y x y( , ) = + >0 12 2 for  (2.410)

The radially symmetric beam shaping equations give us the normalization 

constant:

 A = 1  (2.411)

The phase function is given by

 φ( )r
r

= − −∫ 1 2

0
e dξ ξ  (2.412)

where:

r2 = ξ + η2

To analyze the effects of diffraction, we compute the radially symmetric Fourier 

transform. In Section 2.2, we showed that this can be done using the Hankel 

transform.

 G rJ r g r rr( ) ( ) ( )( )α π αββ=
∞

∫2 0
0
e di φ  (2.413)

We are interested in the normalized irradiance of this function.

 Γ( , ) | ( ) |α β
π

β
α=

4 2
2

2G  (2.414)

If the effects of diffraction are negligible, then the function Γ(α,β) should be nearly 

equal to Q(α).

Figure 2.11a shows a plot of Γ(α,β) for various values of β. We see that the results 

are quite similar to the one-dimensional case. Figure 2.11b shows a plot of the 

 function ϕ(ξ).
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3 Laser Beam Splitting 

Gratings

Louis A. Romero and Fred M. Dickey

3.1 INTRODUCTION

Beam splitting gratings are used to split a laser beam into multiple beams for 

 industrial and scienti!c applications. They are used in a range of applications, 

including parallel processing in laser machining and material processing, sensor 

systems, interferometry, communication systems, and image processing and gather-

ing  systems. An arbitrary periodic grating will split an incoming beam into a large 

number of outgoing beams (or orders). For many applications, it is desirable to put as 

much energy as possible into certain orders, while keeping the energy in all of these 
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orders equal to each other (or more generally in some !xed proportion). If the grating 

does not absorb any light, it is referred to as a phase grating.

Romero and Dickey have given an overview of the mathematical analysis of laser 

beam splitting gratings in Reference [1]. In this chapter, we present its condensed version, 

while including a few new results concerning physical implementation of the theory.

3.2 FOURIER OPTICS

It is well known from books on elementary physics [2,3] that when a light passes through 

a diffraction grating, it will get split up into diffracted beams traveling in particular direc-

tions, and the angular spacing between these diffracted beams depends on the period d 

of the grating. If λ is the wavelength of the light and d is the period of the grating, the 

direction cosines of the diffracted beams will be integer multiples of λ/d near the axis. 

However, few books on elementary physics discuss how the detailed structure of the grat-

ing determines the intensity of the diffracted beams. For example, suppose our gratings 

arise from periodically varying the thickness of the grating. How does the intensity in the 

diffracted orders depend on the particular periodic function de!ning the grating?

In almost all theories of beam splitting gratings, it is assumed that the grating is 

thin and lossless. In this case, the grating can be approximated as an in!nitesimally 

thin surface such that when a light wave passes through the grating, its amplitude, but 

not its phase, will remain constant. The phase will be changed by φ = ωδτ, where ω 

is the angular frequency of the light and δτ is the time that it takes to pass through 

the grating (which depends on where we are on the grating). For a line grating, this 

phase shift will be a function of the distance x in a direction tangent to the surface of 

the grating. For a thin lossless line grating, the grating can be characterized by giving 

the phase function φ(x) describing the phase shift as one passes through the grating.

For example, if the grating is made out of a material of constant refractive index 

n and has a variable thickness h(x), the additional time (over the time if the grating 

were not there) that it takes to pass through the grating at x will be

 δτ
−( ) ( )( )x h x n

c=
1

 (3.1)

and the phase shift will be given by

 ϕ =
ω −

=
π −

λ
( ) ( ) ( ) ( )( )x h x n

c
h x n1 2 1

 (3.2)

where:

λ is the wavelength of the light in free space

The theory of Fourier optics [4] shows that the amplitude of the kth diffracted beam 

will be proportional to the kth Fourier coef!cient ak of the transmission function 

t(x) = eiφ(x) [1,5]:

 
a d t x x kk

d

d k d x
= = ± ±

−

−
π1 0 1 2

2

2 2

/

/
( ) , , ,...∫









e di

 
(3.3)
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where, for a lossless grating, the transmission function t(x) is given by

 t( ) ( )x x= ϕei  (3.4)

In particular, the intensity Ik of the kth order is given by

 I ak k=
2

 (3.5)

More precisely, the diffraction theory predicts that we only get a !nite number of 

these terms since the remaining terms represent the evanescent waves that decay after 

a few wavelengths of propagation. The upper bound on k is related to the ratio d ∕λ, 

where d is the spacing of the grating and λ is the wavelength of the incoming light. 

The equation for the amplitude of different orders assumes that the illumination is 

uniform. For the case of beam-like illumination, the output will be the convolution 

of the plane wave result with the Fourier transform of the beam (see Appendix A of 

Reference [5]). Assuming that the spatial extent of the beam is large compared to the 

 grating pitch, the uniform beam results are nearly applicable in this case as well.

3.3  THE CONSTRAINED OPTIMIZATION PROBLEM 
FOR LINE GRATINGS

Suppose that we have a lossless, one-dimensional grating with spatial periodicity d. 

By a simple rescaling, we can assume that the period of the grating is 2π. Using a 

coordinate system (x,y,z), we suppose that the grating lies in the plane z = 0 and that 

the transmission function of the grating is independent of the y coordinate. This 

one-dimensional grating is characterized by a 2π periodic function φ(x) = φ(x + 2π) 

giving the phase change of an input beam as a function of x at z = 0.

In the beam splitting problem under consideration, we choose the transmission 

function t(x) = eiφ(x) to put as much energy as possible into the !rst 2m + 1 modes ak 

for k = 0, ±1, ±2, . . . ±m. The ef!ciency of the grating is the ratio of the energy put 

into these 2m + 1 orders to the energy in all orders. It is a simple exercise [1] to show 

that it is not possible to have a lossless grating with 100% ef!ciency.

After writing down the equations in dimensionless form (so the period of the grat-

ing is 2π), we arrive at the following mathematical problem: Choose the real function 

φ(x) so that we maximize the ef!ciency

 η = −CO
a
a
kk m

m

kk

=

=−∞

∞

∑
∑

2

2  (3.6)

subject to the constraint that

 a a k m mk
2

0
2

= −= ,  (3.7)

where:

ak is the kth Fourier coef!cient of eiφ(x)
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a xk
x kx=

π
ϕ −

π

π1
2 e e di i( )

−
∫

 

(3.8)

This is just one example of a beam splitting problem. There are several generaliza-

tions of this problem, including the problem of splitting a beam so that the ampli-

tudes of the !rst 2m + 1 orders are not all the same, but in some !xed proportion. 

For example, while trying to split a beam so the mode a0 has twice as much energy 

as the other 2m modes of interest. Another generalization arises from requiring that 

we maximize the energy in a different set of modes. The most common variant is to 

maximize the energy in the modes [±1, ±3, ±5, . . . ±(2m + 1)].

At !rst sight, this appears to be an in!nite-dimensional optimization problem 

because specifying a function φ(x) requires an in!nite number of parameters (such 

as the coef!cients in a Fourier series). However, for the case of m = 1 (the triplica-

tor), Gori et al. [6] used methods from the calculus of variations to reduce this to a 

!nite-dimensional optimization problem involving a single parameter. Using similar 

techniques, Borghi et al. [7] solved the problem of splitting a beam into two beams 

that are not necessarily of the same intensity. Romero and Dickey [1,5,8] generalized 

this procedure for arbitrary values of m, as well as for two-dimensional gratings. In 

particular, they showed that the optimal phase function φ(x) can always be written as

 t x s x
s x

x( , , ) ( , , )
( , , )

( )
αα µµ

αα µµ

αα µµ
= =eiϕ

 (3.9)

where:

 s( , , )x k
k m

m
kxkαα µµ = µ α

=−

∑ e eii  (3.10)

where:

α and μ are vectors containing the parameters αk and μk for k = −m,m

The formulas in Equations 3.9 and 3.10 apply to the case in which we are trying 

to put as much energy as possible into the !rst 2m + 1 Fourier coef!cients. More 

 generally, if we are trying to put as much energy as possible into a set of modes 

k ∈ K, we replace Equation 3.10 by

 s( , )x k
k K

kxkαα µµ, e ei= µ α

∈

∑ i  (3.11)

If we multiply all of the constants μk by the same number, we do not change eiφ(x) in 

Equation 3.9. For this reason, we can arbitrarily set one of the μk to unity. Furthermore, 

for any periodic function φ(x), we do not change the magnitude of any of the Fourier 

coef!cients of eiφ(x) by adding a constant φ(x) or shifting φ(x) by any amount x0. This 

allows us to arbitrarily set two of the phases αk. Thus, when solving a beam splitting 

problem with N beams, we have 2N − 3 parameters to vary.

In general, if we compute the Fourier coef!cients of t(x,α,μ) as de!ned in 

Equation 3.9, we will get
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t R
K

( , , ) ( , )x xk
k

kxkαα µµ αα µµ= γ +β

∈

∑ e e ,i i

 

(3.12)

where:

R(x,α,μ) gives the other Fourier coef!cients that are not of interest to us

In Reference [5], it was shown that for an optimal solution, we must have αk = βk; that 

is, the phase of the relevant Fourier coef!cients of t(x,α,μ) must be the same as that 

of s(x,α,μ). If we apply this condition to the N − 2 unknown phases, and also require 

that all of the γk are equal to each other, this gives us 2N − 3 equations in 2N − 3 

unknowns. The parameters μ and α can be found by solving this system of nonlinear 

equations using Newton’s method. In practice, it is necessary to have a good initial 

guess for the phase α, which can be found by solving the least-squares optimization 

problem discussed in References [1,5] and Section 3.4.

The fact that the optimal phase grating can be speci!ed by a !nite sum (as in 

Equations 3.9 and 3.10) can simplify the calculation of the optimal phase grating. It 

also simpli!es the communication of results to other workers in the !eld.

3.4 SOME ALTERNATIVE OPTIMIZATION PROBLEMS

There is a considerable literature on laser beam splitting that does not involve !nding 

the optimal gratings as discussed in Section 3.3. For example, the pioneering work 

on laser beam splitting was done by Dammann [9,10]. In this and subsequent works 

[11–16], it was assumed that the gratings were binary, having only two different phases. 

Extensions to gratings that have a !nite number of phases were given in References 

[17,18]. These gratings with !nite numbers of phases are known as Dammann grat-

ings. General reviews of Dammann gratings can be found in References [1,19–21]. 

Advances in manufacturing techniques have made it possible to manufacture continu-

ous gratings. Hence, in this chapter, we will give no more discussion of Dammann 

gratings.

Even for the case of continuous gratings, there is a considerable literature devoted 

to solving other optimization problems that differ from the constrained optimization 

problem [1] discussed in Section 3.3. We will not present any of the results for these 

optimization problems, but we will brie$y mention what they are and why they are 

useful.

Romero and Dickey [1] discuss two alternative optimization problems that have 

been used in laser beam splitting. The least-squares optimization problem is based 

on the following reasoning. If we could design a grating with 100% ef!ciency, the 

transmission function would be given by

 t k

m

m
kx( )x

k
= γ αe ei i

=−

∑  (3.13)

where:

γ is a normalization constant and

αk are the unknown phases
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As we have already stated, it is not possible for a function t(x) = eiφ(x) to have this 

form. The least-squares optimization adjusts the parameters γ and αk and the func-

tion φ(x) so that we minimize the mean square difference between eiφ(x) and the 

function t(x). In this optimization problem, the optimal phase will typically not pro-

duce a solution in which the energy in all of the orders of interest is the same. The 

solutions to this problem are not as useful as those to the constrained optimization 

problem. However, the solutions to this problem are easier to !nd than those to the 

constrained optimization problem. In particular, the solutions have the same form as 

in Equation 3.9, except that the coef!cients μk can all be assumed to be equal to 1. 

For this reason, the number of parameters that need to be searched is reduced by a 

factor of 2 (compared to the constrained optimization problem). These ef!ciencies 

were tabulated in Reference [22]. They prove that the ef!ciencies obtained from the 

least-squares optimization problem are a bound on the ef!ciencies obtained from 

the constrained optimization problem [5]. Wyrowski [23] proved a similar result. 

However, his results were proven in a more general setting, which had an error in 

them that was corrected in Reference [1].

The third type of optimization problem is called the minimum variance optimi-

zation problem [1,24,25]. In this problem, the transmission function of the grating 

is assumed to have a !nite Fourier series as in Equation 3.13, and hence it is not of 

the form eiφ(x). Since the amplitudes of the Fourier coef!cients are all the same, the 

grating puts the exact desired amount of energy in the order of interest. However, 

the grating is not lossless. The phases of the Fourier coef!cients are chosen so that 

the amplitude of the transmission is as uniform as possible; that is, we are trying 

to minimize the variance of the transmission function t(x) given by Equation 3.13. 

As with the least-squares optimization problem, this involves half the number of 

parameters of the constrained optimization problem and can be useful in !nd-

ing good initial guesses for solving the constrained optimization problem using 

Newton’s method.

3.5 RESULTS FOR LINE GRATINGS

We begin by showing how the formulas in Equations 3.9 and 3.10 apply to the simple 

cases of two and three beam splitting. For the case of three beam splitting, we have m = 1 

in Equation 3.10. We show that the parameters for the optimal solution can be chosen so 

that μ0 = 1, α0 = 0, μ1 = μ−1, and α1 = α−1 = π ∕ 2 [1,5]. Then Equation 3.10 will become

 s x( , , ) cos( )αα µµ = + µ1 2i x  (3.14)

Using Equation 3.9, this shows that tan[φ(x)] = 2μcos(x). Hence,

 ϕ = µ( ) ( )[ ]x xtan 2 cos−1  (3.15)

The parameter μ must be adjusted to maximize the ef!ciency. Numerical calcula-

tions show that μ = 1.32859 and that the ef!ciency associated with this parameter 

is ηCO = 0.92556. This is equivalent to the solution presented in Reference [6] if we 

shift the solution by π ∕ 2.
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For the case of two beam splitting, we use Equation 3.11 where K consists of k = ±1. 

In References [1,5], we show that we can choose μ1 = μ−1 = 1 and α1 = α−1 = 0, which 

gives the following equation:

 s x x( cos, , ) ( )αα µµ =  (3.16)

Hence, using Equation 3.9, we get eiφ(x) = sgn[cos(x)]. This gives us a binary !lter, 

in which the phases are either 0 or π. It is easily shown that this has an ef!ciency of 

ηCO = 8∕π2.

Table 3.1 shows the results for line gratings that split a beam into an odd num-

ber of modes. It gives the coef!cients αk and μk specifying the function eiφ(x) given 

in Equations 3.9 and 3.10. The table gives the values of the ef!ciencies ηCO for the 

constrained optimization problem as well as the ef!ciencies ηLS for the least-squares 

optimization problem.

Table 3.2 gives the results for splitting a beam into an even number of modes. To 

understand this table, we note that when splitting a beam into an even number of 

modes, we use the gratings such that the transmission function f(x) = eiφ(x) satis!es 

the following equation:

 f x f x( ) ( )+ π = −  (3.17)

TABLE 3.1

Optimum Ef"ciencies for Splitting a Beam into an Odd Number of Beams

Nmodes ηLS ηCO α and μ

3 93.81 92.56 α = π ∕ 2

μ = 1.329

5 96.28 92.12 α = (−π ∕ 2,π)

μ = (0.459,0.899)

7 97.53 96.84 α = (−0.984,1.891,0.748)

μ = (1.289,1.463,1.249)

9 99.34 99.28 α = (0.720,5.567,3.033,1.405)

μ = (0.971,0.964,0.943,1.029)

11 98.38 97.71 α = (0.311,4.492,2.847,5.546,4.406)

μ = (1.207,1.297,1.483,1.427,1.275)

13 98.57 97.53 α = (2.308,4.345,1.517,1.692,0.066,6.243)

μ = (0.912,0.968,0.806,0.923,1.099,1.027)

15 98.21 97.29 α = (2.625,4.534,0.970,2.983,3.328,4.070)

μ = (4.945,1.116,1.463,0.930,1.114,1.466,1.359,1.211)

Note: We also list the values of αk and μk in Equations 3.9 and 3.10 needed to obtain the following 

 solutions: αk = α−k, μk = μ−k as well as α0 = 0 and μ0 = 1. If Nmodes = 2M + 1, the vectors α and μ 

contain the values α  =  (α1,α2,. . .αM) and μ  =  (μ1,μ2,. . .μM). The optimal phase functions for 

Nmodes = 3, 11 are given in Figure 3.1.
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As discussed in section 2.3 of Reference [1] and in Reference [13], this is a necessary 

and suf!cient condition for all of the even Fourier coef!cients of f(x) to vanish. As 

pointed out in Reference [1], if we solve the problem of putting as much energy as 

possible into the modes [±1, ±3, . . . ±(2m + 1)], without requiring that eiφ(x) satis!es 

Equation 3.17, the optimal solution will in fact end up in satisfying Equation 3.17; 

that is, the optimal solution will be guaranteed of putting no energy into any even 

mode. Thus, in Table 3.2, the function s(x,α,μ) in Equation 3.11 is summing over the 

odd modes from −Nmodes + 1 to Nmodes − 1.

The theory of laser beam shaping presented in Chapter 2 shows that if the space–

bandwidth product is large enough, we can nearly !nd a phase-only function whose 

Fourier transform is a $attop. A simple extension of this argument shows that when 

m is large, we should be able to !nd a phase-only function such that the Fourier coef-

!cients ak for k = 0, ±1, ±2, . . . ±m are all nearly equal to each other. Tables 3.1 and 

3.2 show that as m grows, it is possible to solve both the even and odd beam splitting 

problems with high ef!ciency. However, it should be noted that the ef!ciency is not 

monotonic with m.

Figures 3.1 and 3.2 show the phase functions for several of the optimization prob-

lems. Note that the optimal phase function for four beam splitting is discontinuous. 

This is typical of beam splitting problems with an even number of modes. To under-

stand why this happens, note that if we assume that the optimal solution is symmetric 

(which it is found to be), we will have the following equation:

TABLE 3.2

Optimum Ef"ciencies for Splitting a Beam into an Even Number of Beams

Nmodes ηLS ηCO α and μ

4 91.94 91.19 α = 4.438

μ = 0.523

6 91.41 88.17 α = (0.863,3.069)

μ = (0.274,0.487)

8 96.12 95.94 α = (0.724,3.668,5.367)

μ = (0.560,0.601,0.544)

10 95.79 92.69 α = (0.152,4.683,2.681,0.651)

μ = (0.598,0.412,0.211,0.546)

12 95.93 95.36 α = (4.562,3.704,5.465,3.448,1.725)

μ = (0.523,0.424,0.509,0.586,0.538)

14 96.80 96.34 α = (0.235,2.906,1.661,1.521,4.847,2.527)

μ = (0.430,0.471,0.419,0.505,0.511,0.545)

Note: Here the modes are given by k = ±2m + 1, m = 1, and M. We also list the values of αk and μk in 

Equation 3.11 needed to obtain these. Our solutions have αk = α−k, μk = μ−k as well as α1 = 0 and 

μ1 = 1. If Nmodes = 2M, the vectors α and μ contain the values α = (α3,. . .α2M−1) and μ = (μ3,. . .μ2M−1). 

The optimal phase functions for Nmodes = 4 are given in Figure 3.2.
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 s x x x( , , ) ( ) ( )αα µµ = +
α αe cos e cosi i1 3 3  (3.18)

This will vanish when x = π ∕ 2. When we compute eiφ(x) using Equation 3.9, we will 

get a different value as we approach x = π ∕ 2 from above and below. This results in 

a discontinuous phase.
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FIGURE 3.1 Plots of the optimal phase functions for one-dimensional beam splitting: 

(a) Nmodes = 3; (b) Nmodes = 5; (c) Nmodes = 7; (d) Nmodes = 9; (e) Nmodes = 11.
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3.6 EXPERIMENTAL RESULTS

Experimental demonstration of the constrained optimization solutions for line gratings 

based on the theory discussed in Section 3.3 is given in References [26–29]. In References  

[28,29], the gratings are fabricated using a proprietary Lissotschenko Mikrooptik (LIMO) 

nonetching material processing technique that is suitable for the manufacturing of high-

precision, free programmable, and continuous surface pro!les in optical glasses and crys-

tals. Miklyeav et al. [28] present the experimental results for three and !ve beam splitters 

based on the results given in Reference [5]. They give the pro!le of the grating as well as 

the diffraction pattern. Their data are shown in Figure 3.3 for the 1:5 splitting grating. It 

may be noted that the theoretical phase function for the three beam splitter is speci!ed by 

a single numerical constant that could be found in References [1,5,6]. The phase function 

for the !ve beam splitter is speci!ed by two constants that could be found in References 

[1,5]. Communicating the phase function in this way is clearly much simpler than contact-

ing the author of a paper and having him/her send you a data !le with the phase function in 

it. Miklyeav et al. [29] give the results for a 1:11 optimal beam splitter. Further experimen-

tal implementation of the theory using spatial light modulators can be found in References 

[26,27]. Albero et al. present the results for the implementation of a 1:7 splitting grating 

with both equal and unequal intensities for the orders.

3.7 SQUARE GRATINGS

3.7.1 A TWO-DIMENSIONAL BEAM SPLITTING PROBLEM

In the original papers on Dammann gratings [9,10], the authors considered two- dimensional 

gratings, but limited themselves to gratings that were separable, that is, where the trans-

mission function t(x,y) could be written as t(x,y) = t1(x)t2(y). In References [30,31], this 

work was extended to include nonseparable gratings. In these papers, they considered the 

binary gratings and divided up the unit cell into rectangular blocks, assigning a phase to 

each block. The papers [32,11,19,33–35] took similar approaches.
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FIGURE 3.2 A plot of the optimal phase function for one-dimensional four beam splitting.
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FIGURE 3.3 (a) The theoretical (solid curve) versus the manufactured (dot-dashed curve) pro-

!le for a 1:5 beam splitter using the theoretical pro!le. (From L.A. Romero and F.M. Dickey, 

Journal of the Optical Society of America A, 24, 2280–2295, 2007. With permission.) The period 

of the grating is 20 m, (b) Cross section of the far-!eld intensity distribution of 1:5 beam splitter 

illuminated by multimode Nd:YAG laser. The angle between the beam and the surface is 90°. 

(c) Same as (b) except the incoming beam is tilted by 15° to correct for sag aspheric fabrication 

errors. The angle between the beam and the surface is 75°. (Reproduced from Y.V. Miklyeav 

et al., Proceedings of SPIE, 7640, 2010. With permission; Courtesy of LIMO GmbH, Germany.)
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In References [1,8], we considered two-dimensional gratings that are periodic on 

a rectangular or hexagonal lattice. For simplicity, we begin by considering problems 

in which the grating has a square lattice structure, which means that the transmission 

coef!cient of the grating (using dimensionless coordinates) satis!es

 ϕ = ϕ + π + π( ) ( ), ,x y x m y n2 2  (3.19)

for all integers m and n.

To understand the beam splitting problems for square gratings, we begin by intro-

ducing a bit of notation. We will use two-dimensional vectors of integers to give the 

Fourier coef!cients in two dimensions, which can be written as follows:

 e ei im x m.
= ( ), ( , ), ( , )mx ny T Tm n x+ = =x y  (3.20)

In this notation, a Fourier series can be written as

 f a( )x m
m

x
=∑ eim.  (3.21)

Here the sum is taken over all pairs of integers m = (m,n). In this case, the energy 

diffracted into the mT = (m,n) order is given by

 E am m=
2

 (3.22)

where:

 
a ym m x= −

−−
∫∫

1
4 2π

π

π

π

π

ϕe ei i. d d( )x x
 

(3.23)

An example of a two-dimensional beam splitting problem would be to maximize 

the energy in the four orders (1,0),(0,1),(−1,0),(0,−1) subject to the constraint that the 

energy in each of these orders is the same. Hence, we would like to choose φ(x,y) to 

maximize

 η =
a a a a

a

1 0
2

0 1
2

1 0
2

0 1
2

, , , ,+ + +− −

∑m m
2  (3.24)

subject to the constraint that

 a a a a1 0 0 1 1 0 0 1, , , ,= −= = −
 (3.25)

Physically, this would correspond to designing a grating so the diffracted beams 

(after intersecting them with a plane parallel to the grating) put as much energy as 

possible onto the four corners of a square.
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In the constrained optimization problem for square gratings, we try to maxi-

mize the energy in a discrete set of modes mk for k =  1,n. In References [1,8], 

we show that if we try to maximize the energy in the modes a km  subject to the 

constraint that the energy in each of these modes is the same, the phase function 

φ(x,y) can be written as

 t s
s( , , ) ( , , )
( , , )

( )x x
x

x
αα µµ

αα µµ

αα µµ
= =

ϕei
 (3.26)

where:

 s k
k

n
k k( , ) .x m xαα =

=

∑µ α

1
e ei i  (3.27)

This is almost identical to the result obtained in one dimensions in that the function 

s(x,α,μ) only includes a !nite number of terms in the Fourier series. We need to 

choose the amplitude and phase of each Fourier coef!cient so that the Fourier coef-

!cient of each mode a km  has the same amplitude, and we are at a maximum of the 

ef!ciency subject to that constraint. As with the one-dimensional case, this reduces 

the in!nite- dimensional optimization problem to a !nite-dimensional optimization 

problem.

3.7.2 SEPARABLE AND NONSEPARABLE SOLUTIONS

For a square grating, if we assume that the transmission function is separable

 e e ei i iϕ ϕ ϕ=( , ) ( ) ( )x y x1 2 y
 (3.28)

we have

 a b ck j k j, =  (3.29)

where:

ak,j is the (k,j) Fourier component of eiφ(x,y)

bk is the kth Fourier coef!cient of ei 1(x )

cj is the jth Fourier coef!cient of ei 2 ( )y

Under the assumption of separability, the optimal solution to the problem stated in 

Section 4.7.1 of maximizing the energy in the modes a±1,0, a0,±1 can be obtained by 

letting φ1(s) = φ2(s) and φ1(x) be the optimal solution for two beam splitting in one 

dimensions.

In References [1,8], it was shown that the optimal ef!ciency for this problem 

under the separability condition is just the square of the ef!ciency of the one-dimen-

sional two beam splitting problem. This can be shown to be

 
η =

π
≈sep

64 0 6584 .
 

(3.30)
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In References [1,8], it is shown that if we drop the assumption of separability, we get 

an ef!ciency of

 η ≈ 0 9179.  (3.31)

Clearly dropping the assumption of separability has greatly improved the ef!ciency 

of the grating.

The notion of separability is not necessarily related to that of symmetry. However, 

for all of the simple beam splitting problems on a square lattice, they seem to be related 

to each other. In particular, the optimal solution assuming a fully symmetric grating is 

separable. The nonseparable solutions are not fully symmetric. In Section 3.8, we will 

try to clarify this point.

3.8 THE SYMMETRY OF BEAM SPLITTING PROBLEMS

3.8.1 SYMMETRY CONSIDERATIONS FOR ONE-DIMENSIONAL GRATINGS

It can greatly simplify the search for optimal designs if symmetry is taken into 

account. However, it is good to be clear on what you may be missing by assuming 

that your solution is symmetric.

We begin with a simple example from elementary calculus. Suppose we try 

to !nd the value of x that minimizes a symmetric function g(x). We assume that 

g(x) satis!es g(x) = g(−x). If there is a unique global minimum, it must be at x = 0 

because if x = x0 is the global minimum, −x0 will also be a global minimum since 

g(x0) = g(−x0). Hence, the only way we can have a unique global minimum is to have 

the minimum occur at x = 0.

However, there is no guarantee that the global minimum is unique. For example, 

the function

 g x( ) = − +2 2x x4  (3.32)

clearly does not take on its minimum value at x = 0, but it takes on its minimum 

value at x = ±1.

To connect this example with those that follow, we will restate our results. If a 

symmetric function g(x) has a unique global minimum, the value of x that minimizes 

g(x) must be symmetric; that is, we must have x0 = −x0, and hence x0 = 0. It greatly 

simpli!es our search for the minimum if we assume that the solution is symmetric. In 

particular, we have no search at all; we just assume that the global minimum occurs 

at x = 0. However, as the example in Equation 3.32 shows, this is not always a valid 

assumption.

There are many examples in physics in which a physical problem has sym-

metry, but the physical solution does not. A classic example of such a problem 

is the buckling of a cantilever beam. If you put a weight on the top of a $agpole, 

assuming that the $agpole is pointing vertically upward and is circularly sym-

metric, we would expect on the basis of symmetry that the $agpole will point 

vertically upward. However, if the $agpole is long enough, or the weight is great 

enough, this will not be the case. The $agpole will break the symmetry of the 
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problem and will !nd a particular direction to droop in. This is called symmetry 

breaking.

In our one-dimensional beam shaping problem, we are looking for a function φ(x) 

that optimizes a functional rather than a single point x0 that optimizes a function. 

However, the reasoning is almost identical as in our simple example. In particular, 

our optimization problem is symmetric in the following sense. If φ(x) is a function 

such that the Fourier coef!cients of eiφ(x) satisfy the constraints that the energy in the 

!rst 2m + 1 modes is the same, the function φ(−x) will also satisfy this constraint. 

Furthermore, the ef!ciency of φ(x) will be the same as that of φ(−x). It follows that 

if there is a unique global maximum, we must have

 ϕ = ϕ −( ) ( )x x  (3.33)

That is, the function φ(x) must be symmetric. For the problem of determining the 

point x0 that minimizes f(x), the assumption of symmetry completely eliminates 

the need for any search at all. For the one-dimensional beam splitting problem, the 

assumption of symmetry greatly reduces the number of parameters that are needed 

for a search, but it does not eliminate the need for that search.

For one-dimensional beam splitting problems, we have never found any examples 

in which the optimal solution is not symmetric [1,5,24]. However, it should be noted 

that if we impose further restrictions such as assuming that φ(x) only takes on two 

values (we have a binary or Dammann grating [9]), there are situations in which the 

optimal solution is not symmetric.

In an excellent paper, Morrison [13] considered various aspects of symmetry for one-

dimensional gratings. He showed how to apply symmetry arguments to solve the prob-

lem where you only want to put energy into the modes with odd orders, as well as how 

to take into account symmetry in the way we have already discussed. However, he never 

discusses the possibility of symmetry breaking. For the one-dimensional problems he 

considered, this turns out not to be an issue. However, one could easily read his paper 

and draw the wrong conclusion when applying the results to two-dimensional gratings.

3.8.2 SYMMETRY AND TWO-DIMENSIONAL GRATINGS

The problem of !nding a square grating that maximizes the energy put into the four 

modes a±1,0, a0,±1 has the symmetry of the square. Physically, this problem is try-

ing to create a diffraction pattern that produces four spots of equal intensity on the 

corners of a square at a plane z = constant. Intuitively, we think of this problem as 

having the symmetry of a square. To make this mathematically precise, we note that 

a square centered at (x,y) = (0,0) is left invariant by an eighth order group of linear 

transformations Gk for k = 1,8. Here the transformations Gk consist of rotations by 

0°, 90°, 180°, and 270°, as well as re$ections about the x and y axes, and re$ections 

about the lines x = y and x = −y.

We can now state precisely what we mean when we say that our beam splitting 

problem is invariant under the symmetry group of a square. If φ(x) is a phase func-

tion such that the Fourier coef!cients of eiφ(x) satisfy the constraints in Equation 3.25, 

for any Gk in our group, the function φ(Gkx) will also satisfy this constraint. 

Furthermore, the functions φ(x) and φ(Gkx) will have the same ef!ciency.
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It follows that if our functional has a unique global maximum, the function maxi-

mizing it must be symmetric. Thus, we must have

 ϕ = ϕ( ) =( ) ,x G xk k 1 8  (3.34)

For example, letting Gk be the re$ection about the y axis, we require that 

φ(x,y) = φ(−x,y). If Gk is a rotation by 90°, we get φ(x,y) = φ(−y,x).

In our discussion, we will ignore the re$ections in the symmetry group of the 

square and only concern ourselves with the rotational symmetry of the function φ(x). 

We can say that the function φ(x) has fourfold symmetry if

 ϕ = ϕ( ) ( )x R x90  (3.35)

where:

R90 is a rotation by 90°

That is, the function φ(x) has fourfold symmetry if it looks the same when we rotate 

it by 90°. Similarly, we can say that the function has twofold symmetry if

 ϕ ϕ( ) (x R x= 180 )  (3.36)

That is, the function looks the same if we rotate it by 180°. Clearly, if the function has 

fourfold symmetry, it also has twofold symmetry, but not vice versa.

For example, we consider the problem of splitting a beam into four equal beams 

using a square grating. In particular, we try to equalize the energy in the four modes 

a±1,0, a0,±1, If we assume that the grating has fourfold symmetry, the phases αk and μk 

must all be equal. This requires that the function s(x,α,μ) used in determining the 

transmission function t(x,α,μ) in Equation 3.26 has the form:

 s x x y y( , , ) ( ) ( )x αα µµ = + + + = +e e e e cos cosi i i i− − 2 2x y  (3.37)

In this case, we know the phases αk and the parameters μk, and hence there is no need 

to optimize anything. In Reference [8], it was shown that the ef!ciency of this grat-

ing is given by

 η =
π

≈CO
64
4 0 658.  (3.38)

This is the square of the ef!ciency for one-dimensional two beam splitting. Though 

the function s(x,α,μ) in Equation 3.37 does not appear to be separable, it is separable 

if we use a coordinate system that is rotated by π ∕4 radians. If we had tried to equal-

ize the energy in the modes a±1,±1, we would get the same ef!ciency, and the trans-

mission function would then clearly be separable in our original coordinate system.

If instead of assuming that the grating has fourfold symmetry, we merely assume 

that it has twofold symmetry, the Fourier coef!cients must satisfy am = a−m. This 

implies that the optimal grating must have the form:

 s s x x y y( , , ) ( )
αα µ + µ + µ

α − + α
= +

− +e e e ei i i i( )
 (3.39)
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Here, we have used the fact that we can arbitrarily set the phase of the coef!cients 

of e±ix equal to zero and the coef!cients μk associated with these equal to unity. In 

Reference [8], it was proven that the optimal solution to this problem is the same as 

the solution to the least-squares optimization problem. It was shown that the optimal 

values of α and μ are given by

 α =
π
µ =2 1,  (3.40)

It was also shown that the ef!ciency for this grating is given by

 η = η ≈CO LS 0 9179.  (3.41)

This is considerably greater than the ef!ciency where we assumed that the grating 

has fourfold symmetry. This grating is not separable. When it is not assumed that the 

grating has any rotational symmetry, it appears that the optimal solution is still the 

grating that has twofold rotational symmetry.

Table 3.3 summarizes the results for other situations involving square gratings. 

In this table, we present the results for splitting a beam into !ve beams of equal 

intensity. If we intersect such a beam with a plane parallel to the grating, we would 

see four spots on the corners of a square and a spot in the middle of the square. We 

also give the results for nine beam splitting, where we have a 3 × 3 array of points. 

In both of these cases, though the beam shaping problems have fourfold symmetry, 

the grating with the maximum ef!ciency has twofold symmetry.

In Appendix A, the formulas for !nding the solutions to various beam splitting 

problems using square gratings are given.

3.9 BEAM SHAPING ON HEXAGONAL GRIDS

In References [1,8], it was shown how to use hexagonal gratings to split beams into 

patterns that have sixfold symmetry. A hexagonal grating is characterized by the fact 

that it repeats itself on a hexagonal array. That is, it is possible to overlay a tiling with 

regular hexagons over the grating such that the grating looks the same inside of each 

hexagon. An example of hexagonal beam splitting problem is the problem of putting 

TABLE 3.3

Ef"ciencies for Square Gratings

Nmodes Symmetry ηCO

4 Fourfold 0.658

4 Twofold 0.9179

5 Fourfold 0.7629

5 Twofold 0.8433

9 Fourfold 0.8456

9 Twofold 0.9327

Note: This table summarizes the various problems we have considered for gratings on a 

square lattice. For each number of modes, we give the symmetry of the grating and its 

 ef!ciency ηCO.
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as much energy as possible into six symmetrical beams (so that there are six spots on 

the vertices of a regular hexagon on a plane parallel to the grating). Another example 

is to put as much energy as possible into seven beams so that there are six spots on 

the vertices of a regular hexagon and a spot in the middle.

Table 3.4 gives the results for these two cases. As with square gratings, the opti-

mal solutions do not have the full symmetry of the beam splitting problem. In both 

cases, the optimal solutions have twofold symmetry rather than sixfold symmetry. In 

Appendix B, the formulas for !nding the solutions to various beam splitting prob-

lems using hexagonal gratings are given.

3.10 SUMMARY

This chapter has given an overview of the mathematical theory of laser beam split-

ting using phase gratings based on the work in References [1,5,8]. The problem of 

designing a phase grating to diffract a beam so that more energy is put into a  certain 

set of modes while having the intensity of all of these modes equal has been called 

the constrained optimization problem. Using the calculus of variations, this can 

be turned into a !nite-dimensional optimization problem in which the phases and 

amplitudes of the Fourier coef!cients of s(x,α,μ) (as in Equations 3.9 and 3.10) must 

be searched for. The theory applies to both one-dimensional line gratings and two-

dimensional gratings on square or hexagonal lattices.

The ef!ciencies for various one-dimensional problems are given in Tables 3.1 

and 3.2. Some experimental results for line gratings are presented in Section 3.6. 

The ef!ciencies for various problems on square and hexagonal gratings can be found 

in Tables 3.3 and 3.4. The phases and amplitudes de!ning these gratings have been 

given in Appendices A and B.
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APPENDIX A

In this appendix, the results for various two-dimensional problems involving square 

gratings are given. A more thorough discussion of all of these can be found in 

References [1,8]. In all of the examples in this appendix, it is found that the optimal 

solution has twofold symmetry, and the ef!ciency of these solutions is greater than 

if it is assumed that the grating has fourfold symmetry. For the case of four and nine 

beam splitting, the optimal solutions assuming fourfold symmetry are identical to 

those obtained by assuming separability. In References [1,8], the suboptimal solu-

tions assuming fourfold symmetry are given, but these are not given here.

Throughout this appendix, it is assumed that the phase function φ(x) can be gen-

erated using the two-dimensional equivalent of Equation 3.26 once the function 

s(x,α,μ) is speci!ed. Here, x = (x,y).

A.1 FOUR BEAM SPLITTING

Suppose we are trying to split a beam into four modes, where each component of m 

can take on the values (±1,0) and (0,±1). The most general form for s(x,α,μ) that has 

twofold symmetry is

 s x y x x y y( , , , ) ( ) ( )
αα µ = + µ + µ

+α − αe e e ei i i i− +
+  (A.1)

In Reference [8], it was shown that the values of the parameters that optimize the 

ef!ciency in the constrained optimization problem are given by

 α =
π
µ =2, 1  (A.2)

It was shown that the ef!ciency for this grating is given by

 η = η ≈CO LS 0 9179.  (A.3)
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A.2 FIVE BEAM SPLITTING

Here we split a beam into !ve modes, where each component of m can take on the 

values (0,0), (±1,0), and (0,±1). In References [1,8], we show that assuming that the 

grating has twofold symmetry, we have

 s x y x x y( , , , ) ( ) ( )
αα µµ = µ + + + µ + µ

α α +α2 1 12 1 1e e e e ei i i i i− + −y  (A.4)

Numerical calculations show that to maximize the ef!ciency in the constrained opti-

mization problem, we set

 µ ≈1 1 1928.  (A.5a)

 
µ ≈2 0 7192.  (A.5b)

 
α =

π
1 2  (A.5c)

 
α =2 0  (A.5d)

This gives an ef!ciency of

 η ≈CO 0 8433.  (A.6)

A.3 NINE BEAM SPLITTING

We split a beam into nine modes, where each component of m can take on the values 

(−1, 0, 1). In References [1,8], it was shown that the most general solution having 

twofold symmetry can be written as

 

s x y g x y x y

x

( , , , ) ( , ) ( ) ( )

(

αα µµ αα= + +

+

 
+ + − − +1 1 1 2

3

2 2+ µ µ

µ

α αx e e
e

i i

i −− + + 
y x yα − + +α3 3) ( )ei  

(A.7)

where:

 g x x y y1 1 1 1 1( , ) ( ) ( ) ( ) ( )x αα = + + +
α +α +α − αe e ei i i i+ − +e  (A.8)

Numerical calculations show that the parameters maximizing the ef!ciency in the 

constrained optimization problem are given by

 α =1 0  (A.9a)

 
α =2 2 103.  (A.9b)

 
α =3 4 1806.  (A.9c)

 
µ =1 1 379.  (A.9d)

 
µ =2 1 111.  (A.9e)

138



124 Laser Beam Shaping

 
µ =3 1 111.

 
(A.9f)

This gives us the ef!ciency

 η =CO 0 9327.  (A.10)

APPENDIX B

A discussion of Fourier series on hexagonal lattices can be found in References [1,8]. 

A  function that is periodic on a hexagonal lattice will satisfy

 f ( ) ( )x p+ =m xf  (B.1)

for all vectors pm of the form:

 p p pm = m m1 1 2 2+  (B.2)

where:

m1 and m2 are integers

and

 
p p1 22 3

2
1
2 2 3

2 2
T T= π

−
= π, , ,



















1
 

(B.3)

Any function that is periodic on such a lattice can be expanded in a Fourier series 

of the form:

 f a( ) .x
m

= m q xmei∑  (B.4)

where:

 q q qm = +m m1 1 2 2  (B.5)

and

 
q q1 2

1
3 1 3

T T=








 =









, , ,−

1 1
 

(B.6)

We will use these formulas in describing our hexagonal beam shaping problems. 

More details on all of these problems can be found in References [1,8].

B.1 SIX BEAM SPLITTING

We consider the problem of using a hexagonal grating to split an incoming beam 

into six beams that are on the corners of a hexagon. Though this problem has sixfold 

symmetry, it was found that the solution to the constrained optimization problem 

gives a grating that has twofold symmetry. The function s(x,α,μ) that gives us the 

phase function is
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s( , , ) ( ), , , ,. . . .x q x q x q x q x
αα µµ = + + µ

+ µ

α −e e e e e
e

i i i i i1 0 1 0 1 0 1 0 11

2

− +

ii i ie eα
+ − −2 1 1 1 1( ), ,. .q x q x

 

(B.7)

This can be written as

 s( , , ) ( . ) ( . ) ( . ), , ,x q x q x q xαα µµ = + µ + µ
α α2 1 0 1 0 1 2 1 11 2cos e cos e cosi i  (B.8)

Numerical calculations show that the optimal value is given by

 α
π
α1 22 0= =,  (B.9)

 
µ = µ =1 20 5671. , 1  (B.10)

The ef!ciency is given by

 η =CO 0 8338.  (B.11)

B.2 SEVEN BEAM SPLITTING

We now consider the problem of splitting a beam into seven beams that are on the 

vertices of a hexagon and in the middle of the hexagon. Though this problem has 

sixfold symmetry, the optimal solution has only twofold symmetry. The solution is 

given by

 s( , , ) ( . ) ( . ) (, ,x q x q x qαα µµ = +µ + µ + µ
α α α3 1 0 2 1 1 13 2 12e cos e cos e cosi i i 00 1, . )x  (B.12)

Numerically, it is found that

 
( ), , , ,α α α =

π π
1 2 3 2 2 0







  

(B.13)

 
( , , ) ( . , . , . )µ µ µ1 2 3 1 3368 1 3368 0 9811=  (B.14)

The ef!ciency is given by

 η =CO 0 9003.  (B.15)
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4 Vortex Beam Shaping

Carlos López-Mariscal and Julio C. Gutiérrez-Vega

4.1 INTRODUCTION

Traditionally, standard approaches to characterizing of optical beams have dealt 

with parameters that either characterize the beam as a whole (e.g., power, beam size, 

divergence angle) or describe its shape using transverse distributions (e.g., inten-

sity pattern, polarization state, wavefront curvature). These approaches are based on 

immediately observable characteristics of the optical beams and have been adequate 

for most applications. This situation changed dramatically with the recent increased 

interest in beams carrying angular momentum. It has now been well established that 

this fundamental mechanical property of light is associated with the energy redistri-

bution inside the beam body under propagation.

Optical phase singularities have become a popular topic in optical physics and 

beam shaping through their relationship with beams carrying angular momen-

tum  [1,2]. Phase singularities are ubiquitous in light !elds. They are most easily 

recognized in spatially coherent monochromatic light, and may be present in many 

different spatial structures, for example, simple superposition of three plane waves, 

refracted/diffracted !elds, apertured beams, laser beams, random wave !elds, and so 

on. Singularities appear as dark spots in the intensity pro!le. For partially coherent 
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light, the vortex appears as a diffuse dark core and a zero-intensity point strictly does 

not occur.

In this chapter, we review the basic theory of vortex beam shaping, the experi-

mental procedures to generate them, and some of their most relevant applications. 

The theory of singular optics has been built with input and terminology adopted 

from diverse areas of mathematics and physics. Thus in optics, the terms singular 
point, phase singularity, or wavefront dislocation are used interchangeably to refer 

an optical vortex. The study of optical vortices and associated localized objects is 

important from the viewpoint of both fundamental and applied optics.

4.2 ELEMENTS OF SINGULAR OPTICS

Consider the smooth complex amplitude of a scalar monochromatic optical !eld 

U(r,z)exp(−iωt), where r = (x,y) = (r,θ) denotes the transverse position vector and ω 

is the angular frequency. The !eld U(r,z) can be written in terms of either its ampli-

tude and phase (ρ,Φ) or its real and imaginary parts ( f = ρ cos Φ, g = ρ sin Φ):

 U f g= = +ρ exp( )i iΦ  (4.1)

where:

all ρ, Φ, f, and g are real functions

Φ is a single-valued modulo 2π

A singular point is de!ned as a point r where the amplitude is zero

 ρ( )r = 0  (4.2)

and hence the phase Φ(r) is unde!ned. In the neighborhood of the singular point, the 

whole 2π range of phases occurs. The condition ρ(r) = 0 is fully equivalent to the 

system of two equations:

 f g( ) , ( )r r= =0 0  (4.3)

These two conditions imply that phase singularities occur at the crossings of the zero 

contours of the real functions f and g, as shown in Figure 4.1. Vortices are, usually, 

f(r) = 0

g(r) = 0

m = +1

m = −1

FIGURE 4.1 Zero contours of the real f(r) and imaginary g(r) parts of the complex scalar 

!eld. Vortices occur at the intersection points of these sets of contours.

143



129Vortex Beam Shaping

separated points in two dimensions and lines in three-dimensional space. For now, 

we restrict our attention to the properties of singular points in two dimensions.

Near a phase singularity, the equiphase lines have a starlike structure as shown in 

Figure 4.2a, and the phase increases or decreases as one moves around the  singular 

point.

The topological charge of a phase singularity is the net change of phase modulo 

2π around a closed curve C enclosing the singular point:

 m
C C

= = ∇∫ ∫
1
2

1
2π π

⋅d dΦ Φ r  (4.4)

Because the phase is continuous on C, the number m is an integer, that is, 

m = 0,±1,±2,…, and its sign is positive or negative if the phase increases or decreases 

by m2π during a positive circulation on the curve C. If m = ±1, the singularity is 

called simple or nondegenerate, otherwise (i.e., |m| > 1) higher order or degenerate. 

The value of m is independent of the choice of the curve C, as long as the point is the 

only phase singularity inside C and there are not singularities on C. Finally, the value 

m = 0 implies a nonvortex situation.

Consider now that there are N vortices with topological charges m1,…,mN inside C. 
The total topological charge is given by the sum of the individual charges of the 

 vortices lying inside C:

 m m
C

n
n

N
tot d= =∫ ∑

=

1
2 1π

Φ  (4.5)

(a) (b) (c) (d)

(e) (f ) (g) (h)

FIGURE 4.2 Equiphase lines of Φ and vector !elds ∇Φ around a singular point with s > 0 

(a and e), a stationary point (b and f), a saddle point (c and g), and a monkey saddle (d and h). 

Arrows point in the direction of increasing phase.
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The topological charge has the important property that it is a conserved quantity 

under smooth changes of the optical !eld [3]. In most situations the !eld smoothly 

depends on the beam parameters, such as time or the z-axis for a transverse section 

of a three-dimensional !eld. The only way that a phase singularity can appear on 

propagation is together with other phase singularities such that the sum of all topo-

logical charges is zero. Likewise, the only way that a vortex can disappear is for 

it to annihilate with other vortex of opposite sign. The higher order singularities 

(i.e., |m| > 1) are seldom seen because they are very unstable; in other words, they 

decay in vortices with charges equal to ±1 under small perturbations of the !eld.

Figure 4.1 illustrates the sign principle: vortices adjacent on a zero contour of f(r) 

or g(r) have opposite sign [4,5]. If a contour is closed, there must be an even num-

ber of phase singularities, alternating in sign, and the overall topological charge on 

that contour is zero, giving an overall topological neutrality condition: topological 

charge cannot accumulate on a closed contour loop. This result is consistent with the 

conservation of the topological charge: as external parameters vary singularities are 

created or annihilated in pairs of opposite strength as an f contour crosses a g con-

tour. An exception to the sign rule occurs when there is a saddle point on the phase 

contour line between two vortices: in this case, the vortices have the same strength. 

An example of this situation is the hollow dark Mathieu beam [6].

In scalar !elds U(r) (Equation 4.1), the energy $ux vector associated with Φ takes 

the form [7]:

 J = ∇ = ∇ − ∇ = ∇Im *U U f g g f ρ2 Φ  (4.6)

Thus, J points in the direction of phase change given by the vector !eld ∇Φ, and 

phase singularities are vortices of the energy $ux vector $ow where the energy cir-

culates around the point. Near a phase singularity, the vector !eld ∇Φ looks like a 

counterclockwise or clockwise center as shown in Figure 4.2e.

A central role is also played by the vorticity associated with J:

 Ω = ∇ × = ∇ × ∇ = ∇ × ∇
∗1

2
1
2J Im( )U U f g  (4.7)

The vector !eld Ω is important because it points along the vortex line—it is the 

direction around which the energy $ux vector circulates in a right-handed sense. 

This is because it is perpendicular to the normals to the two surfaces (Equation 4.3). 

For two-dimensional !elds, Ω = ωz is in the z direction.

A stationary point is de!ned as a point r where the phase Φ(r) is well de!ned but 

its gradient vanishes:

 ∇ =Φ( )r 0  (4.8)

Stationary points are zeros of the energy $ux vector of the !eld and occur at either 

local maxima or minima or saddle points of the phase distribution (Figure 4.2). The 

stationary points may be interpreted as the sources and sinks of the vector !eld ∇Φ. 

The monkey saddle shown in Figure 4.2d is like a normal saddle, but has three 

 directions in which the phase increases and decreases.
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To both singular and stationary points, we can assign a topological index t (i.e., 

the Poincaré index), which is de!ned as the number of rotations of ∇Φ (or j) in a 

closed circuit around the point, that is, signed number of times that the phase lines 

rotate in the direction in which the circuit is traversed. The Poincaré index t is +1 for 

nondegenerate positive and negative vortices and also for phase extrema. t = −1 for 

saddle points and −2 for a monkey saddle.

Both topological charge m and index t are quantities that are conserved under 

smooth variation of the parameters. These conservation laws impose restrictions to 

the interactions between vortices and stationary points. Typical interactions are the 

creation, annihilation, and unfolding of vortices. The charge m and index t can only 

vary via creation and annihilation of multiple singular and/or stationary points. 

A very common situation is the creation (annihilation) of a positive vortex (m = 1, 

t = 1), a negative vortex (m = −1, t = 1), and two phase saddles (m = 0, t = −1 for 

each). Other possibility is the creation of a saddle (m = 0, t = −1) and a maximum 

or minimum of phase (m =  0, t =  1). Of course more complicated  reactions are 

 possible [4,5,8,9] and most of them have been experimentally generated [10,11].

4.3 HELICAL VORTEX BEAMS WITH DEPENDENCE exp(imθ)

The simplest !elds exhibiting a vortex are the helical waves having circularly 

 harmonic phase pro!les:

 U R r z m mm m( ) ( ), exp , , ,r = = ± ± …(i )θ 0 1 2  (4.9)

Here, a single vortex of topological charge m coincides with the origin, and thus the 

complex amplitude Rm(r,z) must vanish at the axis r = 0. This is, of course, a conse-

quence that the superposition of all phases along the axis results in perfect destruc-

tive interference. An ordinary plane, spherical, or Gaussian wave without any phase 

singularity is uncharged, that is m = 0. In this nonvortex case, the intensity is not 

required to vanish at the origin.

The circularly symmetric beam (Equation 4.9) may be rewritten as

 U R m kzm m( ) exp [ ]r = + +i ,θ ψ( )r z  (4.10)

where:

ψ(r,z) describes the wavefront curvature

The surface of constant phase, mθ + kz + ψ (r,z) = constant, is helicoidal. Near 

the optical axis the function ψ(r,z) is approximately constant, and therefore, in 

that region the helicoid is uniform with constant pitch. The helical wavefront with 

an axial phase singularity possessing unity charge is depicted in Figure 4.3a. The 

phase grows linearly around a circular path enclosing the optical vortex and exhib-

its a phase step (screw dislocation) of size 2π. Due to the phase circulation, vortex 

beams with dependence exp(imθ) carry an intrinsic orbital angular momentum 

(OAM) content equal to mħ per photon, which makes them particularly suitable 

for multiple applications [12].
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An important property of the helical modes is that, in principle, any !eld E(r,θ,z) 
can be decomposed into a series of vortex modes:

 E r z h r z mm
m

( , , ) ( , )expθ θ=

=−∞

∞

∑ (i )  (4.11)

where:

hm(r,z) are the radially dependent expansion coef!cients of the series

 h r z E r z mm( , ) ( , , )exp( )= −

−

∫
1
2π θ θ θ

π

π

i d  (4.12)

In order to represent physical !elds, the circularly symmetric functions Um(r) must 

themselves satisfy an optical wave equation. For monochromatic !elds with time 

dependence exp(−iωt), the equation is the time-independent wave equation, or the 

Helmholtz equation:

 ∇ + =
2 2 0U k U  (4.13)

where:

k = ω/c is the wave number

The known solutions of Equation 4.13 in cylindrical coordinates are the nondif-

fracting Bessel beams whose transverse intensity pattern remains unchanged on 

propagation.

In the paraxial domain, the Helmholtz equation can be approximated with the par-

axial wave equation for the slowly varying complex amplitude U(r) = V(r)exp(ikz):

 ∇ +
∂

∂
=tV k V

z
2 2 0i  (4.14)

where:

∇ = ∂ ∂ + ∂ ∂t x y2 2 2 2 2/ /  is the transverse Laplacian

(a) (b) (c)

FIGURE 4.3 (a) Mesh plot of the phase function Φ = mθ with m = 1 where the axial screw 

dislocation of the circularly harmonic vortex beams can be appreciated. (b) Helical wavefront 

kz + mθ = constant of the vortex beams. (c) Transverse intensity pattern of vortex beams is 

composed by a set of concentric circular rings with a zero on-axis intensity.
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The standard solutions of Equation 4.14 in cylindrical coordinates are the Laguerre–

Gaussian (LG) beams. In Sections 4.3.1 and 4.3.2, we will review the Bessel vortex 

beams and the paraxial vortex beams in more detail.

4.3.1 BESSEL VORTEX BEAMS

The separable solutions of the Helmholtz equation (4.13) in cylindrical coordinates 

are given by the Bessel beams [13,14]:

 BB i im m t zJ k r m k z( ) ( )exp( )exp( )r = θ  (4.15)

where:

J│m│ is the mth-order Bessel function

kt and kz are the transverse and longitudinal wave numbers, respectively, that 

 satisfy k k kt z
2 2 2= +

The cycle-average power $ow of the mth-order Bessel beam is proportional to 

J k rm t
2 ( ) that it is completely independent of z. That is, at every value of z, the inten-

sity pattern of a Bessel beam has exactly the same (x,y) dependence. Contrary to 

Gaussian beams, the Bessel beams do not diverge at all. In this sense, they are usu-

ally referred to as nondiffracting beams.
The transverse intensity pattern of the Bessel beams is composed by a set of con-

centric circular rings (Figure 4.3b). The zeroth-order beam (i.e., the zero vortex case) 

is the only one that has a central maximum, whereas all the higher order beams have 

zero on-axis intensity. As the radius of the inner ring, rm = ρm/kt, is determined by 

the position ρm of the !rst maximum of the mth-order Bessel function, it increases 

with the order m. For higher order Bessel vortex beams, the phase at any transverse 

plane makes a revolution from 0 to 2πm around the axis r = 0. From Equation 4.15, 

we see that the phase of the Bessel beams is

 Φ r( ) = +m k zzθ  (4.16)

Thus, the phase varies linearly with z, and the surfaces of constant phase, the wave-

fronts, are helicoids with a pitch of 2π/kz as shown in Figure 4.3b. As the time pro-

gresses, the helicoids move in the z direction with phase velocity ω/kz.

Far from the origin, the intensity of the Bessel beam J k rm t
2 ( ) is proportional to 

cos2(ktr + δ)/r. An important consequence of the cosine-squared character of this 

asymptotic relation is that the energy of a Bessel beam is contained in concen-

tric rings of width given by krr = π, and that the energy is approximately equal in 

each ring

 J k r r r k k r r km t
t

t
t

2 2
2

2
one ring

d d d∫ ∫∝ + =( ) cos ( )θ
π

δ
π

 (4.17)

where the integration is carried out over one period of J│m│. Thus, just like a single 

plane wave, a Bessel beam carries an in!nite amount of energy in its transverse 
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plane. This result is also in concordance with the fact that the two-dimensional 

Fourier transform of the Bessel beams is given by a circular delta of radius kt angu-

larly modulated by the harmonic function exp(imθ).

Finally, we should mention that Bessel beams form a complete family of solutions 

such that any nondiffracting beam U(r,θ,z) can be expressed as a superposition of 

Bessel modes with the same transverse wave number kt:

 U k z c J k r mz
m

m m t( ) exp( ) ( )exp( )r =

=−∞

∞

∑i i θ  (4.18)

where:

cm are the expansion coef!cients

4.3.2 PARAXIAL VORTEX BEAMS

For helical beams of the form Rm(r,z)exp(imθ), the paraxial wave equation 

(Equation 4.14) reduces to the differential equation

 
1 2 0

2
2r r r R

r
m
r R k R

z
m

m
m∂

∂

∂

∂









 − +

∂

∂
=i  (4.19)

for the z-dependent radial function Rm(r,z).
The most general solutions of Equation 4.19 have been obtained and character-

ized recently in References [15,16]. The corresponding paraxial beams are called 

circular beams and its complex amplitude can be described by either the Whittaker 

functions or the con$uent hypergeometric functions. For special values of their 

parameters, the circular beams reduce to known families of paraxial vortex beams 

including the standard, elegant, and generalized LG beams, the Bessel–Gauss (BG) 

beams [17,18], the hypergeometric beams [19], hypergeometric–Gauss beams [20], 

the fractional order elegant LG beams [21], the BG beams with quadratic radial 

dependence [22], and the fractional vortex beams [23]. Among all special cases 

of the paraxial circular vortex beams, the LG and the BG beams are of particular 

relevance.

LG beams are the circularly symmetric modes of stable laser resonators with 

spherical mirrors and form a complete set of modes such that any possible resona-

tor mode can be expanded as a linear combination of LG modes. The normalized 

LG beam with radial number n = 0,1,2,… and azimuthal number m = 0,±1,±2,… is 

written as

 

LGn
m

m

n
mt A

w z
r

w z L r
w z

r
w z( ), ( ) ( ) ( ) exp ( )r =













−









2 2 2
2

2
2











× + − + − + +( )

















exp ( ) ( )i kz m t kr

R z n m zGSθ ω ψ
2

2 2 1


 (4.20)
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where:

Lnm( ) are the generalized Laguerre polynomials
w z w z zR2 02 2 21( ) ( / )= +  describes the beam width

R z z z zR( ) /= + 2  is the radius of curvature of the phase front

ψGS(z) = arctan(z/zR) is the Gouy shift

z kwR = 02 2/  is the Rayleigh range

w0 is the beam width at z = 0

A = [2n!/(1 + δ0,m)π(n + |m|)!]1/2 is the normalization constant

The transverse intensity of the LGn
m beams is composed of a !nite set of concentric 

circular rings. Regardless of the indices, the width of the beam is proportional to w(z), 
so that as z increases the transverse intensity pattern is affected by the factor w0/w(z) 
but otherwise is shape invariant. The Gouy phase shift (2n + |m| + 1)ψGS(z) is a func-

tion of the orders, which means that the phase velocity increases with increasing order 

numbers. LGn
m beams with the same number p = 2n + |m| form subsets of beams with 

the same Gouy shift. Therefore, except for a scale factor, the superpositions of LGn
m 

beams belonging to the same subset p preserve the intensity shape on propagation.

In general, the M2 quality factor of the LGn
m beams is [16]

 M n m2 2 1= + +  (4.21)

For a !xed width at the waist plane, a better quality (lower divergence) beam is 

associated with a lower value of M2. A minimum value of 1 is reached only for the 

fundamental nonvortex Gaussian beam LG00.
LGn

m beams (Equation 4.20) have a higher order vortex of topological charge m at 

the optical axis. The ringed intensity pattern of the LG beams acquires the form of a 

single annulus when n = 0. For this case, at the plane z = 0, Equation 4.20 reduces to

 LG i i0
2

0

2

0
0m m mr z r m r

w x y r
w( ), , exp( )exp ( ) expθ θ= ∝ −









 = + −









  (4.22)

From Equation 4.21, it is clear that the lowest M2 factor we can get for a vortex LG 

beam is 2 and corresponds to the one-ringed single vortex with parameters n = 0, 

m = ±1.

BG beams are solutions of the paraxial wave equation and are !nite-energy real-

izations of the ideal nondiffracting beams in Equation 4.15. The expression of a BG 

beam carrying an m-charged axial vortex propagating into positive z direction is [18]

 BG im
t

m
tk

k
z r

w J k r( ) exp exp expr = −








 −





















2 2

022
1

µ µ µ µ
(( )imθ  (4.23)

where:

μ = μ(z) = 1 + iz/zR, with z kwR = 02 2/  being the Rayleigh distance

Similar to Bessel beams, the wavefront of the BGm beams has a helicoidal shape with mλ 

pitch and a slightly varying curvature along the z-axis due to the longitudinal phase shift. 
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BGm beams carry a well-de!ned intrinsic OAM content equal to mħ per photon. The M2 

quality factor of the BGm beams can be calculated in closed form and the expression is [16]

 M m
I

I

m

m

2 1
2

21= + +








 −+β

β
β

β
( )
( )  (4.24)

where:

β = k wt2 02 4/
Im is the modi!ed Bessel function of the !rst kind

4.3.3 UNWOUND VORTEX BEAMS: ANISOTROPIC VORTICES

An isotropic vortex occurs when the phase increases linearly from 0 to 2πm around 

circles enclosing the singularity (Figure 4.3a), and then the intensity contours are 

 circles centered at the vortex. The !eld near an isotropic vortex (assumed to be at the 

origin) may be approximated as follows:

 U r r m x ym m( , ) exp( ) ( )θ θi i= +  (4.25)

The vortices occurring in the helical vortex beams (Equation 4.9) discussed earlier 

are, obviously, isotropic.

The optical vortices occurring in an optical !eld are, in general, anisotropic. In 

this case, the intensity contours close to the vortices are elliptical, and around this 

ellipse, the sectors of equal area sweep out equal intervals of phase. Several 

parameterizations to describe the vortex anisotropy have been proposed [2,24–28]. 

Although there are advantages and disadvantages of each parameterization, all of 

them are fully equivalent. The main conclusion is that in the immediate vicinity of 

a vortex, the wave function is determined by four independent parameters (six if 

the vortex is not located at the origin), and the phase structure by three.

The anisotropic vortex can be understood as a geometrical deformation of the 

isotropic one. Note !rst that the angle dependence of an isotropic vortex can be 

decomposed into its real and imaginary parts:

 h m m m( ) i iθ θ θ θ= = +exp( ) cos sin  (4.26)

This relation can be generalized by (1) changing the relative amplitude between the 

real and imaginary parts, (2) introducing a phase difference between the real and 

imaginary parts, and (3) introducing an overall rotation. The result is the angular 

dependence of a general anisotropic vortex:

 h m m( ) iθ ε θ θ ε θ θ σ= −  + − − cos cos ( ) sin sin ( )0 0  (4.27)

where:

ε is the vortex anisotropy

σ is the vortex skewness

θ0 is the vortex rotation angle
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The phase distribution of the anisotropic vortex is then given by

 Φ( )θ ε
θ θ σ

θ θ
=

− −

−









arctan tan sin ( )

cos ( )
m

m

0
0

 (4.28)

and the intensity in the vicinity of the vortex is U r hm2 2 2( ) . It can be easily 

demonstrated that for unit-strength vortices the contour lines of constant intensity 

around the singular point are ellipses.

Figure 4.4 illustrates the effects of varying the morphological vortex parameters 

(ε,σ,θ0). As shown, for zero skewness (σ  =  0), the contours Φ  =  0 and Φ  =  π/2 

remain orthogonal and the lines of constant phase are crowded around the y-axis 

when ε < π/4, and x-axis when ε < π/4. The effect of the skewness σ is to change 

the crossing angle of the contours Φ = 0 and Φ = π/2. Changing θ0 rotates the phase 

distribution but does not change its shape. For any combination of parameters, the 

lines of constant phase remain straight lines.

The propagation and properties of optical beams containing anisotropic  vortices 

have been studied in detail by several authors [26–29]. Anisotropic  vortices 

can be constructed by superposing two vortex beams of strength ±m, such as 

A(BG+m) + B(BG−m). Close to the origin, the superposition has the form:

 U r r A m B mm( , ) [ exp( ) exp( )]θ θ θi i+ −  (4.29)

90° 90°

0° 0° 0°

0° 0° 0°

0° 0° 0°

90°

90° 90° 90°

σ = −60°

σ = 0°

ε = 15° ε = 45° ε = 75°

σ = 45°

FIGURE 4.4 Phase maps of a single anisotropic vortex illustrating the effects of the 

 anisotropy ε and skewness σ. Contours indicate cophasal lines separated by 15°. Zero phase 

contours have been oriented along the horizontal axis to facilitate visualization (to do this, 

we set θ0 = −σ in all cases).
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where:

 A m m= − + − + 
cos exp( ) sin exp ( )ε

θ
ε

θ σ2 20 0i i  (4.30)

 B m m= − + 
cos exp( ) sin exp ( )ε

θ
ε

θ σ2 20 0i i  (4.31)

are complex amplitudes.

4.4 COMPOSITE VORTEX BEAMS

The helical beams discussed in the previous section have an isolated axial vortex 

of topological charge m propagating along the z-axis. If the vortex is simple, that is, 

m = ±1, it is structurally stable on propagation and usually changes its position only 

on perturbation. On the other hand, a high-order vortex of charge m is unstable and 

typically breaks up into |m| vortices of unit strength. A simple perturbation can be 

just adding a constant !eld with no vortices:

 U r A x y Bm( ) ( )= ± +i  (4.32)

In this situation, the high-order vortex unfolds into |m| anisotropic vortices 

evenly  spaced on a circle centered on the original vortex. The phase anisot-

ropy of all the perturbed vortices is the same, independent of the strength of the 

perturbation.

The unfolding of a higher order vortex is an example of a composite vortex beam. 

In general, the !eld created by the interference of multiple beams may produce com-

posite vortices [30]. A composite vortex beam is a complex structure whose zero-

intensity points do not coincide with the zeros of the composing beams. It is even 

possible to have the situation of free-vortex composing beams that produce compos-

ite vortices. A simple example is given by the vortex arrays produced by the interfer-

ence of three, four, and !ve plane waves [31]. The location, number, and charge of 

the composite vortices depend on the relative phase and amplitude of the composing 

beams. Applications that utilize the properties of optical vortices require the engi-

neering of composite vortices.

As a detailed example of a composite vortex beam, consider the superposition 

of colinear Bessel beams of integer order to produce Bessel beams with fractional 

order [32,33]. The composite beam is given by

 U m
m J k r

m

m
mα

α π α

π α
( ) sin ( )

( ) ( )exp
( )

r =
− 

−













− −

=−∞

∞

∑
i

0 (( )imθ  (4.33)

where:

α is the continuous order of the Bessel !eld

Figure 4.5 shows the transverse amplitude and phase distributions of the frac-

tional beam Uα at z = 0 for several values of α in the range 5 ≤ α ≤ 6. Noticeably, 
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Theory

30

5.0

5.3

5.5

5.7

6.0

Amplitude

(a) (b) (c) (d)

Amplitude InterferogramPhase

α

30 60 20

Experiment

FIGURE 4.5 (a and b) Theoretical amplitude and phase distributions of the fractional Bessel 

beam U  for several values of α. (c) Experimental amplitude observations. (d) Interferograms 

with a plane wave exhibiting the vortex dislocations near the origin. The image columns have 

been plotted at different transverse scales to show the important details. The image dimen-

sions are in units of k0 1.
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as the order increases, the intensity and phase patterns vary continuously exhibit-

ing an azimuthally asymmetric shape that becomes circularly symmetrical only 

when α is an integer.

An immediate consequence of Equation 4.33 is that for fractional α there is 

always at the origin a contribution of the term J0(0) = 1. Thus there is on-axis inten-

sity and no vortex is formed on the z-axis. Now, although Uα has no vortex on the 

z-axis, it does possess an interesting singularity structure (Figure 4.5). In general, for 

noninteger orders, the axial vortex of the integer mth-order Bessel beam unfolds into 

m unit-strength vortices, leading to rotationally asymmetric vortex beam with non-

separable form. The total vortex strength N is the signed sum of all existing vortices 

threading a large loop including the z-axis:

 N U r
r

=
∂

∂




→∞

±∫lim arg ( , )1
2 0

2

π
θ
θ

θα

π

d  (4.34)

Numerical evaluation of this integral shows that N converges to the nearest integer, 

to α, in all cases.

For arbitrary values of α, the phase distribution of the fractional beam deviates 

signi!cantly from the integer case. Thus, the !eld Uα(r) presents a rich structure 

of vortices embedded in the morphology of its transverse !eld distribution. In gen-

eral, the positions of the vortices on the transverse plane cannot be calculated 

in closed form, but they can be determined as intersection points of nodal lines 

representing the curves ReUα = 0 and ImUα = 0. The trajectories of the vortices 

within the central most region of Uα = M+μ(r) as the order continuously increases 

from α = 3 to 7 are depicted in Figure 4.6. For small μ > 0, we note that (1) the 

on-axis higher-order vortex unfolds into M unit-strength vortices lying at the ver-

tices of an M-sided regular polygon centered on the optical axis, and (2) a new 

vortex emerges at the intersection of the negative y-axis and the !rst circular zero 

contour of the JM Bessel function. As μ increases, the M unfolded vortices move 

away from the origin until reaching the maximum separation when μ ~ 1/2, and, 

while the new vortex moves further along the negative y-axis toward the origin. 

As μ → 1, the original M unfolded vortices and the new vortex tend to the origin 

forming a new (M + 1)-sided regular polygon centered on the optical axis. Finally, 

when α = M + 1, all the vortices collapse on-axis generating the new integer order 

phase singularity.

4.5 GENERATION OF VORTEX BEAMS

Early work describing the transfer of optical OAM and its connection with the phase 

circulation characteristic of vortex beams [34] sparked and fueled an increasing 

interest in the study of optical vortices. The veri!cation of theoretical predictions as 

well as the development of practical applications acted as the driving forces to devise 

ways to produce and shape laser beams with embedded vortices. This section sum-

marizes the most prevalent techniques used to achieve this goal.
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4.5.1 LG BEAMS

Arguably, the best-known instance of vortex beam is the doughnut-shaped LG mode 

LG01. A natural solution of the paraxial wave equation under azimuthal symmetry 

conditions and an eigenmode of the circular cylindrical laser resonator [35,36] is that 

the LG01 beam has been extensively observed and used as an OAM-carrying !eld in 

numerous experiments [34,37–39].

Some of the earliest approaches to shaping an LG01 beam starting with a funda-

mental Gaussian beam relied on imprinting the azimuthal phase modulation directly 
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FIGURE 4.6 Theoretical trajectories of the vortices within the central most region of Uα(r) 

as its order increases continuously from α = 3 to 7. The loci of the vortices, as α increases 

gradually, are given by the circles. The trajectories described by the vortices are represented 

by the solid lines. Distances are given in units of k0r.
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upon the Gaussian beam. This problem has been solved by using a binary spiral 

pattern, which corresponds to a two-level approximation of the intensity pattern that 

would result from interfering a doughnut mode and an ideal, coaxial plane wave [40]. 

This method, equivalent to a rudimentary form of in-line holography, produces the 

correct phase distribution of a vortex, along with a constant background !eld, which 

must be removed with a Fourier !lter, for example. The spiral zone plate was fabri-

cated as the photoreduction of a binary black and white opaque original onto high 

contrast photographic !lm, resulting in a transmissive optical element often referred 

to as a spiral phase plate (SPP). A different solution involved an SPP fabricated on a 

plastic substrate using standard milling tools. Because the resulting features of the 

phase plate are much larger than the wavelength (and thus the optical path change 

required in one azimuthal range), the phase plate was immersed in index-matching 

$uid. By controlling the temperature of the $uid, and in consequence its refractive 

index, an accurate phase modulation was demonstrated for optical vortices of topo-

logical charges 1 and 2 [41].

An alternative method for producing an LG beam relies on the representation of 

the LG mode as a superposition of high-order Hermite–Gaussian (HG) modes [42]. 

This shaping method requires a stable source of a high-order HG beam. Its operational 

principle consists of a pair of properly oriented astigmatic lenses, which introduce the 

correct complex weight for the mode as well as the Gouy shift that provides the cor-

rect superposition of HG beams that in turn result in the corresponding LG beam. 

A clear advantage of this method, despite its complex design, is its high ef!ciency.

A seminal paper describing the reliable production of annular LG beams was 

!rst published in 1995 [43]. In this paper, a method was described in detail to pro-

duce high-ef!ciency transmission holograms using contact prints of photoreduced 

patterns similar to those described in Reference [40] onto holographic plates. The 

extra fabrication step resulted in optically clear holograms on a glass substrate, 

with a transmission function that more closely resembled the ideal transforma-

tion from a fundamental TEM00 Gaussian to an annular LG beam. Central to this 

method is the chemical bleaching of the prints, which effectively transforms an 

amplitude distribution into a map of optical path values which, when illuminated, 

produces the desired intensity pro!le. Bleaching has the effect of rehalogenating 

the metallic silver grains in the developed emulsion, turning the stored hologram 

transparent while preserving the thickness variations of the emulsion on the plate. 

The resulting diffractive optical element has close to ideal transmission ef!ciency. 

This   particular technique would ultimately become the most successful method 

for the production of vortex beams until the development of liquid crystal tech-

nologies. Furthermore, an adaptation of the key ideas behind this technique would 

eventually be successfully implemented using spatial light modulators (SLMs) 

more than a decade later. A detailed recipe for producing bleached holograms on 

standard photographic !lm can be found in Reference [44].

Recently, an approach to produce LG beams based on opto$uidics has been dem-

onstrated [45]. This approach consists of a two-level hologram fabricated as a $uidic 

channel through which a $uid can be injected. The capability of varying the refrac-

tive index of the $uid results in a tunable optical path upon transmission, which in 

turn results in a variable phase modulation of the incident light.
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4.5.2 BESSEL AND BG BEAMS

An intuitive approach to producing a Bessel beam consists of shaping its amplitude 

pro!le using one amplitude-only optical element and a different one to imprint the 

required transverse phase [46]. In this approach, an annular LG beam is !rst pro-

duced with a hologram [40]. The LG beam is then used to illuminate an axicon, 

which in turn generates the conical wave associated to a Bessel beam. In this way, 

a reasonable approximation to a Bessel can be produced provided that the beam 

illuminating the optics is a collimated plane wave. However, when a fundamental 

Gaussian beam is used as the starting beam, as is most often the case, a BG beam is 

instead obtained. Milne and colleagues later devised a more elaborate scheme based 

on this generation design [47], which involved a hollow, $uidic axicon. The axicon, 

engineered to be !lled with a liquid phase of arbitrary refractive index, has thus vari-

able refractive properties.

An alternative to a continuous-phase modulation diffractive optical element, that 

is, hologram or phase plate, is based on the decomposition of the azimuthal phase in 

its odd and even parts [48]. In this scheme, only constant phase delays are required 

to obtain the components of the helical phase pro!le, which can then be added coher-

ently to produce high-order Bessel beams. The method is inspired in the earliest 

demonstration of Mathieu beams [49].

4.5.3 OTHER VORTEX BEAMS

The availability of proven holographic beam shaping techniques led directly to the 

experimental demonstration of other signi!cant families of beams, namely, Mathieu 

[50] and parabolic beams [51]. With their intricate vortex structures, both families 

have now become the subject of countless research efforts.

Known collectively as Helmholtz–Gauss beams, the set of all three beams, BG, 

parabolic-Gauss, and Mathieu–Gauss beams (together with plane waves), have also 

been demonstrated experimentally, and their propagation properties calculated and 

measured to excellent agreement with theory and numerical models [52]. Each mem-

ber of this set is a family of beams that are eigenmodes of the Helmholtz equation in 

a cylindrical orthogonal coordinate system. Their demonstration relies on standard 

holographic techniques already described above. Helmholtz–Gauss beams are sepa-

rable solutions, which translate into unique and desirable propagation properties, 

such as the well-known self-healing and extended invariant propagation length of 

Bessel beams.

4.5.4 SPATIAL LIGHT MODULATORS

One of the most signi!cant recent technological advances for the beam-shaping 

community is without a doubt the development of the modern SLM. SLMs utilize 

the tunable birefringence of nematic liquid crystal molecules to impart a phase delay 

onto an incident beam. SLMs are $exible and easy to control with a personal com-

puter and custom software. They are capable of addressing hundreds of thousands 

of portions of a wavefront and are dynamically addressable to typical video rates. 
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The advent of current SLMs and their progressively lower cost and increasing avail-

ability played a signi!cant role in the advancement of numerical beam shaping algo-

rithms and the development of elaborate applications, as described in Section 4.6. An 

example of an encoding scheme appropriate for vortex beams in SLMs is provided 

in Reference [53]. Moreover, recent original work in beam shaping has led to a uni-

versal method to design an arbitrary beam pro!le with the properties of Helmholtz–

Gauss beams [54,55]. This work represents outstanding progress in the !eld of laser 

beam shaping as it allows for the rapid, ef!cient sculpting of a self-healing beam of 

arbitrary transverse pro!le.

4.6 APPLICATIONS

Soon after their earliest experimental observations, optical vortices became them-

selves subjects of intensive qualitative and quantitative studies [56]. The ability to 

generate vortices reliably quickly motivated a growing interest that spread rapidly to 

several !elds of research within the optical sciences, where they have found a diver-

sity of applications. Numerous efforts have been made and countless publications 

outline different aspects of the optics of optical vortices and their use. Moreover, 

research in optical vortices is ongoing and particularly fruitful. This section lists 

only a minute fraction of these efforts due to its relevance to laser beam shaping and 

does not represent an exhaustive review of the !eld.

4.6.1 STUDIES OF VORTEX DYNAMICS

An early question regarding the spatial structure of the singularity associated to the 

phase dislocation of vortex beams was whether a beam with tunable OAM per pho-

ton could be created by changing the structure of the vortices within the beam. In 

fact, tuning the OAM can be achieved by shaping of the odd and even components of 

the helical phase pro!le associated to the vortex [28,29]. A relative azimuthal shift 

of the components results in the harmonic variation of the magnitude of the OAM 

density of the beam. Using this approach, a vortex is said to be partially unwound as 

its components are dephased relative to one another. When the vortex is completely 

unwound, the OAM content vanishes.

One interesting idea with respect to the succession of Bessel functions that rep-

resent Bessel beams concerns its connection with the vortex structure of fractional 

Bessel beams and its resulting OAM content [57]. As the order of the Bessel function 

is allowed to vary continuously, the degenerate vortex at the optical axis becomes a 

set of closely spaced vortices within the wave !eld that describe an apparent coor-

dinated motion that ends in another degenerate vortex of increased order. This 

dynamic transit of vortices correlate with a continuous variation of the OAM per 

photon in the sequence of fractional vortices that connect contiguous order Bessel 

functions [33,57].

However interesting, fractional Bessel functions are not solutions of the Helmholtz 

equation. In this respect, Gutiérrez-Vega and coworkers have recently demonstrated 

a new class of vortex beams that connect nondiffracting Bessel beams of successive 

integer order in a smooth transition while satisfying Helmholtz equation and thus, 
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the long propagation invariance length of the Bessel beam of fundamental order, 

from which all others can be generated via the application of a raising operator [32].

Also of interest is the connection between the observed rotation rate of the 

intensity pattern of vortex beams and its OAM content. Recently, the rotation of 

 superpositions of Bessel beams carrying no net OAM has been observed and mea-

sured to good agreement with theory that predicted arbitrarily !ne control can be 

achieved over the rotation rates of the intensity pro!le of the superposition [58]. 

These rotating !elds make an ideal tool for controlled rotation of trapped particles in 

optical trapping experiments, for example.

4.6.2 APPLICATIONS OF VORTEX BEAMS

A natural avenue of inquiry for vortex beams is the study of the transfer of OAM 

to material objects [42]. The earliest investigations in this respect used microscopic 

absorbing particles in conjunction with LG beams in optical tweezers experiments 

for visual demonstrations of rotational motion [37]. This seminal work distinguished 

clearly the nature of OAM and its underlying difference with spin, or polarization, 

angular momentum. To date, countless beam types and shapes have been coupled 

with optical tweezers to investigate their speci!c effects on material particles. A few 

noteworthy examples include high-order Bessel beams [59], helical Mathieu beams 

[60], and Airy beams [61].

Contemporary work also predicted [62] and resulted in the experimental dem-

onstration by Tabosa et al. of the optical OAM transfer to cold atoms [63]—again, 

from a LG beam—a milestone that motivated a plethora of subsequent research in 

the !eld. In this particular work, four-wave mixing was used as an indirect tool to 

con!rm the transfer of OAM to the atomic medium from an optical pump and again 

into a probe beam. A similar scheme was used in a later experiment using a colloidal 

medium, which formed the required nonlinear medium as the colloids aggregated 

in an organized way in the interference pattern of counterpropagating optical pumps 

[64]. In another ingenious experiment, the successful relocation of atoms was suc-

cessfully demonstrated using a vortex beam as a hollow optical duct [65].

Optical vortices have also found application in modern microscopy. Speci!cally, 

vortices have been utilized as Fourier !lters that produce enhanced edges for an 

object for small optical paths [66]. An advantage of this innovative application is 

that for objects with slowly varying topologies, a surface interferogram is readily 

produced without the need for an interferometric setup.

Observational astronomy has also bene!ted from the use of optical vortices in 

the form of an instrument and technique referred to as vortex coronagraph [67]. The 

central idea behind this concept is the isolation of light that originates in the source 

or subject of interest, such as a planetoid, by eliminating adjacent light, say from its 

parent star, by deviating it off the axis using a spiral diffractive optical element. The 

idea has been tested and it has produced positive results experimentally [68].

Perhaps one of the most wished for applications of vortex beams is the design of 

tools for advanced cell manipulation. Surgical procedures performed on single cells 

have been successfully demonstrated with a vortex optical trap [69]. Manipulation 

with a vortex beam is shown to affect the decreased photodamage on a cell compared 
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to a traditional Gaussian beam, a desirable property when manipulating living 

organisms.

Vortex beams have also been successfully employed to manipulate and transport 

aqueous droplets in solution [70]. Droplets with a lower refractive index than their 

medium rest within the low intensity region near the optical axis while being spa-

tially con!ned by the annular intensity pattern of the beam.

In recent times, the role of vortex beams in experimental research in quantum 

optics has become increasingly signi!cant. Three remarkable examples are listed 

below as a sample of the usefulness of vortex beams in this !eld of research. Vortex 

beam pairs made up of entangled photons possess an added degree or dimension 

of entanglement by virtue of their mutual OAM correlation. Higher dimensional 

 entangled quantum states provide a more secure quantum communication scheme, 

can potentially carry a higher information content, and offer greater resilience to 

errors when compared to two-dimensional systems [71]. In Reference [72], the authors 

demonstrate in a three-dimensional Bell test experiment the suitability of OAM-

carrying beams for quantum communication protocols. More recently, McLaren 

et al. [73] have successfully veri!ed that BG modes can be entangled in the OAM 

degree of freedom. This experiment speci!cally establishes the advantage of BG 

beams in quantum information processes due to the increased number of states that 

can be utilized and compared to non-OAM-carrying beams, while  simultaneously 

demonstrating high dimensionality in the entangled state [71]. A similar scheme has 

recently been generalized up to 12 dimensions with the aid of SLMs [74].

In a closely related development, another Bell test was performed using quantum 

correlations in vortex beams via their OAM in an imaging scheme commonly known 

as quantum ghost imaging [75]. In this scheme, ghost images are formed from the 

outputs of two detectors: one is a high spatial-resolution detector illuminated by a 

reference beam and the other is illuminated by light that has interacted with the 

object but that has no spatial resolution. An image results only by cross-correlating 

the outputs of both detectors from a sequence of correlated intensity patterns. In this 

experiment, a phase !lter implemented with an SLM in one of the entangled beams 

results in high coincidence counts that correlate with the imaging objects edges. 

The enhancement of the edges originates in the nonlocality of the phase !lter with 

respect to the object.

4.7 SUMMARY

The study of the properties and applications of the optical vortices embedded in light 

!elds has become relevant in recent years through their relationship with beams car-

rying optical angular momentum. This chapter has presented a review of the basic 

theory of vortex beam shaping, the experimental procedures to generate them, and 

some of their most important applications. The simplest vortex beams are described 

by the helical waves having circularly harmonic phase pro!les of the form Rm(r,z)
exp(imθ). The paraxial LG beams and the nondiffracting Bessel beams belong to 

this class of beams. Suitable superpositions of plane waves can generate optical 

beams with more complex structures of vortices, namely, composite vortices, that 

can be specially designed for particular applications.
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5.1 INTRODUCTION

This chapter describes a diffraction-based method for converting single-mode 

Gaussian beams into beams with uniform irradiance pro!les. The design is based 

on a Fourier transform relation between the input and output beam functions. This 

solution can be obtained using geometrical optics methods. However, the diffrac-

tion approach introduces a parameter that contains the product of the widths of 

the input and output beams. This parameter is a signi!cant part of the physical 

optics solution. The ef!cacy of the solution is shown to depend on this parameter. 

The quality of the solution improves asymptotically with increasing value of the 

parameter.

Many experiments and industrial applications require a laser beam irradiance 

that is nominally constant over a speci!ed area. Such applications include laser/

material processing, laser/material interaction studies, optical data/image process-

ing, and lithography. In many cases, it is desirable, for obvious reasons, that the beam 

shaping operation conserves energy.

The multifaceted integrator approach to laser beam shaping is especially suit-

able to laser beams with highly irregular (multimode) irradiance distributions.1,2 

The number and size of the facets is selected to accomplish the required integra-

tion or, equivalently, averaging. Doherty3 has treated the problem of irradiance 

mapping for laser beams with radial symmetry and regular irradiance distribu-

tions. Dickey and O’Neil4 give a general formulation of the multifaceted beam 

integrator problem and introduce a con!guration that minimizes deleterious dif-

fraction effects.

For single-mode beams with a Gaussian pro!le, it is possible to map the beam 

into a uniform intensity pro!le with steep skirts. This mapping can be accom-

plished with simpler optics that is more $exible with respect to scaling and 

does not have the interference patterns inherent in multifaceted beam integra-

tion. Several authors address the problem of mapping a Gaussian beam into one 

with a uniform irradiance distribution. The earliest paper known to the authors 

that addresses the lossless shaping of a single-mode laser beam is the paper by 

Frieden.5 Lee6 employs an iterative technique to design a phase !lter to convert 

a Gaussian beam into a more uniform irradiance distribution. Veldkamp7,8 uses 

an iterative technique to design binary gratings to accomplish the pro!le shap-

ing. Aleksoff et al.9 use the geometrical optics approximation to develop a holo-

graphic system that maps a Gaussian beam into a rectangularly shaped beam with 

uniform amplitude and phase. Kosoburd and Kedmi10 use geometrical optics to 

design a diffractive system that maps Gaussian beams into beams with uniform 

irradiance. Eismann et al.11 apply the Gershberg–Saxton algorithm, or equiva-

lently phase retrieval, to synthesize a two-element design that produces a beam 

with uniform amplitude and phase. In 1996, Golub et al.12 presented numerical 

and experimental results for a diffractive beam shaper based on a geometrically 

derived phase function.

In this chapter, we give a solution to the problem of mapping a Gaussian laser 

beam into a beam with uniform irradiance pro!le. The con!guration analyzed 

exploits the Fourier transform properties of lenses. That is, the output optical 
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153Gaussian Beam Shaping: Diffraction Theory and Design

!eld is the Fourier transform of the input optical !eld and a phase function. This 

con!guration has the advantage of being able to change the output size or the 

working distance by changing the transform lens. In Section 5.2, we de!ne the 

general problem of converting a Gaussian beam into a beam with uniform irradi-

ance and give a solution to the problem. Bounds set by the uncertainty principle 

are also discussed in this section. The problem of creating a collimated beam, 

a beam with both a uniform irradiance and a uniform phase, is addressed in 

Section 5.3. Again, the uncertainty principle has implications. It is used to de!ne 

a generalized Rayleigh range for shaped beams. Wavelength invariance of the 

beam shaping problem is discussed in Section 5.4. In Section 5.5, considerations 

associated with designing a shaping element are discussed. Sensitivity to align-

ment and scaling errors are discussed in Section 5.6. In Section 5.7, we discuss 

the application of the design methodology to a particular problem. In Section 5.8, 

we present the results of the design and testing of a prototype system. A sum-

mary of the chapter is given in Section 5.9. This chapter is based on the author’s 

papers.13,14

5.2 THE ANALYTICAL SOLUTION

The general beam shaping problem is shown schematically in Figure 5.1. In the !g-

ure, the beam to be shaped enters the proverbial black box from the left and exits 

on the right, diffracting to the design irradiance pattern. The black box may contain 

a single optical element or a combination of several optical components of differ-

ing types such as lenses, mirrors, prisms, diffractive optics, and holograms. One 

approach to solving a beam shaping problem would be to assume an optical con!gu-

ration and develop a solution around this con!guration. An example of this approach 

would be iterative techniques that provide a solution for a single element diffractive 

optic. A more general approach would be to obtain a general solution for a shaping 

function, amplitude and phase, using diffraction theory, and then develop an optical 

design realizing the shaping function. This approach is usually the most dif!cult. An 

approach somewhere between the two is commonly what is taken. Although a given 

solution might be realizable with a single optical element, it is frequently the case 

that a more versatile, more practicable, and less expensive design is obtained using 

multiple elements.

Incoming
beam

Optical
system

Outgoing
beam

Target plane

FIGURE 5.1 Schematic of the beam shaping problem.
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5.2.1 OPTICAL CONFIGURATION

Our approach to lossless beam shaping, illustrated in Figure 5.2, consists of a phase 

element in conjunction with a Fourier transform lens. The optical !eld at the focal 

plane of the transform lens is proportional to the Fourier transform of the product of 

the input optical !eld and phase of the phase element.15 This con!guration has several 

advantages. The phase element can be changed to control both the scale and shape of 

the output irradiance. The transform lens can be changed to modify the working dis-

tance, with a corresponding change in scale of the output. Finally, although the phase 

element and transform lens could be designed as one optical element, it is generally 

easier to design and fabricate the two components if their functions are kept separate. 

It should be noted that using a separate phase element and transform lens to shape the 

beam produces a more versatile system. The spot size can be changed by changing 

the focal length of the transform lens and adjusting the working distance correspond-

ingly, or keeping the working distance the same and changing the phase element. 

Also, it is probably cheaper to fabricate the shaping system as separate elements.

It should be noted that this con!guration is more general than it might !rst appear. 

Any solution that could be obtained using a Fresnel integral can be obtained using 

the Fourier transform system shown in Figure 5.2. This can be seen from the fact 

that the Fresnel integral can be written as a Fourier transform of the product of 

the input aperture function and a pure (quadratic) phase factor (see Goodman15 and 

Equation 4.10). The quadratic phase function becomes part of the beam shaping ele-

ment, which is discussed in detail in Section 5.4.2.

5.2.2 MINIMUM MEAN SQUARE ERROR FORMULATION

Given the con!guration of Figure 5.2, the problem is to design the phase element. The 

direct approach would be to solve for the phase function that minimizes the mean 

square difference between the desired irradiance and the irradiance produced by 

the phase element. That is, we want to !nd ϕ that minimizes an integral of the form

 R fx= ℑ
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−2 11 2 2 1 2
2

2

π α α
φ

/ /
e e  rect di ff∫  (5.1)

Phase
element

Transform
element

Target
plane

FIGURE 5.2 Fourier transform beam shaping system. (From F.M. Dickey and S.C. 

Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)
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where:

ℑ denotes a Fourier transform operation

f denotes the corresponding frequency domain variable

α de!nes the size of the output

The problem is scaled to a unit width (1/e2) Gaussian beam function. Here, the prob-

lem is formulated in one dimension, which is appropriate to the separable problem 

of converting a circular Gaussian beam into a uniform beam with a square cross sec-

tion. In general, a single variable will be used to represent a one- or two-dimensional 

variable. Unfortunately, we were not able to obtain a global solution to Equation 5.1. 

We were able to obtain solutions to the problem using the method of stationary 

phase. Before presenting the stationary phase solution, it is interesting to discuss the 

solution to a related problem of requiring both the amplitude and phase of the output 

to be constant over the region of interest and zero elsewhere.

The solution to the separable uniform amplitude and phase problem can be 

obtained by determining the phase ϕ that minimizes the functional
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Note that this equation differs from Equation 5.1 in that it involves the differences of 

!elds (complex) functions, while Equation 5.1 is the difference of intensities (mag-

nitude squared) functions. Thus, the problem described in Equation 5.1 is less con-

strained since the phase of the output is a free parameter. This allows for a broader 

range of solutions. In Equation 5.2, the input Gaussian function and the output rect 

function are normalized to unit energy. This ensures that the mean square difference 

in Equation 5.2 depends on the variation in the shape of the input and output func-

tions and not on any relative amplitude difference between the two functions. As a 

result, only the integral of the cross terms needs to be evaluated, since the normal-

ization forces the other two integrals to unity.

The solution to Equation 5.2 is readily obtained by applying Parseval’s theorem 

and expanding the integrand. Integrating the magnitude squared terms gives

 R x xx= −










− −∫2 2
1 2

2
 

α

π
 αφRe 2 e sinc(

/
)e d  (5.3)

where:

Re z denotes the real part of z

Clearly, R is minimized if the integral is maximized. This is obtained if ϕ is set equal 

to the phase of the sine function. Since the phase of the sine function is a binary func-

tion with values of 0 and π, the optimum phase function is a binary function. All that 

remains is to determine the value of α that maximizes the integral in Equation 5.3 

with α set equal to the phase of the sine function. This can be evaluated numerically 

to give α = 0.710. The beam irradiance pro!le for this solution is shown in Figure 5.3. 
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This is just the optimum solution, in the sense of Equation 5.2, of the problem posed 

by Veldkamp.7 It is interesting to note that the solution is not as $at as might be 

expected. As mentioned above, α determines the size of the shaped output. In obtain-

ing the minimum mean square error solution, we have let the size of the output to be a 

free parameter. The value α = 0.710 corresponds to small β discussed in the next sec-

tion. If the output beam size is allowed to increase, one can get a $atter looking output 

beam. However, the mean square error between the shaped beam and the desired 

output is larger than that of Figure 5.3. A careful inspection of Equation 5.3 shows 

that the mean square error increases to a maximum with increasing α (output beam 

size). This is due to the fact that, with respect to Equation 5.1, Equation 5.2 is overly 

constrained. That is, in Equation 5.2 both the phase and the amplitude of the output 

are required to be uniform, whereas only the irradiance of the output in Equation 5.1 

is required to be uniform. It can also be noted that this solution corresponds to a value 

of R = 1.199, which is a signi!cant fraction of the maximum of R = 2.

5.2.3 THE UNCERTAINTY PRINCIPLE

There are fundamental constraints on the beam shaping problem that can be traced 

to electromagnetic theory. It is dif!cult to develop constraints on a problem without 

a degree of speci!city. However, the uncertainty principle of quantum mechanics or, 

equivalently, the time–bandwidth inequality associated with signal processing can 

be applied to the beam shaping con!guration de!ned in Figure 5.2. The uncertainty 

principle is a constraint on the lower limit of the product of the root-mean-square 

(r.m.s.) width of a function and its r.m.s. bandwidth.16,17

 ∆ Λx υ

π
≥

1
4  (5.4)

x-axis position (n.u.)
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u
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FIGURE 5.3 Beam irradiance pro!le (right half) for the optimum solution of Equation 5.2. 

(From F.M. Dickey and S.C. Holswade, Optical Engineering, 35, 3285–3295, 1996. With 

permission.)
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The respective widths are de!ned by
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In the last two equations, the upper and lowercase letters denote the !eld function and 

its Fourier transform, respectively. The uncertainty principle stated in Equation 5.4 

is obtained from Equations 5.5 through 5.8 using the Cauchy–Schwarz inequality, 

Parseval’s theorem, and the Fourier transform correspondence ∂u/∂x↔i2πυ.

The !eld distribution at the focal plane of an ideal lens is proportional to a Fourier 

transform. The Fourier transform variable is related to the physical variables by the 

following equation15:

 υ
λ

=
′x
f  (5.9)

where:

f is the focal length

λ is the wavelength

x′ is the coordinate in the focal plane

Using Equation 5.9, Equation 5.4 can be written as

 ∆ ∆x x
f

′
≥

λ π

1
4  (5.10)
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Further, converting the widths on the left-hand side of the above equation to a 1/e2 

radius for the input Gaussian beam, a full radius for the shaped beam, and multiply-

ing both sides by 2 2 , Equation 5.10 becomes

 2 2 0 690 0π

λ

r y
f ≥ .  (5.11)

where:

r0 is the Gaussian beam radius

y0 is the shaped pro!le radius

The left-hand side of the above inequality is the β de!ned in Section 5.3.4. 

It should be noted that this result is strictly true for separable input and output 

beam functions. In fact, for the nonseparable case, the constant on the right-hand 

side would be greater because the radii are averaged with respect to the orthogo-

nal coordinate.

Applying the uncertainty principle to the beam shaping problem requires some 

thought. As derived above, the inequality is strictly applicable to the product of 

the input and output beam radii. However, it does prohibit focusing a beam to 

a radius smaller than the lower limit given by the inequality. It is reasonable to 

expect that good shaping results would not be obtained for beam radii deter-

mined by the equality in Equation 5.11. In fact, it is expected that good shaping 

would not be obtained unless the equality was exceeded by a factor of 3 or more. 

This is supported by the fact that the equality in Equation 5.4 obtains only when 

the input and output beam are both Gaussian beams that are Fourier transform 

pairs.16 Further, since the beam shaping problem addressed here can be expressed 

as a convolution in the output plane of the Fourier transform of the Gaussian 

input beam and the Fourier transform of phase function, one would expect that 

the uncertainty principle would also be an indication of the ability to achieve 

steep skirts on the edges of the beam pro!le. Finally, since the constant on the 

right-hand side of Equation 5.11 would be greater for a nonseparable function it 

would be more dif!cult to produce $at circular beams with steep skirts than it 

would be to produce corresponding beams with a square cross section. These 

results are compatible with our numerical modeling of the beam shaping problem 

(Section 5.5).

5.2.4 STATIONARY PHASE SOLUTION

Solutions to the problem de!ned in Figure 5.2 and Equation 5.1 can be obtained by 

the application of the method of stationary phase. Before giving the stationary phase 

solutions, we present a brief introduction to the one-dimensional stationary phase 

formula.18,19 Stamnes20 provides an extensive discussion of the method of station-

ary phase and its application to diffraction problems. Walther21 applies the method 

of stationary phase to the wave theory of lenses. A treatment of stationary phase is 

given in Chapter 2.
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The method of stationary phase gives an asymptotic approximation to integrals 

of the form

 I f x xx

a

b

( ) ( ) ( )β βφ= ∫ ei d  (5.12)

where:

β is a dimensionless parameter

The !rst term in the asymptotic phase approximation to the integral in Equation 5.12 

is given by

 I f c
c

c
c( ) ( ) ( )

( )
/

β
π

β φ
βφ µπ/∼

′′













+ ei 4
1 22

 (5.13)

where:

the double prime symbol (″) denotes the derivatives

 µ φ= ′′sign ( )c  (5.14)

and c is a simple stationary point de!ned by

 ′ = ′′ ≠φ φ( ) ,c 0 ( ) 0c  (5.15)

Equation 5.13 is commonly referred to as the stationary phase formula. Similar 

results are obtained in two dimensions with ′′φ ( )c  being replaced by the Hessian 

matrix for ϕ.

The essence of the beam shaping problem is to equate |Ic(β)|2 with the desired 

irradiance in the output plane of Figure 5.2. That is, the magnitude squared of the 

right-hand side of Equation 5.13 is equal to the desired output irradiance. Using 

this condition with Equation 5.15 leads to a second-order differential equation for 

the beam shaping phase function ϕ(x). The details of obtaining the explicit form 

of the differential equation from Equations 5.13 and 5.15 are rather tedious22 

(see Chapter 2). Care must be taken with respect to the absolute value of ϕ″ in the 

denominator of Equation 5.13. This condition requires that the phase ϕ(x) is a convex 

function, a function whose second derivative is either positive or negative every-

where. This turns out not to be a problem for the case of mapping a Gaussian into 

a rect function. This can be seen from the geometrical optics representation of the 

beam shaping problem illustrated in Figure 5.4. In the !gure, the input beam con-

sists of collimated rays whose density is accurately scaled to be proportional to a 

Gaussian irradiance pro!le. These rays are bent, in the shaping plane, to form a 

uniform irradiance distribution in the output plane. Near the shaping plane one can 

form a phase front for the converging beam by integrating the reciprocal of the slope 

of the rays (wave normals). The curved line in the !gure represents the phase front. 

It can be seen that the slope of the phase front, derivative of the phase function, is 

a monotonic function giving a phase function with a positive (or negative) second 
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derivative. It may be noted that the construction of Figure 5.4 provides an algorithm 

for a  geometrical optics solution to the beam shaping problem.9 When the phase of 

the phase function is not a convex function over the entire input beam, the problem 

becomes more dif!cult. In this case, a solution to the problem can be obtained by 

dividing the input beam into regions over which the phase function is convex and 

combining the solutions for these regions in a seamless manner. In practice, this may 

be a very dif!cult problem.

A very simple and useful application of the method of stationary phase is outlined 

in Appendix A. In this appendix, we discuss the problem of the lossless mapping of 

a uniform amplitude and phase beam into a uniform irradiance pro!le at the focal 

plane of a transform lens using a phase element as shown in Figure 5.2. In this case, 

the determination of the differential equation is quite simple. The solution for the 

phase element is just a quadratic phase function, a thin (ideal) lens. This problem 

provides the diffraction theory basis for the “$y’s eye lens” beam integration system 

(see Chapter 7).23,24 If a small array of these elements were placed before the Fourier 

transform lens, the uniform patterns for each phase element would be superimposed 

in the focal plane of the Fourier transform lens. This solution is very closely related 

to the problem if Fourier analysis of chirped or linear frequency modulated signals 

is occurring in synthetic aperture radar system theory.25

In two dimensions, the general form of the equation to be solved is

 F fx y x y( , ) ( , ) exp ( , )ω ω
π

ξ η  βφ ξ η ξω ηω ξ η
1
2 {i[ ]}d d− −

−∞

∞

∞

∞

∫∫  (5.16)

where:

ξ = x/ri and η = y/ri are the normalized input variables with ri de!ning the length 

scale

ωx = xf /r0 and ωy = yf /r0 are the normalized output variables in the focal plane of 

the Fourier transform lens with r0 de!ning the length scale

FIGURE 5.4 Geometrical optics representation of the Gaussian to rect function beam 

 shaping problem.
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The stationary phase solution improves asymptotically with increasing dimensionless 

parameter β = 2πriR0/fλ, where R0 is the size of the output beam, λ is the optical 

wavelength, and f is the focal length of the transform lens.

The stationary phase evaluation of integrals of the type given by Equation 5.16, 

generally, leads to second-order partial differential equation for the phase 

 function  ϕ. The resulting partial differential equation can then be solved for ϕ, 

 subject to an energy boundary condition determined by Parseval’s theorem. The 

partial  differential equation reduces to a second-order ordinary differential equa-

tion for the separable and circularly symmetric problem. The optical element is then 

designed to realize βϕ.

The stationary phase evaluation of Equation 5.16 allows for the mapping of arbi-

trary single-mode laser beams into arbitrary irradiance pro!les using the system 

in Figure 5.2. However, some irradiance pro!les may be more mathematically dif-

!cult to realize. Romero and Dickey22 (see Chapter 2) have obtained solutions for the 

separable problem of converting circular Gaussian beams to uniform pro!les with 

rectangular cross sections and the problem of converting circular Gaussian beams to 

uniform beams with circular cross sections.

For a circular Gaussian beam input, the problem of turning a Gaussian 

beam  into a $at-top beam with rectangular cross section is separable. That is, 

the solution is the product of two one-dimensional solutions. β and ϕ(ξ) are thus 

 calculated for each dimension. The phase element will then produce the sum of 

these phases [βxϕx(x)  +  βyϕy(y)]. The corresponding one-dimensional solution 

for ϕ is22

 φ ξ
π

ξ ξ  ξ( ) ( ) exp ( )= + − −2
1
2

1
2

2 erf  (5.17)

where:

 ξ ξ= =
2 2
0 0

x
r

y
ror

Here r0 = 1/e2 is the radius of the incoming Gaussian beam.

The solution for the problem of turning a circular Gaussian beam into a $at-top 

beam with circular cross section is22

 φ ξ
π

ρ ρ

ξ

( ) exp( )= − −∫2 1 2

0
d  (5.18)

where:

 ξ =
2
0

r

r

Here, r is the radial distance from the optical axis.

As previously mentioned, the quality of these solutions depends strongly on the 

parameter β. For the two solutions given in Equations 5.17 and 5.18, β is given by
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 β
π

λ
=
2 2 0 0r y

f  (5.19)

where:

r0 = 1/e2 is the radius of the incoming Gaussian beam

y0 is the half-width of desired spot size (the radius for a circular spot, or half the 

width of a square or rectangular spot)

Examples of the dependence on β will be given later.

5.2.5 POSITIVE AND NEGATIVE SOLUTIONS

An interesting property of the con!guration in Figure 5.2 is that if ϕ is any even 

function solution, then –ϕ is also a solution. If the input and output beams are even 

functions, then ϕ will be an even function. This is easily demonstrated in one dimen-

sion and the development is readily extended to two dimensions. In simplest form, 

the input or output optical !elds shown in Figure  5.2 are related by the Fourier 

transform:

 G f x xx x( ) ( ) ( )ω βφ ω= −∫ e e di i  (5.20)

where:

G(ω) is the output !eld

f(x) is the input !eld

In this equation, the integrand can be expanded to give
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∫
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 (5.21)

The equivalence of the positive and negative solutions follows from the fact that 

the odd terms in the integrand integrate to zero and the cosine function is an 

even function. This result has practical implications for system design. The posi-

tive solution produces a beam that converges to a small diameter after the output 

plane, and the negative solution gives a beam that converges to a small diameter 

before the output plane. It should be noted that this result is independent of the 

type of solution method such as the method of stationary phase. It depends only 

on the symmetry assumptions stated at the start of this section. However, the con-

vexity problem discussed following Equation 5.15 is related in that it allows for 

both a positive and a negative solution.
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5.2.6 QUADRATIC PHASE CORRECTION

The solutions described in Section 5.2.4 assume that the input Gaussian beam has 

a uniform (constant) phase at the beam shaping element. For a Gaussian beam, this 

condition is obtained at the beam waist, and it is not convenient or practical to always 

locate the beam waist at the shaping element. One solution is to build into the shap-

ing element a phase conjugate to the input beam phase. A more practicable solution 

is to exploit the fact that the Gaussian beam phase causes a shift in the location of the 

output plane. That is, the desired pro!le is located at a distance from the focal plane 

of the transform lens. There is also a slight magni!cation associated with the shift of 

the output plane. These assertions can be proved using the Fresnel integral and the 

general form for Gaussian beams.

Gaussian beams propagate with a phase function given by26

 f x y x y( , ) ( )( )
=

− + +e iσ γ
2 2

 (5.22)

where:

σ and γ are functions of the distance from the beam waist and γ = 0 at the beam 

waist

The solutions in Section 5.2.4 assume that γ = 0 and the output is the Fourier  transform 

of the product of a Gaussian and the beam shaping phase function given by

 U x y Af f
k f x y x y f xx yyf f f( , ) / ( ) )=

+ − + − +e e e ei( )( ) i i( (2 22 2 2 2σ βφ π/λ ff x y)d d∫∫  (5.23)

where:

x and y are the input coordinates

xf and yf are the output coordinates in the focal plane of the transform lens

We can arrive at an equivalent expression by applying the Fresnel integral to the !eld 

after the lens. If the lens function is given by

 t x y k f x y1 2 2 2( , ) /= − +e i( )( )  (5.24)

the Fresnel integral gives

 
U x y i z

kz k z x y i x y( , ) / ( )( ) [( /0 0
2 2 2 2 2
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i i( )( ) i0 0
λ

σ γ βφ ik 22 2 2 2z f x y

k z xx yy x y

) ( / )]( )− +

− +

∫∫
×

ik

 e d di( / )( )0 0

 (5.25)

where:

x0 and y0 are the coordinates in a plane a distance z from the transform lens
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If z = z0 is the solution to

 γ − + =
k
f

k
z2 2 0  (5.26)

then Equation 5.25 reduces to

 U x y i z
kz k z x y x y k z( , ) ( ) ( ) /

0 0
i

0
i( / ) i i(e e e e e0 0 0 0 0= + − +∫λ

σ βφ2 2 2 2 2 ))( )0 0 d dxx yy x y+∫  (5.27)

The integral in Equation 5.27 is a scaled version of that in Equation 5.23. Thus, both 

equations produce the same intensity pattern except for scaling and amplitude fac-

tors (phase factors do not effect the irradiance pattern).

5.3 COLLIMATED UNIFORM IRRADIANCE BEAMS

A drawback of existing beam shaping systems is the limited depth of !eld. The 

uniform pro!le appears only at the target plane, and the pro!le quickly degrades 

beyond it. This is due to the fact that the con!guration of Figure 5.2 cannot pro-

duce a beam with both a uniform phase and a uniform amplitude without includ-

ing a loss mechanism (amplitude control). This can readily be seen from the 

Fourier transform relation between the !eld in the output plane and the !eld just 

before the transform lens (after the shaping element). For example, for the one-

dimensional case, if the beam has a uniform amplitude and phase in the output 

plane it must be a sine function in the input plane. A desirable extension would 

be to create a uniform beam that could propagate for considerable distances. In 

other words, besides a uniform pro!le at the target plane, what is desired is a uni-

form phase front (see Theorem 11 in Section 2.3.2.2). The uniform pro!le would 

then continue to propagate subject only to diffraction effects due to its !nite size. 

In addition, applications such as optical lithography, nonlinear optics, and opti-

cal data (image) processing may require beams with uniform phase as well as 

amplitude.

5.3.1 CONJUGATE PHASE PLATE

A uniform phase and amplitude beam can be obtained by adding a conjugate 

phase plate at the output plane of the beam shaping system as shown in Figure 5.5. 

The phase of the conjugate phase plate is designed to cancel the phase of the uni-

form irradiance beam at the output plane of the beam shaping optics, producing a 

 collimated beam to the right of the output plane. Given the properties of the input 

beam and the solution for the shaping element, it is theoretically possible to com-

pute the phase of the conjugate phase plate. However, in some cases, it might be 

more practicable to design the beam shaping system and then measure the phase of 

the shaped beam. The phase plate would then be designed to give the conjugate of 

the measured phase.
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In Appendix B, we show that a beam obeying the scalar wave equation has a 

minimum r.m.s. radius at a plane of uniform phase, and the beam radius as a function 

of z (the beam axis coordinate) is a quadratic function given by

 ( )∆ = +ρ
2 2a cz  (5.28)

where:

a is the minimum radius squared, (Δρmin)
2, in the plane z = 0

It can be seen from Equation 3.1 that minimizing c minimizes the spread of the 

beam in the region of the plane of uniform phase. Further, it is shown, using the 

uncertainty principle, that the Rayleigh range for beams obeying the scalar wave 

equation is constrained by

 z a
0

24 4
≤ =

π

λ

π ρ

λ

( )min∆
 (5.29)

The Rayleigh range in this equation is a generalized Rayleigh range de!ned as the 

distance (measured from z = 0) over which the r.m.s. beam radius increases by a 

factor of 2 . Equation 5.29 is just a quantitative statement of the intuitive concept 

that to obtain a beam with a large depth of !eld one wants a large beam width with 

uniform phase. Since the components of the vector wave equation obey the scalar 

wave equation, these results can be extended to include solutions of the vector wave 

equation.

5.3.2 RELAY OPTICS

In many applications, especially high-power applications such as material  processing, 

it is not desirable to have a phase plate at the uniform irradiance plane. A solution 

is to use relay optics to image the beam in the vicinity of the output plane. A relay 

system for this purpose is illustrated in Figure 5.6. The relay optics con!guration in 

the !gure has the additional advantages that it doubles the depth of !eld and can also 

be used to magnify the size of the shaped beam. These advantages are, of course, 

obtained at the expense of additional optics.

Beam shaping system

Phase plate
at target

Uniform
beam

Target
plane

FIGURE 5.5 Optical system for creating a uniform phase beam. (From S.C. Holswade and 

F.M. Dickey, Proceedings of SPIE, 2863, 237–245, 1996. With permission.)
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It should be noted that the relay system in Figure 5.6 consists of a two-lens afocal 

telescope, that is, the lenses are separated by the sum of their focal lengths. A mini-

mum of two lenses are required to image (relay) the output plane while preserving 

the uniform phase pro!le. This can be seen from the fact that an afocal telescope 

produces a collimated output beam when the input beam is collimated. Another 

approach is to observe that each lens produces the Fourier transform of the !eld at 

its front focal plane at the back focal plane. The result is the Fourier transform of a 

Fourier transform, which is effectively a Fourier transform followed by an inverse 

Fourier transform with the coordinates reversed.15 The output beam is symmetric 

about the relayed target plane, producing a greater distance where the beam main-

tains the desired tangential dimensions.

5.4  WAVELENGTH DEPENDENCE OF THE BEAM 
SHAPING PROBLEM

Forbes et al.27 have shown the surprising result that the beam shaping problem is 

independent of wavelength if dispersion of the optical elements is negligible. In the 

following section, we address the wavelength dependence for the beam shaping 

problem of Section 5.3. In Section 5.4.1 we extend this result to the general beam 

shaping problem.

5.4.1 THE FOURIER TRANSFORM OF A PHASE ELEMENT

To address the wavelength dependence of the beam shaping problem, consider the 

case of the phase element at the transform lens. The problem for a Gaussian to circu-

lar $at-top mapping is described by the diffraction integral in Equation 5.30. This is 

just the Fresnel diffraction integral for the beam shaping problem.

u x y z iz
k k x y z
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∞
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x y z

 (5.30)

Phase plate
at target

Incoming
light from

shaping
system

Spreading due
to diffraction

Uniform
beam

Target
plane

Confocal
telescope

Fourier transform
of target plane

Relayed target
plane

Long depth of field
around target plane

Relayed uniform
beam

FIGURE 5.6 Relay system for extending the depth of !eld of uniform irradiance beams. (From 

S.C. Holswade and F.M. Dickey, Proceedings of SPIE, 2863, 237–245, 1996. With permission.)

181



167Gaussian Beam Shaping: Diffraction Theory and Design

The !rst factor in the integrand represents the Gaussian beam, the second factor 

represents the beam shaping element, the third factor is the phase function for the 

Fourier transform lens, the fourth factor is the quadratic phase of the Fresnel inte-

gral, and the last factor is the Fourier transform kernel. In Equation 5.30, λ′ is the 

beam shaping design wavelength and λ is the applied wavelength.

For beam shaping to be accomplished in the standard way, the integrand in 

Equation 5.30 must reduce to a Fourier transform of the product of the input beam 

and the beam shaping function. This is achieved if the two quadratic phase functions 

cancel each other. This condition is obtained for

 f zλ′ λ=  (5.31)

Equation 5.30 then reduces to
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 (5.32)

Further, if we solve Equation 5.31 for z and substitute the result in Equation 5.32, we 

obtain
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∫∫ e d d2 x y f  (5.33)

This result is the exact integral for the design beam shaping problem at wavelength 

λ′; thus, the beam shaping problem is independent of wavelength. The shaped irradi-

ance pattern is obtained at distance z given by Equation 5.31 as

 z f
=

λ′

λ
 (5.34)

Because Equation 5.33 is independent of λ, the spot size does not change with 

 wavelength. This surprising result can be explained by the fact that increasing the 

wavelength shortens the distance, while longer wavelengths produce a wider diffrac-

tion pattern; the two effects cancel. A Gaussian input beam was assumed in the above 

analysis, but it is easy to see that the result is independent of the input beams shape.

5.4.2 INVARIANCE OF THE FRESNEL INTEGRAL

The above argument assumed that beam shaping was implemented as a Fourier trans-

form by the use of a Fourier transform lens. An inspection of the Fresnel integral

 u x y z iz fk k x y z z( , , ) ( , )( ) /= +

−∞

∞

−∞

∞

+ −∫∫
1 2 2 2 22
λ

ξ η π ξ η λe e e ei i i ( ) i22π ξ η λ ξ η( ) d dx y z+ /  (5.35)

shows that the Fresnel integral does not change if the product zλ is a constant. This 

leads to a generalization of the above argument. Consider solving the beam shaping 
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problem starting with the Fresnel integral, that is, we want to solve for ψ in the 

integral

 U x y z iz
k k x y z( , , ) ( ) / ,= + − +

−∞

∞

−∞

∞

∫∫
1 2 2 2 22
λ
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Without loss of generality, we can let

 
ψ′ ξ η ψ(ξ η)

π ξ η

λ
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+2 2

z  
(5.37)

We then can solve for ψ′
 
by whatever method one chooses, stationary phase, iterative 

algorithm, and so on. Once we have done this, we can obtain ψ as

 ψ(ξ η) ψ′ ξ η
π ξ η

λ
, ,= −

+( ) ( )2 2

z
 (5.38)

Substituting this result in Equation 5.36, we obtain

 u x y z iz ik k x y z( , , ) ( ) / ,= + − +
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−∫∫
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α ξ π ψ′ ξ ηe e e e ei i ( )( ) ii ( )/ d d2π ξ η λ ξ ηx y z+  (5.39)

Thus, we have reduced the solution to the Fourier transform of a phase function. 

This shows that solving the problem starting with the Fresnel integral is equivalent 

to solving the problem starting with a Fourier transform. This result is a mathemati-

cal statement that for the beam shaping problem using a phase element and a Fourier 

transform lens, the phase element and lens can be collapsed into one element.

5.5 DESIGN CONSIDERATIONS

A primary design advantage of this lossless beam shaping technique is that the designer 

can start with a desired target spot quality and determine the optical system required, 

rather than designing multiple optical systems in the hope of producing an accept-

able output. This is because the dimensionless quantity β of Equation 5.19 completely 

determines the quality of the spot at the target plane. In other words, different opti-

cal con!gurations and wavelengths will produce the same target spot quality if they 

share the same value of β. Low values of β produce target spots with more rounded 

sides and wider skirt regions, whereas higher values of β more closely approach the 

geometric ideal of a uniform intensity pro!le with in!nitely steep sides. As Equation 

5.19 implies, the cost of increasing β involves either increasing the size of the Gaussian 

beam at the phase element, enlarging the target spot, shortening the focal length of the 

transform lens, or reducing the wavelength. By considering the application and con-

sulting plots of target quality versus β, the designer can determine the minimum value 

of β that will satisfy the needs and design the most economical system.

Figure 5.7 shows a standard layout for a beam shaping optical system. For most 

design situations, the size of the target spot and the wavelength will be determined 

by the application. The focal length of the transform lens may also be determined by 

183



169Gaussian Beam Shaping: Diffraction Theory and Design

standoff or other considerations, although a minimum focal length will maximize β. 
The !nal variable is the Gaussian beam radius at the shaping element. To achieve the 

desired β, the beam size should be expanded by an afocal telescope, as shown in 

the !gure. With the optical system designed for one target geometry, there are two 

methods to produce additional target geometries. The !rst is to change the phase 

element. With the same expansion and focusing optics, a system could thus produce 

circular and rectangular beams of several sizes. It should be noted, however, that 

different target geometries will vary β, and hence spot quality, as determined by 

Equation  5.19. The second method involves changing the focusing, or transform, 

lens while leaving the telescope and phase element !xed. This change can vary only 

the target size, not the geometry, but it has the advantage of maintaining a constant 

target spot quality. The variation in the focal length changes the spot size proportion-

ally, and thus β remains constant.

Once a target spot quality is determined, the required phase pro!le imparted on 

the beam by the phase element is then found by multiplying the phase function of 

Equation 5.17 or 5.18 by β. This multiplication scales the phase function to the par-

ticular geometry of the application. A telescope is then designed to expand the beam 

to the required value. A transform lens of the required focal length completes the 

system. The remainder of this section discusses the design considerations in more 

detail, and also the additional system con!gurations.

5.5.1 TARGET SPOT QUALITY

Since β determines target spot quality independently of the circumstances of the 

design, graphs of the beam shape versus particular values of β are useful. The 

following simulations include system effects such as beam truncation and lens 

aberrations. They were calculated for a CO2 laser system (λ  =  10.6  μm) with 

an f/42-to-f/21 plano-convex lens. Aperture radii were truncated at 2r0 in these 

simulations, where r0 was 1/e2 radius of the beam. Figure 5.8a shows a  square 

target spot  with β  =  4. The pro!le is fairly rounded. Figure  5.8b shows the 

square target spot with β = 8. The skirts of this spot have narrowed considerably. 

Figure 5.8c shows the square target spot with β = 16. The skirts of this spot have 

narrowed further. This system design is beginning to approach the geometric 

ideal of a uniform pro!le with in!nitely steep sides. The square spot is a special 

case of the rectangular spot. With a circular input beam, a rectangular output 

Telescope
Shaping
element

Transform
element

FIGURE 5.7 System optical layout. (From F.M. Dickey and S.C. Holswade, Optical 
Engineering, 35, 3285–3295, 1996. With permission.)
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can be produced by varying β for each axis. For the case of a circular, uniform 

target spot, Figure 5.8d illustrates the pro!le for β = 8 and 3r0 truncation. This 

spot behaves similarly to the square case as β changes. Unlike the square case, 

however, the circular case exhibits noticeable ripple on the pro!le as the beam is 

truncated to 2r0.

(a)

(b)

(c)

FIGURE 5.8 Pro!les of square and circular spot geometries: (a) square pro!le, β  =  4; 

(b) square pro!le, β = 8; (c) square pro!le, β = 16; (d) round pro!le, β = 8. (From F.M. Dickey 

and S.C. Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)
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5.5.2 MODELING SYSTEM PERFORMANCE

As was shown in Figure  5.7, the optical system consists of the phase element 

and three lenses, each of which can contribute aberrations. A complete way to 

model system performance is thus desirable. Several optical design packages now 

offer the ability to input surfaces with general aspheric pro!les as polynomial 

functions of x and y coordinates. For small values of β, the phase pro!le can be 

well approximated by varying the thickness of the element. In other words, the 

phase element acts as a “thin” element for small values of β.15 Some packages 

allow polynomial phase pro!les to be input directly. In either case, the phase 

functions  are !t  to a polynomial with appropriate mathematical software, the 

polynomial  multiplied by β, and the phase element inserted into the design pack-

age along with the other elements. After tracing a spot diagram with Gaussian 

apodization of the ray weights, the package then calculates a diffraction-based 

point spread function for the system, which uses the ray map in the exit pupil. 

The point spread function provides the diffraction response of the system for a 

point object. A distant point object produces a planar input wavefront character-

istic of a Gaussian beam at its waist. Curvature in the input beam wavefront can 

be modeled by moving the object point to the appropriate distance. Wavelength 

variations in the input beam can be modeled with a polychromatic spot diagram 

and point spread function.

A suf!ciently robust design package can model effects due to lens aberrations, 

beam truncation by optics, beam curvature, and alignment and scaling errors. To 

avoid aliasing in the point spread function, the spot diagram must suf!ciently sample 

the exit pupil. For βs on the order of 16 or less, the phase pro!le varies fairly slowly, 

and most programs can sample it suf!ciently. As β increases, however, the phase 

pro!le varies more rapidly, and sampling becomes more problematic. However, it 

should be remembered that β is a measure of how well the system approaches the 

geometric ideal. For high values of β, therefore, the weighted geometric spot dia-

gram suf!ciently models the system performance.

(d)

FIGURE 5.8 (Continued)
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5.5.3 TELESCOPE CONSIDERATIONS

As discussed in Section 5.2.6, displacement of the input Gaussian beam waist 

from the phase element produces a shift in the location of the output plane and 

a change in scale of the target spot. The telescope can thus be adjusted to shift 

the target plane to a different location. The telescope can also compensate for 

curvature in the input Gaussian beam. In this case, it is adjusted to place a beam 

waist at the phase element, with a corresponding slight change in input beam size. 

Both adjustments should generally result in negligible effects on β and target spot 

geometry.

Phase elements can be located either before or after the transform element.15 This 

allows the expansion and transform functions to be combined in the telescope, as 

shown in Figure 5.9. In some situations, it may be necessary to compensate for toler-

ances in the incoming laser beam diameter. The phase element may then be located 

behind the transform element and moved along the beam axis until the beam size 

matches the design size. This movement will scale the target spot size, but β will 

remain constant.

5.5.4 TRUNCATION EFFECTS

For standard optical systems, the effects of truncation on Gaussian beams have 

been reported in the literature.28 The truncation of the input Gaussian beam 

by the circular apertures in a beam shaping system will also affect the target 

pro!les. For the square spot, no noticeable degradation is seen for truncation 

down to 2r0. As aperture sizes decrease, however, further ripple becomes appar-

ent. Figure  5.10 illustrates the effects of 1.5r0 truncation on the square spot. 

For the circular spot, ripple becomes apparent at 2r0 truncation, as is shown in 

Figure 5.11. It is interesting to observe why a 2r0 circular aperture will affect a 

circular spot more than the square spot for the same β. For the circular spot, the 

edge-wave disturbances created by the aperture are symmetric through the sys-

tem and interfere constructively at the target. For the square spot, however, the 

disturbances created by a circular aperture are altered by the phase element in a 

nonsymmetric fashion, and thus do not all constructively interfere. This situation 

is related to diffraction by circular versus other apertures.28 For designs produc-

ing square or rectangular spots, system apertures of twice the Gaussian beam 

Telescope
Shaping
element

FIGURE 5.9 Combined expansion and transform functions in the telescope. (From F.M. 

Dickey and S.C. Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)
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radius should provide good performance. For designs producing circular spots, 

system apertures of three times the Gaussian beam radius will be necessary to 

avoid ripple effects.

5.5.5 POSITIVE AND NEGATIVE PHASE FUNCTIONS

As discussed in Section 5.2.5, the phase function has two solutions, positive and 

negative, for a given con!guration. With reference to Equation 5.1, ϕ is the phase 

delay suffered by a wave in passing through the phase element. This situation is 

analogous to the phase delays introduced by thin lenses.15 For a positive phase func-

tion ϕ, Equations 5.17 and 5.18 show that the phase delay will vary from zero at the 

optical axis to increasingly positive values as we move away from the axis. This 

situation is the same as that for a negative thin lens, and additional insight into the 

beam shaping system can be gained by viewing the shaping element geometrically, 

FIGURE 5.10 Square pro!le, β  =  8, apertures  =  1.5r0. (From F.M. Dickey and S.C. 

Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)

FIGURE 5.11 Round pro!le, β = 8, apertures = 2r0. (From F.M. Dickey and S.C. Holswade, 

Optical Engineering, 35, 3285–3295, 1996. With permission.)
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as is illustrated in Figure 5.12. The target plane is the focal plane of the transform, 

or focusing, element and this is where the desired target spot appears. For an ele-

ment with a positive phase function (Figure 5.12a), the beam continues to decrease 

in size after the target plane. Geometrically, the element has reduced the power of 

the optical system and behaves much as an aberrated negative lens. For an element 

with a negative phase function (Figure 5.12b), the beam passes through a mini-

mum diameter before reaching the target plane. The element thus geometrically 

behaves as an aberrated positive lens. In both cases, the spot at the target plane will 

be identical. The positive phase function (Figure 5.12a) has an advantage in the 

depth of !eld, since the wavefront through the system is closer to planar than for 

the negative phase function (Figure 5.12b). An analogous geometric explanation is 

that the marginal rays for Figure 5.12a have smaller angles than Figure 5.12b, thus 

allowing a larger depth of !eld. Defocus of the target plane leads to deviations in 

spot uniformity, and it is treated in the next section. Particular applications may 

demand that the minimum beam size occur either before or after the target plane. 

If there is a choice, however, the positive phase function features the least sensitiv-

ity to defocus errors.

5.6 ALIGNMENT AND SCALING ERRORS

Unlike the methods based on multifaceted integrators, this lossless beam  shaping 

method is sensitive to alignment errors and variations in the input beam size. 

Figure 5.13 shows the effect of decentering the Gaussian beam on the phase  element 

by 0.1 r0 along one of the element axes. For other elements in the system, decentration 

is most important where it would move the beam on the phase element. For example, 

Target

(a)

(b)

FIGURE 5.12 (a) Element with positive phase function acts geometrically as an aberrated 

negative lens. (b) Element with negative phase function acts geometrically as an aberrated 

positive lens. The target plane is the focal plane of the !nal (transform) lens. (From F.M. 

Dickey and S.C. Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)
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decentration of the negative lens in Figure 5.7 would decenter the beam on the phase 

element and thus produce the effects shown in Figure 5.13. However, decentration of 

the transform element would have a relatively small impact on the target spot quality. 

Spot quality is also fairly insensitive to tilt of the phase element, which acts much as 

a thin plate in this case.

Since the shaping element is designed for a particular input beam size, which 

in part determines the scaling factor β, it stands to reason that deviations from the 

design input beam size will affect the target spot. The following cases show the deg-

radation in the square target spot for the β = 8 design of Figure 5.8b, with a positive 

phase function. In Figure 5.14a, the input Gaussian beam size is 10% larger than the 

size used in the design. The target spot shows signi!cantly raised edges. Figure 5.14b 

shows the target spot for an input beam size that is 10% smaller than that used in the 

design. The edges of the spot have rounded off. For many applications, this round-

ing effect is less detrimental than that caused by the raised edges. Thus, if variation 

in the input beam size is anticipated for systems with a positive phase function, 

the element should be designed for a beam somewhere near the upper limit of the 

size range.

Target plane defocus also affects the quality of the target spot for the following 

reasons. The beam shaping system uses a lens to transform the input beam plus the 

phase function to the desired shape. The output spot exists at the transform plane 

of the lens, which is also its focal point. In the derivation of the phase element, the 

problem was to minimize the difference between the desired irradiance at the target 

plane and that produced by the system. There were no constraints on the phase of the 

beam at the target or on the beam irradiance outside the transform plane. Since the 

phase is generally not uniform at the target plane, the shaped beam will not display 

the symmetry about the target plane characteristic of Gaussian beams at their waist 

(Section 5.3). The irradiance of the beam will thus deviate from the desired shape 

when the target plane is moved away from the focal point of the transform lens. 

FIGURE 5.13 Input beam decentered along element axis by 0.1r0, β = 8 case. (From F.M. 

Dickey and S.C. Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)
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The following cases apply to the β = 8 design of Figure 5.8b, with a positive phase 

function. Figure 5.15a shows the effect of moving the target plane away from the 

transform lens by f/50, where f is the focal length of the lens. The spot decreases in 

size, increases in average irradiance, and the edge areas rise relative to the center. 

Figure 5.15b shows the effect of moving the target plane toward the transform lens 

by f/50. Here the spot increases in size and decreases in average irradiance. The spot 

uniformity remains fairly good, however. Thus, if defocus is anticipated in systems 

with a positive phase function, the system should be designed for the upper part of 

the focus range.

As discussed earlier, the beam’s phase at the target is unconstrained. Thus, in 

the system illustrated in Figure 5.7, the target spot cannot simply be collimated 

with a negative lens to propagate as a $at-top beam. The phase at the target, how-

ever, can be computed. A conjugate phase plate placed at the target would cancel 

these phase differences, and the uniform pro!le would propagate as a collimated 

beam, subject to diffraction. However, if the target spot is simply desired at another 

(a)

(b)

FIGURE 5.14 Effects of deviations in input beam size from design values: (a) input beam 

10% larger than design size; (b) input beam 10% smaller than design size. (From F.M. Dickey 

and S.C. Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)
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location or scale, it can be reimaged with a conventional afocal telescope as dis-

cussed in Section 5.3.2.

5.7 METHOD OF DESIGN

As stated earlier, the quality of the target spot can be selected to suit the application, 

and the necessary optical system parameters calculated directly. In most cases, the 

size of the Gaussian beam at the phase element will be the free variable that deter-

mines β. If the phase element and the optical system are to be studied with an optical 

design program, the phase function will need to be expressed as a polynomial. With 

the optical design program, the response of the system to tolerances in beam scal-

ing, beam position, element position, element tilt, and target defocus can be studied. 

Beam truncation effects can also be modeled if necessary. If tolerances in input 

beam size or target position are expected in systems with a positive phase function, 

the target spot will degrade most gracefully if the element is designed for a slightly 

larger beam than expected with a target plane slightly further away than expected.

To facilitate modeling, the phase functions for rectangular and circu-

lar spots have been !tted to l0th-order polynomials. The !ts are good to ξ = 3 2, 

(a)

(b)

FIGURE 5.15 Defocus effects: (a) target plane defocused by +f/50; (b) target plane defo-

cused by –f/50. (From F.M. Dickey and S.C. Holswade, Optical Engineering, 35, 3285–3295, 

1996. With permission.)
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which is 3r0 at the phase element. The form for the rectangular and circular 

cross section is

 φ ξ ξ ξ ξ ξ ξ( ) = + + + +a a a a a2 2 4 4 6 6 8 8 10 10  (5.40)

Rectangular spot Circular spot

a2 = 4.73974 × 10−1 a2 = 4.31128 × 10−1

a4 = −5.50034 × 10−2 a4 = −4.36550 × 10−2

a6 = 4.99298 × 10−3 a6 = 3.65204 × 10−3

a8 = −2.37191 × 10−4 a8 = −1.65025 × 10−4

a10 = 4.41478 × 10−6 a10 = 2.97368 × 10−6

For the rectangular spot, Figure 5.16a shows the quality of !t to the original func-

tion. No difference between the curves is visible, and they have an r.m.s. variation of 
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FIGURE 5.16 (a) Rectangular phase function and l0th-order !t. (b) Circular phase 

 function and l0th-order !t. (From F.M. Dickey and S.C. Holswade, Optical Engineering, 

35, 3285–3295, 1996. With permission.)
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0.0046 rad. As discussed earlier, the phase function for each axis is multiplied by β 

to scale it to the desired geometry, and the dimensionless quantities ξ are replaced by 

actual coordinates according to Equation 5.17. The scaled phase functions for each 

axis are then summed to de!ne the complete phase function. For the circular spot, 

Figure 5.16b shows the quality of !t. The r.m.s. variation between the two curves is 

0.0025 rad. ξ is a radial coordinate in this case, and the phase function is radially 

symmetric.

The following example illustrates the use of the technique to solve an actual prob-

lem. Consider the case where a rectangular spot is desired 400 mm away from an 

optical system. The target spot dimensions are 2 (x-axis) × 4 mm (y-axis). A 10.6 μm 

laser produces a Gaussian beam with a 1/e2 radius of 3 mm, and the optical train is 

composed of ZnSe (n = 2.403). We choose a system layout as shown in Figure 5.7, 

with an f = 400 mm focusing lens. From graphs of target spot quality versus β, we 

choose β = 8 as a minimum acceptable value. From Equation 5.19, we see that the 

beam radius at the phase element, r0, is the only unconstrained variable. In addition, 

the x-axis will require the most expansion to produce the required β, since its target 

dimension is smaller. For βx = 8, we obtain r0 = 6.76 mm at the phase element, for 

an expansion ratio of 2.25 from the telescope. We could anamorphically expand the 

beam to produce the same β for the y-axis, but we choose a standard radially sym-

metric telescope for βy = 16.

We choose to generate our phase pro!le by varying the thickness of the phase 

element. We wish to develop a polynomial that yields the phase element sagitta, 

or deviations from a plane at the surface vertex and the surface, as a function of 

 distances from the optic axis. We must thus multiply the coef!cients of Equation 5.16 

by βx or βy and convert them to produce sagitta as a function of element coordinates. 

The following equation gives the sagitta of the phase surface:

 
sag( , )x y m x n y m y n y m x n y m x

n y m x n
= + + + + + +

+ + +

2 2 2 2 4 4 4 4 6 6 6 6 8 8

8 8 10 10 100 10y
 (5.41)
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180 Laser Beam Shaping

If we choose to build an element with a positive phase function, the sign convention 

on the sagitta would be such that the phase surface had a concave shape. A simula-

tion of the output spot from this example problem appears in Figure 5.17.

5.8 EXPERIMENTAL EVALUATION

A beam shaping system was developed for an application that required a long work-

ing distance, limited beam sizes, and operation at 10.6 µm. This resulted in a maxi-

mum target spot quality given by β  =  4.8. The phase element was fabricated in 

ZnSe as a 16-level diffractive optic. Figure 5.18 shows the element pro!le along the 
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FIGURE 5.18 Measured pro!le of shaping element along x-axis. It is a 16-level diffractive 

approximation to the desired pro!le shown by the smooth curve. (From F.M. Dickey and S.C. 

Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)

x

FIGURE 5.17 Simulation of output beam produced by sample problem. βx = 8 and βy = 16. 

The patch dimensions are 8 × 8 mm.
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x-axis as measured by a stylus pro!lometer. The desired pro!le in terms of element 

thickness is shown by the smooth curve overlaid on the measured pro!le. In order 

to match the 2π phase shifts of the diffractive optic, 2π phase shifts [or thickness 

shifts of λ/(n – 1)] were applied to the graph of desired pro!le as well. Overall, the 

measured element pro!le was in reasonable agreement with the desired pro!le, with 

the exception of a displacement near the center of the element.

The phase element was tested on a different laser than that for which it was 

designed, although the measured beam dimensions were within the design goals. 

The laser beam passed through the beam shaping optical system and on to a target 

plane. A lens beyond the target plane reimaged and magni!ed the target spot onto 

a pyroelectric array camera. The focus and magni!cation of the reimaging system 

were set by placing a calibrated pinhole at the target plane and adjusting the lens for 

a sharp image on the camera. The laser beam dimensions at the input of the optical 

system were determined with orthogonal scanning knife edges in conjunction with 

an automated focusing system. This device computed the internal beam waist size 

and location as well as the beam divergence. It then computed the same parameters 

for the external laser beam. These quantities then determined the initial beam size 

at the telescope system.

Before presenting the experimental results, it is instructive to see the predicted 

spot geometry for the actual beam input parameters. The system was modeled using 

the computed beam radii for the x and y axes at the !rst telescope lens. There was a 

difference of roughly 5% in the computed radius of curvature for the x and y axes, but 

this was ignored in the modeling. In Figure 5.19, the predicted target spot pro!les for 

the x and y axes are shown, scaled to normalized position units. The optical system 

was initially aligned using a visible reference beam. Final alignment of the beam 

shaping element was accomplished by viewing the target image with the pyroelectric 
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FIGURE 5.19 Predicted target spot pro!les using the measured beam radii at the input of 

the optical system. Units are normalized. (From F.M. Dickey and S.C. Holswade, Optical 
Engineering, 35, 3285–3295, 1996. With permission.)
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array camera. Figure 5.20a shows an image of the target spot when the system was 

aligned. Each change of shade going in toward the center corresponds to an increase 

of irradiance. The square appearance is evident. Figure 5.20b shows a contour plot 

of this same target spot. Pro!les of this image were extracted and are plotted in 

Figure 5.21. These pro!les use the same normalized position units as the predicted 

pro!les of Figure 5.19. The measured pro!les are smaller than predicted, and they 

deviate somewhat from the desired uniform irradiance. Nevertheless, they show a 

general agreement with the predicted uniform pro!les.

The size difference is partly a function of dif!culties in establishing the best 

target plane. Distance measurements from the transform lens were somewhat 

inexact, and compensation was necessary for the curvature of the input beam. 

Also, the reimaging lens and the camera were mounted independently, so that it 

was dif!cult to move the target plane once reimaging focus was set. Most likely, 

the reimaging magni!cation and focus varied during the alignment process. 

These uncertainties, coupled with alignment issues for the shaping element, made 

for dif!culties with several independent adjustments during system alignment. 

It  would have been best to be able to mount the camera, reimaging lens, and 

pinhole together on a common structure, with the pinhole mounted kinemati-

cally. When the camera system was used to !nd the best target plane, the pinhole 

could be replaced to mark it exactly. In addition, a good approximation to the 

target plane position could be found by removing the shaping element from the 

system. The focused beam waist would occur very close to the system focal point, 

and would account for curvature in the input beam. Telescope separation could 

be adjusted to put the target plane at the desired location, with fewer subsequent 

adjustments to make during alignment.

(a) (b)

FIGURE 5.20 (a) Image of the target spot for a β/3 = 4.8 system. (b) Contour plot of 

the target spot. Contours have equal intervals of 3.2% of the maximum value. (From F.M. 

Dickey and S.C. Holswade, Optical Engineering, 35, 3285–3295, 1996. With permission.)
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Differences in the measured pro!le uniformity are at least partly the result of 

two factors. First, the test laser displayed near-!eld deviations from a Gaussian 

shape due to its unstable resonator con!guration. These near-!eld deviations tend 

to be masked in far-!eld beam measurements due to diffraction effects from the 

focusing lens. Second, the measured element pro!le shown in Figure  5.18 dif-

fered somewhat from the desired pro!le, leading to a difference in the phase delay 

applied to the beam.

A common application of beam shaping is for material processing, so this square-

shaped target spot was used to burn polymethyl methacrylate (PMMA) material in 

comparison with a standard Gaussian target spot. Figure 5.22 shows a top view of 
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FIGURE 5.21 Measured pro!les of the target spot, normalized to the same units as the pre-

dicted spot: (a) x-axis; (b) y-axis. (From F.M. Dickey and S.C. Holswade, Optical Engineering, 

35, 3285–3295, 1996. With permission.)
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PMMA material exposed to the square-shaped beam for 1 s. The square shape of 

the removed material is evident. Figure 5.23 shows side views of PMMA material 

exposed to both a Gaussian beam and a square-shaped beam for 50 ms. These views 

were made by cutting the material through the center of the burned spots. The square 

target beam would be advantageous for situations where a burn needs to be made 

to a uniform depth. As the !gure shows, this target spot could be scanned over the 

material, and an even burn pro!le made.

A beam shaping system that produces a circular $at-top pro!le with β = 20 

has also been fabricated.29 In this design, the focusing and shaping functions 

FIGURE 5.22 Top view of PMMA exposed to square-shaped beam for 1 s.

(a) (b)

1 mm

FIGURE 5.23 (a) Cutaway view of PMMA exposed to a Gaussian beam for 50  ms. 

(b) Cutaway view of PMMA exposed to square-shaped beam for 50 ms.
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were combined in a single diffractive phase element designed for λ = 0.633 µm. 

Combining the focusing function implies the addition of a quadratic phase factor 

to the solution of Equation 5.18. The design was fabricated using laser-assisted 

chemical etching, which produced a smooth pro!le with 2π phase discontinuities. 

The addition of the focusing function increased the slope of the phase function to 

the point that many more phase jumps were needed than in a shaping-only design. 

Figure 5.24 illustrates a cross section of the measured target spot for this system; 

the target spot shows fairly steep skirts and a uniformity error of less than ±5%. 

One likely explanation for the uniformity error is interference caused by the phase 

discontinuities in the element.

5.9 SUMMARY

Single-mode Gaussian beams can be transformed into circular or rectangular 

beams with approximately uniform irradiance pro!les in a lossless manner by 

the introduction of an appropriate phase element in conjunction with a Fourier 

transform lens. This chapter presents a diffraction-theory-based solution for 

the phase delay obtained using the method of stationary phase. The quality of 

the target spot was shown to depend on a parameter β that is a function of the 

input beam size, the target spot size, the focal length of the transform lens, and 

the wavelength. This dimensionless parameter accounts for diffraction, inde-

pendently of the particular system. In addition to being a result of applying the 

method of stationary phase to the evaluation of the diffraction integrals, β was 

shown to be directly applicable to the general beam shaping problem using the 

classical uncertainty principle. The use of the β parameter allows the designer 

to determine the system parameters  necessary for a desired target spot qual-

ity, rather than iterate through several designs. Once the system parameters are 
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FIGURE 5.24 Experimental results for a combined shaping and focusing element. The sys-

tem was designed to transform a single-mode Gaussian beam into a uniform, circular irradi-

ance pro!le at the target with β = 20. This !gure shows a cross section through the center of 

the irradiance pro!le. (From X.G. Huang, M.R. Wang, and C. Yu, Optical Engineering, 38, 

208–213, 1999. With permission.)
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known, either the  circular or rectangular phase function can be scaled appropri-

ately. The phase element function can be approximated by a polynomial, which 

allows standard optics  modeling software to predict the effects of system aberra-

tions and tolerances.

A simple mathematical argument is given which shows that the phase-only beam 

shaping is wavelength invariant. If dispersion in the optical elements is negligible, 

the output spot size and shape does not change with wavelength, but the axial posi-

tion of the output does depend on wavelength.

Techniques for collimating the shaped beam by using a conjugate phase ele-

ment are outlined. The phase plate produces a beam with both uniform phase and 

amplitude, giving a greater depth of !eld. Bounds on the generalized Rayleigh 

range for uniform amplitude and phase beams were derived using the uncertainty 

principle.

Beam shaping system design techniques, based on the theory, were discussed and 

several numerical examples were presented to illustrate the range of solutions. The 

sensitivity of system performance to errors in alignment was discussed and illus-

trated by numerical simulations.

A particular design was implemented in hardware and tested. Experimental 

results show that the technique produced a square target spot that was close to the 

predicted pro!le. The application of this system to material drilling and ablation is 

discussed in this chapter.
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APPENDIX A

A simple illustration of the method of stationary phase is given by the problem of 

mapping a uniform amplitude beam into a uniform irradiance beam. Consider the 

problem of determining the phase element in Figure 5.2 that maps a uniform ampli-

tude and phase beam into a uniform irradiance beam at the focal plane of the trans-

form lens. If the phase of the input beam is not uniform, it can be corrected by the 

phase element.

For simplicity, we treat the problem in one dimension. The !eld at the focal plane 

of the Fourier transform lens is given by

 E x xk x x k( ) [ ( / ) / ]ω
α

φ α ω=










−

∞

∞

∫ rect ei d  (A.1)

where:

α is the input beam width

k is an arbitrary parameter (not the wave number)
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Letting ω/k = β, we can write Equation A.l as

 E x xk x x( ) [ ( / ) ]ω
α

φ α β=










−

∞

∞

∫ rect ei d  (A.2)

The above equation can be approximated by the method of stationary phase, giving 

good results for large k. It is desired that the intensity of the !eld at the focal plane 

approximate a rect function. The stationary phase formula

 I k f c
k

c
k c( ) ~ ( )ei[ ]ψ( ) µπ π

ψ′′
+













4
1 22

( )c  (A.3)

gives

 E c k c( ) ( )ω
φ

2 2
=

′′
rect ( )  (A.4)

where:

μ = sign ψ″(c)

c is determined by ψ′(c) = 0

In obtaining Equation A.4, we have used

 ψ φ
α

β( )x x
x=









 −  (A.5)

Equation A.4 implies that ϕ″(x) = a constant. Let

 φ
α α
x x







 =











2
 (A.6)

and determine c by setting dψ(c)/dc = 0, which gives c = βα2/2.

The !eld at the focal plane is then approximated by

 E k k
k≈











− −π ωαω α πe recti[ ]( / ) /2 2 4 4
2  (A.7)

where:

ω = 2πxf /λf
the output spot width, W, is determined by πWα/kλf = 1, giving

 k W
f=

π α

λ
 (A.8)
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The parameter k is similar to β in Section 5.2.4, in that the larger the value of k the 

better the solution. Note that k is a dimensionless constant.

As in the Gaussian to $at-top solution, the phase element that accomplishes 

the mapping is kϕ(x) with ϕ(x) determined by Equation A.6 and k determined by 

Equation A.8. It is interesting to note that the phase element is a simple (thin) lens 

in this case. Within the range of Fourier optics the solution is independent of the 

spacing between the thin lens phase element and the Fourier transform. If a small 

array of these elements were placed before the Fourier transform lens, the uniform 

patterns for each phase element would be superimposed in the focal plane of the 

Fourier transform lens. This is the diffraction theory basis for the “$y’s eye lens” 

beam integration system.

A schematic diagram of the $y’s eye lens beam integration system is shown 

in Figure 5.25. In the !gure, each lenslet array element is focused to a common 

region by a focusing (Fourier transform lens), effecting beam integration (averag-

ing). Each lens in the array samples the input beam. If the size of the elemental 

lenses in the array is small enough, the irradiance of each sample will be approxi-

mately uniform and, as designed, the output irradiance for each lens element will 

be approximately uniform. The net output of the beam integration system is a 

summation of the output from each array element, which should be approximately 

uniform. However, there will be a !ne-structure interference component in the 

output that will depend on the degree of coherence of the laser system. Beam 

integration systems are typically used with multimode laser systems. Multielement 

imaging systems with two lenslet arrays can be designed to eliminate diffraction 

altogether.24 A detailed optical analysis of multifaceted beam integration systems 

is presented in Chapter 10.

APPENDIX B

Assuming the scalar wave equation, it can be shown that the r.m.s. beam width is 

a quadratic function of distance along the optical axis. Equations 3.1 and 3.2 in 

f
2

f
1

FIGURE 5.25 Optical schematic of the $y’s eye lens beam integration system.
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Section 5.3.1 can be obtained as follows. For the case of a monochromatic !eld, the 

scalar wave equation reduces to the Helmholtz equation:

 ( ) ( , , )∇ + =
2 2 0k u x y z  (B.1)

where:

∇ =
∂

∂
+
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+
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2
2
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2
2x y z

k = 2π/λ

In the Fourier transform domain, the solution to Equation B.l is given in Equation 5.20 by

 U f f z U f fx x x x
z k f fx y( , , ) ( , , ) ( ) ( )

=
− −0 2 2 22 2ei π π

 (B.2)

where:

the uppercase letters denote Fourier transformed quantities

fx and fy are Fourier transform variables

U( fx,fy,0) is the Fourier transform of the aperture !eld (at z = 0)

The solution of the wave equation given in Equation B.2 neglects evanescent waves 

requiring that ( ) ( ) .2 22 2 2
π πf f kx y+ ≤

The mean square beam width in the coordinate for a beam with its centroid at the 

coordinate origin is de!ned by
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The integrand in the numerator of the expression after the last equality sign in 

Equation B.3 can be expanded using Equation B.2 to obtain
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Substituting this result in Equation B.3 gives
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The above equation can be written in the simple form:

 ( )∆ρ
2 2
= − +a bz cz  (B.6)

where:

a, b, and c are de!ned as the coef!cients of the corresponding powers of z in 

Equation B.5

The main result expressed in Equation B.5, or equivalently Equation B.6, is that the 

mean square beam width is a quadratic function z.

Further, if b = 0 in Equation B.6, the minimum beam width will be in the plane 

z = 0, and Equation B.6 becomes

 ( )∆ρ
2 2
= +a cz  (B.7)

In the above equation, a is, by de!nition, the minimum mean square beam radius, 

that is, a = (Δρmin)
2. Determining the conditions that give b = 0 is not a trivial matter. 

A suf!cient, but not necessary, condition is that the term in brackets in the numera-

tor integral de!ning b is real. This is achieved if U( fx,fy,0) is a real function with the 

possibility of multiplication by a complex constant. This condition includes beams 

that have purely even or odd amplitude functions and a uniform phase. It would also 

include, for example, beams modulated by suitably symmetric square waves. If the 

beam is not circularly symmetric, the above derivation holds for arbitrary orthogonal 

coordinates. An equation in the form of Equation B.6 is obtained in each coordinate.
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To minimize the spread of the beam it is desirable to have c as small as possible. 

However, a and c are related by the uncertainty principle. To apply the uncertainty 

principle, we can again use the condition (2πfx)
2 + (2πfx)

2 ≤ k2 in the integral de!n-

ing c to obtain
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Applying the uncertainty principle (Section 5.2.3), one can obtain

 ac ≥ λ

π

2
24 2( )  (B.9)

or equivalently

 a c ≥ λ

π4  (B.10)

One can de!ne a Rayleigh range by the condition a cz a+ =02 2 , giving

 z a
c0 =  (B.11)

This result can be readily checked by comparing it to the Rayleigh range for 

Gaussian beams. It is well known that a Gaussian function is a minimum uncertainty 

function,16 that is, equality obtains in the uncertainty principle. Thus, substituting 

Equation B.10 in Equation B.11 gives the Rayleigh range for a Gaussian beam as

 z a
0

24 4
= =

π

λ

π ρ

λ

( )min∆
 (B.12)

Noting that Δρmin = W0/2, where W0 is the 1/e2 beam radius, we obtain z0 = πW0/λ, 
which is the standard result for Gaussian beams.26 Finally, the uncertainty principle 

gives the inequality as a bound on the Rayleigh range:

 z a
0

24 4
≤ =

π

λ

π ρ

λ

( )min∆
 (B.13)

The components of the vector wave equation obey the scalar wave equation. Hence, 

these results can readily be extended to solutions of the vector wave equation.

It can be seen from Equation B.5 that all beams do not have a !nite r.m.s. 

width. A simple example is the radiation pattern of a small dipole antenna.30 The 

radiation pattern of a small dipole (current element) has a !nite r.m.s. width in 

one plane, but the r.m.s. width in an orthogonal plane is in!nite. The !rst term in 

Equation B.5 diverges if the Fourier transform of the !eld distribution, U( fx,fy,0), 

has a discontinuity. An example is a rect function type distribution. This is due to 
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the fact that the Fourier transform of a function with a discontinuity falls off as 

1 x. The second term in Equation B.5 is well behaved.

The third term in Equation B.5 diverges unless U f fx y( , ) 0 in a well-de!ned 

way as ( ) ( )2 22 2
π πf fx y+  approaches k 2. For example, if U( fx,fy,0) is a Gaussian 

function the third term will diverge regardless of the width of the Gaussian func-

tion. Consider a Gaussian beam with a radius of 5 mm and a wavelength of 1 μm, 

then U f fx y( . ) 2
 will be down by a factor of exp( )− ×493 106  at 2πf kx = . Clearly, 

this is a very small number, but the third term would still diverge. If the beam 

radius is close to a wavelength the Gaussian function will not have decayed 

greatly, and the divergence will be fundamental, and the beam does not have a 

well-de!ned radius.

The above discussion suggests that Equation B.5 can be used to determine the propa-

gation of the beam radius by truncating the spectrum to avoid the divergence in the 

third term of Equation B.5. It is simple to truncate the spectrum in a smooth way so that 

the !rst term does not diverge. Further, one might de!ne the beam radius based on the 

energy in the truncated spectrum. For example, the spectrum of the input beam pro!le 

could be truncated so the truncated beams contains something like 99.99% of the origi-

nal beam energy. Clearly, the beam pro!le associated with the truncated spectrum will 

be close to the original beam pro!le.

Using a similar analysis as above, it is simple to show that the centroid of a beam 

propagates in a straight line. The beam centroid is given by
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The integrand in the numerator of the expression after the last equality sign in 

Equation B.14 can be expanded using Equation B.2 to obtain
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Since the value of the integral in Equation B.14 is real, we can substitute the 

 imaginary part of Equation B.15 in Equation B.14 to obtain
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Equation B.16 can be written in the simple form as

 x az b= +  (B.17)

where:

a and b are de!ned as the coef!cients of the corresponding powers of z

The main result expressed in Equation B.16, or equivalently Equation B.17, is that 

the location of the centroid of the beam is a linear function of z, a straight line. The 

divergence issues discussed above are applicable here. Two orthogonal components 

are needed to specify the direction of the beam.
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6.1 INTRODUCTION

Laser beam shaping is used in many !elds of scienti!c, engineering, and industrial 

research and development and has become important for laser-based applications, 

such as lithography, materials processing, isotope separation, medical and illumi-

nation applications, laser printing, optical data storage, spectroscopy, photography, 

laser fusion, and laboratory research. These applications use a variety of the unique 

properties of lasers, such as high intensity, coherent, and monochromatic light of 

lasers. In this chapter, we shall discuss a wide spectrum of geometrical methods 

that have been used to shape a laser beam pro!le, which involves application of geo-

metrical optics to solve the optical design problem for the laser beam shaping system.

Bokor and Davidson [1] have identi!ed several criteria to use when evaluating the 

quality of any beam shaping technique: (1) it forms the desired beam shape with high 

accuracy and has minimal losses of the total power; (2) the output beam shape is not 

sensitive to small changes of the input beam irradiance pro!le or phase distribution; 

and (3) it has minimal reduction of the beam brightness. However, laser beam shap-

ing techniques have been categorized in different ways by different authors.

For example, Kreuzer [2] described, at the Symposium on Optical and Electro-
Optical Information Processing Technology in 1964, four methods for creating a 

uniform irradiance pro!le for a beam leaving a typical laser cavity:

 1. Introduce an aperture into the beam path, which allows only the central 

portion of the laser beam with more uniform irradiance to propagate, which 

uses only a small fraction of the input beam power.

 2. Use a spatial !lter of nonuniform transmission, which attenuates the bright 

central part of a laser beam more than edges.

 3. Integrate the spatial modes with suitable relative phases and amplitudes 

to provide greater uniformity of irradiance than a Gaussian mode from a 

confocal laser resonator.

 4. Use a pair of aspheric lenses whose surface contours are determined by 

imposing the conditions of conservation of energy and constant optical path 

length (OPL) between the input and output beams.

Sinzinger and Jahns [3] describe the use of micro-optics for beam shaping, which they 

categorize as lateral, axial, and temporal beam shaping outside of the laser cavity for 

single or multiple laser beams. Further, Sinzinger and Jahns note that the homogeni-

zation of a laser beam irradiance pro!le is one of the most important commercial 

applications of micro-optical devices. However, Dickey et al. [4] characterize beam 

shaping based on the methods used to modify the laser beam characteristics, such as 

attenuators which truncate a Gaussian beam directly with an aperture, neutral density 
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!lter, or other electro-optics device with an appropriate transverse transmittance 

 pro!le;  integrators that combine the energy within parts of a light beam to create a 

more  uniform irradiance distribution; and transformers (as !eld mappers) that perform 

a one-to-one mapping of the electromagnetic !eld (amplitude and phase) from an input 

plane (or surface) to an output plane (or surface). For more information on the history 

of beam shaping, an extensive history of beam shaping is given in Reference [5].

The process of laser beam shaping discussed in this chapter uses geometrical optics 

to solve the optical design of components to redistribute the irradiance and phase of the 

beam. A beam shape generally refers to the irradiance pro!le of the beam, while the 

phase of a beam is related to the OPL or distance, which a wavefront of a beam has trav-

eled from a reference location, and affects its propagation characteristics. Speci!cally, 

the laws of re$ection and refraction are used along with ray tracing, conservation of 

energy within a bundle of rays, and the constant OPL condition to design laser beam 

pro!le shaping optical systems. Interference or diffraction effects are not considered as 

part of the design process in this chapter. That is, only lenses and mirrors are used for 

the optical components of the laser beam pro!le shaping systems and are discussed in 

this chapter. The characteristics of a laser beam can be changed by using an aperture, 

apodization, integrator, and/or transformer optical elements, while it is important for 

beam shaping methods to minimize losses of power and initial beam brightness and to 

form the desired output beam pro!le with high accuracy.

McDermit and Horton [6,7] presented a method for designing a rotationally sym-

metric re$ective optical system for illuminating a receiver surface in a prescribed 

manner using a nonuniform input beam pro!le. Using their method, two mirrors 

were designed to allow a laser to uniformly heat a $at surface as part of a material 

testing procedure. Malyak [8] has designed a two-mirror laser pro!le shaping sys-

tem where the second mirror is decentered relative to the !rst mirror to eliminate 

the central obscuration present in the axially symmetric design. A set of equations 

was presented for the mirror surface !gure for the nonrotationally symmetric laser 

pro!le shaping optical system.

Laser beam shaping has been demonstrated by many other methods during the 

past 50 years to change the laser beam characteristics when using an aperture, apo-

dization, or integrator optical components [9,10]. Aspheric refractive optics was !rst 

proposed by Kreuzer [2] in 1965 for use in a lossless laser beam shaper by using a pair 

of plano-aspheric lens elements whose surface contours are determined by impos-

ing the conditions of conservation of energy and constant OPL between the input 

and output beams. For the two plano-aspheric lenses in either the Galilean or the 

Keplerian con!guration, Kreuzer [11] developed and patented a coherent-light optical 

system, which redistributes the rays of an input laser beam to yield an output beam 

with a prescribed irradiance distribution, based on the geometrical optics intensity 

law, while maintaining wavefront shape by using the constant OPL condition between 

the input and output wavefronts. Kreuzer presented equations for computing the sag 

of the aspheric surfaces of the two-element refractive system that transforms a col-

limated input Gaussian beam into a collimated output beam with uniform irradiance. 

Frieden [12] published independently from Kreuzer a similar method to design a laser 

beam shaping system. Rhodes and Shealy [13,14] derived a set of differential equa-

tions using intensity mapping to calculate the shape of two aspherical surfaces of a 
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lens system that expands and converts a Gaussian laser beam pro!le into a collimated, 

uniform irradiance output beam, where these differential equations have come to be 

known as the beam shaping equations (geometrical optics law of intensity and con-

stant OPL condition). Rhodes and Shealy also analyzed the performance of a two 

plano-aspheric beam shaper when either element was displaced and/or tilted with 

respect to its nominal position as part of a tolerance analysis. The design methods of 

Kreuzer, Rhodes, and Shealy have been shown in Appendix A to be equivalent.

Shafer [15] designed an afocal beam shaper using spherical lenses. Shafer replaces 

the plano-aspheric elements of Kreuzer’s design by an afocal doublet spherical lens 

with zero net power. By varying the shape of the !rst group of lenses while keeping 

the power constant, a large amount of spherical aberration can be introduced into the 

system which changes the output beam intensity pro!le. Setting the second group of 

lenses to have the same, but opposite sign, amount of spherical aberration will result in 

a collimated output beam with a more uniform intensity pro!le. Balancing the spherical 

aberration of the four spherical lenses leads to an output beam with variations of ±2% 

from uniformity between radial points corresponding to the (1/e) power width of the 

input beam. While seeking to use spherical surfaces for each optical element, Wang and 

Shealy [16,17] presented a method for designing an expanded, uniform irradiance pro-

!le laser beam using two axial gradient-index (GRIN) lenses. Their design procedure 

yields the GRIN pro!les as well as the curvatures and separation of the lens surfaces.

Since ef!cient beam shaping and high uniformity of the output irradiance require 

use of aspheric surfaces, there was an interlude of 30 years from the !rst proposal of 

beam shaping using aspheric lens pair to the !rst publication of experimental results 

by Jiang et al. [18,19] who designed, fabricated, and tested a refractive beam shaper 

in the Galilean con!guration. Single-point diamond lathe !xture was used to cre-

ate the aspheric surfaces in a CaF2 substrate. This system was designed to operate 

at a wavelength of 411.57 nm (HeCd laser), but was also shown to ef!ciently shape 

a HeNe laser (632 nm) when the spacing between the two lenses was increased by 

approximately 2% from its original value [20].

Hoffnagle and Jefferson [21,22] invented an optical system that transforms an 

input laser beam with an axially symmetric irradiance pro!le into an output beam 

with a different axially symmetric irradiance pro!le with a continuous, sigmoidal 

irradiance distribution, such as a Fermi–Dirac (FD) distribution. The design method 

of Kreuzer with convex aspherics in a Keplerian con!guration was used to ease fabri-

cation and introduced a continuous roll-off of the output beam pro!le for more control 

of the far-!eld diffraction pattern. Their beam shaper has been assembled, tested, and 

transferred into a commercially available refractive beam shaper [23] with a large 

bandwidth from IR to UV. Hoffnagle and Jefferson have analyzed the optical sys-

tems for shaping an input Gaussian beam into an FD output beam pro!le and have 

shown that the FD function has similar behavior as the super-Gaussian (SG) function. 

Hoffnagle and Jefferson also provide detailed characterization of a refractive beam 

shaper at 514 nm, which shows that the output beam irradiance variation is less than 

5% and that the root-mean-square (rms) variation of the optical path difference (OPD) 

over the beam is 13 nm. In addition, Hoffnagle and Jefferson have shown that the 

$exibility of the two-lens beam shaper is enhanced by its insensitivity to wavelength 

(deep-UV to near-IR) and by the large depth of !eld of the output beam [24]. Further, 
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Hoffnagle and Jefferson have used geometrical optics and the paraxial approximation 

to derive an expression for the effects that small errors in the slope and curvature of 

the aspheric lens surfaces have on the output irradiance pro!le, which leads to setting 

a tolerance on the lens curvature at the optical axis to be less than 2% variation in the 

output irradiance. Jefferson and Hoffnagle [25] describe methods to achromatize an 

aspheric beam transformer using conventional spherical optics.

Cornwell [26,27] introduced nonprojective transformations for use in designing 

re$ective and refractive laser beam pro!le shaping systems and presented a system-

atic seven-step procedure for designing laser pro!le shaping systems with either rect-

angular or polar symmetry. A number of illustrative examples of using nonprojective 

transformations to design both re$ective and refractive laser pro!le shaping systems 

are presented in his work. Annual conferences on laser beam shaping have been held 

as part of the SPIE Optics and Photonics Symposium since 2000 [28–40].

This chapter deals with how beam transformers are designed and used in applica-

tions when geometrical optics is valid. A beam transformer or !eld mapper performs 

a one-to-one mapping of the optical !eld (amplitude and phase) of the input laser 

beam into a speci!ed output beam with a speci!c irradiance distribution and phase 

pro!le. This type of beam shaping is well suited for applications when the input 

beam has a single mode. One optical element can transform an input beam irradiance 

pro!le into one that uniformly illuminates a speci!c output plane. At least two opti-

cal elements are generally required to achieve more general transformations of the 

irradiance and phase distributions of the input beam. Re$ective, refractive, or diffrac-

tive optical elements have been used for different con!gurations of beam transform-

ers. Beam transformers commonly transform a collimated TEM00 Gaussian beam 

into a collimated and more uniform irradiance pro!le beam, such as top hat, SG, FD, 

or other $attened distributions.

A general theory of designing and analyzing a laser pro!le shaping optical sys-

tems as applied to a two-lens or two-mirror optical system is presented in Section 6.2. 

Speci!c attention is devoted to the application of conservation of energy as expressed 

by the intensity law of geometrical optics and the constant OPL condition as constraints 

on the optical surface !gure of laser pro!le shaping systems. Section 6.3 describes the 

design procedures used to design either refractive or re$ective laser beam shapers. 

A summary of a seven-step procedure for using nonprojective transformation to design 

laser pro!le shaping systems is presented in Section 6.3.3. Section 6.4 describes the 

optical and mechanical tolerances that are important to address when building actual 

laser beam systems. Section 6.5 describes design, fabrication, and testing of several 

refractive beam shapers in the Keplerian and Galilean con!guration, as well as an 

axial GRIN laser beam shaper. Section 6.6 describes design and analysis for one- and 

two-mirror laser beam shapers. Overall conclusions of these efforts to design, build, 

and test refractive and re$ective laser beam shapers are given in Section 6.7.

6.2 THEORY

Geometrical optics has been an effective method for designing laser beam shaping 

systems when a relationship between beam waist, wavelength, and apertures of the 

optical elements is such that the effects of diffraction are not important to consider 
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during the design of the beam shaping optics [9,10]. In particular, when the input and 

output beam pro!les are known and when there is a one-to-one mapping between the 

input and output beams, the geometrical optics intensity law and the constant OPL 

condition have been used to design re$ective and refractive con!gurations of laser 

beam shapers [2,8–22]. In addition, a Gaussian to $attened beam shaping system 

must also be designed to optimize competing constraints, such as ef!cient use of the 

beam power, propagation of the desired beam pro!le across the region of interest, 

and uniformity of output beam irradiance pro!le throughout the region of interest. 

Finally, the aspheric optics must be fabricated and aligned within acceptable cost for 

the application of interest. This section will highlight the essential results of geo-

metrical optics used in beam shaping and discuss output beam pro!les and propa-

gation. This section also addresses the irradiance pro!les commonly used in beam 

shaping applications and the effects of diffraction associated with the !nite size of 

the aperture and of the beam propagation from the optics for $attened pro!les using 

Kirchhoff’s diffraction theory with the Fresnel approximation.

6.2.1 GEOMETRICAL OPTICS

The concepts of rays, wavefront, and energy propagation are fundamental to under-

standing and using geometrical optics for shaping laser beam pro!les. A brief over-

view of these concepts is presented in this section. Then, geometrical optics is used to 

set up several constraint equations that are used to determine the re$ective or refractive 

surface shape or gradient index pro!le as part of the optical design of laser beam pro-

!le shaping optical systems. There are many discussions of geometrical optics in the 

literature [41–43]. In order to determine or optimize the illumination within an optical 

system, the optical !eld must be determined throughout the system. The optical !eld 

is a local plane wave solution of Maxwell’s equations for an isotropic, nonconducting, 

and charge-free medium and is a solution of the scalar wave equation [44,45]:

 ( ) (∇
2 2 02+ n k u r) 0=  (6.1)

where:

u(r) represents the components of the electric !eld at any point r

n is the index of refraction at r

k0 = ω/c = 2π/λ0 is the wave number in free space, where ω is the frequency of the 

wave, c is the speed of light, and λ0 is the wavelength of light

Assume that a solution to Equation 6.1 can be written as

 u u k( ) ( ) [ ( )]r r= 0 0r exp i Φ  (6.2)

where:

u0(r) and Φ(r) are unknown functions of r

Equation 6.1 leads to the following conditions that must be satis!ed by u0(r) and Φ(r):

 ( )∇ =Φ
2 2n  (6.3)
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2 0 0 02u u u∇ ∇Φ + ∇ Φ =. 2 0

 
(6.4)

where the term proportional to ( / )1 02k  has been neglected, or explicitly, ray optics 

requires for small wavelengths that the following condition be satis!ed:

 
2

0u

u

( )
( )
r

r ~  (6.5)

Equation 6.3 is known as the eikonal equation and is a basic equation of geometrical 

optics, which is discussed in more detail in Section 6.2.1.1, where a general solution of 

the eikonal equation is presented and discussed for the nonsymmetric case and for the 

rotationally symmetric case. Equation 6.4 is the intensity law of geometrical optics 

and expresses conservation of radiant energy within a bundle of rays, which will be 

discussed in Section 6.2.1.2 and is essential for designing laser beam shaping optics.

6.2.1.1 Eikonal Equation

From Equation 6.2, we can identify the function Φ(r) as the phase of the optical !eld, 

u(r). The surfaces of constant phase of the optical !eld are known as the geometrical 

wavefronts

 Φ( ), ,x y z = constant  (6.6)

For isotropic media, rays are normal to the wavefront along the direction of the 

energy propagation. A unit vector normal to the wavefront and along a ray at the 

point r is given by

 A r r
r

r
r( ) ( )

| ( ) |
( )

( )= =
∇

∇

∇Φ

Φ

Φ

n
 (6.7)

where the eikonal equation was used to simplify this expression for the ray vector A. 

In homogeneous media, it also follows from the eikonal equation that the magnitude 

of ∇Φ is independent of position. Therefore, the position of a wavefront at a later 

time is parallel to its original position. Thus, rays in homogeneous media are straight 

lines. It is convenient to de!ne an optical ray vector as S ≡ nA with the conventional 

normalization given by

 | |S 2 2 2 2 2= + + =u v w n  (6.8)

where:

(u,v,w) are the optical direction cosines of a ray with respect to the coordinate 

axes (x,y,z)

The eikonal is also known as Hamilton’s characteristic function, and the eikonal 

equation has also been identi!ed as the analogy of the Hamilton–Jacobi equation. 

Solutions of the eikonal equation have been very useful in optical design, where a 

power series solution of the eikonal equation has been used for approximately a cen-

tury in lens design. The coef!cients of the series solution are known as aberrations. 

Additional properties of rays are given in Section 6.2.1.3.
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6.2.1.1.1 General Solution for Nonsymmetric Systems

A general solution of the eikonal equation (Equation 6.3) has been developed by 

Stavroudis and Fronczek [46,47] for light propagating in a homogeneous medium 

with a constant index of refraction n in the direction of S and to have the form

 Φ( ) . ( , ) ( , )r r S= +u v k u v  (6.9)

where the following auxiliary conditions are imposed on the k-function, k(u,v):

 
∂

∂









 − − = − − − +

k u v
u n u v x n u v uz( , ) 2 2 2 2 2 2  (6.10a)

 

∂

∂









 − − = − − − +

k u v
v n u v y n u v vz( , ) 2 2 2 2 2 2  (6.10b)

It is convenient to use subscripts on k(u,v) to indicate partial differentiation with respect 

to the corresponding variables, such as ku = ∂k(u,v)/∂u. The vector r = (x,y,z) speci!es 

the coordinates of points on a wavefront at some distance s along the optical axis from 

the reference origin O, and k(u,v) is a general function of two optical direction cosines 

of the ray vector S whose !rst partial derivatives satisfy Equation 6.10a and b.

A general expression for the k-function for refraction of a plane wave from an 

arbitrary surface has been presented by Shealy and Hoffnagle [48,49]. Figure 6.1 

N
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β ezS1

S2

er

n1 n2
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x

Wavefront

Refracting
surface

W

FIGURE 6.1 Schematic diagram of the refracting surface x, showing the incident ray 

S1(= n1ez), the refracted ray S2, and the wavefront W when the origin of coordinate  system 

O  is located at the vertex of refracting surface with the optical axis. (Reproduced from 

Shealy, D. L. and Hoffnagle, J. A. J. Opt. Soc. Am. A, 25, 2370–2380, 2008. With permission.)
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illustrates the geometry for refraction of a plane wave from a single surface and the 

notation used for this problem. The refracting surface separates two regions with uni-

form indices of refraction n1 and n2. A global coordinate system with origin O is used 

such that x locates an arbitrary point on the surface separating region 1 and region 2. 

The normal unit vector to the surface is given by N, and the vectors S1 and S2 are the 

optical wave vectors of the incident and refracted rays, respectively. The angles of 

incidence and refraction are given by α and β, where the deviation of the refracted 

ray is given by θ = β − α. The vector W speci!es an arbitrary point on refracted ray 

at x. As shown by Shealy and Hoffnagle [48], the k-function in region 2 is given by

 k( ) .S x N2 = −Ω  (6.11)

where:

Ω is the factor appearing in relationship between the incident and outgoing wave 

vectors [50]:

 S S2 1= +ΩN  (6.12)

where:

 
Ω = − α + βn n1 2cos( ) )cos(  (6.13)

The k-function given by Equation 6.11 applies to a plane wave propagating along 

the optical axis and refracting from an arbitrarily shaped surface. In general, the 

k-function evaluated from Equation 6.11 will be a function of the two optical direc-

tion cosines of the refracted rays for point on the input aperture coordinates.

To evaluate the equation of a speci!c wavefront, we set Φ(r) in Equation 6.9 equal 

to a constant, such as

 Φ( )r = n s2  (6.14)

where:

s is the distance along a reference axis, such as the optical axis or the z-axis from 

a reference origin O

Equations 6.9 and 6.10 can be rewritten for the speci!c wavefront de!ned by 

Equation 6.14 as follows:

 xu yv z n u v k u v n s+ + − −22 2 2 2+ =( , )  (6.15a)

 
− + + =uz x k n u vu( ) 22 2 2 0− −  (6.15b)

 
− + =vz y k n u vv( )+ − −22 2 2 0  (6.15c)

which can be solved for the coordinates (x,y,z) of the position vector W on the wave-

front de!ned by Equation 6.14 and whose wavefront equation is given by

 W S K( , , )u v s q n= −2
22

 (6.16)
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where:

 q n s k u v= [ ( , )] .2 − + S K2  (6.17a)

 
K = ( , , )k ku v 0  (6.17b)

From the equation of a wavefront (Equation 6.16), Stavroudis [47] has evaluated the 

two principal curvatures of the wavefront, ρ±, and the associated caustic surfaces:

 ρ± = −
±








1
22n q H S  (6.18)

where:

S is proportional to difference between ρ±

 H n u k n v k uvkuu vv uv= − −( ) ( )22 2 22 2 2+ −  (6.19)

 
S

2 2 22 2 24= −H n w T  (6.20)

 
T k k kuu vv uv

2 2= − ( )  (6.21)

From the principal curvatures, one can compute the transformation of irradiance along 

a ray [42]. Finally, the two caustic surfaces, C±, are described by the following points:

 C± = ± −
1

2 22n H( )S S K2  (6.22)

These methods have been used to evaluate the wavefront, caustic surfaces, and irra-

diance of the laser beam as it propagates through beam shaping optical systems. In 

addition, it is well known that the wavefront aberration of a symmetric optical system 

has been de!ned as the OPL along a ray between the wavefront in the exit pupil and 

the ideal reference spherical wavefront centered on the idea (paraxial) image point of 

the object which generated the given wavefront [51]. Therefore, Equation 6.16 for the 

wavefront can be used to evaluate the aberrations for an optical system without making 

a series expansion as illustrated for a plane wave re$ected from a spherical mirror [52].

In addition, Hoffnagle and Shealy [49] evaluate an analytical expression for the 

k-function and wavefront re$ected from each surface of a Cassegrain telescope. 

Therefore, in the case, the wave aberration function has been evaluated by calcu-

lating the distance from the exact wavefront and the Gaussian reference spherical 

wavefront which goes through the center of the exit pupil and is centered on the 

Gaussian image point.

6.2.1.1.2 General Solution for Rotationally Symmetric Case

For systems with rotational symmetry for the incident wavefront, the refracting sur-

face and the refracted wavefront as shown in Figure 6.1, the optical ray vector, S2, 

and points on a refracted wavefront, W, are given below in terms of their components 

along the axial and radial directions:

 W e e= +W Wr r z z  (6.23a)
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S e e2 22 2= − − +n w wr z  

(6.23b)

Stravroudis and Fronczek [46] have also shown that the wavefront refracted from a 

rotationally systemic optical system must satisfy the following relationship:

 n s W n w W w k wr2 22 2= − − + +z ( )  (6.24)

where the k-function satis!es the following auxiliary condition:

 k k w
w

W w
n w

Ww
r

z≡

−

d
d
( )

= − −

22 2
 (6.25)

Shealy and Hoffnagle [48,49] have established a general expression for the k- function 

as given by Equation 6.11 which applies at each refracting surface in a multielement 

optical system. Explicitly, to evaluate the k-function at the second refracting sur-

face of an optical system, then one increments by 1 the indices of each quantity in 

Equation 6.11, or the k-function for a general refracting surface shown in Figure 6.1 

is given by the following equation:

 k = −Ωx N.  (6.26)

where:

x and N are de!ned in Figure 6.1

Ω is de!ned by Equation 6.13

Equation 6.26 provides interesting insight into the physical meaning of the k- function. 

Since the vector ΩN represents the change between the input and refracted optical 

ray vectors, which is along the direction of the unit normal vector to the refracting 

surface with a magnitude of Ω, the k-function is the projection of −ΩN onto the 

position vector x of the point of refraction. Equation 6.26 is a convenient form for 

the k-function for evaluating the !rst and second derivatives of k with respect to w, 

when w is a function of r, and for evaluating the wavefront and the caustic surfaces.

The !rst and second derivatives of k(w) with respect to w have been shown to be 

given by following results:

 k w r n w n w z r( ) ( ) ( )= +22 2 1− −  (6.27a)

 

k rw
n w

z rw =−
−

−

22 2 ( )  (6.27b)

 

k n w n
z n w w n

rn
n www =

′′ − −
−

−

( )
( )( ) ( ) /

1 22 2

22 2 1 3
22

22 2 3 2
−  

(6.27c)

where the intermediate steps required to obtain Equation 6.27c from Equation 6.27b 

by taking the derivative of kw with respect to w are given in the original work [48]. 

In addition, an equation of the refracted wavefront follows from Equations 6.24 

and 6.25 by using the explicit expressions for k(w) from Equation 6.27a and for kw 

from Equation 6.27b to obtain
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 W x( , , ) ( , ) [ ( ) ]r s r n z r n s nφ φ − += + 1 2
2
22
S

 (6.28)

which agrees with an earlier result for an equation for the wavefront refracted by a 

rotationally symmetric surface which was obtained by using a constant OPL argu-

ment for the plane wave propagating from a reference plane [53].

Finally, equations for the caustic surfaces for a plane wave refracted by a rotation-

ally symmetric surface [48] for the con!guration of the refracting surface shown in 

Figure 6.1 are given as follows:

 C e e+ −
− −

′′ −












+ +

−
= r zr n w n w n

z n w n z r w n w22 2 1 22 2

22 1 3
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z n w n
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( )′′ −











 
(6.29a)

 C e−

−













= +z z r rw
n w

( )
22 2

 (6.29b)

It is interesting to compare Equation 6.29a and b with similar results presented ear-

lier by Shealy and Hoffnagle [53], which were obtained by generalized ray tracing 

and expressed in terms of the !rst and second derivatives of the sag function z(r) of 

the refracting surface with respect to r. Inspection of Equation 6.29a and b suggests 

that we can write

 C x S
± ±= + r n

2
22

 (6.30)

where r± represents the OPL along S2 from x to the points on the tangential and sagit-

tal caustic surfaces, which represent the principal radii of curvature of the wavefront 

just after refraction at x. By inspection of Equations 6.29a through 6.30, we conclude 

that r± are given by

 r n w n
z w n+ =
′′ −

( )
( )
1 22 2

1 3
−  (6.31a)

 r rn
n w− =

22

22 2−

 (6.31b)

Further, we have shown that Equation 6.31a and b is equivalent to Equation 6.23a 

and b presented by Shealy and Hoffnagle [53] for the tangential and sagittal wave-

front curvatures at the point of refraction on the lens.

Shealy and Hoffnagle [53–55] have reported both experimental and computa-

tional evaluation of the wavefront propagation and caustic surfaces formed between 

the two plano-aspheric lenses of a Keplerian con!guration of a laser beam shaping 

device, which was designed to transform a Gaussian beam into a $attened irradiance 

pro!le output beam. Equations 6.16 and 6.22 have been used to evaluate the wave-

front propagation and the caustic surfaces between the two aspheric lenses of refrac-

tive beam shaper, which was designed, built, and tested by Hoffnagle and Jefferson 
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[21,22,24,56,57]. Figure 6.2a illustrates a cross section of the refracted wavefront 

near the vertex of the !rst aspheric lens of this one-to-one Keplerian (1-to-1K) beam 

shaper and the optical axis, and Figure 6.2b illustrates the wavefront as it propagates 

through the focal region of the !rst aspheric lens and on to the second aspheric lens 

of this 1-to-1K beam shaper. There are cusps and in$ection points on the wavefront 

as it propagates between the two aspheric lenses of the refractive beam shaper, and 

the wavefront folds back upon itself several times as it comes in contact with the 
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FIGURE 6.2 Cross section of refracted wavefront for (a) s = 0, 2, 5, 8 mm and (b) s = 40, 50, 65, 

75.5, 90, 95, 100, 110, 120, 130, 140, and 150 mm represented by dashed lines. The caustic surfaces 

of the plano-aspheric lens of a 1-to-1K laser beam shaper with q = 15, n = 1.46071, RFL = 3.25 mm, 

and w0 = 2.366 mm. (Reproduced from Shealy, D. L. and Hoffnagle, J. A. Wavefront and caustic 

surfaces of refractive laser beam shaper. In Novel Optical Systems Design and Optimization X, 

Koshel, R. J. and Gregory, G. G., eds., vol. 6668, 666805-1, 2007. With permission.)
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tangential and sagittal caustic surfaces as its irradiance is being redistributed over 

the wavefront according to the optical design condition of the intensity law and the 

constant OPL condition, which will be discussed in detail in Section 6.3.

6.2.1.2 Intensity Equation

Equation 6.4 is equivalent to the conservation of radiant energy within a bundle of 

rays and leads to the geometrical optics intensity law for propagation of a bundle of 

rays as illustrated in Reference [58]. Using the vector identity,

 ∇ ∇. . .( )f f fv v= + ∇v  (6.32)

Equation 6.4 can be rewritten as

 ∇ ∇ =∇. ( ) . ( )u u n02 02 0Φ A =  (6.33)

Recognizing that the energy density of a !eld is proportional to the square of the !eld 

amplitude u02 and that the intensity I is equal to the energy density of the !eld times 

the speed of propagation within the medium, Equation 6.33 can be written as

 ∇ . ( )IA = 0  (6.34)

Equation 6.34 expresses conservation of radiant energy for nonconducting medium. 

Integrating Equation 6.34 over a tube surrounding a bundle of rays [42] gives after 

application of Gauss’ theorem:

 I A I A1 1 2 2d d=  (6.35)

Equation 6.35 expresses conservation of energy along a ray bundle between any two 

surfaces intersecting the beam and is a basic equation used to design laser beam pro-

!le shaping optical systems. Born and Wolf [42] as well as Shealy [59] used the geo-

metrical optics intensity law to provide a method for evaluating the intensity along 

any ray path based on the integral of the Laplacian of the eikonal.

Integrating Equation 6.35 over the input and output apertures is equivalent to 

applying conservation of energy between the input and output planes of a laser beam 

shaper. For an ideal optical system, we assume that none of the power is blocked 

from the beam as a result of the lens apertures. Therefore, we assume that both the 

input and output beams contain the same total power, which is normalized to unity

 
2 2 1

0 0
π = π =I r r r I R Rin outd d
∞ ∞

∫ ∫( ) ( )R
 

(6.36)

where the input beam is often a Gaussian beam, and the output beam pro!le has 

been considered in the literature to have a top-hat or $attened irradiance pro!le as 

discussed in Section 6.2.2.

6.2.1.3 Ray Optics

According to geometrical optics, the phase and amplitude of the optical !eld are evalu-

ated independently. First, the ray paths are evaluated throughout the optical system, 

which enables computing the phase in terms of the OPL of rays passing through the 
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system. Next, the amplitude of the optical !eld is determined by monitoring the intensity 

variations along each ray [60–62]. This approach for evaluating the phase and ampli-

tude of the optical !eld is in contrast to the more rigorous wave optics or electromag-

netic theory approach, which involves solving coupled partial differential equations for 

the complex electromagnetic !elds where the phase and amplitudes are interdependent.

Rays generally characterize the direction of the $ow or propagation of radiant 

energy, except near foci or the edge of a shadow where interference and diffraction 

takes place. Thus, a ray is a mathematical construct rather than a physical entity. 

Snell’s law relates the direction of incident and refracted rays at an interface between 

media of different indices of refraction, which can be written in vector form:

 n n1 2( ) ( )a N A N× ×=  (6.37)

where:

a and A are the unit vectors along the incident and refracted rays, respectively

N is a unit vector along the normal to the interface surface with the general ori-

entation of the incident ray

(n1,n2) are the indices of refraction of the incident and refracting media

The vector nature of this equation ensures coplanarity of rays and interface surface nor-

mal, as required by electromagnetic theory. For ray tracing, it is convenient to vector 

multiply Equation 6.37 by N and simplify the resulting triple vector product into the form

 n n n n2 1 2 1A a N= −+ β α( cos cos )  (6.38)

where:

 cos . cos .β = αA N a Nand =  (6.39)

and (α,β) are the angles of incidence and refraction. When mirrors are involved, the 

refraction ray equations can be used for re$ection by setting n2 = −n1 and using the 

optics sign convention. Explicitly, a unit vector A along a re$ected ray is given by 

the following equation:

 A a N a N= − 2 ( . )  (6.40)

where:

N is a unit normal vector at the point of re$ections

a is unit vector along the incident ray

Rays may also be de!ned as lines normal to the geometrical wavefront. Wave propa-

gation is commonly described by wavefronts. A wavefront is a surface of constant 

phase of the wave or OPL from the source or reference surface. In electromagnetic 

theory, the direction of radiant energy propagation is given by the Poynting vector or 

cross product of the electric and magnetic !elds.

Each ray generally follows the path of shortest time through the optical system 

according to Fermat’s principle which states that a ray from points P to Q is the 

curve C connecting these two points such that the integral

224



210 Laser Beam Shaping

 

OPL C d( ) ( , , )= n x y z s
C
∫

 

(6.41)

is an extremum (maximum, minimum, or stationary). The quantity n(x,y,z) is the 

index of refraction of the medium and ds is the in!nitesimal arc length of the curve. 

For a homogeneous medium, the OPL between P and Q is the geometrical path length 

between the two points times the index of refraction of the medium. In general, the 

OPL divided by the speed of light in free space, c, gives the time for light to travel 

from point P to Q along the ray path C. The ray path C can be determined using the 

calculus of variations [50]. It can be shown [45] that when the index of refraction, 

n(r), is a smooth function, the ray path C satis!es the differential equation:

 
d
d

d
ds n s n( ) ( )r r





= ∇ r  (6.42)

where:

r is the position vector of any point on the ray

Equation 6.42 is known as the ray equation and is dif!cult to solve in many cases. For 

homogeneous medium (n = constant), the ray path is represented by a straight line:

 r A b( )s s= +  (6.43)

where:

A and b are constant vectors

s is the ray OPL

Constant index of refraction materials are used in many optical systems. When the 

index of refraction is a function of position, such as the axial distance, z, the ray paths 

are curved. Section 6.5.3 will illustrate how laser pro!le shaping systems are designed 

using materials with a gradient index of refraction, n(z). Now, the ray trace equations, 

the intensity law which expresses conservation of energy along ray bundle, and the con-

stant OPL condition are used to design optical systems for shaping laser beam pro!les.

6.2.2 IRRADIANCE PROFILES

For this work, we consider collimated, axially symmetric beam propagating along the 

optical axis, which we consider to be the z-axis. We label the input and output irradi-

ance distributions by Iin(r) and Iout(r). In Section 6.2.2.1, we describe general proper-

ties of $attened irradiance pro!les and how $attened pro!les are used in practical 

applications.

6.2.2.1 Flattened Irradiance Pro"les

To avoid diffraction effects in regions of sharp changes in the irradiance pro!le, 

several authors have reported using analytic functions for nearly $at or $attened 

beam pro!les, including the SG [63], the $attened Gaussian (FG) [64], the FD [21], 
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the super-Lorentzian (SL) [65], and the $attened Lorentzian (FL) [66] distributions. 

There have been a number of studies on the propagation characteristics and the far-

!eld intensity pattern of these distributions [65,67–69].

A general $attened output irradiance pro!le can be written as a product of its 

normalization constant, I0(ξ,R0), which can be determined by requiring the pro!le 

be normalized according to Equation 6.36, and its functional dependence f(ξ,R/R0), 

which depends on the shape parameter ξ and the ratio of radial coordinate, R, to the 

beam width, R0, of each pro!le:

 I
R

R
I R f

R

R
out 0ξ = ξ × ξ, , ,( )

0
0

0


















  (6.44)

The width parameter, R0, de!nes a length scale over which the pro!le decreases to 

some signi!cant value for the speci!c pro!le, such as half or e−2 of its axial value. 

The shape parameter, ξ, speci!es the shape of the pro!le function, such as the power 

of the radial coordinate of a SG pro!le.

Using the irradiance functions and normalization constants given in Table 6.1, we 

have evaluated the irradiance functions for these $attened pro!les, which are pre-

sented in Figures 6.3 through 6.5. For example, Figure 6.3a presents the plots of the 

TABLE 6.1
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FIGURE 6.3 (a) SG and (b) FG output irradiance for shape parameters p and N. All 

pro!les are normalized such that the total energy contained within each irradiance distri-

bution over all space is equal to unity, and the beam width parameters are equal to unity. 

The pro!les for p = 2 and N = 0 reduce to the Gaussian pro!le with axial irradiance equal 

to 0.6366. The axial irradiance of the SG pro!les for p = 4, 8, 12, and 30 are equal to 

0.5079, 0.4126, 0.3851, and 0.3452, respectively, and the FG pro!les with the axial irradi-

ance for N = 1, 5, 10, and 49 are equal to 0.5093, 0.4110, 0.3827, and 0.3458, respectively. 

(Reproduced from Shealy, D. L. and Hoffnagle, J. A. Beam shaping pro!les and propaga-

tion. In Laser Beam Shaping VI, Dickey, F. M. and Shealy, D. L., eds., vol. 5876, 58760D-1, 

2005. With permission.)

227



213Geometrical Methods

irradiance of the SG pro!le for selected shaper parameters p, where the  corresponding 

axial irradiance values are given within the caption of this !gure. Figure 6.3b dis-

plays the irradiance associated with the FG pro!le for selected shape parameters, 

which allows for some comparison of SG and FG pro!les for a range of respective 

shape parameters. Figure 6.4a displays the output irradiance associated with the FD 
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FIGURE 6.4 (a) FD and (b) SL output irradiance for shape parameters β and M. All pro!les 

are normalized such that the total energy contained within each irradiance distribution over 

all space is equal to unity, as well as the beam width parameters are also equal to unity. The 

cross-sectional distance is expressed in the normalized units of the beam width. (Reproduced 

from Shealy, D. L. and Hoffnagle, J. A. Beam shaping pro!les and propagation. In Laser Beam 
Shaping VI, Dickey, F. M. and Shealy, D. L., eds., vol. 5876, 58760D-1, 2005. With permission.)
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function for different shape parameters β. Qualitatively, it follows from Figure 6.4a 

that as β increases the FD function approaches a top-hat function, except that the 

irradiance varies continuously from zero to its uniform axial value as one moves 

across the aperture. In the limit as β approaches in!nity, one can prove that FD 

pro!le approaches the top-hat function. Figure 6.4b displays the SL pro!le that 

approaches a $at-top pro!le for M > 15. Figure 6.5 presents a plot of the irradiance 

of the FL pro!le, where the beam width parameters are not equal to the radius at 

which the pro!le is equal to half of its axial value.

Shealy and Hoffnagle [70] have noticed that the slope of the SG, FD, and SL 

pro!les at the half-height point is linearly proportional to their corresponding shape 

parameters, which raises the question if any of these $attened irradiance pro!les can 

effectively be represented by other $attened pro!les under suitable pro!le matching 

conditions. Shealy and Hoffnagle [71] have shown that when the following pro!le 

matching conditions are used:

Equal radius when the irradiance is equal to half of its axial value

Equal slope of the irradiance of the radius of the half-height point

then one can determine the shape and width parameters of all these $attened pro-

!les, since the shape and width parameters of one of the $attened pro!les are 

assumed to be known. Further, Shealy and Hoffnagle have evaluated the implicit 

functional dependence of the shape and width parameters of the SG, FD, and SL 

pro!les on the FG pro!le shape N as a result of the two pro!le matching conditions 
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FIGURE 6.5 Cross-sectional plot of the irradiance for the FL pro!le with the shape param-

eters q = 2, 5, 10, 20, 50 and the width parameter RFL = 1. All pro!les are normalized such 

that the total energy contained within each irradiance distribution over all space is equal to 

unity. (Reproduced from Shealy, D. L., Hoffnagle, J. A., and Brenner, K.-H. Analytic beam 

shaping for $attened output irradiance pro!le. In Laser Beam Shaping VII, Dickey, F. M. and 

Shealy, D. L., eds., vol. 6290, 629006-1, 2006. With permission.)
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given in this section. Figure 6.6 presents the dependence of the shape parameters 

p[SG], β[FD], and q[SL] on N[FD] and allows for comparison of beam shapers 

that were designed to produce different $attened irradiance pro!les. Therefore, 

explicit beam shaping results produced by $attened pro!les in this chapter will be 

expressed for historical reasons in terms of either an FD pro!le or an FL pro!le, 

where one can use results from Reference [71] to convert results produced for an 

FD to FL pro!le or vice versa.

6.2.2.2 Practical Applications

For practical applications, it is important to understand the relationship between 

uniformity and ef!ciency for the output beam pro!le. Consider a beam that illumi-

nates a circular region of space of radius Rmax, and de!ne the peak-to-peak unifor-

mity of the beam over this region in terms of the extrema of the irradiance within 

this region:

 U R
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f R R
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( )( )max

max
= = 0  (6.45)

where:

f(R) is the output irradiance function as given in Table 6.1

The fraction of the total beam power within the region R < Rmax represents a measure 

of the ef!ciency of the output beam pro!le shape, since the total beam power has 

been normalized to unity, and is given by
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FIGURE 6.6 Comparison between shape parameters of the SG, FD, and SL shape param-

eters as a function of the FG shape parameters for pro!les with matched parameters. The FD 

shape parameter β and the SL shape parameter q have the same functional dependence on N 

for the scale of this !gure and have been represented by one curve. (Reproduced from Shealy, 

D. L. and Hoffnagle, J. A. Appl. Opt., 45, 5118–5131, 2006. With permission.)
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The beam ef!ciency and uniformity vary from 0 to 1. Equations 6.45 and 6.46 

implicitly de!ne a relationship between uniformity and ef!ciency, which only 

depends on the beam shape. For a Gaussian beam, U r r wPP ( ) exp( / )max max= −2 2 02  and 

η( ) exp( / )max maxr r w= − −1 2 2 02 . Hence, η = 1 − UPP for a Gaussian beam. For other 

beam shapes there are nonlinear relationships between ef!ciency and uniformity. 

A key point of all beam shaping is to balance the trade-off between uniformity of 

the illumination over some extended region with the ef!ciency of use of laser beam 

power. Figure 6.7 illustrates the relationship between ef!ciency and peak-to-peak 

uniformity for a family of SL and SG beam pro!les [21].

In some applications, it is more useful to consider the rms variation rather than 

the peak-to-peak variation of the irradiance. The average value of the irradiance 

leaving the output aperture of radius Rmax is
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and its variance is
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SG and the SL pro!les for different shape parameters. (Reproduced from Shealy, D. L. and 

Hoffnagle, J. A. Aspheric optics for laser beam shaping. In Encyclopedia of Optical Engineering, 

Driggers, R., ed., Taylor & Francis, doi:10.1081/E-EOE-120029768, 2006. With permission.)
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The relative rms variation is then de!ned as
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I R
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out
( ) ( )

( )max
max
max

=
〈 〉

σ
 (6.49)

The implicit relationship between Vrms and η depends only on the beam shape in 

similar manner as between Upp and η.

6.2.3 PROPAGATION

In Section 6.3, we will show how to design optical systems that use the principles 

of geometric optics to perform an arbitrary transformation of the irradiance pro!le 

of a rotationally symmetric laser beam. The transformation of irradiance requires 

a redistribution of rays; after this has been accomplished, it is possible to include 

an element that restores the direction of all the rays to that of the incoming beam, 

thus producing a collimated, shaped beam with a planar wavefront. The purpose of 

recollimating the beam is to enable it to propagate over some useful distance, but in 

order to describe the propagation of laser beams it is necessary to go beyond simple 

ray optics and include the effects of diffraction. While it is possible to generate laser 

beams, most importantly those with the Gaussian pro!le,
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which retain the same form as they propagate, diffraction generally modi!es the 

shape of a propagating beam. For instance, it is well known that a collimated beam 

with a “top-hat” pro!le
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 (6.51)

transforms in the far !eld to an Airy pro!le proportional to [J1(r)/r]2, where J1(r) is 

the Bessel function of order 1. For suitable choices of the shape parameter, the $at-

top pro!les of Section 6.2.2.1 closely resemble the top hat, so it is to be expected that 

they evolve in the far !eld to have shapes similar to the Airy pro!le. This change 

in shape does not prevent $at-top or other shaped beams from being useful, since 

their shapes may change only slightly over signi!cant distances in the near !eld. 

As part of the design of laser beam shaping optics, it is important to understand the 

effect that diffraction has on the shape of the output beam and the range of propa-

gation over which the beam can be considered to retain its shape, to within some 

required tolerance. Propagation effects for the family of FG beams have been studied 

in detail by Gori and coworkers [64,68,72,73], who introduced quantitative measures 

of shape-invariance error and shape-invariance range. These works made use of the 

fact that FG beams are a sum of ordinary Gaussian beams, which evolve in a simple 

way as they propagate. Here we follow the approach of Campbell and DeShazer [74], 

which uses the Huygens–Fresnel principle [42] and the Fresnel approximation.

To calculate diffraction effects in the context of the Huygens–Fresnel principle, we 

assume that the beam can be described by a scalar optical !eld u(r) which obeys the 

Helmholtz equation and has the property that the irradiance is proportional to |u(r)|2. 
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Assuming that at the output aperture of the beam shaper the beam is collimated and 

rotationally symmetric, with an optical !eld u0(r), the Kirchhoff diffraction integral 

with the Fresnel approximation yields the following expression for u(r,D), the optical 

!eld as a function of r, after propagating a distance D from the output aperture
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0
0

2
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(6.52)

where:

k = 2π/λ is the wave number of the light

Rmax is the radius of the output aperture

J0(x) is the Bessel function of order 0

φ is a phase term that includes the period λ oscillation of the phase of the optical 

wave and the wavefront curvature due to diffraction, but which does not 

affect the irradiance calculation

The one-dimensional diffraction integral that describes propagation of a  rotationally 

symmetric beam can easily be evaluated numerically for output beam pro!le [71]. 

When considering the propagation of $at-top pro!les, it is convenient to combine the 

three important length scales, λ, D, and R0 (where R0 designates any of the param-

eters used for the radius of the $at-top beam) into a single dimensionless parameter 

called the Fresnel number

 N R
DF =
02

λ
 (6.53)

which determines the change in shape of the propagating beam independently of 

the individual dimensional parameters. This can be seen by introducing the scaled 

transverse variables

 α =
R

R

max
0

 (6.54)

 ξ =
r
R0

 (6.55)

 τ=
ρ

R0
 (6.56)

and the functions v and v0 for the optical !eld in terms of the scaled coordinates

 v N u r D( , ) ( , )ξ =F  (6.57)

 
v u0 0( ) ( )τ = ρ  (6.58)

Then Equation 6.52 transforms to

 v N N v J N N( , ) ( ) exp( )ξ = π τ π ξτ π τ τ τϕ

α

F F i F Fe i d2 20 0 2

0
∫ ( )

 
(6.59)

which relates the shape of the beam after propagation to the shape of the beam in the 

output aperture and the Fresnel number.
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As an illustration of how $at-top beams change shape as they propagate, Figure 6.8 

follows the evolution of two beams with FD pro!les differing in the beam shape param-

eter, β. For given wavelength and beam diameter, NF is inversely proportional to propa-

gation distance. From Figure 6.8, we conclude that beams with a steeper falloff at the 

edges propagate for much shorter distances before being seriously distorted by diffrac-

tion than do beams with more rounded edges. Other authors have come to similar con-

clusions after studying the effects of diffraction on SG [67] and FG [68] beams. Shealy 

and Hoffnagle [71] compared the propagation of beams with different functional forms 

(e.g., SG vs. FG) to see whether the choice of the pro!le function has any important 

in$uence on the propagation beams that have the same size and edge steepness. To 

make a quantitative comparison between beams with pro!les of different functional 

forms, two beams were considered “comparable” if the normalized irradiance pro!les 

had the same radius at half-maximum and the same derivative of irradiance with respect 

to radius, evaluated at the half-maximum point. The conclusion, not surprisingly, was 

that for beams with the same size and edge steepness, the exact functional form of the 

irradiance pro!le has very little impact on the propagation of the beam.

The propagation of shaped beams depends not only on the choice of beam shape but 

also on the aperture of the beam shaping optics, as can be seen from the  appearance 

of the scaled aperture α in Equation 6.59. The functions in Section 6.2.2.1 are de!ned 

for all positive radii, but in designing real optics a !nite aperture must be chosen, 

and there is an incentive for the designer to keep the aperture as small as possible, to 

limit the cost of !guring and testing aspheric surfaces. If the aperture is too small, 

 however, the truncation of the beam can severely limit the propagation range of the 

beam. This is shown in Figure 6.9, which is obtained by evaluating Equation 6.59 for 

an FD pro!le with β = 16.25, NF = 31, and a range of α from 1.08 to 1.54.

Finite-aperture effects can be surprisingly large. For instance, the aperture cor-

responding to Figure 6.9b transmits more than 99% of the total power in the shaped 

beam, yet it seriously degrades the uniformity of the beam after propagation, as can 
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FIGURE 6.8 Propagation of FD beams with β = 16.25 (top row) and β = 50 (bottom row). 

The !ve plots in each row show the shape of the beam for NF = 31, 15, 10, 8, and 6, from left 

to right. In each plot, the broken curve represents the original irradiance distribution and the 

solid curve is the irradiance after propagation. (Reprinted from Shealy, D. L. and Hoffnagle, 

J. A. Aspheric optics for laser beam shaping. In Encyclopedia of Optical Engineering, 

Driggers, R., ed., Taylor & Francis, doi:10.1081/E-EOE-120029768, 2006. With permission.)
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be seen by comparing Figure 6.9b with Figure 6.8a, which shows the pro!le of the 

same output beam at the same Fresnel number, but without truncation.

The diffraction integral (Equation 6.52 or 6.59) shows how the beam shape 

changes as the beam propagates, which is very useful when choosing the appropriate 

output pro!le for a beam shaper, but it does not yield a simple !gure-of-merit for 

the propagation of the shaped beam. There is no single number that summarizes the 

propagation properties of a beam, but one quantity that has found widespread use in 

this context is the M2 factor introduced by Siegman [75]. This factor describes how 

much more rapidly the diameter of an arbitrary beam diverges than a Gaussian beam 

of the same diameter, and it has the advantage of being relatively easy to evaluate, 

both in theory and by irradiance measurements of real beams. Parent et al. [67] found 

an analytic expression for the M2 factor of SG beams, and Bagini et al. [68] did the 

same for FG beams. Shealy and Hoffnagle [71] added analytic expressions for M2 of 

FD and SL beams and compared the propagation properties of $at-top beams with 

various pro!les. The results are summarized in Figure 6.10, which shows how M2 
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FIGURE 6.9 Effect of truncation on FD beams with β  =  16.25 after propagation with 

a Fresnel number of 31. The normalized beam aperture is (a) 1.08, (b) 1.23, (c) 1.38, and 

(d) 1.54. (Reprinted from Shealy, D. L. and Hoffnagle, J. A. Aspheric optics for laser beam 

shaping. In Encyclopedia of Optical Engineering, Driggers, R., ed., Taylor & Francis, 

doi:10.1081/E-EOE-120029768, 2006. With permission.)

0 50 100
1.0

1.5

2.0

2.5

Shape parameter

M
2

SG

FG
FD
SL

FIGURE 6.10 M2 as a function of beam shape parameter for the four families of $at-top 

pro!les introduced in Section 6.2.2.1. (Reproduced from Shealy, D. L. and Hoffnagle, J. A. 

Appl. Opt., 45, 5118–5131, 2006. With permission.)
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varies as a function of the shape parameter for the pro!les in Section 6.2.2.1. As the 

shape parameter increases, indicating a steeper roll off at the edge of the beam, M2 

increases. In the limit of in!nite shape parameter the pro!les considered here all 

approach the top-hat pro!le, and M2 diverges. More details and a summary of all the 

analytic expressions can be found in Reference [71].

6.3 DESIGN

Cornwell [26] notes that the !rst element of a beam shaper creates suf!cient aber-

rations in the wavefront to redistribute the irradiance of the beam after propagation 

by a speci!ed distance and that the second element of the beam shaper restores the 

wavefront to its original shape. By imposing the geometrical optics intensity law on 

a bundle of rays passing through the beam shaper, the process of transforming an 

input Gaussian beam pro!le into a more uniform output irradiance pro!le can be 

described by a nonlinear, one-to-one mapping of the input to the output aperture 

coordinates. The constant OPL condition is used to ensure that the input and output 

wavefronts have the same shape. Newman and Oliker [76] have used geometrical 

optics to understand how an input irradiance distribution is redistributed after re$ec-

tion or refraction from one optical surface. Later, Oliker [77,78] developed a method 

for the design of a free-form two-mirror or two-lens optical system without any 

symmetry to transform an input laser beam into an output beam with a prescribed 

irradiance pro!le.

Ries and coworkers [79–82] have developed numerical solutions to the illumina-

tion design or tailoring of a re$ecting or refracting surface which will transform a 

speci!ed light source into a desired irradiance distribution on a speci!ed target sur-

face. Tailoring of a two-dimensional system leads to solving an ordinary differential 

equation for optical surface shape, whereas tailoring a three-dimensional illumination 

system requires one to solve a nonlinear partial differential equation for the shape of 

the optical surface. However, Ries [79] asserts that solving either an ordinary or par-

tial differential equation to determine the optical surface shape is the superior method 

of optical design of illumination system when compared to optimization methods.

To achieve the overall beam shaping, two optical elements are required. These 

optical elements may be re$ective, refractive, or diffractive. A goal of the optical 

design of laser beam shapers is to de!ne the optical components suf!ciently so that 

the beam shaping system can be analyzed, fabricated, and tested. For re$ective and 

refractive beam shaping, the surface sag, spacing, and index must be determined for 

all media. Initially, we consider the two plano-aspheric laser beam shaping systems 

in the Galilean or Keplerian con!guration shown in Figure 6.11a and b.

In Section 6.3.1, we describe how to use the geometrical optics law of intensity 

to obtain the ray mapping function, which describes how an input Gaussian beam 

is transformed by the !rst element into a difference irradiance distribution over the 

second element of the optical system, which may be a detector or another component 

of a beam shaping system. There are two cases to consider: (1) When one seeks only 

to illuminate the detector surface with a prescribed irradiance distribution, then the 

ray mapping function can be used with the slope of the re$ected or refracted ray 

from the !rst element to obtain a !rst-order, ordinary differential equation for the 
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sag of the !rst surface to the desired illumination of the detector. See Equations 6.66 

and 6.67 for an example of designing a refractive illumination system. (2) When 

the second surface is an optical element that is used to create a desired wavefront 

shape with a speci!c irradiance distribution, then the sag of the second element is 

determined by the condition used to !x the shape of the output wavefront. In Section 

6.3.2, we describe how the constant OPL is used to determine the sag of the second 

element of the beam shaper.

When the intensity law and constant OPL condition are satis!ed, the beam shaper 

will transform an input Gaussian beam into a output plane wave with the prescribed 

irradiance distribution. In Section 6.3.3, a general formalism known in the literature 

as nonprojective transforms is described.

6.3.1 GEOMETRICAL OPTICS LAW OF INTENSITY

The geometrical optics law of intensity requires the intensity times a cross-sectional 

area of bundle of rays be constant along the beam, which is given for a rotationally 

symmetric beam by
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For a particular Gaussian to FL pro!le transformation, Shealy et al. [66] integrated 

Equation 6.60 to obtain
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FIGURE 6.11 Ray plots of (a) Galilean and (b) Keplerian con!gurations of a two plano-

aspheric lens laser beam shaper.
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and then solved the above equation for r(R) to obtain
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where:
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Galilean configuration
Keplerian configuration  (6.63)

Now, solve for R(r) by taking the square root of Equation 6.61, and then, raise both 

sides of the equation to the qth power and solve for (R/RFL)q. Next, the ray mapping 

function, h(r), of the Gaussian to the FL pro!le transform follows after taking the 

qth root:
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Figure 6.12a presents a plot of the ray mapping function of a Gaussian to FL pro-

!le, normalized by RFL, as a function of the input aperture radius, normalized by 

w0, for several shape parameters q of the FL pro!le. Figure 6.12b gives a plot of 

the fraction of total input beam energy within the input aperture of radius rang-

ing from 0 to 2w0. The ray mapping function and its inverse contain information 

about how the input Gaussian beam is changed by the !rst lens into a more uni-

form output beam.

As an example of using Figure 6.12a and b to determine the !rst-order aperture 

radii of a 1-to-1K beam shaper which transforms more than 99% of the incident 

energy, assume that the input Gaussian beam waist is w0 = 2.366 mm and that the 

output FL beam shape parameter is required to be q = 15. From Figure 6.12b, we 

conclude that more than 99% of the input Gaussian beam passes into the beam 

shaper when the aperture radius of the !rst lens is equal to or greater than 1.5w0 or 

rmax = 3.546 mm for this design. From Figure 6.12a, we estimate that (R/RFL) = 1.18 

for q = 15 and input aperture radius of 1.5w0. For this 1-to-1K beam shaper, we 

require rmax = Rmax. Then, we can solve for the FL beam width parameter to be 

RFL  =  Rmax/1.18  =  3.0  mm for this set of parameters. To ensure higher energy 

transform ef!ciency, one can increase the input aperture to 2w0 = 4.732 mm, for 

example. This means in this case that both rmax and Rmax are equal to 4.732 mm, but 

from Figure 6.12a, we estimate that (R/RFL) = 1.48 in this case, and the FL output 

beam width parameter is 3.2 mm for a 1-to-1K con!guration. A detailed analysis 

of slope and curvatures of aspheric lenses must also be done before !nalizing the 
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input and output aperture sizes, as well as a detailed assembly and fabrication 

analysis.

As a second example, Hoffnagle [83] noted that the geometrical optics law of 

intensity can be used to design a plano-aspheric lens that can be used to uni-

formly illuminate a plane located a distance Z from this plano-aspheric lens when 
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FIGURE 6.12 (a) Plot of the ray mapping function as shown in Equation 6.64, normalized 

by RFL, as a function of the input aperture radius, normalized by the input beam waist ω0, 

for the output FL pro!les with shape parameters of q = 10, 15, 20, 30 and for the $at-top 

pro!le. (b) Plot of the fraction of input beam energy that is contained within an input aper-

ture radius r. (Reproduced from Shealy, D. L. and Hoffnagle, J. A. Wavefront and caustic 

surfaces of refractive laser beam shaper. In Novel Optical Systems Design and Optimization 
X, Koshel, R. J. and Gregory, G. G., eds., vol. 6668, 666805-1, 2007. With permission.)
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 illuminated with a Gaussian beam. The ray mapping function for this application 

is given by

 h r R r
w( ) = 







± − −0

2

0
1 2exp  (6.65)

where:

R0 is the radius of the top-hat pro!le on the illumination plane de!ned by 

Z = constant

± sign distinguishes between two classes of solutions to this beam shaping prob-

lem as described in more detail by Hoffnagle

Further, using elementary trigonometry, Hoffnagle has shown that the slope of 

aspheric surface must satisfy the following !rst-order, ordinary differential equation:

 
d
d
z
r

h r r
n z r Z=

−

− −

( )
( )  (6.66)

where:

n is the index of refraction of the lens

 is given by

 = − + −[ ( ) ] [ ( )]h r r Z z r2 2  (6.67)

Using the boundary condition of z(0) = 0, one can numerically integrate Equation 6.66 

for z(r) to obtain an accurate description of the aspheric lens surface.

6.3.2 CONSTANT OPL CONDITION

Kreuzer [11] !rst expressed the constant OPL condition of a two plano-aspheric beam 

shaper in the form given below by Equation 6.75, which is convenient for combining 

with Snell’s law to obtain a differential equation for the sag of the aspheric surfaces. 

Shealy and Chao [84] incorporated the constant OPL condition into the design of 

beam shapers by using a generalized, vector-based ray tracing method, which has 

been applied to the design of systems with circular, elliptical, or rectangular sym-

metry and has also been shown to be equivalent to the approach used by Kreuzer. 

For the rotationally symmetric systems considered in this chapter, the trigonometric 

approach of Kreuzer is presented. Following the work of Kreuzer [2,11], Shealy and 

Hoffnagle [85] evaluated the sag of the !rst aspheric lens, z(r), of a refractive beam 

shaper as a function of the input ray height, r, and expressed in terms of the ray 

mapping function, h(r), lens spacing, t, and index of refraction, n, of each lens as 

described in this section. The constant OPL condition is imposed for all rays pass-

ing through a laser beam shaper to obtain a functional relationship between the sag 

functions of each aspheric and the direction cosines of the refracted ray from the 

!rst aspheric. The OPL of a ray passing along the optical axis and through the beam 

shaper shown in Figure 6.11a is given by
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 (OPL)0 = nt1 + t + nt2 (6.68)

and the OPL of a ray at a radial height r is given by

 ( ) ( ) ( )OPL r n t z n t Z= + + + −1 2  (6.69)

where:

 is the distance along the ray from (r,z) to (R,Z)

The sag functions z(r) and Z(R) are de!ned relative to a local coordinate system with 

their origin located at the vertex of the surface with the optical axis. The constant 

OPL condition for this system can be written as

 = + − −n t Z z t n( ) ( )+ 1  (6.70)

where nt was added and subtracted to the right-hand side of Equation 6.70 for con-

venience in a later simpli!cation. The constant OPL condition (Equation 6.70) is 

expressed in terms of the unknown sag functions z(r) and Z(R), whereas the ray map-

ping function (Equation 6.64) is an explicit relationship between r and R. To deter-

mine the sag functions, it is necessary to introduce Snell’s law into the derivation of 

a physically meaningful expression for the slope of the aspheric surfaces. This can 

be achieved by transforming Equation 6.70 into an equation relating t, n, R, r, and 

the angle θ which a ray from (r,z) to (R,Z) makes with the optical axis. Referring to 

Figure 6.11a and the right triangle formed between the points (r,z) and (R,Z) with 

as the hypotenuse that forms an angle θ with the horizontal side that is parallel to the 

optical axis, the trigonometric relations hold

 sinθ = −R r  (6.71)

 
cosθ = + −t Z z  (6.72)

Combining Equations 6.70 and 6.72 gives

 ( cos ) ( )1 1− = −n t nθ  (6.73)

which can further be simpli!ed by eliminating  by dividing Equation 6.73 by 6.71 

to obtain

 t n
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−
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θ

θ  (6.74)

Squaring the above equation and adding (n2 − 1) to both sides leads to the following 

simpli!cation for the constant OPL condition:
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 (6.75)
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6.3.2.1 Sag of First Aspheric Surface

In this section, an equation for the sag of the !rst aspheric surface will be obtained 

by combining the ray mapping function and the constant OPL condition with results 

obtained by applying Snell’s law for refraction of rays at the aspheric surfaces. 

Speci!cally, Snell’s law at the !rst aspheric surface is

 nsinα1 = sinψ1 = sin(α1 + θ) = sinα1 cosθ + cosα1 sinθ (6.76)

where:

α1 is the angle of incidence

ψ1 is the angle of refraction

ψ1 = α1 + θ from the geometry of the beam shaper, as shown in Figure 6.11a

Dividing Equation 6.76 by cosα1 gives after collecting terms

 tan sin
cosα
θ

θ
1 =

−n
 (6.77)

Since the input and output beams are parallel to the optical axis, it follows that the 

slope of each aspheric surface for radial points, which satisfy the ray mapping func-

tion, is equal to the tangent of the angle of incidence:

 
d
d

d
d

z r
r

Z R
R

( ) tan ( )
= α =1  (6.78)

Combining Equations 6.75 and 6.77 with the above equation leads to an expression 

for the slope of the !rst aspheric surface
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(6.79)

where Equation 6.64 is used for evaluating R as a function of r when evaluating the 

sag of the !rst aspheric surface and the prime denotes differentiation with respect 

to its argument. Equation 6.79 was !rst derived by Kreuzer [11]. When computing 

the sag of the !rst aspheric surface, it is convenient to rewrite Equation 6.79 with the 

term (R − r) in the numerator

 z r h
t n n h

r
( ) [ ( ) ]

( ) ( )[ ( ) ]=
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− + − −∫
τ τ τ

τ τ

d
2 2 2 2

0 1 1
 

(6.80)

By expanding the square root in the denominator of Equation 6.80, the slope of the 

!rst aspheric surface can be evaluated from the series
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 (6.81)
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For points near the optical axis, the slope can be approximated by the !rst term of 

this series

 ′ =
−

−
z r h r r

t n r( ) [ ]
( )
( )

1 for small  (6.82)

The second derivative of the z(r) with respect to r can be evaluated from Equation 6.82 

for small r

 ′′ =
′ −

−
z r h r

t n r( ) [ ( ) ]
( )

1
1 for small  (6.83)

Since the input and output irradiance are constant for the point near the optical axis, 

the geometrical optics intensity law implies
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Equation 6.83 can be written for small r as

 ′′ =
−

z
I I

t n
cr( ) ( )/ ( )

( ) ( )0 0 0 1
1 0in out −

=  (6.86)

where:

cr(0) is the axial curvature of the !rst aspheric surface

6.3.2.2 Sag of Second Aspheric Surface

Kreuzer [11] notes that it is apparent from Figure 6.11 that the slope on the !rst 

aspheric surface at the point (r,z) is equal to the slope of the second along the ray at 

the point (R,Z). Combining Equations 6.75 and 6.77 with Equation 6.78 and integrat-

ing leads to an expression for the sag of the second aspheric surface
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(6.87)

where Equation 6.62 for h R r− =1( )  is used to evaluate the integral while comput-

ing the sag of the second aspheric surface. In a similar manner as presented in 

Section 6.3.2.1, the curvature of the second aspheric surface on axis is given by

 ′′ =
−





−
=Z

I I

t n
cR( ) ( ) / ( ) ( )( )0 1 0 0

1
out in 0  (6.88)

where:

cR(0) is the axial curvature of the second aspheric surface
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6.3.3 NONPROJECTIVE TRANSFORMS

For a projective transformation in optics, a point in image space can be expressed as a 

linear function of the coordinates of the object point. Perfect imaging systems, such as 

Maxwell’s “!sh-eye” lens or stigmatic imaging of surfaces, are examples of projective 

transformations in optics. In practice, aberrations are present in many optical systems, 

and point-to-point imaging is not possible, except to the !rst-order or paraxial approxi-

mation. Cornwell [26,27] notes that all real optical systems perform nonprojective 

transformations to some extent. That is, there is a nonlinear dependence between input 

(or object) and output (or image) coordinates, as illustrated by the ray mapping function 

of a Gaussian to FL beam shaping transformation, which describes the nonlinear rela-

tionship between the input and output aperture coordinates as given by Equation 6.64 

and illustrated in Figure 6.12a. Therefore, the geometrical methods of Section 6.3 for 

designing a laser pro!le shaping system are an example of a nonprojective transforma-

tion in optics. Cornwell notes that the !rst element of a laser beam pro!le shaping (non-

projective transform) system creates suf!cient aberrations in the wavefront to restructure 

the intensity of the beam after propagation of the wavefront over a speci!ed distance. 

Then, the second element of a laser beam pro!le shaping system has suitable contour to 

restore the original wavefront shape of the beam. If the purpose of a laser beam pro!le 

shaping system is to uniformly illuminate a surface, then the second element is not 

needed. Symbolically, a laser beam pro!le shaping system may be considered to be a 

“black box” that transforms an input laser beam (plane wave) with a Gaussian intensity 

distribution into an output beam (plane wave) with uniform intensity distribution. It is 

also convenient to consider that the input and output beams have radii r and R, which are 

related by the ray mapping function that characterizes the beam transformation, such 

as Equation 6.64 that describes the ray mapping function of a Gaussian to FL beam 

transformation. References [26,27] present extensive discussion of many types of laser 

beam pro!le shaping systems and draw some interesting and general conclusions. In 

particular, Cornwell provides a seven-step recipe for designing two-element systems, 

which perform nonprojective transformations, such as laser pro!le shaping systems. 

Since the contents of Refs. [26,27] are not widely available in the optics literature to the 

knowledge of this author, these seven steps are summarized as follows:

 1. Write out differential power expressions for the intensity distributions over 

the input and output planes.

  Rectangular coordinates

 Iin(x,y)dxdy = Iout (X,Y)dXdY (6.89)

  Polar coordinates

 Iin(r)rdr = Iout(R)RdR (6.90)

 2. Use the conservation of energy to relate the input and output beam parameters.

  Rectangular coordinates

 
I x y x y I X Y Yin

Input aperture Output aperture
outd d d d∫ ∫( , ) ( , )= X

 
(6.91)
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  Polar coordinates

 

I r r r I R R Rin
Input aperture Output aperture

outd d∫ ∫( ) ( )=
 

(6.92)

 3. Determine the magni!cation relating the input and output ray heights.

  Rectangular coordinates: Assume the intensity functions are separable:

 I x y a x a yx yin( , ) ( ) ( )=  (6.93)

 
I X Y A X AX Yout ( , ) ( ) ( )= Y  (6.94)

  Allowing for nonuniform shaping of a laser beam pro!le in two  orthogonal 

directions, X = mx(x)x and Y = my(y)y, the rectangular magni!cations  follow 

from combining Equations 6.89, 6.93, and 6.94:
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  where:

Ci are constants determined by boundary conditions, such as the mag-

ni!cation for a rim ray

  Polar coordinates
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 m r
r

I r r r

I m r r

r

( ) ( )
( ) ][= +

1 2
0

in
out

d
∫












C  (6.98)

 4. Express the OPL between input and output reference surfaces of an arbi-

trary ray in terms of the OPL of a reference ray.

 5. Determine the sag z(r) of the !rst element.

 6. Determine the inverse magni!cation relating the ray coordinates at the !rst 

and second elements.

 7. Determine the sag Z(R) of the second element.

6.4 OPTICAL AND MECHANICAL TOLERANCES

We have shown how the principles of geometrical optics can be applied to design 

re$ective and refractive systems that transform the irradiance pro!les of collimated 

laser beams. For the important special case of rotationally symmetric input and out-

put pro!les, the problem of designing the optical elements can be reduced to a pair 

of integral equations with exactly two solutions, such as Equations 6.80 and 6.87 for 
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the refractive beam shaper. It is not dif!cult to solve these equations to any desired 

numerical precision, thus obtaining a prescription for a set of lenses or mirrors that 

exactly solves the beam shaping problem.

However, real optics fabricated by an optical shop inevitably departs to some degree 

from their ideal mathematical prescription. Physical lens or mirror surfaces do not 

exactly obey Equations 6.80 and 6.87, and the positioning of the beam shaping optics 

with respect to each other and to the input beam is never absolutely perfect. The input 

beam itself, in reality, only approximately follows an idealized functional form such 

as Equation 6.50. This section considers the performance of a laser beam shaper that 

differs slightly from the exact solution derived in Section 6.3. It relates to the impor-

tant practical considerations of optical and mechanical tolerances. When fabricating 

real optics, an optical shop needs to know how precisely the surfaces must be !gured. 

Likewise, mechanical engineers and machine shops need to know the demands on the 

mounting hardware. The answers to these questions depend on the properties of the 

optical system that deviates slightly from an ideal con!guration. The issue of align-

ment tolerances in beam shaping optics was !rst raised by Rhodes and Shealy [13], 

who performed numerical calculations for a two-lens refractive reshaper. Hoffnagle 

[86] published a limited treatment of !gure error, but Oliker [78,87] published the 

!rst complete analysis of the effects of !gure error on the output irradiance of a beam 

shaper. The discussion that follows is based on the work of Shealy and Hoffnagle [85], 

analyzing the optomechanical tolerances of the two-element refractive beam shaper.

The description of real, imperfect optics is more complex than the derivation of 

the perfect solution to the beam shaping problem, because it requires consideration 

of a multitude of ways in which real optics can depart from the ideal solution. One 

approach to this study would be to use the power of numerical ray tracing to model a 

large number of optical systems obtained by varying the prescription obtained from 

the exact, ideal solution. This chapter relies mainly on a more limited but analytic 

approach, making use of the fact that an exact ideal solution is known and also 

imposing two simplifying conditions. The !rst condition is that the deviations of the 

optics from the exact solution are assumed to be small enough so that the rays in the 

perturbed system are the same as the rays in the ideal system except for a perturbation 

that we need only to compute the !rst order in the quantity describing the perturba-

tion. The second condition is that we consider individual fabrication and alignment 

errors in isolation, for instance we consider optics that is ideal except that the axis 

of the beam shaper is translated from the axis of the input beam. Breaking down the 

many sources of error in this way simpli!es the calculations, and is intended also to 

provide some insight into the properties of imperfect optics that can be useful when 

testing and aligning practical beam shaping systems. Tolerances are considered in 

the following order: !rst, the effects of imperfect !guring of the surfaces; second, the 

effects of incorrect placement of the optical surfaces with respect to each other; and 

third, the consequences of the input beam not being matched properly to the beam 

shaping optics. In all cases, it is important to consider both the irradiance and the 

wavefront of the beam at the output aperture. The discussion in this section is limited 

to the special case of a rotationally symmetric, two-element refractive beam shaper, 

for which the ideal prescription has been derived in Section 6.3.2. Clearly, analogous 

calculations could be carried out for beam shapers using re$ective or GRIN optics.
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6.4.1 FIGURE ERROR

Figure error refers to imperfect shaping of the lens or mirror surfaces, which causes 

errors in both the irradiance and the wavefront generated by the beam shaper. The 

irradiance at the output aperture of a two-element beam shaper is determined by 

the !rst element, so the output irradiance is distorted by error in its !gure. The !rst, 

incomplete discussion of the effect of !gure error on a beam shaper was given by 

Hoffnagle [86], considering only rotationally symmetric perturbations of a  refractive 

system using plano-aspheric lenses. While the assumption of rotational symmetry is 

too restrictive for a realistic treatment of the imperfections that arise in the grinding 

and polishing processes, it is relevant to one consideration of practical importance, 

namely, the error that can be inadvertently introduced to the optical surfaces by 

approximating the exact solution of the design equations by a polynomial. Equations 

6.80 and 6.87 can be solved numerically to determine the sag function z(r) to any 

desired precision at any radius r. However, software for optical design and analysis 

often requires that aspheric surfaces be expressed in the form of a power series. 

(Conic sections are also generally allowed, but since conic sections have no special 

signi!cance for beam shaping optics it is simpler to speak just of power series.) 

A rotationally symmetric sag function z(r) can be described exactly by an in!nite 

power series, but in practice the series must be truncated after some !nite number of 

terms, and this introduces error into the description of the surface. As an example, 

Reference [86] considers the effect of approximating the exact solution for the !rst 

surface of a refractive Gaussian to $at-top beam shaper by an eighth-order poly-

nomial. In the speci!c case considered, the deviation of the polynomial from the 

exact solution was at most 50 nm, and the effect of this !gure error was to introduce 

unwanted radial variations of ±2%–3% into the output irradiance pro!le. This level 

of nonuniformity is very noticeable when a $at-top output is desired, underscoring 

the importance of keeping numerical errors small when one uses a power series to 

describe the surfaces of beam shaping optics.

The !rst complete treatment of the effect of !gure error on the irradiance pro!le 

generated by a refractive beam shaping lens was published by Oliker [78,87]. His 

method analyzes the perturbation of the known, ideal lens shape, using a formalism 

that has no constraints (such as symmetry) on the shape of the reshaping optics or the 

input and output pro!les. To summarize his analysis in the notation of this review, 

suppose that an ideal lens with rotationally symmetric sag function z(r) transforms 

the input irradiance pro!le Iin(r) to an output pro!le Iout(R), where r and R are related 

by the ray mapping function R = h(r). Next consider an imperfect lens with the sag 

function (not necessarily rotationally symmetric) z r z r( ) ( , )+ φ , where the perturba-

tion z is assumed to be small enough that we only need to consider the lowest order 

effects on the slope and curvature of the wavefront after the lens. In addition, de!ne 

the quantity

 M z n zr( ) ( )= + −1 1 2 2  (6.99)

where the subscript denotes differentiation, that is, zr ≡ ∂z/∂r. Then Oliker !nds the 

perturbed irradiance distribution to be related to the ideal distribution by
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(6.100)

This expression describes the perturbed output irradiance in terms of the error in the 

!gure of the !rst lens at the point of refraction on the !rst lens. Oliker also derives a 

more general expression for the case in which the ideal optical system is not rotation-

ally symmetric, which can be found in Reference [78].

6.4.2 ERROR IN RELATIVE LOCATION OF THE OPTICAL SURFACES

A two-element beam shaper is most commonly constructed with mounting hardware 

to hold the individual elements in their prescribed positions. Mechanical imperfec-

tions in the alignment of the elements with respect to each other can be broken down 

into three possibilities: incorrect lens separation, centration offset, and tilt between 

the symmetry axes of the lenses. This section considers the associated tolerances, 

assuming that the optical system is otherwise perfect; the input beam is assumed 

to have its ideal form and be perfectly aligned to the !rst lens. This means that the 

irradiance at the nominal position of the second lens has its ideal form, but because 

the second lens is positioned incorrectly it does not perfectly perform its function of 

generating a collimated output beam. Consequently, the class of errors considered in 

this section affects the output wavefront but not the irradiance pro!le at the output 

aperture.

First, we consider lens separation error, which is particularly simple to analyze 

because it preserves the rotational symmetry of the optical system. Rhodes and 

Shealy [13] analyzed this tolerance by numerically computing the irradiance after 

the output beam propagated for some distance; here we prefer to describe the aber-

ration of the wavefront at the output aperture. The geometry of the optics is shown 

schematically in Figure 6.13.

By construction, when the lens separation is correct the angle of incidence of each 

ray is the same at the !rst and second lenses, so that after two refractions the ray is 

parallel to the optical axis. When the lens separation is incorrect, the ray intersects 

the second lens at a different radius than designed, at which point the angle of inci-

dence on the lens surface is different from the design value, leading ultimately to the 

ray exiting the system with a nonvanishing angle δ to the optical axis, as shown in 

an exaggerated way in Figure 6.13b. The connection between lens spacing error and 

error in the slope at the second lens is illustrated in Figure 6.14.

The !rst lens deviates the ray by the angle

 θ ψ − α1 1 1=  (6.101)

where:

α1 = arctan(dz/dr)
ψ1 = arcsin[nsin(α1)]
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Ideally, the refracted ray intersects the second lens at the point A, where the lens 

slope Z′(R) = dZ(R)/dR is equal to α1 by design. A lens spacing error Δt causes a 

radial displacement ΔR in the intersection, which is now at the point B. If the align-

ment error is small, the lens surfaces can be approximated by a Taylor series in the 

neighborhood of A. In this approximation, we can solve for the intersection point to 

lowest order in Δt, obtaining

 ∆ =
θ α

α + θ
R t∆ sin( )cos( )

cos( )
1

1 1
 (6.102)

(a)

R

r

(r,z)

(R,Z)
t0

(b)

t0 + Δt

ψ1

ψ
2

α1

 χ
2

δ
θ

θ

FIGURE 6.13 Ray paths through a refractive beam shaper with (a) lenses spaced correctly 

and (b) lenses spaced incorrectly.

A

α1

α2

θ1

Δt

ΔR

L2 L2′

B

FIGURE 6.14 Geometry of a ray in the neighborhood of the second lens surface. Translating 

the surface from its design location L2 to L2′ changes the radius at which the ray intersects the 

lens and thereby the slope of the lens at the point of intersection. The dotted line is drawn paral-

lel to the optical axis of the lens system. (From Shealy, D. L. and Hoffnagle, J. A. Aspheric 

optics for laser beam shaping. In Encyclopedia of Optical Engineering, Driggers,  R.,  ed., 

Taylor & Francis, doi:10.1081/E-EOE-120029768, 2006. With permission.)
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The slope of the second lens at point B is given by Z′(R + ΔR) and the angle α2 shown 

in Figures 6.13 and 6.14 is given by α2 = arctan[Z′(R + ΔR)].

From the angle α2 it is simple to compute the error in collimation δ. Referring to 

Figure 6.13, the angle of incidence at the second refracting surface is

 ψ = θ + α2 1 2  (6.103)

and the corresponding angle of refraction is

 χ ψ
2 2= 





arcsin sin( )
n

 (6.104)

The angle between the ray internal to the second lens and the optical axis is then 

given by δg = χ2 − α2. A !nal refraction at the plano surface of the second lens gives

 δ δ= arcsin[ sin( )]n g  (6.105)

If the lens spacing error is small, we can approximate δ = nδg, then combining the 

relations above gives the result

 δ =
α + α α

−αn
n

arcsin sin [arcsin( sin ) ]n 1 2 1
2

−















  (6.106)

The collimation error described by δ is equivalent to an error in the phase of the 

output wavefront, φ. For a beam with rotational symmetry, as here

 δ
λ ϕ

= 2π
d
dR  (6.107)

Since δ can be calculated as a function of R, we can integrate to get φ(R).

These expressions simplify greatly for rays close enough to the optical axis so 

that the sine and tangent functions can be approximated by their arguments. Then 

Equation 6.106 reduces to

 δ −= ′( )1 n Z∆  (6.108)

The small-angle approximation for θ yields

 ∆ ∆R t n Z= −( )1 ′  (6.109)

Expanding ΔZ as a Taylor series in ΔR and taking only the !rst term gives the 

approximation

 ∆ ∆′ ′′Z RZ=  (6.110)

The slope of the lens surface near the optical axis, also to the lowest order, is

 ′ ′′Z R RZ( ) ( )= 0  (6.111)

where:

Z″(0) is the curvature of the second lens on axis, given explicitly by Equation 6.88

Combining Equations 6.108 through 6.111 gives the following expression for the 

wavefront aberration as a function of R, valid to the lowest order in R,

 δ = − −( ) [( ) ( )]R t n Z R∆ 1 0 2
′′  (6.112)
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This describes a spherical wavefront with curvature cout (equal to the inverse of the 

radius of curvature) equal to

 c n Z tout = − − ′′[( ) ( )]1 0 2
∆  (6.113)

Consequently, the lowest order aberration caused by a lens spacing error is wave-

front curvature. Considering larger values of R, away from the optical axis, one !nds 

that spherical aberration and higher order, rotationally symmetric terms appear. For 

a speci!c beam shaper design, it is easy to !nd all the aberrations by evaluating 

Equation 6.106 numerically.

Next, we consider centration error, by which we mean a lateral displacement of 

the second element of the beam shaper from its ideal position. Since the ideal geom-

etry is rotationally symmetric, there is no loss of generality in taking the direction 

of the centration error to be in the x-axis. Denote the displacement of the lens center 

by Δx. Centration error destroys the overall rotational symmetry of the beam shaper, 

which complicates the ray tracing. However, for rays along the x-axis the geometry 

is still relatively simple and a geometrical construction similar to that of Figure 6.14 

leads to an expression for the deviation of the output rays from the optical axis. When 

both Δx and R are small, the lowest order effect due to lens centration error can be 

shown to be a constant angular deviation of the output beam

 δ = −∆x n Z( ) ( )1 ′′ 0  (6.114)

equivalent to tilt in the output wavefront. Higher order aberrations are those that are 

odd in the x-coordinate, principally coma.

Finally, we consider the situation where the second lens is tilted by the angle ω 

with respect to the !rst lens. As with centration error, rotational symmetry of the 

complete optical system is broken. The geometry is more complicated than for the 

previous two cases. Additional details can be found in Reference [85]. Here we sim-

ply state the result that the lowest-order aberration is third-order coma.

6.4.3 ERROR IN MATCHING THE BEAM SHAPER TO THE INPUT BEAM

This section considers how the performance of the beam shaper is affected if the 

aspheric optics are improperly matched to the input beam. First, we consider mechani-

cal alignments errors, namely, an offset or tilt of the beam shaping optics with respect 

to the input laser beam axis. Next, we consider the possibility that the beam shaping 

optics are built and assembled as designed, but the actual input beam does not satisfy 

the assumptions made in the design. If the beam waist parameter w differs from the 

design value or the beam is not collimated, then the output beam will differ from the 

design. Finally, the design of the two-element refractive beam shaper depends on the 

index of refraction of the lenses. Because of dispersion, the beam shaper performs as 

designed only for one wavelength. We conclude this section with a discussion of the 

effects of dispersion on the refractive beam shaper. The results presented in this sec-

tion are of practical use when designing the optomechanical !xturing for a system that 

uses beam shaping optics, and also for the process of aligning the beam shaping optics.

To begin, we consider the case of a pure offset of the beam shaping optics from 

the optical axis of the input beam. Choose the offset to be by the amount Δx along 
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the x-axis. This is a special case of a more general problem: For a beam shaper 

designed to transform the collimated input beam with irradiance Iin(r) to a col-

limated beam with irradiance Iout(R), what is the output pro!le when the input 

irradiance has nonideal pro!le, I x yin( , )? The answer is given by the ray mapping 

function and the intensity law of geometrical optics. The beam shaping optics trans-

form a point (r,φ) in the input aperture to the point (R,Φ) in the output aperture, 

where R is equal to h r( ) and Φ is equal to either φ, for the Galilean geometry, or 

φ − π, for the Keplerian geometry. The optics also transforms surface area elements 

in the neighborhood of the ray that enters at (r,φ) and exits at (R,Φ) by the factor 

Iin(r)/Iout(R). This transformation applies to any collimated input beam, regardless of 

the irradiance pro!le; consequently, the input irradiance I x yin( , ) is transformed to

 I X Y
I R I r

I x y
out

out in
in

( , ) ( ) ( )
( , )=  (6.115)

where the pairs of points (x,y) and (X,Y) are related by the ray mapping function, and 

the coordinates (x,y) and (r,φ) are understood to describe the same point in a Cartesian 

or polar representation, respectively. Applied to the case of a Gaussian input beam 

that is offset from the axis of the beam shaper, the output irradiance is found to be

 I R I R
x x x

w
out out( , ) ( )exp ( )

Φ
∆ ∆

=
−









4 2 2

02
 (6.116)

where:

x = rcosφ

This equation was !rst derived by Romero and Dickey [88] using physical optics 

considerations of a phase plate and Fourier transform lens designed to implement 

a one-dimensional Gaussian to top-hat beam transformation. Here, we see how it 

arises as a general consequence of the intensity law of geometrical optics.

For the case of a Gaussian to $at-top beam shaper, Equation 6.116 can be used to 

!nd a tolerance on the acceptable offset. Assuming Δx ≪ w0, the exponential can be 

expanded to give

 I R I R
x

w

x

w w
out out( , ) ( )Φ

∆ ∆
= + +1 4

0 0 0

2
O

x























 (6.117)

where:

O indicates that the omitted terms in the series are proportional to the square and 

higher orders of Δx/w0

Near the center of the output beam, this expression implies a linear irradiance vari-

ation equal to 4(Δx/w0)(x/w0) times the nominal output irradiance. If the relative 

invariance error over the input aperture a is required to be less than , then

 
∆x
w a w0 04< ( / )  (6.118)

describes the tolerance on acceptable beam offset.

252



238 Laser Beam Shaping

Aside from a transverse offset, the other mechanical misalignment of the beam 

shaper assembly with respect to the input beam is tilt. All the treatments of the 

effects of tilt on beam shaper performance have been based on numerical ray trac-

ing for a speci!c beam shaper design. If the tilt angle is small, then the irradiance 

at the output aperture is hardly affected, but the wavefront is aberrated. Rhodes 

and Shealy [13] considered the effect of tilt on a Galilean beam shaper by comput-

ing the irradiance pro!le of the output beam at a moderately large distance after 

the output aperture of the beam shaper, where the wavefront aberrations distort 

the desired output pro!le. Similar calculations for a Keplerian beam shaper were 

reported in Reference [85]. A more direct way to quantify the effect of tilt on the 

performance of the beam shaper is to compute the primary wavefront aberrations 

as a function of the tilt angle; this calculation was carried out for a Keplerian beam 

shaper by Hoffnagle and Jefferson [89]. For small tilt angles, third- and !fth-order 

comas, which both increase linearly with angle, are the most important aberra-

tions. The coma introduced by tilting the beam shaper can severely distort the 

output beam at propagation distances that are small enough so that pure diffraction 

effects would be negligible. To illustrate this effect, Figure 6.15 reproduces the 

calculations reported in Reference [85].

Having looked at the issues of mechanical misalignment of a beam shaper with 

respect to the input beams, we proceed to consider the output of a properly constructed 

and aligned beam shaper when the input beam does not satisfy the assumptions used 

for the beam shaper design. One possibility has already been handled above: If the 

collimated input beam has an irradiance distribution Iin different from the nominal 

input beam pro!le, then the output pro!le deviates from the designed pro!le accord-

ing to Equation 6.115. A special case of this formula that turns up often enough to 

deserve explicit mention is for a Gaussian to $at-top beam shaper that is designed to 

0.035° 0.05° 0.075° 0.1° 0.2°

0° 0.005° 0.008° 0.01° 0.02°

FIGURE 6.15 Output beam irradiance in a plane 1 m from the output aperture of a Gaussian 

to FD beam shaper for different tilt angles between the input beam and the beam shaper 

assembly, as indicated by the labels underneath the images. The numerical calculations of 

irradiance were made by Michael Jefferson. (Reproduced from Shealy, D. L. and Hoffnagle, 

J. A. Aspheric optics for laser beam shaping. In Encyclopedia of Optical Engineering, 

Driggers, R., ed., Taylor & Francis, doi:10.1081/E-EOE-120029768, 2006. With permission.)
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accept an input beam with waist w0 but actually receives a beam with waist w1. In this 

case, the entire optical system is rotationally symmetric and we can write

 I R
I R I r

I r
out

out in
in

( ) ( ) ( )
( )=  (6.119)

where r and R are related by the ray mapping function as always. Inserting the 

Gaussian input pro!les gives [90]

 I I R
w

w
r w wout out( ) ( ) exp ( )[ ]R = − −− −0
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2
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2  (6.120)

If a given degree of output beam uniformity is required, this expression gives rise to 

a tolerance on the input beam size. Roughly speaking, the relative tolerance on w is 

about half the tolerable irradiance nonuniformity; for example, a 5% limit on irradi-

ance variation over the usable aperture requires that w be within ±2.5% of the design 

value, which is important to bear in mind when designing the integrated system of 

laser and beam shaper.

Wavefront aberration is another way in which a real input beam can deviate from the 

idealization that is used to design the beam shaper. By construction, the beam shaping 

optics transforms a collimated input beam (i.e., plane wavefront) to a  collimated output 

beam. If the input beam has a nonplanar wavefront, then the wavefront variations in the 

input aperture will be transformed to the output aperture with exactly the same ampli-

tude, because the optics are constructed to have equal OPL for all rays. Consequently, 

the peak-to-valley variation of the input and output wavefronts will be exactly the same. 

However, the nonlinearity of the ray mapping function implies that the spatial distribu-

tion of the wavefront variations will be different in the input and output planes. So, for 

instance, if the input wavefront is perfectly spherical, the output wavefront will have not 

only curvature but also spherical aberration and higher order aberration corresponding 

to the higher order, rotationally symmetric Zernicke polynomials.

Finally, we consider the effect that glass dispersion has on the performance of a 

two-element, refractive beam shaper. Because Equations 6.80 and 6.87 contain the 

index of refraction of the glass, the lenses designed using these equations operate 

perfectly only at the design wavelength. Operation of the refractive beam shaper with 

wavelengths other than the design wavelength has been analyzed by Hoffnalge and 

Shealy [91] and we summarize the results here.

To start, we note that dispersion mainly affects the wavefront of the output beam. 

If the lenses are made of low-dispersion glass, then the wavelength can be varied over 

hundreds of nanometers with very little change in the shape of the irradiance pro!le. 

Over the same wavelength range, the output wavefront can acquire many waves of 

aberration [92]. Next, we distinguish two possible classes of beam shaping applica-

tions, which both can be called “multi-wavelength applications” but which have dif-

ferent consequences for the wavefront. The !rst application we consider is the one in 

which the beam shaper is designed for use at wavelength λ, with corresponding glass 

index n but used with a monochromatic laser source at wavelength  and glass index n. 
The second application is for simultaneous operation at multiple wavelengths such 

as with a broadband source or a short-pulse laser. In the !rst case, monochromatic 

operation at a wavelength other than the design wavelength, good wavefront qual-

ity can be achieved over a wide wavelength range provided that (1) the lens spacing 
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is chosen to be large enough so that the deviation angle, θ in Figure 6.11, is much 

smaller than the radian everywhere and (2) the beam shaper is constructed so that the 

lens spacing can be adjusted for each wavelength. The smallness of θ means that the 

paraxial approximation θ ≈ (n − 1)arctan[z(r)] is a good approximation everywhere, 

so that the factor (n − 1) is, to a good approximation, a global scaling factor for the 

deviation of all rays. Consequently, the ray mapping function is nearly the same 

when n is changed to n and the lens spacing is changed from t to [21]

 t t n
n=
−

−

( )
( )

1
1  (6.121)

This adjustment removes all the wavefront curvature and most of the chromatic-

spherical aberration. The possibility of using a single refractive beam shaper at mul-

tiple wavelengths has been noted by Jiang et al. [18] and Hoffnagle and Jefferson [56]. 

Hoffnagle and Shealy [91] showed that a fused silica beam shaper designed for use at 

λ = 532 nm could be used from about 400–2000 nm and still have a wavefront that 

varies over the $at-top region of the beam by less than λ/100, provided that the lens 

spacing can be optimized at each wavelength. It is a useful feature that one prescrip-

tion can be used over a very wide wavelength range, nearly equal to the transparency 

range of the glass, and limited in practice by the bandwidth of antire$ection coatings.

For true multi-wavelength applications, in which the lens spacing cannot be adjusted 

for each wavelength, the two-element beam shaper exhibits wavefront curvature and 

chromatic-spherical aberration for wavelengths other than the design wavelength. The 

calculation of collimation error for a ray with wavelength  is exactly the same as for 

lens spacing error in Section 6.4.2. The angle between an output ray and the optical axis 

of the beam shaper is given by Equation 6.106 with n replaced by n. Applying the par-

axial approximation, one !nds that the lowest order aberration is wavefront curvature

 c Z n n n tout = ′′ − −[ ( )] ( )( )0 12  (6.122)

One way to deal with this wavefront aberration in true multi-wavelength applications 

is to add achromatizing optics to the beam shaper. Jefferson and Hoffnagle [92] pre-

sented an example, designed with conventional optical design software, that compen-

sates the aberrations of a two-element refractive beam shaper and generates a beam 

with less than 0.03λ wavefront error over the wavelength range of 450–650 nm.

6.5 REFRACTIVE BEAM SHAPERS

Laser beam shaping optics is well suited for applications whose overall ef!ciency 

increases when the irradiance over the detector (or substrate) is uniform, such as in com-

pact holographic projector systems [93–95]. These compact holographic projection sys-

tems have been reported to offer a practical way to make a highly corrected mesh or grid 

pattern over curved surfaces where the pattern can range in size from submicron to mul-

timicron. The laser pro!le shaping optics within a holographic projection system enables 

uniform features to be written over substrates of several centimeters in diameter [96].

To understand this increase in system ef!ciency when using laser beam shaping 

optics, note that for a Gaussian beam with irradiance given by Equation 6.50, the 

intensity of the beam decreases to 1/e2 of its axial value at the beam radius equal to 
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its waist. The effect of this variation in beam intensity over a Gaussian beam is illus-

trated in Figure 6.16. Figure 6.16a shows signi!cant variation in pattern densities at 

the center and edge of the beam for the same substrate (!lm) and exposure time when 

laser pro!le shaping optics is not part of the system. Figure 6.16b shows almost uni-

form pattern densities at the center and edge of the beam when laser pro!le shaping 

optics is part of the system.

(a)

(b)

FIGURE 6.16 Interference patterns produced by a four-beam holographic projection pro-

cessing system when illuminated with a Gaussian beam. The image on the left side of the 

!gure was taken near the center of the beam, and the image on the right side of the !gure 

was taken near the edge of the beam. The images (a) were taken when the laser beam shaping 

optics was not part of the system, and the images (b) were taken when the laser beam shaping 

optics was part of the projection system. (Reproduced from Jiang, W. Application of a laser 

beam pro!le reshaper to enhance performance of holographic projection systems. PhD thesis, 

University of Alabama at Birmingham, Birmingham, AL, 1993; Shealy, D. L. Geometrical 

methods. In Laser Beam Shaping—Theory and Techniques, Dickey, F. M. and Holswade, S. C., 

eds., Marcel Dekker, New York, 163–213, 2000. With permission.)
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Therefore, when beam shaping optics is introduced into a holographic projection 

processing system, the detector substrate will be uniformly illuminated, and pho-

tochemical reactions take place at the same rate over the entire substrate area, thus 

enabling the full beam diameter to be available for material processing. Introducing 

laser shaping optics into holographic projection processing systems has led to a sig-

ni!cant increase in quality of micro-optics fabricated over the substrate.

In Section 6.5.1, a detailed discussion of the design, analysis, fabrication, and test-

ing of the Galilean con!guration of a two-lens beam shaper is presented. Section 6.5.2 

describes the design, analysis, and testing of the Keplerian con!guration of a two-lens 

beam shaper. Section 6.5.3 describes using axial GRIN materials to design a laser 

beam pro!le shaping optical system with spherical lens surfaces.

6.5.1 GALILEAN CONFIGURATION

The !rst report of experimental results in the literature of laser beam shaping by 

two plano-aspheric lenses appeared in 1993 [18], almost 30 years after Kreuzer !rst 

proposed using plano-aspheric lenses for laser beam shaping in 1965 [2] as a result 

of technical limitations in making the plano-aspheric lenses required by Kreuzer’s 

designs. Jiang et al. [18] reported the design, fabrication, and testing of an expand-

ing beam shaper in the Galilean con!guration, as illustrated in Figure 6.11a. In this 

section, we describe a Galilean con!guration that expands the input beam by the 

factor of 1.6× and was used to reshape a HeCd laser beam operating at a wavelength 

of 441.57 nm. The aspheric optics was fabricated by diamond turning of CaF2. The 

parameters of this beam shaper are given in the column labeled 1.6× G of Table 6.2.

TABLE 6.2

Parameters for the Galilean (1.6× G) and Keplerian (1-to-1K) Con"gurations of 

Laser Beam Shaping Design Examples Discussed in Sections 6.5.1 and 6.5.2, 

Respectively

Parameters 1.6× G 1-to-1K

Input beam waist (mm) 8.0 2.366

Input aperture radius, rmax (mm) 8.0 4.05

Input lens diameter (mm) 30.0 8.1

Output pro!le shape TH FD

Output beam radius, R0 (mm) 12.5 3.25

Output shape parameter – 16.25

Output aperture radius, Rmax (mm) 12.5 4.05

Output lens diameter (mm) 30.0 8.1

Design wavelength (nm) 442 532

Refractive index 1.43916 1.46071

Lens spacing (mm) 150.0 150.0

Geometrical parameter, +1 −1

Source: Shealy, D. L. and Hoffnagle, J. A. Aspheric optics for laser beam shaping. In Encyclopedia of 

Optical Engineering, Driggers, R., ed., Taylor & Francis, 2006.
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Using the results presented in Section 6.3 to compute the sag and slope of the 

aspheric surfaces, Figure 6.17 displays the sag of the primary and secondary aspheric 

surfaces of the 1.6× expanding Galilean laser beam shaper. From analysis of the 

computed data for the surface sag, slope, and curvature of these two aspheric lenses, 

the following results were obtained:

The maximum surface slope is 0.076383.

The surface curvature on axis for the primary is equal to 0.020895 mm−1.

The surface curvature on axis for the secondary is equal to 0.008792 mm−1.

It is interesting to explore the meaning and limitations of the optical design equa-

tions for laser beam shapers by considering the effect of increasing the primary lens 

aperture radius to rmax = 15 mm for the 1.6× G beam shaper, while keeping other 

system parameters as listed in Table 6.2. Figure 6.18a presents the results for the 

surface sag and slope data for this case, where one sees that the sag of the primary 

aspheric surface has an in$ection point off-axis. To understand the implication of 

an off-axis in$ection point in the sag of the primary aspheric surface in this case, 

we analyze the slope of primary aspheric surface and the plot of [h(r) − r] and h(r) 
versus r as shown in Figure 6.18b, from which it is clear that the slope of the pri-

mary is equal to zero at r  =  12.46  mm, as well as on-axis, and the slope of the 

primary aspheric surface changes sign at the radial point r = 12.46 mm, as well as 

on-axis. Fabrication of aspheric surfaces with multiple in$ection points for their sag 

is dif!cult and expensive. However, Kasinski and Burnham [97] have fabricated and 

tested aspheric surfaces with an in$ection point. When the slope of primary aspheric 
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FIGURE 6.17 The surface sag of the primary and secondary aspheric surfaces is shown as 

a function of the aperture radius for the expanding (1.6×) Galilean con!guration of a laser 

beam shaper. (Reproduced from Shealy, D. L. and Hoffnagle, J. A. Aspheric optics for laser 

beam shaping. In Encyclopedia of Optical Engineering, Driggers, R., ed., Taylor & Francis, 

2006. With permission.)
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surface is equal to zero for off-axis points, then the incident ray will leave the !rst 

lens of beam shaper parallel to the optical axis, which seems to occur when the input 

lens aperture is larger than the output lens aperture. Therefore, if one must reduce the 

diameter of a laser beam after shaping, it seems advisable to use a beam shaper with 

a one-to-one ratio of the input and output beams, and then to change the diameter of 

laser beam after reshaping by using conventional optics.
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FIGURE 6.18 (a) Plot of the surface sag and slope of the primary and secondary aspheric 

surfaces as a function of the aperture radius for the expanding (1.6×) Galilean con!guration 

of a laser beam shaper. (b) Plot of the ray mapping function h(r) and [h(r) − r] versus the 

input aperture radius r for the 1.6× Galilean beam shaper. (Reproduced from Shealy, D. L. 

and Hoffnagle, J. A. Aspheric optics for laser beam shaping. In Encyclopedia of Optical 
Engineering, Driggers, R., ed., Taylor & Francis, 2006. With permission.)
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6.5.1.1 Analysis and Simulation Results

The shape of the two aspheric refracting surfaces of the 1.6× Galilean beam shaper 

are de!ned by an array of data for the primary (r,z) and the secondary (R,Z), which 

can be computed from Equations 6.80 and 6.87 as accurately as desired. However, 

fabrication vendors of aspheric lenses have requested surface data to be provided in 

terms of coef!cients of the conventional optics surface equation

 z r cr
c r

A r ii
i

N
( ) ( )= +

2

2 2 2
11 1 1+ − + =

∑
κ

2  (6.123)

where:

c is the vertex curvature

κ is the conic constant

A2i are the coef!cients of the polynomial deformation terms

For a refracting plano-aspheric beam shaper, the coef!cients of the conventional 

optics surface equation must be evaluated by a nonlinear !tting program for each 

aspheric lens surface. A nonlinear least squares !tting program based on the simplex 

method has been successfully used to represent the optical surfaces of a laser pro!le 

shaping system. Table 6.3 gives the surface parameters for the primary and second-

ary surfaces of the 1.6× Galilean laser beam shaper used as part of the holographic 

projection system developed by Jiang [18,19,96,98].

Conventional optical design software has been used to ray trace and analyze the 

performance of the 1.6× Galilean laser beam shaper. The OPD of the output beam for 

this Galilean laser beam shaper has been evaluated over the aperture. The maximum 

TABLE 6.3

Surface Parameters of a HeCd (441.57 mm) Laser Beam Shaper System 

Where the Distance between the Primary and Secondary Lenses Is Equal to 

100 mm

Lens Parameters Primary Secondary

Diameter (mm) 30.0 30.0

Vertex radius (mm) 47.861445 113.64905

Index of refraction 1.43916 (CaF2) 1.43916 (CaF2)

Thickness (mm) 10.0 10.0

Conic constant, κ –1.1143607 −1.4877144

A4 (mm)−3 –7.1532887 × 10−5 −2.6322455 × 10−6

A6 (mm)−5 3.3729843 × 10−7 9.4058758 × 10−9

A8 (mm)−7 –1.4916816 × 10−9 −2.3096843 × 10−10

A10 (mm)−9 5.9836543 × 10−12 1.5839557 × 10−12

A12 (mm)−11 –1.5166511 × 10−14 −4.8438745 × 10−15

Source: Shealy, D. L. and Hoffnagle, J. A. Aspheric optics for laser beam shaping. In Encyclopedia of 

Optical Engineering, Driggers, R., ed., Taylor & Francis, 2006.

260



246 Laser Beam Shaping

OPD for this system was 0.0017λ, which corresponds to an absolute OPD of 0.75 nm 

for the HeCd laser. This demonstrates that the shape of the output wavefront was 

very close to the same shape as the input wavefront as required by the constant OPL 

design condition of this laser beam shaper. The $ux $ow equation [61] has been used 

to compute the irradiance along a ray as it propagates through the optical system 

[13,14]. Speci!c results for computing the irradiance over an output surface of a laser 

shaping system will be presented and discussed in Section 6.5.1.2.

6.5.1.2 Experimental Results

The two plano-aspheric lenses of Table 6.3 were fabricated by Janos Technology, 

Inc. of Townshend, Vermont, using a single-point diamond lathe; CaF2 was used 

as the lens material. A scanning video system was used to measure the input and 

output irradiance pro!les. A Panasonic TV camera (Model WV-1800) was used to 

sample the laser beam before and after passing through the laser beam pro!le shap-

ing optics. The camera was mounted on a translation stage behind a pinhole. By 

scanning across the beam, it was possible to use the same region of the detector for 

measuring the intensity of all parts of input and output beams. The image processing 

software, NIH Image v. 1.44 [99], was used to acquire, display, edit, enhance, ana-

lyze, and print images. Reference [19] provides a full discussion of this testing pro-

cedure as well as tolerance analysis and other results not summarized in this section.

The input and output beam pro!les using the HeCd laser are shown in Figure 6.19. 

The open diamond symbols are the measured intensity of input beam, and the solid 

curve is a Gaussian pro!le !tted to the input beam data. The solid diamond symbols 
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FIGURE 6.19 The input and output irradiance pro!les of a HeCd laser beam shaper. The open 

diamond symbols are measured data points of the input beam, which is !t to a Gaussian curve 

shown as a solid curve. The solid diamond symbols are measured data points of the output beam. 

(Reproduced from Jiang, W., Shealy, D. L., and Martin, J. C. Design and testing of a refractive 

reshaping system. In Current Developments in Optical Design and Optical Engineering III, 
Fischer, R. E. and Smith, W. J., eds., vol. 2000, 64–75, 1993; Shealy, D. L. and Hoffnagle, J. A. 

Aspheric optics for laser beam shaping. In Encyclopedia of Optical Engineering, Driggers, R., 

ed., Taylor & Francis, doi:10.1081/E-EOE-120029768, 2006. With permission.)
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are the measured intensity of the output beam, and the horizontal solid line is the 

designed output beam intensity. These results clearly show that the input beam has 

been transformed into a more uniform beam. However, manufacturing and alignment 

errors can be linked to the variations of the output beam pro!le from its theoretical 

value. In addition, a HeNe laser was used to illuminate these beam shaping optics. 

When using a HeNe laser with 632.8 nm radiation, the lens spacing was increased to 

152.2 mm according to the predictions of Equation 6.121.

6.5.2 KEPLERIAN CONFIGURATION

Hoffnagle and Jefferson [21,22] !rst reported the solution to design and fabrication of 

a Keplerian con!guration of a refractive laser beam shaper, where extensive details of 

the design, analysis, and testing of this beam shaper are given in the literature. Table 6.2 

gives the design parameters for the Keplerian con!guration, which is labeled by 1-to-1K.

It is instructive to view the ray plots of a 1-to-1K beam shaper as shown in 

Figure 6.20a, which illustrates the reshaping of a Gaussian beam into a FL beam, 

where each ray path is associated with equal power. Recall, Shealy and Hoffnagle [71] 

have shown that when using the matched pro!le conditions, any $attened irradiance 

pro!le has very similar near- and far-!eld diffraction patterns. Therefore, the conclu-

sions of Hoffnagle and Jefferson [21,22] on the design, analysis, performance, and 

testing of a 1-to-1K con!guration for shaping a Gaussian input beam into an output 

beam with a FD irradiance pro!le can be generalized to apply to any $attened irradi-

ance pro!le with matching pro!le parameters. Figure 6.20b presents the sag of the 

primary and secondary aspheric optics when designed to transform a Gaussian beam 

into a top-hat pro!le or into a FD pro!le. It is interesting to note from Figure 6.20b 

that the sag at the periphery of the primary or secondary aspheric lens surface is 

smaller by approximately 20–30  μm for a beam shaper designed to transform an 

input Gaussian beam into a $attened irradiance pro!le than one designed to shape a 

Gaussian beam into a top-hat pro!le. The rate of change of the slope and curvatures of 

the primary and secondary aspheric surfaces change in a nonlinear manner as a func-

tion of the radial coordinate, which has been studied and documented by Shealy and 

Hoffnagle [85]. Hoffnagle and Jefferson also observed that the surfaces of a Keplerian 

beam shaper are always convex, that is, the sign of the curvature is the same over the 

entire lens surface [21]. This property can be advantageous for practical fabrication 

of the aspheric optical surfaces, because it means that every point on the surface is 

accessible to the polishing tool. In contrast, no general statement can be made about 

convexity of the surfaces of a Galilean beam shaper—they may be concave, convex, 

or neither, depending on the details of the pro!le transformation. Oliker generalized 

this result to any re$ective [77] or refractive [78] beam shaping system. In the absence 

of rotational symmetry, one cannot speak of a Galilean or Keplerian telescope, but 

nevertheless Oliker showed that the beam shaping optics always has one convex solu-

tion and one solution for which no general statement about convexity is  possible [78].

6.5.2.1 Analysis and Simulation Results

The wavefront propagation through the focal region of this 1-to-1K beam shaper is 

illustrated in Figure 6.2, which was evaluated from Equation 6.28 for different values 

262



248 Laser Beam Shaping

of the parameter s. Figure 6.2 presents a cross section of the refracted  wavefront 

(solid lines) for s = 0, 10, . . ., 150 mm and the caustic surfaces (dashed lines). For 

clarity and simplicity, only half of the wavefront (positive x-coordinates for input 

aperture) is plotted in Figure 6.2. Shealy and Hoffnagle [48,53] examined the behav-

ior of the wavefront in more detail for the region from z = 35 to 95 mm where the 

wavefront passes through its caustic surfaces. For the scale used in Figure 6.2, it is 

dif!cult to understand how the wavefront and caustic surfaces interact, but it appears 

that the caustic surfaces represent a boundary or envelope for the wavefront s = 40 

to 70 mm.
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FIGURE 6.20 (a) Illustration of ray plot of the reshaping of a Gaussian input beam into a 

$attened irradiance output beam by a 1-to-1K con!guration of a refractive beam shaper with 

q = 15, n = 1.46071, t = 150 mm, RFL = 3.25 mm, and w0 = 2.366 mm. (Reproduced from Shealy, 

D. L. and Hoffnagle, J. A. Wavefront and caustic surfaces of refractive laser beam shaper. In 

Novel Optical Systems Design and Optimization X, Koshel, R. J. and Gregory, G. G., eds., 

vol. 6668, 666805-1, 2007. With permission.) (b) Comparison of the sag of the primary and 

secondary aspheric surfaces of a 1-to-1K beam shapers that have been designed to trans-

form a Gaussian pro!le into either a top-hat or a $attened irradiance FD pro!le as designed 

by Hoffnagle and Jefferson. (Reproduced from Shealy, D. L. and Hoffnagle, J. A. Aspheric 

optics for laser beam shaping. In Encyclopedia of Optical Engineering, Driggers, R., ed., 

Taylor & Francis, 2006. With permission.)
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Before addressing the detailed interactions between the wavefront and its caustics 

within the focal region, it is helpful to understand the overall meridional and sagit-

tal wavefront curvatures as the wavefront leaves the !rst aspheric lens and forms its 

caustic surfaces. As noted, Equation 6.31a and b give the principal radii of curvature 

of the wavefront as it has been refracted from the !rst plano-aspheric lens of the 

laser beam shaper. To better understand the changing curvature of the wavefront 

after refraction from the aspheric lens, the principal curvatures of the aspheric lens 

and refracted wavefront are presented in Figure 6.21. It is interesting to note from 
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FIGURE 6.21 Tangential and sagittal curvatures of (a) !rst aspheric lens surface, evaluated in 

the meridional plane for the Keplerian laser beam shaper and (b) refracted wavefront from the 

!rst aspheric lens. (Reproduced from Shealy, D. L. and Hoffnagle, J. A. Wavefront and caustic 

surfaces of refractive laser beam shaper. In Novel Optical Systems Design and Optimization X, 

Koshel, R. J. and Gregory, G. G., eds., vol. 6668, 666805-1, 2007. With permission.)
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Figure 6.21 that the axial curvature of the aspheric lens surface is approximately 

equal to −0.0425 mm−1, which can be understood from the following analysis. From 

Equation 6.86, we calculate the axial curvature of the !rst aspheric lens of the beam 

shaper, where we use the parameters n1 = 1.46072, n2 = 1, t = 150 mm, q = 15, 

RFL = 3.25 mm, and = −1 to obtain the following:

 cr ( ) .0 0 042579 1= − −mm  (6.124)

From paraxial optics and the lens maker formula, we then can calculate the paraxial 

focal point of the !rst aspheric
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where we set the object distance o equal to some large number or allow it to approach 

∞ for a plane wave. Solving Equation 6.125 for zc(0) gives
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which we label as zc(0), since we will see that the paraxial focal point of the !rst 

aspheric lens is also equal to the z-coordinate of both the tangential and sagittal 

caustic surfaces on axis (Equation 6.29a and b). For on-axis incident light, the sagit-

tal caustic is a spike or line along the optical axis, as shown in Equation 6.29b. The 

tangential caustic is typically in the shape of a horn, as shown in Figure 6.22a, where 

it folds back upon itself for the 1-to-1K beam shaper and has its horn region directed 

away from the aspheric lens. In contrast, the tangential caustic of a plano-spherical 

lens of the same focal length, which is shown with dashed lines in Figure 6.22a, has 

the horn region of its tangential caustic directed toward the spherical lens. Thus, one 

concludes that the shape and structure of a wavefront used for laser beam shaping or 

imaging applications are very different. Figure 6.22b presents a three-dimensional 

view of the tangential caustic formed by the !rst plano-aspheric lens of the 1-to-1K 

laser beam shaper with an input aperture of 5 mm, where the sagittal caustic is not 

visible in this !gure.

Returning to analysis of Figure 6.21, it follows that both the tangential curvature 

of the aspheric lens has a maximum and the tangential curvature of the refracted 

wavefront has a minimum for an input Gaussian beam at the same ray height of 

approximately 2.8 mm. In addition, at the input ray height of 4.6 mm, the sagittal 

curvature of the refracted wavefront has a minimum and is equal to the tangential 

curvature. Thus, the tangential and sagittal caustic surfaces intersect as they do at 

the paraxial focal point, but the power within a Gaussian beam at r = 2w0 is much 

less than its axial value.

To better illustrate how the wavefront and caustic surfaces interact, a  signi!cantly 

expanded scale has been presented in Figure 6.9a–d for s = 60, 70, 80, and 90 mm [48]. 

Shealy and Hoffnagle have identi!ed that as the wavefront passes through a region 

where there is either a sagittal or tangential caustic surface, then the wavefront 

 develops an in$ection point when it touches the tangential caustic and folds back 
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upon itself with increasing input aperture x-coordinates until the wavefront touches 

a second part of the tangential caustic where the wavefront develops a second in$ec-

tion point and folds back upon itself with further increasing input aperture coor-

dinates. As the wavefront propagates through s  =  70 to 80  mm, we see that the 

distance between the in$ection points of the wavefront decreases until the wavefront 

passes the tangential caustic at a distance of 95 mm from the !rst aspheric lens as 

it continues to expand its size and becomes more planar until it refracts at the sec-

ond aspheric lens where !nal phase corrections are introduced so that the wavefront 

leaves the beam shaper as a plane wave with the designed irradiance pro!le. This 

behavior suggests that there is a signi!cant amount of interference happening within 

the focal region, which has been con!rmed experimentally [54], and will be sum-

marized below.

In addition, when the wavefront touches the caustic surfaces as described  earlier, 

then the wavefront folds back upon itself, which has been discussed in more detail in 

Reference [48]. Since rays are always perpendicular to optical wavefronts, this means 

that the ray paths also become entangled among themselves. There are regions of 

image space where multiple rays from different regions of the aspheric surface actu-

ally intersect and interfere constructively or destructively. By carefully following 

wavefronts and their rays through the focal region, it is possible to identify regions 
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FIGURE 6.22 (a) Cross-sectional view of the tangential and sagittal caustic surfaces of a 

plano-spherical lens (dashed line) with the same focal length as the !rst plano-aspheric lens 

of a Keplerian laser beam shaper (solid line) described in Figure 6.20. The input aperture 

radius of the plano-aspheric lens is 6 mm, where the z-coordinate of the tangential caustic is 

approximately equal to the paraxial focal length. (b) (See color insert.) Three-dimensional 

view of the tangential caustic surface of the !rst plano-aspheric lens of a Keplerian laser 

beam shaper with an input aperture radius of 5 mm. The sagittal caustic spike is not visible 

in this view. (Reproduced from Shealy, D. L. and Hoffnagle, J. A. J. Opt. Soc. Am. A, 25, 

2370–2380, 2008. With permission.)
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around and inside of the tangential caustic which have either one or three or !ve ray 

intersections, where all of these rays have phases that are likely different, and thus, 

there is constructive or destructive interference. Figure 6.23a displays the number of 

ray intersections within the regions of the tangential caustic surface of the !rst lens 

of the 1-to-1K beam shaper.

6.5.2.2 Experimental Results

The optics described in this section has been fabricated from fused silica and the 

aspheric surface !gured by magneto-rheological !guring. The accuracy of the pol-

ished surfaces, measured interferometrically with the use of a computer-generated 

hologram, was approximately 25  nm. The irradiance after the beam shaper was 

measured with a charge-coupled device (CCD) sensor array of 1024 × 1024 pixels 

(12 μm square) placed directly in the output beam. The rms uniformity, as de!ned in 

Equation 6.49, was measured to be less than 5% in the central region enclosing 78% of 

the incident beam power [21]. Cross sections of the input and output beams— single 

rows of the CCD output going through the center of the beam—are presented in 

Figure 6.24, together with the theoretical Gaussian and FD pro!les for this reshaper.

The departure of the output wavefront from a plane wave was 0.26λ  peak-to-valley 

and 0.025λ rms [22,57], as measured with a Shack–Hartmann wavefront sensor, with 

λ = 514 nm for these measurements. The measured M2 of the shaped beam was 1.8, 

which is approximately 25% larger than the value for an ideal, plane-wave FD beam, 

as shown in Figure 6.10. Measurements of the irradiance pro!le at several planes 

after the output aperture of the beam shaper are also presented in Reference [21]. 

The FD beam had negligible change in pro!le over a range of approximately 0.5 m, 

which was an adequate range for its intended use, but nevertheless considerably 

shorter than what one would predict for an ideal FD beam, based on the diffraction 
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FIGURE 6.23 (a) Number of roots of inverse of generalized ray mapping function within 

regions of caustic surfaces of !rst lens of the 1-to-1K laser beam shaper. (b) Radius of the 

caustic rings, that is, the tangential caustic of the !rst lens of 1-to-1K laser beam shaper. 

Filled circles are measured results and solid lines are calculated results. The !lled box on the 

z-axis indicates the range over which the sagittal caustic disappeared from the CCD images 

shown in Figure 6.25. (Reproduced from Hoffnagle, J. A. and Shealy, D. L. Caustic sur-

faces of a keplerian two-lens beam shaper. In Laser Beam Shaping VIII, Dickey, F. M. and 

Shealy, D. L., eds., vol. 6663, 666304-1, 2007. With permission.)
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integral alone as described in Section 6.2.3. Reshaping of a 257 nm beam was also 

demonstrated with the optics that was designed for a nominal wavelength of 514 nm 

when the lens spacing was adjusted according to Equation 6.121.

The results presented in Section 6.5.2.1 for the refracted wavefront and caustic 

surfaces, which are formed after an incident plane wave with a Gaussian irradiance 

pro!le has been refracted by the !rst aspheric lens of a Keplerian beam shaper, 

represent a complete geometrical solution of this problem. As discussed earlier, the 

caustic surfaces formed by the !rst aspheric lens of the Keplerian beam shaper have 

multiple in$ection points, where both the tangential and sagittal caustics fold back 

upon themselves and intersect axial rays as well as off-axis rays near the full aperture 

of the lens. The refracted wavefront also develops in$ection points when it touches 

some caustic points and folds back on itself as the irradiance is being redistributed 

over the wavefront. It has also been shown experimentally in this section that rays 

from different areas of the input aperture intersect over planes within the caustic 

region and create strong interference rings.

To test the geometrical theory of the evolution of the wavefront and irradiance, 

Hoffnagle and Shealy [54] analyzed the irradiance distribution at several planes after 

the !rst plano-aspheric lens of a 1-to-1K beam shaper similar to the one described 

above, where the 514 nm beam from an Ar-ion laser was used after being spatially 

!ltered, collimated, and expanded to match the waist of w0 = 2.366 mm as required 

by the design. Using a Shack–Hartman sensor, the wavefront was monitored and 

observed to be planar within an accuracy better than λ/5 for these measurements. 
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FIGURE 6.24 Irradiance pro!les for a slice through the center of a laser beam before 

(Gaussian pro!le) and after ($at-top pro!le) the Keplerian beam shaper described in the text. 

The rough curves are measured pixel values from a CCD camera and the smooth curves are 

the ideal Gaussian and FD functions for which the beam shaper was designed. (Reproduced 

from Hoffnagle, J. A. and Jefferson, C. M. Appl. Opt., 39, 5488–5499, 2000. With permission.)
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The 1024 × 1024 pixel CCD sensor was used to measure the irradiance after a thin-

!lm aluminum !lter which reduced the laser power and prevented sensor saturation. 

The CCD sensor was mounted on a micrometer-driven translation stage for precise 

measurements of the relative translations. The raw images of the shaped laser beam 

are shown in Figure 6.25 at different locations after the paraxial focus of the !rst lens 

of the beam shaper. Figure 6.25a shows the irradiance over a plane that is located just 

behind the paraxial focus of lens where the sagittal caustic spike is intense, while 

the outer ring represents the tangential caustic at this location; Figure 6.25b shows 

the irradiance over a plane where the axial caustic is weak and tangential caustic 

ring is strong; Figure 6.25c shows the irradiance over a plane near the end of the 

tangential caustic ring; and Figure 6.25d shows the irradiance over a plane outside of 

the caustic region as the irradiance pro!le is becoming uniform. Within the caustic 

region, there are oscillations of the irradiance, which are visible in Figure 6.25a and b 

and which are due to interference and diffraction of light within the focal region. 

From the CCD images, one can directly measure the diameter of the caustic rings 

and compare to the simulated results given in Figure 6.22a. Figure 6.23b presents a 

comparison between computed diameter of the tangential caustic to the experimen-

tally measured diameter, where there is very good agreement between computed and 

measured locations of caustic surface from Figure 6.25.

6.5.3 AXIAL GRIN LENS CONFIGURATION

GRIN glasses have been shown to be able to provide additional degrees of freedom 

for designing optical systems. Sands [100] has shown that the contributions of an 

axial GRIN to the third-order aberrations of an optical system are equivalent to those 

of an aspheric surface. This suggests that the aspheric surfaces of the laser beam 

pro!le shaping (Section 6.5.1) can be replaced by axial GRIN lenses with spherical 

surfaces. Wang and Shealy [101] have demonstrated, without taking into explicit 

account the functional dependence of the index of refraction on the wavelength of 

light, that it is possible to design axial GRIN laser beam pro!le shaping systems with 

realistic materials and spherical surfaces (see Reference [101] for a more detailed 

discussion of the results presented in this section).

(a) (b) (c) (d)

FIGURE 6.25 Images of the beam over four planes after the !rst lens of the 1-to-1K 

beam shaper. The distance behind the paraxial focus is (a) 12, (b) 23, (c) 42, and (d) 67 mm. 

(Reproduced from Hoffnagle, J. A. and Shealy, D. L. Caustic surfaces of a keplerian two-lens 

beam shaper. In Laser Beam Shaping VIII, Dickey, F. M. and Shealy, D. L., eds., vol. 6663, 

666304-1, 2007. With permission.)
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6.5.3.1 Mathematical Developments

The ray equations for propagation of light through GRIN materials follow from 

Fermat’s principle and Equation 6.42. For an axial-GRIN material with the sym-

metry axis along the z-axis, the ray equations can be written in the following form 

[102, Chapter 5]:
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with

 M n z K L n z K L= − − = − −2 2 2 2 02 02( ) ( )  (6.129)

where:

K, L, and M are the three optical direction cosines

K0, L0, and M are the initial values of the three optical direction cosines of ray 

within the GRIN material

x0, y0, and z0 are the initial coordinates of the ray within the GRIN material

The geometrical con!guration of a two-lens GRIN laser beam pro!le shaping sys-

tem is shown in Figure 6.26. The optical axis is also the symmetry axis of both 

GRIN lenses. The input laser beam will not be de$ected by the plano-surface of the 

!rst lens, but will diverge from the spherical surface S1. The GRIN pro!le of the !rst 

lens will cause the rays at different heights to refract in such a way as to convert the 

input Gaussian intensity pro!le into a uniform intensity pro!le at the second lens. 
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FIGURE 6.26 Geometrical con!guration of a two-GRIN lens laser beam shaper. 

(Reproduced from Wang, C. and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. With permission.)
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The spherical surface S2 of the second lens will refract the rays so that the output 

beam will be parallel to the optical axis.

Following the discussion in Section 6.2.1.2 on the geometrical optics intensity 

equation, one can use Equations 6.36, 6.50, and 6.51 to evaluate the energy collected 

within a circle of radius r1 given by
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If the beam reaches a uniform intensity of the top-hat irradiance pro!le of Σ ≡ π
−( )R02 1 

within a circle of radius r2 < R0 on the second lens, then applying conservation of 

energy between the input and output beam gives
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= − −R w1 2 1

2
exp 





















 (6.131)

As shown in Figure 6.26, the surfaces S1 and S2 are two spherical surfaces, whose 

surface equations are given by Equation 6.123 when using the following parameters 

for this GRIN application: κ = 0 = A2i and ci = Ri; R1 and R2 are the radii of curvature 

of the spherical GRIN lenses. Then, the surface sag z1 and z2 can be written as

 z r R
r R1

12 1

12 121 1=
+ −

/
/

 (6.132)

or

 r z R z12 1 1 122= −  (6.133)

and

 z r R
r R2

22 2

22 221 1=
+ −

/
/

 (6.134)

or

 r z R z22 2 2 222= −  (6.135)

The geometrical relations shown in Figure 6.26 justify the following expressions:
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− +
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r r
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Applying Snell’s law at surfaces S1 and S2 gives

 n z n1 1 1 0 1( ) in sin( )s θ = θ α+  (6.139)

 n z n2 2 2 0 2( ) )sin sin(θ = θ + α  (6.140)

The GRIN pro!les of these lenses can be determined from Equations 6.139 and 

6.140. Applying the sum of two angles trigonometric formula, these equations can 

be written as

 n z n1 1 0 1( ) (cot sin cos )= θ α + α  (6.141)

 n z n2 2 0( ) (cot sin cos )= θ α + α2  (6.142)

To evaluate the GRIN pro!le of the !rst lens, the right-hand side of Equation 6.141 

needs to be expressed as a function of z1. Combining Equations 6.131 and 6.133 gives

 r R z R z
w2 0 1 1 12

02
1 2 2

= − −
−







exp ( )  (6.143)

Solving Equations 6.143 and 6.134 for z2 as a function of z1 leads to the following:

 z R z R z r R
R z2

02 1 1 12 12 2

02 1

1 2 2
1 1 1 2 2=

− − −

+ − − −

( [ ] )
(
exp{ ( )/ }/

exp{ [( RR z w R1 12 02 22− )/ ]} /)
 

(6.144)

The resulting expression for GRIN function of the !rst lens is

 n z n R z
R z z z z1 1 0

1 1
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 (6.145)

In a similar fashion, the GRIN function for the second lens can be written in terms 

of z2 to give

 n z n R z
R z z z z2 2 0

2 2
2 2 22 1 2 2 22( ) ( ) ( ) ( )/=

−
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 (6.146)

Equations 6.145 and 6.146 are the formulas for the GRIN pro!les of the two 

plano-spherical lenses in a refractive laser pro!le shaping system. These results are 

based on geometrical optics, energy conversion along a tube of rays, and the con-

stant OPL condition. Now, these results will be used to design two GRIN laser beam 

pro!le shaper systems.

6.5.3.2 Using GRIN Lenses

The use of GRIN materials in optical systems has been limited by fabrication 

capabilities of these materials. Considerable progress has been made toward bet-

ter controlling the GRIN pro!le while also increasing the change of the index of 

refraction and the depth of the gradient of the index [103–106] within the material. 

Until the recent development of the GRADIUM™ GSF glass family by LightPath 

Technologies, Orlando, FL [106], it has been dif!cult to obtain an overall index 
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change larger than 0.08 and a depth of the gradient greater than 5 mm. It is pos-

sible to obtain linear and near-parabolic GRIN pro!les. For the designs presented 

in this section [101], these constraints have been used—the maximum overall index 

of refraction change is 0.08 and the depth of the GRIN gradient is 5 mm. As GRIN 

technology improves, optical designs for laser pro!le shaping systems will be able 

to use a broader spectrum of materials to reduce size and cost of laser beam pro!le 

shaping systems. For example, the GRADIUM™ GSF glass family [107] has an 

overall index of refraction change ranging from 0.04 to 0.14 for a thickness of the 

gradient ranging from 6 to 26 mm. With this expanded range of parameters, more 

versatile GRIN laser beam pro!le shaping systems can be developed.

Using Equations 6.145 and 6.146, the GRIN pro!les of a two-lens laser beam pro!le 

shaping system shown in Figure 6.26 can be computed for any set of layout parameters 

including the lens spacing d and the spherical lens surface vertex radii R1 and R2. 

However, only GRIN materials with realistic GRIN pro!les can be used when building 

a laser beam pro!le shaping optical system. For a particular case, when the input and 

output beam radii, r0 and r2max, are given, the depth of the gradient Δz is completely 

determined by the vertex radius of a spherical lens. The relationship between the depth 

of the index gradient and the vertex radius is illustrated in Figure 6.27.

In summary, smaller vertex radii yield larger depth of the index gradient. From the 

equation (Equation 6.133) of a spherical surface S1, it follows that if the depth of the index 

gradient Δz1 has a speci!c value, then the lower limit on choosing R1 will be given by

 R r z
z1

02 1 2

12≥
+

∆

( )
( )
∆

 (6.147)

It is interesting to note that the refraction of rays at different heights from the opti-

cal axis are determined by the vertex radius and the GRIN distribution across the 

beam diameter. The more planar a spherical surface is (larger vertex radius), then the 

greater the gradient of the index across the surfaces S1 and S2 will be for achieving 

the same de$ection of the rays. That is, the overall index change Δn, which can be 

fabricated, sets the upper limit for choosing the vertex radii R1 and R2.

S1

(a) (b)

S2

r0
r2max

R2

R1

Δz1 Δz2

FIGURE 6.27 Relationship between the vertex radius and the depth of the GRIN  material 

with (a) for the primary lens, S1, and (b) for the secondary lens, S2. (Reproduced from Wang, C. 

and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. With permission.)
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The spacing d between the two lenses also affects the GRIN pro!le. Shorter sys-

tems require stronger index gradients to achieve the same redistribution of the laser 

beam pro!le. Selection of the layout parameters R1, R2, and d needs to be guided by 

the current GRIN fabrication technology. The relationship between GRIN charac-

teristics (Δn and Δz1) and system layout parameters (R1 and d) of the primary lens for 

the GRIN laser beam pro!le shaping system is illustrated in Figure 6.28.

A similar plot for the secondary lens can be constructed. Then, for a given beam 

waist r0 and manufacturing speci!cations for the GRIN material (Δn and Δz1), the 

system layout parameters (R1, R2, and d) can be determined. Two speci!c laser pro-

!le shaping optical systems using GRIN lenses will be discussed in more detail in 

this section. The !rst system transforms the input Gaussian beam pro!le into a uni-

form output beam pro!le of the same diameter as the input beam. The second system 

expands the input beam by a factor of 2 while also transforming the input Gaussian 

beam to a uniform output beam pro!le.

Consider a laser pro!le shaping system with layout parameters given in Table 6.4 

and illustrated in Figure 6.29. For this system, the input and output beams have the 

same diameter, which means that the marginal rays (displaced a distance r0 from the 

optical axis) must not be de$ected by the optical components. According to Snell’s 

law, a ray will not be de$ected by a surface when the index of refraction is same on 

both sides of the interface. This means that there must be a dense material of index 

n0 connecting the two lenses. The connector in this design is a glass bar with the 
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FIGURE 6.28 Relationship between GRIN characteristics and laser pro!le shaping optical 

system design parameters for the primary lens S1. (Reproduced from Wang, C. and Shealy, D. 

Appl. Opt., 32, 4763–4769, 1993. With permission.)
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same index of refraction as that of the base glasses used to fabricate the GRIN lenses. 

Using the layout parameters given in Table 6.4, the GRIN pro!les of the primary and 

secondary lenses have been computed from Equations 6.145 and 6.146 as a function 

of the radial distance from the optical axis. These results are shown in Figures 6.30 

and 6.31 for the primary and secondary lens materials, respectively.

Fitting with a least-squares technique, the GRIN pro!les as a function of the sag z 

of each surface give the following empirical expressions for n1(z1) and n2(z2):

 n z z1 1 121 537910 0 036171 0 008827= − +. . .  (6.148)

 n z z2 2 221 525456 0 010882 0 000801= −. . .−  (6.149)

The self-consistency of this design of a GRIN laser beam pro!le shaping system 

has been checked by doing a ray trace to compute the intensity of the output beam. 

A grid of Gaussian distribution over the entrance pupil was used so that the number 

of rays per unit area represents the intensity of the beam as it passes through this 

optical system. The intensity distribution of the input and output beams is shown 

in Figure 6.32. It is clear from these results that the input Gaussian beam has been 

transformed into a uniform intensity output beam.

TABLE 6.4

Layout Parameters for a Laser Beam Shaping System 

with No Expansion of the Diameter of the Input Beam

System Variables Values

Primary lens vertex radius, R1 5.0 mm

Secondary lens vertex radius, R2 5.0 mm

Spacing between lenses, d 100.0 mm

Incident beam waist (radius), r0 114.0 mm

Exiting beam radius, r2max 4.0 mm

Index of connector, n0 1.5

r0

n1 n0

Cemented interfaces

Lens 1 Connector Lens 2 

n2

r2max

FIGURE 6.29 Layout of a GRIN 1-to-1 laser beam shaping system. (Reproduced from 

Wang, C. and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. With permission.)
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FIGURE 6.30 GRIN pro!le of the primary lens of a 1-to-1 laser beam shaper. (Reproduced 

from Wang, C. and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. With permission.)
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FIGURE 6.31 GRIN pro!le of the secondary lens of a 1-to-1 laser beam shaper. (Reproduced 

from Wang, C. and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. With permission.)
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Now consider a 2× laser beam pro!le shaping system with layout parameters given 

in Table 6.5 and illustrated in Figure 6.33. When compared to a nonexpanding laser 

pro!le shaping system, beam expanders de$ect rays to a greater extent. Therefore, it 

is important to choose carefully the system layout parameters (R1, R2, and d) so that 

the resulting GRIN pro!le can be fabricated. Unless a dense medium connects the 

two lenses, the overall index change will be too large for current material fabrication 

technologies. Using the layout parameters given in Table 6.5, the GRIN pro!les of the 

primary and secondary lenses have been computed from Equations 6.145 and 6.146 

as a function of the radial distance from the optical axis. These results are shown in 

Figures 6.34 and 6.35 for the primary and secondary lens materials, respectively.

TABLE 6.5

Layout Parameters for a 2× Laser Beam Shaping System

System Variables Values

Primary lens vertex radius, R1 5.0 mm

Secondary lens vertex radius, R2 10.0 mm

Spacing between lenses, d 150.0 mm

Incident beam waist (radius), r0 4.0 mm

Exiting beam radius, r2max 8.0 mm

Index of connector, n0 1.5
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FIGURE 6.32 Computed intensity of the input and output beams of a 1-to-1 GRIN laser 

beam shaper. (Reproduced from Wang, C. and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. 

With permission.)
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Fitting with a least-squares technique, the GRIN pro!les as a function of the sag z 

of each surface give the following empirical expressions for n1(z1) and n2(z2):

 n z z z1 1 1 121 600350 0 059840 0 012423( ) . . .= − +  (6.150)

 n z z2 2 21 567088 0 009410( ) . .= −  (6.151)

Similarly, the self-consistency of this design of a GRIN laser beam pro!le shaping 

system has been checked by doing a ray trace to compute the intensity of the output 

r0

n1

Lens 1 Connector Lens 2

Cemented interfaces

n0

n2

r2max

FIGURE 6.33 Layout of a GRIN 2× expander and laser beam shaping system. (Reproduced 

from Wang, C. and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. With permission.)
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FIGURE 6.34 GRIN pro!le of the primary lens of a GRIN 2× expander and laser beam 

shaping system. (Reproduced from Wang, C. and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. 

With permission.)

278



264 Laser Beam Shaping

beam. A grid of Gaussian distribution over the entrance pupil was used so that the 

number of rays per unit area represents the intensity of the beam as it passes through 

this optical system. The intensity distribution of the input and output beams are 

shown in Figure 6.36. It is evident that the Gaussian input beam has been trans-

formed into a uniform output beam.
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FIGURE 6.35 GRIN pro!le of the secondary lens of a GRIN 2× expander and laser beam 

shaping system. (Reproduced from Wang, C. and Shealy, D. Appl. Opt., 32, 4763–4769, 1993. 

With permission.)
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GRIN 2× expander and laser beam shaping system. (Reproduced from Wang, C. and Shealy, D. 
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6.5.3.3 Summary of GRIN Pro"le Shaping System

The theory and design procedures for using axial GRIN plano-convex lenses with 

spherical surfaces have been presented. This is in contrast to the aspheric surfaces 

required for constant index materials, as presented in Section 6.5. Two axial GRIN 

laser beam pro!le shaping systems—2× expander and nonexpander—have been 

designed, analyzed, and shown via simulations to transform a Gaussian input beam 

into a uniform intensity pro!le output beam. Least-squares !tting techniques have 

shown that the index of refraction of the required GRIN materials is either a linear 

or near-parabolic functions of the axial distance, where the depth of the gradient and 

the overall index change are within current GRIN fabrication techniques. As GRIN 

fabrication technologies improve as illustrated by the LightPath Technologies devel-

opment of the GRADIUM™ GSF glass family, there will be new opportunities for 

building compact and versatile laser pro!le shaping systems.

6.6 REFLECTIVE BEAM SHAPERS

Applying geometrical optics to the design of re$ective laser beam shapers follows 

similar procedures used for the design of refractive laser beam shapers as described 

in Section 6.8.2. These re$ective systems may or may not have a central obscuration. 

One- and two-mirror systems with central obscuration have been used for shaping 

the irradiance pro!le of laser beams [6,7], where solving differential equations has 

been used to determine the shape of the mirror surfaces which achieve the desired 

redistribution of the irradiance. Cornwell [26,27] has developed a general approach 

using nonprojective transformations to design two-mirror laser beam pro!le shaping 

systems with either rectangular or polar symmetry. Malyak [8] has designed a two-

mirror unobscured optical system using rotationally symmetric aspheric to convert 

an input Gaussian beam into a uniform intensity output beam.

In Section 6.6.1, the differential equation approach of McDermit and Horton [6,7] 

for designing a one-mirror system to transform a collimated input beam pro!le into 

prescribed illumination of a receiver surface will be summarized. Next, in Section 

6.3.3, the nonprojective transformations of Cornwell [26,27] and the differential 

equation approach of Malyak [8] have been used to describe the design of two-mirror 

laser pro!le shaping systems with either rectangular or polar symmetry.

6.6.1 ONE-MIRROR PROFILE SHAPING SYSTEMS

Consider the geometrical con!guration of a one-mirror laser beam pro!le shaping 

system shown in Figure 6.37. The input radiation is collimated (parallel to optical 

axis) with a known intensity pro!le. The receiving surface is illuminated with a pre-

scribed intensity distribution while the output beam is not collimated. Unit vectors 

along the input and output beams are given by

 a k=  (6.152)

 A a n a n r
= −

′ − − ′

+ ′
2 2 1

1
2

21 1( . ) ( )
( )=

z z

z

k
 (6.153)
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where Equations 6.40 and A.3 were used. The ray trace equation connecting the mir-

ror surface s with the receiving surface S in the r–z plane is given by

 
R r

Z R z r
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z r
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r
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− − ′

2
1 2  (6.154)

where:

z = z(r) represents the unknown equation of the mirror surface s
Z = Z(R) represents the known equation of the receiving surface S

Equation 6.154 can be written as

 − − − + − =( ) ( ) ( )R r z Z z z R r′ + ′
2 2 0  (6.155)

Applying the differential energy balance equation (Equation 6.35) to this problem 

gives

 I r r r I R R R Z1 2 2 2 1 22 2( ) ( ) [ ] /
π = π +d d d  (6.156)

where:

I1(r) is the beam intensity incident upon the !rst mirror surface

I2(R) is the intensity incident upon the second mirror surface

Equation 6.156 can be rearranged into the form:
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where:

I1(r), I2(R), and Z(R) are the known functions of their respective variables

z(r) is an unknown function at this point of the analysis

In addition, note that the ray trace equation (Equation 6.154) expresses a mapping 

between surfaces s and S:

 ( ) ( ), ,r z R Z  (6.158)

Receiver, S
Z(R)

Mirror, s
z(r)

Z

a

r

FIGURE 6.37 Geometrical con!guration of a one-mirror laser beam pro!le shaping system.
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which implies that R is a function of r, R(r). From the chain rule for differentiation of 

a function of function, the term (dZ/dr) in Equation 6.157 can be written as
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where:

Z′(R) = dZ(R)/dR can be evaluated directly from the equation of the surface S
dR/dr can be evaluated from the ray trace equation (Equation 6.155)

Differentiating Equation 6.155 with respect to r gives
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Combining Equations 6.159 and 6.160 leads to
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However, rewriting Equation 6.155 gives the relationship
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which has been used to express Equation 6.161 in the following form:
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Replacing the term (dZ/dr) in Equation 6.163 with the right-hand side of Equation 6.157 

gives the following differential equation for the mirror surface in terms of known 

functions:
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The above equation is equivalent to Equation 3.14 [6] and Equation 13 [7]. When 

appropriate boundary conditions are given, then Equation 6.164 can be solved for 

the shape of the mirror surface which will illuminate the receiver surface S with 

a prescribed intensity I2(R) for a given source intensity pro!le I1(r). McDermit and 

Horton [6,7] develop an extension of this analysis to two-mirror intensity  pro!le 
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shaping systems. A number of speci!c solutions for both one- and two-mirror 

 systems are given in Refs. [6,7] including two laser beam pro!le  shaping systems:

 1. Uniform illumination of a plane perpendicular to the incident beam using a 

one-mirror system for an input Gaussian beam (Figure 7.3 [6])

 2. Uniform illumination of a plane on the optical axis with a two-mirror sys-

tem for an input Gaussian beam (Figure 7.9 [6])

In Section 6.6.2, the nonprojective transformations of Cornwell [26,27] will be pre-

sented as a geometrical method for designing two-mirror laser beam pro!le shaping 

system for either rectangular or polar symmetry, which are described in Section 6.6.

6.6.2 TWO-MIRROR LASER BEAM SHAPERS

In this section, the design equations of a two-mirror intensity pro!le shaping sys-

tem will be developed. Results in both rectangular and polar coordinate systems 

will be presented. For more details and applications of these results, the interested 

reader is encouraged to see Refs. [8,26]. Reference [27] is the original source of the 

development of nonprojective transformations in optics used to develop the material 

presented in this section. Development of the design equations for rectangular and 

polar coordinate systems will follow the seven-step recipe of Cornwell [26,27] for 

nonprojective transformation summarized in Section 6.3.3. The geometrical con-

!guration of nonprojective transformations is illustrated in Figure 6.38. The nonpro-

jective transformations represent a mapping between the input plane and the output 

beam which takes into account conservation of energy, constant OPL of wavefront 

between the input and output planes, and the ray trace equations. The input and out-

put beams will be assumed to be collimated and parallel to the optical axis.

6.6.2.1 Systems with Rectangular Symmetry

The relationship between the element of areas on the input and output planes is illus-

trated in Figure 6.39 and can be written in the following form:

 I x y x y I X Y X Yin outd d d d( , ) ( , )=  (6.165)

where:

Iin and Iout are the input and output intensity pro!les of the laser beam, respectively

r

R

Z

Constant optical
path length for

all rays

FIGURE 6.38 Geometry of the input plane and output plane for a nonprojective trans-

formation. Either rectangular or polar coordinate systems can be used, depending on the 

symmetry of the laser beam pro!les and optical system. (Reproduced from Shealy, D. L. and 

Chao, S.-H. Opt. Eng., 42, 3123–3138, 2003. With permission.)
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The total energy must also be conserved which is represented by integrating 

Equation 6.165 over the full aperture of the input and output planes:

 
I x y x y I X Yin

Full input aperture Full output aperture
outd d∫ ∫=( , ) ( , ))d dX Y

 
(6.166)

For laser beam pro!le shaping systems with rectangular symmetry, assume that the 

input and output intensity pro!les can be separated into a product of one-dimen-

sional amplitude functions, as illustrated in Section 6.3.3:

 
I x y a x a yx yin( , ) ( ) ( )=

 
(6.167)

 I X Y A X A YX Yout ( , ) ( ) ( )=  (6.168)

Allowing for nonuniform shaping of a laser beam pro!le in two orthogonal  directions, 

assume that there is an independent and nonuniform magni!cation of the x and y ray 

coordinates between the input and output planes:

 X m x xx= ( )  (6.169)

 
Y m y yy= ( )  (6.170)

The rectangular magni!cations mx(x) and my(y) can be determined by imposing the 

incremental expression of conservation of energy (Equation 6.165) for the separated 

intensity functions (Equations 6.167 and 6.168):

 a x a y x y A X A Y xm x
x x ym y

yx y X Y
x y( ) ( ) ( ) ( ) [ ( )] [ ( )]d d d=

∂

∂









∂

∂








dy  (6.171)

Iin(x,y)dxdy

Iout(X,Y )dXdY

X

Y

A

Z

Mirror, S

Mirror, s

x

y

a

FIGURE 6.39 Symbolic relationship between the input and output elements of the area in the 

rectangular coordinates. Conservation of energy within the corresponding element of areas on 

the input and output planes is one principle used to determine the optical surface shapes of the 

laser beam shapers. The constant OPL condition of all rays passing from the input to the output 

plane is the second principle used to determine the optical surface shapes of laser beam shaper 

systems. For two-mirror systems, the axial OPL is the geometrical path length L. (Reproduced 

from Shealy, D. L. and Chao, S.-H. Opt. Eng., 42, 3123–3138, 2003. With permission.)
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Rewriting Equation 6.171 with terms depending on x on the left-hand side of the 

equation leads to separation of variables:

 
a x

A m x xm x
x

A m y
a y

ym y
y

x
X x x

Y y
y

y( )
( ) [ ( )]

( )
( )

[ ( )]
[ ]

[ ]1
∂

∂

∂
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=







=

1
1C , constant  (6.172)

or
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 (6.174)

The constant C1 is determined from the boundary conditions, such as the magni!ca-

tions at the edge of the beam. Integrating Equations 6.173 and 6.174 gives

 m x x C a u du
A um u Cx

x
X x

x
( ) ( )

( )[ ]=











∫

1
1 2

0
+  (6.175)

 m y y C
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A my
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Y y

y
( ) ( )

( )[ ]= +
1 1

1 0
3

v v
v v Cd

∫











 (6.176)

where:

C2 and C3 are constants determined by boundary conditions, such as the magni!-

cation of a rim ray, as described in detail by Shealy and Chao [84]

Equations 6.175 and 6.176 are integral equations for the x–y ray magni!cations. For 

many applications using laser beam pro!le shaping systems, the output intensity 

pro!le is uniform and solution to either the differential equations (Equations 6.173 

and 6.174) or the integral equations (Equations 6.175 and 6.176) is straightforward.

Now, the ray trace equations connecting points on the input plane to the out-

put plane will be developed. The geometrical con!guration of a two-mirror laser 

beam pro!le shaping system is illustrated in Figure 6.40. The unit ray vector A1→2 

 connecting the two mirror surfaces s[x,y,z(x,y)] and S[X,Y,Z(X,Y)] along a ray path 

can be written in the following form:

 A i j k
1 2→ =

− + − − +

− − + + −

( ) ( ) (
( ) ( z)( )2 2 2

X x Y y h L Z z
X x Y y L Z

+ − )
 (6.177)

where:

L is the distance along the z-axis separating the local coordinate system on each 

mirror
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The functions z(x,y) and Z(X,Y) are the sag of each mirror in the local coordinate 

system of each mirror. Using Equation 6.40, the ray vector connecting each mirror 

may also be written in terms of the slope of the !rst mirror:

 A a N a N i j k
1 2→ = − =

− − + − −

+ +
2 2 2 1

1
2 2

2 2( . ) ( )
( )

z z z z
z z

x y x y
x y

 
(6.178)

where:

 a k=  (6.179)

 n i j k
=
− −

+ +

z z
z z

x y

x y

+

1 2 2
 (6.180)

 z z x y
x z z x y

yx y= =
∂

∂

∂

∂

( , ) and ( , )
 (6.181)

Equating the x–y and x–z components of the ray vector A1→2 from Equation 6.178 

to the corresponding coordinates on the ray vector leads to the following ray path 

equations:

 
z

X x
z

Y y h
x y
− − −

=  (6.182)

 
−

−

−2 1 2 2zx
X x

z z
L Z z

x y
=

−

+ −
 (6.183)

Z(X,Y )

A1→2

a

x

z

z(x,y)

y

FIGURE 6.40 Geometrical con!guration of a two-mirror laser beam shaper. (Reproduced 

from Shealy, D. L. and Chao, S.-H. Opt. Eng., 42, 3123–3138, 2003. With permission.)
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Solving Equations 6.182 and 6.183 for zx leads to a quadratic equation with the 

 following solutions:

 

z X x L Z X Y z x y
X x Y y h

X x L Z X Y z

x =
− + −

− + − −

±
− +

( )[ ( , ) ( , )]
( ) ( )

( ) [ ( , ) (

2 2

− xx y X x Y y h
X x Y y h

, )] ( ) ( )
( ) ( )

2 2 2
2 2

+ − + − −

− − −+

 
(6.184)

Equation 6.184 is a partial differential equation for the unknown mirror surface 

functions z(x,y) and Z(X,Y), which can be determined after adding a second con-

straint condition that these two beam shaping surfaces must satisfy.

The constant OPL condition provides another independent condition to be satis-

!ed by the mirror surface functions z(x,y) and Z(X,Y). The OPL for an axial ray and 

a general ray is given by

 OPL hAxial ray 2 2= +L  (6.185)

(OPL)
( ) ( ) [ ,
General ray

2
= −

− + − − + −

Z X Y z x y
X x Y y h L Z X Y z

( , ) ( , ) 
+ +2 ( ) ((x y Z X Y z x y, )] ( , ) ( , )2 + −

 (6.186)

However, the OPL is a constant for all rays. Therefore, equating the right-hand side 

of Equations 6.185 and 6.186 leads to the following expression for Z(X,Y) – z (x,y):

 Z X Y z x y
x X y Y h h

L l
( , ) ( , ) ( ) ( )

( )
2 2

0
− =

− − − − +

+

+

2  (6.187)

where:

 
l L h0 2 2= +

 

Using the negative sign in Equation 6.184 as the physically meaningful solution, it 

has been shown in Reference [84] that combining Equations 6.182, 6.184, and 6.187 

leads to the following expressions for zx(x,y) and zy(x,y):

 z
x X

l
x =

+

−

L 0
 (6.188)

 z
y Y h

l
y =

− +

+L 0
 (6.189)

Assuming the sag of the !rst mirror can be written in the form:

 z x y z x y x z x y yx y( , ) ( , ) ( , )= +d d∫ ∫  (6.190)

where:

zx(x,y) and zy(x,y) are given by Equations 6.188 and 6.189
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Then, the sag of the !rst mirror can be written as

 z x y
l

u m u u
l

m C

x

x

y

y( , ) [ ( )] [ ( )]=
+

− + −
1 1 1 1

0 0 0 0
4

L L
v v v∫ ∫+

+







d d 


 (6.191)

where:

C4 is a constant of integration

Equations 6.169 and 6.170 have been used in the above equation. Expressions for 

mx and my in Equation 6.191 are found from Equations 6.173 through 6.176. Finally, 

an expression for the sag of the second mirror follows from Equation 6.187:

 Z X Y z x y
x Y y Y h h

l x m X X

y

x

( , ) ( , ) ( ) ( )
( ) ( )

= +
− − − − + +

+











=

=

−

2 2 2

02 1L
mm Y Yy
−1 ( )

 (6.192)

where the x and y terms are eliminated from Equation 6.192 by solving for the inverse 

of the magni!cations.

A number of interesting applications of these results are presented in Refs. 

[8,27,84]. These applications include transformation of a linear ramp beam pro!le 

of one slope to another slope with different offset distances from the x or y axes and 

development of an unobscured two-mirror laser pro!le shaping system.

6.6.2.2 Systems with Polar Symmetry

A general solution for the shapes of the two mirror surfaces of a rotationally sym-

metric laser pro!le shaping system is given in Refs. [26,27]. In this section, the 

results developed in the previous section for rectangular symmetry will be used to 

obtain equations for the sag of the two mirror surfaces for a laser pro!le shaping 

system with polar symmetry.

Assuming both the input and output beam pro!les have rotational symmetry, then 

a ray entering the system at a polar angle θ = θ0 with respect to the x–y coordinate 

system of the !rst mirror will leave the system at a polar angle Θ = Θ0 with respect to 

the X–Y coordinate system of the second mirror. Converting to polar coordinates and 

setting θ = Θ as a result of radial symmetry of the beams, then the partial derivatives 

of the surface sag of the !rst mirror are given by

 g g
x

r
g

y

r L l
r R hrr x y=

∂

∂
+

∂

∂
=

+
− +

1
0
( )sinθ  (6.193)

 g g
x

g
y

L l
hrx yθ + =

+
θ=

∂

∂

∂

∂θ θ

1
0
( )cos  (6.194)

where:

 x r y r X R= θ = θ = = Θcos sin cos sin; ; ;Θ Y R  (6.195)
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Integrating Equations 6.193 and 6.194 gives

 g r
L l

r m r r hr

r

( , ) [ ( )]θ =
+

− + θ
1 1

0 0
′ ′ ′












∫ d sin  (6.196)

where m(r) is given by Equation 6.98. An equation for the sag of the second mir-

ror, G(R,Θ), can be determined by substituting Equation 6.196 into Equation 6.192. 

Alternatively, an expression for G(R,Θ) follows from geometric considerations when 

the input and output beams are parallel to the z-axis. As a result of symmetry, the 

surface of the !rst mirror at the point (r,θ) is parallel to the surface of the second mir-

ror at the point (R,Θ), where (r,θ) and (R,Θ) are connected by a ray. Thus, the partial 

derivatives of g and G are equal, that is, GR = gr and GΘ = gθ. Following a similar 

derivation leading to Equation 6.196 gives

 G R
L l

R m R R hR

R

( , ) [ ( ) ]Θ Θ=
+

− +−1 1
0 0

1′ ′ ′











∫ d sin  (6.197)

Recall that beam shaping places a constraint on the ray heights as expressed through 

the radial magni!cation given by Equations 6.97 and 6.98.

This completes the analysis of a two-mirror system. To design a speci!c two-

mirror laser beam shaping system, the radial magni!cation function m(r) must be 

determined. Then, the mirror surface sag functions are computed from Equations 

6.196 and 6.197. Malyak [8] presents speci!c examples of a Gaussian input beam 

being transformed into a uniform intensity output beam with a smaller diameter. 

Integral equations for the sag of the !rst- and second-mirror surfaces are given, and 

several numerical results for the mirror surfaces are also presented in Refs. [8,84].

6.7 CONCLUSION

The ability to control the irradiance pro!le of a laser beam is an important asset 

to the optical designer. We have shown how the basic laws of geometrical optics, 

the eikonal equation, and the intensity transformation law allow one to analyze a 

beam shaping optical system, including wavefronts, irradiance pro!les, and caustics. 

A nonimaging (anamorphic) transformation of a bundle of parallel rays to another 

bundle of parallel rays, which we describe by a ray mapping function, results in a 

transformation of irradiance pro!les. Such a transformation can be implemented 

using many optical technologies; we have considered refractive, re$ective, and gradi-

ent index systems in detail.

The most straightforward implementations of laser beam shaping optics require two 

aspheric re$ecting or refracting surfaces, one to redirect the incident rays so as to satisfy 

the desired ray mapping function and the other to ensure that the output beam has a pla-

nar wavefront (collimated rays). Points on these surfaces must satisfy three constraints 

imposed by the ray mapping function, the equal OPL condition, and the law of re$ec-

tion or refraction at the surfaces. These three conditions de!ne exactly two solutions 

for the beam shaping mirrors or lenses. For the special case of rotationally symmetric 
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laser beams, by far the most important practical situation, the constraints on the beam 

shaping surfaces can be combined to give exact design equations in the form of ordinary 

differential equations that can be solved numerically to any desired precision. More spe-

ci!cally, for a rotationally symmetric two-lens refractive beam shaper the aspheric sur-

faces are each described by a simple integral equation, !rst derived by Kreuzer in 1964.

In practice, the most common application of laser beam shaping optics has 

been the transformation of a Gaussian to a $at-top pro!le. Many lasers emit in the 

Gaussian TEM00 mode and non-Gaussian laser beams can often be made Gaussian 

or nearly so by the simple expedient of spatially !ltering with an aperture or a single-

mode !ber. As an output pro!le, uniform illumination is ideal for many important 

applications, including illumination, lithography, and materials processing (such as 

annealing, cutting, and drilling). We have described several families of functions 

that are suitable for $at-top laser beam irradiance pro!les. This discussion neces-

sarily extends beyond geometrical optics per se to include the effects of diffraction 

on $at-top pro!les. For a beam that approaches a top-hat pro!le, diffraction severely 

limits the range over which the beam exhibits an approximately uniform irradiance. 

The propagation of such $at-top beams can be described by Siegman’s M2 parameter 

or by numerical integration of the diffraction equation.

In addition to the equations for the design of beam shaping optics, we have also 

discussed optical and mechanical tolerances, which are essential considerations for 

anyone involved in the practical applications of fabrication, mounting, and alignment 

of beam shaping optics. The effects of dispersion on the aspheric lens doublet also 

naturally !t into this discussion.

Finally, we have described the measured performance of fabricated refractive 

beam shapers of both Galilean and Keplerian designs. Irradiance pro!les, wave-

fronts, caustic surfaces (in the case of the Keplerian telescope), and wavelength-

dependent operation are all in good agreement with optical theory. Laser beam 

shaping based on the principles of geometrical optics is thus established as an impor-

tant piece of the optical designer’s toolkit.
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APPENDIX: EQUIVALENCE OF SOLUTIONS TO THE BEAM 
SHAPING PROBLEM

The literature of beam shaping includes two independently derived solutions for the 

surfaces of a two-element refractive beam shaper, one formulated as an integral equa-

tion [11] and the other as an ordinary differential equation [13]. Although they appear 

super!cially different, the same physical principles apply in both cases, so the solu-

tions must be equivalent. This appendix shows explicitly that the solutions of Refs. 

[11,13] are identical.

A ray entering the !rst lens parallel to the z-axis is refracted by the !rst aspheric 

surface and emerges in the direction A, de!ned in Equation 6.7. Rhodes and Shealy 

[13] use the vectorial formulation of Snell’s law presented in Section 6.2.1.3 and rear-

range Equation 6.40 to express the unit vector in the direction of the refracted ray as

 A e Nz= +n Ω  (A.1)
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Writing the components of A explicitly,
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which leads to an equation relating the points of refraction on the !rst and second 

lenses as follows:
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where:

r and R are related by the ray mapping function

z and Z are the axial coordinates of the !rst and second points of refraction, 

respectively
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Cross multiplying Equation A.5 yields, after squaring and collecting terms in 

power of z′,
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Factoring Equation A.6 into a quadratic equation in z′ times, the factor (1 + z′2) gives 

the following result:

 ( ){ }1 02 2 2
+ ′ ′ + ′ + =z az bz c  (A.7)

where:

 a n R r n Z z= − + − −2 2 2 21( ) ( )( )  (A.8a)

 b R r Z z= − − −2( )( )  (A.8b)

 c R r= − −( )2  (A.8c)

Canceling the term (1 + z′2) in Equation A.7 and solving the quadratic equation in 

z′ yields
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In fact, only the negative sign in Equation A.9 is physically meaningful. This can be 

seen by considering the limit (R − r) → 0, in which case (Z − z) → t, where t denotes 

the axial separation of the lenses. Then the limiting case of the equation for the slope is

 ′ − −
±

+ −
z R r n

t n n→ ( ) ( )( )
1

1 1  (A.10)

Physically, the signs of R − r and z′ are the same if n > 1 and opposite if n < 1. This 

means that the correct limiting case is z′→ (R − r)/(n − 1)t, which requires the posi-

tive sign in Equation A.10, corresponding to the negative sign in Equation A.9.

Equation A.9 is a consequence of ray tracing alone. To complete the solution for 

z′, we need to add the constant OPL condition. In Reference [13], it is expressed as

 ( ) ( ) ( ) ( )R r Z z n Z z t n− − = − − −2 2 1+  (A.11)

Squaring Equation A.11 and substituting the resulting expression in Equation A.9 

allows one to eliminate Z, resulting in a !rst-order ordinary differential equation for 

z(r), which is Rhodes and Shealy’s solution. To prove that it is the same as Kreuzer’s 

solution [11], we go back to Equation A.9, with the negative sign, and write it as
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Substituting Equation A.11 in this equation gives
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Rearranging the numerator, and factorizing and rearranging the denominator leads to
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Squaring Equation A.11, collecting terms, and solving the resulting quadratic equa-

tion result in an equivalent relation:
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Substituting this expression in the denominator of Equation A.15 gives
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−
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which is easily rearranged to yield Kreuzer’s solution [11] (Equation 6.79).
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7 Optimization- Based 

Designs

Alexander Laskin, David L. Shealy, 

and Neal C. Evans

7.1 INTRODUCTION

Recently, the application of optical design and optimization techniques to laser beam 

shapers has led to new applications and development. These methods have shown 

great promise for shaping virtually any stable laser beam pro!le as well as single 

and multimode laser beams and for using achromatic beam shaping designs. Laser 

beam shaping techniques have also been used in holographic and interferometric 

nanomanufacturing, in controlling beam intensity pro!les for task in laser materials 

processing, and for creating round and square $at-top laser spots in microprocessing 

systems with scanning optics.

Kreuzer [1] !rst described, in 1964 at the Symposium on Optical and Electro-Optical 

Processing Technology, four methods for creating a uniform irradiance  pro!le for a laser 
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beam, which are given in Section 6.1. Later in 1969, Kreuzer [2] developed and patented 

a coherent light optical system to transform the rays of a laser beam into a collimated 

beam with a uniform irradiance pro!le, which is based on (1) the intensity law of geo-

metrical optics and (2) the constant optical path length condition between the input and 

output apertures of the laser beam shaper system. Kreuzer’s patent presents the equa-

tions for calculating the sag of two plano-aspheric lenses required to accomplish the 

speci!ed beam shaping. Further, Shafer [3] used optical design methods to develop a 

laser beam shaping design with two afocal doublet spherical lenses with zero total opti-

cal power. By varying the shape of the !rst doublet while keeping the total power of the 

!rst doublet constant, a large amount of spherical aberration is introduced into the input 

beam, which redistributes the irradiance of the input beam. Then, the second doublet is 

given the same amount of spherical aberration, but with opposite sign as the !rst doublet, 

which produces a collimated output beam with moderate  uniformity of its irradiance.

Evans and Shealy [4] developed a genetic algorithm optimization method for use 

in the optical design of laser beam shapers during the 1990s, where their optimiza-

tion methods were applied to designs that contain both discrete and continuous vari-

ables within the solution space. Hoffnagle and Jefferson [5,6] developed an optical 

system that transforms an input laser beam with axially symmetric irradiance pro!le 

into an output pro!le with a different irradiance pro!le, such as a Fermi–Dirac or 

other distribution. A Keplerian con!guration of two plano-aspheric lenses was used 

to simplify fabrication and introduce a continuous roll-off of the output beam irradi-

ance distribution for more control of the far-!eld diffraction pattern. Their Keplerian 

con!guration of beam shaper has been fabricated, assembled, tested, and transferred 

into a commercially available refractive beam shaper with a large bandwidth from 

IR to UV [7]. Hoffnagle and Jefferson provide detailed characterization of a refrac-

tive beam shaper at 514 nm, which gives an output beam with less than 5% variation 

in the irradiance and with the root-mean-square variation of the optical path differ-

ence (OPD) over the beam of 13 nm. Jefferson and Hoffnagle report a technique to 

achromatize an aspheric laser beam shaper using conventional spherical optics [8].

Laskin [9,10] uses optical design and optimization methods to extend refractive laser 

beam shaping optical systems to the goals of (1) a fully achromatic operation with zero 

or very small total wave aberration and (2) ease of adjustment of optics to accommodate 

a range of input beams which may be collimated or divergent. This goal was achieved 

by an achromatic !eld mapping laser beam shaper system [11]. The achromatic optical 

unit consists of at least two lens groups with zero total optical power, which is realized 

by requiring the two optical groups to satisfy the intensity transformation law and the 

constant optical path length condition, while also satisfying the achromatic conditions 

over a speci!c spectral range. The achromatic feature is satis!ed by using lens materi-

als with different dispersion characteristics for the lenses of the system. The condition 

of achromatization has been formulated as equations linking the optical power of the 

lenses, distances between the lenses, and the Abbe numbers of the lens materials.

Control of the laser beam irradiance pro!le, particularly providing uniform dis-

tribution, is of great importance for various holography and interferometry applica-

tions in research and industry. The $atness of the phase front of a laser beam should 

be conserved during any irradiance pro!le transformation of both the $atness of the 

phase front and the irradiance  distribution. There are several beam shaping techniques 
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applied in modern laser technologies, such as the integration systems based on arrays 

of microlenses, micromirrors, or prisms, which cannot be applied since their physical 

principle implies destroying the beam structure and, hence, leads to loss of spatial 

coherence. Other techniques include truncation of a beam by an aperture or attenua-

tion by apodizing !lters yield acceptable homogeneity of irradiance pro!le in some 

cases, but an evident disadvantage of these techniques is the essential loss of the 

costly laser energy. To meet the demands of holography and interferometry, it is sug-

gested to apply beam shaping systems built on the base of !eld mapping refractive 

beam shapers, such as the πShaper,* whose operational principle implies almost loss-

less transformation of laser irradiance distribution from Gaussian to  $attop, conserv-

ing of beam consistency, $atness of output phase front, low divergence of collimated 

output beam, high transmittance, extended depth of !eld (EDOF), capability to oper-

ate with TEM00 or multimode lasers, and implementations as telescopes or collima-

tors. This chapter discusses the basic principles and important features of refractive 

beam shapers as well as some optical layouts that can be built on their base to meet 

requirements of modern laser technologies.

In Section 7.1.1, we summarize the scope of the many applications of laser beam 

shaping as a result of the work of Laskin and coworkers, who have moved laser 

beam shaping into the well-established domain of optical design and optimiza-

tion for all laser-based optical design technologies and applications. Section 7.1.2 

presents a method for computing the irradiance during ray tracing by applications 

of the geometrical optics intensity transformation law  [12]. An overview of the 

general theory of optimization-based methods for design of achromatic laser beam 

shapers is presented in Section 7.2. Speci!c attention is given to the use of optical 

design and optimization methods to formulate components and speci!cations of 

refractive laser beam shapers which satisfy the following: (1) the geometrical optics 

intensity transformation law; (2) the constant optical path length condition to give 

zero wave aberration; and (3) the condition of achromatization in the form of com-

bined equations linking focal power of the lenses, distances between lenses, and 

the Abbe numbers of the lens materials. Section 7.3 summarizes several speci!c 

procedures discussed in Section 7.2 to realize applications of refractive, achromatic 

laser beam shapers in many topical areas of scienti!c, engineering and technology 

research and development, such as micro-machining, interferometry, holography, 

laser design, scienti!c applications, industrial technologies, and life sciences. In 

addition, Laskin and coworkers have shown that (1) shaping the spatial (transverse) 

pro!le is highly desirable when building optical systems for high-power lasers 

and their applications [13]; (2) using anamorphic optical element either before or 

after the rotationally symmetric refractive beam shaper generates a wide collec-

tion of spot shapes and intensity pro!les  [14]; (3) using a refractive laser beam 

shaper to improve the output radiation of the photocathode of a free-electron laser 

(FEL) [15]; and (4) using refractive laser beam shaper to also improve operation 

ef!cient of spatial light modulators (SLMs) [16]. Overall conclusions of this work 

are given in Section 7.4.

* πShaper is a registered trademark of AdlOptica GmbH, Berlin, Germany, http://www.adloptica.com.
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7.1.1 SCOPE OF APPLICATIONS

Laser beam shaping is an important component of many industrial processes and 

has been described as being an enabling technology [17]. There have been annual 

topical conferences on laser beam shaping since 1999 [17], and there is a wealth of 

literature published in the laser and optics literature on laser beam shaping. This !eld 

has matured and developed very speci!c applications in many topical areas:

In micromachining, where speci!c laser beam shaping solutions are used 

for drilling blind vias in and cutting of printed circuit board (PCB), repair 

of display  pixels, microwelding, trimming

Industrial applications of welding, cladding, hardening, and illumination 

with SLMs

Interferometry applications of measuring devices and generation of  periodic 

structures

Holography applications of security holograms, multicolor Denisyuk holog-

raphy, and holographic data storage

Life sciences applications of $ow cytometry, illumination in confocal 

microscopy, and homogenizing the radiation of several lasers in $uo-

rescence techniques; scienti!c applications of $ying plate technique in 

 spectroscopy, laser heating in geophysics, various laser ablation techniques, 

and basic research

Laser design of pumping of ultra-short pulse solid-state lasers, optimizing 

master oscillator power ampli!er (MOPA) laser design, and irradiation of 

photocathodes in FELs [19]

7.1.2 IRRADIANCE CALCULATIONS VIA RAY-TRACING METHODS

Fundamental to laser beam shaping computations is a fast, accurate means of deter-

mining irradiance (energy per unit area per unit time) pro!les at different loca-

tions within a system. To do this, one must start with !rst principles: energy must 

be conserved in a nondissipative optical system. This principle is mathematically 

expressed in the form of the energy conservation law. The energy conservation 

law has broad application, from designing re$ective beam shapers via analytical 

differential equation methods to the development of !nite-element mesh methods 

for the design of beam shaping holograms [20–22]. To employ energy conserva-

tion, one starts by describing the irradiance pro!le of a bundle of rays striking 

the input pupil of a beam shaping system by a radially symmetric function σ(ρ). 

Consider the optical con!guration illustrated in Figure 7.1. These rays propagate 

through the beam shaping system and exit to strike the output surface, where the 

irradiance distribution on the output surface is represented by the function u(P). 

Assuming that no energy is dissipated by the system, the energy conservation law 

can be expressed as

 E a u P A

I O

= =∫ ∫σ ρ( ) ( )d d  (7.1)
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where:

E is the total energy entering the system

I and O are the input plane and output surfaces, respectively, over which the 

respective integrations occur

Now, we use Equation 7.1 to develop a simple, ef!cient, numerical method for calcu-

lating the intensity that is incident upon the output surface, which can be expressed as

 u P a
A( ) ( )= σ ρ

d
d  (7.2)

where expressions for da and dA are derived below.

In the examples presented in this chapter, the input irradiance is assumed to be 

Gaussian, measured in units of rays per unit area:

 σ ρ αρ( ) exp ( )i i= −
2  (7.3)

where:

α is a dimensionless quantity given by 2 3/ N

Here, the beam waist of the incoming beam is expressed by ρN and is de!ned as 

the radius of the circle where the irradiance drops to 1/e2 of the central irradiance. 

The N rays that are traced through the system are distributed uniformly over the 

input plane accordingly. Though it need not be, a Gaussian input pro!le is chosen 

because it describes typical laser pro!les when the laser is in the fundamental 

mode TEM00.

To determine the ratio da/dA in Equation 7.2, we start by tracing N rays through 

the system, where N is a reasonably large number. For this application, we have used 

N = 200, which gives adequate resolution for our input and output irradiance pro-

!les. Each ray enters parallel to the optical axis at a speci!ed height, ρi, where the 
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FIGURE 7.1 Basic layout of beam expander with input and output surfaces.
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set of ρi are distributed equally across the radius of the input plane according to the 

following function:

 ρi
r
N i i N=









 = …, , ,0  (7.4)

Each ray leaves the beam shaper and strikes a point of the output surface as shown 

in Figure 7.1. At the point where the ray strikes the output surface, we measure the 

distance Pi, which is the distance from the optical axis, and χi, the angle between the 

unit normal vector of the output surface at the point of interception and the optical 

axis. Using Figure 7.1, we can also write the following expressions:

 d dai i i= 2πρ ρ  (7.5a)

 dρ ρ ρi i i= − −1  (7.5b)

Here, de!ning dρi in this manner is arbitrary, since de!nitions such as dρi = ρi+1 – ρi 
or dρi = ρi+1 – ρi−1 would be just as effective. Furthermore, the subscript i is intro-

duced to emphasize the numerical nature of the solution to the now discrete func-

tion in Equation 7.2. Calculation of dAi is somewhat more complicated, since the 

output surface is not necessarily $at like the input plane. In general, dAi is given 

by 2πPi dSi:

 d d
outS P

i
i
i

= cosχ  (7.6)

Combining these observations with Equations 7.2 through 7.6, one has

 u P i
i P P Pi i

i i i i i
i i i

( ) ( ) cos( ) ( )cos( )
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−
−

−σ ρ
ρ ρ ρ χin out

out
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ii−











1)  (7.7)

Equation 7.7 expresses the output beam irradiance in terms of the input beam irradi-

ance times a ratio of areas expressing the beam expansion as a result of ray propa-

gation through the optical system. Equations 7.7 and 7.3, along with the ray trace 

array, provide an accurate means of calculating the beam pro!le over any reasonable 

surface. The accuracy of this method has been veri!ed by calculating the pro!les 

for several benchmark systems [23,24]. Calculations of output beam pro!les using 

Equation 7.7 are in close agreement with the pro!les given in the benchmark papers. 

Now, a merit function can be developed based on Equation 7.7.

7.2 THEORY

Generally, the idea behind optimization is that one has some function f which may be 

evaluated computationally. This function is expressed in terms of several variables 

which may be discrete or continuous in nature. One wishes to !nd the values of these 

variables that make f assume either its maximum or minimum value. The dif!culty 

of the problem is related to whether one is searching for local extrema, of which there 
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may be many, or the global extrema, which represent the absolute best solutions. 

The complexity of the problem is related to the number of variables that make up f, in 

addition to the ease with which f can be calculated. The greater the complexity of the 

problem, the longer it takes to arrive at a solution. Thus, search algorithms that arrive 

at solutions quickly are to be coveted, which is evident by the voluminous amount of 

research regarding the subject present in the literature [25].

It is well known that several commercial optical design and analysis packages 

implement these techniques in their optimization routines to varying degrees. 

ZEMAX* and CODE V† also contain proprietary global optimization methods. 

The problem with these implementations, among other things, is that the merit 

functions in these packages are oriented toward imaging systems (ZEMAX, how-

ever, allows for user-de!ned merit functions computed by macros or an external 

programming interface), limiting one’s ability to manipulate the merit function 

for one’s own purpose. Also, since the makers of these packages keep their opti-

mization codes proprietary, one has limited ability to modify core optical design 

routines.

7.3 APPLICATIONS

The scope of applications of laser beam shapers has signi!cantly expanded during 

the past 5 years after the developments by Laskin et al.  [9–11,13–16,26] of using 

 optical design codes and optimization techniques as provided by standard opti-

cal design codes, such as ZEMAX and Code V for implementation of achromatic 

laser beam shapers within a wide range of applications. The general areas of these 

applications have been summarized in Section 7.1.1. In Section 7.3.1, we discuss 

how optical design and optimization techniques have been used to obtain similar 

results as  analytical solutions to laser beam shaping design equations  [2,22,27]. 

In Section 7.3.2, we discuss how to use optical design and optimization techniques to 

obtain achromatic laser beam shapers.

7.3.1 OPTIMIZATION OF PLANO-ASPHERIC LENS LASER BEAM SHAPER

As was earlier considered [2,22,27], a refractive beam shaping system can be realized 

in the form of two-lens system with aspheric surfaces, whose analytical expressions 

are rather complicated and not convenient for practical use. Therefore, numerical 

calculations are applied. It is also very promising and fruitful to approximate lens 

surfaces by aspheric terms of high order, such as Air2i, which gives an analytical 

description  (Equation 6.123) [28] and is widely used by optical designers and by 

manufacturers of aspheric optics.

There may be different ways to approximate the design of two-lens laser beam 

shapers. In this section, we shall use an engineering approach toward approximating 

the aspheric surfaces of the refractive laser beam shaper, which implies !nding the 

* ZEMAX is a registered trademark of ZEMAX Development Corporation, San Diego, CA, http://

www.zemax.com.
† CODE V is a registered trademark of SYNOPSYS, San Francisco, CA, http://www.synopsys.com/.
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parameters of an optical system by using the theory of third-order aberrations with 

further correction of those parameters by using well-developed algorithms of opti-

mization in optical system design software, such as ZEMAX and Code V. A  primary 

task of optimization is !nding the global minimum of a merit function, and it is 

very important to de!ne a set of initial parameters of a system close to that global 

minimum. Evidently, the task of de!ning these initial data is not a new one in optics, 

since different approaches have been developed and used. One approach is making 

a series expansion of the aberration functions of a system, where one analyzes low-

order terms of the series expansion, which are the third-order terms of the transverse 

aberration. This engineering method was developed in the beginning of the twentieth 

century, and it works well for systems of low numerical aperture and allows one 

to de!ne the following parameters of optical systems: radii of curvature, indices 

of refraction, thicknesses or air gaps, and conic constants of second-order aspheric 

surfaces.

One should note that the majority of beam shaping systems used in practice 

have a rather low numerical apertures, so that using third-order aberration theory 

is  justi!ed. A remarkable feature of the third-order aberration theory is using the 

paraxial variables of an optical system to express coef!cients of the series expansion 

of aberration. In terms of the third-order aberration theory, we consider surfaces of 

the second-order spherical and conic sections, which include ellipsoid, hyperboloid, 

paraboloid, and spheroid. Therefore, as a !rst step of this approximation, we shall 

model the two-lens beam shaping system by using these aspheric terms of second 

order. Then, de!ning of high-order polynomial terms of even-order radial aspheric 

terms can be used during the further stages of the optimization by using specialized 

optical system design software.

We shall consider a two-lens beam shaper of the Keplerian design providing 

theoretically $at phase front and $at-top irradiance pro!le of the output beam. The 

third-order aberration theory is used to de!ne initial set of parameters of the system 

which is used as a starting point for further optimization by using commercial opti-

cal designing software.

7.3.1.1 Theoretical Considerations

The beam shaping effect in refractive !eld mapping systems is achieved through appli-

cation of lenses with aspheric surfaces; most often these systems are  implemented 

as telescopes of the Keplerian or Galilean type [6,29]. Now, consider a one-to-one 

Keplerian (1-to-1K) telescopic two-lens beam shaper by de!ning the system param-

eters by using the third-order aberration theory and subsequent computer optimiza-

tion. Later, this method can be also extended in Section 7.3.2 to design achromatic 

beam shaping systems.

7.3.1.1.1 De$ning the Aberration to Be Introduced by First Lens

Consider a 1-to-1K two-lens beam shaper as illustrated in Figure 7.2 and also consid-

ered by Shealy and Hoffnagle [27] with the following parameters:

 w R r d n0 2 366 4 05 4 05 150 1 46071= = = = =. ; . ; . ; ; .max maxmm mm mm mm  (7.8)
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where:

w0 is the radius of the input Gaussian beam waist

n is the index of refraction of lenses

The !rst plano-convex lens focuses the laser beam and is responsible for introduc-

tion of the wave aberration in order to redistribute the beam irradiance, while the 

second plano-convex lens compensates for this wave aberration and collimates 

the beam so that the output beam has a $at phase front and $at-top irradiance 

pro!le.

Detailed theory of designing refractive beam shapers is presented in Chapter 6 [30] 

and in Reference  [27]. Here, some important conclusions are used to develop the 

optimization methods for designing more complex laser beam shapers than were 

considered in Chapter 6. As a result of imposing the geometrical law of  intensity [12] 

between the input and output apertures of a refractive beam shaper shown in 

Figure 7.2, one obtains the following ray mapping function [27] for an input Gaussian 

beam and output top-hat beam pro!le:

 R R r w
r w

2 2
2 02

2 02
1 2
1 2=
− −

− −









max

max

exp( / )
exp( / )  (7.9)

Since r and R are radial coordinates that are always positive, one must be care-

ful  when taking the square root of Equation 7.9 to obtain a valid expression 

for R  for either Keplerian or Galilean con!guration of a refractive laser beam 

shaper.  Using the same notation introduced by Shealy and Hoffnagle  [27], the 

output radial coordinate, R, of a refractive beam shaper is given by the following 

result:

 R R r w
r w=

− −

− −
max

max

exp ( / )
exp /

[ ]
[ ( ) ]

1 2
1 2

0 2

0 2  (7.10)

where:

 is de!ned by

 =
+

−





1
1

Galilean configuration
Keplerian configuration  (7.11)
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FIGURE 7.2 Basic layout of two aspheric lens laser beam shaping system.
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As a result of the de!nition of , the radical in Equation 7.10 always refers to the pos-

itive square root. Equation 7.10 can be written in a more compact form as follows:

 
R B r

w= − −






















1 2
0

2
exp

 (7.12)

where:

 B R
r w

=
− −

max

maxexp[ ( / ) ]1 2 0 2  (7.13)

From the geometry of the input and output rays shown in Figure 7.2, we can write 

the following expression:

 tanα =
−

=
′

r R
d

r
s  (7.14)

or

 ′ =
−

s rd
r R  (7.15)

where:

α is the angle that a refracted ray from the !rst lens makes with the optical axis

Substituting Equation 7.12 for Keplerian beam shaper with = −1 into Equation 7.15 

gives

 ′ =

− − −

s d
B r r w1 1 2 2 02( / ) exp( / )  (7.16)

where it should be noted that for a Keplerian con!guration we have = −1, and 

thus, B  <  0 from Equation 7.13. The location s0 of the paraxial focus F of !rst 

 plano-aspheric lens can be found by considering the limit as r approaches zero:

 ′ = ′
→

s s
r0 0
lim  (7.17)

To de!ne this value, it is convenient to use the Taylor series expansion of the expo-

nential function; the transformations give the result as follows:

 ′ =
−

s d
B w0

01 2 /  (7.18)

Then, the longitudinal aberration (LA) Δs′ to be introduced by the !rst aspheric lens 

is given by

 ∆ ′ = ′ − ′ =

− − −

−
−

s s s d
B r r w

d
B w0 2 02 01 1 2 1 2( / ) exp( / ) /  (7.19)
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The character of the aberration function Δs′ can be understood by evaluating 

Equation 7.19 for the 1-to-1K example [27] with the parameters given by Equation 7.8. 

Then, the distance s0 to the paraxial focus is equal to 43.81 mm, and the LA Δs′ as 

the function of the input beam radius r is shown in Figure 7.3.

In contrast, Shealy and Hoffnagle evaluated the axial curvature of the !rst plano-

aspheric lens of 1-to-1K beam shaper by using the intensity law of geometrical optics 

to be equal to −0.042656mm−1 or an axial distance of 50.767 mm from the vertex of 

the !rst lens with the optical axis to the axial focal point [31,32]. Therefore, in con-

trast to imaging applications, the paraxial focus is less important in beam shaping 

applications than the overall ray mapping function that describes how the input rays 

are mapped to the output aperture as required by the intensity law for beam shapers.

There are several important conclusions. First, it is important to note that the LA 

required to transform an input Gaussian beam into a $at-top beam is reached over 

several tens of millimeters, which corresponds to a very strong wave aberration, up 

to 100λ, existing between the components of this laser beam shaping system. The 

aberration is positive, which means that it is not possible to introduce this level of 

aberration by a simple spherical surface, since the positive spherical lenses have 

negative spherical aberration [33]. Therefore, the surface pro!le of the laser beam 

shaper must be aspheric. Another important feature is that in the range of input beam 

radii from 0 to w0, the function of the LA can be approximated by parabolic func-

tion with very high precision, which is shown in Figure 7.3, where the approximate 

parabola is shown by the dashed line. This parabola and function of LA are cross-

ing at the point equal to the waist radius w0. Majority of the energy of the Gaussian 

laser beam, about 87%, is concentrated within a circle of radius of w0. Therefore, any 

calculations based on parabolic approximation of the aberration function would be 

valid for evaluating the performance of a laser beam shaper system.

40

0 1 2 3 4

r (mm)

Parabola

w0

30

Δ
s′

 (
m

m
)

Δs′

20

10

0

FIGURE 7.3 Analysis of LA: solid curve represents aberration; dashed curve represents 

approximate parabola.
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Expanding Equation 7.19 to terms including r2 then gives an explicit expression 

for spherical aberration. The function of the LA can be written as follows:

 LA= ′ ≈∆s Ar2  (7.20)

where:

A is given by

 A Bd
w B=

−2 20 2( )  (7.21)

As we will see, a similar mathematical expression has been used to describe the LA 

in the third-order aberration theory. Therefore, the third-order aberration theory can 

be used to design laser beam shapers.

7.3.1.1.2 Third-Order Aberrations of Two-Lens System

The theory of the third-order aberrations is a powerful tool for analysis of optical sys-

tems and developing an initial design that can be used as a starting point for further 

optimization. For the systems when the aberrations can be approximated by the third-

order series approximation, this theory allows calculating of the system parameters 

being close to global minimum solution. Hence, the further optimization process is 

very short and gives optimum system parameter values after few iterations. There 

are adequate descriptions in the literature of several approaches of using third-order 

approximation of aberrations of optical system on the basis of Seidel sums, where we 

are using the formulations given in the literature [33–35]. An essential feature of this 

theory is in calculating the third-order coef!cients of the aberration series expansion 

by using paraxial values of the parameters and speci!cations of an optical system. 

Now, this approach is convenient for using in the designing process.

A beam shaping effect is always achieved through introducing certain aberration. 

In the particular case of the 1-to-1K beam shaping system, the transformation of 

its irradiance distribution is achieved through introducing just spherical aberration 

by the !rst lens. Since these systems work typically in narrow angular !eld, it is 

 suf!cient to consider relationships for spherical aberration only.

According to the third-order aberration theory [36–38], for an in!nitely remote 

object the transverse spherical aberration ∆ ′yIII of an optical system with focal length 

f ′ is written as

 ∆y f
r S′III = −
′







2 I  (7.22)

where:

r is the height of a ray

SI is the sum of the !rst Seidel coef!cient

Then the LA is given by

 ∆ ∆′ =
′

= −
′







s f

r y f
r SIII III′

( )2
22 I  (7.23)
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The Seidel coef!cients have to be calculated for each surface of an optical system by 

using special formulas described in Refs. [33–35] for the particular surface parameters: 

curvature radius or focal length, refractive index, air gap or lens thickness, conic con-

stant for the second-order surfaces. In the case of the system illustrated in Figure 7.2, 

we assume that the convex surfaces are aspheric. In terms of the third-order aberration 

theory, they can be presented as the second-order surfaces. Then the Seidel coef!cients 

SI1 and SI2 for correspondingly !rst and second aspheric surfaces can be written as

 S r n k
f nI1
4 2 1
13 21=

+

−
′

( )
( )  (7.24)

 S R n k
f nI2
4 2 2
23 21= −

+

−
′

( )
( )  (7.25)

where:

n is the refractive index of the material of lenses

k1 and k2 are the conic constants of the second-order surfaces

Based on these relationships, we now calculate the basic parameters of the beam 

shaping optical system.

7.3.1.1.3 Parameters of Second-Order Aspheric Lens

The expression for SI1 is used to evaluate the parameters of the !rst lens, which 

introduces the spherical aberration suf!cient to create the necessary ray mapping 

function. Combining Equations 7.23 and 7.24, we obtain the third-order LA of the 

!rst lens:

 ∆ ′ = −
+

′ −
s n k

f n rIII1
2 1

1 2
2

2 1
( )

( )  (7.26)

Clearly, the aberration of the !rst aspheric lens represents a parabolic function analo-

gous to Equation 7.20 and can be used to approximate the ray mapping function. 

Now, we assume

 ∆ ∆′ = ′s sIII1  (7.27)

and take into account Equation 7.26. Then, we obtain the following expression for 

the conic constant of the !rst aspheric surface, k1:

 k s f n
r n1
1 2
2

22 1
=
− ′ ′ −

−
∆ ( )

 (7.28)

As discussed above and shown in Figure 7.3, it is convenient to consider the LA 

∆ ′sw0 corresponding to the ray height at the beam waist of radius w0. Taking this into 

account and also noticing that for a plano-convex lens,

 ′ = ′f s1 0  (7.29)
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then we can write a !nal expression for the conic constant as

 k s s n
w nw

1
0 2

02
22 10

=
− ′ ′ −

−
∆ ( )

 (7.30)

Since the !rst lens is plano-convex, the vertex radius rc1 of its aspheric surface is

 r f n s nc1 1 01 1= ′ − = ′ −( ) ( )  (7.31)

The second basic condition of a laser beam shaper is for there to be no wave  aberration 

present in the plane wavefront as it leaves the system. This means that the spherical 

aberration of the complete laser beam shaper system must be equal to zero. The cor-

responding condition of the third-order aberration theory implies that the total sum 

SI of !rst Seidel coef!cients for all optical surfaces is equal to zero, which can be 

expressed by the following relationship:

 S S SI I I= + =1 2 0  (7.32)

This expression is convenient to calculate the aspheric parameters, conic constant k2 and 

vertex radius rc2, for the second lens. Combining Equations 7.24, 7.25, and 7.32 gives

 k s k n d
s d2

0 1 2

0
=

′ +

′ −
 (7.33)

 r n d sc2 01= − − ′( )( )  (7.34)

Thus, all parameters of the plano-aspheric lens pair beam shaping system are de!ned.

7.3.1.2 Example of Designing the Beam Shaper

Now, we carry out the calculations of the lens parameters on the example of a beam 

shaper analogous to the 1-to-1K system described by Shealy and Hoffnagle [27]. The 

initial data are assumed to be given by Equation 7.8, where n = 1.46071 for fused 

silica when λ = 532 nm.

7.3.1.2.1 Calculations of the Parameters for Second-Order Aspheres

Using Equations 7.13, 7.18, 7.19, 7.30, 7.31, 7.33, and 7.34 to calculate the second-

order parameters gives the following results:

 
′ = ′ =s s0 43 81 14 020. .mm mm∆ ω  

(7.35)

 
r kc1 120 182 48 71= − = −. .mm

 
(7.36)

 r kc2 248 925 17 08= =. .mm  (7.37)

where the radii signs are consistent with the optics sign convention [33]. The optical 

system layout is shown in Figure 7.4, where the design data in the form adopted in 

practice of optical system designing are given in Table 7.1.
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Modeling of this system by using the optical design software ZEMAX and cal-

culations of output irradiance distribution and wave aberration gives the results pre-

sented in Figure 7.5, where the input beam is characterized by Gaussian irradiance 

pro!le with a waist radius of 2.37 mm. This system demonstrates good performance, 

and one can see that the resulting irradiance distribution is very close to uniformity 

and that the residual wave aberration does not exceed 4λ. Figure 7.5b is a good result 

when taking into account that wave aberration between the lenses is of order of 

100λ. Therefore, it is clear that using the third-order aberration theory for calculat-

ing the beam shaper parameters gives a good starting point for further optimization. 

The aberration correction can be improved by changing the air gap d between the 

lenses by approximately 1% to a distance of 151.5  mm. Then, the residual wave 

(a)

(b)

FIGURE 7.4 (a) Layout of plano-aspheric lens pair and Keplerian laser beam shaper; 

(b) expanded view of layout.

TABLE 7.1

Design Data for Plano-Aspheric Lens Pair of Keplerian Beam Shaper 

Calculated Based on the Third-Order Aberration Theory

No. rc tc Glass k n532

In!nity 1

1 In!nity 3 Fused silica 1.46071

2 −20.182 150 −48.71 1

3 48.925 3 Fused silica 17.08 1.46071

4 In!nity 1

1.0

0.5

−5 0
(a) (b) (c)

5 mm

w

r r

5λ

−5λ

w 5λ

−5λ0.0

FIGURE 7.5 Performance data for two-lens plano-aspheric laser beam shaper when using the 

second-order aspheric surfaces calculated based on the third-order aberration theory: (a) output 

irradiance distribution; (b) residual wave aberration; (c) aberration after the air gap correction.

312



298 Laser Beam Shaping

aberration becomes less than λ (Figure 7.5c) and the irradiance pro!le remains 

almost unchanged, which is an interesting result that indicates good stability of the 

irradiance pro!le as provided by a beam shaper when there are small variations of 

system parameters. This feature gives some freedom in correction of the system 

parameters and brings reliability into the operation of a beam shaper.

Performance of the optical system can be improved through optimization of the 

parameters when using the well-developed mathematical algorithms in modern opti-

cal designing software, such as ZEMAX, which was used in this work. As a !rst 

step, optimization is suggested to correct the parameters of the above considered 

system with the second-order aspheric surfaces. By modeling the ray mapping func-

tion, setting condition of minimizing the spherical wave aberration and using radii 

of curvature and conic constants of aspherics as variable parameters, one obtains the 

optical system described in Table 7.2, where the corresponding results of the irradi-

ance pro!le and wave aberration are shown in Figure 7.6.

Optimization requires 5–10 iterations and takes several seconds. Evidently, the 

resulting intensity distribution is almost $at; the deviation from uniformity is less 

than ±3% which can be considered as a perfect result for many practical applica-

tions. After optimization, the residual wave aberration does not exceed ±λ/3, which 

is acceptable for many practical applications. This example demonstrates a very 

TABLE 7.2

Design Data for Plano-Aspheric Lens Pair of Keplerian 

Beam Shaper with the Second-Order Aspheric Surfaces 

Whose Parameters Are Corrected by Optimization Method

No. rc tc Glass k n532

In!nity 1

1 In!nity 3 Fused silica 1.46071

2 −20.182 150 −54.8 1

3 48.925 3 Fused silica 29.5 1.46071

4 In!nity 1

1.0

0.5

−5
0.0

(a) (b)
0 5 mm

w

r

5λ

−5λ

FIGURE 7.6 Performance data for two-lens plano-aspheric laser beam shaper with the 

second-order aspheric surfaces when parameters are corrected by optimization method: 

(a)  output irradiance distribution; (b) residual wave aberration.
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important feature: The refractive beam shaper can be implemented as a pair of lenses 

with the second-order aspheric surfaces for which the manufacturing and testing 

techniques are well developed and widely used in optical industry. The ray map-

ping function, which is required for irradiance transformation of Gaussian to $at-top 

beam, can be realized with a hyperbolic aspheric surface (k < –1), while to achieve 

the aberration correction level, being acceptable for some applications, it is suf!cient 

to use a spheroid surface (k > 0). Many applications based on using the TEM00 lasers, 

such as, interferometry and holography, require much higher levels of aberration 

correction. Therefore, further optimization should focus on de!ning parameters of 

higher order aspheric terms.

7.3.1.2.2 Optimization Using Higher Order Aspheres

Since the second-order aspheric surface is suf!cient to realize a required ray  mapping 

function, one can consider the higher order aspheric surface for the second lens only. 

It is convenient to apply the optical design equation for aspheric expressions in terms 

of even orders of the radial coordinates  [33], which is realized in modern optical 

design software as a standard form for optical surfaces. Now, we consider that the 

second aspheric surface has the fourth-order radial term in its surface equation, and 

then, we optimize the 1-to-1K system with the following variables: radii of curva-

ture, conic constants of both aspheric surfaces, and the coef!cient of the fourth-order 

polynomial term of second aspheric surface. Results of calculations are presented in 

Table 7.3 and Figure 7.7.

This optimization process ends after about 10 iterations with a duration of 

 several seconds. The resulting irradiance pro!le is practically perfect, the deviation 

from uniformity is within 1%, and the residual wave aberration does not exceed 

±λ/15. The achieved aberration correction is acceptable for many of real applica-

tions, and the residual deviation of phase front is comparable to results which can be 

associated with manufacturing tolerances while machining and testing of aspheric 

surfaces.

In summary, a beam shaping optical system composed from plano-convex lens 

with the second-order aspheric surface and plano-convex lens with the fourth-order 

TABLE 7.3

Design Data for Plano-Aspheric Lens Pair of Keplerian Beam Shaper Where 

First Aspheric Has the Second-Order and the Second Aspheric Has the 

Fourth Order

No. rc tc Glass Asphere Coef"cients n532

In!nity 1

1 In!nity 3 Fused silica 1.46071

2 −20.1 150 k = −55.62 1

A4 = −6.27 × 10−5

3 48.75 3 Fused silica K = 67.22 1.46071

4 In!nity 1
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aspheric surface solves the task of irradiance pro!le redistribution from Gaussian 

to $at-top pro!le for many real laser-based applications. Further improvement of 

the system can be achieved through increasing the degree or power of the second-

order aspheric. Optimization of the parameters of the system with the sixth-order 

aspheric surface leads to the results presented in Table 7.4 and Figure 7.8. The opti-

mization process ends after about 20 iterations within several seconds. The resulting 

irradiance pro!le is practically the same as in the previous design. The residual wave 

 aberration does not exceed ±λ/100, which presents practically an ideal solution, 

TABLE 7.4

Design Data for Plano-Aspheric Lens Pair of Keplerian Beam Shaper When 

the First Aspheric Has the Second Order and the Second Aspheric Has the 

Sixth Order

No. rc tc Glass Asphere Coef"cients n532

In!nity 1

1 In!nity 3 Fused silica 1.46071

2 −20.1 150 k = −55.6 1

A4 = −6.27 × 10−5

A6 = −2.06 × 10−6

3 49.11 3 Fused silica k = 86.42 1.46071

4 In!nity 1

(a) (b) (c)
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FIGURE 7.8 Performance data for two-lens plano-aspheric laser beam shaper when the 

!rst aspheric has second order and the second aspheric has sixth order: (a) output irradiance 

distribution; (b) residual wave aberration; (c) wave aberration using enlarged scale.
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FIGURE 7.7 Performance data for two-lens plano-aspheric laser beam shaper when !rst 

aspheric has second order and the second aspheric has fourth order: (a) output irradiance 

distribution; (b) residual wave aberration; (c) wave aberration using enlarged scale.

315



301Optimization- Based Designs

since this aberration is order of magnitude less than phase front deviations issued by 

manufacturing errors while machining and testing of aspheric surfaces.

7.3.1.3 Conclusions

We have presented an engineering method for the design of a refractive laser beam 

shaping system which redistributes an input irradiance Gaussian distribution into a 

more uniform output irradiance pro!le. The core technique of this approach is the 

third-order aberration theory that allows calculating a good approximate solution in 

the form of set of parameters of an optical system that can be improved by subse-

quent optimization algorithms of modern optical system designing software. In the 

case of a plano-aspheric lens pair implementation, the !rst lens with an aspheric 

surface of second order allows realizing the ray mapping function required for redis-

tribution of a Gaussian irradiance pro!le to a uniform pro!le. The resulting uniform 

pro!le demonstrates high stability, which gives some freedom in correction of the 

system parameters and brings reliability in operation of a beam shaper. Correction 

of the wave aberration to provide a $at wavefront can be achieved by increasing the 

power of radial terms of second aspheric surface.

7.3.2 BUILDING ACHROMATIC BEAM SHAPER BASED ON THE TWO-LENS SYSTEM

In Section 7.3.1, we discussed an optical design and optimization-based method for 

designing a plano-aspheric laser beam shaping system, which realizes the irradiance 

pro!le transformation at a particular wavelength. When low dispersive materials for 

lenses are applied, then the two-lens laser beam shaper demonstrates acceptable per-

formance within a certain spectral band. For example, when using fused silica, there 

is an opportunity to achieve a bandwidth up to ±4 nm in the visible spectrum where 

the residual wave aberration is less than λ/10. At the same time, there are a number 

of laser applications where ultra-short pulse lasers are applied: micromachining with 

using femtosecond pulses, irradiating photocathodes of FEL, and various ablation 

techniques. A speci!c feature of these lasers is the broad spectrum, up to ±100 nm. 

However, there are widely used applications such as confocal microscopy and multi-

color holography, and various $uorescence techniques in life sciences where several 

laser sources in the spectrum of several hundreds of nanometers are simultaneously 

applied, for example, in visible spectrum spanning from 405 to 650 nm. All of these 

applications will bene!t from transformation of Gaussian laser beam into a beam of 

uniform intensity distribution. Hence, providing an inherently achromatic design of 

the !eld mapping beam shapers is of great importance.

Now, we shall present a method of achromatizing the plano-aspheric lens pair 

beam shaper by using the optical designing technique, known as chromatic radius 

that is widely used when designing broad-spectrum visual optics. Then, the achro-

matic design of the beam shaper is further developed to provide an optimum solution 

for a particular application optical system.

7.3.2.1 Theory

There are several ways to develop a beam shaping optical system which operates 

over a wide spectral bandwidth by satisfying (1) the geometrical optics law of 
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intensity for the irradiance transformation and (2) the constant optical path length. 

For example, it is possible to apply together with a beam shaper an auxiliary optical 

component whose main function is achromatizing of entire optical system [8], but 

this approach leads to more complexity and dif!culty in using these systems. A more 

fruitful approach is to build an inherently achromatic laser beam shaper by achroma-

tizing each optical component of a beam shaping system while retaining the optical 

functionality of each component, where the !rst optical component transforms the 

irradiance distribution by introducing spherical aberration and the second compo-

nent compensates for the wave aberration as the beam leaves the system.

For the case of a telescopic beam shaper, achromatizing implies ful!lling of the 

same conditions of beam pro!le transformation as well as providing zero optical power 

for extreme wavelengths of a given spectral band. To achieve this goal, we apply the 

buried achromatizing surface, which is also known as chromatic radius designing tech-

nique; the basic idea of this is discussed in Section 7.3.2.1.2. Then, optical design soft-

ware is used to further optimize the performance of an achromatic laser beam shaper 

for a particular optical application, where a system with air-spaced lenses is considered.

7.3.2.1.1  Evaluating the Chromatic Aberration of a Two- Plano 

Aspheric Lens Laser Beam Shaper

Now, consider the behavior of the beam shaping system described in Table 7.4, which 

uses low dispersive fused silica for the spectrum around the design wavelength 

532 nm. Calculations of the chromatic aberrations in the spectral range 532±70 nm 

give results presented in Figure 7.9, where Figure 7.9b gives the wave spherical aber-

ration at central wavelength of 532 nm, as well as the red (602 nm) and blue (462 nm) 

regions of the spectrum. Figure 7.9a demonstrates dependence of the optical power 

on wavelength, which means that evaluation of just optical power is more convenient 

for the telescopic beam shaper. This is analogous to calculations of chromatic focal 

shifts for focusing systems like objective lenses.

A plot of the wave aberration at 532 nm is almost null when using the scale ±5λ, while 

the wave aberration in the red and blue ends of spectrum reaches values of several units 

of λ. Since the chromatic aberrations of the optical power vary from positive to nega-

tive values, the wavefront has converging and diverging components within the beam, 

602
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FIGURE 7.9 Chromatic aberration of the laser beam shaper using fused silica glass for the 

wavelength region of 532 ± 70 nm: (a) optical power variation versus spectrum; (b) wave 

aberration. Parameters for this system are given in Table 7.4.
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and the optical power variation over this spectral band is approximately equal to 0.2m−1 

which implies that a beam with 8 mm diameter corresponds to a divergence of approxi-

mately 1.6 mrad, which is 19 times larger than natural divergence of a 532 nm laser beam 

with the same beam waist diameter. It is well known that the chromatic aberration can 

be reduced when low dispersion materials such as CaF2 are used for optical elements. 

However, even in this case, the chromatic wave aberration is essential and prevents suc-

cessful applying of beam shapers with ultra-short pulse or multiwavelength laser sources.

7.3.2.1.2 Designing Technique Using the Chromatic Radius

Achromatization of an optical system implies using optical glasses (or other refrac-

tive materials) with different dispersion properties. Most often, the dispersion of a 

material is characterized by the Abbe number [33,34], which can be written as

 ν =
−

−

n

n n

532
462 602

1
 (7.38)

where:

n532, n462, and n602 are the indices of refractive at the corresponding wavelengths

Since the main design idea of a !eld mapping beam shaper optical system is to 

introduce relatively strong spherical aberration between the beam shaper compo-

nents, it is very important to avoid or at least minimize spherochromatism (chro-

matic variation of spherical aberration). These objectives can be realized when each 

lens component of a beam shaper is inherently achromatic. Historically, the beam 

shaper components [2,5,6,23] have been implemented as plano-aspheric lenses. The 

simplest way to achromatize this two-lens refractive beam shaper is to use a pair of 

lenses from different glasses: either cemented doublets or air-spaced doublets.

Before developing of an achromatic design, it is convenient to apply the so-called 

chromatic radius technique which is widely used for designing of broadband visual 

optics. The basic idea of the chromatic radius technique is illustrated in Figure 7.10, 

which can be described as follows:

The central wavelength of a given spectrum is de!ned.

There is a chosen pair of optical glasses having the same refractive index but dif-

ferent Abbe numbers at the central wavelength, so-called chromatic glasses pair.

There is designed an optical system with correction of monochromatic 

aberrations at the central wavelength; in the considered research it should 

be just a beam shaping system as a pair of plano-aspheric lenses.

Each lens of the monochromatic design is split virtually into a doublet, 

whose lenses are made from glasses of earlier chosen chromatic pair, and 

the air gap between lenses is zero.

The inner surface radius of the doublets, the so-called chromatic radius, 

is de!ned by the condition of compensation of chromatic difference of the 

focal lengths for the red (λmax) and blue (λmin) ends of the given spectrum 

(see ∆ ′schrom  in Figure 7.10).

Later, the air gap between the lenses is to be enlarged to realize a real opti-

cal design.
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Obviously, this approach guarantees that the monochromatic aberration stays 

unchanged for whole spectral band. At the same time, the chromatic aberration is 

eliminated for the extreme wavelengths of that band which exactly meets the needs 

of achromatizing of a beam shaper.

To de!ne the chromatic radius, we use the techniques for designing of achromatic 

doublets described in the literature [33,34]. The conditions for achromatizing a thin-

lens doublet are given:

 ϕ ϕ ϕ= +1 2  (7.39)

 
ϕ ϕ1
1

2
2

0
ν ν

+ =  (7.40)

where:

φ is the optical power of the full system

φ1 and φ2 are the optical power of the !rst and second lenses, respectively

ν1 and ν2 are the Abbe numbers of the corresponding lens glasses

Applying these formulas for the plano-convex lens shown in Figure 7.10 for the 

 chromatic pair glasses chosen earlier, it is easy to get the following formula for 

 calculation of chromatic radius rchrom1:

 r rcchrom1
1 2

1
1=

−ν ν

ν
 (7.41)

Red

Blue

n1 = n2
v1 < v2

Chromatic radius

Red

1 2

ΔS′chrom

F

F

Blue

FIGURE 7.10 Description of the chromatic radius concept used for designing achromatic 

laser beam shaper.
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where:

rc1 is the vertex curvature radius of the last surface that is just the asphere of !rst lens 

component of the beam shaping system considered in this example

By analogy, it is possible to de!ne the chromatic radius rchrom2 for the second plano- 

convex aspheric lens component of the two-lens beam shaping system shown in 

Figure 7.11:

 r rcchrom2
2 1

2
2=

−ν ν

ν
 (7.42)

where:

rc2 is the vertex curvature radius of the aspheric surface

Thus, the design parameters of a two-component achromatic beam shaper with 

aspheric surfaces are de!ned. As a rule, it is recommended to choose glasses with 

essential difference of Abbe numbers: the more difference, the less curvature of 

the inner chromatic surface responsible for correction of chromatic aberrations and, 

hence the smoother optical design, less high-order aberrations, and more capabilities 

to correct chromatism in wider spectrum.

7.3.2.2 Application

Now, consider designing of the achromatic system following a similar approach 

described above:

Monochromatic design to be analogous to the beam shaping system 

 presented in Section 7.3.1.2.2

Achromatization of the system to be done by using the chromatic radius 

technique

Realizing a real air-spaced achromatic beam shaper by simulation and 

 optimizing the system by using the optical design software ZEMAX

The initial data for designing of λ = 532 ± 70 nm have been presented in Equation 7.8. 

Despite the popularity of fused silica as a refractive material in laser applications, 

it is very dif!cult to use a matching chromatic pair of materials. Therefore, we use 

Blue

Red

1 2

n1 = n2
v1 > v2

Chromatic radius

F

FIGURE 7.11 De!ning the chromatic radius for the second beam shaper element.
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glasses from the Ohara catalog, crown S-BSM16 and $int S-TIM2, where the index 

of refraction and the Abbe numbers, ν, can be calculated from Equation 7.38 and are 

given in Table 7.5.

The refractive indices of the glasses are almost equal at λ = 532 nm and have dif-

ferent Abbe numbers. Thus, these glasses present a chromatic pair for a given spec-

tral band. Note that the index of refraction of S-TIM2 is larger at λ = 462 nm and 

smaller at λ = 602 nm than corresponding index of S-BSM16.

7.3.2.2.1  Monochromatic Design of a Plano-Convex 

Aspheric Laser Beam Shaper from S-BSM16

As a !rst step in the design, it is necessary to repeat calculations of the pair of 

plano-aspheric lenses made from one of the glasses of the chromatic pair, such as for 

S-BSM16. Calculations with Equations 7.13, 7.18, 7.19, 7.30, 7.31, 7.33, and 7.34 give 

the following results:

 ′ = ′ =s sw0 43 81 14 020. .mm  mm∆  (7.43)

 r kc1 127 327 88 31= − = −. .mm  (7.44)

 r kc2 266 247 32 588= =. .mm  (7.45)

Further optimization of this system by analogy with the process considered in 

Section 7.3.1 gives a set of system parameters presented in Table 7.6. Results of 

TABLE 7.6

Optimization of the System De"ned by the Parameters Given by 

Equations 7.43 through 7.45

No. rc tc Glass Asphere Coef"cients n532

In!nity

1 In!nity 3 S-BSM16 1.623827

2 –27.39 150 k = −97.85

3 66.314 3 S-BSM16 k = 154.2 1.623827

A4 = −4.53 × 10−5

A6 = −1.4 × 10−6

4 In!nity

TABLE 7.5

List of the Indices of Refraction and Abbe Numbers for Two 

Glasses Used for This Design of an Achromatic Laser Beam Shaper

Glass n462 n532 n602 ν

S-BSM16 1.630007 1.623827 1.619669 60.34

S-TIM2 1.636446 1.625702 1.618838 35.54
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calculations in ZEMAX of output irradiance distribution and wave aberration, 

 characterizing the system performance, are shown in Figure 7.12. Evidently, perfor-

mance of this system is analogous to the one designed in Section 7.3.1 and presented 

in Table 7.4 and Figure 7.8. The resulting irradiance pro!le is practically uniform, 

and the residual wave aberration does not exceed ±λ/100, which presents practi-

cally an ideal solution for real manufacturing technologies and laser applications. 

The irradiance pro!les of this beam shaping system in further developments are 

almost identical to that in Figure 7.12. Therefore, these data will be omitted while 

 presenting the data characterizing system performance.

7.3.2.2.2 Achromatizing by Using the Chromatic Radius

The design technique of the chromatic radius, which is discussed in Section 7.3.2.1.2, 

is used to achromatize the beam shaping system in a given spectrum. Calculations 

using Equations 7.41 and 7.42 give the system presented in Table 7.7 and Figure 7.13. 

Modeling of the system described in Table 7.7 with ZEMAX leads to the results 

presented in Figure 7.14.

1.0
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0.0
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−λ/20
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FIGURE 7.12 Performance data for two-lens laser beam shaper using Ohara glass 

S-BSM16 when the !rst aspheric has second order and second aspheric has sixth order: 

(a) output irradiance distribution; (b) residual wave aberration; (c) wave aberration using 

enlarged scale.

TABLE 7.7

Design Data for Achromatic Beam Shaper Shown in Figures 7.13 and 7.14

No. rc tc Glass Asphere Coef"cients n532 ν

In!nity

1 In!nity 1 S-TIM2 1.625702 35.54

2 19.11 2 S-BSM16 1.623827 60.34

3 −27.39 150.8 k = −97.85

4 66.314 2 S-BSM16 k = 154.2 1.623827 60.34

A4 = −4.53 × 10−5

A6 = −1.4 × 10−6

5 −46.27 1 S-TIM2 1.625702 35.54

6 In!nity
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Clearly, application of chromatic radii approach leads quickly to a near-workable 

solution:

The residual wave aberration over the given spectrum is approximately equal 

to ±λ/7, as shown in Figure 7.14 is much smaller when comparing to analogous 

results for the beam shaper made with fused silica which is shown in Figure 7.9.

The system is exactly afocal in paraxial approximation for the red and blue 

ends of spectrum.

The optical power for the central wavelength is equal to −0.0078m−1, which 

is called the secondary spectrum [33,34] and which is an order of magni-

tude smaller than the performance obtained for a fused silica design. For the 

beam diameter of 8 mm, this gives a full divergence angle of 0.064 mrad 

which corresponds to approximately ±1/3 of the natural divergence of the 

comparable TEM00 laser beam.

The difference in the index of refraction of the glasses at the central wave-

length of 532 nm is easily compensated by slightly changing the distance 

between the beam shaper components, such as using 150.8 mm instead of 

150 mm for the inter-lens spacing.

Further improvement of optical design performance is achieved by using ZEMAX 

software to obtain the system layout described in Table 7.8, where the results of the 

aberration calculations are presented in Figure 7.15.
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FIGURE 7.14 (a) Optical power variation versus the spectrum of the achromatized two-

component laser beam shaper. The dashed curve gives the data for the fused silica system. 

(b) Wave aberration for the system, which is shown on an expanded scale.

(a)

(b)

FIGURE 7.13 (a) Optical layout of the achromatized two-component aspheric laser beam 

shaper; (b) enlarged view of the input and output components.
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Using the optimization algorithms allows for an increase in the system performance:

The residual wave aberration over whole spectrum is approximately equal 

to ±λ/20.

The secondary spectrum of the system is further reduced, which implies 

that the output beam divergence due to chromatism becomes much smaller 

than natural divergence of a laser beam.

The functions of spherical aberration for red (602 nm) and blue (462 nm) 

wavelengths are almost coincident with each other, while the function for the 

central wavelength (532  nm) shows certain differences. Evidently, this 

behavior is the logic for operation of an achromatic  optical system.

From the point of view of ef!ciency of beam irradiance pro!le transformation as 

well as aberration correction level, this optical system demonstrates performance 

that meets the practical needs of almost any laser application with a wide spectrum. 

The last improvement to be done is providing a totally air-spaced design, which is 

considered in the following section.

TABLE 7.8

Design Data for System Obtained by Optimizing with ZEMAX Shown 

in Figure 7.15

No. rc tc Glass Asphere Coef"cients n532 N

In!nity

1 In!nity 1 S-TIM2 1.625702 35.54

2 22.6 1 S-BSM16 1.623827 60.34

3 −27.26 150.8 k = −100.0

4 66.92 2 S-BSM16 k = 173.7 1.623827 60.34

A4 = −4.1 × 10−5

A6 = −2.4 × 10−6

5 −44.36 1 S-TIM2 1.625702 35.54

6 In!nity
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FIGURE 7.15 (a) Optical power variation versus spectrum for the system given in Table 7.8; 

(b) wave aberration.
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7.3.2.2.3 Air-Spaced Achromatic Beam Shaper

In practice for laser applications, the optical design of a beam shaper should be 

implemented in such a way that its components are air-spaced doublets with realistic 

distances between the lenses. Therefore, the next step in developing the beam shaper 

system is to increase the distance between the lenses and optimization by using 

the optical design software. The resulting optical layout is shown in Figure 7.16, 

where the parameters are given in Table 7.9. The results of aberration calculations 

are  presented in Figure 7.17.

This layout can be considered as a !nal one:

It demonstrates near the same performance as the design of the previous 

system.

The irradiance pro!le is practically uniform, where the deviation from 

 uniformity does not exceed ±1% as shown in Figure 7.12.

The system parameters are realizable by using modern technologies of 

optics manufacturing and assembly.

The air-spaced design is suitable for laser applications.

TABLE 7.9

Parameters for the Air-Spaced System Obtained by Optimizing System with 

ZEMAX Associated with Figures 7.16 and 7.17

No. rc tc Glass Asphere Coef"cients n532 ν

In!nity

1 In!nity 1 S-TIM2 1.625702 35.54

2 19.5 0.5

3 19.95 2 S-BSM16 1.623827 60.34

4 −27.2 151.2 k = −100.0

5 69.23 2 S-BSM16 k = 173.7 1.623827 60.34

A4 = −4.1 × 10−5

A6 = −2.4 × 10−6

6 −46.21 0.5

7 −47.0 1 S-TIM2 1.625702 35.54

8 In!nity

(a)

(b)

FIGURE 7.16 (a) Optical layout of the achromatized air-spaced aspheric laser beam shaper; 

(b) enlarged view of the input and output components.
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It should be noted that the parameters of the !nal optical system are very close to the 

corresponding parameters calculated by using the third-order formulas, which con-

!rm applicability of third-order aberration theory and popular techniques of achro-

matizing the design of a refractive beam shaper, which can be used as a starting point 

for relatively quick optimization with popular optical design software. It is possible 

to continue optimizing the system parameters through applying other glasses with 

other indices of refraction and Abbe numbers, which are close to those of the above 

considered as a chromatic pair. Of course, in designing of real systems for particular 

applications, it is possible to apply not only optical glasses but also other refractive 

materials such as crystals, polymers, or combinations of materials.

7.3.2.2.4 Example of Achromatic Beam Shaper without Internal Focusing

The design methods used are based on the third-order aberration theory, which can 

also be applied to designing of an achromatic beam shaper con!gured as a Galilean 

telescope. These beam shapers [9,10] have no internal focusing of a beam that is very 

important when working with high peak power short-pulse lasers. An example of the 

layout of such a system with the initial design data—r0 = 1.7 mm, Rmax = 3.0 mm, 

and λ = 633–1064 nm (850 ± 210 nm)—is illustrated in Figure 7.18, where the design 

parameters of this system are presented in Table 7.10. The performance results of the 

aberration calculations are presented in Figure 7.19.

While developing these results, the design techniques discussed in Chapter 7 were 

used, and the optimization of the !nal system was obtained by using the ZEMAX 

software. The glasses applied are very close to a chromatic pair. It should be noted 

that the Galilean design implies combining of optical components with negative 
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FIGURE 7.17 (a) Optical power variation versus spectrum for the system given in Table 7.9; 

(b) wave aberration.

FIGURE 7.18 Layout of achromatic laser beam shaper in Galilean con!guration. (Adapted 

from Laskin, A. US Patent No. 8,023,206 B2, September 20, 2011.)
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FIGURE 7.19 Aberrations of achromatized Galilean laser beam shaper: (a)  optical 

power  variation versus spectrum; (b) residual wave aberration for spectral range of 

633– 1064 nm; (c) wave aberration in spectral range of ultra-short pulse Ti:Sapphire laser 

of 700–900 nm.

TABLE 7.10

Design Data for Galilean Beam Shaper Obtained by Optimizing System with 

ZEMAX Associated with Figures 7.18 and 7.19

No. rc tc Glass Asphere Coef"cient nd νd

In!nity

1 In!nity 1.0 Schott-F5 1.60342 38.03

2 5.859 35.0 k = −0.05

A2 = −5.0 × 10−2

A4 = −6.27 × 10−3

A6 = 5.5 × 10−4

A8 = −2.44 × 10−5

3 12.328 1.0 Schott-F5 1.60342 38.03

4 4.664 1.3 k = 5.38

A2 = 4.282 × 10−2

A4 = 4.77 × 10−4

A6 = 1.9 × 10−5

A8 = −1.23 × 10−6

5 18.364 2.4 Schott-SSK3 1.614837 51.16

6 In!nity

327



313Optimization- Based Designs

and positive optical power. Therefore, there are additional capabilities to compensate 

the chromatic aberrations and real design can be built from three lenses.

From the point of view of aberrations, the system demonstrates very good 

performance:

There is a relatively wide spectrum from 633  nm (He-Ne) to 1064  nm 

(Nd:YAG), which is approximately 850 ± 210 nm.

The residual wave aberration over whole spectrum is approximately equal 

to ±λ/20.

The residual wave aberration over spectral range is widely used with ultra-

short pulse Ti:Sapphire lasers, 700–900 nm (800 ± 100 nm), and is approx-

imately equal to ±λ/50.

The secondary spectrum in the range of 700–930 nm is characterized by 

an optical power 0.0054 m−1 which corresponds to approximately ±1/10 of 

the natural divergence of comparable TEM00 laser beam with a 6 mm 1/e2 

diameter at 800 nm.

Since the divergence due to the system chromatism is an order of magnitude smaller 

than the natural divergence of a laser beam, it is negligible in real applications. This 

has been con!rmed in practice by using the beam shapers built based on this design 

approach.

7.3.2.3 Conclusions on Achromatic Laser Beam Shapers

The achromatic laser beam shaper discussed in Section 7.3.2 has grown to meet 

many diverse applications in scienti!c and technology applications in research and 

industry and has expanded laser applications signi!cantly in areas such as con-

trol of beam pro!les; EDOF in laser imaging systems; effective beam shaping of 

high-power lasers and multimode !ber or !ber-coupled lasers; imaging with $at-

top beams; enhanced laser operations in holography and interferometry, SLM, and 

FEL; and ultra-short pulse lasers, multicolor $uorescence life science techniques, 

and  confocal microscopy [9,10].

7.3.3 APPLICATIONS OF ACHROMATIC REFRACTIVE LASER BEAM SHAPER

In this section, we shall describe an example of a real implementation of a refrac-

tive laser beam shaper from the series of devices known as a πShaper,* which has 

been commercially deployed by AdlOptica GmbH, Berlin, Germany. Here, we shall 

emphasize the design features and capabilities of this beam shaping technology 

while presenting some examples from real applications.

7.3.3.1 Optical Design Features

The optical design principles of the !eld mapping refractive beam shaper, which 

were discussed in Sections 7.3.1 and 7.3.2, have been realized in series of refrac-

tive beam shapers, which are !nding various applications in research, industrial 

* πShaper is a registered trademark of AdlOptica GmbH, Berlin, Germany, http://www.adloptica.com.
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technologies, and medical instruments. Often these devices are implemented as a 

Galilean telescopic system with two optical components, where the output wave-

fronts are planar or $at, and the irradiance pro!le is transformed from a Gaussian 

to uniform pro!le in a controlled manner, by accurately introducing wave aberra-

tion by the !rst lens and further its compensation by the second lens, as illustrated 

in Figures 7.20 and 7.21. Thus, the resulting collimated output beam has a uniform 

irradiance pro!le and a $at wavefront, which has a low divergence—almost the 

same like one of the input beam. In other words, the !eld mappers transform the 

irradiance distribution without deterioration of the wavefront shape or increasing of 

the beam divergence. A summary of the main features of this refractive !eld mapper 

is given as follows:

Refractive optical system transforms the Gaussian input pro!le into an 

 output $at-top (top-hat, uniform) irradiance distribution.

Transformation is through controlled phase front manipulation, where 

the !rst optical component introduces spherical aberration required 

to  redistribute the beam irradiance and the second optical component 

 compensates the spherical aberration.

The output beam is free of aberrations where the phase pro!le remains $at 

with a low output divergence.

I I

6 6

1/e2

FIGURE 7.21 Refractive !eld mapping beam shaper, πShaper. (Reproduced from 

Laskin, A., Williams, G., and Demidovich, A., Applying of refractive beam shapers in creat-

ing spots of uniform intensity and various shapes, in Laser Resonators and Beam Control 
XII, Kudryashov, A. V., Paxton, A. H., and Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2010. 

With permission.)

FIGURE 7.20 Con!guration of refractive !eld mapping beam shaper, πShaper. (Reproduced 

from Laskin, A., Proceedings of SPIE, 7430, 2009. With permission.)
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This refractive beam shaper works equally well with TEM00 lasers and 

 multimode beams with Gaussian-like irradiance pro!les.

Output beam is collimated, its divergence is de!ned by the natural diver-

gence of the input beam.

Resulting beam pro!le is stable over a large distance.

Implementations as telescopic or collimating optical systems

Some beam shaper models have achromatic optical design, where the beam 

shaping effect is provided for a certain spectral range simultaneously.

All beam shaper models have Galilean design with no internal focusing.

An example of beam shaping for the Nd:YAG laser is presented in Figure 7.22 for 

beam shaping for an input TEM00 beam and output uniform beam pro!le, where 

images have been provided by InnoLas Laser GmbH, Krailling, Germany. These 

measured pro!les show that the beam shaper not only converts the irradiance pro!le 

but also improves the spot shape, where one can see that the slightly distorted input 

beam is transformed into a $at-top output beam with regular round spot shape.

In contrast to many other beam shaping techniques, the physical principle of 

operation of the refractive !eld mappers does not require the input beam to be a 

TEM00 mode, or to have a common phase front for input and output beams. The 

refractive beam shapers work well with multiple, stable modes of laser beams. The 

only condition is that the irradiance distribution of input beam should be similar to 

the Gaussian function, where the irradiance has a peak in the center of beam and 

decreasing toward the periphery. For high-power solid-state lasers, the input beam 

pro!le may have a parabolic, Gaussian-like irradiance distribution. Capability to 

work simultaneously with TEM00 and other stable mode lasers allows for switching 

easily from one laser source to another.

7.3.3.1.1 Sensitivity to Tilt and Decenter

Any beam shaping technique implies introduction of aberrations in a certain way 

and, therefore, requires ful!llment of some predetermined conditions for proper 

transformation of a laser irradiance distribution. As in other beam shaping tech-

niques, such as the refractive !eld mapping beam shaper, it is necessary to take into 

account the input beam size, its irradiance pro!le, and proper alignment of a beam 

shaper. Now, we shall evaluate the in$uence of misalignments in case of refractive 

!eld mapping beam shapers. Figure 7.23 presents results of mathematical simula-

tions and measurements of real pro!les for the refractive beam shaper in three cases: 

perfectly aligned, lateral shift of a beam, and angular tilt of the beam shaper.

For proper operation in real applications, such as in industrial equipment, the 

refractive beam shaper should provide certain tolerances for probable misalignments, 

such as spatial shifts or tilting. Therefore, realistic designs should provide the same 

aberration correction level not only for the clear aperture of a system but also in cer-

tain extent outside of the clear aperture. The practice of building real beam shaping 

systems shows that the aberration correction should be provided for diameter at least 

1.6 times larger than 1/e2 diameter of an input Gaussian beam. Therefore a small, up 

to about ±20% of diameter, lateral shift of a beam with respect to the beam shaper, or 

vice versa, does not lead to aberration but allows for interesting beam shaping effects, 
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(a)

(b)

FIGURE 7.22 (See color insert.) Example of beam shaping with πShaper: (a) input 

TEM00; (b) output from πShaper. (Courtesy of InnoLas Laser GmbH; Reproduced 

from  Laskin, A. and Laskin, V., Variable beam shaping with using the same field 

mapping  refractive beam shaper, in Laser Resonators and Beam Control XIV, 

Kudryashov, A. V., Paxton, A. H., and Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2011. 

With permission.)
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FIGURE 7.23 (See color insert.) Evaluation of πShaper to sensitivity of misalignments, theoretical and experimental intensity pro!les: (a) input 

TEM00 beam; (b) output beam with perfect alignment; (c) output with lateral shift of 0.5 mm; (d) output with tilt of 1°. (Reproduced from Laskin, A. 

and Laskin, V., Variable beam shaping with using the same !eld mapping refractive beam shaper, in Laser Resonators and Beam Control XIV, 

Kudryashov, A. V., Paxton, A. H., and Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2011. With permission.)
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such as the output pro!le is skewed in direction of the lateral shift, as shown in Figure 

7.23c. The intensity pro!le itself stays $at but is tilted in the direction of the shift, and 

a remarkable feature is that the beam itself stays collimated with a low divergence. 

This skewed pro!le can be used in applications where a steady increase or decrease 

of intensity is required, such as to compensate the attenuation of acoustic waves in 

acousto-optical devices. This pro!le can be also useful in hardening techniques to 

sustain a desired temperature pro!le on a device within a movable laser spot.

As an optical system designed to work with axial beams, the refractive beam 

shaper operates in relatively narrow angular !eld. The data in Figure 7.23d demon-

strate the intensity pro!le behavior by the beam shaper when tilted by 1°. The inten-

sity pro!le remains stable, but there is a visible degradation of the quality on the left 

and the right sides of the spot due to aberrations, which is coma. It should be noted 

that if the refractive beam shaper is tilted by 1° with respect to the optical axis, then 

there is a 2 mm lateral shift of one of its ends, which can be compensated by ordinary 

opto-mechanical mounts.

The data show that the misalignments have in$uence on the refractive beam shaper 

operation, but the sensitivity to misalignments is not signi!cant, even with a lateral 

shift up to 0.5 mm and a tilt up to 1°, the resulting pro!les are close to a $attop. In other 

words, the tolerance of positioning of a refractive beam shaper in accommodating and 

misalignments can be compensated by ordinary opto-mechanical mounts. Since the 

in$uence of a tilt on wave aberration of the output beam is very pronounced, it is 

advisable to pay more attention to angular alignment while con!guring beam shapers.

In practice, one can state that the requirements of a refractive beam shaper are not 

dif!cult to satisfy. For example, alignment of a refractive beam shaper with a toler-

ance of 0.1 mm for lateral shift and about 10 arc minute for tilt, while the tolerance of 

input beam diameter is about 10%. Evidently, proper alignment of a refractive beam 

shaper can be done by using ordinary opto-mechanical alignment devices, such as 

the 4-axis tilt/tip mounts.

Another important feature of the refractive beam shaper is the capability to 

compensate for the divergence or convergence of input beam by changing the air 

gap spacing between components and easy adaptation to lasers that deviate from a 

Gaussian irradiance pro!le. All of these features are of great practical importance. 

The input beam size can be provided by widely used zoom beam expanders.

7.3.3.1.2 Extended Depth of Field

It is common to characterize beam shaping optics by their working distance, which is 

the distance from the last optical component to a plane where a target irradiance pro-

!le, $attop or another one, is created. The working distance is an important speci!ca-

tion for diffractive beam shapers and refractive homogenizers (or integrators) based 

on multilens arrays. But in the case of the !eld mapping beam shapers, the output 

beam is collimated and, hence, instead of a de!nite plane where a resulting irradiance 

pro!le is created, there exists certain space after a beam shaper where the pro!le 

remains stable. In other words, the working distance is not a speci!cation for the !eld 

mapping beam shapers. It is better to specify the DOF after a beam shaper where the 

resulting irradiance pro!le is stable. This DOF is de!ned by diffraction effects hap-

pening while a beam propagates and depends on wavelength and beam size.
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When a TEM00 laser beam with Gaussian irradiance distribution propagates in 

space, its size varies due to inherent beam divergence but the irradiance distribution 

remains stable, which follows from the well-known feature of TEM00 beams. When 

light beams with non-Gaussian irradiance distributions, for example $at-top beams, 

propagate in space, there is a simultaneous variation of both size and irradiance pro-

!le. Suppose a coherent light beam has uniform irradiance pro!le and $at wavefront 

(Figure 7.24) which is a popular example considered in diffraction theory [12,33,36], 

and is also a typical beam created by !eld mapping refractive beam shapers convert-

ing Gaussian to $at-top laser beam.

Due to diffraction of the beam propagating in space, there are variations in the 

irradiance distribution, where some common pro!les are shown in Figure 7.24: 

At certain distance from initial plane with uniform irradiance distribution, there 

appears a bright rim that is then transformed to a more complicated ring pattern, and 

!nally at in!nity (so-called far !eld), the irradiance pro!le is featured with relatively 

bright central spot and weak diffraction rings—this is the well-known Airy disk 

distribution described mathematically by the formula:

 I I
J( ) ( )

ρ
πρ
πρ

=








0

1
22

2  (7.46)

where:

I(ρ) is the irradiance

J1 is the Bessel function of !rst kind

ρ is the polar radius

I0 is a constant

The Airy disk function is the result of Fourier–Bessel transform for a circular beam of 

uniform initial irradiance [12,36]. Evidently, even a pure theoretical $at-top beam is 

transformed to a beam with essentially nonuniform irradiance pro!le. There exists, 

however, certain propagation length where the pro!le is relatively stable and where 

this length is inversely proportional to the wavelength and in square proportion to 

the beam size. For example, with visible light, single-mode initial beam and $at-top 

beam of diameter 6 mm after a πShaper 6-6, the distance over which the irradiance 

does not deviate from uniformity by ±10% is about 200–300 mm, for the 12 mm 

beam it is approximately equal to 1 m.

There are many laser applications where conserving a uniform irradiance pro-

!le over certain distance is required, for example, holography, interferometry; the 

Flattop I I I I Airy disk

FIGURE 7.24 Intensity pro!le variation of a $at-top beam during propagation. (Reproduced 

from Laskin, A. and Laskin, V., Proceedings of SPIE, 8490, 2012. With permission.)
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extended DOF is also very important in various industrial techniques to provide less 

tough tolerances on positioning of a workpiece. As a solution to the task of provid-

ing a required spot size with conserving the $at-top pro!le over extended DOF, it is 

 useful to apply imaging techniques that are considered in next section.

One should note that the DOF can be further extended when a super-Gaussian 

beam is provided at the output of the refractive beam shaper. Another way to extend 

the DOF is to apply magnifying and imaging optics after the refractive beam shaper, 

which is considered below.

7.3.3.1.3  Beam Shaping for TEM00 and Multimode 

Fiber or Fiber-Coupled Lasers

This section addresses implementations such as telescopes or collimators for appli-

cations using high-power !ber lasers and !ber-coupled lasers, cladding, welding, 

hardening, as well as holography where TEM00 !ber-coupled laser sources are very 

fruitful due to inherent spatial !ltering, convenience, and !nally reliability.

One of the characteristic trends in modern laser technologies is in expansion of using 

!ber delivery of laser radiation—both !ber lasers and !ber-coupled diode or solid-

state lasers. In addition to convenience of use and reliability while building optical 

systems, the !ber sources are important for holography and interferometry feature—a 

TEM00 !ber functions as a spatial !lter; as a result, the laser radiation emerging from 

that !ber is characterized by almost perfect Gaussian irradiance pro!le.

A remarkable feature of !eld mapping beam shapers is their capability to meet 

these challenging demands of modern industrial applications and realize collimating 

optical systems combining the functions of beam shaping and collimation: Divergent 

Gaussian beam is converted to a collimated $attop, where the collimating beam 

shaper is shown in Figure 7.25.

7.3.3.1.4 Variable Pro$les by Variable Input Beam Size

The feature of !eld mapping beam shapers where the output beam pro!le depends on 

the input beam size can be used as a powerful and convenient tool to vary the result-

ing intensity distribution by simply changing the laser input beam diameter using an 

ordinary beam expander before the refractive beam shaper.

I I

FIGURE 7.25 Collimating πShaper with integrated alignment for powerful !ber lasers. 

(Reproduced from Laskin, A., Laser Technik Journal, 37–40, 2013; Laskin, A. and Laskin, V. 

Refractive beam shapers for material processing with high power single mode and multimode 

lasers, in Laser Resonators and Beam Control XV, Kudryashov, A. V., Paxton, A. H., and 

Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2013. With permission.)
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This approach is demonstrated in Figure 7.26 where the results of theoretical 

calculations as well as measured in real experiments beam pro!les for TEM00 laser 

are shown. The data relate speci!cally to the πShaper 6-6, whose design presumes 

that a perfect Gaussian beam with 1/e2 diameter 6 mm to be converted to a beam 

with uniform intensity ($attop) with FWHM diameter 6.2 mm. When the input beam 

has a proper size (Figure 7.26a), the resulting beam pro!le is $attop (Figure 7.26b). 

Increasing of input beam diameter leads to decreasing of intensity in the center 

(Figure 7.26c), sometimes, this distribution is called as inverse-Gaussian distribu-

tion. Input beam size reduction leads to a convex pro!le that approximately can be 

described by super-Gaussian functions (Figure 7.26d).

The considered intensity pro!les correspond to about 10% beam size change. 

Also, for larger changes of input beam size, there are more pronounced varia-

tions of the output intensity pro!le. Another interesting feature of !eld mapping 

beam shapers is the stability of the output beam size, where a variation of input 

beam diameter results in variation of the intensity pro!le while the output beam 

diameter stays almost invariable. This is very important in practice and brings 

element of stability while searching for optimum conditions for a particular laser 

application.

The next set of pro!les in Figure 7.27 demonstrates beam shaping of multimode 

laser. The radiation from a high-power, solid-state !ber-coupled laser (λ = 1064 nm, 
P = 2 kW, !ber core diameter 600 μm) was input into the collimating πShaper com-

bining the functions of beam shaping and collimation. The beam emerging from 

the !ber is divergent and has a pro!le shown in Figure 7.27a. The output of the 

πShaper* is a collimated beam with a $at-top intensity distribution (Figure 7.27b). 

Since the input beam for the πShaper is divergent, there is no possibility to change its 

size as was done in previous experiments with TEM00 laser. However, the collimat-

ing πShaper is able to vary the beam size internally, through changing the distance 

* πShaper is a registered trademark of AdlOptica GmbH, Berlin, Germany, http://www.adloptica.com.

(a) (b) (c) (d)

FIGURE 7.26 (See color insert.) Experimental and theoretical intensity pro!les as described 

within the text. (Figure was provided by IPG Photonics; Reproduced from Laskin, A. and 

Laskin, V., Variable beam shaping with using the same !eld mapping refractive beam 

shaper, in Laser Resonators and Beam Control XIV, Kudryashov, A. V., Paxton, A. H., and 

Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2011. With permission.)
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between its optical components, as was done to realize the inverse-Gaussian pro!les 

presented in Figure 7.27c and d. One can see that the variation of internal parameters 

of the beam shaper allows varying the resulting pro!le.

As shown in Figures 7.26 and 7.27, a simple external or internal variation of laser 

beam size allows generating various pro!les with the same beam shaper unit. To 

vary the beam diameter, the ordinary beam expanders can be used when using the 

zoom beam expanders, or by choosing the distance between the refractive beam 

shaper components one can steadily vary the resulting beam pro!le and choose an 

optimum one for a particular laser technology.

There are many applications where the variation of intensity pro!le helps to 

optimize a laser technology. For example, the welding of plastics, laser heating, or 

hardening techniques bene!t from uniform temperature pro$le on a workpiece, and 

the inverse-Gaussian intensity distribution is optimum for this purpose. The super-

Gaussian distributions are useful in techniques of spectral laser combining, pumping 

of DPSS lasers such as Ti:Sapphire, and MOPA laser designs.

7.3.3.2 Imaging Methods with a Refractive Laser Beam Shaper

Imaging techniques are powerful tools used to meet the application demands within 

industrial and scienti!c laser technologies in combination with a refractive laser 

beam shaper to obtain various laser spot sizes and shapes as required by each appli-

cation. For example, implementation of an imaging optical system depends on the 

speci!c laser technology being used, such as scanning mirror systems and F-theta 

lenses in industrial micromachining processes, while telecentric optical systems 

that conserve phase of the wavefront are desired for interferometry and holography 

applications. Since a refractive beam shaper has been designed to introduce and 

(a) (b) (c) (d)

FIGURE 7.27 (See color insert.) Beam shaping of powerful multimode laser. (Reproduced 

from Laskin, A. and Laskin, V., Refractive beam shapers for material processing with high 

power single mode and multimode lasers, in Laser Resonators and Beam Control XV, 

Kudryashov, A. V., Paxton, A. H., and Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2013; 

Laskin, A. and Laskin, V., Proceedings of the ICALEO, 707, 2012. With permission.)
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remove in a controlled manner accurate amounts of wave aberration, the reshaped 

beam has low divergence.

7.3.3.2.1 Image Formation

Using a lens to image a uniform intensity laser beam helps in reducing the effects 

of diffraction and creating a spot of optimum size. The basic optical layout is shown 

in Figure 7.28, which only shows a singlet lens, but for high-quality imaging, one 

should use an aplanat or micro-objective lens. Using geometrical optics [33,34] is 

suf!cient to calculate parameters of the imaging system. For example, geometri-

cal optics assumes that each image point is created by a beam of rays emitted by 

the  corresponding object point, where the object and image points are located in the 

conjugate planes with equal optical path length for all rays of each beam. Also, the 

real image is created after the lens focus, where the transverse magni!cation β is 

de!ned as a ratio of the distances from the principal planes to the lens to correspond-

ing image and object points:

 β =
− ′

=
− ′h

h
s
s  (7.47)

Further, the product of the object size h and the aperture angle u or more correctly 

sin(u) is constant throughout the optical system:

 hu h u= ′ ′ = constant  (7.48)

Further, we assume that the optical system is free of aberrations.

7.3.3.2.2 Imaging with Laser Beams

It is well known that laser beams have a low divergence, such as the full diver-

gence angle of 2Θ for a single-mode laser beam with λ being equal to 532 nm and 

beam waist 2ω being equal to 6 mm, which is approximately equal to 0.12 mrad or 

24 arcseconds. This characteristic of laser beams affects imaging as illustrated in 

Figure 7.29, which illustrates the behavior of the intensity pro!le of a low divergence 

laser beam in an imaging system. According to diffraction theory [12,36], the inten-

sity distribution in a speci!c plane is formed by interference of light diffracted from 

the previous plane. As a result of interference, the intensity in the image plane will 

be similar to the intensity distribution in the object plane, as a result that both planes 

are optically conjugate of each other. The image size is de!ned by the transverse 

Object

2h

s

F

Focal
plane

F ′

f ′

s′

2h′

Image

2u

β = −s′/s

FIGURE 7.28 Image formation with a lens. (Reproduced from Laskin, A. and Laskin, V., 

Proceedings of SPIE, 8490, 2012. With permission.)
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magni!cation β. Further, it is well known that a positive lens performs a Fourier 

transform of the input intensity at the back focal plane of the lens. Thus, the inten-

sity distribution at the back focal plane is the Airy disk distribution. Summarizing, 

the uniform irradiance distribution of the object is transformed, due to diffraction, 

to nonuniform, nearby imaging lens, then to Airy disk in its focal plane, and is ulti-

mately restored to be uniform in the image plane.

In addition, there is an extended EDOF associated with imaging of low divergence 

laser beams, which is illustrated in Figure 7.30. The DOF length can be approximately 

evaluated by taking into account that the longitudinal magni!cation of an imaging 

system is equal to the square of the transverse magni!cation [33]. Figure 7.30 suggests 

that the image size within the image space distance of Δs′ varies and depends on the 

transverse magni!cation of each image plane. This feature can be used in some cases 

to !ne-tune the size of spot by shifting the working plane along the optical axis.

7.3.3.2.3 Two-Lens Imaging System

The imaging system can also have two lenses, and the results of Section 7.3.3.2.2 will 

also apply. A two-lens layout is presented in Figure 7.31, where the object is located in 

front focal plane of lens 1, and therefore, lens 1 works as a collimator, which produces 

a collimated beam from each object point. Lens 2 focuses the beams collimated from 

the object via lens 1 and creates an image on its focal plane. The transverse magni!-

cation of this layout is given by the ratio of the focal lengths of these two lenses:

2h′1 2h′22h

1 2

F F ′

Δs′
Δs

2u = 2Θ

I
I

I

FIGURE 7.30 Evaluation of the DOF within an imaging layout. (Reproduced from 

Laskin, A. and Laskin, V., Proceedings of SPIE, 8490, 2012. With permission.)
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F ′
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I I
I

I

FIGURE 7.29 Irradiance pro!le transformation of $at-top laser beam in imaging layout. 

(Reproduced from Laskin, A. and Laskin, V., Proceedings of SPIE, 8490, 2012. With permission.)
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(7.49)

Since each object point is collimated by lens 1, the separation between lens 1 and 

lens 2 is not a critical distance.

A two-lens imaging optical system can be combined with refractive beam shapers 

in facilities using micromachining technologies to create a demagni!ed laser spot of 

required intensity pro!les, shapes, and size. Figure 7.32 illustrates an optical layout 

of a combined optical system including a laser, a beam expander, a beam shaper, and 

an imaging system consisting of collimator, galvo-mirror scanning head, and F-theta 

lens. The output of the πShaper is imaged to the working plane which is coincident 

with the back focal plane of the F-theta lens. The imaging beams from each object 

point are parallel in the space between the collimator and the F-theta lens. Therefore, 

the distance between these two elements is not critical, and mirrors of scanning 

systems can be located in this space between these lenses. The focal length of the 

F-theta lens is determined by requirements of the laser technology being used.

Now, we wish to evaluate the achievable transverse magni!cations for the imaging 

systems, which are based on widely used industrial optical components. Assume that 

we are working with a laser with λ = 532 nm and the imaging optical system is com-

posed of a collimator and an F-theta lens as shown in Figure 7.32. Assume that the focal 

length of the F-theta lens is ′ =f2 100mm and the entrance pupil diameter is D = 10 mm, 

the optical designs of modern F-theta lenses provide diffraction limited image quality 

over whole working angular !eld. Evidently, the maximum aperture angle u′ for that 

F-theta lens can be found as the ratio of the pupil diameter D and the focal length f2:

 
′ =

′
u D

f2 2  
(7.50)
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FIGURE 7.31 Two-lens imaging layout. (Reproduced from Laskin, A. and Laskin, V., 

Proceedings of SPIE, 8490, 2012. With permission.)
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FIGURE 7.32 Combined system with πShaper, collimator, and scanning head with F-theta lens. 

(Reproduced from Laskin, A. and Laskin, V., Proceedings of SPIE, 8490, 2012. With permission.)
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However, the input double aperture angle 2u is de!ned by speci!cations of the beam 

shaping optical system providing beam pro!le in the object space. In case of the 

refractive beam shaper, it is the same as the natural divergence of a laser beam: 

2u = 2Θ. The divergence angle of a TEM00 laser beam is de!ned by the formula [33]:

 Θ =
λ

πω

M 2
 (7.51)

where:

λ is the wavelength

M2 is the laser beam quality factor

ω is the waist radius of the Gaussian beam

Transforming Equations 7.48 through 7.51 and taking ω  =  h, which is valid for 

refractive beam shapers, one can get a common expression for an achievable trans-

verse magni!cation:

 β
λ

πω
=
− ′2 2 2M f

D  (7.52)

By substituting the values of the considered example of πShaper 6-6 using 

λ = 532 nm,

 2 3 12
ω = =mm; M  (7.53)

 ′ = =f D2 100 10mm mm;  (7.54)

Then, the calculations for a refractive beam shaper give the magni!cation down to 

1/1000×. In other words, theoretically with ordinary modern off-the-shelf industrial opti-

cal components and lasers, it is possible to drastically reduce the output beam of a refrac-

tive beam shaper and provide resulting spot sizes of several tens of microns. In practice, 

compact imaging layouts with transverse magni!cation down to 1/200× are used.

Since the imaging of the refractive beam shaper output beam is a best way to 

create demagni!ed laser spots with uniform intensity pro!le and high edge steep-

ness, it is typically recommended to be applied in techniques where the required 

$at-top laser spots are of size below 1 mm diameter, for example, in microwelding, 

patterning on polymer layers, welding of polymers, laser marking, in some solar cell 

microprocessing applications such as drilling PCB blind vias and thin-!lm scribing.

7.3.3.2.4  Telecentric Imaging of Refractive Beam Shaper 

Output for Holography and Interferometry

The holographic and interferometry applications as well as other techniques based 

on an SLM obtain essential bene!ts from homogenizing a laser beam. Therefore, 

beam shaping optics has become more and more popular in these !elds. A primary 

requirement of these techniques is conserving the phase front of a laser beam, which 

requires simultaneously a $at wavefront and a $at-top (uniform) intensity pro!le, as 

shown in Section 7.3.3.1, which describes the refractive !eld mapping beam shaper. 
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Most often, these devices are implemented as telescopic systems with two optical 

components, where it is presumed that the wavefronts at input and output are $at, the 

transformation of intensity pro!le from Gaussian to uniform one is realized in a con-

trolled manner by accurate introduction of wave aberration by the !rst component and 

further its compensation by the second one [2,9,14]. Thus, the resulting collimated 

output beam has a uniform intensity and $at wavefront, and it is characterized by low 

divergence, which is the same as the input beam. In other words, the refractive beam 

shaper transforms the beam pro!le without deterioration of the beam consistency and 

without increasing its divergence.

The holographic and interferometric applications often require expansion of a 

beam after a refractive beam shaper, for example, to illuminate an SLM or a mask 

with a collimated laser beam of uniform intensity whose sizes are larger than output 

beam diameter of a standard πShaper. This is an actual option in techniques such as 

mastering of security holograms, Denisyuk holography, !eld illumination in confo-

cal microscopes, interferometric techniques of recording the volume Bragg gratings 

and periodic structuring, holographic data storage, and many others.

Obviously, this expansion can be realized by using a telescopic beam expander. 

Popular solutions are beam expanders of Galilean type built from negative and positive 

lenses that provide system compactness and avoidance of internal focusing; these beam 

expanders are widely used in industrial applications. However, the Galilean expanders do 

not overcome the problem of intensity distribution transformation discussed in Section 

7.3.3.1.2 and do not create a real image to restore the $at-top intensity distribution like it 

is realized by imaging optical systems, as discussed in Section 7.3.3.2 and Reference [11].

Therefore, the more advisable solutions for holography and interferometry are 

beam expanders of Keplerian type, Figure 7.33, built from two positive lenses, whose 

well-known feature is the capability to create real image. Since the optical power of 

this telecentric system is zero, we conclude the following:

The $at phase front in the object space is mapped to the $at phase front in 

the image space.

The transverse magni!cation of the optical system is constant and does not 

depend on position of the object.

If the object is located in the front focal plane of the !rst component, its 

image is in the back focal plane of the second component.

Object 2h Image 2h′

Pinhole

F1

1 2

2u = 2Θ
2u′ = 2Θ′F ′  = F2

f ′1 f ′1 f ′2

F ′2

f ′2

1

β = −f ′ /f ′2 1

FIGURE 7.33 Telecentric imaging with Keplerian beam expander. (Reproduced from 

Laskin, A. and Laskin, V., Beam shaping to improve holography techniques based on spa-

tial light modulators, in Emerging Liquid Crystal Technologies VIII, Chien, L., Broer, D., 

Chigrinov, V., and Yoon, T., eds., SPIE, Bellingham, WA, 2013. With permission.)
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Now, consider the transformation of an irradiance pro!le for the example of the 

optical system illuminating an SLM, as shown in Figure 7.34. The Gaussian beam, 

TEM00 mode from a laser is transformed by the refractive beam shaper to a col-

limated $at-top beam. We consider the output of the refractive beam shaper as an 

object plane for the telecentric imaging system. Since the refractive beam shaper 

conserves low divergence of laser beam, the irradiance pro!le after it has been trans-

formed as a result of diffraction is similar to the pattern shown in Figure 7.24. As a 

result, the irradiance distribution is not uniform in the region of the lenses 1 and 2, 

as shown in Figure 7.34, but the irradiance distribution in this region typically has 

some diffraction rings, where a particular pro!le depends on wavelength, beam size, 

and distance from the object to lenses.

According to the diffraction theory, the irradiance distribution in a certain plane 

is the result of interference of light diffracted from the previous plane of observa-

tion. One of the well-known conclusions from diffraction theory [12,33,36] is the 

similarity of the irradiance distribution in optically conjugated Object and Image 

planes: If the irradiance distribution is uniform in the Object plane, it is uniform in 
the Image plane as well. The pro!le at the refractive beam shaper output aperture 

will be repeated in the image plane of that aperture; the resulting spot size is de!ned 

by transverse magni!cation β. Evidently, if an SLM is located in the image plane, 

the incident radiation will be characterized by $at phase front and $at-top intensity 

pro!le. Another well-known conclusion of the diffraction theory is the ability of a 

positive lens to perform two-dimensional Fourier–Bessel transform and create in 

its back focal plane irradiance distribution proportional to the one in far !eld. This 

means in the considered case that irradiance distribution in back focal plane of !rst 

lens, marked in Figure 7.34 as ′ =F F1 2, is just Airy disk described by Equation 7.46.

In the example in Figure 7.34, the lenses are just singlets, but for high-quality 

imaging more sophisticated optical systems should be applied, for example, aplanats 

(with correction of spherical aberration and coma), micro-objective lenses, or other 

multicomponent optical systems. Calculation of parameters of a particular imaging 

setup can be done using well-known formulas of geometrical optics, described, for 

example, in the literature [33,34].

Summarizing results of this example show that the uniform irradiance after 

the refractive beam shaper, the object plane, is transformed to a nonuniform 
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FIGURE 7.34 Layout to illuminate an SLM. (Reproduced from Laskin, A. and Laskin, V., 

Beam shaping to improve holography techniques based on spatial light modulators, in 

Emerging Liquid Crystal Technologies VIII, Chien, L., Broer, D., Chigrinov, V., and Yoon, 

T., eds., SPIE, Bellingham, WA, 2013. With permission.)
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irradiance distribution in region around the lenses, to essentially nonuniform Airy 

disk  distribution in the back focal plane of !rst lens, and !nally is restored to uni-

form irradiance pro!le in the image plane as a result of interference of the diffracted 

beam. An important conclusion for practice is that it does not matter how the irradi-

ance pro!le is transformed along the beam path, since the irradiance distribution in 

the image plane repeats the object plane distribution by taking into account trans-

verse magni!cation.

There is one useful effect accompanying the magni!cation of a homogenized 

beam. Namely, the extended DOF leads to the creation of $at-top intensity pro!le 

not only in the area of the image but also practically in whole image space after the 

second lens. As discussed in Section 7.3.3.1.2, the longitudinal magni!cation of an 

imaging system is proportional to the square of the transverse magni!cation. The 

transverse magni!cation of the considered telecentric system is constant and does 

not depend on the position of an object. Hence, the DOF in image space is pro-

portional to square of transverse magni!cation as well and can reach large values. 

Practically, a resulting intensity pro!le (most often $attop) is restored right after the 

second component of the telecentric system. An important conclusion for practice of 

using the beam shaping optics is that when a Keplerian beam expander is applied, 

the beam of uniform intensity and $at wavefront is created almost right after that 

expander. Hence, in a real holographic or interferometric installation, a work piece 

or other optical components can be installed close to the expander, which makes an 

installation more compact and easier to use.

Since the image is a result of interference of light beams being emitted by the 

object and diffracted according to physics of light propagation, it is necessary to 

take care of transmitting full light energy through a system and avoid any beam 

clipping, to be sure, except the below considered case of spatial !ltering with using 

an enlarged pinhole. The telecentric optical system also has some capabilities for 

spatial !ltering of a beam that is typically required in holographic and interfero-

metric techniques. As a general rule, it is recommended to realize spatial !ltering 

before a refractive beam shaper and do not do this after it to conserve the conditions 

for interference of diffracted beams. But in some cases in holography, it is strongly 

advisable to carry out spatial !ltering after a refractive beam shaper to eliminate 

high-frequency modulation of beam intensity happening because of dust or other 

reasons, and here it is possible to use one trick.

Since the irradiance distribution in the plane of common focuses, ′ =F F1 2, is just 

Airy disk, this plane can be used to put a pinhole for the spatial !ltering. Using an 

ordinary pinhole transmitting only the central diffraction spot makes no sense, since 

this would destroy the beam structure and give an approximate Gaussian intensity 

pro!le that is useless for the considered applications. It is possible, however, to apply 

a pinhole of larger diameter that transmits not only the central spot but also several 

diffraction rings carrying majority of beam energy. For example, a pinhole, whose 

diameter is 15 times larger than the that of a typical pinhole for classical spatial !l-

tering, transmits almost 99% of energy. Evidently, when putting such a pinhole and 

further beam collimation with the second lens, the $at-top intensity pro!le would be 

approximately restored; at the same time, that pinhole would !lter the high spatial 

frequency modulation components from the dust or other imperfections. De!nitely, 
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the diameter of such a pinhole is a trade-off between the high-frequency modulation 

to be removed and the diffraction effects appearing due to beam clipping.

7.4 CONCLUSION

This chapter has presented an engineering method for designing optical systems 

that realize the physical effects of laser beam shaping to redistribute the irradiance 

pro!le from a Gaussian distribution into a uniform irradiance pro!le while retaining 

the input wavefront nature. The core technique of this approach is the third-order 

aberration theory that allows for calculating a good approximate solution in the form 

of a set of parameters of an optical system that can be improved by subsequent opti-

mization algorithms of modern optical design software. Further, an achromatic laser 

beam shaper has been described, which has grown to meet many diverse applications 

in scienti!c and technology applications in research and industry.

Perhaps, the most important conclusion of this chapter has been the effective dem-

onstration of using commercially available optical design codes that lead to many 

new designs and applications of refractive laser beam shapers in both the Galilean 

and Keplerian con!gurations, where the output beam is a plane wave with a uniform 

irradiance distribution. It is signi!cant to note that the refractive laser beam shapers 

discussed in this chapter largely preserve the coherence of the input laser beam.

Application of the refractive beam shaper in holography and interferometry makes 

it possible to provide two basic conditions of illumination with laser beam: $at-top 

irradiance pro!le and $at phase front, which are mandatory for computer-generated 

holography, dot-matrix hologram mastering, multicolor Denisyuk holography, holo-

graphic data storage, as well as for interferometric techniques such as volume Bragg 

gratings recording; these applications obtain essential bene!ts from homogenized 

laser beams: high contrast and equal brightness of reproduced images, higher pro-

cess reliability and ef!ciency of laser energy usage, and easier mathematical mod-

eling. Availability for various wavelengths, achromatic design, implementations as 

telescopes and collimators, low divergence, and extended DOF make the refractive 

beam shaper a unique tool in building holography systems. Collimator versions of 

the refractive beam shaper perfectly suit the TEM00 !ber lasers and !ber-coupled 

lasers characterized by high quality and cleanness of radiation. Telecentric imaging 

systems expand capabilities of the refractive beam shaper and allow creating image 

!elds of practically unlimited size. Applying spatial !ltering with enlarged pinhole 

allows, simultaneously, providing irradiance uniformity of the image !eld and sup-

pressing of contrast or eliminating of parasitic patterns from small dust particles.
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8 Beam Shaping with 

Diffractive Diffusers

Jeremiah D. Brown and David R. Brown

8.1 INTRODUCTION

In this chapter, we discuss an approach to beam shaping that often has a different 

realm of applications than the more conventional techniques. Speci!cally, we dis-

cuss what is called a band-limited diffuser. Many diffusers, such as ground glass, 

diffuse light over an angular extent that is often larger and not as well de!ned as 

desired. We will see in this chapter that diffractive diffusers offer a technique to 

 diffuse light over a very well-controlled angular spectral band.
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Section 8.2 describes the properties of diffusers and differentiates their charac-

teristics from other perhaps more familiar optics. Diffractive diffusers share some 

properties with both conventional single diffractive order beam shapers and with 

diffraction gratings. We differentiate between these different classes of diffractive 

elements and develop the theory used to describe the diffuser.

Sections 8.3 and 8.4 describe the design process and outline the approaches and 

!gures of merit used to specify the optical performance of the structures given real-

istic fabrication tolerances. Section 8.4 includes a discussion of various fabrication 

techniques and describes fabrication limitations and considerations. It is meant to 

give the reader an appreciation for what is possible and which fabrication method is 

appropriate for a given design. Section 8.5 applies these methods and illustrates the 

design and tolerancing of a simple ring diffuser.

Section 8.6 summarizes the major negative aspect to this beam shaping tech-

nique: speckle. In it, we derive the size of speckle and discuss a few methods for 

reducing its impact.

The !nal section of this chapter outlines a few of the possible applications for 

diffractive diffusers. Section 8.7 also notes when and when not to use diffusers for 

beam shaping.

8.2 PROPERTIES OF DIFFRACTIVE DIFFUSERS

To help de!ne the properties of beam shaping with diffusers, it is useful to describe the 

differences between it and the other beam shaping techniques. There are two general 

categories of beam shapers, the !rst of which is a near-!eld or remapping beam shaper.

8.2.1 REMAPPING BEAM SHAPERS

In general, diffractive optics, such as gratings, can utilize many diffractive orders in com-

bination to generate the desired output pattern. Remapping diffractive optics conversely 

use a single diffractive order to produce the desired optical effect. A simple example 

of a diffractive optic that uses only one diffractive order is a lens. Remapping beam 

shapers are much like a complex aberrated lens that performs a functional mapping of 

the incident beam’s energy distribution to the desired shape at a speci!ed output plane. 

If the speci!ed output plane is in the near-!eld, the shaped beam will exist only at this 

prede!ned plane, though it is possible to relay the output with an imaging lens or use a 

shaper designed for an image plane at in!nity in conjunction with a Fourier transform 

lens to transfer the shaped beam to a new plane. Because of their relatively small depths 

of focus, remapping beam shapers are sometimes referred to as near-!eld beam shapers.

It is possible to introduce a second optic to correct the phase in the beam as shown 

in Figure 8.1. The resulting phase of a near-!eld beam shaper can be canceled to pro-

duce a collimated beam, which is then allowed to diverge to give a shaped beam over 

an extended but !nite range. The corrected shaped beam will experience diffraction 

and will degrade as the beam propagates. The diffraction of the corrected shaped 

beam will be as if the beam originated from an aperture function that is the same as 

the shaped beam. To minimize the diffraction of the edges, it is often advantageous 

to design the desired shape of the beam to have soft or smooth edges.1 The function 
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that is used to describe the soft edge can have many forms. One such soft aperture 

function is a high-order Gaussian or super-Gaussian of the following form:

 I r N

∝
−e 2 2( / )ω  (8.1)

where:

I is the intensity

r is the radius

ω is the waist radius

N is an integer

As the value of N increases, the closer the function approximates a true top-hat 

function.

It is possible to extend the range of a near-!eld beam shaper by optically taking 

the Fourier transform2 of the output as shown in Figure 8.2. The lens transforms the 

shaped beam into its Fourier transform at the back focal plane of the lens. As the !eld 

propagates beyond the back focal plane, the diffraction caused by the propagation 

Gaussian input
beam

d

z

Collimated
super-Gaussian

Shaper (z = 0)

Measured result

I

Y

X

Corrector (z = d)

FIGURE 8.1 Typical system layout of a near-!eld beam shaper. Only the !rst optic is 

required to shape the beam at plane z = d. To extend the range at which the top hat will exist 

requires a second optic to correct for aberrations in the phase of the beam. The empirical 

result shown has a nonuniformity standard deviation of 5.6%.
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transforms the !eld back into the shaped beam with a spherically diverging phase. 

This creates a diverging cone of light whose intensity envelope has the desired shape. 

Experimental results of this setup for a round super-Gaussian are shown in Figure 8.2. 

The structure that is observed in the measured result is caused by multiple re$ections 

within the system due to optics that do not have antire$ection coatings. The beam can 

then be collimated at any point by selecting the appropriate lens. This also allows one 

to size the output beam. It should also be noted that it is possible to specify the output 

plane at a suf!ciently large distance from the beam shaper such that the shaped beam 

will propagate undistorted in the far-!eld.

Due to the remapping nature of a near-!eld beam shaper, the output is highly sen-

sitive to the intensity and phase of the input beam. Any deviation in the input beam 

size, shape, or location relative to the near-!eld beam shaper will cause degradation 

Fourier transform
of super-Gaussian

f f

Shaper Corrector Fourier transform lens

Expanding super-
Gaussian (far field)

Measured result

FIGURE 8.2 System to transfer the shaped beam into the far !eld. A simple lens with the 

appropriate focal length can be added after this system to recollimate the beam. The measured 

result shown was taken approximately 300 mm beyond the Fourier transform lens and is approxi-

mately 1 cm in diameter. The structure in the beam is from multiple re$ections within the system.
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to the resulting output. Figure 8.3 shows the output intensity of a simulation of a 

Gaussian to square top-hat beam shaper. There are several methods for designing 

the beam shaping diffractive optic.2,3 Commercially available ray-tracing computer 

codes such as ZEMAX and Code V, as well as physical optics design software such 

as LightTrans VirtualLab, can be used to design the beam shaping optic if one is 

careful to include diffraction effects. The results in Figure 8.3 were simulated using a 

scalar wave propagation computer code which accurately models diffraction effects. 

Figure 8.3a is a plot of the output intensity with a perfect input beam. The peak-to-

valley nonuniformity of the intensity of this top hat is less than 2% and the simulated 

diffraction ef!ciency is better than 99%. Figure 8.3b shows the output of the same 

optic with the input beam 5% larger than the designed beam. The peak-to-valley 

nonuniformity of the intensity is now about 18%. From this, we see the sensitivity of 

the near-!eld beam shaper to input beam variations. In general, the desired intensity 

footprint is maintained over a fairly large range of variations in input beam. The uni-

formity of the output intensity is however very sensitive to the input beam. However, 

with care, extremely good results can be obtained. In Figure 8.4, experimental results 

for a UV beam shaper for a lithography application are shown. The nonuniformity 

(a) (b)

I I

FIGURE 8.3 Simulation results of the output intensity of a Gaussian to square super- 

Gaussian top-hat beam shaper. (a) The result with the perfect input beam. The output is >99% 

ef!cient and the peak-to-valley nonuniformity is <2%. (b) The result with an input beam that 

is 5% too large. The peak-to-peak nonuniformity is ~18%.
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FIGURE 8.4 Experimental results of a beam shaper for a Coherent Innova Sabre-7 UV laser 

(363.8 nm). Nonuniformity (σ/μ) was measured to be less than 3%.
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(σ/μ) was measured at less than 3%, where σ and μ are the standard deviation and 

mean of the intensity, respectively.

8.2.2 FAR-FIELD BEAM SHAPERS: GRATINGS AND DIFFUSERS

Diffusers fall into the second category of beam shaping optics, known as the far-

!eld beam shapers. Far-!eld diffractive optics shape the beams through the interfer-

ence of a large number of diffractive orders. These elements impart a de!ned spatial 

frequency distribution to the phase of the laser beam, and as the beam propagates, 

the spatial frequencies in the phase cause the beam to interfere with itself. Typical 

devices are made up of many very small phase apertures (typical <10 wavelengths in 

size), so the beam is in the far !eld almost immediately beyond the optic. This means 

that the resulting shape of the beam will continue to propagate with the prede!ned 

angular divergence as de!ned by the spatial frequencies in the phase. Figure 8.5 

illustrates the extreme differences in the phase of a near-!eld (single-order) optic 

and a far-!eld (multiorder) optic. Figure 8.5a is the phase applied to the input !eld to 

generate the shaped beam shown in Figure 8.3, while Figure 8.5b is the phase of a 

diffuser that projects a square top-hat pattern.

Far-!eld optics have the advantage of being relatively insensitive to the shape, 

size, and alignment of the input beam. An input beam that is a TEM00 mode will 

produce a very similar output to an input beam that is a TEM01 mode.4,5 This is due 

to the multiplicative property of a Fourier transform. The resulting beam of a far-

!eld optic is simply the convolution of the Fourier transform of the input beam and 

the spatial frequencies of the optic. As we will see later, the energy envelope of the 

output pattern is dominated by the phase function of the diffuser and not the shape 

of the input beam.

Since gratings and diffusers are both far-!eld diffractive optics, they share many 

characteristics. It is useful to describe a diffuser in terms of a grating due to its 

familiarity to most readers. In general, a grating is a periodic amplitude and/or phase 

(a) (b)

FIGURE 8.5 (a) The phase of the Gaussian to square super-Gaussian top-hat beam shaper 

shown in Figure 8.3. (b) A portion of the phase of a diffuser that projects a square energy 

envelope.
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structure. For the purposes of this discussion, we will limit a grating to a phase-only 

structure.

By starting with the differential form of Maxwell’s equations, and making simpli-

fying assumptions for a homogeneous medium, one can arrive at the homogeneous 

wave equation for the electric !eld6:

 ∇ =
∂

∂

2
2
2E E

µε
t

 (8.2)

where:

E is the electric !eld vector

μ and ε are the material property parameters called the permeability and permit-

tivity, respectively

A similar equation exists for the magnetic !eld. This vector equation can be sepa-

rated into three scalar equations, one scalar equation for each component of the 

coordinate system. Using Cartesian coordinates and choosing the scalar equation 

dependent on the z spatial coordinate, we have

 
∂

∂
−

∂

∂
=

2
2

2
2

1 0E
t

E
zµε

 (8.3)

The general form of the solution of Equation 8.3 is6

 E z t Af t k z Bf t k zz z( , ) ( ) ( )= − + −+ −ω ω0 0 0 0  (8.4)

where:

A and B are constants

ω0 is the angular frequency with the units of radians/time

k0z is called the propagation constant with the units of radians/length

Equation 8.4 is the solution of the scalar equation (8.3) if

 
ω

µε
υ

0
0

1
k

≡ =  (8.5)

where:

υ is the velocity of the light in the medium

The two terms on the right side of Equation 8.4 describe two waves: one traveling in 

the positive z-direction and the other traveling in the negative z-direction. In general, 

the wave can travel in any direction. The argument of the !rst term in Equation 8.4 

can be written more generally as ω0t − k0 ∙ r where in Cartesian coordinates

 k0 0 0 0= + +k x k y k zx y z  (8.6)

 r = + +xx yy zz  (8.7)
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Equation 8.4 can be rewritten as

 E x y z t Af t( , , , ) ( )= − ⋅ω0 0k r  (8.8)

Equation 8.8 is a wave with amplitude A and velocity υ traveling in the k0 direction. 

k0 is called the propagation vector or the wave vector. The direction of the power 

$ow density of a !eld is equal to the direction of the propagation vector.4 The mag-

nitude of the propagation vector is given by4,7

 k0 0
0 2

= = =k
ω

υ

π

λ
 (8.9)

where:

λ is the wavelength of the light in a given material

k0 is a constant while the light is propagating in the material

A wave described by Equation 8.8 is often referred to as a plane wave. An 

 arbitrary complex electromagnetic !eld can be analyzed in terms of its Fourier 

components. The Fourier components of a complex !eld are simply a series of 

plane waves traveling in different directions.5 When analyzing periodic structures 

such as gratings, it is often advantageous to perform the analysis in the Fourier 

domain.

Figure 8.6 shows a circle whose radius is k0. Along the kx axis is a periodic struc-

ture with a grating vector of Kg whose magnitude is given by

 kg = 2π
Λ

 (8.10)

where:

Λ is the period of the grating

Kg has only an x component and adds to the x component of the propagating wave 

in discrete multiples. A graphical illustration of this is shown in Figure 8.6. Due to 

the constraint that the wave vector has a constant magnitude of k0, we see from the 

!gure that we can graphically determine the direction of the series of plane waves 

that result from the grating

 sin( ) ( )
θt
m x gk mk

k=
+0
0

 (8.11)

which then reduces to the familiar grating equation

 sin( ) sin( )θ θ
λ

Λ
t
m

i
m

= +  (8.12)

where:

θi is the incidence angle

t
m is the transmitted angle of a given diffracted order m
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Orders (values of m) that require | sin( ) |θt
m

> 1 are called evanescent orders. The 

wave vector of an evanescent order has an imaginary z component and thus attenu-

ates exponentially beyond the surface of the grating.7

For the “real” orders, the resulting electric !eld at z = 0 is of the form:

 E A Ag
j n g xx z x x P x( ), ( , ) ( , ) ( )( )( )/ ( )

= = =
−0 0 02 1e π λ  (8.13)

where:

n is the index of refraction of the material

A(x,0) is the amplitude of the input beam

g(x) is a periodic phase function whose height is λ/(n − 1)
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FIGURE 8.6 The wave vector map of light as it transmits through a periodically vary-

ing structure such as a grating. The lower portion of the plot shows the x component sum-

mations of the undeviated beam (K0) and the grating vector (Kg). The orders of the 

grating are the result of an integer number of grating vectors added (or subtracted) to k0.
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In the far !eld (z = z′), Equation 8.13 becomes

 
E E

A A
g x g

x

k z x
x P x k P x

( , ) [ ( , )]
[ ( , )] [ ( )] ( , ) [ ( )]

′ = ℑ

= ℑ ∗ℑ = ′ ∗ℑ

0
0 0

 (8.14)

where:

 stands for Fourier transform

* is the convolution symbol

k k x zx = ′0 /

From Equation 8.14, we see that the resulting !eld at z = z′ is simply the convolution 

of the spatial frequency content of the phase with the amplitude of the input beam 

after propagating a distance of z′. If the divergence of the diffuser (high spatial fre-

quency) is signi!cant, the shape of the energy envelope will be dominated by the 

phase of the diffuser, rather than the divergence of the input beam.

A grating has very distinct orders due to its periodic structure. The spatial fre-

quency composition of the phase is simply a set of appropriately weighted delta 

functions spaced at angular intervals as de!ned in Equation 8.12. One- and two-

dimensional phase screens are frequently designed using this very principle and are 

termed “beam splitters.” The far-!eld intensity distribution is composed of clearly 

distinct diffraction orders arranged in some desired spot pattern, and the phase pro-

!le of the optic is optimized to give the appropriate weighting function to this comb 

of orders. If the separation between diffraction orders is smaller than the detector 

resolution, the beam splitter effectively functions as a diffuser. This offers an addi-

tional diffuser design approach in some cases, but the discrete orders are not always 

desirable for certain applications.

If we now add a second function r(x) with a period much larger than the period of 

g(x)(Λr >> Λg) to the phase in Equation 8.13, we see that

 E A Ad
j n g x r xx z x x P x R x( ), ( , ) ( , ) ( ) ( )( )( )[ ]/ ( ) ( )

= = =
− +0 0 02 1e π λ

  (8.15)

The resulting !eld after propagating a distance z′ then becomes

 E E Ad x d xk z x k P x R x( , ) [ ( , )] ( , ) [ ( )] [ ( )]′ = ℑ = ′ ∗ℑ ∗ℑ0 0  (8.16)

When this second component is added to the phase, the distinct orders become 

blurred by the spatial frequency components of the function r(x). By choosing Λr and 

Λg appropriately, an apparent continuum of spatial frequencies may be obtained, 

resulting in a “solid” !lled region of light in the far !eld.

Notice that since Λr >> Λg the period of the diffuser Λd is approximately equal 

to Λr. Thus, if a grating has a large period such that the orders of that grating, as gov-

erned by Equation 8.12 (with the period equal to Λg), are spaced in such a way that 

the resulting beams signi!cantly overlap, the angular region will be “solidly” !lled 

with light. Any two coherent beams that overlap will interfere. This interference is 

the source of the speckle indicative in diffuser patterns. The subject of speckle is 

covered in detail in Section 8.6.
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Also notice the case that as Λr becomes so large that the size of the input beam 

is no longer large enough to sample one full period of the phase, the phase is effec-

tively no longer periodic. At this point, the location of the orders is ill de!ned, 

since optically the phase is not periodic. This is a result of the fact that nonperiodic 

functions have a continuum of frequencies rather than a discrete set of frequencies. 

However, the phase still has the same spatial frequency spectrum, and thus the 

envelope of the pattern will remain virtually unchanged. This is of course much 

like a traditional hologram in that a small piece of a hologram will still produce the 

same image.

The transition from a periodic to nonperiodic phase function is the essential 

distinction between a diffuser and a beam splitter. Frequently, it makes sense to 

design a diffuser pattern somewhat larger than the incident beam and then tile 

it across the part. This allows the system to have very loose alignment toler-

ances, and it adds $exibility in wafer-based fabrication of diffusers. With this 

design approach, the diffuser essentially becomes a type of beam splitter with 

the only difference being that the diffraction orders are blurred together and are 

less distinct.

8.2.3 MATHEMATICAL DESCRIPTION OF A DIFFUSER

To mathematically describe a diffuser, we !rst note the shift property of the Fourier 

transform:

 A k k a x a xx x
k x xx( ) ( ) ( )− ⇔ =

− −0 0e ej j(2 / )π Λ  (8.17)

When designing optics such as diffusers, it is often useful to de!ne things in terms 

of a discrete Fourier transform. For a calculation grid of dimension D, the smallest 

frequency increment is δf = 1/D.8 Physically, D is the diameter of the input beam or 

the period of a grating. Thus, any frequency is an integer multiple of δf. For example, 

de!ne a frequency f0

 f N f N
D0 = =δ  (8.18)

or, in terms of the wave number

 k f N
Dx0 02 2= =π π  (8.19)

where:

N is an integer

From Equations 8.17 and 8.19, it then follows that

 Λ =
D
N  (8.20)

358



344 Laser Beam Shaping

Substituting Equation 8.20 into Equation 8.12, we !nd that any discrete spatial fre-

quency can be described as

 sin( ) sin( )θ θ
λ

t i
N
D= +  (8.21)

Recognizing the fact that D = δdM, where δd is the smallest distance increment and 

M is the number of data points across the calculation grid, Equation 8.21 becomes

 sin( ) sin( )θ θ
λ

δ
t i

N
dM= +  (8.22)

Finally, solving Equation 8.22 for N, we have

 N dM
t i= − sin( ) sin( )θ θ

δ

λ
 (8.23)

This equation is useful for computational reasons to calculate a particular grid point 

number on a discrete Fourier grid to produce a phase function of a given dimension 

that will bend light of a wavelength λ by an angle θt.

As noted in the previous section, when the input beam diameter is smaller than 

the periodicity of the phase function (D in the above equations), there is a contin-

uum of diffraction orders. However, a discrete Fourier transform operates with dis-

crete physical positions and discrete frequency components, the latter of which are 

equivalent to the diffraction orders of a beam splitter. It is convenient to refer to the 

frequency-domain components resulting from the discrete Fourier transform as dif-

fraction orders even if the phase function is not strictly periodic.

8.3 DIFFUSER DESIGN PROCESS

Typically, high-ef!ciency diffuser elements are phase-only transmissive elements. 

With antire$ective coatings, the transmission through the elements can be assumed 

to be unity everywhere. The goal of the design process is then to determine the 

phase function required to generate the desired output intensity distribution. From 

Equation 8.14, it is clear that there is a Fourier transform relationship between the 

phase and the output intensity pattern. In fact, there is a long history in the image 

processing and the optical pattern recognition !elds of using only the phase, or 

even binary versions of the phase, to reconstruct a function. Stark9 outlines the 

signi!cance of the phase of the Fourier transform of an image in its reconstruction 

more extensively than can be discussed in this chapter.

8.3.1 INVERSE FAST FOURIER TRANSFORM DESIGN APPROACH

It has been demonstrated that the Fourier transform phase can provide a good recon-

struction of an image. This is especially true for images with a lot of high-frequency 

content such as edges. Image reconstruction from the phase of the Fourier transform 

can be viewed as a high-frequency enhanced !ltering process. Flannery and Horner 
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discuss the applications of phase-only and binary phase-only !lters to Fourier opti-

cal signal processing and pattern recognition.10

A naive diffuser design approach would be to take the inverse Fourier transform of 

a target intensity pattern and only keep the phase term. However, the high-frequency 

!ltering aspect is a key concern. This is illustrated in Figure 8.7. The inverse Fourier 

transform of a square aperture (which represents a desired square top-hat diffuser 

pattern) is not well represented only by the phase term; Figure 8.7a). If one throws 

away the amplitude component and takes the Fourier transform of the phase term 

only, the resulting pattern is no longer close to the square top-hat pattern. A more 

complex image, such as the Jenoptik logo in Figure 8.7b, is far better reconstructed 

Target intensity

(a)
Phase of IFFT

FFT of phase

3.0788

−3.0788

0

Target intensity
Phase of IFFT

1

0

−1 FFT of phase(b)

Target intensity + random phase Phase of IFFT

3.1406

−5E−4

−3.1416

3.1406

−5E−4

−3.1416
FFT of phase

(c)

FIGURE 8.7 Reconstruction of images from the phase of the inverse Fourier transform of 

a target pattern. (a) The phase of the inverse Fourier transforms of a square does not Fourier 

transform back into a distinct square pattern. The low-frequency content of the target image 

does not lend itself well to the Fourier reconstruction. (b) A target image with higher frequen-

cies, sharper edges, and more content can be better reconstructed from the phase of its inverse 

Fourier transform. The low-frequency regions from the larger blocks in the centers of the 

various shapes are still not well represented in the Fourier transform of the phase. (c) When 

the target intensity from (b) is given a random phase distribution, its high-frequency nature 

allows it to be fully reconstructed from the phase of its inverse Fourier transform.
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from the Fourier transform phase term alone. But even in this case the low-frequency 

information is lost. The target pattern can be supplied with high-frequency infor-

mation by giving it a random phase distribution as in Figure 8.7c. The phase of the 

inverse Fourier transform of the new pattern allows for a good reconstruction of the 

original.

The basic design approach is then to randomize the nonzero values of the ampli-

tude between 0 and 1, and randomize the phase between 0 and 2π. The random-

ization step reduces the output dependence on the input beam. Effectively, the 

high-frequency random function being multiplied by the desired frequency envelope 

ensures that the spectral content of the envelope function is distributed over the full 

area of the binary diffuser. This removes any input beam alignment tolerances and 

any input beam intensity pro!le requirements. For symmetric patterns, it is conve-

nient at this point to ensure that the complex grid is Hermitian:

 f i j f i j( , ) ,( )*= − −  (8.24)

Once this is done, the inverse fast Fourier transform (FFT) of the complex grid is cal-

culated. Due to the conjugate symmetry, the result is real. All of the desired spatial 

frequency information is contained in the real part of the complex FFT. The real com-

ponent of the grid is used as the phase for our optic, which contains the desired spatial 

frequency information. To reduce the phase to a binary diffractive optic, the phase is 

truncated to only two phase levels: 0 and π. Assigning any positive phase value to π and 

any negative value to 0 will accomplish this. The process is illustrated in Figure 8.8.

Define desired
spatial frequency

distribution

Compute inverse FFT
and truncate phase

Randomize

FIGURE 8.8 The steps for a simple diffuser design approach.
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For a nonsymmetric pattern, the conjugate-symmetric condition is not possible, 

which results in a complex !eld following the inverse Fourier transform. One way to 

design a more complicated pattern that can still be generated with a binary diffuser 

is to de!ne the center of the desired pattern far enough off-axis so that it does not 

overlap its symmetric counterpart. Alternatively, a truly nonsymmetric pattern can 

be produced by simply using the phase of the resulting inverse Fourier transform as 

the phase for the diffractive diffuser.

8.3.2 ITERATIVE FOURIER TRANSFORM ALGORITHM

A more general numerical design process for diffusers is known as the Gerchberg–

Saxton algorithm,11 or the iterative Fourier transform algorithm (IFTA). A simula-

tion grid is generated where each pixel represents a single diffractive order in the 

output plane. The grid is initialized with the desired output amplitude and each pixel 

is given a random phase between 0 and 2π. This provides the high-frequency con-

tent necessary to obtain a good reconstruction from the phase term, as noted in 

Section 8.3.1.

Once this is done, the inverse FFT of the complex grid is calculated. The phase 

component of the resulting complex !eld gives us an initial guess for the phase 

pro!le of the diffuser required to produce the speci!ed output. At this point, the 

amplitude should be reset to match the incident beam geometry. If the design is 

to be completed for plane wave illumination, the amplitude can simply be set to 

unity.

In addition, the fabrication process must be accounted for at this point in the 

process. Diffusers are often fabricated through either single or multiple binary etch 

processes or through a single grayscale etch.12 The latter case provides a continuous 

phase pro!le, so no additional modi!cation to the phase is required. However, if a 

binary or multilevel phase is intended, the phase at the diffuser plane must be dis-

cretized to the appropriate number of phase levels.

Once the phase and amplitude have been appropriately adjusted at the diffuser 

plane, it is used as the input for a forward FFT to obtain an updated version of the 

expected output. The amplitude in the output plane is reset to the desired output 

amplitude, and the inverse FFT of this complex !eld is taken once again. The entire 

process iterates a set number of times or until the output intensity converges on the 

speci!ed pattern. The algorithm is diagrammed in Figure 8.9.
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FIGURE 8.9 A $owchart describing the IFTA for diffuser design.
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8.3.3 ALGORITHM IMPLEMENTATION

The diffuser design algorithm is relatively straightforward to program, but there 

are also commercially available design packages (such as LightTrans VirtualLab) 

that implement the approach in a very customizable way and can account for other 

aspects such as fabrication tolerances, minimum feature sizes, and impact on the 

output pattern caused by the pixel shape.

It is also worth noting that earlier implementations of the algorithm were lim-

ited by the available computing power and memory. They required a great deal of 

care in the choice of the simulation size (a square grid of 2N pixels to ensure an ef!-

cient FFT) and the types of output patterns (a conjugate-symmetric pattern would 

allow the diffuser phase to be purely real, which could save computation time 

and memory in an optimized implementation) to obtain a design in a reasonable 

timeframe. However, modern computers are signi!cantly faster and the algorithm 

ef!ciency is now rarely a limitation. Typical diffuser designs can be produced in a 

matter of minutes or even seconds even when the iterative algorithm is used.

8.3.4 INPUT PARAMETERS

As with any optical system, a diffuser design starts with a well-de!ned input and output. 

The clear aperture, beam pro!le, and wavelength are the key input parameters, and the 

required far-!eld intensity distribution in angle space characterizes the output. One of the 

design aspects to verify early in the design process is the minimum feature size. This is 

the smallest spatial frequency expected in the diffuser phase pro!le. This value is deter-

mined by the maximum angular extent of the illuminated output pattern according to

 d =
λ

θsin max( )  (8.25)

From the minimum feature size, one can determine a maximum pixel size. The ratio of 

minimum feature size to pixel size is a parameter termed the “design freedom.” For small 

divergence angles, the design freedom can also be de!ned as the ratio of the angular 

extent of the output design space to the maximum angle of the illuminated output area. 

For a high-ef!ciency diffuser pattern, a good minimum value for design freedom is 8:

 
λ

δ θd ( )sin max
≥ 8  (8.26)

where:

δd is the size of the pixels used for the diffuser phase pro!le

An alternative rule of thumb for design freedom is that it be greater than the 

number of discrete levels used to fracture the phase pro!le. For example, if the 

phase is to be fractured into 16 discrete phase levels, one should target a maxi-

mum pixel size 16 times smaller than the minimum zone size so that all diffrac-

tive zones present in the phase pro!le will be represented by the full range of 

discrete phase levels.
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In some cases, the pixel size will be determined by the fabrication process, and 

the design freedom may be limited by output requirements and fabrication limita-

tions. In such cases, it is still possible to produce a high-quality design, but it is often 

much less tolerant of variations in the fabrication process.

Once the pixel size is chosen, the simulation grid will also be speci!ed. The 

number of points is equal to the size of the clear aperture divided by the pixel size:

 M D
d=
δ

 (8.27)

The output plane must have the same number of pixels as the input plane to allow for 

the Fourier transform relationship between the two. In the output plane, each order 

number (ranging from 1 − [M/2] to +[M/2]) will have a divergence angle as speci!ed 

in Equation 8.23.

Since the maximum angular extent of the output pattern is known, one can deter-

mine the highest order number, N, to be illuminated, which allows one to create the 

target output amplitude.

The amplitude target, diffuser pattern parameters (pixel size and simulation grid 

size), design wavelength, and incident beam shape are the required parameters for 

the diffuser design process. After obtaining the diffuser phase pro!le, the !nal step 

should be to evaluate the optical performance of the structure in relation to fabrica-

tion tolerances.

8.4 TOLERANCING AND FABRICATION CONSIDERATIONS

When qualifying a diffuser for a given application, the two primary metrics are dif-

fraction ef!ciency and uniformity. Diffraction ef!ciency is de!ned as the ratio of the 

energy transmitted into the design region to the total energy incident on the diffuser 

(note that the absence of antire$ective coatings will introduce an immediate ef!ciency 

penalty). It can be shown analytically that diffractive lenses can have very high dif-

fraction ef!ciency (99% for a 16-level kinoform and 95% for an 8-level kinoform), 

though Swanson showed13 that this scalar-theory calculation is only true if the diffrac-

tive feature sizes are much larger than the wavelength (typically 10–20 times larger). 

Furthermore, the calculation applies speci!cally to a single-order diffractive optic. 

When a large number of diffractive orders is present, maximum ef!ciency can be sig-

ni!cantly lower than expected, particularly when the divergence angle is suf!ciently 

large that the smallest diffractive zones are no longer signi!cantly larger than the wave-

length (which begins to occur when the diffuser half-angle divergence exceeds 3°).

The other metric for characterizing diffusers is uniformity. The presence of 

speckle can make this dif!cult to fully quantify, and a full analysis requires accurate 

characterization of the beam pro!le and coherence. However, one can offer a unifor-

mity value that ignores speckle by treating the diffuser as a beam splitter once again 

and specifying the uniformity of the diffracted orders.

The uniformity metric essentially describes the degree to which the output 

relative intensity distribution in the illuminated orders differs from the design. 

Calculation of uniformity can be a bit complicated for diffuser designs with 
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varying intensity in the illuminated orders. The general form for uniformity error 

is  calculated as follows:

First, determine the orders with the maximum and minimum transmitted  intensity 

as a ratio of the designed intensity for that order:

 I
m

m

U

Um
max out

des
= max ( )

( )
2

2  (8.28)

 I
m

m

U

Um
min out

des
= min ( )

( )
2

2
 (8.29)

Note that for diffuser patterns designed for uniform transmission in all illuminated 

orders, Imax and Imin  and simplify to the maximum and minimum intensity in any 

illuminated orders. Then, these two orders are used to calculate a peak-to-valley 

uniformity error, Eunif:

 E
I I

I I
unif

max min
max min

=
−

+
 (8.30)

When using this formulation for uniformity error, it is common to say that all orders 

have intensities within ±Eunif percent of the designed relative intensity. For example, if 

the uniformity for a top-hat diffuser is speci!ed as <5% (ignoring speckle), all orders 

within the transmitted !eld will have intensities between 95% and 105% of the median 

value. There is an alternate formulation that differs from this by a factor of 2 and would 

de!ne a variation between 95% and 105% as being 10% uniformity error. However, that 

formulation is better applied to gratings and beam splitters with very few orders.

Uniformity and ef!ciency can readily be calculated from a Fourier transform simu-

lation of a given diffuser phase pro!le. However, this only gives a theoretical value for 

the optical performance of the design. To be useful, the design must be fabricated, and 

any fabrication process will introduce tolerances that will impact actual performance.

There are many ways to transfer a designed diffractive optic into the actual physi-

cal diffractive optic: binary mask(s) photolithography followed by an etch(es),14 gray-

scale mask photolithography followed by an etch, e-beam lithography, direct laser 

writing, focused ion-beam milling, plastic molding, and embossing to mention a 

few. The limiting factor in the fabrication of a diffractive optic is the level of accu-

racy with which the process can reproduce the designed structure. This is generally 

limited by the resolution of the process which de!nes a minimum pixel size, δd in 

Equations 8.23 and 8.26, the smallest feature in the grid.

There are a few basic fabrication tolerances to consider when evaluating a dif-

fuser design:

 1. Feature etch depth errors

 2. Feature shape errors

 3. Misalignment of successive levels in multistep lithography processes

 4. A regular grid of pixels introduces its own high-frequency diffraction pat-

tern that will impact the actual output
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Each of these issues impacts uniformity and ef!ciency in a somewhat different way. 

We consider each of them individually.

8.4.1 DIFFUSER FEATURE DEPTH ERRORS

The designed diffuser phase pro!le has phase values ranging from 0 to 2π. Larger 

phase values correspond to deeper etch depths. The mapping between the phase 

depth, ϕ, and the etch depth, d, is

 d n=
−

λ

π( )
φ2 1  (8.31)

where:

λ is the design wavelength

n is the refractive index of the material

Note also that if the phase pro!le is patterned using discrete binary etch steps, pro-

ducing an m-level stair-step approximation to the continuous phase pro!le, the maxi-

mum phase is [(m − 1)/m]2π.
With some of the more common diffuser fabrication processes, it is easy to miss 

the target feature depth by as much as a few percent. Simple phase gratings pro-

vide an illustrative example to the resulting impact on diffuser performance. In gen-

eral, deriving analytical expressions for the diffraction ef!ciency for each order for 

arbitrary diffuser phase patterns is very much nontrivial. However, the relationship 

between the phase pro!le and the relative intensity into the various diffraction orders 

is a Fourier transform, as discussed in Section 8.2.2, and the Fourier transform can 

be calculated analytically for a few special cases.

A square-wave phase grating with a phase depth of ϕ has diffraction ef!ciencies 

given by the following:
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 (8.32)

The summation over all the diffraction ef!ciencies is 1. Note that all diffraction 

ef!ciencies depend on the square of the trigonometric functions, and as the phase 

depth deviates from π/2, more of the incident energy is pulled out of the higher 

orders and shifted to the zero order. This has a direct impact on output uniformity. 

If the phase depth is approximately 1.0 rad, the energy in the 0, +1, and −1 orders 

will be the same. However, if the phase depth is reduced by 5% to 0.95 rad, the 

zero order will contain approximately 10% more energy than either the +1 or −1 

order.
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Similarly, a sinusoidal phase grating with a phase depth of φ has diffraction ef!-

ciencies expressed in terms of Bessel functions:

 DE
DE DE

0 2

1 1 12
0=

= =





 + −

J

J

( )
( )

φ

φ
 (8.33)

As with the square wave, slight changes in the phase depth can produce signi!cant 

changes in the output uniformity, and, to a lesser degree, the ef!ciency.

The diffuser ef!ciency (the fraction of the incident light that is transmitted into 

the design orders) is degraded as ef!ciency increases for higher scattered orders. 

Additionally, some of the energy loss resulting from the lower energy diffracted into 

the design orders will instead end up in the zero order, which can result in a spike in 

the center of the diffuser output pattern.

The full one-wave modulation depth of a diffractive structure is given in terms of 

the wavelength, λ, and refractive index, n, by

 d n2 1π

λ
=

−
 (8.34)

Combining Equations 8.31 and 8.34, the phase depth of a grating can be calculated 

from its physical depth, d, by the following expression:

 φ
π π

λπ

= =
−

= −
2 2 1 1

2
0

d
d

d n k d n( ) ( )  (8.35)

From Equation 8.35, one should additionally note that a change in the incident wavelength 

affects the output of a given phase pro!le in a similar way as structure depth errors, and 

it thus has an equivalent impact to optical performance. In fact, modeling the structure’s 

output over a range of grating depth errors can adequately capture both effects.

In a similar manner, the phase depth is impacted by a variation in the incident 

angle of the light. The general form of Equation 8.35 for nonnormal illumination is

 φ
π

λ
θ=

−2 1d n( ) cos( )  (8.36)

This effect, along with variations in refractive index (either due to the use of differ-

ent materials than was called for by the design or due to induced optical effects in 

the grating material), can likewise be quanti!ed directly from the feature depth error 

tolerancing calculations.

8.4.2 DIFFUSER FEATURE SHAPE ERRORS

Feature shape errors manifest as rounded edges and corners due to lithography reso-

lution limitations and as nonvertical sidewalls resulting from the various fabrication 

process. These errors are highly dependent on the fabrication methods used, and the 

actual impact on performance will vary signi!cantly with diffuser feature sizes and 

incident wavelength. Simulating the impact can be a very intensive process because the 
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shape errors are typically a small fraction of the pixel size. An accurate simulation will 

require a grid with a resolution at least an order of magnitude smaller than the original 

design grid.

One approach that can provide a rough estimate for the shape error impact is to 

assume some convolution kernel that captures the fabrication processes. For  example, 

a Gaussian with a suf!ciently small waist radius convolved with the original shape 

pro!le will introduce rounding of the corners and will smooth out the sharp vertical 

transitions. The Fourier transform of the resulting phase pro!le gives a !rst-order 

estimate to the performance impact.

Typically, if the magnitude of the shape errors is much smaller than the minimum 

zone sizes and the incident wavelength, the performance impact will be small, though 

it will affect both ef!ciency and uniformity. Conversely, if the rounding is suf!ciently 

large, it can effectively change the feature depth and also increase the zero order as 

discussed above and produce a noticeable intensity spike at the center of the pattern.

8.4.3 ALIGNMENT ERRORS IN MULTISTEP FABRICATION PROCESSES

In multistep lithography processes, such as a binary multimask fabrication sequence, a 

small pixel size can yield additional errors due to layer-to-layer registration errors. These 

errors usually manifest themselves as very small peaks and/or valleys in the phase, which 

can result in a very large number of scattering sites. It is possible to model this scattering, 

but as with the shape errors, it requires a high-resolution representation of the surface. 

Since registration tolerances typically produce a random variation within a certain range, 

it is virtually impossible to predict actual results, especially when there are multiple 

(more than two) successive fabrication steps. It is possible to use a Monte Carlo approach 

to model the impact over the alignment tolerance range, but this can be impractical for 

most diffuser design projects. In reality, as with the shape errors, the actual impact is 

typically signi!cant primarily in the case of small zone sizes and short wavelengths.

8.4.4 DIFFRACTION FROM PHASE PIXELATION

There is one additional fabrication factor missing in Equations 8.13 through 8.16: 

the pixelated nature of the phase. In many cases, the phase is composed of square 

pixels on a !xed uniform grid. The very small squares in the phase will manifest 

themselves in the far !eld as a large sinc2(x, y) function envelope. The desired pattern 

(e.g., a top-hat function) will be present in the center of the main lobe and repeated at 

the null points of the sinc2(x, y) function as shown in Figure 8.10. The location of the 

null points are at sin(θm) = mλ/δd. This problem can become very signi!cant if the 

desired diffuse pattern contains angles that are large enough to approach these null 

points. From Equation 8.23, we see that this occurs when

 N M~ 2  (8.37)

Figure 8.11 further illustrates this effect with a practical example of a square top-hat 

diffuser. In Figure 8.11a, the pixelation is ignored in the output simulation, while the 

simulated output in Figure 8.11b accounts for pixel size.
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In the example shown in Figure 8.10, N is 50 and M is 64. It is therefore best if 

N << M/2, which is one of the reasons for maintaining a large design freedom. For 

a given divergence angle, decreasing δd is a way to either decrease N or increase M. 
However, the fabrication method of choice may not be able to support such a reduction in 

δd. The advantage is that as δd → 0 the sinc2(x,y) envelope becomes very large and thus 
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FIGURE 8.11 Empirical results for a simple 8-level top-hat diffuser with a design  freedom 

of 2 illustrating the impact of pixelation. False color 2D image and corner-to-corner cross 

section are shown for each case. (a) The simulated diffuser output without including the 

pixel size in the calculation. (b) A simulation of the same diffuser pro!le with pixelation 

effects included in the simulation. The sinc2 intensity envelope is quite evident.
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FIGURE 8.10 An illustrative energy envelope plot of the output of a diffuser and the effects 

of a pixelated phase.
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less of a factor. In single-step lithography, such as grayscale or direct write methods, the 

resolution limits actually help minimize the sinc2(x, y) envelope effect by poorly repre-

senting the pixelated nature of the design grid, producing more of a smooth continuous 

phase. This is often the phase that a coarse calculation grid is trying to approximate.

An alternative to trying to avoid the pixelation issue is to determine its impact 

ahead of time and compensate for it in the design process. This is accomplished by 

dividing the design amplitude pattern by the sinc-squared function resulting from 

the selected pixel size. The target output will appear to have higher intensity at the 

outer edges and corners compared to the center, but the resulting intensity pattern 

will be properly compensated and will provide a better realization of the design goal.

The phase structures of two diffusers are shown in Figure 8.12. In Figure 

8.12a δd ~ 2.0 μm, and in Figure 8.12b δd ~  0.33 μm. Both of these diffusers 

(a)

(b)

FIGURE 8.12 Pictures of a portion of the phase structures of two diffusers with the same 

desired output. Both phase functions have 64 phase levels and are in a photoresist layer on a 

fused silica substrate. (a) A pixelated version with a pixel size of ~2.0 μm. (b) A nonpixelated 

version. The alternating dark and light contour fringes are the results of thin-!lm interference 

from the illuminating source.
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were fabricated with grayscale mask photolithography. In this case, the phase 

 structures have 64 phase levels and are only in a photo-resist layer on a fused 

silica substrate. In the case of Figure 8.12b, one can see that the !nal result is not 

pixelated and δd is only a consideration for the design grid. To make them more 

robust, a reactive ion etch would be used to transfer the surface relief structure 

into the fused silica.

8.4.5 EXAMPLE OF A FABRICATED DIFFUSER

Figure 8.13 shows the experimental measurement of the output of the diffuser whose 

phase is shown in Figure 8.12b. The sinc-squared envelope indicative in a pixelated 

phase is not present in the output from the phase shown in Figure 8.12b since the 

pixel structures are not represented in the phase. This example also demonstrates the 

complexity that is available in the desired pattern is almost limitless provided that 

the fabrication method is appropriate in turning the design into reality.

It is interesting to note that the diffuser shown in Figure 8.12b was also tested in 

white light and worked fairly well. The face was clear but the letters were blurred. 

From Equation 8.22, the divergence angle is dependent on the wavelength of light (λ). 

This causes the pattern to be chromatically blurred. The separation of colors is most 

evident in the letters which are the farthest points from the optical axis. A  blue-green 

dot at the zero order (optical axis) was present due to the lower diffraction ef!ciency 

of the off wavelengths.14

FIGURE 8.13 Empirical results of a 632.8 nm laser illuminating the phase of the diffuser 

pictured in Figure 8.12b. This demonstrates the complexity and clarity that is possible with 

complex diffusers. Note that some of the !ne detail present in the actual output was not faith-

fully transferred to this !gure. For instance, individual hairs on the very top of his head are 

distinguishable in the live presentation.
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8.5 SIMPLE DESIGN EXAMPLE

As a simple illustrative design example, suppose we wish to design a diffuser with a 

clear aperture of D = 1.0 mm that projects a ring of laser light with a wavelength of 

λ = 0.6328 μm between 1° and 2°.

Before beginning the design process, we must consider the overall problem. Note 

that if the incident source is a 1 mm diameter Gaussian, it has a full-angle diver-

gence of 0.046°. This is relevant for estimating speckle, but it also has implications 

of the  output beam. Speci!cally, if the largest diffraction orders are speci!ed by the 

design to be at a diffraction angle of 2°, the actual 1/e2 full divergence angle of the 

output will be 4.046°. For this example, we will assume that the roll-off at the edges 

is acceptable, and this is the case in many applications. However, if the transmitted 

ef!ciency within a !xed angular window is a critical design requirement, the input 

divergence may require signi!cant consideration.

8.5.1 BINARY DIFFUSER DESIGN

The maximum divergence angle is 2°, which means that the minimum feature size 

from Equation 8.25 is 18 μm. These features are comfortably fabricated with modern 

diffractive optic fabrication processes. We begin by comparing a simple inverse FFT 

design approach with the IFTA algorithm and assume a binary diffuser pattern in both 

cases. Since the clear aperture is speci!ed as 1 mm, Equation 8.23 gives the inner and 

outer diffraction orders as N1 = N(θ = 1°) = 28 and N2 = N(θ = 2°) = 55. Notice that 

we have to round to the nearest integer. The pixel size for the diffuser phase pro!le is 

chosen to be 2 μm, which results in a 500 × 500 point simulation grid. From this infor-

mation, we now prepare a grid of 500 × 500 points with a width and height of 1.0 mm 

that is zero everywhere except grid points whose radius falls between 28 and 55.

 R i j R= + ≤ ≤
2 2 28 55  (8.38)

where:

i and j are grid indices that have the range −250 < i, j < 249

Figure 8.14 shows the result. This target intensity pro!le is a suf!cient condition with 

which to start both design algorithms. In many cases, better results are obtained by 

assuming a uniform plane wave source condition for the optimization process. The 

resulting phase pro!les are shown in Figure 8.15. Figure 8.15a is the binary phase 

pro!le resulting from the inverse FFT, while Figure 8.15b is the output phase pro!le 

from the IFTA optimization.

To verify our designs, we !rst assign an arbitrary amplitude function: Gaussian 

with ω0  =  0.2  mm. We then simulate an optical Fourier transform assuming a 

10 mm focal length Fourier transform lens. The simulated output resulting from 

the (1) inverse FFT design approach and (2) the IFTA optimization are shown in 

Figure 8.16. The two phase pro!les show markedly similar output, though the 

IFTA-optimized phase pro!le offers 58% diffraction ef!ciency into the ring pat-

tern for this source condition compared to 51% for the phase pro!le generated by 
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FIGURE 8.15 Designed binary phase pro!le resulting from (a) inverse FFT method and 

(b) IFTA optimization.
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FIGURE 8.16 Simulated output with a 10  mm focal length Fourier transform lens and 

a 0.2  mm waist radius incident source. Simulation uses the phase function designed by 

(a) inverse FFT method and (b) IFTA optimization.
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FIGURE 8.14 A plot of the target spatial frequency band intensity pro!le that is desired in 

the ring diffuser design example.
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the inverse FFT approach. Also, the IFTA-optimized pattern offers a somewhat 

better signal-to-noise (SNR) ratio and noticeably lower maximum intensity of stray 

light.

Notice the excellent suppression outside of the ring area in both cases. We know 

that at the focal plane r = f tan(θ), where r is the radius from the optical axis, f is 

the focal length of the lens, and θ is the angle of the incoming ray. From this, we 

can verify that the divergence angles of the design are indeed correct. We also note 

that the output shape is independent of the incident source pro!le. The uniformity 

and speckle pattern in the output may be impacted, but the overall shape envelope is 

determined solely by the phase pro!le.

8.5.2 MULTILEVEL DIFFUSER SIMULATION

For completeness, we also use the IFTA algorithm to generate an 8-level phase 

pro!le which, as expected, offers increased ef!ciency and uniformity. The 8-level 

phase pro!le (shown in Figure 8.17a) has a 66% ef!ciency and similar stray light 

and SNR levels as the IFTA-optimized binary pattern. The simulated intensity 

pro!le (Figure 8.17b) also appears more uniformly !lled than the two binary 

designs (Figure 8.16).

We previously noted the subtleties between beam splitters and diffusers. 

Figure 8.18 shows the output of the 8-level pattern with different source conditions. 

In both cases, we still assume the same 10 mm focal length Fourier Transform lens 

as with the earlier results. In Figure 8.18a, the constant amplitude incident source 

results in a very uniform output pattern. The diffraction order locations are well 

de!ned and have a grid-like shape in the speckle pattern. In the extreme case, with 

a large incident source covering many periods of the phase pro!le, each diffraction 

order becomes a delta function, and the speckle pattern does not appear in the output 

plane. The output is that of a beam splitter composed of discrete diffraction orders 

rather than a uniformly illuminated region. On the other hand, as the beam diameter 

is reduced, as in Figure 8.18b where the diameter is 0.8 mm, the diffractive orders 

are less well de!ned and the speckle pattern is much coarser.
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FIGURE 8.17 (a) An 8-level phase pro!le for the ring diffuser and (b) output intensity dis-

tribution with 0.2 mm waist radius source.
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8.5.3 DIFFUSER PERFORMANCE AND TOLERANCING

The !nal step in the design process is to tolerance it against anticipated fabrication 

limitations. As discussed earlier, some of the tolerances required fairly intensive 

computations to adequately simulate. Others are tied very closely to the exact fab-

rication method and tools. The one class of tolerances that can be simulated in a 

fairly straightforward manner is the feature depth or phase depth. Simulations of 

the diffuser performance over a range of feature depths also provide an immediate 

approach to quantify the performance variation due to changes in incident wave-

length or angle, material variations, and other effects that impact the phase depth of 

the structure without distorting the individual features relative to each other.

For the ring diffuser example, we are particularly interested in diffraction ef!ciency, 

uniformity, and zero-order ef!ciency. The later will produce a bright spot in the center 

of the pattern. A quick calculation from the target intensity pro!le indicates that there 

are 7024 illuminated diffraction orders in the design. Thus, if the zero-order ef!ciency 

exceeds 0.014%, it will contain more energy than any single diffraction order in the 

target pattern. It is not uncommon to see diffusers with zero-order ef!ciency as high as 

0.5%–1%, so this could become a signi!cant concern in some applications. However, 

with diffusers, it is typically the combination of all the orders that is more important, 

and while the zero order may be signi!cantly brighter than any individual diffraction 

order, its relative brightness is less apparent compared to the integrated output pattern.

Tolerance calculations assume a constant amplitude input !eld for ease of com-

parison. This will not fully capture the speckle or the uniformity, but it will at least 

be representative of the output. For the ring diffuser, we assume an etch depth tol-

erance of up to ±5% and plot the optical performance in Figure 8.19. Note that the 
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FIGURE 8.18 Simulated intensity plots of the 8-level ring diffuser. Both simulations use a 

10 mm focal length Fourier transform lens in the calculations. (a) This simulation assumes 

an incident uniform source representing an incident beam somewhat larger than the phase 

function. The phase pro!le is assumed to be periodic, and the period size determines the dif-

fractive order spacing. (b) This simulation used a Gaussian input beam of diameter 0.8 mm. 

The phase pro!le is no longer periodic, and the speckle pattern becomes more evident. Note 

that the output divergence angles are unaffected by incident beam size.
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FIGURE 8.19 Fabrication tolerance simulations for the ring diffuser design example. All 

three simulations are completed over an etch depth range of ±5% from target and assume 

a constant input !eld. (a) Simulated diffuser diffraction ef!ciency for binary and 8-level 

designs. (b) Simulated uniformity error for binary and 8-level designs. (c) Simulated zero-

order ef!ciency for binary and 8-level designs.
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binary diffuser is only able to offer a calculated ef!ciency of about 50% for this 

source condition, while the 8-level version provides ef!ciencies >80%.

8.6 SPECKLE

The biggest drawback of a diffuser is the presence of speckle in the output pattern. 

Speckle is the high-frequency modulation of the intensity within the desired energy 

envelope. As noted earlier, the origin of speckle in the output of a diffuser is from 

the overlap of coherent diffraction orders. Speckle is simply the result of interference 

between those orders.

8.6.1 SIZE OF SPECKLE

The average size of the speckle is of great interest since some applications can toler-

ate speckle if it is small enough. From Equation 8.21, we see that the smallest angu-

lar increment is given by15

 δθ
λ~
D

 (8.39)

Here we are assuming that the input beam is the same size as the calculation grid. 

If the phase is not periodic within the illumination area of the input beam, the D in 

Equation 8.39 is simply the diameter of the input beam. For our design  example, 
δθ  =  0.63  mrad. At a distance of l  m, the average speckle size would then be 

~0.63 mm.

At the focal plane of a lens, the size of the speckle is16

 δ δθ
λ

λr f f D f~ ~ / #=  (8.40)

which is roughly the size of the focused spot if the diffuser was not present. For an 

f/2 system, the average speckle size in our example is ~1.2 μm. If the resolution limit 

of the system being illuminated, such as a detector array or a material processing 

application, is much greater than the speckle size, there will be multiple speckle 

lobes integrated within the resolution area. This can signi!cantly decrease the 

speckle effect by integrating the energy over the larger area de!ned by the resolution 

limit of the system. From Equation 8.40, we see then that reducing the focused spot 

size of the nondiffused system will also decrease the speckle size when the diffuser 

is added. This fact also agrees with Equations 8.11 through 8.16 since the amplitude 

A(kx,z′) is simply being convolved with the randomized orders of the diffuser. Also 

notice that the frequency cut-off point is much sharper at the focus of a lens than in 

a free space propagation. This is due to the fact that the amplitude function A has a 

smaller diameter at focus. Thus, we see that if the application will allow the diffuse 

pattern to exist only on a particular plane along the optical axis, the focal plane of a 

lens generally gives the best results.

The number of speckle lobes within the desired pattern can be seen from 

Equation 8.23. For a solid pattern, such as a square or a circle, the number of speckle 
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363Beam Shaping with Diffractive Diffusers

lobes across the diameter or along a side is simply ~2N. In our example, there are 

∼55 − 28 = 27 speckle lobes across the ring’s width.

8.6.2 SPECKLE REDUCTION

The reduction of the amount of speckle modulation is accomplished by three basic 

techniques.17 The !rst is to illuminate the diffuser with temporally or spatially par-

tially coherent light. Since speckle is caused by coherent interference, then it stands 

to reason that reducing the coherence of the beam will also reduce the contrast 

within the speckle pattern. Contrast is de!ned as16,17

 C
I

I=
σ

 (8.41)

where:

σI is the variance of the intensity

I  is the mean value of the intensity

For coherent light the contrast is equal to unity. The contrast of M mutually inco-

herent speckle patterns superimposed with the same wavelength and equal average 

intensities then becomes16,17

 C M= −1 2/  (8.42)

From the above equation, we see that a laser with many incoherent modes will have 

lower contrast speckle than a single-mode coherent laser.

The second technique to reduce speckle is to time-average the speckle. This involves 

physically moving the beam or the diffuser very quickly and integrating the speckle 

pattern over a short period of time. This can work quite well for applications where the 

sensor, such as the human eye, a charge-coupled device (CCD) array, or a photographic 

!lm, has a !nite exposure time. In general, any approach that can be used to break up 

the spatial coherence of the input can reduce the speckle contrast. One !nal technique 

is to spatial !lter the speckle by observing the pattern through a !nite aperture.

The subject of speckle is usually described in terms of the statistics of the speckle 

within the pattern. The details of the statistics of the speckle pattern are beyond the 

scope of this book. Excellent sources for further reading on the subject are found in 

the works of Hariharan,16 Dainty,17 and Goodman.18

8.7 APPLICATIONS OF DIFFUSERS

There is a wide variety of applications that demand diffractive diffusers. They are 

used to homogenize light sources, including broad band light sources in some cases 

(note that diffractive diffusers function with white light even though they are disper-

sive). They are used to illuminate speci!c regions for scanning applications. They are 

also used in alignment applications where a speci!c pattern is desired, such as laser 

targeting systems for !rearms, machine tooling and assembly alignment systems, 

and even for space station to shuttle docking alignment. A grid diffuser pattern can 
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be used to map the topography of a region. Diffusers can accompany  illuminators 

for night vision systems, product marking systems, pen pointers with corporate 

logos or sports team logos, and laser light shows, and they can increase the viewing 

angle of a display. Diffusers could even be used in a wireless, free space interof!ce 

 communication network to reduce alignment requirements between components.

In general, the applications for diffuser beam shapers as opposed to remapping 

beam shapers depend on the system limitation and the application requirements. 

Diffusers should not be used in applications where speckle is not acceptable and 

cannot be reduced to a tolerable level. They should also not be used when collimation 

of the shaped pattern is a requirement. However, diffusers offer a better solution for 

applications where the input beam quality and/or system alignment capabilities are 

not suf!cient for a remapping beam shaper. Factors that affect the input beam qual-

ity are the ability to measure the intensity and the phase of the beam, the stability of 

the beam with time, and the consistency of the beam from laser to laser. Remapping 

beam shapers can only shape one mode of the laser, and other modes in the input 

source will produce background noise. Diffusers will shape all modes of the laser, 

and an increased number of modes will actually lower the contrast of the speckle.

In addition, when one is using remapping beam shapers, any potential instability 

or variation of the input laser beam must to be evaluated to determine if the impact 

to the resulting output is acceptable. It is prudent to design the optical system with 

a spatial !lter and methods to adjust the beam to better match the designed input 

beam. Alignment to the beam shaper is critical, and depending on the speci!cs of the 

beam shaper, the errors in alignment often have a multiplicative effect on the errors 

observed in the output. For example, a 2% translational misalignment in the beam 

shaper may result in a 10% tilt in the top hat.

Diffusers do not suffer from such requirements and can easily tolerate a range of 

input source conditions with minimal impact to the optical performance. They are, con-

sequently, quite effective for high-power applications where the laser that is being used 

has a large number of mutually incoherent modes. Diffusers are relatively simple and 

customizable structures that offer a wide degree of $exibility for myriad applications.
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9 Engineered Microlens 

Diffusers

Tasso R. M. Sales

9.1 INTRODUCTION

Optical diffusers are often used to condition raw illumination and make it useful 

in a variety of applications. Some examples of conditioning include homogeniza-

tion, controlled spread and distribution, and intensity shaping. Diffusers also help 

reduce sensitivity to variations in source properties, amplitude or phase, and provide 

a stable output beam. Common diffusers include ground glass,1 holographic diffus-

ers,2 opal glass,3 and volume diffusers.4 With the exception of opal glass, a very inef-

!cient Lambertian diffuser, other diffusers are notorious for spreading light with a 

Gaussian intensity pro!le in the far !eld. Therefore, unless one is speci!cally looking 

for a Gaussian pro!le, common diffusers !nd most applicability in homogenization 

and spreading, not beam shaping. (Here we will be concerned with surface diffusers 

so we will not have much to say about volume diffusers, of which opal glass is an 

example. Narrow-angle volume diffusers also tend to produce Gaussian scatter.) For 

general beam shaping, until recently diffractive optical elements (DOEs) were the 

only viable approach,5 even though these are limited to monochromatic illumination 

and small divergence angles, unless a strong zero diffraction order can be tolerated.

Microlens arrays (MLAs; Figure 9.1), although not exactly diffusers, are also 

used in the homogenization of laser beams. Early work6 suggested periodic MLAs 

in combination with prismatic elements to generate uniform illumination for holog-

raphy. Regular MLAs have been combined7 with a focusing lens and some defocus 

to obtain a $attened focal pro!le. A similar approach has been used8 with an array of 
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368 Laser Beam Shaping

binary diffractive lenses. As a beam shaper, an MLA samples the input beam within 

the scale of each microlens unit and then overlaps the individual contribution of each 

element, thus the term “beam integrator.”9 In the far !eld, because of their periodic 

nature, MLAs give rise to a characteristic diffraction pattern that results from the 

regular arrangement of the lenses (see Figure 9.1 for an example). For this reason, 

in many applications a random diffuser is used in combination with the periodic 

MLA to wash out the diffraction pattern and minimize color and moiré fringing, 

even though it may lead to some loss in resolution, particularly for screen applica-

tions. MLAs can also only provide limited beam shaping capabilities due to the 

need for 100% !ll factor, if one is to maintain high ef!ciency and no zero order. 

Most commercially available MLAs present a spherical pro!le and are made by 

thermal re$ow10 of photoresist or direct machining, which further limits their diffus-

ing or beam shaping capabilities. Aspheric pro!les can be achieved in some cases 

by means of alternative processes such as reactive-ion etching.11 In spite of their 

limitations, MLAs do provide a working, if not ideal, solution to a problem that com-

mon diffusers cannot solve, that is, producing uniform illumination over a de!ned 

angular domain.

Diffusers that uniformly distribute illumination over an angular range or at a 

plane are of great practical interest.12 Depending on the particularities of the system, 

different approaches need to be developed to provide uniform illumination with-

out sacri!cing ef!ciency. Lithographic illumination systems often rely on $y’s eye 

MLAs to generate uniform illumination,13 sometimes in combination with additional 

diffusers and/or motion to minimize the diffraction artifacts induced by the periodic 

lens arrays; laser displays make use of optical diffusers14 for shaping and uniformly 

light distribution as well as speckle management. Several approaches have been pro-

posed to solve this problem using single-surface diffusers but only limited success 

can be claimed,15 due to either the design approach or the lack of an appropriate 

manufacturing technology.

Illumination con!ned to a well-de!ned angular region is termed “band-limited 

illumination” and a diffuser capable of producing such illumination pattern is known 

as a band-limited diffuser.16 The ideal band-limited diffuser17 spreads all available 

(a) (b)

FIGURE 9.1 (a) Square microlens array. (b) Example of a diffraction pattern from a micro-

lens array with hexagonal geometry.
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energy within the desired angular range, the target, only limited by  diffraction. 

Immediately outside the target there is a falloff region where the intensity drops 

toward zero. Unless intentionally designed in, the amount of energy within the fall-

off region is mostly dictated by diffraction and is therefore dependent on the struc-

tures that de!ne the diffuser. As a result, the ideal band-limited diffuser is one whose 

falloff region is limited only by diffraction with nearly zero energy outside of it. 

The total fraction of light scattered within the target region represents the target 

ef!ciency. The ideal band-limited diffuser maximizes target ef!ciency with the only 

losses coming from Fresnel re$ections and diffraction-induced broadening in the 

falloff region.

Until recently, probably the best example of a band-limited diffuser was provided 

by the diffractive diffuser.13 While capable of creating uniform diffuse patterns with 

general distributions, diffractive elements cannot prevent a certain fraction of the 

incident illumination from spilling outside of the target. With binary elements, for 

example, at least 20% of the light is lost to higher diffraction orders outside the tar-

get. Continuous-phase diffractives are more ef!cient but, still, about 5%–10% is lost 

to higher diffraction orders. (Note that these !gures do not include Fresnel losses.) 

We can therefore say that, while a diffractive diffuser is able to provide uniform illu-

mination, it is not band limited, although the continuous-phase element comes very 

close. Common diffusers, refractive in nature, are fundamentally free of the intrinsic 

losses associated with high-order diffraction and zero order and would seem ideal 

candidates for band-limited behavior. However, the typical examples of ground glass 

and holographic diffusers generate Gaussian scatter and, therefore, do not have a 

uniform scatter region or well-de!ned cutoff for the diffuse light and are thus not 

band limited.

Over the last decade or so, a novel approach to achieve beam shaping, diffu-

sion, and homogenization based on arrays of randomized microlenses has been 

developed18 that combines the homogenization capabilities characteristic of random 

diffusers, such as ground glass, and the beam shaping capabilities of diffractive ele-

ments but without their drawbacks. An engineered diffuser constitutes an ensemble 

of microstructures, generally microlenses, where each individual element is designed 

and fabricated to produce a controlled scatter pattern. The ensemble is generated 

and randomized according to well-de!ned rules and probability distributions, but 

the engineered diffuser is best described as a deterministic optical element where 

the aggregate of microlenses and their individual optical prescriptions are precisely 

de!ned in a completely repeatable manner, contrary to a random diffuser which by 

construction is only repeatable in a statistical sense. The implication is that engi-

neered diffusers enable the control of both energy distribution and intensity pro!les. 

In particular, engineered diffusers have made possible the production of diffusers 

that come very close to the band-limited ideal. This chapter covers the concept of 

engineered microlens diffusers describing in some detail design aspects and illus-

trating performance features. The organization is as follows. Section 9.2 discusses 

the general concept of engineered diffusers. Section 9.3 covers typical con!gura-

tions in optical systems. Section 9.4 explores the general design rules and parameters 

involved in the generation of engineered diffusers. Section 9.5 shows the use of engi-

neered diffusers to ef!ciently produce controlled intensity pro!les. In Section 9.6 we 
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discuss the modeling of engineered diffusers and present a  framework for designers 

to incorporate these elements in commercial ray-tracing software. Section 9.7 sum-

marizes the main results.

9.2 THE CONCEPT OF ENGINEERED DIFFUSERS

An engineered diffuser is a random assembly of microstructures designed to perform 

some beam shaping function. It differs from other beam shaping approaches in that 

each microstructure is individually designed and grouped deterministically to create 

a unique diffuser component. The random nature of the engineered diffuser enables 

not only the elimination of diffraction artifacts but also the production of very general 

light distributions with high ef!ciency, limited only by surface (Fresnel) losses. It also 

makes the diffuser robust to variability in fabrication parameters and insensitive to 

input beam conditions, particularly when compared to diffractive elements or MLAs. 

The precise de!nition of each microstructure permits the control of intensity pro!les, 

particularly when compared to statistical diffusers, which are generally con!ned to 

Gaussian scatter. Some of the features of engineered diffusers are listed below:

No zero order

Contrary to DOEs operating at wavelengths other than the design 

or MLAs that attempt to produce certain patterns, such as circular 

diffusion

Absence of image artifacts

Random speckle, as opposed to that seen with MLAs and the inevitable 

high-order diffraction losses of DOEs

Absence of color effects and moiré fringing when used as screens

See Figure 9.2 for an example.

Controlled angular spread and light distribution

DOEs become more challenging to manufacture as the angular spread 

becomes wider.

Insensitivity to input variations

DOEs or MLAs with large feature size are more sensitive to variations 

in amplitude and phase of the input illumination.

Robustness to fabrication errors

Variations on the local properties of the microstructure of random dif-

fusers have a limited effect on performance. Contrarily, lens aberra-

tions or pro!le variations have a direct impact on the performance of 

MLAs and DOEs.

The engineered diffuser incorporates the robustness and homogenization capabilities 

of random diffusers with the beam shaping capabilities of DOEs and MLAs while 

enabling performance features that cannot be provided by either approach. An engi-

neered diffuser takes into consideration all aspects that de!ne the diffuser in a deter-

ministic fashion by integrating the various available design parameters to achieve a 

certain beam shaping goal. The process begins with the speci!cation of the desired 

beam shaping pattern, in terms of both light distribution and intensity pro!les in the 
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far !eld. Common distributions include circular, linear, rectangular, and elliptical pat-

terns. Common intensity pro!les include $attop and batwing (more intensity toward 

wider angles compared to the center) for uniformity illuminating $at surfaces. The 

engineered diffuser is de!ned by three basic elements (Figure 9.3): the sag pro!le of 

the microstructures (typically microlens-based), their boundary shape, and the spatial 

arrangement of the microstructures. Each element affects diffuser performance and 

must be taken into account together with the other parameters. Critical to the success 

FIGURE 9.2 Image projected through a periodic microlens array (right) and an engineered 

diffuser (left). Moiré fringing and color artifacts are introduced by the periodic screen, absent 

with the engineered diffuser.

Lens profile

Spatial arrangement

Lens boundary

FIGURE 9.3 Elementary components required to create an engineered diffuser: microlens 

pro!le, the lens boundary shape, and spatial arrangement of an ensemble of lens elements.
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of this program is the ability to manufacture microstructures with accurate surface 

pro!les according to a general surface prescription, down to fractions of microns. 

Some alternative methods include direct machining19 and lithographic processes.20

In Section 9.3, we will consider in more detail some aspects in the design of 

engineered diffusers, but here we outline how the basic design elements interact 

and affect performance. As pointed out previously, a periodic distribution of micro-

structures leads to signi!cant light structure (the diffraction pattern) and color 

effects (a periodic structure is basically a diffraction grating). Randomization has 

the advantage of minimizing or eliminating these artifacts but also makes available 

previously unavailable bene!ts. First, it introduces a new degree of freedom by 

allowing microstructures to be combined or placed arbitrarily in controlled pro-

portions. Also, surface slopes can be de!ned with limited local constraints, which 

allow general beam shaping to be implemented because the arbitrary slope his-

tograms become possible, at least in principle. The price paid by the additional 

degrees of freedom is the considerably greater computing power required to design 

each microstructure and generate the diffuser surfaces. For most applications, how-

ever, the current state of the art in computer speed, memory, and storage has proven 

adequate.

While there is a variety of randomization algorithms, a simple way to gain some 

understanding into the degrees of freedom as well as the constraints and effects of a 

random distribution is to start with a one-dimensional periodic MLA and consider 

ways to randomize it. An example will help to illustrate the concept (Figure 9.4). 

A one-dimensional periodic MLA is given and the middle element is selected to 

be modi!ed (Figure 9.4a). The types of modi!cation that can be implemented here 

include sag pro!le (dotted line), horizontal shift, vertical shift, and rotations, as indi-

cated by the various arrows. (In two dimensions, one could also consider changes to 

the microlens boundary.) Of course, the speci!c type of transformation a particular 

lens undergoes depends on what one is trying to accomplish, but it seems clear that 

any modi!cation to a given microlens element changes the histogram of slopes and, 

therefore, affects the properties of the system, both in the near !eld and in the far 

!eld. Now, the question is how the transformation of a single element affects other 

elements in its neighborhood. Of all possible transformations, consider the case of a 

horizontal shift to the right (Figure 9.4b) where the original unmodi!ed microlens 

is depicted by the dashed line. The shifting of the lens creates on one side a gap in 

the array and, on the other side, an overlap with a neighboring microlens. A pos-

sible approach to deal with the gap is to make the lens larger to eliminate the gap 

(Figure 9.4c) so that no portion of the input beam is transmitted unde$ected. On the 

other side, where lenses intersect, one might consider several alternative possibili-

ties (Figure 9.4d–f). The pro!le of the shifted lens might prevail, the pro!le of the 

neighbor lens might prevail, or maybe none of these options with some portion of 

both microlenses prevailing. In either case, the histogram of slopes is modi!ed and, 

depending on what the beam shaping requirements might be, these transformations 

need to be compensated or complemented by transformations performed on other 

lenses in the array. For a small number of lenses, the !nal goal may be hard to 

achieve but typically at least hundreds of elements are illuminated and it becomes 

usually possible to come fairly close to the target requirements.

387



373Engineered Microlens Diffusers

A general algorithm for the design of engineered diffusers is shown in Figure 9.5. 

The beam shaping requirements determine the appropriate design variables, such 

as microlens prescription parameters, and rules for intersecting microstructures, as 

illustrated in Figure 9.4, as the available diffuser space is occupied with scattering 

elements. The chosen algorithm is thus implemented repeatedly until the diffuser 

surface is completely de!ned. An evaluation step then follows with comparison to 

desired targets, based on ray-tracing or diffraction theory, whichever is appropriate. 

(a)

(b)

(c)

(d)

(e)

(f )

FIGURE 9.4 Example of the randomization of a single lens element (center) in an initially 

periodic array. (a) Available degrees of freedom include sag pro!le (dotted line), translations, 

and rotations. (b) Center element is shifted to the right (dashed line: original microlens). 

(c) To eliminate gap at the left created by the shift, the microlens diameter, and therefore sag, 

is increased. (d) Possible approach to deal with the overlap with the lens to the right: the sag of 

the center lens prevails. (e) Another approach: the sag of the lens to the right prevails. (f) Yet 

another approach: portions of both lenses are used.

388



374 Laser Beam Shaping

This could be the !nal step in the design process or may require a restart of the 

design cycle, depending on the results of the evaluation. It is worth noting that in 

most cases the design parameters and algorithms are not unique, implying a large 

number of local minima in the space of solutions, but making more dif!cult the 

identi!cation of the global minimum solution.

Note that in the approach illustrated above, little attention is paid to the diffuser 

near-!eld behavior. The reason is that in most cases, one is interested in energy 

distribution or intensity pro!les in the far !eld and, therefore, the particular way 

the microlenses focus the incident beam is inconsequential to the performance of 

the diffuser, although an analysis of the near !eld does shed light on the far-!eld 

Requirements

Generate microlens
element

Add to diffuser
aggregate

Engineered diffuser

Evaluate scatter
pattern

Check

Finish

Basic parameters

Design variables
 Diameter range
 Radius of curvature
 Conic constant
 Aspheric coefficients
 Lens numerical aperture
 Lens overlap

 Lens diameter
 Sag profile
 Boundary shape

FIGURE 9.5 Basic algorithm for the creation of an engineered diffuser. Once design vari-

ables are de!ned, the main iteration loop consists of generating microlens elements and popu-

lating the diffuser aggregate.
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properties of the diffuser, but this is outside the scope of the present discussion. 

We note, however, that there is one case where the near !eld is of critical importance, 

and that is the case of a $y’s eye beam shaper9 where two engineered diffusers are 

used in tandem with the !rst array placed near the focus of the second array. In the 

present discussion, however, we concentrate on single-surface diffusers where near-

!eld behavior is not critical to the design of the engineered diffuser.

In Section 9.3, we brie$y review typical operating conditions for engineered 

diffusers.

9.3 TYPICAL CONFIGURATIONS

The most common mode of operation using engineered diffusers involves a source 

that provides the input illumination, the engineered diffuser to shape the input beam, 

and the output beam following propagation through the diffuser, or after re$ection, 

generally in the far !eld. In the simplest setup, Figure 9.6a, the incident illumination 

F

(a)

(b)

(c)

d

d1

d2

FIGURE 9.6 Typical con!gurations for the use of engineered diffusers. (a) Free propaga-

tion. (b) A lens is used before the diffuser. (c) A lens is used after the diffuser.
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hits the substrate from the diffuser side of the substrate, with the scatter pattern 

being observed at a suf!ciently large distance from the diffuser, in the region gener-

ally denoted as the far-!eld or the Fraunhofer region of diffraction.21 If the diffuser 

angle is small enough, it is of little consequence if the incident beam hits the dif-

fuser side or the unpatterned side !rst, but as the angle increases, incidence from 

the diffuser side is preferable for best ef!ciency. Also, if the engineered diffuser is 

used for beam shaping, the input should generally be collimated, particularly if the 

scatter pattern has sharp features. In some cases, it is possible to take into account 

the degree of collimation of the source, but generally a collimated input provides the 

sharpest falloff.

An equivalent, but more compact, con!guration is to utilize a focusing lens to 

bring the far-!eld pattern to the focal plane of the lens22 (Figure 9.6b). This geom-

etry allows one to utilize the diffuser over much shorter distances compared to free 

propagation. For that reason, the diffuser output can also exhibit relatively sharper 

features. The diffuser is located at distance d from the observation plane, which is 

at the focal plane, a distance F from the lens. This con!guration can also be used 

to tune the size of the diffuse pattern at the focal plane by varying the separation d. 

Alternatively, if the input is collimated, the lens can be placed between the diffuser 

and the observation plane, separated from each by the distances d1 and d2, respec-

tively (Figure 9.6c). If d1 = d2 = F, we have a telecentric con!guration21 where the 

light scattered by the diffuser is collimated by the lens and delivered parallel to the 

optical axis, if the input beam is small enough. As the beam size increases, the illu-

mination angles at the base focal plane also increase.

Within the range of validity of the Fraunhofer approximation, these con!gura-

tions are equivalent with the main difference between them being whether the dif-

fuse pattern is de!ned in angle (free propagation) or coordinate space (focal plane). 

Note, however, that in those cases where a lens is used with the diffuser, the quality 

of the lens design becomes important. A lens with strong aberrations may affect 

the diffuser output, so it is important to take that into consideration when using 

this setup.

9.4 DESIGN OF ENGINEERED MICROLENS DIFFUSERS

The elementary scattering units of engineered diffusers are generally microlenses, 

and to de!ne the entire diffuser structure, we need to specify three essential proper-

ties: functional form or prescription of the microlens sag function, geometrical shape 

of the microlens boundary, and spatial arrangement of an ensemble of microlenses 

to create the diffuser surface. Differently from random diffusers, like ground glass 

where only a statistical description of scatter centers is meaningful, the construction 

of engineered diffusers requires the precise de!nition of all design parameters.

The surface prescription, or sag, generally assumes the conical form de!ned by a 

radius of curvature, conic constant, and possibly aspheric coef!cients. The bound-

ary shape de!nes the geometry of the edges that limit the spatial extent of each 

scatter center. For example, boundary shape can be circular, square, rectangular, 

or any general shape or, when considered in an aggregate, combinations of shapes. 

Finally, the spatial arrangement dictates how scatter centers are placed on the 
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diffuser surface and what happens when lenses overlap, similar to the  illustration 

in Figure 9.4. Each and all of these components that de!ne the engineered diffuser 

have an effect on its scatter properties and are characterized by probability distribu-

tion functions that govern their statistical properties. In what follows, we discuss 

each component individually and illustrate their signi!cance to the performance of 

the diffuser.

There are several ways to de!ne the microlens sag function but, for simplicity, we 

consider the case of a microlens characterized by a radius of curvature R and a conic 

constant κ, which is given by

 y r r
R R r r

a r rc

c
k c

k

k
=

−

+ − + −
+ −∑

( )
( )( ) ( )

2

2 2 21κ
 (9.1)

where:

r designates a coordinate point on a local coordinate system associated with a 

particular lens element

rc represents a decenter parameter from the origin

ak denotes aspheric coef!cients

The sag function (Equation 9.1) through its various design parameters is mainly 

responsible for controlling the far-!eld intensity pro!le. For simplicity, we ignore 

the aspheric coef!cients in the present treatment but, depending on the beam shap-

ing requirements, all design parameters may in principle be required to implement 

some beam shaping functions. To illustrate the basic design rules, we consider the 

case of the engineered diffuser where each microlens element scatters an input col-

limated beam with a constant angular spread, thereby !xing the radius of curvature 

for a certain lens diameter. The remaining design parameters are then diameter, 

conic constant, and decenter (also microlens boundary in the more general two-

dimensional case).

The average microlens diameter de!nes the diffuser feature size, which in some 

applications can be a critical design parameter, for example, in illumination systems 

projected through pixelated devices where the diffuser feature size needs to be sev-

eral times smaller than the pixel size. An example is the case of projection screens. 

These are thus the factors to consider in this regard: resolution, total sag, and averag-

ing. Once a certain diameter is selected according to resolution requirements then, to 

ensure the best uniformity, the largest number of microlenses should be illuminated 

to provide suf!cient averaging, that is, the lens diameter should be small relative to 

the input beam size. At the same time, given a microlens sag prescription the lens 

depth decreases as the diameter decreases. Larger microlenses imply deeper sag, 

whose maximum allowed value is established by the manufacturing process.20 If the 

microlens element is so small that the total sag only imparts a phase delay that is on 

the order of 2π at a certain wavelength of interest, one should expect degradation in 

performance. In this respect, it is useful to de!ne the phase number

 M y
n=

max
( )λ ∆

 (9.2)
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where:

ymax represents the total lens sag in the nomenclature of Equation 9.1

λ is the wavelength under consideration

n equals n(λ) − 1, with n the index of refraction at wavelength λ, for a diffuser 

in air

The phase number basically expresses the total sag in the language of phase cycles 

and de!nes the regime, diffractive or refractive, the microlens operates on: M = 1 

implies a diffractive element with exactly 2π phase shift. For a microlens to operate 

in the refractive regime providing achromatic behavior and high target ef!ciency, 

the phase number M should be as large as possible. A simple rule of thumb to help 

decide the minimum feature size or lens diameter to utilize is given by the following 

relation:

 D M≥ 230
0

λ

θ
 (9.3)

where θ0 is the half-width diffuser angle in degrees where, to ensure one is safely 

in the refractive regime, M should be at least 8, preferably more. It should be noted 

that Equation 9.3 only applies to parabolic pro!les and angles no larger than about 

20°–30°, strictly speaking. However, it is useful in providing a starting point for more 

accurate calculations. At this stage, it is instructive to illustrate these concepts with 

some examples. Consider a single parabolic microlens element, κ = −1, that spreads 

an incident collimated beam into a 40° cone, ±20°. The scatter patterns for diameter 

values 1000, 100, 10, and 1 μm are shown in Figure 9.7. The dotted line represents 

the diffraction-based calculation, whereas the solid line is the result of ray-tracing 

or the geometrical optics performance. As expected, under coherent illumination 

one notes the intensity oscillations, a clear signature for the presence of diffraction 

effects but without 100% modulation, indicative of single-lens diffraction. The ray-

tracing curve is obviously the same independent of the lens size with the geometrical 
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FIGURE 9.7 Scatter pattern due to a single microlens element with diameter (a) 1000 μm,
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FIGURE 9.7 (Continued) (b) 100 μm, (c) 10 μm, and (d) 1 μm based on diffraction (dotted 

line) and ray tracing (solid line).
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optics envelope approximating the diffraction-based pro!le as the lens size increases 

compared to the wavelength, assumed here to be 633 nm. The ray-tracing curve does 

indicate the target region that concentrates all the input energy in the geometrical 

optics limit. The only losses of the ideal band-limited diffuser are those due to the 

diffraction falloff outside the geometrical target. Consequently, to maximize target 

ef!ciency one should use the largest beam size possible. 

The target ef!ciency calculation based on parabolic lenses is particularly signi!-

cant as it can be seen as a fundamental limit for microlens-based diffusers. Again, 

target ef!ciency is given by the fraction of transmitted energy that is scattered within 

the target region, usually the angular range over which the intensity is constant. The 

sag function of the form given by Equation 9.1 can be expanded in a power series 

where the !rst element is that of a parabolic lens plus higher order terms. The effect 

of the higher order terms in the far !eld is given by a convolution with the parabolic 

contribution, which can only lead to its further spread. As a result, for an engineered 

diffuser, the best possible target ef!ciency is given by the use of parabolic micro-

lenses. The  estimated target ef!ciency for band-limited engineered diffusers is shown 

in Figure 9.8. Consistent with the intensity pro!les of Figure 9.7, higher ef!ciency is 

found with larger values of microlens diameter or wider angles, for a !xed diameter. 

Small-angle diffusers generally require larger feature sizes and large input illumina-

tion for ef!cient beam shaping.

To complete the de!nition of the elementary microlens unit, we note that there 

is a direct relation between shape of its boundary and the far-!eld distribution of 

energy in angle space. Basically, a circular microlens produces a circular scatter pat-

tern while a rectangular microlens produces a rectangular pattern. This relationship 

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6M
ic

ro
le

n
s 

d
ia

m
et

er
 (

m
m

)

0.4

0.2

0.0
0 10 20 30 40

Full-width angle (°)

50

0.89793

0
.9

5
3

5
90.94246

0.93133

0.92019

0.90906

60 70 80

0.97586

0.96472

FIGURE 9.8 Target ef!ciency (fraction of scattered energy within the region of uniform 

intensity) as a function of full-width scatter angle and microlens diameter. 
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follows directly from diffraction theory, and while it is possible to violate it and have, 

for  example, a  microlens square aperture produce a round scatter pattern, we are 

currently interested in structures that lead to uniformly distributed scatter patterns 

and those are typically originated from matching patterns between far-!eld energy 

distribution and boundary shape. In other words, microlenses (circular, elliptical, 

square, rectangular, etc.) are naturally suited to produce scatter patterns (circular, 

elliptical, square, rectangular, etc.), even though this condition is only suf!cient and 

not necessary.

The conic constant allows one to adjust the intensity pro!le from $at-top to 

Gaussian-like pro!les (positive values of κ) to batwing pro!les (negative values of κ). 

If a speci!c dependence of intensity against angle is required that cannot be properly 

generated by the sag function given by Equation 9.1, one may need to resort to the 

aspheric coef!cients. Examples are shown in Figure 9.9 for a microlens element with 

D = 100 μm, spread angle ±20°, refractive index 1.5, and wavelength 633 nm.
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FIGURE 9.9 Effect of conic constant κ on scatter pro!le for a conic lens: (a) κ = 4, (b) κ = 0,
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The decenter parameter !nds an important role particularly under coherent laser 

illumination to help minimize intensity artifacts due to diffraction and interference of 

the various microlenses in the ensemble. The maximum amount of decenter is set as 

a fraction of the diameter and in the simplest case applied to every microlens element 

with a uniform distribution, both positive and negative values. Going from a single 

scatter center to an ensemble of microlenses, one notices the emergence of speckle,23 

that shows up as soon as more than one scatter center are illuminated. Speckle is 

unavoidable when illuminating any structure whose feature size is smaller than the 

coherence area of the source. In some applications where detection occurs over an 

area that includes several modulation cycles, the presence of speckle may not pose 

problems. For other applications, such as laser projection,24 speckle is objectionable 

and measures need to be taken to reduce it to a level where it cannot be perceived by an 

observer. This is usually accomplished using diffuser motion to average out speckles.
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FIGURE 9.9 (Continued) (c) κ = −0.8, and (d) κ = −2. Dotted line: diffraction-based result. 

Solid line: ray tracing.
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The following example should shed some light on the effect of decenter on 

 uniformity. Consider a single one-dimensional lens element with angular spread 

±20°, diameter D = 100 μm, conic constant κ = −0.8, refractive index 1.5, and wave-

length 633 nm, similar to previous examples. We now calculate the far-!eld diffraction 

pattern due to a combination of two lenses only, one with decenter rc = 0 and another 

with rc = 0.05D. The results are shown in Figure 9.10 for incoherent and coherent addi-

tion of the diffraction patterns. In either case, one notices an effective reduction in the 

total range of intensity $uctuations within some range of the scatter pattern. In the case 

of coherence addition of complex amplitudes, speckle is averaged over 1° intervals 

for this particular example. As more lenses are added and the decenter parameter is 

randomly applied to the various lenses in the array, an overall improvement in unifor-

mity is observed over the entire angular region of interest. The effect is illustrated with 
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FIGURE 9.10 Scatter pattern from the combination of two microlenses of diameter 100 μm and 

decenter values 0 μm and 5 μm decenter resulting from (a) incoherent sum of intensities  (dotted 

line: 0 μm, solid line: 5 μm) and (b) coherent sum of complex amplitudes (dashed line: 0 μm; solid 

line: 5 μm, total intensity with speckle; dashed line: 5 μm, speckle averaged over 0.5°).
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an engineered diffuser with microlens diameter in the range of 90–110 μm and same 

parameters as above. The detector angular range is assumed to be 0.5°, over which 

speckle is averaged. The results are shown in Figure 9.11, where the dotted line indi-

cates the diffraction-based speckled diffuse calculation, whereas the thick black curve 

is the result of ray tracing. The thin black curve represents the speckle pattern averaged 

in steps of 0.5°. The decenter helps minimize the strong $uctuations due to diffraction 

and brings uniformity closer to the geometrical optics performance.

Once the design parameters are established, the engineered diffuser is constructed 

by randomly populating a grid with the microlens elements. In its simplest form, the 

diameter is taken from a range of values, typically within 10%–20% from the average, 

with a uniformly distributed probability for the spatial distribution of microlenses. 

Overlap between microlenses as the ensemble is created can be dealt with in a variety 

of ways similar to the scheme illustrated in Figure 9.4. The process continues until the 

whole grid is populated with microstructures. A scanning electron microscope (SEM) 
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FIGURE 9.11 Effect of decenter values (a) 0%, (b) 4%, (c) 5%, and (d) 6% on scatter pro!le.
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picture of an engineered diffuser surface structure that produces a circular pattern is 

shown in Figure 9.12. For best uniformity, a large number of microlenses should be 

illuminated to provide suf!cient averaging, otherwise one might see strong intensity 

$uctuations. As the size of the input beam increases and more microstructures are 

illuminated, uniformity eventually plateaus at an asymptotic value that depends on 

the diffuser design and systems parameters such as source properties and size of 

speckle averaging detector. If the detection area is on the order of the speckle size,25 

given by λ/B radians, with λ being the wavelength and the B the input beam size, uni-

formity will be limited by the coherence area of the source.26 If the detection area is 

suf!ciently large to allow averaging of a large enough number of speckles, uniformity 

will be limited by the diffuser design. As is not uncommon, there is always a com-

promise that needs to be considered between maximum ef!ciency and uniformity, 

depending on the beam shaping requirements and operating conditions.
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FIGURE 9.11 (Continued) Dotted line: diffraction-based intensity pro!le; thick black 

curve: diffraction-based pro!le with speckle averaged over 0.5°; thin black curve: geometri-

cal-optics intensity pro!le. 

400



386 Laser Beam Shaping

9.5 LIGHT CONTROL WITH ENGINEERED DIFFUSERS

We now explore two notable applications of engineered diffusers that illustrate their 

unique ability to produce controlled intensity patterns with high ef!ciency.

9.5.1 BAND-LIMITED DIFFUSERS

Engineered microlens diffusers have proven to be naturally suited to generate uniform 

illumination. Alternative concepts have also been proposed27 such as a distribution of 

linear facets that are randomly combined to spread light over a speci!c angular range. 

Each facet scatters into a speci!c direction and by imposing an upper limit to the 

slope angles in the ensemble, one can theoretically guarantee band-limited behavior. 

By further ensuring the appropriate distribution of facets over the angular range of 

interest, one can produce uniform illumination. The approach does provide, at least in 

principle, band-limited behavior and some experimental demonstration can be found 

in the literature.15 However, because each linear facet corresponds to a speci!c angular 

direction, this type of diffuser requires a large input beam size to sample enough facets 

so that uniform illumination could result over some speci!ed angular range. Making 

the linear facets suf!ciently small minimizes the requirements for a large beam but 

runs into manufacturing and diffraction issues. Engineered diffusers sidestep the issue 

completely and offer a natural way to generate uniform illumination. Examples are 

shown in Figure 9.13 for an 80° and a 30° circular diffuser. In each case, the measured 

intensity is best !t by a super-Lorentzian function of the form

 I

w

p
( )θ

θ

=

+

1
1 2  (9.4)

where:

w is the full width at half maximum

p is the power of the super-Lorentzian curve

FIGURE 9.12 Scanning electron microscope picture of an engineered microlens diffuser 

that produces a circular pattern. 
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The larger the power p, the sharper the intensity falloff at the edges of the scatter and 

the higher the target ef!ciency.

Other pro!les such as those commonly referred to as “batwing” where the inten-

sity increases away from the origin are also possible. This type of pro!le is needed, 

for example, if one wants to uniformly illuminate a $at surface. Two examples are 

shown in Figure 9.14 where the best !t takes the form of an inverse cosine power 

function versus angle, which is given by the relation:
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( )
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θ
θ θ θ

θ θ
=

≤

>








− , 0

00  

(9.5)

with p being a real number indicating how fast the intensity increases at the edge 

compared to the center of the pattern, over the angular range de!ned by θ0. The case 
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FIGURE 9.13 Band-limited diffusers with super-Lorentzian pro!les (Equation 9.1) (a) 80° 

full width, p = 60, and (b) 30° full width, p = 50. Dotted line: measured data, solid line: !t. 
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where p < 0 is also possible as well as alternative functional forms, not limited to 

cosine or Lorentzian forms. In any case, the engineered diffuser can be designed to 

match general intensity pro!les, either in angle space or at a $at target.

9.5.2 HIGH-EFFICIENCY LAMBERTIAN ILLUMINATION

Lambertian diffusers are often used for radiometric calibration purposes and in 

backlight display systems. The basic feature of a Lambertian scatterer is that the 

radiance is a constant,28 independent of the observation angle with an intensity that 

depends on scatter angle as a cosine function over the whole half-hemisphere. 

One can !nd Lambertian diffusers that work in re$ection or transmission. 

Re$ective diffusers29 are generally made of materials such as Te$on, barium sul-

fate, or magnesium oxide and operate typically in the UV, visible, and near-infrared 

regions of the spectrum. The prototypical transmissive Lambertian diffuser is opal 
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FIGURE 9.14 Band-limited diffusers with inverse cosine pro!les (Equation 9.2) (a) 106° 

full width, p = 1.9, and (b) 60° full width, p = 3. Dotted line: measured data, solid line: !t. 
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glass,3 characterized by a distribution of small particulates embedded within a solid 

matrix. The scatter from opal glass is very nearly Lambertian (Figure 9.15), but 

because of the strong scatter angles and the volumetric nature of the diffuser transmis-

sion ef!ciency is fairly low (around 20%). Not much work has been done to improve 

the ef!ciency of transmission Lambertian diffusers. A concept has been theoreti-

cally proposed30 based on a rotationally symmetric diffuser to achieve Lambertian 

scatter, which in practice would have the disadvantage of requiring alignment with 

the input beam. We show how the use of engineered microlens diffusers enables the 

design and manufacturing of transmission Lambertian scatter with high ef!ciency 

and applicability over a broad spectral region.

The main dif!culty in implementing a single-surface Lambertian diffuser in 

transmission is the controlled fabrication of the steep slopes it requires to spread 

rays over wide angles within the full 180° hemisphere. For a material with index 1.5, 

for instance, continuously varying slope angles up to about 83° are necessary—not 

easy to fabricate with current lithographic methods. In a high-index material, such 

as silicon, with a refractive index of about 3.4 the maximum slope angle is about 

24°, posing no dif!culty for lithographic fabrication. However, high-index materials 

are generally restricted to infrared applications. A possible approach would be to 

consider a double-sided solution, where a diffuser surface is applied to both sides of 

a substrate. The idea behind the double-sided diffuser is to reduce the slope require-

ments on any given surface by having two diffuser surfaces working in conjunction 

to produce the Lambertian intensity pro!le. Although at !rst this might seem a valid 

approach, it turns out that a Lambertian diffuser cannot be implemented using the 

double-sided component. In the !rst diffuser, light propagates from a low incidence 

medium (typically air) into the material and all rays make it into the substrate, with 

a small percentage lost to Fresnel re$ections. In the second diffuser, however, the 

incident medium has higher index compared to the output medium and that severely 

limits the cone of rays that are transmitted to the output medium. An application of 
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ef!ciency measured at 20%.
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Snell’s law to the double-sided diffuser shows that this con!guration cannot generate 

rays over the full hemisphere necessary for Lambertian scatter. Consequently, the 

double-sided diffuser cannot be used to create a Lambertian diffuser.

The concept we have implemented consists of a dual-diffuser geometry where the 

idea is to use the compounding effect of having diffusers in series to attain the wide 

angles required to produce Lambertian scatter with individual diffusers that can be 

manufactured with current lithographic capabilities. In this scheme, two identical dif-

fusers are used, as illustrated in Figure 9.16, with a small air gap between them. The 

source faces the patterned side of the !rst diffuser while the patterned side of the second 

diffuser faces the $at side of the !rst. In this manner, the only sources of loss are those 

due to Fresnel re$ections, thus minimizing internal losses. Finally, the two diffusers are 

space-invariant making alignment unnecessary and signi!cantly simplifying assembly.

The problem now becomes that of determining the diffuser structure that, when 

combined in the fashion shown in Figure 9.16, produces the desired cosine intensity 

distribution. The elementary treatment of the diffraction problem involves expressing 

the far-!eld complex amplitude as the Fourier transform of the transmission functions 

of each diffuser, or a convolution operation.31 However, because of the wide angles 

involved a more precise formulation is required, notwithstanding the fact that the 

inverse problem is probably much too dif!cult to solve, either analytically or numeri-

cally. We have opted for an alternative approach based on a ray-tracing algorithm that 

dodges the wide-angle limitation of Fourier optics to optimize the single-diffuser scat-

ter. The result, interestingly, is that the single-diffuser solution can be expressed by

 I( )
cos

θ θ
θ θ θ

θ θ

=









 ≤

>










90

0
0

0

0

,

,
 (9.6)

where:

θ0 is a constant dependent on the diffuser material, 64° in the present case of 

index 1.5

FIGURE 9.16 Dual-diffuser geometry for generating Lambertian scatter: two identical 

engineered diffusers separated by a small air gap. 
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A plot of the single-diffuser measured intensity pro!le is shown in Figure 9.17.

Two diffusers were assembled as illustrated in Figure 9.16 and measured with a 

helium–neon laser, 633 nm. The measured scatter pattern is shown in Figure 9.18 

showing close match to the target cosine pro!le. The measured transmission of the 

two-diffuser assembly was just over 70%, a factor of about 3.5 times higher than 

opal glass.
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FIGURE 9.17 Single-diffuser pro!le required for the dual-diffuser solution to producing 

Lambertian scatter. 
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9.6 MODELING OF ENGINEERED DIFFUSERS

A common challenge facing the implementation of diffusers in general is the ability 

to reliably model these components in commercial ray-tracing software. While the 

fundamental nature of the diffuser scattering properties can only be captured by an 

accurate description of its surface features, most often one has limited access, if any, 

to that information. Common diffusers, such as opal glass, ground glass, and holo-

graphic, are only known in a statistical sense and therefore direct surface modeling is 

not at all used in practice, only ray-based or metrology-based models. Most commer-

cial design software incorporates standard models for Gaussian diffusers and also 

the ability to use measured intensity data to model scatter properties. For determin-

istic beam shaping elements, such as engineered diffusers, diffractive elements, and 

MLAs, there is complete knowledge of the surface structure but even in these cases 

it is generally not practical, possible, or necessary really, to implement the intrica-

cies of their relief structure. A clear exception is that of MLAs that, because of their 

periodic nature, are routinely modeled in commercial programs. The same, however, 

cannot be said of engineered diffusers and diffractive elements, mainly because of 

the large amount of data and complexity required to represent the surface.

There are two situations where modeling of the actual surface would be desirable: 

near-!eld behavior and coherent illumination. The diffuser models encountered in most 

commercial software are generally limited to far-!eld behavior and, since most are inco-

herent and ray based, an accurate model of the surface is not needed. Consequently, one 

must resort to the construction of models that allow one to reliably implement features 

of interest while sacri!cing other features less relevant to the problem at hand. As long 

as the model provides a suf!ciently accurate description of the diffuser behavior in the 

domain of interest, one can rely on the model for performance analysis and predictive 

purposes. Here we are concerned with implementing a modeling technique that allows 

some analysis of an engineered diffuser in commercial design software.

A common approach to modeling general diffusers, available in most programs, 

is based on the concept of bidirectional scattering distribution function (BSDF),32 

which describes the diffuser response as a function of incident angle. To determine 

the BSDF, a diffuser sample is measured under plane wave illumination for intensity 

versus angle at various angles of incidence. The resulting data are then compiled and 

imported into the optical design software, where some sort of interpolation is used for 

a complete picture of the model. While the BSDF approach is useful, it does require a 

signi!cant amount of metrology, which can be time consuming and expensive.

We describe a simpler approach that requires a single measurement of intensity 

versus angle at normal incidence. The measured data is used to calculate a surface 

pro!le that can be used in the ray tracing model. The calculated surface sag is such 

that the intensity pro!le resulting from the ray tracing matches the measured data. The 

reconstruction of the surface pro!le from the scatter data is carried out using methods 

well known to the beam shaping literature.9 Having the surface pro!le that generates 

the desired light distribution allows implementation in optical design software. We 

will not consider such implementation into any speci!c design software but present 

a general framework that a designer could adapt to the unique environment of the 

program she or he uses.
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393Engineered Microlens Diffusers

In the geometrical optics limit, the basic element responsible for changing the 

 direction of propagation of a ray is the surface slope between two media of different 

indices of refraction. As long as one is not looking close enough to the diffuser surface, 

a convenient model is to represent the diffuser by the slope distribution or histogram 

that generates its scatter properties. The usefulness of this approach stands on the fact 

that the slope distribution for a given functional form of intensity versus angle is unique, 

even though its representation through a sag pro!le is not. But again, that should not 

matter as long as the observation point is far enough from the diffuser surface.

As an example, consider a $at-top diffuser that spreads light within a ±10° range. 

An obvious way to represent this distribution is by means of a sequence of linear 

slopes covering the desired angular range, sort of like a Fresnel lens with each linear 

facet angle adjusted so that the complete set of facet slopes produces the uniform 

intensity over the ±10° angular range. Another approach, maybe not as obvious but 

is just as effective, is to use a parabolic lens.33 Other more elaborate representations, 

but of dubious usefulness, are also possible. The point to be made, though, is that 

each representation produces the desired intensity pro!le equally well even though 

their near-!eld properties are completely distinct.

The nonuniqueness of the representation problem is the reason why a single mea-

surement of intensity versus angle cannot, strictly speaking, provide a complete 

model to be used in a general circumstance, at least not without certain assumptions. 

In the above case, for example, while both the Fresnel lens and the parabolic lens 

provide similar performance at normal incidence, they do not at nonzero angles of 

incidence. For the cases we are interested in, however, we will assume that the dif-

fuser structure is composed of an aggregate of microlenses randomly arranged with 

a minimum of sag discontinuities, like those in a Fresnel or diffractive lens, in which 

case a representation valid at a certain incidence angle would also be valid at other 

angles of incidence, at least as long as angles of incidence are not so wide that a 

signi!cant fraction of rays undergo more than a single refraction with each surface.

Under these assumptions, then, the approach to the problem becomes that of cal-

culating the aspheric microlens element that reproduces the intensity distribution, the 

equivalent microlens pro!le (EMP), measured at normal incidence in the majority 

of cases. Fortunately, there are several known formalisms that provide solution to 

this otherwise dif!cult problem.9,34 Figure 9.19 shows a diagrammatic illustration of 

the method under consideration. A certain diffuser (Figure 9.19a) characterized by a 

feature size D1 produces an intensity pro!le of known functional form, either analyti-

cal, numerical, or measured, in the far !eld under normal incidence. Associated with 

the intensity pro!le and feature size D2, there is associated an aspheric lens element 

that under normal incidence produces the same intensity pro!le in the far !eld. In 

other words, the single element surface pro!le is described by the same histogram 

of slopes as the whole diffuser. The EMP lens can be then replicated in the optical 

design program to create an MLA, thus de!ning a surface with the same histogram as 

the original diffuser. Under the assumption of incoherent ray tracing, the equivalent 

array model reproduces the desired diffuser intensity pro!le as long as one is not too 

close to the diffuser surface. Feature size effects are accommodated by setting the 

size of the microlens elements to correspond to the typical feature size of the diffuser, 

D2 = D1. This can be important if the input beam presents nonuniformity signi!cant 
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enough to warrant the higher degree of detail, otherwise the exact feature size used in 

the model is not particularly critical. The calculated EMP is typically expressed as a 

numerical table of coordinate versus sag value or expressed as a set of aspheric coef-

!cients, whichever case is most convenient for the program being used. Most design 

programs have the means to de!ne optical surfaces using either method.

Engineered diffusers that produce rectangular, square, or linear patterns can gen-

erally be modeled directly with rectangular or linear arrays with 100% !ll factor. 

Modeling of engineered diffusers that produce a circular scatter pattern is of particular 

importance due to their ubiquity in many optical applications. However, since the dif-

fuser surface cannot be completely covered by circular apertures, one needs to consider 

other methods. One possible approach is to utilize a hexagonal MLA to approximate 

the circular scatter pattern. Another approach is to consider an array of circular lens 

elements either in a square or hexagonal array with the space between lens elements 

being de!ned by a material that completely absorbs incident rays, as illustrated in 

Figure 9.20. The hexagonal arrangement provides a better sampling of the input beam 

and the suitable approach to implement will depend on details of the application and 

the capability of the design software being used to implement the desired geometry. 

General geometries would need to rely on a unit cell comprised of a combination of 

more complex microlens boundary shapes and regions of absorbing material.

(a) Diffuser

(b) EMP

(c) EMP array

D1

D2

D2

FIGURE 9.19 Modeling of engineered diffusers. (a) The diffuser with feature size D1 gen-

erates a certain scatter pattern. (b) The EMP with feature size D2 has the same histogram of 

slopes as the diffuser. (c) Array of EMP lenses that produce the same scatter pattern as the 

diffuser in the far !eld. 
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As an example, of the above method, consider a one-dimensional engineered dif-

fuser that produces the intensity pro!le illustrated in Figure 9.21. The measured data 

(dotted line) were taken under laser illumination at 633 nm with the diffuser index of 

refraction 1.56 at this wavelength. Because the source is coherent, intensity $uctua-

tions due to speckle are observed. The incoherent intensity pro!le (solid line) is well 

described by a super-Gaussian function of the form:

 I
x

w

p

( ) exp log( )θ = −












2 2
 (9.7)

where the full width spread at half maximum w = 83° and p = 3.8.

Microlens element

Completely absorbing material

FIGURE 9.20 Alternative periodic geometries to model engineered diffusers that generate 

circular scatter patterns. 
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FIGURE 9.21 Measured intensity from a linear engineered diffuser (dotted line) and super-

Gaussian !t (solid line). 
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The aspheric lens pro!le that reproduces the incoherent envelope, EMP, can be 

calculated9,31 as shown in Figure 9.22 assuming a diameter of 100 μm. Total depth 

for the EMP element is just over 41 μm. The data, symmetric around the origin, are 

also presented in the sag table shown in Table 9.1.

Alternatively, the sag can be expressed in terms of an aspheric expansion, usable 

in most programs, in the following form:

 s r a rk k

k
( ) =∑  (9.8)

where the sag function s is written as a polynomial expansion with a !nite number 

of terms. The coef!cients associated with the sag pro!le assuming 20 terms in 

TABLE 9.1

Sag vs. Coordinate for Linear Diffuser EMP

Coordinate Sag

0 0

5 0.3286

10 1.3059

15 2.9455

20 5.2727

25 8.3296

30 12.1840

35 16.9472

40 22.8179

45 30.2223

50 41.2284

45
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25

20
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5

0

S
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 (
μ

m
)

504030200 10−30 −20 −10−40−50
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FIGURE 9.22 EMP that produces the diffuse pattern of Figure 9.21. 
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the expansion are shown in Table 9.2 (odd terms are zero since the sag pro!le is 

an even function).

The EMP shown in Figure 9.22 and expressed through the aspheric coef!cients of 

Table 9.2 can be used to trace rays and calculate the expected behavior under differ-

ent angles of incidence and compare the results to actual measurements. Figure 9.23 

shows the results of ray tracing through the EMP lens at normal incidence. The next 

plots show results of the ray tracing under different values of angles of incidence, 

showing good agreement between the ray-tracing results and the measured data, 

except of course for the $uctuations due to speckle.

TABLE 9.2

Aspheric Coef"cient Representation of the Linear Diffuser EMP

k ak

0 0

2 1.28E−02

4 3.27E−06

6 −1.78E−08

8 5.52E−11

10 −9.48E−14

12 9.76E−17

14 −6.15E−20

16 2.33E−23

18 −4.85E−27

20 4.28E−31
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FIGURE 9.23 Comparison of intensity pro!les from ray tracing (solid curve) and  measured 

intensity (dotted curve) at various angles of incidence through an engineered diffuser: 

(a)  normal incidence (for this plot only the dotted line is the target super-Gaussian), (b) 5°, (c) 

10°, and (d) 15°.
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FIGURE 9.23 (Continued)
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While additional work is required to more thoroughly understand the range of 

applicability of the present method, it can certainly provide a starting point in the 

modeling of engineered diffusers. In fact, it can be used with any single-surface 

diffuser, deterministic or random, by calculating the EMP sag function and imple-

menting it as an MLA in ray-tracing programs. It is interesting to note that the 

approach also allows one to incorporate in a ray-tracing setting other effects that 

cannot be captured in a purely geometrical-optics model such as the broadening 

of the scatter due to diffraction (or whatever artifacts the particular diffuser intro-

duces) that leads to a !nite falloff region in its scatter. Consider, for example, the 

case of a parabolic lens, conic constant κ = −1, with diameter 50 μm and radius 

of curvature 150 μm. The far-!eld intensity pro!le for this lens element is shown 

in Figure 9.24 (solid line). Ray tracing through this same element provides a com-

pletely different result (dotted line), particularly missing the energy falloff outside 

the center region of uniform intensity. Modeling of the parabolic element or array 

in a ray-tracing program yields the result given by the dotted line, signi!cantly 

misrepresenting the fraction of energy within the center region.

The incoherent envelop of the intensity pro!le can be !t with super-Lorentzian 

curves with full width at half maximum w in the following form:

 I
w

w

w

w

p

p

fit ( )

,

,
θ

θ
θ

θ
θ

=

+

≤

+

>
















1
1 2

1
1 2

1

2

 (9.9)

where:

p1 and p2 represent the power of the Lorentzian curves
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FIGURE 9.24 Intensity pro!le due to a parabolic lens with diameter D = 50 μm and radius 

of curvature R = 150 μm from diffraction theory (solid line) and ray tracing (dotted line). 
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For the curve in question the !t is shown in Figure 9.25. The dashed line provides 

the !t over the center portion with p1 = 30 and the solid line represents the !t over 

the falloff region where p2 = 7.

The calculated EMP associated with the !t function given by Equation 9.6 

and the above parameters is shown in Figure 9.26. The EMP is naturally a little 

deeper than the original parabolic element as it spreads light over wider angles. 

Aspheric coef!cients are also given for this particular pro!le in Table 9.3. The 

output of the ray tracing through the EMP (Figure 9.27) provides a much better 

model of the diffraction-induced broadening even in the context of a ray-tracing 

model.
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FIGURE 9.25 Fit of intensity pro!le (dotted line) with super-Lorentzian pro!les: outer por-

tion power 7 (solid line) and center portion power 30 (dashed line). 
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FIGURE 9.26 Calculated EMP of super-Lorentzian example and comparison with original 

parabolic pro!le.
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9.7 SUMMARY

Engineered microlens diffusers provide a degree of beam shaping capability that is 

beyond what can be achieved by common statistical diffusers and without the limi-

tations of diffractive elements or periodic MLAs. At the same time, the engineered 

diffusers share the robustness of random diffusers and the deterministic nature of 

diffractives. We described some essential concepts that de!ne engineered diffusers 

in terms of their basic microlens elements and their assembly to create a fully ran-

domized diffuser surface. The typical design unit is a conic microlens characterized 

by a number of design parameters that control intensity pro!les, energy distribution, 

uniformity, and ef!ciency. We have shown that engineered diffusers are well suited 

to produce band-limited illumination where essentially all of the transmitted energy 

1.4

1.0

1.2

0.8

0.4

0.6

0.2

0.0

N
o

rm
al

iz
e

d
 i

n
te

n
si

ty

120 4 8−8 −4−12

Angle (°)

FIGURE 9.27 Calculated intensity through EMP (solid line) for super-Lorentzian example.

TABLE 9.3

Aspheric Coef"cients of Super-Lorentzian EMP Example

k ak

2 4.02E−03

4 2.07E−07

6 −2.44E−08

8 3.83E−10

10 −2.90E−12

12 1.25E−14

14 −3.24E−17

16 4.96E−20

18 −4.15E−23

20 1.46E−26

22 4.02E−03
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is con!ned within a certain angular range. Common random diffusers spread light 

with a Gaussian intensity pro!le which, by de!nition, is not band limited. Engineered 

diffusers, however, are able to produce band-limited illumination with controlled 

intensity pro!le to !t different requirements. Interestingly, though, nearly ideal band-

limited performance is only part of the general capabilities of these diffusers and 

more general distributions are feasible, from the usual Gaussian through uniform and 

Lambertian scatter. The refractive nature of engineered microlens diffusers means 

achromatic behavior with either laser or light-emitting diode (LED) sources.

An approach to the modeling of engineered diffusers has been described that 

allows the implementation of general intensity pro!les into ray-tracing software by 

using the capability of most programs to trace rays through MLAs. The idea is based 

on the calculation of an aspheric lens with a histogram of slopes that matches that 

of the engineered diffuser, as re$ected on a model or measured intensity function 

versus angle. The aspheric element is thus called the EMP, which generates the same 

intensity distribution as the diffuser. Generally, the EMP sag function is given in 

numerical form or by means of a set of aspheric coef!cients that !t the numerical 

pro!le. Using this approach we can also, to some degree, incorporate into the model 

effects that are usually outside the scope of geometrical optics ray-tracing programs 

such as diffraction-induced broadening.
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10 Multi-Aperture Beam 

Integration Systems

Daniel M. Brown, Fred M. Dickey, 

and Louis S. Weichman

10.1 INTRODUCTION

Various high-power laser applications, such as laser heat processing, cutting, mark-

ing, photolithography, and !ber injection, require a laser irradiance that is substan-

tially uniform on a target over a speci!ed area at a !xed longitudinal distance from 

the source. The irradiance pattern may be circular, hexagonal, rectangular, ring 

shaped,  or practically any other shape that can be de!ned by the boundary of an 

aperture. If the laser beam mode is well de!ned and constant in time, then the beam 

shaping (!eld mapping) methods discussed in Chapter 2, Chapters 5 through 7, and the 
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406 Laser Beam Shaping

near-!eld beam shapers discussed brie$y in Chapter 8 can be used. The !eld map-

ping approach discussed in these chapters is also applicable if the output is required 

to be collimated. However, in cases where the laser modes are unknown or change 

with time, and collimation is not required, a multifaceted or multi-aperture beam 

 integrator may be more desirable. This approach to beam shaping is especially suit-

able to excimer lasers1,2 and other multimode laser beams, laser diode arrays,3,4 or 

other light sources with highly irregular irradiance distributions.5

A multi-aperture integrator system basically consists of two components: (1) a 

subaperture array component consisting of one or more lenslet arrays which seg-

ments the entrance pupil or cross section of the beam into an array of beamlets and 

applies a phase aberration to each beamlet and (2) a beam integrator or focusing 

component that overlaps the beamlets from each subaperture at the target plane. 

These elements can be refractive, re$ective, or diffractive. Generally, the subaper-

ture elements all have the same shape and phase function to simplify fabrication, 

but varying their phase and shape within the array can provide greater irradiance 

uniformity in the target plane as shown by Pepler et al.6 and others.7 The target 

is located at the focal point of the primary focusing element where the chief rays 

of each subaperture intersect. Thus, the amplitude of the irradiance distribution on 

the target is a Fourier transform of the incoming wavefront aberrated by the lenslet 

array.8 Although this chapter primarily addresses the multi-aperture beam integra-

tion problem from the standpoint of refractive optics, the concepts and analysis are 

directly applicable to re$ective optics. Dickey and O’Neil5 treat multifaceted re$ec-

tive systems in considerable detail.

All beam integrators can be loosely divided into two categories: diffracting and 

imaging. A simple diffracting beam integrator (also called a nonimaging  integrator9) 

is illustrated in Figure 10.1, consisting of a single lenslet array and a positive primary 

lens. The target irradiance is the sum of defocused diffraction spots [point spread 

functions (PSFs)] of an on-axis object point at in!nity (assuming a collimated input 

wavefront). If the source is spatially coherent over the lenslet aperture, or can be 

de!ned by a single !eld point from a ray optics point of view, the diffraction spot 

will closely replicate the shape of the subaperture with diffraction rings (determined 

D

d

S

f

F

FIGURE 10.1 Diffracting multi-aperture beam integrator concept.
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407Multi-Aperture Beam Integration Systems

by the degree of defocus and other aberrations) superimposed. The defocus is caused 

by the additional optical power of the subaperture.

The diffracting beam integrator is based on the assumption that the output is the 

superposition of the diffraction !elds of the beamlet apertures. The diffraction !eld 

is obtained using the Fresnel integral. If the beam is not spatially coherent over each 

beamlet aperture, a more complicated integral is required and, generally, one would 

not be able to obtain a reasonable replica of the lenslet aperture. For example, a spa-

tially incoherent !eld is approximated by a Lambertian source that radiates over a 

large angle and would not produce a localized irradiance distribution at the output 

plane.

Figure 10.2 illustrates an imaging multi-aperture beam integrator. This type 

of integrator is especially appropriate for spatially incoherent sources. From a ray 

optics perspective, these sources produce a wavefront incident over a range of !eld 

angles on the lenslet apertures. The !rst lenslet array segments the beam as before 

and focuses the beamlets onto a second lenslet array. That is, each lenslet in the !rst 

array is designed to con!ne the incident optical radiation within the corresponding 

aperture in the second array. A second lenslet array, separated from the !rst by a dis-

tance equal to the focal length of the secondary lenslets, together with the primary 

focusing lens forms a real image of the subapertures of the !rst lenslet array on the 

target plane. The primary lens overlaps these subaperture images at the target to 

form one integrated image of the subapertures of the !rst array element. Reimaging 

the lenslet apertures mitigates the diffraction effects of the integrator in Figure 10.1.

In this chapter, we discuss the theory and design of diffracting and imaging multi-

aperture beam integration systems. We show how the subaperture shape and phase 

function determines the irradiance pattern in the image plane. We discuss the dif-

fraction effects and the interference between the subapertures.

In Section 10.2, we outline the basic theory and design considerations for mul-

tifaceted beam integrators. A number of different optical con!gurations exist for 

multifaceted beam integrators. Minimizing the interference effects produced by 

the !nite number of subapertures and making the irradiance uniform in the target 

pattern is the design goal of these systems. We discuss these problems in this sec-

tion. Multi-aperture beam shaping design methods are discussed in Section 10.3. 

D

F

S

d1

f
1

f
2

d2

FIGURE 10.2 Imaging multi-aperture beam integrator concept.
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408 Laser Beam Shaping

In this section, we show how to use geometric ray-tracing codes, such as ZEMAX,* 

to design multifaceted beam integrators. The effects of geometric aberrations are 

discussed. Fabrication considerations are discussed in Section 10.4, and applications 

and experimental data are presented in Section 10.5.

Throughout this chapter, we use the following fundamental design parameters to 

describe multi-aperture beam integration systems:

D—diameter of input beam at multi-aperture integrator

d—diameter of subaperture or lenslet

F—focal length of primary lens

f—focal length of array lenslet

S—diameter of target spot

λ—wavelength

k—2π/λ

Rw—radius of curvature of wavefront

R0—radius of curvature of reference sphere centered on target

All other parameters will be de"ned as they are introduced.

10.2 THEORY

A major assumption in the multifaceted approach to beam integration is that the laser 

beam does not have a time-varying divergence that is signi"cant over the distance 

required to accomplish the integration, that is, only the irradiance #uctuates with 

time. This divergence requirement corresponds to a slowly varying, nearly uniform 

phase across each subaperture. This condition is required to guarantee a good over-

lap of the beamlets in the output plane. Further, it is required that the input beam has 

a high degree of spatial coherence over each facet. If this is not the case, the diffrac-

tion pattern of the beamlets will be dominated by the coherence function, not the 

aperture function de"ning the beamlets.

The analysis and design of laser beam integrators should include the effects of 

averaging, diffraction, interference, and imaging. With multifaceted integrators, it 

is primarily the averaging process that is used to produce the desired irradiance dis-

tribution. Diffraction and interference tend to produce undesired #uctuations in the 

irradiance distribution. Imaging can be used to control diffraction effects as well as 

the size (scale) of the irradiance distribution. Aberrations, which are inherent in the 

imaging process, tend to degrade integrator performance.

The beamlet geometry basic to multifaceted mirror integrators is illustrated sche-

matically in Figure 10.3. The "gure does not, of course, describe the various lens or 

mirror geometries required to accomplish the integration. In the "gure, the array at 

the left represents beamlets redirected from the laser beam to overlap at the square on 

the right. The x0- and y0-coordinate direction cosines for the beamlets are given by

 α = βm
m

m n
n

m n

x
x y z x y z

1

12 12 2 12 12 2+ +
=

+ +
, 1y n  (10.1)

* ZEMAX is a commercial lens design software sold by Focus Software, Inc., Tucson, AZ.
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409Multi-Aperture Beam Integration Systems

The integrated optical !eld is the sum of the diffracted !elds associated with the 

individual beamlets. The diffraction integral should be developed with respect to the 

limiting apertures that produce the beamlets. Also, imaging can be included as gen-

eralized diffraction. An assumption appropriate to multifaceted integrators is that the 

optical !eld amplitude (or equivalently, irradiance) is approximately uniform over 

each limiting aperture forming the beamlets. Also, the angle between beamlets should 

be kept small to reduce the size of the following optics and associated aberrations.

There are four major assumptions in the development of diffracting beam integra-

tors. We will list them here and discuss their impact:

 1. The input beam amplitude (or equivalently irradiance) is approximately 

uniform over each subaperture. This allows for the output to be the super-

position of the diffraction patterns of the beamlet de!ning apertures. It is 

expected that small deviations will average out in the output plane. That is, 

the errors associated with a particular aperture will not dominate.

 2. The phase across each subaperture is uniform. The discussion in assump-

tion 1 applies in this case also. In addition, a linear phase across a subaper-

ture results in a redirection of the beamlets, causing a misalignment in the 

output.

 3. The input beam divergence does not vary signi!cantly with time. Generally, 

an input beam divergence will result in a nonoverlapping of the beams in 

the target plane. This can be corrected in many cases with correction optics 

in the input beam. However, a time-varying divergence would negate the 

possibility of correction.

 4. The input beam !eld should be spatially coherent over each subaperture. 

This is inherent in assumption 1 since the diffraction patterns are assumed 

to be described by a Fresnel integral.

The imaging integrator does not require assumption 4 since it does not necessarily 

require that the output pattern be described by a diffraction integral.

y
1

y
0

x1

z

x0

(x
1m

, y
1n)

FIGURE 10.3 Beam integrator geometry.
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410 Laser Beam Shaping

10.2.1 DIFFRACTION CONSIDERATIONS

The basic problem of multi-aperture beam integration is to map the input !elds in the 

input apertures in Figure 10.3 (x1–y1 plane) into the desired irradiance in the output 

plane (x0–y0 plane). It is assumed that the irradiance in the input plane is relatively 

uniform (constant) over each aperture. This assumption leads to the requirement of 

small apertures; however, there is a limit to how small one would make the aper-

tures. This is the averaging problem discussed in Section 10.2.3. In addition, since 

the beamlets are superimposed in the output plane, small deviations from uniformity 

of the beam irradiance over the apertures should average out.

The theory of mapping a uniform input irradiance into a uniform output irra-

diance is developed in Appendix A of Chapter 5. The basic optical layout of a 

system for accomplishing this mapping, for each subaperture, using a diffract-

ing multi-aperture beam integrator is illustrated in Figure 10.1. The system con-

sists of a lenslet array and a primary lens. The target plane is located at the focal 

point of the primary lens. A collimated beam of diameter D is incident on an 

array of lenslets, each of diameter d and focal length f, which segments the beam 

into multiple beamlets. The primary lens of focal length F overlaps the beamlets, 

bringing the chief rays of each beamlet to a common focus at the back focal point 

of the primary objective where the integrated irradiance pattern is formed. The 

primary lens produces a !eld distribution at the focal plane that is proportional to 

the Fourier transform of the product of the functions representing the input beam 

and the lenslet array.8

It is shown in Appendix A of Chapter 5 using the method of stationary phase that 

the optical element that effects the mapping is a quadratic phase element, that is, a 

simple lens. The analysis is done in one dimension, but it can be extended to two 

dimensions. The phase of the optical element is given by

 Φ
x
d

x
d



















= β
2

 (10.2)

The stationary phase solution includes a parameter β that is a measure of the quality 

of the solution. This parameter, given by

 β =
π

λ

dS
F  (10.3)

has the same form as the Fresnel number, differing only by a constant factor. Note 

that β is a dimensionless constant. The signi!cance of β is discussed in consider-

able detail in Chapters 2 and 5. In Chapters 2 and 5, β is shown to be related to the 

mathematical uncertainty principle. Although the numerical coef!cient in front of 

the factor, dS/λF, may vary with the problem, the main result is that control of the 

shape of the beam cannot be maintained if β is too small. Further, it can be seen 

from the form of Equation 10.2 that if β is !xed, the solution for the phase of the 

lenslet is !xed.

It can be shown, using diffraction theory (see Section 5.2.5), that if the phase 

function representing each lenslet is an even function, the negative of the phase also 

gives the same output irradiance. If the lenslets in the array are positive, as shown in 
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411Multi-Aperture Beam Integration Systems

Figure 10.1, each beamlet will have a focus ahead of the focal point of the primary 

lens. If they are negative, the individual beamlets will have either a real focus after 

the focal point of the primary lens or a virtual focus ahead of the lenslets, depending 

on the relative optical powers of the lenslets and the primary lens. The numerical 

aperture (NA) of the beamlets and the distance between beamlet foci and target plane 

determine the spot size, S. It can be shown from paraxial geometrical optics that the 

spot size S on the target is equal to the focal length F of the primary lens divided by 

the f-number of the subaperture lenslets:

 S f d=
F  (10.4)

This result is also obtained using diffraction theory and Fourier optics. It is apparent 

from Equation 10.4 that the lenslet diameter can be varied over the array as long as 

its focal length is also varied proportionately such that the f-number ( f/d) remains 

constant. Also, one can change the focal length F of the primary lens to scale the 

diameter S of the target spot and not change β.

The diffraction pattern of a single subaperture determines the shape of the spot 

on the target. The Fresnel number is useful for estimating this irradiance distribution 

on the target. The Fresnel number equals the number of half-waves of optical path 

difference (OPD) and is approximately given by

 Fresnel OPD
w 0

= × =
λ

−2 12r
R R

1







  (10.5)

where:

Rw is the radius of curvature of the wavefront

R0 is the radius of curvature of a reference sphere centered on the observation 

point

r is the radial coordinate in the subaperture

For a uniformly illuminated aperture, the Fresnel number also equals the number of 

peaks in the aberrated PSF cross section. Even integer Fresnel numbers have an on-

axis minimum in the diffraction PSF. Odd integer Fresnel numbers have an on-axis 

peak intensity in the PSF. This is shown in Figure 10.4a and b. Generally, the Fresnel 

number is a measure of the complexity of the diffraction pattern; the number of 

maxima increases with increasing Fresnel number while the depth of the modulation 

decreases with increasing Fresnel number.

Assuming a collimated beam incident onto the lenslet array, the optical  powers 

of the lenslets and the primary lens combine to produce a spherical wavefront con-

verging with a radius of curvature of Rw. Substituting 1/Rw = 1/f + 1/F, 1/ R0 = 1/F, 

and d  =  2r into Equation 10.5 gives the Fresnel number in terms of lenslet 

parameters:

 Fresnel =
λ

d
f d4 ( )

 (10.6)
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412 Laser Beam Shaping

Alternatively, substituting Equation 10.4 into Equation 10.6, the Fresnel number can 

be written in terms of the target spot size and primary lens focal length:

 Fresnel =
λ

dS
F4  (10.7)

Since λF/d is proportional to the width of the PSF of a single subaperture, Equation 

10.7 shows that the Fresnel number is proportional to the number of PSFs across the 

target pattern. The lower the Fresnel number, the more rounded the target pattern 

becomes. Note that Equation 10.7 is directly proportional to Equation 10.3.

10.2.2 INTERFERENCE EFFECTS

The output irradiance in Figure 10.3 is the superposition of the diffraction patterns 

of the input aperture !elds. Depending on the degree of coherence of the source, the 
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FIGURE 10.4 (a) Diffraction patterns of on-axis subaperture pupil functions as a function 

of Fresnel number 2 waves defocus (Fresnel no. = 4); (b) 2.5 waves defocus (Fresnel no. = 5).
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413Multi-Aperture Beam Integration Systems

output irradiance will contain a component of an interference or speckle pattern. For 

these conditions, the integrated irradiance of the coherent component is adequately 

described by

 I x y A k x y F x ymn m n mn

M N

( , ) exp{ [ ( ) ]} ( , )
,

,
= α + β θi +∑

0 0

2
2
 (10.8)

where:

αm and βn are the direction cosines de!ned in Equation 10.1

θmn is the phase of the beamlet

Amn is the amplitude of the beamlet !eld

the function F(x,y) is the diffraction integral of the beamlet-limiting aperture and 

the Fourier transform of the aperture function for the optical con!guration 

in Figure 10.1

The !rst factor in Equation 10.8 describes the averaging and interference effects of 

the integrator. The interference effect is a result of the sum of linear (in x and y) phase 

terms, which can be viewed as a Fourier series. The spatial period of the resulting 

interference pattern is given by

 P =
λ

α
 (10.9)

where:

α is the angle between adjacent beamlets

For a spatially coherent source, the interference pattern will generally result in large 

$uctuations in the integrated irradiance. The only practical way to negate the effects 

of interference is to choose a suf!ciently large value for α so that the interference 

pattern is too !ne to be resolved in the application. If this is done, the effective inte-

grated irradiance will be the local average of the irradiance in Equation 10.8. It is 

easy to show that the averaged irradiance is

 I x y A F xmn

M N

( , ) ( , )
,

,
=

2

0 0
y

2
∑  (10.10)

This result represents the ideal performance of a multifaceted beam integrator. 

Note that this result does not depend on θmn, the relative phase of the beamlets. The 

effects of the diffraction term are discussed with respect to speci!c con!gurations 

in Section 10.5.

The above results can be obtained for the system in Figure 10.1 using Fourier 

transform theory. Since the target is located at the focus of the primary lens, the irra-

diance pattern on the target is simply the magnitude squared of the Fourier transform 

of the pupil function modi!ed by the lenslet array (assuming a spatially coherent 

source). If all the lenslets are identical, the aberrated pupil function is approximately 

the convolution of a two-dimensional (2D) delta function array (array of lenslet 
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centers) and the lenslet pupil function, all multiplied by the laser beam amplitude 

pro!le. The Fourier transform is then the product of the Fourier transform of the 

delta function array (properly scaled) and the aberrated PSF of the subaperture, con-

volved with the PSF of the laser beam focused by the primary lens. Mathematically, 

the !eld just past the lenslet array is given by

 E E x y x y A x y= Ψ δδb( , )[ ( , ) ( , )]∗  (10.11)

where:

Eb(x,y) is the !eld of the laser beam

Ψ(x,y) is the lenslet pupil function

Aδδ(x,y) is the delta function array

* denotes the convolution

The irradiance at the target plane is proportional to the magnitude squared of the 

Fourier transform of E:

 I E E x y A x y∝ | = Ψℑ ∗[ ] | [ ( , ) ( , )]2 2
b δδ  (10.12)

where:

the small tilde (˜) denotes the Fourier transform operation

Since the Fourier transform of a periodic 2D delta function array is a 2D delta 

function array, the function, Ãδδ(x,y), is the source of the interference effects.10 

The subaperture PSF, ( , )x y , represents the diffraction effects. These diffrac-

tion and interference effects produce undesirable $uctuations in the irradiance 

distribution.

For a rectangular aperture array, the spatial period of the interference pattern is given 

by the ratio of the wavelength to the sine of the angle between the adjacent beamlets:

 Period =
λ

θsin  (10.13)

Since sin θ approximately equals the lenslet spacing divided by the focal length of 

the primary lens, the interference periodicity is also given by

 Period =
λF
d  (10.14)

Equations 10.13 and 10.14 are obtainable from Ãδδ(x,y) scaled to the focal plane of 

the primary lens.

10.2.3 AVERAGING

The averaging aspect of multi-aperture beam integrating systems consists of making 

trade-offs between lenslet aperture size and β or, equivalently, the Fresnel number. 

Increasing the lenslet aperture size, d, increases β which reduces diffraction effects. 
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However, averaging is reduced. What is desired is to have d as small as possible 

while maintaining adequate β.

Assuming the intensity distribution within each subaperture is relatively uniform; 

the superposition of all the subapertures on the target plane will give a relatively 

uniform irradiance distribution (except for diffraction and interference effects). The 

assumption of uniform intensity within a subaperture is of course more valid the 

smaller the diameter of the subaperture. However, holding the f/d constant in order 

to maintain a spot size in accordance with Equation 10.4, Equation 10.6 shows the 

Fresnel number decreases linearly with subaperture diameter, which results in fewer 

peaks in the diffraction pattern with a correspondingly greater depth of modulation 

and a more gradual rolloff on the edges of the pattern at the target. This may require 

expanding the input beam in order to make the subaperture diameters larger or 

reducing the focal length of the primary lens. Varying the lenslet diameter according 

to Equation 10.6 across the lenslet array can also be used to superimpose different 

diffraction patterns such that the peaks of one pattern fall into the valleys of another. 

Varying the subaperture diameters by integer multiples allows 100% !ll factor to be 

maintained. This is the approach taken by Pepler et al.6

10.2.4 COHERENCE EFFECTS

As discussed in Section 10.2.2, multi-aperture beam integration systems will gener-

ally exhibit a degree of interference or speckle. The amount of speckle is determined 

by the spatial coherence of the source. A spatially incoherent source will not pro-

duce an interference/speckle pattern, and a spatially coherent source will produce 

the maximum interference/speckle. The results for intermediate cases will depend 

on the spatial coherence function representing the source. A general formulation of 

the problem in terms of coherence theory is quite involved and beyond the scope of 

this chapter. However, we will give a simpli!ed formulation that will illustrate the 

major aspects of the problem.

The multi-aperture beam integrator can be viewed as a multibeam interferometer 

since all of the beamlets are superimposed at the target plane. The superposition 

of any two of the beamlets mimics Young’s experiment. The visibility of fringes in 

Young’s experiment is the de!nition of spatial coherence. In the following text, we 

will give only the rudiments of coherence theory needed to develop the simpli!ed 

model of beam integration systems. For the basics of coherence theory, the authors 

recommend the book Statistical Optics by J. W. Goodman.11

Assuming a quasimonochromatic source, a generally good assumption for lasers, 

the spatial coherence of a laser is adequately described by the mutual intensity

 J u P t u P t12 1 2= ( , ) ( , )∗  (10.15)

where:

u(P1, t) is the analytic signal describing the optical !eld

P1 and P2 are points in the plane in which the coherence of the beam is being 

represented

 denotes a time average
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The mutual intensity is a correlation function when the functional dependence is an 

explicit function of the difference in coordinates, that is, J12(P1,P2) = J12(P2 − P1). 

Note that by de!nition the irradiance (frequently called intensity) of the optical !eld 

is obtained for P1 = P2 as

 I P J P P( ) ( )1 12 11= −  (10.16)

The complex coherence factor is de!ned as the normalized mutual intensity

 
µ12 1 2 12 1 2

1 2 1 2( , ) ( , )
[ ( ) ( )] /P P
J P P

I P I P
=

 

(10.17)

When one produces an interference pattern by combining radiation from points P1 

and P2 in a Young’s interferometer con!guration, J12 may be regarded as the phasor 

amplitude of the spatial sinusoidal fringe pattern (on axis), whereas μ12 is the normal-

ized fringe pattern. The complex coherence factor has the property:

 0 12≤ µ ≤ 1  (10.18)

When μ12 = 0, there are no interference fringes, and the two optical !elds are mutu-

ally incoherent. When μ12 = 1, the two optical !elds are perfectly correlated and are 

mutually coherent. For intermediate values of μ12, the !elds are partially coherent.

The mutual intensity J12 can be computed at an output plane given J12 in the input 

plane using a generalized Van Cittert–Zernike theorem12 and the relation

 J P P t P t P J P Pt i( , ) ( ) ( ) ( , )1 2 1 2 1 2=
∗  (10.19)

Equation 10.19 relates the mutual intensity transmitted by the object with transmis-

sion t to incident mutual intensity. In Equation 10.19, the numerical subscripts have 

been dropped and replaced by i and t, which represent the incident and transmit-

ted mutual intensity, respectively. The generalized Van Cittert–Zernike theorem is a 

fourth-order integral over four variables. To develop such an integral for the system 

shown in Figure 10.1 would be very dif!cult and may not be very enlightening. For 

this reason, we will make a simplifying assumption that will illustrate the basic con-

cepts. The basic assumption that we will use is that the !eld is mutually coherent over 

each subaperture in Figure 10.1, and will generally be partially coherent over greater 

distances. The assumption that the !eld is mutually coherent over each subaperture is 

fundamental to the performance of diffracting multi-aperture beam integration sys-

tems (Section 10.2). This assumption can be reduced for the case of imaging integra-

tors. The following analysis will apply speci!cally to diffracting beam integrators.

With this assumption, we can approximate the !eld at the output plane as the sum 

of the coherent diffraction from each aperture:

 E x y A k x y F x ymn m n mn
M N

( , ) ( exp{ [ ( ) ]}) ( , )
,

,
= +∑ i α β + θ

0 0
 (10.20)

The functions and variables in Equation 10.20 are de!ned following Equation 10.8. 

Assuming a degree of partial coherence between the beamlets, the coherence aspects 
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of the problem are contained in the correlation between the amplitudes, Amn. Given 

this, we can write the intensity at the target plane as

 

I x y A k x y F x y

A

mn m n mn

M N

pq

( , ) ( exp{ [ ( ) ]}) ( , )

( exp{

,

,
= + +

× −

∑

∗

i α β θ

0 0

ii[ ( ) ]}) ( , )
,

,
k x y F x yp q pq

M N

α β θ+ ∗∑ +

0 0

 (10.21)

Noting that the time average only involves the amplitudes, the time average can be 

written as
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Noting the time average bracket can be interpreted as a mutual intensity, we can 

write the last equation as
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Using Equation 10.17, the last equation can be written in terms of the complex coher-

ence factor as
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The reader should note that the subscripts refer to aperture elements in the lenslet 

array and the intensities, Imn, are assumed constant over each aperture. With this in 

mind, the reader can see that the second term in Equation 10.24 is responsible for 

the interference (speckle) effects, and the !rst term is the sum of the irradiances at 

the output associated with each aperture. Clearly, if the !elds in each aperture are 

mutually incoherent, μmn,pq = 0, we have
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which is just Equation 10.10. When all of the aperture !elds are mutually coherent, 

μmn,pq = 1, we have maximum interference, and the exact form is dominated by the 

Imn and θmn. In all other cases, the interference pattern will be in$uenced by the cor-

relation between the various aperture !elds, μmn,pq, as well as Imn and θmn. In all cases, 

the envelope of the irradiance pattern is given by the function, |F(x,y)|2.

To estimate the effect of the coherence of the input laser beam on the interference 

pattern in the output using Equation 10.24, one needs to estimate the complex coher-

ence factor. The complex coherence factor can be measured by repeating Young’s 

experiment for pinhole pairs with different spacings between the holes. This is gen-

erally a tedious process. It is not uncommon, in practice, to design a prototype beam 

integration system for a given laser and experimentally measure its performance as 

part of the engineering design process. Experimental evaluation of the effects of 

spatial coherence is presented in Section 10.5. This section presents experimental 

data for spatially coherent (between subapertures) beams, partially coherent beams, 

and spatially incoherent beams.

10.2.5 IMAGING INTEGRATORS

Diffracting integrators (Figure 10.1) are restricted to sources with a relatively high 

degree of spatial coherence over each subaperture. In addition, a change in the angle 

of incidence of the incoming light on the array causes a lateral shift in the irradiance 

spot on the target. As spatial coherence decreases or the angular spread or !eld angle 

of the incident light increases, the irradiance blurs to a spot larger than that given by 

Equation 10.4. This problem is eliminated with an imaging integrator, illustrated in 

Figure 10.2. The angular spread or !eld angle of the incident light can be quite large 

and still maintain overlap of the beamlets on the target plane. The imaging integrator 

can also offer improved integrator performance when the beam is collimated with 

a high degree of spatial coherence by reducing the diffraction effects. This effect is 

discussed in detail for re$ective systems in Section 10.5.

An imaging integrator requires two lenslet arrays. The !rst lenslet array segments 

the input beam into multiple beamlets and directs these onto the second lenslet array. 

The !rst lenslet array serves to produce an intermediate image plane on or near the 

second lenslet array so that the second lenslet array can reimage the subapertures of 

the !rst array onto the target plane. The magni!cation of the subaperture images is 

given by the ratio of the focal lengths of the primary integrator lens and the second 

lenslet array. Thus, the spot size is again given by Equation 10.4 with slight modi!ca-

tion that the second array lenslet focal length and !rst array lenslet diameter are used:

 S F
f d=

2 1
 (10.26)

The second lenslet array serves as a !eld lens to redirect the off-axis chief rays 

back toward the optical axis. If the distance between the two lenslet arrays equals 

the focal length of the !rst array, the integrator can receive incident light over a 
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maximum !eld angle equal to the second array subaperture semidiameter divided by 

the focal length of the !rst array:

 θ =
d
f
2
12  (10.27)

The simplest form of the second lenslet array element incorporates identical lenslets 

with mutually parallel optical axes. This is not a necessary requirement, for example, 

if a continuously variable tilt or decenter is applied to each of the lenslets as a func-

tion of position in the array, the system can be made into a zoom integrator with a 

continuously adjustable spot size. Zoom integrators are discussed further in Section 

10.3.2 and several con!gurations are reported in the work of Dickey and O’Neil.5

10.2.6 CHANNEL INTEGRATORS

Another approach to beam integration is the channel integrator. This section is taken 

verbatim from Laser Beam Shaping Applications.12 As !rst proposed, a channel 

integrator is a re$ective cylinder with a rectangular cross section.13 Other cross sec-

tions are possible. The channel integrator concept can be easily explained in one 

dimension. These ideas can then be extended to two dimensions.

A one-dimensional (1D) schematic of the channel integrator is shown in 

Figure 10.5. In the !gure, the two solid lines labeled 1 and 2 represent the channel 

integrator. The input beam is focused, with focal length F, on the center of the front 

face of the integrator. The integrator aperture size is S. To understand the integrator, 

consider the input rays centered on the optical axis that are bounded by an aperture 

of width d. This bundle of rays just !lls the output aperture of the integrator. The ray 

bundle just above this one with the same aperture width d will also !ll the output 

aperture after a re$ection. This can be readily visualized by repeating virtual integra-

tor walls, shown by the dashed lines. These virtual walls de!ne the re$ections and 

the input ray bundles that !ll the output aperture. It can be seen that successive aper-

tures with size d in the input are geometrically projected with inversion on the output 

aperture. Thus, this con!guration is equivalent to the multi-aperture arrays discussed 

above. Although they are not addressing “laser” beam shaping, Chen et al.14 provide 

interesting analysis that is applicable to channel integrators.

d

f L

2

1

2

1

s

FIGURE 10.5 Schematic of the channel integrator.
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The above argument can readily be extended to channel integrators with square or 

rectangular cross sections. It appears that channel integrators can be made with cross 

sections that can both tile a plane and meet the condition that each edge is a line of 

re$ection. This clearly eliminates circular (or elliptical) cross sections. Using a dif-

ferent argument, channel integrators with circular cross sections can also be elimi-

nated by considering the diagram that results from rotating Figure 10.5 about the 

optical axis. In this case, one can show that there are concentric rings that are mapped 

onto the ring de!ning the outer aperture of the integrator. One can also show that 

there are interspersed rings that map to a point at the center of the output aperture. 

The result is that the input irradiance mapping is not uniform over the output aper-

ture. A complete analysis of the channel integrator with respect to possible aperture 

shapes would involve tiling and group theory and is beyond the scope of this chapter.

For the channel integrator, Equation 10.4 relating the integrator (input) aperture 

size to the output spot size is given by

 d FS
L=  (10.28)

Equation 10.14 for the interference pattern period is also valid in this case since 

it depends on the angle between adjacent beamlets. The parameter β (derived in 

Appendix A of Chapter 5) is not directly applicable for the channel integrator. It is 

suggested that the related Fresnel number15 be used for β in this case. The Fresnel 

number for the channel integrator is

 N d L
F L FF =
λ +

2

( )
 (10.29)

This equation for the Fresnel number is obtained by including the phase function 

representing the lens in the Fresnel integral de!ning the propagation of the beam. 

Requiring a large Fresnel number implies that L should be large or F should be small.

As discussed above, the channel integrator is equivalent to the multi-aperture 

beam integrator that comprises refractive lenslet arrays or multi-aperture re$ective 

systems. There are a couple of disadvantages associated with channel integrators. 

One major disadvantage is that they tend to be lossy due to the multiple re$ections 

involved. Another disadvantage is the complexity of needing, in most cases, to add 

a second lens to relay (image) the output pattern onto the working surface. There is 

the possibility of eliminating the !rst lens by tapering the channel integrator. One 

advantage of the channel integrator is the high-power handling capability. This is a 

result of the fact that the channel can be made of metal structures suitable for cooling.

10.3 DESIGN CONSIDERATIONS

The !rst step in the design process is to decide between building a diffracting or 

imaging beam integrator, and whether to use refractive, re$ective, or diffractive 

components. Generally, an imaging beam integrator will produce lower diffraction 

effects and better homogenization, particularly for sources with low spatial coher-

ence. A diffracting integrator allows greater $exibility in shaping the irradiance spot 

through aberrations and aperture $ipping (Section 10.3.3). Imaging integrators gener-

ally introduce more complexity since there are more optical elements and associated 
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alignment issues. Equation 10.4 is used to determine the !rst-order parameters of 

the lens elements of a diffracting integrator. The !rst-order parameters for imaging 

integrators are obtained using Equations 10.26 and 10.27.

Equation 10.3 or 10.7 is used to ensure that the parameters in a !rst-order design 

result in β or Fresnel number values required for a good beam shaping result. 

Depending on requirements, the Fresnel number should be at least 3.0 and the β 
parameter should be at least 40. The period of the interference pattern is obtained 

using Equation 10.14. Generally, it is desirable for the period of the interference to be 

small to reduce the interference effects. Source spatial incoherence also reduces the 

contrast of the interference pattern. Various software programs, either geometrical 

ray tracing or wave propagation, can be used to evaluate and optimize the lens aber-

rations to achieve the desired integration and smoothing.

10.3.1 DIFFRACTING INTEGRATOR LAYOUT

The optical layout of a basic multi-aperture beam integrator is shown in Figure 10.6. 

For clarity, only the rays for two outer lenslets are drawn. A collimated beam from 

a laser source is incident from the left. A lenslet array breaks up the incoming beam 

into an array of beamlets which are then overlapped at the target by a primary inte-

grator lens. Either positive or negative lenslets (or a combination of the two) may be 

used in the array. Positive lenslets will produce a real beamlet focus ahead of the 

target plane (as shown in the !gure). Negative lenslets will have a virtual beamlet 

focus either ahead of the lenslet array or behind the target plane, depending on the 

relative optical powers of the lenslets and primary lens. In the simplest con!guration, 

all the lenslets are identical. Note that the spacing between the lenslet array and the 

primary integrator lens is not critical to !rst order.

The target plane is located at the focal point of the primary lens. The positive 

primary lens focuses the chief rays of each beamlet to a common point on the target, 

thus overlapping the defocused beamlets at the target. If the lenses are suf!ciently 

free of aberrations, the spot formed at the focal point of the primary will replicate 

the lenslet aperture. Square lenslet apertures will form a square irradiance pattern, 

and circular lenslet apertures will form a circular irradiance pattern. If the lenslet 

has positive optical power, the spot will be an inverted replica of the aperture. If it 

has negative optical power, the spot will be an upright replica of the aperture. This 

is the basis for the aperture $ipping technique discussed in Section 10.3.3. As shown 

in Section 10.3.4, aberrations can be added to the lenslets to signi!cantly distort the 

irradiance pattern into almost any arbitrary shape.

FIGURE 10.6 Optical layout of a refractive diffracting beam integrator.
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10.3.2 IMAGING INTEGRATOR LAYOUT

Imaging integrators are well suited to sources with a low degree of spatial  coherence.16 

Their drawback is the loss of $exibility in irradiance pattern shaping through lenslet 

aberrations. Figure 10.7 shows an optical layout for a simple imaging integrator with 

an extended source. For clarity, only the rays for two outer lenslets are drawn. The 

!rst lenslet array segments the input into multiple beamlets and focuses the beam-

lets onto the corresponding lenslets of the second array. To minimize stray light 

outside the target area, the beamlet diameters must not be greater than the lenslet 

clear apertures at the second array. Minimum spot size on the second array elements 

occurs when the array separation distance equals the !rst array lenslet focal length, 

in which case Equation 10.27 applies. Each element of the second lenslet array com-

bined with the primary lens forms a relay lens that produces a real image of the 

pupils (of the !rst array lenslets) at the target plane. The geometry of each relay lens 

is such that the pupil images are superimposed at the output plane.

To make a zoom imaging integrator that allows continuous adjustment of the 

target spot diameter, one simply needs to replace the single primary integrator lens 

with a multielement variable focal length camera lens.

Alternatively, one can add to each lenslet in the second array a tilt that is propor-

tional to the lenslet’s radial distance from the system optical axis. This is equivalent 

to superimposing the primary integrator lens onto the lenslet array and thus elimi-

nating one element. Figure 10.8 shows such a zoom imaging integrator.

FIGURE 10.8 Zoom imaging integrator for variable spot size.

FIGURE 10.7 Optical layout of a refractive imaging integrator.
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10.3.3 SUBAPERTURE SHAPE

The fact that the spot has the same shape as the subaperture allows almost any spot 

shape to be produced. Usually, the designer wishes to stack the lenslets with 100% 

!ll factor in order to maximize the energy on the image plane. Lenslet aperture 

shapes that are easily stacked with 100% !ll factor include square, rectangular, and 

hexagonal. If a diffracting integrator is used, one can form a triangular irradiance 

pattern with 100% !ll factor at the lenslet array. If a triangular subdivision of a 

square, rectangle, or hexagon results in only two different triangles that are inverted 

images of each other, then the sign of the phase function can be $ipped for inverted 

apertures resulting in a single integrated image of one of the triangles.

An optical layout of an aperture-$ipped diffracting integrator is illustrated in 

Figure 10.9. As shown in Figure 10.10, the lenslet apertures are equilateral triangles 

FIGURE 10.9 Diffracting integrator incorporating aperture $ipping.

FIGURE 10.10 Triangular apertures in a hexagonal packing with sign-$ipped optical powers.
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in a hexagonal packing. Triangles oriented with apex up have positive optical powers. 

Triangles with apex down have negative optical powers but of the same magnitude. The 

positive apex-up apertures become inverted at the target but the negative apex-down 

apertures are not. Their superposition results in a single apex-down triangular irradi-

ance pattern. Figure 10.11 illustrates triangular apertures in a rectangular packing.

Aperture $ipping is practical only with diffracting integrators. To use aperture $ip-

ping with imaging integrators would require at least a third lenslet array, adding greatly 

to system complexity. In order to incorporate aperture $ipping and maintain 100% !ll 

factor at the lenslet array, the subdivision of the basic square, rectangle, or hexagon 

shape must result in two subapertures which are inverted images of each other. The 

phase functions in these two apertures have the same magnitudes but opposite signs.

10.3.4 LENS PHASE FUNCTIONS AND ABERRATIONS

Once the !rst-order layout and aperture shape are determined, aberrations in the 

lens elements can be adjusted to !ne-tune the irradiance distribution on the target. 

Aberrations in both the lenslet array and the primary integrator lens affect the irradi-

ance uniformity on the target. Aberrations in the primary lens (e.g., spherical aberra-

tion) will result in a lateral displacement between the overlapped beamlet diffraction 

patterns at the target which will tend to compensate for the diffraction-induced irra-

diance modulation. Equivalently, a slight defocus of the target from the ideal focal 

point produces a similar effect, as shown by Deng et al.17

The phase function of the lenslet array elements affects the diffraction pattern 

or image of the lenslet apertures. For diffracting integrators, nonquadratic lenslet 

phase functions can be used to signi!cantly modify the shape of the irradiance pat-

tern. This is particularly useful in laser machining where one desires to shape the 

laser irradiance to the clear aperture of a fabrication mask in order to increase the 

laser power through the mask.18 For example, a phase function that is a linear func-

tion of radius, ϕ  =  αr, where r is the radial coordinate in each subaperture, will 

produce a ring pattern. This is illustrated in Figure 10.12. Horizontal and vertical 

rectangular subapertures with decentered lens functions can be used to form hollow 

FIGURE 10.11 Triangular apertures in a rectangular packing with sign-$ipped optical 

powers.
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square patterns. Rooftop prisms can be superimposed onto the lenslets, giving a 

linear phase tilt in one axis, to produce two parallel bars in the irradiance pattern.19 

Alternatively, lenslets can be decentered to produce multiple spots on the target.20

Figure 10.13 illustrates three different lenslet surface pro!les and their corre-

sponding irradiance patterns on the target (determined by ray tracing). The surface 

FIGURE 10.12 Diffracting integrator forming a ring pattern on target.

FIGURE 10.13 Lenslet surface pro!les (represented as grayscale levels) and resulting irradiance 

patterns: hollow square, thick hollow square, and hollow trapezoid represent irradiance patterns.
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pro!les, represented as grayscale patterns, are similar to the !rst order but differ 

in the higher order (aberration) terms. Variation of the aberrations within the same 

basic lenslet pro!le allows producing a thin hollow square, a thick hollow square, 

or hollow trapezoid irradiance patterns. The square aperture of each lenslet has 

been subdivided into four square subapertures to form the four sides of the patterns. 

A lenslet with only tilt but no optical power will produce a decentered point on the 

target. Optical power in one direction in the lenslet aperture will spread the point 

in the same direction on the target. The hollow patterns are easily made with cylin-

drical lenslets with a tilt or decenter term superimposed. Thick hollow patterns are 

made with a small anamorphic term or optical power in the orthogonal direction.

10.4 FABRICATION CONSIDERATIONS

The key element in multi-aperture beam integrators and most dif!cult element 

to fabricate is the lenslet array. This element can be refractive, re$ective, diffrac-

tive–transmissive, or diffractive–re$ective. Metallic re$ective anamorphic or non-

rotationally symmetric elements can be diamond turned.21 Various methods of 

fabricating microlenses are discussed in detail in the literature;22,23 so we will only 

brie$y outline two of the more common technologies for fabricating these elements. 

Photolithographic technology can be used to fabricate any of the above types of 

lenslet arrays. Photoresist of appropriate thickness is spun on the glass wafer and 

hardened by baking. The lens surface pro!le is formed in the photoresist by expo-

sure to UV light through chrome or grayscale masks and then development of the 

photoresist. The lens surface pro!le is then transferred into the glass by reactive ion 

milling or plasma etching using primarily $uorine or chlorine gas.

Inherent limitations of this fabrication technology vary from vendor to vendor, 

but generally include wafer size limitations, wafer material limitations, maximum 

etch depth limitations, minimum feature size limitations, etch uniformity across the 

wafer, and lens surface pro!le accuracy. Acceptable wafer thickness typically ranges 

from about 300 μm to several millimeters. The maximum wafer diameter that can 

be easily processed is about 150 mm. Almost any material can be ion milled but 

only a few materials can be reactively ion etched. The common material choices for 

reactive ion etching include fused silica, silicon, germanium, and ZnSe. Jenoptik 

Optical Systems (formerly MEMS Optical) in Huntsville, Alabama, has developed 

etch chemistries for many other materials, including gallium phosphide, zinc sul!de, 

chalcogenide glasses, and other common glasses.

Etch selectivity (ratio of wafer etch rate to photoresist etch rate) can be varied 

over a limited range with reactive ion etching by changing the etchant gas mixture. 

Selectivity for the ion milling process is usually limited to a ratio of about one. 

Limits on selectivity and maximum workable photoresist thickness place a limit on 

the maximum etch depth or lens surface sag. The increase in surface roughness with 

increasing etch depth also limits maximum etch depth. The maximum etch depth 

for fused silica is about 20 μm. Silicon, due to its higher etch rate, can be etched 

much deeper to 60 μm or more. The above numbers are loose approximations and 

vary from vendor to vendor, but they provide the reader a general idea of the types of 

fabrication limitations involved.
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Photoresist heating and re$ow is a common inexpensive method of fabricating 

microlenses. A single binary chrome mask is used to produce pillars of photoresist 

that are subsequently re$owed into a lenslet surface by heating. The pro!le is then 

etched into the glass wafer by reactive ion etching or ion milling. A few drawbacks 

of this method are noted here. First, it is dif!cult to get 100% !ll factor (ratio 

of lens surface area to wafer surface area) with this method. A suf!ciently large 

gap must exist between adjacent lenses to prevent the merging of photoresist from 

separate lenses. Second, the re$ow method cannot produce negative lens  elements. 

Third, the lens elements tend to have focal lengths that are too short for beam 

integrators.

The alternative grayscale mask fabrication method solves the above problems as 

can be seen in Figure 10.14. The drawback of grayscale mask technology is greater 

process development and cost. The inherent nonlinearities of this process often 

require iterative corrections to the grayscale mask to accurately produce the desired 

lenslet surface pro!le.

Reliable surface pro!lometry equipment, whether contact or optical, is essential 

for fabricating microlenses. Contact surface pro!lometers that do not raster scan 

the lenslet pro!le, but rather make only a single scan (cross section) of the lens, can 

be dif!cult to use as the stylus must scan through the vertex of the lens in order to 

obtain an accurate measurement of the surface pro!le. Optical pro!lometers, such as 

interferometric microscopes, can capture the entire three-dimensional (3D) surface 

pro!le of the lens. However, optical pro!lometers designed to measure $at surfaces 

can introduce erroneous spherical aberration into the measurements when measur-

ing the steep surface curvatures of microlenses. A Fizeau interferometer can give 

FIGURE 10.14 Array of positive and negative elements fabricated by grayscale mask 

technology.
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better results for surface pro!les that are close to spherical. A ball lens or metal 

microsphere can be used to check a particular instrument to determine if it introduces 

erroneous aberrations into the measurements.

10.5 APPLICATIONS AND EXPERIMENTAL EVALUATION

Numerous applications exist for multi-aperture beam integrators. A few of these 

applications include laser heat processing (including medical and dental applications), 

laser machining, product marking, laser diode array integration for laser pumping 

and !ber injection, photolithographic mask aligners and steppers, and !ber injection 

systems. We show experimental results of a !ber injection application below.

The light sources of photolithographic steppers and contact mask aligners are typi-

cally high-pressure mercury or xenon arc lamps that supply the required high-intensity 

UV irradiance. The energy produced by these highly compact and relatively noisy arc 

sources must be uniformly distributed over the area of the photolithographic mask. A 

highly uniform irradiance at the mask plane is particularly critical for grayscale mask 

processes. Multi-aperture beam integrators have been successfully used on photolitho-

graphic equipment to homogenize arc sources for many years. Examples of such beam 

integrators are described in patents by Mori and Komatsuda24 and Komatsuda et al.25

Arc sources can be modeled as a series of small concentric ellipsoids, located near 

the cathode tip, whose radiance decreases with increasing size of the ellipsoids. Most 

of the radiant power originates from an ellipsoidal region less than 1 mm in diameter 

near the cathode tip. Although these sources are often referred to as “point sources,” 

their !nite size still results in a !nite angular distribution of intensity in the colli-

mated beam. Thus, arc sources are only partially spatially coherent. Nonsequential 

ray tracing can be used to determine the intensity distribution of collimated arc 

sources for a given collimator system. Due to the limited spatial coherence of arc 

sources, imaging beam integrators are ideally suited for forming uniform irradiance 

patterns with these sources. The Van Cittert–Zernike theorem can be used to model 

the spatial coherence of collimated arc sources.

A related but slightly different application of beam integrators is the combining 

of the multiple emitters of laser diode arrays to form a single irradiance pattern. For 

example, a laser printer application might require the magni!ed line images of each 

emitter to be superimposed on the target. Instead of segmenting a collimated source 

input, the lenslet array reimages multiple sources at !nite conjugates. An integrator 

lens overlaps the images at the target.

10.5.1 EXPERIMENTAL EVALUATION OF DIFFRACTING BEAM INTEGRATOR

The theory and effectiveness of the design approach discussed in this chapter for 

the diffracting or nonimaging beam integrator can be illustrated using experi-

mental data collected on a compact !ber injection system.26 For this applica-

tion, a single lenslet array and a plano–convex lens were employed as the !ber 

injection elements to couple a multimode, Q-switched, laser to the !ber optic 

transmission system. Characterization of the intensity pro!les produced by the 

diffracting beam integrator using various laser sources and primary lens focal 
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lengths illustrate the diffraction, interference, and averaging effects discussed in 

Section 10.2.

The optical components and their speci!cations that form the basis of the !ber 

injection system are shown in Figure 10.15. This system comprises a multi-aperture, 

refractive, lenslet element fabricated by Jenoptik Optical Systems and a primary 

injection lens that overlaps or integrates the beamlets from each subaperture at the 

lens focal plane. Given the set of speci!cations shown in Figure 10.15 and the design 

equations presented earlier in this chapter, the functional injection parameters are 

calculated and summarized for the reader in Table 10.1.

Input Source Primary Injection Lens

Wavelength: 1061 nm Type: Plano/convex

Diameter (D): 5.0 mm Material: Fused silica

Divergence: 2 mR (full angle) Focal length (F): 17.1 mm

Lenslet Array Integrator Output

Fill factor: >98% (hexagonal) Spot size (S): 0.31 mm

Subaperture (d): 1.25 mm Fiber size (core): 0.365 mm

Focal length (f): 68.95 mm Fiber NA: 0.22

d

D

S

FIGURE 10.15 Optical architecture and design speci!cations for the diffracting beam inte-

grator and !ber injection system.

TABLE 10.1

Calculated Injection Parameters for the Diffracting Beam Integrator

Equation Calculated Value Measured Value

β
π

λ
=

dS
F  (10.3) 67 N/A

S F
f d=  (10.4) 310 μm 353 μm

Fresnel =
λ

dS
F4  (10.7) 5.34 Modeled

Period =
λF
d  (10.14) 14.3 16.3 μm
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Veri!cation of the design equations and illustration of the lenslet’s performance 

are based on capturing and characterizing intensity pro!les distributed along the 

optical axis of the primary injection lens. The collection of these intensity images was 

accomplished using a charge-coupled device (CCD) camera* con!gured with a suit-

able objective lens to achieve an approximate 10× magni!cation. Postprocessing and 

manipulation of the image data was performed using analysis software, Beamcode.† 

With this analysis package, a qualitative comparison of the peak intensity value can 

be made for the various pro!les presented in the sections that follow. This !gure of 

merit, referred to as the peak-to-average (P/A) value, is de!ned as the ratio of the 

peak pixel intensity count to the average pixel intensity count within a user-de!ned 

diameter. Subsequently, qualitative comparisons of intensity pro!les are made by 

maintaining a consistent user-de!ned diameter for all cases in which the peak and 

average pixel counts are calculated. (All P/A values presented herein are based on 

a 365 μm diameter positioned at the centroid of the imaged intensity pro!le.) With 

this de!nition, a perfect $at-top intensity pro!le extending over the entire 365 μm 

diameter would have a P/A value of unity—the theoretical ideal for most !ber injec-

tion applications.

10.5.1.1 Diffraction and Interference Effects

The theory of the effects of laser coherence on the performance of the diffracting 

beam integrators discussed in Section 10.2 can be illustrated by observing the inten-

sity distribution located at the focal plane of the primary injection lens when such a 

system is illuminated by a variety of laser sources—representing varying degrees of 

spatial coherence. As discussed in Section 10.2.1, the diffraction pattern of a single 

aperture of the lenslet array determines the shape of the spot on the target, and the 

Fresnel number (or β) yields a general measure of the diffraction structure or devia-

tion from the geometric ideal (i.e., $at-top pro!le). In addition, it was shown that both 

diffraction and interference effects play an integral role in determining the ultimate 

intensity distribution. For example, a source that is characterized as “highly spatially 

coherent” produces an intensity pattern dominated by interference effects character-

ized by large intensity $uctuations (or spikes) with a well-de!ned periodicity at the 

lens focal plane—while sources having a “lesser degree” of spatial coherence exhibit 

a mixture of both interference and diffraction effects.

Three different laser sources were used to “separate” and better illustrate the 

effects of diffraction and interference on the ultimate performance of the diffract-

ing beam integrator described in Figure 10.15 and Table 10.1. Although each laser 

source that we evaluated presents a different spatial intensity pattern at the input to 

the lenslet element, it is the spatial coherence of the source that appears to dominate 

the resulting pro!les at the injection lens focal plane.26

Using a multimode, Q-switched, Nd:YAG laser (Laser Photonics Model 

 YQL-102), diffraction effects are clearly distinguishable in the intensity pro!les 

shown in Figure 10.16a. Visible in the intensity pro!les are the shape of the lenslet 

elements (hexagonal) and the expected diffraction pattern. With this laser source, 

* COHU 4800 Camera active picture pixel size—horizontal: 23.0 μm; vertical: 27.0 μm.
† It is an optical beam diagnostic system providing real-time analysis of captured intensity pro!les.
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lenslet diffraction dominates the intensity structure and the effects of the Fresnel 

number can be experimentally observed and analytically veri!ed. Overlaying the 

calculated 1D diffraction pro!le with the experimental results displayed in Figure 

10.16b reveals excellent agreement with the measured data. This suggests that the 

structure observed is indeed dominated by lenslet diffraction effects.

At the other performance extreme, a CW Cr:Nd:GSGG, TEM00 laser (AMOCO 

Model 1061-40P) was used to illustrate the interference effects resulting from a 

source that can be characterized as highly spatially coherent. As expected, the inten-

sity pro!le shown in Figure 10.17a displays both diffraction and interference effects. 

The hexagonal shape of the lenslet elements and a slowly varying intensity modula-

tion earlier attributed to diffraction effects (Figure 10.16b) are apparent; however, the 

intensity pro!le is clearly dominated by narrow spikes—indicative of interference 

effects. Con!rmation that these features are a consequence of interference effects 

can be made by comparing the calculated and measured periodicity of this structure 

(Table 10.1). It should be noted that Equations 10.9, 10.13, and 10.14 derived for 

the periodicity of the interference pattern are based on paraxial approximations and 

assume a 1D lenslet pattern. The calculated intensity pro!le and its periodicity can 

be further studied to include the effects of both the hexagonal lenslet array structure 

and system aberrations using more advanced optical modeling software. Analytical 

results, obtained using an optical modeling package, Advanced System Analysis 

Program (ASAP),* shown in Figure 10.17b, reveal the effects of the lenslet geometry 

* ASAP is an optical software program for geometrical and physical modeling. It is a trademark of 

Breault Research Corporation.
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FIGURE 10.16 (a) Measured intensity pro!le at the focal plane of the diffracting beam 

integrator with a low spatially coherent source (P/A = 2.50, source laser: Laser Photonics 

YQL-102). (b) Comparison of measured and calculated intensity pro!le at the focal plane of 

the diffracting integrator.
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and system aberrations on the intensity pro!le recorded at the primary lens focal 

plane. Assuming a perfectly coherent source, the model displays the expected 2D 

dependence for both the interference periodicity (14.2 μm) and intensity.

For the condition of partial spatial coherence, a third laser source was evaluated 

against the diffracting beam integrator described in Figure 10.15. In this case, the 

source was a “home-built,” multimode, Q-switched, Cr:Nd:GSGG laser. (This same 

laser was used extensively to characterize other performance parameters of the 

beam integrator further described in the works of Weichman et al.26) Illumination 

of the diffracting beam integrator with this source produces the intensity pro!le 

shown in Figure 10.18 at the primary lens focal plane. Close observation of this 

pro!le illustrates effects of both diffraction and interference. The spot geometry 

and Fresnel structure displayed earlier in Figure 10.16 are visible; however, super-

imposed on the diffraction pattern are narrow, high-intensity “spikes.” Comparing 

the periodicity of the high-frequency structure observed in Figure 10.18 with that 

shown in Figure 10.17 implies that these features are indeed generated by inter-

ference effects. Moreover, comparing the P/A pixel response from Figures 10.16 

Measured periodicity = 16.3 mm
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FIGURE 10.17 (a) Measured intensity pro!le at the focal plane of the diffracting integra-

tor with a high spatially coherent source (P/A = 8.08, source laser: AMOCO 1061-40P). (b) 

Calculated intensity pro!le at the focal plane of the diffracting beam integrator using the 

ASAP modeling software (period = 14.2 μm).
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through 10.18 (2.50, 8.08, and 3.19, respectively) further suggests that for this beam 

shaping con!guration, interference effects will be a major contributor in determin-

ing the localized peak intensity at the intended target.26

10.5.1.2 Spot Diameter and Averaging

Characterization of the intensity pro!les collected along the optical axis of the dif-

fracting beam integrator described in Figure 10.15 yields a location and estimate for 

the minimum beam diameter and further describes how the pro!le evolves past the 

lens focal plane. The spot size as a function of distance along the optical axis is plot-

ted in Figure 10.19. In this case, a functional description of the spot size is de!ned 

as the diameter in which 98% of the energy is contained. As expected, the minimum 

spot size is achieved at the focal plane of the injection lens and that the growth in 

the beam diameter behind this plane is described by the paraxial approximation 

given by the input beam diameter and the primary lens focal length (i.e., f-number). 
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FIGURE 10.18 Measured intensity pro!le at the focal plane of the diffracting beam 

integrator with a partial spatially coherent source (P/A  =  3.19, source laser: Q-switched, 

Cr:Nd:GSGG).
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FIGURE 10.19 Measured beam diameter along the optical axis with and without the lenslet 

array (injection NA = 0.17).
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Comparing the beam diameter calculated in Table 10.1 (310 m) to the measured min-

imum value shown in Figure 10.19 (353 m) suggests reasonable agreement between 

the intended design and actual performance. Differences between the calculated and 

measured results are easily accounted for in those assumptions inherent in Equation 

10.4 for the calculated beam diameter (i.e., aberration-free optical system and an 

ideal source with essential zero beam divergence) and the functional de!nition for 

beam diameter presented earlier. Another potentially important feature displayed in 

Figure 10.19 is the greater effective depth of focus around the focal plane or target 

location for the diffracting integrator when compared to the simple lens con!gura-

tion. The importance of this characteristic could become signi!cant when the inte-

grator is incorporated into an assembly where alignment or position insensitivity is 

considered desirable (i.e., !ber injection, photolithography, laser drilling, etc.). This 

characteristic will be discussed in more detail in the context of the compact !ber 

injection system presented in Section 10.5.2.

The averaging aspect of the diffracting beam integrators and the subsequent insen-

sitivity of the intensity distribution at the target plane to spatial perturbations of the 

input source is a highly desirable characteristic of many beam shaping systems. Once 

again, intensity pro!les collected at the focal plane using various laser sources and 

different input beam diameters have been used to illustrate this feature. Applying var-

ious apertures to the input source and hence effectively exposing different near-!eld 

features to the lenslet array can yield some insight into the sensitivity of the diffract-

ing beam integrator to these changes. The results of such an experimental charac-

terization using the Q-switched, Cr:Nd:GSGG laser described earlier are shown in 

Figure 10.20. The contour sequence displayed in Figure 10.20 reveals little change 

in the output intensity pro!le (or P/A value) recorded at the lens focal plane until the 

input beam diameter is comparable in size to the diameter of a single lenslet element 

on the array. When this occurs, the primary injection lens no longer  “overlaps” or 

integrates inputs from multiple lenslet elements. In the limit of illuminating a sin-

gle lenslet, this effectively yields the spatial pro!le that would result using just the 

Beam aperture

2.0 mm

4.0 mm
6.0 mm

Aperture: full
P/A = 2.80

Aperture: 3.0 mm
P/A = 4.84

Aperture: 2.0 mm
P/A = 3.68

Aperture: 1.0 mm
P/A = 5.0

Aperture: 5.0 mm
P/A = 3.01

Aperture: 4.0 mm
P/A = 3.14

FIGURE 10.20 Measured intensity pro!les at the focal plane of the diffracting beam split-

ter with various apertures at the source laser.
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primary injection lens slightly defocused from its focal plane. (This slight “ defocus” 

is a result of the nonzero optical power provided by the lenslet element.)

10.5.2 COMPACT FIBER INJECTION SYSTEM

Various system applications exist in which the advantages offered by the multi-aper-

ture integration systems discussed in the chapter can readily be applied. Speci!cally, 

a number of medical and industrial laser applications exist in which the limiting 

factor for performance or additional capability resides in the transmission of the 

optical power (or energy) from the source to the target. Typical transmission systems 

for these applications include the use of !ber optics or “open air” designs requir-

ing numerous optical elements to direct and “reshape” the laser radiation along the 

intended path to the target. Depending on the speci!c application and con!guration 

(i.e., target accessibility, laser wavelength, peak power, etc.), the use of !ber optics is 

often the preferred transmission system. Although the use of optical !bers provides 

the system designer and the end user effective control over a number of application 

parameters (i.e., beam diameter, spatial pro!le, target accessibility, etc.), it is often 

limited by the maximum power level that can be reliably injected into and ultimately 

transmitted to the target.

Maximizing power throughput and minimizing !ber damage require a thorough 

understanding of !ber damage mechanisms and the control of a number of !ber 

injection criteria.27,28 In contrast to the “simple” injection lens, effective control of a 

number of these parameters is provided by the diffracting beam integrator discussed 

in Section 10.5.1 and shown in Figure 10.15.

Performance characterization of a compact !ber injection system featuring the 

diffracting beam integration approach, conducted at Sandia National Laboratories,* 

Albuquerque, New Mexico, showed that geometrical and mechanical constraints 

were signi!cant factors in determining the optical architecture employed to effec-

tively integrate and optically couple a miniaturized, Q-switched laser source with 

the desired !ber optic transmission system. Mechanically constrained in the overall 

length of the !ber injection and alignment system to less than 25 mm, more complex 

beam shaping techniques were quickly abandoned and the more traditional simple 

injection lens approach was initially evaluated. However, as Figure 10.21 sum-

marizes, the simple lens approach for high-power applications imposes a number 

of functional limitations on the power or energy that can be reliably injected and 

transmitted by the optical !ber. With a single injection lens element, the ultimate 

limitations and performance variability are in practice a combination of the low air 

breakdown threshold and the strong interdependence of the laser source character-

istics and injection alignment to the peak optical $uence incident on the !ber face. 

It is worth noting that these issues are further exasperated by the use of short focal 

length lenses and high-peak-power, multimode lasers—both conditions inherent in 

this application.

* Sandia is a multiprogram laboratory operated by Lockheed Martin for the US Department of Energy 

under Contract DE-AC04-94AL85000.
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Low air breakdown thresholds—all 

energy is focused at single foci.

Spatial pro!le at the !ber is strongly 

dependent on input laser and alignment.

Beam diameter at the !ber face is strong 

function of lens displacement.

NA of injection system is limited by the need to 

avoid air breakdown.

Exit pro!le and potential for damage internal to 

the !ber dependent on the initial mode power 

distribution (MPD) incident on the entrance 

face.

Effective control of a number of those !ber injection issues shown in Figure 10.21 

is provided by the diffracting beam integrator evaluated and discussed in Section 

10.2. Beyond those results presented earlier illustrating the effects of diffraction, 

interference, and spatial averaging on the intensity pro!le at the target (or !ber) 

plane, a brief performance comparison of the simple injection lens and the diffract-

ing beam integrator is discussed in the following material.

With the simple injection lens approach, the conditions imposed to avoid air 

breakdown and provide “adequate” !lling of the !ber NA are diametrically opposed. 

Avoiding air breakdown with the simple lens implies controlling the minimum 

spot size and hence the lens focal length. Unfortunately, as the lens focal length 

is increased to accommodate a higher threshold breakdown, the injected entrance 

angle or NA to the !ber is correspondingly decreased. In contrast, the diffracting 

integrator distributes the input laser energy over a larger cross-sectional area and 

into multiple foci representing the number of active lenslet elements. Consequently, 

eliminating air breakdown allows the designer the freedom to select the primary 

lens focal length to better match the acceptance angle of the optical !ber. However, 

as discussed in Section 10.2.1, as the focal length of the primary lens is varied, the 

f-number of the lenslets must be correspondingly adjusted to maintain the desired 

spot size per Equation 10.4. Maintaining the spot size is achieved at the expense of 

changing β or the Fresnel number de!ned in Equations 10.3 and 10.7, respectively. 

It is the interdependence of the lens focal length and β that must be optimized given 

the speci!cs of the desired injection geometry.

Another important characteristic provided by the diffracting beam integrator in 

the evaluated !ber injection system is the large depth of !eld discussed in Section 

10.5 (Figure 10.19) and the alignment insensitivity to the input source that is a result 

of the lenslet’s spatial averaging behavior (Figure 10.20). The large depth of !eld 

enables the designer to use a very simple mechanical mount that is required to pro-

vide only gross adjustment capabilities along the lens optical axis.

A more troublesome design issue with !ber injection systems and a parameter 

substantially relaxed by the use of the diffracting beam integrator is the alignment 

Lens focus

Fiber optic
NA

Injection lens

FIGURE 10.21 Fiber injection issues using the simple plano–convex injection lens.
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or centralization of the input beam on the primary injection lens. As shown in 

Figure 10.22, when the input beam is displaced across the injection lens without 

the lenslet array, the spatial intensity pro!le incident at the !ber face is strongly 

affected by system aberrations—resulting in higher peak $uences physically decen-

tered from the !ber core. In contrast, when the lenslet array is added, the spatial 

pro!le (or P/A value) remains unchanged over a wide range of lateral misalignment. 

Once again insensitivity to alignment signi!cantly relaxes the mechanical require-

ments for orienting the laser source to the !ber injection system.

10.6 SUMMARY

In this chapter, we have presented the theory and design of multi-aperture beam 

integration systems. These systems are especially applicable to the shaping of mul-

timode laser beams that are characterized by an irregular irradiance pattern that 

frequently varies with time. The major assumptions applicable to the design and 

analysis of a multi-aperture beam integration system are stated explicitly.

As discussed in Chapters 2 and 5, β, or equivalently the Fresnel number, is again 

an important parameter in determining the performance of the beam shaping sys-

tem. The basic concepts and equations needed for system design are developed. 

Diffraction and interference effects associated with multi-aperture beam integration 

systems are treated in detail. The impact of the input beam spatial coherence on 

beam integrator performance is analyzed.

Experimental data illustrating the effects of diffraction, interference, and spatial 

coherence on beam integrator performance are presented. Finally, we discuss the 

design and present data for a diffractive multi-aperture beam integration system for 

optical !ber injection.

Source

alignment

∆x = −0.5 mm∆x = −1.0 mm ∆x = 0.5 mm ∆x = 1.0 mm

Lens 7.0 mmInput 5.0 mm

∆x = 0

Simple lens

P/A = 5.85 P/A = 4.95 P/A = 4.12 P/A = 5.33 P/A = 6.07

Diffracting

beam integrator

P/A = 3.03 P/A = 2.93 P/A = 3.04 P/A = 3.05 P/A = 3.12

FIGURE 10.22 Measured intensity pro!les at the !ber face with lateral misalignment of 

the source.
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Axicon Ring 

Generation Systems

Fred M. Dickey, Carlos López- Mariscal, 

and Daniel M. Brown

11.1 INTRODUCTION

The production of a ring of light has applications in laser material processing and 

machining, particle manipulation (optical tweezers), and corneal surgery. It is well 

known that axicons (conical lenses) can produce light ring patterns. An axicon com-

bined with a focusing lens produces a ring pattern at the focal plane of the lens. 

A combination of a positive (convex) and negative (concave) axicon pair can be used 

to achieve a variable (zoom) ring diameter. Negative axicons are expensive and more 

dif!cult to obtain. Fortunately, a zoom system can be achieved by using two positive 

axicons. Axicons were introduced by McLeod1 as early as 1954 as an optical ele-

ment. The ring forming properties of axicons are discussed in detail in the excellent 

papers by Belanger and Rioux2 and Rioux et al.3 They present a zoom system using 

two axicons, one positive and one negative. The axicon depth of focus is treated by 

Lit and Tremblay.4 Shi et al.5 use an axicon structured lens to obtain a large depth 

of focus. This is related to the subject of nondiffracting beams. Axicons are used to 

generate Bessel-like beams.6 Zeng et al.7–9 treat the application of axicons to opti-

cal trepanning in considerable detail. Goncharov et al.10 give a design for an axicon 

system that produces a line focus.

11
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This chapter discusses the use of axicons to generate laser light ring patterns. The 

next section reviews what might be considered the fundamental axicon systems for 

ring pattern generation. Section 11.3 gives the theory, based on geometrical optics, of 

a zoom system using only positive axicons. The diffractive theoretical model behind 

this design is outlined in Section 11.4, while a numerical simulation of the model 

is presented in Section 11.5. A method for producing a rectangular line pattern is 

discussed in Section 11.6. Although the method in Section 11.6 does not use axicons, 

the irradiance patterns and applications are similar to those of axicon systems, so 

it is included in this chapter. Both variable ring (axicon) and rectangular line image 

forming systems have the potential to reduce the amount of material vaporization 

in certain types of laser machining applications as compared to circular and square 

top-hat systems. A summary of the chapter is provided in Section 11.7.

11.2 THE FUNDAMENTAL AXICON SYSTEMS

A lens axicon combination forms an annular ring focus. Due to the rotational sym-

metry, it is easy to develop designs using geometrical optics in one dimension. This 

section and Section 11.3 are taken in part from the paper by Dickey and Conner.11 

The basic design equations given by Rioux et al.3 are used in this section.

11.2.1 RADIAL FOCUSING

A con!guration for forming a radial focus, annular ring using a positive axicon is 

shown in Figure 11.1, where it is assumed that the axicon is placed next to the lens. In 

two dimensions, the combination of a lens and axicon forms two converging beams 

that cross after the axicon. An annular ring focus is produced because of the rota-

tional symmetry of the system. Similar results are obtained for a negative (concave) 

axicon, except that the two converging beams do not cross. For both positive and 

negative axicon systems, the radius of the ring, R, is given by

 R n F≅ −( )1 α  (11.1)

where:

α is the base angle of the axicon

n is the index of refraction

F is the focal length of the lens

R

F

FIGURE 11.1 Annular ring formation with a focusing lens and a positive axicon after 

the lens.
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Equation 11.1 is good if the base angle of the axicon is less than 10°.

The distribution of light at the focal plane of a lens is the Fourier transform of 

the input light pattern, except for a phase factor that depends on the position of the 

object. The phase factor is a constant if the object (axicon in our case) is placed at 

a focal length before the lens. Thus, the ring pattern produced by the axicon is the 

Fourier transform of the phase function of the axicon, which can be written as

 p x y r
= =

+ −e ei iγ γ
2 2

 (11.2)

where:

γ is a scale factor

Goodman13 has shown that the Fourier transform relation exists if the object is placed 

after the lens, but the size of the Fourier transform scales linearly with the distance 

d from the focal plane. In this case, Equation 11.1 becomes

 R n d≅ −( )1 α  (11.3)

Thus, the system in Figure 11.1 offers some zoom capability. However, the Fourier 

transform relation breaks down as the axicon approaches the focal plane (d is small). 

Also, one could not go to a zero radius ring without having the axicon at the focal 

plane, which is not practical for most applications.

The axicon can also be placed before the lens as shown in Figure 11.2. This 

con!guration produces a ring pattern with the properties described above, except 

that the ring pattern does not change with the separation distance between the lens 

and the axicon. Based on Fourier optics,9 the axicon can be placed in an arbitrary 

distance before the lens.

Belanger and Rioux2 have developed an analytical expression for the !eld pro-

duced by an axicon at the focal plane of a lens for an input Gaussian beam as the 

complex sum of hypergeometric functions. However, the result is very close to a 

Gaussian function of the radial distance, with the width of the ring given by

 2 3 3∆ =








r F

W. λ

π
 (11.4)

where:

W is the root-mean-square input beam radius

R

F

FIGURE 11.2 Annular ring formation with a focusing lens and a positive axicon before 

the lens.
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It is interesting to note that this result is close to the focal spot size for a focused 

beam of half the input size. Belanger and Rioux12 also give a solution for a uniform 

input beam. The solution in the case of a uniform input beam is also a complex sum 

of hypergeometric functions. In this case, the width of the ring is given by

 2 7 2∆r F
W=









. λ

π
 (11.5)

The radial pro!le of the ring is close to an Airy pattern.

11.2.2 POSITIVE AND NEGATIVE AXICON ZOOM SYSTEMS

Rioux et al.3 present a con!guration using a positive and a negative axicon as 

shown in Figure 11.3. They used two matching axicons, one positive and one neg-

ative, with equal base angles. This is an ideal annular ring zoom system, except 

for the problem of producing negative axicons. Negative axicons are very expen-

sive and dif!cult to obtain. The zoom range goes from a radius of zero to a maxi-

mum radius limited by the diameter of the second axicon. The ring radius goes to 

zero as the separation between the two axicons approaches zero. The axicons do 

not have to have equal base angles. In this case, the radius of the ring would be a 

double-valued function of the separation distance between the axicons if the base 

angle of the second axicon is greater than that of the !rst axicon. If the base angle 

for the !rst is greater than that of the second, the ring radius goes from some 

minimum to its maximum value. This introduces a complexity that is not needed 

for most applications. They give the following formula for the radius as a function 

of the separation of the axicons:

 R d n
=

−

−

( )1
1 α

 (11.6)

For a collimated input beam, if the axicon pair is placed before the lens, a ring pat-

tern is produced, but the radius of the ring does not change regardless of the separa-

tion of the axicons, or their distance from the focusing lens. The zoom capability is 

lost in this case. It might be noted that in the case that both axicons have the same 

base angle and are brought into contact, the two axicons become a window and no 

d

R

FIGURE 11.3 A zoom system with a positive and negative axicon.
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ring is produced. A ring is produced, but the ring radius depends only on the base 

angles of the axicons. If the negative axicon is placed before and the positive axicon 

is placed after the lens, a zoom capability is maintained, and it can be achieved by 

moving either axicon. However, in this case, there is a limit on how small of a ring 

radius can be obtained.

11.3 POSITIVE AXICON ZOOM SYSTEM

A zoom system having the capability of the system shown in Figure 11.3 can be 

designed using two positive axicons, one before and one after the lens, as shown in 

Figure 11.4. In this con!guration, the !rst axicon appears to form two intersecting 

beamlets, while the second axicon redirects the beamlets to produce the desired 

annular pattern. The distance, d, between the !rst axicon and the lens must be large 

enough that the beamlets completely cross without overlap before the second axicon, 

otherwise the distance is part of the design. When this condition is violated, a pattern 

of two concentric rings is obtained; the irradiance of each one of which varies with 

the distance d.

The design for this con!guration is more complicated than that for the system 

shown in Figure 11.3. The cone base angles are chosen to give the desired range for 

the ring radius. There is a degree of $exibility that allows one to generally develop a 

design from commercially available axicons. If the axicons have equal base angles, 

the system performs similar to the con!guration in Figure 11.3, except that the ring 

radius zooms from some minimum to a maximum as the second axicon is moved to 

the right. Although it is not necessary, it is probably best to design the system so that 

the minimum ring radius is obtained with the second axicon next to the lens. This 

would allow for the position of the second axicon not having to be too close to the 

output plane.

The design of a system based on Figure 11.4 has a large degree of $exibility. 

One can juggle the axicon base angles, the focal length of the lens, and the dis-

tances between the elements to come up with a workable system. Generally, a large 

F-number system is desirable, as long as the desired width of the ring is obtained. 

In the following text, we give the equations to be solved to accomplish a !rst-order 

design. The equations trace the central ray of the beamlets through the system, 

beginning with the beamlet exiting the lower half of the !rst prism. Before giving 

R

d S
F

FIGURE 11.4 A zoom system with two positive axicons.
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the equations, we need to de!ne distances and angles not shown in the !gure. The 

following angles are measured counterclockwise from the horizontal:

θ1—the angle the beam de$ected by the !rst axicon

θ2—the angle of the beamlet exiting the lens

θ3—the angle the beam de$ected by the second axicon

z1—the distance from the lens that the center ray of each beamlet crosses the 

optical axis

z2—the distance from the lens that the beamlets separate after crossing 

each other

D—the effective diameter of the input beam

The radius of the output ring is given by the following equations:

 R F F S= + −tan ( ) tanθ θ1 3  (11.7)

 θ α α1 1 1 1= − +
−sin ( sin )n  (11.8)

 θ
θ

2 1 1 1=
−







tan ( )tanF z

F  (11.9)

 θ θ α θ α α θ3 2 2 1 2 2 2 1 2 2 2 2= − + − − −
−sin [ sin ] sin cos sinn  (11.10)

 z d D
1

14= − tanθ  (11.11)

 z d D
2

12= − tanθ  (11.12)

Equation 11.7 has a simple interpretation. The !rst term is equivalent to 

Equation 11.1; it gives the size of the ring produced by the !rst axicon and the 

lens combination. The second term describes the redirection of the rays to size the 

output ring. The two axicons are coupled in the design due to the fact that θ3 is 

dependent on θ1.

One approach to a !rst-order design is to use Equation 11.1 to select a base angle 

for the !rst axicon for a ring radius greater than the maximum desired radius. 

Then, iterations of the above equations are used to determine the second axicon 

base angle that gives the desired range of zoom of the ring radius. The ring radius 

obtains its minimum value when s  =  0 (de!ned in the !gure). We suggest that 

this position be the design position of the second axicon for the maximum radius. 

As this is the usual case, it is desirable to develop the design for a large F-number 

system to minimize aberrations. The beam diameter, D, in Equation 11.11 is a 

source of aberration; however, it will be small for large F-number systems. This is 

due to the fact that rays parallel to the beamlet central ray exit the lens at slightly 

different angles and thus arrive at the second axicon at different angles. The 

detailed performance of a zoom axicon design can be evaluated using the diffrac-

tion theory in the following section.
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11.4 POSITIVE AXICON SYSTEM DIFFRACTION THEORY

In this section, an analysis of the two positive axicons system using Fourier optics is 

presented. The layout of the system is shown in Figure 11.5 with the planes of every 

optical component labeled as they will be referred to in what follows. The separa-

tion between the planes of the !rst axicon P1 and the lens PL is given by a = s, and 

the separation between the second axicon and the focal plane of the lens is given 

by b = s − f. The purpose of the following analysis is to !nd an expression for the 

transverse !eld distribution at PL as a function of the system’s optical parameters.

Consider !rst an optical subsystem that consists of only the thin lens L and the 

axicon at plane P2 as shown in Figure 11.6. Let the transmission function of the axi-

con be g2 and its base angle α2. The !eld produced at Pf under uniform illumination 

of the lens is given by the Fraunhofer integral13:

U i b
k
b x y f
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g x y x f
bR

f f f= +( )
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 (11.13)

a

P1

α1

α2∅ = 2R

PL P2 Pf

b

f

FIGURE 11.5 Two positive axicons system layout and parameters.

PfPL P2

f

b

∅ = 2R α2

FIGURE 11.6 Axicon–lens subsystem from the system in Figure 11.5.
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where:

λ is the wavelength

R is the radius of the lens
( , )x yf f  and ( , )x y2 2  are the transverse coordinates at planes Pf  and PL, respectively

Let also

 ψ ψ
λ

z = x y z i z
k
z x y f

z( ) exp ( ), , i= +
















1
2

2 2  (11.14)

so that Equation 11.13 can now be written as
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Consider now a hypothetical thin optical element with transmission function 

g x yL L2( , ) located at the principal plane of lens PL that produces the same !eld as 

described by Equation 11.15 under uniform illumination so that
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Equating Equations 11.5 and 11.6 yields the following equation:
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which can be solved for g2 to !nd the equivalent transmission function of the hypo-

thetical object. Each one of the integrals in Equation 11.17 represents the Fourier 

transform of the product of a transmission function and its respective pupil. Using 

Fourier notation, Equation 11.17 can thus be rewritten as
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Applying the inverse Fourier transform on both sides yields
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The right-hand side of Equation 11.18 represents the Fresnel diffraction integral of 

the input !eld as seen at the plane of the axicon. The phase of the factor b f/  is a 

transverse spherical phase modulation proportional to the separation f − b between 

the lens and the axicon:
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f
b

k
bf x y f b=
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2
2 2

2exp ( )( )i  (11.20)

When the axicon is placed very close to the lens, ψ ψb f/ ≈ 1  and this phase modula-

tion vanishes.

Consider now the subsystem shown in Figure 11.7. The !eld produced at PL  by 

the axicon under uniform illumination is given by the Fresnel integral

 U ka
i a g x y k

a x x y yL L L= − − + −













exp( ) ( , )exp ( ) ( )i i
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1 1 1 1 2 1 2
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∫∫  (11.21)

which can be expressed as the convolution of g x y1 1 1( , )  and the Fresnel kernel
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FIGURE 11.7 Lens–axicon subsystem from the system in Figure 11.5.
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The !eld produced by the two axicon and lens system at Pf  is proportional to the 

Fourier transform of the !eld at PL, which is in turn given by the product of UL and 

the left-hand side of Equation 11.19. Explicitly,

 U x y U x y g x y x
R

y
Rf f L L L L L

L L( , ) ( , ) ( , )= ℑ ′
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2
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or using the convolution theorem
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The output !eld is thus given by the convolution of two Fourier transforms. 

Equation  11.24 can now be readily evaluated by substituting the corresponding 

transmission function for each axicon:

 g x y n x y1 2 1 2 1 2 2 22 1, , ,( , ) exp ( )tan= − − +








i π

α
λ

 (11.25)

where:

n1 2,  are the refractive indices of the axicons

It must be noted that the approach used in this analysis is applicable to other  systems 

composed of a thin lens and any two optical elements of arbitrary transmission func-

tions g1 and g2, not necessarily axicons, placed in front and behind the lens, respectively.

11.5 NUMERICAL EVALUATION OF THE DIFFRACTION EQUATION

Using Equation 11.24, the spatial properties of the intensity distribution produced 

by the optical system can now be numerically calculated. An advantageous feature 

of Equation 11.24 is that the convolution can be implemented with high ef!ciency 

as a point-wise product using the convolution theorem. Evaluation of this product is 

less computationally intensive than calculating the output using successive Fresnel 

integrals considering each one of the optical elements in the system, for example.

A typical annular intensity pro!le is shown in Figure 11.8 along with a plot of its 

cross section. The ring is 1.83 mm in diameter and 25 μm in width. In this case, a 

Gaussian beam with a 1.0 mm waist is used to illuminate the !rst axicon. Notice that 

the resulting intensity distribution has a very low width-to-diameter ratio. The annu-

lar pro!le is bounded by a Gaussian envelope as a result of the illumination beam. 

For a lens of !xed focal length f, the layout parameters that determine the mean 

width and the diameter of the ring are the distances a and b. The plot in Figure 11.9 

illustrates the zoom capability of the optical system. The annular pro!les produced 

for a range of values of the fractional distance b/f are shown to decrease in diameter 

with an increase in b, therefore providing a mechanism to vary the diameter of the 
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annulus continuously as intended by design. Figure 11.10 shows the ring diameters 

for the range b/f = [0.15−0.40]. In the particular calculations shown in Figures 11.9 

and 11.10, the wavelength is 775 nm, f = 15 mm, α1 = 2°, and α2 = 5°.

The widths of the annular patterns in Figure 11.9 are shown in Figure 11.11 as a 

function of ring diameter. Equation 11.4 predicts a ring width of 24.4 μm for the ring 
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FIGURE 11.8 Typical annular intensity pro!le as evaluated by Equation 11.24.
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FIGURE 11.9 Annular intensity pro!les at Pf for varying distance b as a fraction of f.
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that would be produced by the !rst axicon in Figure 11.5. This width is smaller than 

the values in Figure 11.11. This is due to the fact that the ring pattern is described as 

a correlation function instead of a simple Fourier transform. The correlation func-

tion can be looked at as an interaction between the two axicons, or as aberrations 

discussed in Section 11.3. The ring widths in Figure 11.11 are approaching a smaller 

value as the ring diameter increases [the second axicon approaches the focal (output) 

plan]. The effect (aberrations) of the second axicon decreases as it approaches the 

focal plane.

In the system layout, the distance a must be chosen to be larger than the over-

lapping distance of the rays originating on the top and bottom halves of the !rst 

axicon, as mentioned in Section 11.3. Notice that the minimum allowed value of a is 

dependent on the value of ω, and the spatial extent of the !eld at PL  can exceed the 

physical aperture of the lens for large values of a. For this reason, it is best to adjust 

the zoom factor by continuously varying b and leaving a !xed for a !xed value of the 

illuminating aperture. Violation of this condition results in the double ring pattern 

shown in Figure 11.12.
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FIGURE 11.10 Ring diameters as a function of b/f.
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FIGURE 11.11 Width of the annular patterns in Figure 11.9 as a function of their diameter. 

Note that the vertical scale shows a range of only 5 μm.

467



453Axicon Ring Generation Systems

Additional design considerations of the two positive axicons system thus include 

calculating the transverse size of the intensity pattern at PL  prior to selecting a lens 

diameter. Likewise, the extent of the input at the second axicon must be considered 

in order to choose an adequate axicon diameter.

11.6  CONTINUOUSLY VARIABLE RECTANGULAR 
LINE GENERATOR

Multi-aperture beam integration systems were discussed in Chapter 10. In this sec-

tion, we show how to combine a multi-aperture beam integrator with highly anamor-

phic lenslet arrays to generate a continuously variable rectangular line pattern. The 

aspect ratio and size of this rectangular line pattern are varied by small lateral dis-

placements (in x- and y-directions) of the lenslet arrays. Such patterns are useful for 

very $exible laser machining and marking tools. This method was !rst disclosed in 

the US Patent 6909553,14 and subsequently in a paper by D. M. Brown.15 The method 

is a generalization of the Alvarez lens, shown in the US Patents 330529416 and 

3507565,17 where Alvarez showed that a pair of antisymmetric, highly anamorphic, 

1.0

0.5

−1.0 −0.5 0.50.0 1.0

FIGURE 11.12 Double ring intensity pattern for an insuf!cient !rst axicon to lens separation.
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refractive lens elements can be combined to produce a spherical lens with variable 

optical power. The variable power is obtained by translating the elements laterally in 

opposite directions. The problem lies in the fact that these highly anamorphic lenses 

are dif!cult to fabricate. However, Wallace18 points out that using diffractive optical 

elements solves the fabrication problem and opens up new opportunities for these 

types of lenses. We expand upon these ideas to apply diffractive Alvarez-like lenslets 

to the problem of laser beam shaping and show how to design the diffractive phase 

function to achieve the desired continuously variable complex pattern on the target.

11.6.1 THEORY

The functional form Alvarez gives for the refractive element thickness is

 t A xy x Dx E= +








 + +2 31

3  (11.26)

which allows the optical power to be varied by translating matching elements in 

opposite directions in x. Using this form, the optical power in the x-direction is 

coupled to the optical power in the y-direction, which is generally desirable if one 

wishes to produce a spherical or rotationally symmetric lens function. If an array of 

these elements were fabricated, and the source light was made to pass only through 

the proper regions of each lenslet pair, the arrays could be used in a multi-aperture 

beam integrator con!guration to form a continuously variable spot size on the target.

However, using a more general form of the element thickness (or phase function), 

a variable anamorphic lens can be produced in which the x- and y-direction pow-

ers can be varied independently by translating the array elements in both the x- and 

y-directions. By properly selecting the phase function, orthogonal optical powers 

and tilts can be continuously varied and combined in a beam integrator system to 

produce complex polygon line patterns. Three or more arrays can also be used to 

provide even greater degrees of freedom in forming complex image patterns, but we 

con!ne our discussion here to using two movable arrays.

One generally desires to use all of the available laser light (or other collimated 

light source) in the generated pattern. However, only a small fraction of the clear 

aperture or overlap region of each lenslet pair can be used to modify the wavefront 

and form the image pattern in order to allow space for translating. This requires 

that the input laser beam be segmented into an array of separated beamlets so that 

each beamlet passes only through the overlap regions and not the invalid regions 

between neighboring lenslet pairs. This can be accomplished with a stationary array 

of afocal telescopes, or beamlet reducers, placed ahead of the movable arrays, which 

segments the entrance beam with 100% !ll factor. Laterally, translating the lenslet 

arrays about these beamlets and then combining the beamlets with an integrator 

lens produces the variable irradiance pattern with nearly all the beam energy. The 

optical designer should consider the edge blurring effects resulting from the increase 

in angular divergence exiting the beam reducer as a result of the optical invariant. 

Alternatively, a diffractive fan-out grating could be used to replicate the laser beam 

into a 2D array in angle space.
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To produce the four line segments of the rectangular pattern, four unique lenslet 

phase functions are required in the array. A lenslet in one array is paired with another 

lenslet in the second array element to produce the phase function. The paired lenslets 

have equal and opposite phase distortions such that when the lateral translation of the 

arrays is zero in x and y, the combination produces zero phase distortion. Translation 

of the arrays in opposite directions in x and y varies the combined phase distortion 

resulting in varying the length and position of the line segments of the rectangular 

image. This group of four lenslet pairs is replicated over the entire area of the arrays 

in order to achieve beam homogenization.

The following derivation of the phase aberration function assumes that the two 

movable arrays are placed in suf!cient near proximity to each other so that wave-

front propagation between the two arrays can be ignored. Diffractive optical ele-

ments make this much easier to achieve. When the lenslet arrays are placed in a 

diffracting beam integrator con!guration (Section 10.3.1), a beamlet from a lenslet 

with no optical power (or defocus) will form a point focus on the image plane. If the 

lenslet pair has optical power in the x-direction, forming a cylindrical lens, a hori-

zontal line image is formed. A vertical line image is formed if the lenslet pair has 

only power in the y-direction.

The phase or surface pro!le of each lenslet in the movable arrays is described by 

the general polynomial of the form:

 Φ1
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where:

Φ1 is the phase function (or surface pro!le) of the lenslet in the !rst movable array

Φ2 is the phase function (or surface pro!le) of the paired lenslet in the second 

movable array

We assume an insigni!cant propagation distance between a pair of lenslets so that 

Φ Φ Φ= +1 2.
In general, when ai,j ≠ bi,j, very complex shapes are formed, which we brie$y 

discuss here by showing how each term in the polynomial distorts the phase. But 

our primary concern in this section is with simple rectangular line images where 

ai,j = −bi,j and only two of the polynomial terms are used. The piston phase term, a0,0, 

is ignored in this discussion as it only contributes interference effects with adjacent 

lenslets that can be considered as a separate issue from the image shape generated by 

the phase function. The !rst term in the polynomial is linear in x:

 Φ1 1 0x a x= ,  (11.29)

 Φ2 1 0x b x= ,  (11.30)
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Assuming opposite translations of equal magnitude for the two arrays, we make the 

substitutions:

 
x x
y y
→ +

→ +

ξ

η
 (11.31)

for the !rst array, and

 
x x
y y
→ −

→ −

ξ

η
 (11.32)

for the second array, where ξ and η are the lateral translations of the arrays in 

the x- and y-directions, respectively. The wavefront aberration contribution for the 

 lenslet pair due to the !rst polynomial term is

 Φ x a x b x= + + −1 0 1 0, ,( ) ( )ξ ξ  (11.33)

which is a wavefront tilt in the x-direction. The displacement on the image 

plane is proportional to the gradient of the phase function. Taking the gradient, 

∇ = +Φ x a b i( ) ,, ,1 0 1 0  shows a constant displacement in the x-direction at the image 

plane, independent of lenslet array translation (ξ). The magnitude of the displace-

ment depends on the relative magnitudes of the coef!cients and the focal length of 

the integrator lens. Similarly, the linear term in y results in a constant displacement 

in the y-direction.

The wavefront aberration contribution due to the !rst quadratic term, x2, can be 

written as

 Φ xx a x b x= + + −2 0 2 2 0 2, ,( ) ( )ξ ξ  (11.34)

with its gradient given by

 ∇ = + + −Φ xx a b x a b i[( ) ( ) ], , , ,2 2 2 22 0 2 0 2 0 2 0 ξ  (11.35)

With the condition a2,0  =  b2,0, the second term above becomes zero and the !rst 

term gives defocus or a constant optical power in the x-direction. This would form 

a horizontal line image at the focal point of the integrator lens. With the condition 

a2,0 = −b2,0, the !rst term becomes zero and the second term shows a linearly vary-

ing displacement in the x-direction on the image plane, proportional to the array lat-

eral translation distance, ξ. With a b2 0 2 0, , , the lenslet pair provides both constant 

optical power in the x-direction and variable lateral translation in the x-direction. 

This would translate a horizontal line of constant length in the horizontal direction 

with translation of the arrays in the horizontal direction. Similar results apply to the 

y2 term in the vertical direction.

The wavefront aberration contribution due to the cross term, xy, is given by

 Φ xy a x y b x y= + + + − −1 1 1 1, ,( )( ) ( )( )ξ η ξ η  (11.36)
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with its gradient given by

 ∇ = + + −  + + + −Φ xy a b y a b i a b x a b( ) ( ) ( ) (, , , , , , ,1 1 1 1 1 1 1 1 1 1 1 1 1 1η 11 1, )ξ  j  (11.37)

With the condition a1,1 = b1,1, the lenslet pair gives defocus or constant optical power 

in a direction 45° to the x- and y-axes and an optical power of the opposite sign in 

the orthogonal direction, producing astigmatism. However, since a negative and a 

positive lens of the same optical power produce the same spot size at the focus of the 

integrator lens, this case is indistinguishable from a rotationally symmetric lens with 

the same optical power in both x- and y-directions. With a1,1 = −b1,1, a vertical trans-

lation of the arrays results in a horizontal (x-direction) displacement at the image 

plane, and a horizontal translation of the arrays results in a vertical displacement at 

the image plane. With a b1 1 1 1, , , the constant optical power (defocus) and variable 

displacement result.

The wavefront aberration contribution due to the !rst cubic phase term, x3, is 

given by

 Φ xxx a x a x= + + −3 0 3 3 0 3, ,( ) ( )ξ ξ  (11.38)

with its gradient given by

 ∇ = + + − + + Φ xxx a b x a b x a b( ) ( ) ( ), , , , , ,3 3 6 6 3 33 0 3 0 2 3 0 3 0 3 0 3 0 2ξ ξ ii  (11.39)

The !rst term in the gradient is a constant coma-like aberration in the x-direction. 

The second term is a linearly varying defocus in the x-direction. The third term 

is a one-sided displacement varying quadratically in ξ. With a3,0 = b3,0, this phase 

term gives a constant coma-like aberration that can be displaced in the x-direction 

with translation of the arrays. With a3,0  =  −b3,0, this phase term gives a linearly 

varying defocus in the x-direction proportional to array translation distance. With 
a b3 0 3 0, , , a combination of coma, defocus, and displacement in the x-direction 

result. The fourth cubic phase term, y3, produces similar results in the y-direction.

The aberration contribution for third cubic term, xy2, along with its gradient is 

given by

 Φ xyy a x y b x y= + + + − −1 2 2 1 2 2, ,( )( ) ( )( )ξ η ξ η  (11.40)

and

 

∇ = + + − + + 

+

Φ xyy i a b y a b y a b( ) ( ) ( ), , , , , ,1 2 1 2 2 1 2 1 2 1 2 1 2 22 2 η η

jj a b xy a b x
a b y a
( ) ( )

( ) (
, , , ,

, , ,

2 2 2 2
2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

+ + −[

+ − + +

η

ξ 22 1 2b , )ξη]
 (11.41)

This term produces a constant coma-like aberration for a1,2  =  b1,2, which can be 

displaced horizontally and vertically with array translation. When this cubic term is 
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combined with the !rst cubic term, x3, and a3,0 = b3,0 = a1,2 = b1,2, the result is conven-

tional coma with the axis of symmetry in the x-direction. The coma patch remains 

constant, but is laterally displaced on the image plane with the square of the array 

translation distances. The displacement is one sided in x and two sided in y.

With a1,2  = −b1,2, a translation of the arrays in the x-direction produces a lin-

early varying defocus in the y-direction, resulting in a vertical line at the image 

plane. Translation of the arrays in the y-direction produces defocus in both the x- and 

y-directions. Combined translations of the arrays in both x and y result in an astig-

matic patch with its axes rotated with respect to the x–y axes. With a b1 2 1 2, , ,  a 

combination of displacement, astigmatic-like aberrations, and coma-like aberrations 

are produced. Similar results are obtained in the orthogonal directions for the second 

cubic term, x2y, which can also be combined with the y3 terms to produce conven-

tional coma with a vertical axis of symmetry.

The wavefront aberration contribution and its gradient for the fourth-order term, 

x4, are given by

 Φ xxxx a b x x a b x x= + + + + − +( )( ) ( )( ), , , ,4 0 4 0 4 2 2 4 4 0 4 0 3 36 4 4ξ ξ ξξ  (11.42)

and

 ∇ = + + + − + Φ xxx i a b x x a b x( )( ) ( )( ), , , ,4 0 4 0 3 2 4 0 4 0 2 34 12 12 4ξ ξ ξ  (11.43)

With a4,0 = b4,0, this term produces a constant spherical aberration in the x-direction 

and an x-direction defocus that varies quadratically with x-direction array transla-

tion. With a4,0 = −b4,0, this term results in a coma-like aberration and displacement 

in the x-direction. This process can be carried to higher order terms, but the above 

is suf!cient to provide a great deal of $exibility in designing continuously variable 

complex image-forming beam integrators. We use only two of the above terms, the 

quadratic term of Equation 11.34 and the cubic term of Equation 11.38, to form 

the continuously variable rectangular line image. An example of this is shown in the 

following section.

11.6.2 EXAMPLE

Figure 11.13 shows an example of beam integrator consisting of a stationary afocal 

beam reducer array with 2 mm2 lenslets and two movable arrays that translate in both 

the x- and y-directions. The stationary array forms an array of Galilean telescopes 

that collects the incoming light with 100% !ll factor and segments the laser beam into 

multiple spatially separated beamlets. The beam diameters are suf!ciently reduced 

in order to prevent vignetting at the following movable arrays. In this example, the 

stationary afocal array reduces 2 to 1.2 mm2 beamlets, allowing a maximum transla-

tion distance of 0.4 mm for the movable arrays. The two movable arrays have diffrac-

tive anamorphic lenses patterned on the surfaces facing each other. The two movable 

arrays have a group of four unique lenslets replicated over the arrays. Each lenslet 

in the group produces one of the four line segments of the rectangular line image. 
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The general phase functions for each pair of lenslets, required to produce the rectan-

gular line image, are given by

 Φ1 2 3 2 3
= + + +Ax Bx Cy Dy  (11.44)

 Φ2 2 3 2 3
= − − − −Ax Bx Cy Dy  (11.45)

The four coef!cient values (A, B, C, and D) are easily optimized in a lens design 

program for the speci!c optical layout. The coef!cient values are adjusted so that the 

line segments intersect at the corners and the desired sensitivity with lateral displace-

ment of the arrays is achieved. The coef!cient values given in Table 11.1 are optimized 

for the layout of Figure 11.13 and will produce a continuously variable rectangular line 

image. The cubic terms produce a linearly varying defocus or line image of varying 

length. The quadratic terms produce a linearly varying displacement from the center 

of the image, moving the segments closer or further from the center as the rectangle 

shrinks or grows. The image changes with lateral displacements of the two movable 

arrays, which are moved in opposite directions by equal amounts. Figure 11.14 shows 

Movable arrays

Fixed lenslet arrays

y

z
x

FIGURE 11.13 Layout showing stationary beam reducer and two movable arrays.

TABLE 11.1

Coef"cients for Example Variable Rectangular Line Image

Lens 1 Lens 2 Lens 3 Lens 4

A 0 0 256 −256

B 140 140 0 0

C 256 −256 0 0

D 0 0 140 140
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a sequence of spot diagrams of the rectangular image for various lateral translations 

of the movable arrays. (Diffraction effects are not included in spot diagrams.) The 

x- and y-displacements (in microns) for these six spot diagrams are (0, 0), (100, 100), 

(100, 200), (200, 100), (300, 200), and (300, 300). Note that zero displacement in 

both x and y produces a single focused point at the image center.

In this example, the lenslet arrays are square packed on a 2 mm pitch. The beam-

lets are about 1.2 mm2 after the reducer. This allows a maximum translation distance 

of 0.4 mm in either the x- or y-direction. The greater the beam reduction, the more 

the arrays are allowed to translate. However, the size of the image is also propor-

tional to the diameter of the beams after reduction. Also, the beam reduction factor 

affects the blurring of the line image. The sensitivity of the system, or the rate of image 

increase with translation distance, is affected by the amount of beam reduction as 

well as the magnitudes of the phase coef!cients.

This example shows that multi-aperture beam integrators need not be con!ned to 

only producing stationary simple spots. It also demonstrates how to design a multi-

aperture beam integrator system that allows continuous variation of the shape, mag-

ni!cation, or aspect ratio of a target image by means of small lateral translations of 

two anamorphic lenslet arrays in a beam integrator con!guration. Since the lateral 

translations of the arrays are small (on the order of tens or hundreds of microns), 

the arrays can be moved with motor-driven micrometers providing real-time varia-

tion of the spot shape and great $exibility to a laser machining or marking tool. 

(0, 0) (100, 100) (100, 200)

(200, 100) (300, 200) (300, 300)

FIGURE 11.14 Spot diagrams of rectangular image for various lateral displacements in 

x and y.
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Diffractive optical elements allow paired lenslets to be placed in close proximity to 

each other, simplifying the design and fabrication process.

In principle, refractive nonsymmetric anamorphic lenslets can be fabricated 

using grayscale photolithographic processes. However, previous efforts to do so 

have proven very dif!cult because the grayscale process is highly nonlinear. Many 

more fabrication iterations are required for highly anamorphic surface pro!les than 

for simple rotationally symmetric pro!les. This fabrication problem is solved using 

diffractive lenslets. MEMS Optical, Huntsville, Alabama (now Jenoptic Optical 

Systems), successfully manufactured diffractive anamorphic lenslet arrays based on 

the example shown here. But attempts to fabricate them as refractive anamorphic 

lenslets were not as successful. Most laser machining applications can tolerate the 

higher order scattering from the diffractives. But if this is a problem, an off-axis 

system can be designed by adding a constant tilt to one of the diffractive arrays, 

separating the various orders at the !nal image plane so that the extraneous orders 

can be adequately blocked. An example of an off-axis beam integrator is shown in 

the work of Brown.19

11.7 SUMMARY

This chapter has presented a review of the classical ring forming properties of axi-

cons, including a zoom system using a positive and negative axicon combination. 

The design of a zoom system using two positive axicons is developed. As part of this 

development, a unique diffraction theory is given for the case of a system with two 

elements, one before the Fourier transform lens and one after the lens. This diffrac-

tion theory is then used as a basis for calculation of the output patterns produced by 

the positive axicon zoom system. A design is developed for producing rectangular 

line patterns. This design uses a multi-aperture beam integrator system with highly 

anamorphic lenslet arrays.
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12.1 INTRODUCTION

As explained in Chapters 2 through 10, laser beam shaping is a process whereby 

the irradiance of the laser beam is changed along its cross section. In some cases, 

the laser beam is shaped so that it is uniform or top hat. In other cases, it is given 

a different shape such as a Gaussian or super-Gaussian. For laser beam shaping to 

be effective, it is necessary to be able to measure the degree to which the irradiance 

pattern or beam pro!le has been modi!ed by the shaping medium. In some cases, the 

beam shaping requires a speci!c input beam. For example, in many cases, the input 

beam must be Gaussian for the shaping to create an undistorted top-hat beam. In this 

case, the pro!le of the input beam must be measured to assure that it is close enough 

to the desired Gaussian distribution. If the input beam does not have the proper 

pro!le, measurements will inform the user that adjustments to the source must be 

made before attempting to perform laser beam shaping. Therefore, laser beam pro!le 

analysis is an essential part of effective laser beam shaping.

Section 12.2 discusses laser beam properties and the general need for beam  pro!le 

analysis [1–10]. Section 12.3 reviews the art of laser beam pro!le analysis and historic 

methods. Section 12.4 introduces the use of electronic cameras for measuring the laser 

beam pro!le and includes descriptions of other instrumentation useful in beam pro!le 

measurement. Sections 12.5 and 12.6 discuss accommodations necessary for the use 

of cameras [11,12] and Section 12.7 considers the  information that can be obtained 

by simply viewing the beam pro!le. In Section 12.8, quantitative measurements and 

12.8 Quantitative Measurements ......................................................................500

12.8.1 Relative Beam Power or Energy .................................................500

12.8.2 Peak Power or Energy ................................................................. 501

12.8.3 Peak Pixel Location .................................................................... 501

12.8.4 Beam Centroid Location ............................................................. 501

12.8.5 Beam Width ................................................................................502

12.8.5.1 Considerations in Accurate Beam Width 

Measurement ..............................................................502

12.8.5.2 Beam Width De!nitions .............................................505

12.8.5.3 Second Moment Beam Width Measurements ............505

12.8.6 Other Important Beam Pro!le Measurements ............................ 510

12.8.6.1 Beam Ellipticity .......................................................... 510

12.8.6.2 Gaussian Fit ................................................................ 511

12.8.6.3 Top-Hat Measurement ................................................ 512

12.8.6.4 Divergence Measurement ........................................... 512

12.8.6.5 Statistical Measurement ............................................. 512

12.8.6.6 Pass/Fail Measurements ............................................. 514

12.9 M2 Measurements ...................................................................................... 514

12.10 Signal Processing ...................................................................................... 518

12.11 Wavefront Phase ........................................................................................ 522

12.12 Summary ................................................................................................... 522

References .............................................................................................................. 523

479



465Current Technology of Beam Pro!le Measurement

their signi!cance are explained. Sections 12.9 through 12.11  discuss other electronic 

 measurement techniques that are used to provide a more complete understanding of 

a laser’s performance including propagation  characteristics and wavefront analysis 

[13,14]. Chapter 10 also goes into the need for signal  processing to enhance the 

accuracy of electronic laser beam measurements. The chapter closes with a summary 

in Section 12.12.

12.2 LASER BEAM PROPERTIES

12.2.1 UNIQUE LASER BEAM CHARACTERISTICS

Laser beams produce light with many characteristics that are unique to this type of 

illumination. Some of the characteristics that make laser beams unique are listed 

in Table 12.1. For example, the monochromatic nature of a laser beam means that 

it is typically a single wavelength with very little light at wavelengths other than 

the central peak. The temporal characteristic of a laser beam covers a wide range 

from a continuous wave (CW) to an extremely short pulse, providing very high-

peak-power densities. The coherence of a laser enables it to travel in a narrow beam 

with a small angle of divergence or spread. This allows a user to precisely de!ne the 

area illuminated by the laser beam at any distance from the source. Because of this 

coherence, a laser beam can also be focused to a very small and intense spot of light 

in a highly concentrated area. This ability to be concentrated makes the laser beam 

useful for many applications in physics, chemistry, medicine, and industry. Finally, 

a laser beam has a unique irradiance pro!le that offers signi!cant opportunities for 

its application. The beam pro!le is the cross-sectional pattern of irradiance at a typi-

cally orthogonal plane along the propagation axis of the beam.

12.2.2 SIGNIFICANCE OF THE BEAM PROFILE

Since the beam pro!le is a description of the two-dimensional (2D) energy density 

distribution at a plane perpendicular to the laser’s propagation, information regard-

ing the concentration and the collimation of the laser is evident in the beam pro!le. 

Propagation characteristics of the beam through space can be easily determined by 

observing a series of beam pro!le measurements along its path. Figure 12.1 shows 

a number of typical laser beam pro!les illustrating the variety that can exist. Since 

such a variety may exist, it is essential to measure the pro!le in any application where 

energy distribution affects the performance of the laser or its intended purpose.

TABLE 12.1

Unique Characteristics of a Laser Beam

Monochromatic (single wavelength)

Temporal (continuous wave to femtosecond pulses)

Coherence (consistent phase between all light elements)

Highly concentrated (focusable to extremely small spots)

Beam irradiance pro!le (unique spatial power or energy distribution)
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(a)

(b)

FIGURE 12.1 Various laser beam pro!les: (a) HeNe; (b) excimer; (c) nitrogen ring laser.
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Examples of two different types of ideal laser beams for different purposes are 

a Gaussian and a top-hat beam. A true Gaussian or single-mode beam allows the 

 highest concentration of focused light, whereas a top-hat beam allows for very uni-

form distribution of the energy across a given area. These two idealized beams are 

shown in Figure 12.2.

12.2.3 EFFECTS OF DISTORTED BEAM PROFILES

Lasers rarely exhibit the most uniform irradiance pro!le. Sometimes Gaussian beams 

are highly structured, and often-intended top-hat beams are nonuniform across 

the top, or may be tilted in energy density from one side to the other. Figure 12.3 

illustrates some real-world examples of distorted beam pro!les. For example, in 

Figure 12.3a, the highly structured beam would not focus nearly as well as the ideal 

Gaussian beam. The tilted top-hat beam in Figure 12.3b would not give uniform 

illumination as intended, and could cause poor performance in the process for which 

it is being applied.

12.2.3.1 Scienti"c Applications

The signi!cance of distorted beam pro!les varies with the application. In scienti!c 

applications, nonlinear processes are typically proportional to the irradiance squared 

(c)

FIGURE 12.1 (Continued)
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or cubed. Thus, a non-Gaussian pro!le may have peak energy as low as 50% of what 

a Gaussian beam would have under the same conditions of total power or energy. 

Therefore, the nonlinear process may deteriorate to 25% or 12% of what is expected. 

This is a 300%–700% error on an experiment that should be accurate to within ±5%. 

Figure 12.4 shows beam pro!les of a Cr:LiSAF oscillator with subsequent ampli!er 

outputs when the ampli!er is properly aligned and when it is not.

(a)

(b)

FIGURE 12.2 (a) Ideal Gaussian beam for highest concentration of energy; (b) ideal top-hat 

beam for uniform laser illumination.
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(a)

(b)

FIGURE 12.3 (a) Highly structured would-be Gaussian beam; (b) tilted or nonuniform 

 top-hat beam.
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(a)

(b)

FIGURE 12.4 (a) Cr:LiSAF laser oscillator; (b) Cr:LiSAF laser with well-aligned ampli!er; 

(c) Cr:LiSAF laser with misaligned ampli!er.
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12.2.3.2 Instruments Using Lasers

Instruments using lasers, such as printers, !ber optic communications, and cell 

cytometry, require a high degree of control of the laser light to accomplish the 

intended task. The uniformity, pointing direction, pointing stability, and mode pat-

tern of a typical laser diode used in instruments can be dramatically deteriorated by 

misalignment of the collimating optics or mounting, causing the instrument not to 

perform as expected. For example, Figure 12.5 illustrates a collimated laser diode 

beam being focused into a single-mode !ber optic. In Figure 12.5b, the z-axis of 

the focused laser diode is poorly aligned to the !ber, and much of the energy is fed 

into the cladding rather than to the inner !ber. Thus, the ef!ciency of the !ber as an 

energy conduit is signi!cantly degraded. Energy in the central lobe is greatly reduced 

due to misalignment. In Figure 12.5c, the z-axis is adjusted slightly and the major 

portion of the laser beam is coupled into the core of the !ber optic; thus, the !ber 

more ef!ciently transports optical power.

12.2.3.3 Medical Applications

There are many medical applications of lasers [15]. One of these is laser-assisted 

in situ Keratomileusis (LASIK) [16], in which one technique, a top-hat beam is used 

to make corrections to the optical properties of the cornea. If the homogenizer pro-

ducing the top hat is out of alignment and there is a 50% tilt in the top-hat intensity 

pattern, the correction to the eye may be four diopters on one side of an iris, with 

only two diopters on the opposite side. The top-hat beam in Figure 12.2b would give 

expected results, whereas the tilted or nonuniform beam in Figure 12.3b would cause 

(c)

FIGURE 12.4 (Continued)
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(a)

(b)

FIGURE 12.5 (a) Collimated laser diode beam; (b) !ber output with diode poorly coupled 

into !ber optic; (c) !ber output with diode well coupled into !ber optic.
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severe dif!culty in the surgical outcome. The $atness or uniformity of the laser 

beam top hat is also critical in the removal of port wine stains, wrinkle remediation, 

and in other cosmetic surgery.

Tissue cutting and welding requires an extremely well-controlled irradiance den-

sity to accomplish the task properly. Finally, many medical applications, such as 

photodynamic therapy, use !ber optic delivery systems, and the ef!ciency of these 

systems is strongly affected by the initial alignment of the laser beam into the !ber, 

as shown in Figure 12.5.

12.2.3.4 Industrial Applications

In industrial laser applications [17–19], most high-power Nd:YAG lasers and some 

CO2 lasers produce multimode beams. The cutting, welding, and drilling ef!cien-

cies of these lasers are directly related to the beam pro!le. For example, an Nd:YAG 

laser with a double peak can cause one cut width in the x-direction and a different 

cut width in the y-direction. A beam with a poor pro!le can result in percussive laser 

hole drilling of a different size than expected, and a weld that is not as strong or as 

precise as necessary, for instance, to create a hermetic seal.

Figure 12.6 shows the beam pro!le of a poorly aligned and a well-aligned CO2 

laser cavity. An industrial laser shop was using CO2 lasers for scribing ceramic 

wafers before dicing them into individual pieces. Most of the lasers in the machine 

shop gave good results. However, one laser gave inconsistent results, which caused 

very erratic breaking of the ceramic which produced excessive scrap. The laser had 

been measured by nonelectronic mode burns in wooden tongue depressors, which 

(c)

FIGURE 12.5 (Continued)
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(a)

(b)

FIGURE 12.6 (a) Poorly aligned CO2 laser cavity; (b) well-aligned CO2 laser cavity.

489



475Current Technology of Beam Pro!le Measurement

gave the appearance that the laser had an appropriate output. However, when the laser 

was measured with an electronic pyroelectric camera, the structure in the laser beam 

of Figure 12.6a became immediately evident. When the technician saw this structure, 

he adjusted the laser cavity mirrors, and within a short time, using the visual feedback 

of the electronic beam pro!ling system, the beam was improved to that shown in 

Figure 12.6b. It was observed that the beam pro!le of Figure 12.6b was similar to that 

of the other lasers that were operating ef!ciently in this shop. Once the problematic 

laser was tuned to the beam pro!le of Figure 12.6b, it gave consistent results.

12.3 LASER BEAM PROFILE MEASUREMENT METHODS

12.3.1 NONELECTRONIC METHODS

There are a number of nonelectronic methods of laser beam pro!le measurement 

that have been used since lasers were invented. The !rst of these is observance of a 

visible laser beam re$ected from a wall or other object. This is by far the simplest, 

least expensive, and most widely used method of observing a laser beam pro!le. One 

problem with this method is that the human eye is logarithmic, and can see many 

orders of magnitude difference in light irradiance. Even though it is logarithmic, 

the eye can only distinguish 8–12 shades of gray. Thus, it is nearly impossible for 

a visual inspection of a laser beam to provide anything more than the most basic 

qualitative measurement of the beam size and shape. A beam width measurement by 

eye may have as much as 100% error. Figure 12.7a is a photograph of a HeNe laser 

beam being re$ected off the wall.

Photographic !lm or burn paper has even less dynamic range than the human 

eye. Figure 12.7b shows a very intense beam at the center, but a very large amount 

of structure far out from the center. This structure, which one might mistake as part 

of the laser beam, is less than 1% of the total energy. The eye and the !lm are clearly 

able to discern this low energy. However, the eye may not distinguish structure in a 

laser beam with less than a 20% magnitude variation.

Burn paper and exposed photographic !lm are often used for making beam pro-

!le observations. Figure 12.7b illustrates thermal paper having been illuminated by 

a laser beam. The burn paper may have a dynamic range of only 3, unburned paper, 

brown, and blackened paper. Skilled, experienced operators can make more critical 

burn paper patterns, and obtain a dynamic range of 5 or more. The main objection to 

this manual method is that the spot size is highly subjective to the integration time on 

the paper and the experience of the operator. With longer exposures the center may 

not change, but the width of the darkened area could change 50% or more.

Wooden tongue depressors and burn spots on metal plates are used as methods 

similar to burn paper. Sometimes the depth of the burn gives additional insight into 

the laser irradiance pattern. Experienced operators learn to read these burn spots 

to determine which beam tuning gives a speci!c result in a speci!c application. 

They might be tuning to one burn spot type for cutting, and a different one for drill-

ing holes. However, this measurement system is archaic, crude, nonquantitative, and 

subject to the capability and experience of the operator. Therefore, burn patterns are 

dependent on the experience and interpretation of the operator and thus unreliable.
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Fluorescing plates or cards permit the laser operator to see laser beams by 

 converting UV or IR radiation into visible light where they can be seen by the human 

eye. Fluorescing plates have limited dynamic range. This permits the determination 

of the relative spot size but not the distribution of intensities of light within the spot. 

Similar dynamic range problems are encountered when viewing re$ected beams.

Acrylic mode burns such as those shown in Figure 12.8 provide quite representa-

tive beam pro!les of CO2 lasers. The depth and detailed pattern of the acrylic burns 

(a)

(b)

FIGURE 12.7 (a) Re$ected laser beam; (b) laser beam burn spots.
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clearly shows the irradiance pro!le of the beam, and it is often possible to see mode 

structure. This gives an excellent visual interpretation of the beam pro!le. However, 

the acrylic mode burns are not presented in real time, which makes it very cumber-

some to tune the laser. They also do not enable one to see short-term $uctuations in 

the laser beam that can be problematic in some CO2 lasers. It is possible that fumes 

from the burning acrylic may form plasma or a smoke plume at the center of the hole. 

This material can block the incoming CO2 beam, thus distorting the pattern of the 

melt. Unless care is taken to have a fan to extract the fumes, the acrylic mode burn 

will contain structure that is nonexistent in the beam. Fumes from burning acrylic 

are toxic to humans, and care must be taken to exhaust these fumes outside of the 

work area.

12.3.2 ELECTRONIC MEASUREMENT METHODS

For electronic laser beam pro!le analysis, it is typically necessary to attenuate the 

laser beam to match the range of the sensor. The degree of attenuation required 

depends on two factors. The !rst is the irradiance of the laser beam being  measured. 

The second is the sensitivity or dynamic range of the beam pro!le sensor. Figure 12.9 

shows a typical setup for the case where a signi!cant amount of attenuation is 

required for the sensor to operate in the range of its linear response.

Typically, when measuring the beam pro!le of a high-power laser, that is, in 

excess of 5–50 W, the beam has enough energy to damage most sensors that might 

be placed in the beam path. Therefore, the !rst element of Figure 12.9, the beam 

sampling assembly, is typically used. It should be noted that there are some beam 

pro!ling sensors that can be placed directly into the path of a high-power laser 

to 10 kW.

FIGURE 12.8 Laser beam acrylic mode burn.
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For mechanical scanning instruments, the beam splitter assembly is usually suf-

!cient to reduce the signal from high-power lasers to the level that is acceptable. 

If the original laser beam is in the range of 50 W/cm2 or less, mechanical scanning 

instruments can measure the beam directly without using beam splitting or sampling 

optics. Mechanical scanning instruments are able to be placed directly in the path 

of medium power beams because the scanning device also acts to re$ect a large 

percentage of the incident laser light. In the case of a scanning slit-based system, 

the drum blocks light from the sensor during most of the duty cycle of the sensor. 

The rotating drum either absorbs or re$ects the incident laser except when the micro-

scopic slit, which is patterned on to the drum, rotates through the beam. In this case, 

only a very small fraction of the laser power is placed on the sensing element. For 

this type of beam pro!le sensor when excess laser power is placed on the sensor, the 

typical point of failure is the mechanical slit and not the detector element.

For camera-based beam analyzers, beam splitters alone may not provide suf!-

cient attenuation to reduce the beam power to less than the saturation level of the 

camera sensor. In this case, additional attenuation !lters are placed directly in front 

of the camera sensor to reduce the power density to a level acceptable by the camera. 

In some cases, the beam power, even after re$ection from one sampling surface, is 

too high and would burn neutral density (ND) !lters or cause the !lters to distort 

the beam pro!le. In this case, a second re$ecting surface is used to further reduce 

the incident power before impinging on the ND !lter set. This is described in more 

detail in Section 12.4.

Laser
High-power

beam
Beam sampling assembly

Pass through high power

Medium power
sampled beam

Neutral density
filter assembly

Beam
profile
sensor

Profile readout
device

Low-power attenuated
beam

FIGURE 12.9 Optical setup for electronic laser beam analysis.
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ND !lter systems can be adjusted over a very wide dynamic range, as much as 

from ND0 to ND10 (or transmission of 1–10−10). These ND !lter assemblies are dis-

cussed in more detail in Section 12.5.2.

The fourth item in Figure 12.9, the beam pro!le sensor, can be a mechanical scan-

ning device, described in the next section, or a charge-coupled device (CCD) or other 

type of 2D sensor array-based camera, described in the following section. The beam 

pro!le display device consists of a dedicated monitor or a PC style computer and 

monitor for providing an electronic image of the beam pro!le.

12.3.2.1 Mechanical Scanning Instruments

One of the !rst methods of measuring laser beams electronically employed a 

mechanical scanning device. This usually consisted of a rotating drum contain-

ing a knife-edge, slit, or pinhole that moves in front of a single-element detector. 

This method provided excellent resolution, typically to less than 1 μm. The limit of 

resolution of this type of device is determined by the size of the slit or pinhole and 

the sampling frequency of the electronics that de!ne the location of the mechanical 

scanning device. These devices can be used directly in the beam of low- to medium-

power lasers with little or no attenuation because only a small part of the beam is 

impinging on the detector element at any one time. The rotating drum re$ects the 

beam away from the detector the majority of the time.

Mechanical scanning methods work with CW lasers and high-frequency pulsed 

lasers. They do not work with pulsed lasers with pulse repetition frequencies of less 

than ~20 kHz. They have a limited number of axes for measurement, usually two, 

and integrate the beam along those axes. Thus, they only give detailed information 

about the structure of the beam in the direction of travel of the edge, slit, or pinhole. 

These beam pro!le instruments are appropriate for work in the visible, UV, and IR 

regions by using different types of single element detectors to sense the intensity of 

the laser radiation. Software has been developed which provides useful beam pro!le 

displays, as well as detailed quantitative measurements describing the spatial char-

acteristics of the laser that is being measured.

Figure 12.10a illustrates a commercial version of the knife-edge scanning slit 

beam pro!ling instrument. Figure 12.10b shows a typical Windows computer 

display. Figure 12.10c illustrates a typical mechanical diagram of a scanning slit 

beam pro!ler. Figure 12.11a is a photograph of a seven-axis scanning blade system. 

Figure 12.11b illustrates a typical Windows display from this seven-axis system. The 

mechanical layout of the multiaxis pro!ler is similar to Figure 12.10c. The angles 

of the knife-edges are varied so that the beam pro!le data come from multiple axes.

One variation of the rotating drum is the scanning slit or pinhole system, which is 

used for measuring the propagation characteristics of the beam under test. This system 

includes a lens mounted in front of the drum [20]. The lens is mounted on a moving stage 

under software control. By moving the lens in the beam, a series of measurements can be 

made that enables calculation of M2. (A more detailed discussion of M2 will be provided 

in Section 12.9.) A photograph of this M2 measuring instrument and readout is given in 

Figure 12.12a. A mechanical layout of the instrument is shown in Figure 12.12b.

Another mechanical scanning system consists of a rotating needle that is placed 

directly in the beam. This needle or waveguide has a very small opening allowing 
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(a)

(b)

FIGURE 12.10 (See color insert.) (a) Commercial knife scanner; (b) Windows PC display; 

(c) mechanical diagram of scanning slit or knife-edge beam pro!ler.
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only a portion of the beam to enter the needle. A 45° mirror at the bottom of the 

needle re$ects the sampled part of the beam to a single-element detector. The needle 

is both rotated in the beam and axially moved in and out of the beam to sample it 

in a complete, 2D manner. The advantage of a rotating needle system is that it can 

be placed directly in the beam of high-power industrial lasers, including Nd:YAG, 

!ber, and CO2. In addition, the step size of the mechanical translation of the needle 

can be made extremely small for measuring focused laser beams, or large for mea-

suring unfocused beams. It has, however, some characteristics of the rotating drum 

mentioned earlier. Speci!cally, it is not very useful for pulsed lasers because time is 

required to scan the beam. More scanning time is required than the duration of the 

laser pulse. Rotating needle systems provide extensive computer processing of the 

signal to produce displays of the measured beam pro!le and quantitative calculations 

describing the laser spot size and location.

12.3.2.2 Camera-Based Systems

Cameras are used to provide simultaneous, 2D laser beam pro!le measurements. 

They work with both pulsed and CW lasers. Silicon-based cameras operate in the 

UV region to the near IR to 1.1 μm, which is useful with a great majority of lasers. 

In  addition, there are other types of cameras that operate in the x-ray and UV 

regions, as well as cameras that cover the IR wavelengths from 1.0 μm to >400 μm. 

One limitation to the use of cameras as a sensor for measuring laser beam pro!les 

is that the spatial resolution is limited by the pixel size of the cameras. In CCD 

cameras, this is roughly 5 μm, and for most IR cameras, the size is somewhat larger. 

However, a focused spot can be reimaged with lenses to provide a larger spot for 

viewing on the camera, which can provide resolution down to approximately 1 μm 

Detector

Laser beam

Scanning slit

(c)

Rotating
drum

FIGURE 12.10 (Continued)
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(b)

(a)

FIGURE 12.11 (a) Seven-axis knife-edge instrument; (b) typical readout from seven-axis 

system.
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or less depending on the laser wavelength and the optics that are employed. The 

resolution of camera systems using beam reimaging or magni!cation optics is lim-

ited by diffraction of the optics. Modern cameras provide easy computer connection 

through universal serial bus (USB), Firewire (IEEE1394), or gigabit Ethernet (GigE) 

interfaces that are already available on most PCs. Current commercial beam pro!l-

ing software provides illuminating two- and three-dimensional (3D) beam displays 

as shown in Figure 12.13. Modern beam pro!ling systems also provide sophisticated 

(a)

Rotating
drum

(b)

PinholesKnife
edges

Servo-
driven

lens

FIGURE 12.12 (a) M2 measuring instrument and readout; (b) mechanical diagram of 

M2 measuring instrument.
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(b)

(a)

FIGURE 12.13 Highly structured laser beam measured with a CCD camera and shown 

in both 2D (a) and 3D (b) views.
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spatial analysis of the beam pro!le. A drawback of camera-based systems is that the 

cameras are extremely sensitive relative to the energy in most laser beams. Thus, 

nearly all lasers must be signi!cantly attenuated before the cameras can be used for 

beam pro!le analysis.

12.4 CAMERA-BASED INSTRUMENT DESCRIPTIONS

Complete instrumentation for a camera-based beam pro!ling system includes the 

camera sensor, PC, and software for making quantitative calculations and displaying 

the graphical representations of the beam pro!le as well as the computational results. 

Optics is almost always needed to split off the part of the beam, and attenuate the 

beam before going into the camera. Often the beam is either too large or too small, 

and optics or other techniques must be used to size the beam appropriately.

12.4.1 COMPUTERS

Modern computers used for laser beam pro!ling permit the imaging and analy-

sis of the beam at frame rates as fast as 30 Hz with camera matrices as large as 

1200 × 1600 pixels. The performance of these PC-based systems is enhanced by the 

ease of use of USB 2.0, Firewire, and GigE interfaces.

Measuring parameters of a laser beam presents many unique challenges that do 

not exist when measuring other items that are commonly measured with machine 

vision systems. As renowned laser scientist Tom Johnston once said, “Measuring the 

width of a laser beam is like trying to measure the size of a cotton ball with a caliper.” 

The dif!culty in measuring laser beam widths comes from the fact that laser beams 

never cut off succinctly, but almost always have energy that extends out into the wings 

where very low light levels can mimic camera noise. Thus, processing of very low-

level optical signals becomes critical in the measurement of laser beams. Therefore, 

sensors with high dynamic range are necessary to accurately perform the task.

12.4.2 BEAM ANALYSIS SOFTWARE

Laser beam analysis systems run on the current operating system, 64-bit Windows 7 

and 8, and 32-bit Windows XP as well as legacy operating systems and non- Windows 

environments. Sophisticated signal processing of large data matrices provides 

very detailed views of the laser as well as accurate quantitative beam pro!le 

 measurements. Software must also control the sensor and thus be able to manip-

ulate the camera baseline, exposure, and gain settings. In addition to providing 

beam  displays and calculations, beam analysis software may also interface to 

other sensor systems such as laser power and energy measurement devices, wave-

length, and pulse width measurement devices to name a few. The capabilities of the 

 software to provide intuitive beam pro!le displays are described in more detail in 

Section 12.7, and the quantitative calculations made by these products are provided 

in Section 12.8.
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12.4.3 CAMERAS USED IN BEAM PROFILE MEASUREMENT

Various types of cameras are used in laser beam pro!le analysis. Each of these has 

advantages and disadvantages for various applications. The most common type of 

camera used for laser beam diagnostics incorporates a silicon-based sensor. These 

cameras consist of at least two types: CCD and complementary metal–oxide–semi-

conductor (CMOS). Silicon-based cameras cover the wavelength range from 190 nm 

to 1.1 μm when the typical glass window and IR cutoff !lter are removed. Such optics 

would otherwise attenuate or eliminate the UV and IR portions of the usable spec-

trum. CMOS and CCD cameras are fairly inexpensive because they cover the UV, 

visible, and near-IR regions these cameras are used for the measurement of many 

lasers. Also in use are cameras with InGaAs matrix sensors. InGaAs cameras cover 

the range from visible to 1.7 μm and typically have pixels two to !ve times larger 

than CCD or CMOS cameras. Pyroelectric solid-state cameras are also used for IR 

lasers with wavelengths longer than 1 μm. These cameras can have matrix sizes of 

124 × 124 and 320 × 320 pixels with 100–80 μm elements. Pyroelectric cameras 

also operate in the 13–350 nm soft x-ray to UV spectral range. Solid-state cameras 

based on 2D pyroelectric arrays have been provided for many years. Recently, higher 

resolution models have become available.

12.4.3.1 Characteristics of Cameras

One of the initial camera technologies used for beam pro!le analysis was a charge injec-

tion device (CID). CID cameras are very versatile in that they have X/Y readout rather 

than a sequential readout, and can thus be programmed to read out only a part of the 

camera matrix. This enables them to operate at high frame rates. In addition, CID cam-

eras are being coated with phosphors that make them especially sensitive for UV and 

x-ray. CID cameras are currently produced by Thermo Fisher Scienti!c, Liverpool, NY.

CCD and CMOS cameras are the most common types of cameras used in beam 

pro!le analysis. In addition to standard CCD and CMOS cameras, there are CCD and 

CMOS cameras with coolers attached to the sensor. Active cooling reduces the noise 

of the camera, and allows greater signal-to-noise ratio for measuring laser beams. 

A  typical uncooled CCD/CMOS has a 10–16-bit dynamic range, whereas cooled 

cameras can be obtained with 16–24-bit signal-to-noise ratio and higher. Cooled cam-

eras can be as much as a factor of 5–20 times more expensive than uncooled cameras.

Another type of solid-state camera useful for pro!ling lasers in the far IR is a 

camera based on a micro-bolometer array sensor. These IR bolometers are designed 

for thermal imaging, but nevertheless could be useful for long-wavelength laser beam 

analysis. In addition to IR bolometers, there are ferroelectric cameras. This camera 

is also designed for thermal imaging in the 8–12 μm region, but is potentially useful 

for laser beam analysis.

Finally, there are cooled IR cameras that could be used for laser beam analysis. 

This includes cameras with sensors made from materials such as indium antimonide 

(InSb) and mercury cadmium telluride (HgCdTe). These cooled IR cameras require 

signi!cantly more cooling than cooled CCDs, and typically use liquid nitrogen as 

the cooling mechanism. In addition, they are relatively expensive, costing between 

20 and 50 times as much as CCD cameras, and 2–4 times as much as solid-state 

501



487Current Technology of Beam Pro!le Measurement

pyroelectric cameras. A drawback of these cooled IR cameras is that they are 

extremely sensitive. This means they require additional attenuation over and above 

what would be required for uncooled, solid-state pyroelectric cameras.

12.4.3.2 Characteristics of Cameras Relevant to Beam Pro"le Analysis

There are a number of characteristics to evaluate in choosing one camera over 

another, or in specifying a given type of camera for use in laser beam pro!le analysis. 

The most signi!cant characteristic is the wavelength response of the camera. This 

was alluded in Section 12.4.3.1. For example, CCD and CMOS cameras are the most 

useful cameras for the UV, visible, and near-IR spectra. A second essential factor is 

that the sensor on the camera be windowless to eliminate possible fringes caused by 

re$ections of the two window surfaces interfering with each other. This is the same 

effect as that of an etalon. Alternatively, if a window is required, then the window 

should be con!gured to minimize these interference effects. This can be done by anti-

re$ection (AR) coating the window for the wavelength of use, wedging the surfaces 

of the window and angling the window relative to the sensor array, or making the 

window of bulk absorbing ND !lter, which attenuates the re$ection from the second 

surface going back and interfering with the incoming irradiation of the !rst surface. 

The dynamic range of the camera is another factor for serious consideration.

Another useful feature to consider in choosing a camera is the availability of an 

electronic shutter or exposure control. This allows the cameras to integrate light 

only during a short time, for example, 1/1000 s. This feature can enable the camera 

to select a single laser pulse out of a kilohertz pulse train. In some cases, exposure 

control can be used to make the camera less sensitive and in effect attenuate the laser 

beam. Multiple frame integration or exposure control also enables very low-level 

light signals to be accumulated on the camera, thus obtaining an image with higher 

signal-to-noise ratio.

Fill factor should be considered in the choice of a camera. Normally, CCDs and 

most other cameras have a relatively high !ll factor, and thus do not lose signal in 

between the active parts of the pixel. Cameras with low !ll factor may not accurately 

measure all of the spatial characteristics of a laser.

Linearity of the camera output is another very important factor to be consid-

ered. Most solid-state cameras have nonlinearity of less than 1% over the speci!ed 

dynamic range of the camera, which enables accurate beam pro!le measurements.

A useful feature of some cameras is that they can be triggered externally. This 

enables a trigger pulse from the laser to synchronize the camera to the laser. Another 

feature in beam pro!ling systems provides an electronic signal such that the laser 

can be synchronized to the frame rate of the camera. When these synchronization 

methods are impossible, the laser and camera may run asynchronously, the user 

takes a slight chance that the camera will be in a reset mode when the laser pulse 

arrives. However, this typically occurs less than 3% of the time with most CCD-type 

cameras.

Camera sensitivity is another consideration. Almost all of the silicon-based cam-

eras, such as CCD and CMOS, have similar sensitivities. The solid-state uncooled 

pyroelectric cameras are about 6 orders of magnitude less sensitive than CCDs, and 

thus require less attenuation than these camera types.
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12.4.3.3 CCD-Type Cameras

CCD cameras are the most common type of cameras used in beam pro!le analysis. 

There are very inexpensive CCDs typically used in webcams and consumer applica-

tions such as cell phones. These CCDs typically have limited signal-to-noise ratios 

and thus are not very suitable for laser beam pro!le analysis. Industrial grade CCD 

cameras have electronics designed to mask or correct bad or inoperative pixels that 

may exist. Bad pixel correction provides high !delity images thus making it easier 

for beam analysis software to process the signal.

There are basically two types of CCD camera technology currently in use: frame 

transfer and interline transfer. In frame transfer cameras, there is only one sensor 

site for both !elds of the signal frame. Thus on a pulsed laser, since there is only 

one cell, this cell is read out during the !rst !eld, and no signal remains for the 

second !eld. Thus, frame transfer cameras have only one-half the spatial resolution 

for pulsed lasers that they do for CW lasers. Some frame transfer CCD cameras 

have been shown to have signal response beyond the normal 1.1 μm cutoff of silicon 

sensors, out to 1.3 μm, even though the sensitivity is typically 1000 times less than 

it is at 0.9 μm. Thus, the dynamic range of the camera is reduced when used in the 

wavelength of range >1250 nm.

Interline transfer sensors have individual pixels for each !eld of the camera 

frame. They maintain twice the resolution of frame transfer cameras with pulsed 

lasers. An interline transfer camera can pick out a single pulse from pulse rates up 

to 10 kHz with a 1/10,000 s shutter speed. Interline transfer cameras typically have 

higher speed shutters than with frame transfer cameras. However, a problem exists 

with interline transfer cameras in that the readout electronics are typically on the 

rear of the silicon wafer behind the sensor cells. For IR lasers with wavelengths 

approaching 1.06 μm, the absorption of all the radiation does not occur in the sensor 

cells on the front, and some of the radiation is absorbed in the transfer electronics on 

the rear of the cell. This absorption of radiation creates a ghost image in the beam, 

which distorts the view of the beam pro!le. Even more signi!cantly, it greatly dis-

torts measurements on the beam, since this ghost image appears as low-level energy 

stripe that transits the center or most intense portion of the beam. Thus, interline 

transfer cameras are recommended for pulsed lasers in which the wavelength is less 

than 1 μm. Frame transfer cameras are recommended for YAG lasers at 1.06 μm, 

even though on pulsed lasers they have only half the resolution as interline transfer 

cameras.

12.4.3.4 Pyroelectric Solid-State Cameras

Pyroelectric solid-state cameras [21] have been developed that cover the wavelength 

range from 1.1 μm to >400 μm. These cameras have a very reliable and linear output. 

Pyroelectric cameras interface to ubiquitous computer ports such as USB, Firewire, 

and GigE much as do CCD cameras and provide the same viewing and numerical 

capability. However, pyroelectric cameras have a somewhat lower spatial resolution 

of 80 μm per pixel and 320 × 320 matrices.

Figure 12.14 shows a pyroelectric camera with the output of a CO2 laser displayed 

on a computer monitor. The false color image is provided by laser beam analysis 

software.
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Pyroelectric solid-state cameras work well with pulsed and CW laser radiation. 

However, it is necessary that the camera be triggered from the pulsed laser to syn-

chronize the scanning. The reason for this is that the pyroelectric sensor is a thermal 

sensor, and after the signal is read out from the heating radiation pulse, the heated 

area of the sensor cools and generates a signal of the opposite polarity. It is neces-

sary to read out this negative polarity signal and reset the sensor before the next laser 

pulse. This is done by having the camera synchronize to an electronic pulse that is 

coincident with the optical laser pulse. Camera electronics calculates the interval 

between pulses, and then adjusts the resetting scan to occur just before the next 

laser pulse. Depending on the pulse rate of the laser—single shot, very low fre-

quency below 5 Hz, intermediate frequency between 5 and 50 Hz, or high frequency 

between 50 Hz and 1 kHz—the electronic resetting operation is performed differ-

ently in the pyroelectric camera.

For CW operation, the sensor must be mechanically chopped to provide an 

alternating heating and cooling cycle. This typically is done with a 50% duty cycle 

between heating and cooling, and is normally performed by a rotating chopper blade. 

The chopper blade is usually incorporated into the camera. The camera readout is 

then triggered to read out each row from the camera just as the blade crosses that row 

of pixels. In this manner, every row of pixels in the pyroelectric sensor has the same 

integration time, is read out immediately after being covered or uncovered, and thus 

gives optimum uniformity of the signal.

FIGURE 12.14 (See color insert.) Pyroelectric camera video graphics array (VGA) output 

of CO2 laser.

504



490 Laser Beam Shaping

12.5 LASER BEAM ATTENUATION

Laser beam pro!le measurements are made on lasers that vary from <1  mW 

to >10  kW average powers. This typically corresponds to a power density of 

<10−1 W/ cm2 to >105 W/cm2. A CCD camera typically saturates at a power density 

in the range of 10−7 W/cm2. Solid-state pyroelectric cameras typically saturate at 

~1 W/cm2. Thus, the necessary attenuation arranged for CCD cameras varies from 

105 to 1012. For pyroelectric cameras, the attenuation range is a little more modest 

from about 104 to as much as 1011. Initial attenuation of high average power laser 

beams is usually performed by one of the two methods. The !rst is using a beam 

splitter to pick off a small percentage of a beam, allowing the main part to pass 

through the beam splitter. The second method is in-line attenuation in which the 

beam is reduced in power by the absorption of ND !lters.

12.5.1 BEAM PICKOFF

The !rst step in attenuating a high-power laser beam is to pick off or sample a small 

percentage of the beam from the main beam. This must be done without affecting 

the beam pro!le of the sampled beam. There are basically three ways to perform 

this pickoff. The most common is to have a beam splitter that is mostly transmitting 

and partially re$ecting. The beam splitter is typically put in the beam at 45°, so that 

a small percentage of the beam is re$ected at 90° to the incident beam. However, 

this beam sampling surface can be placed at any angle, and there is an advantage to 

placing the pickoff surface nearly perpendicular to the beam so that the re$ection 

becomes less polarization sensitive.

Another type of pickoff is to use a mostly re$ecting and partially transmitting 

surface. In this case, the surface is placed in the beam at an angle to re$ect the major-

ity of the beam, and then transmit a small part through the surface to be measured 

by the beam analyzer.

A third method of beam pickoff is to use a diffraction grating. This can be either 

a re$ecting or a transmitting type. In the transmitting type of diffraction grating, the 

beam is typically incident upon the grating perpendicular to the surface, and most of 

the beam passes directly through the diffraction grating. However, a small percent-

age of the beam is transmitted at an angle offset from the output angle of the main 

pass through beam. The portion diffracted typically has multiple modes, whereas, 

for example, 1% of the beam may transmit at, for example, 15° from the emitting 

main beam. Second-order diffraction may be 0.01% at 30°, and even a third-order 

beam may be 10−6 of the input beam at 45°. The angle and the diffraction percent 

depend on the manufacturing characteristics of the diffraction grating, as well as the 

wavelength of the beam incident upon the grating.

A re$ection type of diffraction grating works in a similar manner, except that 

the beam incident on the diffraction grating is at an angle other than perpendicular. 

For example, instead of at 90° to the plane of the grating, it may be 30° from normal 

incidence. The main re$ected beam is then re$ected at 30° from normal incidence in 

the opposite direction. Now the !rst-, second-, and third-order beams are re$ected at 

angles other than the angle of the main re$ection. As in the case of the transmitted 
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re$ection beam, these refracted and attenuated beams may be 5°, 10°, or 15° away from 

the main re$ected beam, and are typically 1%, 0.01%, or 10−6 of the main beam, and so 

on. The diffracted low-intensity beam maintains all of the beam pro!le characteristics 

of the main beam. This small intensity beam can then be used for beam analysis.

The most commonly used beam pickoff surface is made of fused silica and is usu-

ally used at a 45° angle to the incoming beam. If the fused silica is not AR coated, 

it re$ects an average of 4% of the beam per surface. However, at 45° the material 

becomes polarization sensitive, and one polarization is re$ected at about 2%, and 

the other can be as high as 8%–10%. Thus the re$ected sample beam does not truly 

represent the incoming laser beam. This problem can be solved by placing a second 

surface in the path of the initially sampled beam, but angled in a perpendicular plane 

that re$ects the two polarizations in the opposite way to the !rst surface. That is, 

the !rst surface may re$ect the beam 90° in the horizontal, and the second surface 

re$ects 90° in the vertical. After two such re$ections, the sampled beam once again 

has the same characteristics as the initial beam.

The quartz sampling plates have two con!gurations. One is a wedge so that the 

back surface of the quartz re$ects at a different angle than the front surface. This 

keeps the re$ections from the two surfaces separate, thus keeping them from inter-

fering with each other. The other con!guration uses a very thick, $at quartz plate 

placed at 45° such that the re$ection from the back surface is displaced suf!ciently 

far from the front surface re$ection so that it does not overlap and interfere. Flat 

pickoffs have the advantage that the throughput beam, while being slightly displaced 

in position from the input beam, exits the $at at the same angle as the entrance and is 

not distorted. Figure 12.15a shows a commercially available quartz re$ecting device 

using a thick $at as the re$ector. The mechanical layout is shown in Figure 12.15b. 

With the wedge, the exit beam is displaced in position and angle, as well as being 

slightly elongated. Thus if a beam pickoff were to be used in process and left perma-

nently in place, the $at would have superior characteristics to a wedge.

Figure 12.16a shows a commercially available attenuation device using a wedge as 

the re$ecting mechanism. Figure 12.16b shows the mechanical layout of the device, 

(a)

Input
beam

(b)

Quartz
beam

splitter

Sampled
beam

Output
beam

FIGURE 12.15 (a) Beam sampling device; (b) beam sampling mechanical layout.
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with indents for mounting the wedge on the right side and slots for ND !lters on the 

left side. For IR lasers, ZnSe commonly replaces the quartz as the bulk re$ecting 

material. ZnSe can be AR coated for the speci!c wavelength of interest, and achieve 

re$ection lower than 1% per surface. Such coating may also be designed so that when 

placed at 45°, the re$ection is polarization insensitive.

An advantage of re$ecting gratings is that they can be made from metal, and 

then the rear cooled with water to enable them to withstand very high powers. Some 

gratings are of a transmitting type, either from quartz for visible radiation or from 

ZnSe for IR radiation, and have the advantage that the main beam continues along 

the same path as its entrance.

Sometimes a thin pellicle of 10–50 μm thick is used for a beam sampler. This is 

so that the rear re$ection is so close to the front side that the interference effects can 

sometimes be negligible. However, a pellicle as thin as 10 μm may still create inter-

ference fringes that could be resolved with a 4 μm pixel camera.

Finally, for industrial Nd:YAG lasers a good pickoff scheme is the use of the 

dichroic mirror that is normally employed as a turning mirror for the laser. This 

dichroic mirror is typically made of fused silica with an AR coating and placed at 

45° to re$ect nearly the entire 1.06 μm beam at 90° from the input. The dichroic 

mirror is con!gured so that visible light passes through the !lter, so an operator can 

either see through the !lter to the work surface or a camera can be mounted behind 

the !lter to monitor the work surface of the process being performed. These dichroic 

!lters transmit a small percentage of the YAG laser beam directly through the !lter, 

so that it may be used as a sampling mechanism. Dichroic !lters used in this manner 

are polarization sensitive, and so once again, two !lters must be placed at 90° to each 

other in order to obtain a polarization insensitive representation of the input beam.

12.5.2 IN-LINE ATTENUATION

There are a number of methods of further attenuating a laser beam once  re$ection 

has reduced the power or energy low enough that it does not damage the in-line 

attenuators. One type of in-line attenuators consists of fused silica plate with 

(a) (b)

FIGURE 12.16 (See color insert.) (a) Combined beam splitter and ND !lter holder; 

(b) mechanical diagram of combined beam splitter and ND !lter holder.
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a  metalized re$ecting surface coating. These ND !lters made of fused silica are 

particularly useful for UV radiation. However, when the multiple surface re$ecting 

ND !lters are used in conjunction with each other, there is the danger of causing 

re$ections between the multiple surfaces. These re$ections can cause interference 

fringes, which can signi!cantly distort the transmitted beam pro!le. This problem 

can be somewhat alleviated by tilting the !lters so that the re$ected beams are not 

similar and thus do not interfere with each other.

Another type of surface-re$ecting ND !lter consists of circular variable !lters, in 

which the attenuation varies around the surface of a circular disk. This type of !lter 

is very useful for single-element detectors, but is not very useful for beam pro!lers, 

in that the attenuation is continuously varying, and therefore will attenuate one por-

tion of the beam more than the other.

The more common in-line attenuation !lters for beam pro!le analysis consist of bulk 

absorbing ND !lters. Bulk absorbing !lters are usually made of BK7 glass impreg-

nated with an absorbing material. The range of attenuation achievable with these !lters 

varies from an optical density (OD) of 0.1 to >4. The OD number is de!ned by

 OD log=
1
T









  (12.1)

where:

T is the transmission ratio of the output divided by the input

The term ND is somewhat of a misnomer as the OD is strongly dependent on 

wavelength.

Since the absorption is within the material, there is very little danger of re$ection 

from one surface re$ecting back and interfering with the re$ection from the other 

surface. Nevertheless, when two !lters are stacked together, the back surface of one 

and the front surface of the next need to be slightly angled so that interference of 

the surface re$ections do not distort the attenuated beam. Bulk absorbing !lters are 

useful for the entire visible and near-IR spectrum. However, they begin to cut off 

at about 380 nm; thus, they are not useful for UV lasers. They also tend to change 

their attenuation characteristics at 900 nm in the IR, and then cut off completely 

between 2 and 2.5 μm.

Bulk absorbing ND !lters are commercially available in a number of forms. One 

common form is simply a $at plate, up to 2  inch (50  mm) square, which can be 

placed one after another. Figure 12.16 shows 2 inch square ND !lter $at plates used 

to attenuate a beam. This same instrument could also accommodate surface re$ect-

ing !lters for the UV. A second commercially available type is to have individual 

round !lters mounted on a wheel so that the wheel can be turned, enabling the user to 

change attenuation simply by rotating the wheel. Often these wheels can be stacked 

one behind another, so that multiple ND !lters can be selected. Typical transmissive 

!lters have an OD range between 0 and 10−4. Figure 12.17 shows a commercially 

available rotating wheel ND !lter set.

A third type of bulk absorbing ND !lter consists of two !lters made in the form 

of wedges. An individual wedge would be like a circular variable !lter and attenuate 
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more on one side than another. However, an opposing wedge is placed behind the 

!rst wedge, and the entire beam passes through the same amount of attenuating 

material. These wedges enable a user to make continuous changes in attenuation in 

small increments, which can be very convenient. However, in some instances beam 

distortion has been observed from these !lters. The amount of distortion is some-

what based on the beam diameter relative to the size of the bulk absorbing wedges.

None of the in-line !lters discussed thus far is useful for IR lasers beyond 2 μm. 

It turns out that for CO2 lasers, CaF2 $ats are a very useful attenuating !lter. A 1 mm 

thick CaF2 plate absorbs roughly 50% of 10.6 μm radiation impinging upon it. Thus, 

by stacking CaF2 $ats, CO2 lasers can be attenuated so that the signal is reduced in 

!ne increments to within the range of the IR camera.

Cross polarizers are popular for in-line attenuation of laser beams. However, it 

would be dif!cult to assure that the cross polarizers are attenuating each polariza-

tion of the beam identically. Therefore, they are not commonly used in beam pro!le 

analysis, even though they work very well to attenuate beams for single-element 

power measurement.

Finally, the last method of attenuating a laser beam is to allow the beam to 

impinge upon a scattering surface. The beam must !rst be attenuated by beam sam-

pling, so it does not burn or damage the scattering surface. Once the beam impinges 

upon the scattering surface, the camera can use a lens to image the re$ection of 

the scattering surface. The image re$ection is typically very representative of the 

beam  pro!le. A problem that can exist is that speckle always occurs from scatter-

ing surfaces. Speckle is a situation in which the roughness of the scattering causes 

interference to create both bright and dark spots in the image re$ection. Having the 

scattering surface move at a rate faster than the camera integration, frame rate can 

FIGURE 12.17 Rotating wheel ND !lter set.
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solve this problem. There exists a commercial product called a “speckle eater,” which 

is simply a  scattering surface mounted to a small vibrating motor. An advantage of 

imaging scattered beam re$ection is that absorption-type !lters behind the camera 

lens can be used for attenuation to achieve a !ne degree of beam irradiance reduction.

12.6 BEAM SIZE

Laser beams typically vary from a few microns in beam width to over 50 mm, and in 

some applications, much larger. Focused laser beam spots can be as small as 1 μm in 

width. Since camera pixels, at the smallest, are approximately 4 μm, cameras are not 

very useful for measuring the smallest focused spots. In addition, typical commer-

cial grade cameras have an overall sensitive area of roughly 6–36 mm, with 36 mm 

being the size of the largest area CCD cameras. Thus, there are many cases when the 

beam is too small or too large to be measured directly with a camera.

Very small beams can be measured by mechanical scanning devices or opti-

cally enlarged for measurement with a 2D array such as a CCD or CMOS camera. 

Both the rotating drum and the rotating needle systems can measure small beams. 

However, these systems have a problem in that they do not work with low repetition 

rate pulsed lasers, and do not give instantaneous whole beam analysis.

Many times when looking at a semiconductor laser such as a laser diode, a micro-

scope objective is used to focus the emitter surface on to the camera. This technique 

provides a measurement of the spatial output of the emitter surface.

An indirect method of measuring a small focused spot is to allow the beam to go 

through focus and use another lens to collimate the beam. A third lens with a long 

focal length then refocuses the beam to a spot size that can be resolved by the cam-

era pixels. If the beam is not a tightly focused spot, but rather a long waist, a beam 

expander can perform the same function to increase the size of the beam. Finally, a 

small focused spot can be scattered from either a re$ecting or transmitting surface, 

and imaged with a camera lens. Dif!culty with this technique is that if the spot is 

very small, it is dif!cult to obtain scattering surfaces with structure small enough 

to accurately scatter the beam, rather than simply re$ect off one of the facets of the 

scattering medium. Magni!cation of the beam can also be achieved in the computer 

display, however, at the loss of resolution. An example of the magni!cation capabil-

ity in the computer software is shown in Figure 12.18.

When the beam is too large for the camera, the !rst solution is to use a beam 

expander in reverse. A beam expander can typically give beam reductions in the order 

of 10 to 1. Thus, a 5 cm beam could be reduced to 5 mm, which would !t nicely on a 

CCD camera. A second method with large beams is to use large area sensors. This is 

limited to approximately 35 × 25 mm for large area or multiple sensor cameras.

Finally, the most common method of viewing very large beams is to re$ect the 

beam from a scattering surface and image the beam with a lens. A scale can be used 

to calibrate the pixel pitch of the lens/camera system. This is the same technique as is 

used for beam attenuation, but now the primary purpose is to be able to image a large 

area beam, rather than attenuate a large amount of energy. Techniques described 

above can be used to minimize speckle when it reduces the !delity of the beam 

pro!le measurement.
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(a)

(b)

FIGURE 12.18 Focused laser diode beam shown at (a) 4× computer magni!cation and 

(b) 16× magni!cation.
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12.7 VIEWING BEAM PROFILES

A tremendous amount of information can be gained about the beam pro!le simply 

by being able to clearly see it on a computer screen. Mode structure and distortion of 

the beam are immediately recognized. Examples are a Gaussian beam distorted into 

an elliptical shape, or the introduction of spurious multimode beams into the main 

beam. The beam splitting up into multiple spots or clipping of the beam on an edge 

of the transport system is immediately seen. In top-hat beams, an electronic display 

can show hot and cold spots in the top hat, as well as distortion in the vertical sides 

or walls of the beam.

12.7.1 2D BEAM PROFILE DISPLAYS

A 2D view of the beam enables the user to see the entire beam simultaneously. 

A false color or a grayscale plot is given which enables the user to tell intuitively 

where the hot and cold spots are within the beam. Cross sections through the beam, 

located either manually or automatically at some part of the beam, introduce dis-

plays of beam irradiance in the vertical and/or horizontal axis, which help interpret 

the 2D display. Figure 12.19 shows the 2D display of a beam pro!le with the cross-

sectional vertical displays drawn through the peak of the beam. The cross-sectional 

FIGURE 12.19 2D Beam pro!le display with cross section on the x/y–axis.
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pro!les can be drawn at any part of the beam as well as rotated from the x/y-axis to 

the major/minor axis of an elliptical beam.

Sometimes false color schemes can have a signi!cant effect in providing intuitive 

beam pro!le information. Oftentimes a grayscale image can show patterns in the 

beam that color does not impart. Figure 12.20 shows a 2D beam pro!le display cre-

ated as a grayscale image. Notice the interference rings that show up dramatically in 

the shades of gray. If this were in color, one might not notice the interference rings. 

These interference rings are re$ections from small specks of dust on one of the trans-

missive optics such as an ND !lter.

12.7.2 3D BEAM PROFILE DISPLAYS

A 3D view of the beam pro!le renders a higher level of intuition of what the beam 

pro!le really looks like. The user has the option of rotating and tilting the beam, 

changing the resolution and color, and so on, to maximize his ability to obtain intui-

tive information from the beam display. However, while 2D displays give all the 

beam pro!le information simultaneously, 3D displays can hide the rear of the beam. 

Nevertheless, the 3D view is very often useful in gaining greater intuition from the 

beam pro!le. Figure 12.21 shows a 3D beam pro!le at different angles of rotation, 

illustrating how the beam looks from different sides.

FIGURE 12.20 2D grayscale beam pro!le display showing interference fringes from dust 

on an ND !lter used to attenuate the beam.
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(a)

(b)

FIGURE 12.21 3D Beam pro!le shown at two rotation angles: (a) 135°; (b) 225°.
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There are many view processing features now available that assist in enhancing 

the intuition gained from seeing the beam. These include choices of resolution in the 

3D display, that is, the number of lines displayed. Adjacent pixel summing, called 

convolution kernel, Gaussian blur, or spatial smoothing, is available to reduce the 

signal-to-noise ratio of a beam pro!le. This technique enables a user to more clearly 

see the major features of the beam, especially in the presence of noise.

12.8 QUANTITATIVE MEASUREMENTS

One of the most important features of modern beam pro!lers is the ability to make 

very accurate measurements of the beam spatial characteristics. Two important 

laser characteristics, the wavelength of the laser and the temporal pulse width, are 

unrelated to beam pro!le measurement and are measured by instruments other than 

beam pro!le instruments. Nearly all other qualities of a laser beam are related to 

the spatial beam pro!le. One important measurement that is not directly measured 

by beam pro!le instruments is the total power or energy, which must be measured by 

a separate instrument. However, the total power or energy can be measured with a 

power or energy meter at the same time that the sampled beam pro!le is measured. 

When this is done, the beam pro!ling system can be calibrated to the total power or 

energy, and from then on the beam pro!ler is able to track the total power or energy 

of the laser under test.

Characteristics of a laser that are directly related to beam pro!le measurements 

include the pulse-to-pulse relative energy, as discussed in Section 12.8.1, the peak 

power or energy, the location of the peak, the location of the centroid of the power or 

energy, and the beam width. The beam width can be measured either on an x/y-axis 

or, for an elliptical beam, can be measured along the major and minor axis of the 

ellipse. Each of these characteristics is discussed in Section 12.8.

12.8.1 RELATIVE BEAM POWER OR ENERGY

Cameras are seldom able to give a direct measurement of the total energy or power 

in a laser beam. The camera is typically placed at the end of a long chain of attenu-

ation so that it does not see the total beam directly. Since this optical sampling and 

attenuation is employed for the purpose of reducing the energy down to the usable 

range of the camera, and can be as much as a factor of 1011, it is not practical to 

calibrate each element of attenuation. Thus, the absolute power fed to the camera is 

unknown relative to the total power of the beam. Second, cameras and attenuation 

optics do not have uniform wavelength characteristics. Therefore, there would have 

to be a different calibration factor for every wavelength of laser that is measured. 

It would be impractical to attempt to calibrate the beam pro!ling system as a func-

tion of wavelength.

Nevertheless, as described earlier, a power meter can be used in the direct beam 

path to measure the total power while a fraction of the beam’s total power is split 

off and sent to the camera. After correcting for the power lost or ratio of the beam 

splitter, the total energy or power measured by the meter can then be entered into 

the beam analysis instruments software. From then on the measured beam pro!le 

515



501Current Technology of Beam Pro!le Measurement

$uence map represents the total power or energy contained within the beam. This 

is especially useful with camera as they “see” the entire 2D beam distribution, and 

thus can provide a measurement of the total beam power or energy as accurately as 

a power or energy meter within the dynamic range of the sensor.

12.8.2 PEAK POWER OR ENERGY

Peak power or energy is a relatively easy measurement that is derived from the total 

power. Since the total power on a camera is a summation of the irradiance on each 

pixel, it becomes relatively easy to determine what part of this total power is con-

tained within each pixel, and thus the energy on the pixel with the highest power is 

derived in software. This is a useful measurement in that it tells whether there are 

hot spots in the beam and the magnitude of these hot spots. This can be particularly 

useful when the laser power or energy is approaching the damage threshold of optics 

through which the beam must pass. A hot spot in the beam could cause damage even 

when power averaged over the area of the beam is well below the damage threshold.

12.8.3 PEAK PIXEL LOCATION

When the software in the beam analyzer !nds the magnitude of the pixel with the 

highest irradiance, it can also provide the location of this pixel. This may be useful 

to track the stability of the hot spot or peak irradiance, and determine whether or 

not this highest irradiance is stable or is moving back and forth across the beam. 

The actual peak irradiance location is seldom useful in telling where the majority of 

the energy of the beam is located, however.

12.8.4 BEAM CENTROID LOCATION

Quite often, more signi!cant than the peak pixel location is the location of the cen-

troid of the beam. The centroid is de!ned as the center of mass or !rst moment of the 

laser beam, and is described in the following equation:

 X
xE x y z x y
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The centroid of the beam can be more signi!cant than the peak pixel because it is 

independent of hot spots in the beam and is not as strongly affected by noise in the 

measurement system. This is where the energy center is located. Pointing stability 

of a beam is measured by doing statistical analysis on the centroid location rather 

than the peak pixel. Pointing stability provides signi!cance in showing the spatial 

stability of the laser beam.
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The signi!cance of the beam centroid can be very important in alignment of 

laser beams. This is true in optical trains, on research tables, and in industrial laser 

applications where it is important to know that the beam is positioned correctly in 

the optics. It is also signi!cant in aligning lenses to laser diodes to collimate the 

beam. The beam centroid must also be accurately known when aligning beams into 

!ber optics. Many beam shaping systems require alignment of the beam, usually the 

centroid, to the shaping optics.

12.8.5 BEAM WIDTH

One of the most fundamental laser pro!le measurements is the beam width. It is a 

measurement of primary signi!cance because it affects many other beam param-

eters. For example, the beam width gives the size of the beam at the point where 

measured. This can be signi!cant in terms of the size of the elements that are in the 

optical train. Measurement of beam width is the critical part of measuring diver-

gence of laser beams, which is signi!cant in predicting what size the beam will be 

at some other point in the optical train. Beam divergence also predicts the $uence of 

a beam at any point along its propagation. The beam width is critical for the perfor-

mance of most nonintegrating beam shaping systems. Statistical measurement of the 

width of the beam is also a signi!cant factor in determining the stability of the laser 

output. Finally, measurement of the beam width is essential in calculating the M2 of 

the laser. This is an important characteristic of laser beams that will be discussed 

later in this section. Even though fundamental and important, the beam width is 

sometimes a very dif!cult measurement to perform accurately.

12.8.5.1 Considerations in Accurate Beam Width Measurement

A number of characteristics of a sensor used for beam pro!le measurement must 

be carefully considered and accounted for to accurately measure laser beam width. 

Among these considerations is the signal-to-noise ratio, that is, the magnitude of the 

beam relative to the background noise in the sensor. The amount of attenuation used 

or the sensitivity of the sensor is usually adjusted to enable the peak to be as near 

to saturation as possible without overdriving or saturating the sensor. If the beam 

is small, a signi!cant number of pixels or data points must be utilized or the mea-

surement accuracy will suffer. To assure accurate beam width measurements, it is 

important that a minimum of 10 pixels is covered by the laser beam. If a scanning 

slit sensor is used, a beam that is four times the slit width must be considered as the 

minimum resolvable spot size.

The camera baseline offset is another factor that must be accurately controlled. 

Because the energy of a laser does not abruptly go to zero, but trails off to a width 

roughly four times the standard deviation, or twice the 1/e2 width, there is a lot of 

low-power energy that must be accounted for in accurately measuring the width of 

the beam [22–24]. The proportion of energy in a Gaussian beam is 68% in ±1σ, 95% 

in ±2σ, and 99.7% in ±3σ. Nevertheless, experiments performed by the author have 

shown that as an aperture cuts off the beam at less than ±4σ the measured beam 

width begins to decrease. Correct and incorrect baseline controls are illustrated in 

Figure 12.22a–c. In Figure 12.22a, the baseline is set too low, and the digitizer cuts 
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(a)

(b)

FIGURE 12.22 Camera baseline set: (a) too low; (b) too high; (c) precisely at zero. (Low 

baseline shows beam rising out of a $at background, which would cause a beam width calcu-

lation too small. High baseline would cause a beam width measurement too large.)
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off all the energy in the wings of the beam. The beam is seen to rise out of a $at, 

noiseless baseline. This means that without the wings of the laser beam, a measure-

ment would report a width much too small. In Figure 12.22b, the baseline offset is 

too high, as seen by observing the beam baseline relative to the small corner de!ning 

mark. In this case, the software will interpret the baseline as part of the laser beam. 

A calculation of beam width will be much too large. In Figure 12.22c, the baseline 

is set precisely at zero. Both positive and negative noise components are retained 

out beyond the wings of the beam where there is no beam energy. The software will 

interpret the average of the positive and negative signals as nearly zero.

Because the low-power energy in the wings of a laser beam can have a signi!cant 

effect on the width measurement, it becomes necessary to be able to characterize the 

noise in the wings of the beam. Both the noise components that are above and below 

the average noise in the baseline must be considered. The noise below the average 

baseline will hereafter be called negative noise.

Since the size of the beam measurement is affected by the total amount of laser 

beam energy relative to the noise of the camera, it has been found that software aper-

tures placed around the beam can have a very strong effect in improving the measure-

ment accuracy. For a nonrefracted beam, an aperture approximately twice the 1/e2 

width of the beam can be placed around the beam and all noise outside the aperture 

can be excluded from the calculation. This greatly improves the relative signal-to-noise 

ratio when small beams are being measured in a large camera !eld. Finally, the mea-

surement algorithm that is used to measure the beam width can have a notable effect 

on the accuracy and signi!cance of the measurement.

(c)

FIGURE 12.22 (Continued)
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12.8.5.2 Beam Width De"nitions

There are various traditional de!nitions of beam width, which may or may 

not  contribute to knowing what the beam will do when focused or propagated into 

space. Some of these include measurements of the width at a percentage of the peak; 

full width/half maximum, which would be 50% of peak, or a percentage of energy; 

the 1/e2 width encircles 13.5% of the beam’s energy. Software equivalent knife-edge 

measurements are also used as a means of determining the beam width. Finally, a 

more important de!nition of beam width is called the second moment [25].

The software equivalent knife-edge measurement and the second moment mea-

surement are becoming the most widely accepted means of measuring the size of 

laser beams. Both measurements are independent of nulls or structure within the 

beam. When the knife-edge measurement is performed, it can do an excellent job 

of approximating a second moment measurement [26] but is dependent on the mode 

structure of the beam. The knife-edge measurement with a camera is simply a soft-

ware algorithm simulating the motion of an actual moving knife-edge. One advan-

tage of cameras over actual mechanical scanning knife-edges is that the software 

can quickly !nd the major and minor axes of an elliptical beam, and perform the 

knife-edge measurement along these axes without having to actually reposition 

the mechanical knife edge.

12.8.5.3 Second Moment Beam Width Measurements

Recent International Organization for Standardization (ISO) standards [26–29] have 

de!ned a second moment beam width, abbreviated D4σ, which, for many cases, 

gives the most realistic measure of the actual beam width. The equation for the sec-

ond moment beam width is given in Equation 12.3. Equation 12.3 is an integral of the 

irradiance of the beam multiplied by the square of the distance from the centroid of 

the beam, and then divided by the integrated irradiance of the beam. This equation 

is called the second moment due to the analogy to the second moment of mechanics, 

and is abbreviated D4σ because it is the diameter at ±2σ which is ±1/e2 for Gaussian 

beams. This second moment de!nition of a beam width enables a user to accurately 

predict what will happen to the beam as it propagates, what is its real divergence, and 

the size of the spot when the beam is focused.
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where:

x − X and y − Y are the distances to the centroid coordinates X and Y, respectively
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Sometimes there are conditions of laser beams in which the second moment 

 measurement is not an appropriate measurement to make. This is particularly true 

when there are optical elements in the beam smaller than twice the 1/e2 widths that 

cause diffraction of part of the energy in the beam. This diffraction will put energy 

further out into the wings of the beam, which when measured by the second moment 

method, will cause a measurement of the beam width much larger than is signi!cant 

for the central portion of the beam. In Equation 12.3, the (x − X)2 term overempha-

sizes small signals far from the centroid. This requires judgment on the part of users 

as to whether or not measurement of this diffracted energy is signi!cant for their 

application. If the diffracted energy, which typically diverges more rapidly than the 

central lobe, is not signi!cant, it is possible to place a physical or software aperture 

around the main lobe of the beam and make second moment measurements only 

within this aperture, and disregard the energy in the wings. However, if the appli-

cation is dependent on the total amount of energy, and it is important to know that 

part of this energy is diffracted, one would want to place this aperture such that it 

includes all the beam energy in making the calculation.

Second moment beam width measurements are somewhat dif!cult to make with 

CCD cameras because camera noise out in the wings of the beam is multiplied by 

(x − X)2 producing a large error component. Also any offset or shading of the camera 

in the wings of the beam causes very large errors because these small energy num-

bers are multiplied by (x − X)2. For example, Figure 12.23a and b illustrates the dif-

!culty of making second moment measurements. These !gures are from theoretical 

calculations based on creating a perfect Gaussian beam, adding random noise to the 

mathematically derived beam, and then using beam width measurement algorithms 

to calculate the beam size. In Figure 12.23a, it is seen that a knife-edge measurement 

can measure a beam of 64 pixels in a 512 !eld with only 3% error. However, using 

second moment measurement and random camera noise, the beam width error rises to 

over 60%. For this reason, a few years ago, theoreticians believed that it was not pos-

sible to make an accurate second moment beam width measurement with a commer-

cial grade CCD camera. However, as shown in Figure 12.23b, using a knife-edge can 

initially calculate a relatively accurate beam width. Then by placing a 2×   software 

aperture around the beam, the second moment measurement can make very accurate 

beam width calculations down to a beam containing as few as 13 pixels.

In the following comparisons (Figures 12.24 through 12.26), measurements were 

made to determine the effect on beam width measurement accuracy of various param-

eters. Since there is currently no “traceable standard beam width,” the beam was !rst 

measured under the most ideal conditions. This includes a large beam of high intensity 

and using 2× apertures and negative noise components. Then as measurement condi-

tions are changed, the “error” is calculated as the percentage change in measured beam 

width from the measurement made under the ideal conditions. All measurements in 

Figures 12.24 through 12.26 were made on the same beam and in the same time frame.

Figure 12.24a and b illustrates the measured experimental accuracy of making 

second moment beam width measurements with and without a 2× software aperture. 

Figure 12.24a illustrates the accuracy versus the irradiance of the peak pixel on the 

camera. Notice that with the 2× software aperture around the beam, the irradiance 

can be reduced to as low as 16 counts out of 256, or roughly 5% of saturation and 
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the beam width measurement error is still only about 3%. Without an aperture, the 

beam width measurement error is in the 3%–5% range, regardless of the irradiance 

of the beam. In Figure 12.24b, it is shown that the number of pixels in the beam can 

be reduced to about 3 × 3 pixels before the beam width error measurement rises to 

3%. Without an aperture in the beam, the beam width error is always in the 3%–5% 

range, and at 3 pixels the error rises to over 60%.

Other conditions that are necessary to accurately measure the second moment beam 

width include accurate baseline control. This is done by having the software perform a 

multiple frame average of each individual pixel in the camera while the camera is not 

illuminated. This baseline is then subtracted from the signal when the laser is being 

measured. This baseline subtraction eliminates not only the total offset of the baseline 
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FIGURE 12.23 (a) Simulated beam width error vs. number of pixels without a 2× aperture; 

(b) simulated beam width error vs. number of pixels with a 2× aperture.
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but also any shading in the camera. Shading is de!ned as the offset in the baseline not 

being uniform across the camera, but varying from one side to the other.

In addition to accurate baseline control and 2× software apertures mentioned in 

the previous paragraph, it is also very important to maintain the negative numbers 

derived from background subtraction as described previously. Figure 12.25a and  b 

 illustrates measurements made on an actual laser beam to determine the relative 

accuracy of making beam width measurements using both second moment and knife 

edge under varying conditions. Figure 12.25a and b illustrates the ability of the sec-

ond moment algorithm to accurately measure beam width with and without negative 

numbers in the baseline. Notice that in Figure 12.25a where the beam is reduced in 

irradiance, the beam can be as low as 15 counts or 5% of saturation, with only 3% 

error. However, without negative numbers in the baseline, at 15 counts the beam 
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width error is 100%. Figure 12.25b illustrates the ability to accurately measure beam 

width as a function of the number of pixels in the beam with and without negative 

numbers in the baseline. Having the negative numbers improves the accuracy by 

about a factor of 5 for larger beams. At 3 × 3 pixels, the accuracy is 3% with negative 

numbers, and just over 7% without negative numbers.

Figure 12.26a and b illustrates the measurement accuracy of the  second moment 

beam width method compared to the accuracy of the knife-edge  algorithm. 

In Figure 12.26a, the measurements are compared with the irradiance of the beam. 

In Figure 12.26b, they are compared with the number of pixels in the beam. In both 

cases, an aperture and negative numbers are used. Note that both second moment and 

knife edge have approximately the same measurement accuracy in these conditions.
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12.8.6 OTHER IMPORTANT BEAM PROFILE MEASUREMENTS

12.8.6.1 Beam Ellipticity

With camera-based beam pro!ling systems, it is relatively simple for the software to 

measure the ellipticity of laser beams. The software typically !nds the major axis of 

a beam, and then sets the minor axis perpendicular to the major axis. Once the major 

axis is found, the angle that the major axis deviates, typically from the x-axis, is given, 

and the ratio of the major to minor axis widths is calculated. This is an extremely use-

ful measurement in laser beam alignment. It is particularly useful in aligning lenses 

to laser diodes, which are highly elliptical. Typically a special lens is used with laser 

diodes to circularize the beam. The alignment of this lens to the diode is extremely 

critical. With mechanical scanning systems, it is very cumbersome to !nd the major 
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and minor axes. Whereas with a camera-based system the entire beam pro!le is 

obtained in every frame of the camera, so the ellipticity can be found instantaneously. 

This makes it extremely rapid to do beam and component alignment in real time.

Another important reason for knowing the ellipticity of the laser beam is in indus-

trial applications. Typically, if the beam becomes elliptical, a laser used for cut-

ting irregular shapes will have a different cut width in one axis than in the other. 

By   measuring the ellipticity and correcting it when it goes beyond the acceptable 

limits, industrial users can eliminate creating scrap materials.

12.8.6.2 Gaussian Fit

In many cases, the desired beam irradiance pro!le is a Gaussian beam with its irradi-

ance at any point in the x–y plane corresponding to Equation 12.4. There are a num-

ber of ways to perform a !t of the real beam to the Gaussian equation. One of these 

is to minimize the deviation, which is de!ned in Equation 12.5. This !t can be either 

along an x/y-axis, a major/minor axis, or performed over the entire laser beam. Being 

performed over the entire beam is useful in that it means that any energy off-axis 

contributes to determining how well the beam !ts a perfect Gaussian. In addition 

to these equations, the actual data of beam pro!le irradiance can be exported to a 

spreadsheet and users can perform the calculations according to their own method.

The Gaussian equation is as follows:

 J J Ax x w y y wx y= +
− − + −

0
2 2 2e [( / ) ( / ) ]

 (12.4)

where:

J is the amplitude at the point (x, y)

J0 is the amplitude at the Gaussian center

x is the x location of the pixel

x  is the x location of the Gaussian center

wx is the horizontal radius at 1/e2 of energy

y is the y location of the pixel

y is the y location of the Gaussian center

wy is the vertical radius at 1/e2 of energy

A is the offset

Minimization of the deviation can be performed by varying the parameters of 

Equation 12.4 using the spreadsheet solve feature. A is an offset term that is set 

to zero, that is, disregarded in beam analyzers, because as stated earlier, the back-

ground is carefully set to zero. The de!nition of the deviation is

 σ =
( )Z s
n

−

−

∑ 2

2  (12.5)

where:

σ is the standard deviation

Z is the pixel irradiance

s is the Gaussian surface irradiance

n is the number of pixels
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Gaussian !t as a measure of the quality of a laser beam is becoming less  important. 

It has been shown that a multimode beam with the right combination of modes 

can look Gaussian (Equation 12.26), and can very closely !t to a Gaussian curve. 

Nevertheless, the beam has many modes and is far from true TEM00 mode. A multi-

mode will not follow the propagation laws of a perfect Gaussian beam, and a user can 

be misled by the Gaussian !t. Instead, the parameter M2 has become more popular 

as representing the reality of how close the beam is to a true TEM00 Gaussian. The 

parameter M2 will be discussed in more detail in Section 12.9.

12.8.6.3 Top-Hat Measurement

Many real beams are intended to be top hat. Some of the earlier chapters on beam 

shaping discuss how to obtain uniform top hats from Gaussian and other input 

beams. A top-hat beam is useful in many applications where the irradiance should 

be uniform over a given cross section. Applications include medical processes such 

as wine spot removal and photorefractive keratotomy in which a uniform portion of 

the cornea of the eye is removed. Industrial applications in which a top hat is useful 

include cleaning of surfaces and marking.

Camera-based systems enable easy and accurate measurements of top-hat beams. 

The software is programmed to calculate and display the average irradiance or the 

mean across the top hat, the standard deviation of the variations from the mean, and 

the standard deviation divided by the mean, which gives a percentage of the $atness 

or top-hat uniformity. Also the minimum and maximum can be provided, which 

give additional information about the relative $atness of the beam. The top-hat factor 

[30] is a way to give a quantitative and intuitive measure of how $at a top-hat beam 

is. (The equations are given in Reference [30].) A typically square beam would have 

a top-hat factor of 1. A Gaussian beam has a top-hat factor of 0.5. Therefore, most 

beams will fall somewhere between 0.5 and 1. In addition to measuring the $atness 

of the top hat, the software can also calculate the top-hat area and the size or width 

of the top-hat beam. Figure 12.27a shows a typical top-hat beam, and Figure 12.27b 

shows the typical calculations.

12.8.6.4 Divergence Measurement

Divergence is an important characteristic of laser beams. It gives the angle at which 

the beam is diverging from a perfectly collimated parallel beam. It is important 

because the lower the divergence, the longer the beam will remain at a given diame-

ter. Typically, when low divergence is necessary, a beam is often expanded to a large 

width, and then the divergence of this large width beam is smaller. Nevertheless, 

beam divergence by itself does not provide the true characteristics of a beam, since 

as just mentioned; simply expanding the beam to a larger waist can change it. This 

will be explored in more detail in Section 12.9.

12.8.6.5 Statistical Measurement

Statistics on all measurements can provide information on long-term stability of the 

laser beam. A typical example of statistical measurement is shown in Figure 12.28. 

This !gure illustrates a number of basic measurements possible from the soft-

ware, along with the statistics provided by sampling 20 calculations to determine 
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the beam stability. Statistics can be performed in a large variety of ways. For 

 example, software can be arranged so that only one measurement is made out of 

every few hundred frames, then statistics are calculated on thousands of such frames. 

This enables one to track the stability of a laser with respect to time, temperature 

 $uctuations, or other characteristics of interest. Statistics typically provide the mean 

(a)

(b)

FIGURE 12.27 (a) Typical top-hat beam; (b) top-hat calculations.
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or average measurement of a parameter, the standard deviation, and the minimum 

and  maximum to which that characteristic has drifted.

12.8.6.6 Pass/Fail Measurements

Figure 12.29 shows a typical dialog for a pass/fail measurement. Essentially, all of the 

quantitative measurements being made on the laser beam can have pass/fail limits set 

in one of these dialog boxes. Thus, for example, if the centroid location is critical in 

a manufacturing or other environment, a maximum radius from a given position can 

be set. The software can then be programmed to provide an alarm if the parameter 

of interest drifts outside the limits. This feature can be used in many environments, 

including industrial, instrument design, laser stability and design, and others.

12.9 M2 MEASUREMENTS

M2, or the factor k  =  1/M2, has become increasingly important in recent years in 

describing the focusability of a laser beam [31–43]. In many applications, especially 

those in which a single mode or TEM00 beam is the desired pro!le, M2 is the most 

important characteristic describing the focusability of the beam. Figure 12.30 illus-

trates the essential features of the concept of M2 as de!ned by Equation 12.6a and b. 

As shown in Figure 12.30, if a given input beam of width Din is focused by a lens, 

the focused spot size and divergence can be readily predicted. If the input beam is a 

pure TEM00, the spot size equals a minimum de!ned by Equation 12.6a and d00 in 

Figure 12.30. However, if the input beam Din is composed of modes other than pure 

TEM00, the beam will focus to a larger spot size, namely, M2 times larger than the 

minimum, as shown mathematically in Equation 12.6b, and d0 in Figure 12.30. In 

addition to de!ning the minimum spot size, M2 also predicts the divergence of the 

beam after the focused spot. Speci!cally, the real beam will diverge M2 times faster 

than an equivalent TEM00 beam of the same width. Figure 12.30 illustrates what hap-

pens to a beam after going through a focusing lens. The same principles apply if no 

lens is involved. The beam will diverge more rapidly by a factor of M2 than if it were 

FIGURE 12.28 Statistical measurement of the basic laser beam parameters.
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FIGURE 12.29 Pass/fail dialog box.
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FIGURE 12.30 Curve showing M2 (characteristics and equations relating M2 to the 
 beam-focused spot size).
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true TEM00. The ISO de!nition for the focusability of a laser beam uses M2 as the 

fundamental parameter. This is useful in applications that require the beam to be 

focused to the smallest possible spot to be successful in the intended process.

 d f
D00
4

=
λ

π in
 (12.6a)

 d M f
D0
44

=
λ

π in
 (12.6b)

where:

λ is the wavelength

f is the focal length of the lens

Din is the width of the input beam

In measuring and depicting M2, it is essential that the correct beam width be de!ned. 

The ISO standard and beam propagation theory indicate that the second moment is 

the most relevant beam width measurement in de!ning M2. Only the second moment 

measurement follows the beam propagation laws so that the future beam size will be 

predicted by Equation 12.6a and b. Beam width measured by other methods may or 

may not give the expected width in different parts of the beam path.

M2 is as simple as the measurement of a beam pro!le at a single plane. Typically 

multiple measurements are made as shown in Figure 12.31 in which an arti!cial 

waist is generated by passing the laser beam through a lens with known focal length. 

One essential data point is to measure the beam width exactly at the focal length of 

the lens. This gives one way to measure the divergence of the beam. Other measure-

ments are made near the focal length of a lens to !nd the width of the beam and 

the position at the smallest point. In addition, measurements are made beyond the 

Rayleigh range of the beam waist to con!rm the divergence measurement. With 

these multiple measurements, one can then calculate the divergence and minimum 

Artificial waist region Artificial far field

a b c d e f g h i j k l m n o

FIGURE 12.31 Multiple measurements made to measure M2.
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spot size, and then going backward through Equation 12.6b, one can !nd the M2 of 

the input beam.

The measurement shown in Figure 12.31 can be made in a number of ways. In one 

commercial instrument, shown in Figure 12.12, a detector is placed behind a rotating 

drum with knife edges, and then the lens is moved in the beam to effectively enable 

the measurement of the multiple spots without having to move the detector. This 

instrument works extremely well as long as the motion of the lens is in a relatively 

collimated part of the laser beam.

The ISO method [28] for measuring M2 requires the lens to be in a !xed position. 

Beam width measurements are made at multiple detector positions along the beam’s 

propagation as shown in Figure 12.31. This can be done by placing a lens on a rail 

and then moving the camera along the rail through the waist and into the far-!eld 

region. There are commercial instruments that perform this measurement automati-

cally without having to manually position the camera along the rail. One of these 

is shown in Figure 12.32, in which the lens and the camera are !xed, but folding 

mirrors are mounted on a translation table, and moved back and forth to provide the 

changing path length of the beam.

A typical readout of an M2 measurement is shown in Figure 12.33. In this case, a 

collimated laser diode was measured, which gave a much greater divergence in the 

x-axis than in the y-axis. The steep V curve displayed is the x-axis of the beam coming 

to a focus following the lens. The more gradual curve is the focus of the less divergent 

y-axis. Notice that while for most of the range the x-axis has a wider beam width, at 

focus the x-axis focuses smaller than the y-axis. In addition, the x-axis M2 was 1.46, 

whereas the y-axis M2 was only 1.10. The M2 reported in the numbers section is cal-

culated from the measurements of the beam width at the focal length, the minimum 

width, and the divergence in the far !eld according to the equations in the ISO standard.

One of the dif!culties of accurately measuring M2 is that precise beam width mea-

surements are required. This is one of the reasons that so much effort has been made 

to de!ne the second moment beam width, and create algorithms to accurately make 

this measurement. Another dif!culty in measuring this beam width is that the irradi-

ance at the beam focus is much greater than it is far from the Rayleigh length. This 

necessitates that the measurement instrument operates over a wide signal dynamic 

range. ND !lters may be used to increase the dynamic range of the beam measure-

ment system. An alternative exists with cameras or detectors that have extremely wide 
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FIGURE 12.32 Instrument with !xed position lens for measuring M2.
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dynamic range so that suf!cient signal-to-noise ratio is obtained when the  irradiance 

is low yet does not saturate the detector near the focused waist where the irradiance is 

much higher.

There are some cases when M2 is not a signi!cant measure of the quality of a 

laser beam. For example, top-hat beams for surface processing typically have a very 

large M2, and M2 is not at all relevant to the quality of the beam. Nevertheless, for 

many applications in nonlinear optics, industrial laser processing, and many others, 

the smallest possible beam with the M2 closest to 1 is the ideal. Some top-hat beam 

shapers are designed for an input Gaussian beam and then the M2 of the input beam 

should be very close to 1, and the beam widths should closely match the design 

width. This was discussed in more detail in Chapter 3.

12.10 SIGNAL PROCESSING

Careful analysis of the camera baseline pixel values, including proper treatment of 

both positive and negative going noise, enables signi!cant improvement in beam 

pro!le measurement accuracy. Figure 12.34 shows a HeNe laser beam at near 

FIGURE 12.33 (See color insert.) M2 measurement display and calculation.
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saturation of a CCD camera. This beam was then blocked, and signal summing 

of 256 frames was performed to determine the noise distribution under summing 

conditions. This noise is shown in three dimensions in Figure 12.35a. The darker 

components of noise at the bottom of the distribution are the negative-going compo-

nents. With accurate baseline control and treatment of negative noise components, 

Figure 12.35b shows that the distribution of the noise is roughly Gaussian, and is 

centered at zero. This is what would be hoped for from summing random noise in 

any measurement system.

The laser beam in Figure 12.34 was then measured after passing through an ND2 

!lter, which attenuated it by a factor of roughly 100. At this point, the laser beam was 

completely buried in the random noise for each single frame. Hundred frames of sig-

nal were summed, and the signal rose out of the noise as shown in Figure 12.36a. In 

this case, the signal sums as the number of frames, whereas the noise sums roughly 

as the square root of the number of frames, thus the signal-to-noise ratio is improved 

by approximately the square root of the number of frames summed. Note that this 

is possible only when negative noise components are used in determining the mean 

baseline value of each pixel. Otherwise, if negative components are clipped at zero, 

the noise will sum with a positive DC offset. Figure 12.36b shows the beam pro!le 

of Figure 12.36a when adjacent pixels in a 4 × 4 matrix are summed together. Notice 

signi!cant noise cancellation producing a much clearer view of the beam pro!le. 

Figure 12.36c shows a similar way of providing a clearer beam pro!le picture by 

using convolution to average out the noise in the background. In all three cases of 

Figure 12.36, the beam width measurement, from the measurement of the beam in 

Figure 12.34, was in error by only about 5%–7%. This is quite impressive for a beam 

that started out buried in noise.

FIGURE 12.34 HeNe laser beam used in signal processing experiment.
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(a)

(b)

FIGURE 12.35 (a) CCD camera noise after a sum of 256 frames; (b) distribution of noise 

shown in (a).
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(a)

(b)

FIGURE 12.36 (a) Beam of Figure 12.34 after attenuation of about 100 and summed for 

256 frames; (b) beam of (a) with summing of pixels in a 4 × 4 matrix; (c) beam of (a) with 

convolution over a 7 × 7 array.
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12.11 WAVEFRONT PHASE

A more advanced measurement of a laser beam is the wavefront phase. The beam 

pro!le simply measures the irradiance at a selected plane, but does not predict what 

the irradiance will be at any point further along the propagation path. A measure-

ment of M2 tells how much more rapidly a beam will diverge, but does not give 

any information about the manner in which this divergence will occur. A measure-

ment of wavefront phase gives additional details of the beam distortion than those 

reported as a simple number such as M2. However, wavefront phase is a more com-

plicated measurement to make, as well as to make use of. It is likely that as users 

become more sophisticated, wavefront phase will become an increasingly important 

measurement related to laser beam characteristics. There are numerous methods of 

measuring the wavefront phase for which commercial instruments are available. One 

is to use an interferometer, and another is to use a Hartman array. For some beam 

shaping problems, knowledge of the wavefront phase is important and can impart 

additional information than a simple beam pro!le measurement. (This is discussed 

in Chapter 3 with respect to collimation and input beam requirements.)

12.12 SUMMARY

Beam shaping generally requires beam pro!le measurement. This is required on the 

input beam to make sure that it has the proper characteristics. It is also required on 

the output beam to make sure the beam shaping mechanism is operating properly. 

(c)

FIGURE 12.36 (Continued)
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Mechanical scanning instruments can provide single axis pro!les, which are 

 suf!cient in many cases.

Electronic measurements of laser beams using CCD and other solid-state  cameras’ 

sensors yield very detailed information on both the input beam and the output beam. 

Using such beam pro!lers, scientists and users in beam shaping and many other 

!elds of lasers are able to greatly enhance the success of their endeavors. Giving an 

accurate view of the beam pro!le and making precise measurements of beam param-

eters, such as beam width and other characteristics, provide the ability to properly 

condition the input beam and measure the shaped output beam.
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13 Classical (Nonlaser) 

Methods

David L. Shealy

13.1 INTRODUCTION

In this chapter, the design and analysis of nonlaser optical systems used for beam shap-

ing are discussed. Geometrical optics is used to evaluate the irradiance throughout the 

optical system. A method based on differential equations is presented for evaluating 

the contour of an optical surface (mirror or lens) that will transform a given input beam 

pro!le into a speci!ed output beam pro!le or irradiance distribution over a detector 

surface. Nonlaser beam shaping differs from laser beam shaping in two major ways. 

First, it deals with more general sources, such as Lambertian sources, line sources, or 

light-emitting diodes (LEDs). Second, it is only concerned with providing a certain 

irradiance distribution at a particular surface. It is not concerned with propagating a 

beam beyond that surface or form of the irradiance distribution at intermediate points.

Early thoughts of beam shaping in nonlaser systems can be traced to before the 

days of Archimedes and his burning glass [1,2], where optics was reported to con-

centrate on—to increase the power density of—solar radiation. The literature is rich 

with reports of various optical systems used as solar collectors [3–9]. Welford and 

Winston [10] have presented a good accounting of nonimaging (nonfocusing) optics 

used as solar collectors, including an ideal light collector [11,12], which concentrates 

a beam by the maximum amount allowed by phase space considerations. Burkhard 
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526 Laser Beam Shaping

and Shealy [13] have used a differential equation method to design a re$ecting sur-

face, which distributes the irradiance over a receiver surface in a prescribed manner. 

McDermit [14] and Horton and McDermit [15] presented a generalized technique for 

designing a rotationally symmetric re$ective solar collector, which can heat the col-

lector surface in a prescribed manner. Beam shaping has also been used in optoelec-

tronics to achieve a maximum power transfer between a micro-optics light source 

and an optical !ber [16,17], in radiative heat transfer [18–20], in illumination applica-

tions [21–24], and for re$ector synthesis [25,26].

In Section 13.2, ray tracing and the $ux $ow equation are discussed within the 

context of design and analysis of nonlaser beam pro!le shaping. For analysis, the 

$ux $ow equation can be used to compute the irradiance over any surface within an 

optical system. For design, the $ux $ow equation has been inverted to give a differ-

ential equation for the shape of one optical surface of the system, when the input and 

output beam pro!les are known. Section 13.3 discusses the application of this design 

method for a point and Lambertian source of radiation.

13.2 THEORY OF NONLASER BEAM PROFILE SHAPING

For nonlaser systems, a typical beam shaping system design goal is to illuminate a 

detector or substrate surface with a speci!ed irradiance distribution. For laser-based 

systems, Section 6.2.1 discusses that shaping an irradiance pro!le can be achieved by 

using the energy balance condition to determine the geometrical shape of one optical 

surface [lens, mirror, or gradient index (GRIN) optics] of the system. In addition, 

laser beam shaping applications often seek to retain the output irradiance pro!le as 

the beam propagates (a collimated beam). This can be achieved by requiring that 

the system has a constant optical path length between the input and output surfaces, 

as discussed in Section 6.2.2. This propagation constraint is not needed in nonlaser 

applications. The following theory, then, extends the laser analysis of Chapter 6 to 

the more general sources found in nonlaser systems.

Ray tracing [27] is widely used to simulate the performance of both imaging and 

nonimaging optical systems. By assigning to each incoming ray equal energy density, 

and by counting the number of rays crossing a unit of area within the optical system, 

the irradiance can be computed throughout the optical system. Kock [28] reports a 

method to simplify photo-radiometric calculations of optical systems by using a refer-

ence sphere and ray tracing. The $ux $ow equation [29,30] offers an alternate approach 

for evaluating the irradiance within an optical system. The $ux $ow equation along 

with the ray trace equations is used to monitor the change in size of an element of area 

of a bundle of rays [31] as the wavefront propagates through the optical system. The 

$ux $ow equation depends on the beam parameters and the shape/orientation of the 

optical surfaces and allows the irradiance to be computed along a ray path as it propa-

gates through an optical system. The $ux $ow equation can also be considered as a 

differential equation of the optical surface contour, which can be solved if the input 

and output beam pro!les are known. In the next section, conservation of energy within 

a bundle of rays is used to derive two alternate expressions of the $ux $ow equation. 

Then, in Section 13.2.2, the $ux $ow equation is used to formulate a method based on 

differential equations for design of nonlaser beam shaping systems.
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527Classical (Nonlaser) Methods

13.2.1 IRRADIANCE (ILLUMINANCE) ANALYSIS WITH THE FLUX FLOW EQUATION

In this section, a formula is derived for the $ux density (irradiance or illuminance, 

which is the energy per unit area per unit time) of a ray passing through an optical 

system. This formula, which has been labeled the $ux $ow equation in the litera-

ture, can be expressed as the ratio of the products of the principal radii of curva-

ture* of the wavefront as it approaches and leaves an optical surface. The principal 

radii of curvature and torsion of the incident and re$ected wavefront are related to 

similar quantities of the re$ecting surface using a generalization of the Coddington 

 equations [32]—a procedure also known as generalized ray tracing [33].

Assume that the $ux density incident upon an optical interface surface s along the 

direction of a particular ray is denoted by σ(r). If i is the angle of incidence of a ray 

upon the element of surface area da on s, the total $ux incident upon da is given by

 dF i= σ( )r cos da  (13.1)

The radiation is re$ected (or refracted) to the element of area dA on surface S as 

shown in Figure 13.1. Then, the $ux density over the surface S is given by

 
d
d

d
dd d

F
S E i a

As S≡ =








− σ τ( ) ( )cos ( )r r r  (13.2)

where:

τ(r) is the re$ection or transmission coef!cient at the point r on surface s

* See Appendix A for a discussion of the principal radii of curvature of a surface and other basic con-

cepts from differential geometry and the theory of surfaces.

x
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FIGURE 13.1 Illustration of beam re$ected from surface s to surface S.
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If the radiation incident upon surface S is re$ected or refracted to another 

 surface,  the process of evaluating the $ux density along a ray path within an 

optical  system can be generalized to an arbitrary number of surfaces [29]. The 

problem now is to evaluate the ratio of elements of surface areas (da/dA) along a 

ray path.

The ray trace equations (Equation 6.43) can be regarded as a coordinate transfor-

mation between the elements of surface area da and dA. Then, the Jacobian, J, of this 

transformation enables the connection dA = J da. This approach has been used by 

Shealy et al. [19] and Shealy and Burkhard [30]. A simpler approach follows by rec-

ognizing that the $ux is carried by the wavefront [32]. From conservation of energy 

along a bundle of rays (Equation 6.35), an element of area of the wavefront must be 

related to an element of area on the optical surfaces s and S. Equation 13.2 may then 

be replaced by either a quadratic equation in the distance r(s,S) between da and dA 

along the ray path or an equation involving the wavefront elements of area before 

and after re$ection (or refraction), which in turn may be replaced by an expression 

involving wavefront curvatures.

The position vector of dA along the ray after it leaves da is given by

 R r r A= +( , ) ( , ) ( , )u v s S u v  (13.3)

where:

 r i j k ( , ) ( , ) ( , ) ( , )u x u y u z uv v v v= + +  (13.4)

is the equation of the mirror surface s expressed in terms of the parameters (u,v). 

The quantity r(s,S) is the distance along the ray measured from the point of re$ec-

tion da on surface s to dA on surface S. A(u,v) is the unit vector along the re$ected 

ray and is related to the incident ray vector a by

 A a n(a n)= − 2 ⋅⋅  (13.5)

where:

n is the unit normal vector to the mirror

Equation 13.3 can also be viewed as an equation of the re$ected wavefront in the 

vicinity of the ray, when the constant phase condition as measured from the source 

is considered.

To map a bundle of rays continuously across an optical surface s, the following 

relations hold:

 d da i W scos = ( )  (13.6)

 d da i W scos ( )′ = ′  (13.7)

where:

i′ is the angle of re$ection (or refraction)

dW(s) is an element of area on the wavefront incident upon da
dW′(s) is an element of area on the wavefront re$ected from da
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At surface S, similar relations hold:

 d cos dA I W S= ( )  (13.8)

 d cos dA I W′ = ′  (13.9)

Now, derivations for two alternate expressions of the $ux $ow equation will be pre-

sented, which involve evaluating the ratio (da/dA)—the !rst case—in terms of the par-

tial derivatives of the direction cosines of the re$ected ray vector A and the equation of 

the mirror surface s. In the second case, the $ux $ow equation is expressed in terms of 

the principal curvatures of the incident and re$ected wavefront at S and s, respectively.

13.2.1.1 Flux Flow Equation: First Case

The !rst expression for the $ux $ow equation is obtained by evaluating the ratio 

(da/dA) from the equation of the surface and the ray trace equation relating da to dA. 

An element area on the surface s is equal to the magnitude of the cross  product of the 

independent surface–tangent vectors:

 d d d  d da u g u= × =| |r ru v v v  (13.10)

where:

 g g g guu u= −vv v
2  (13.11)

 g gv guu u u u u= = =r r r r r r⋅⋅ ⋅⋅ ⋅⋅, ,vv v v v v  (13.12)

 r r r r
u

u
u

u
≡

∂

∂







≡

∂

∂







( , ) ( , )v v

vvand  (13.13)

See Appendix A for derivation of Equation 13.10. From Equation 13.8, the element 

of area dA can be expressed in terms of an element of area dW(S) on the wavefront 

incident upon S as follows:

 d d
cosA
W S

I
=

( )
 (13.14)

Evaluating dW(S) in terms of the coordinates (u,v) in a similar manner as in 

Equation 13.10 leads to

 d d dW S u
u

u u( ) ( , ) ( , )
=

∂

∂







×

∂

∂







A R R
⋅⋅

v v
v v  (13.15)

where the magnitude of an element of area on the wavefront is obtained by projecting 

the vector cross product along the direction of the ray vector A, which is also normal to 

the wavefront. Using Equation 13.3 to simplify Equation 13.15 leads to the following:

 
d

d
W S r s S

r s S u
u u u

u

( ) { [ ] ( , ) [ ]
( , ) [ ]}

= × + × + ×

+ ×

A r r A r A A r
A A A

⋅⋅ ⋅⋅

⋅⋅

v v v

v
2 ddv

 (13.16)
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where:

the subscripts (u,v) of vector r or A represent the partial derivatives with respect 

to u or v, as de!ned in Equation 13.13

Substituting Equation 13.16 into Equation 13.14 and using this result with 

Equation 13.10 leads to the following expression for the da/dA ratio:

 
d
d
a

A

I

r s S r s Su u u u

=

× + × + × + ×

cos
{ [ ] ( , ) [ ] ( , ) [ ]A r r A r A A r A A A⋅⋅ ⋅⋅ ⋅⋅v v v v

2 }}/ g
 (13.17)

De!ne the denominator of Equation 13.17 to be L(s):

 L s L r s S L r s S L( ) ( ) ( , ) ( ) ( , ) ( )≡ + +0 1 2 21 1 1  (13.18)

where:

 L g iu
0 1( ) [ ] cos=

×
= ′

A r r⋅⋅ v  (13.19)

 L g
u u

1 1( ) [ ]
=

× + ×A r A A r⋅⋅ v v  (13.20)

 L g
u

2 1( ) [ ]
=

×A A A⋅⋅ v  (13.21)

Substituting Equation 13.17 into Equation 13.2 gives the following expression for the 

irradiance over surface S:

 E
i I

L s
s Sd d− =

σ τ( ) ( ) cos cos
( )

r r
 (13.22)

with an immediate generalization to n surfaces [29]. Equation 13.22 has been called 

the $ux $ow equation. So far, only the conservation of energy within a bundle of 

rays has been used to derive the $ux $ow equation. The law of re$ection is intro-

duced at each optical surface when evaluating L. Detailed discussions of using the 

$ux $ow equation to compute irradiance distributions for re$ective and refractive 

optical systems have been reported in Refs. [34,35]. For example, Figure 13.2 shows 

the contours of equal irradiance over a plane for light re$ected from a paraboloid; 

Figure 13.3 shows the contours of equal irradiance over a plane for light re$ected 

from a cone; and Figure 13.4 shows the contours of equal irradiance over a plane for 

light refracted by a convex-plano lens.

Explicit expressions for the terms L0, L1, and L2 in Equation 13.22 have been 

reported in the literature for re$ection or refraction within multi-interface optical 

systems [29]. In case of re$ection of collimated light from a mirror, these coef!cients 

are given by

 L i0 1( ) cos= ′  (13.23)
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 L H i K in1 2 21 4 2( ) cos sin= +  (13.24)

 L K i2 21 4( ) = ′cos  (13.25)

where:

H, K, and Kn are the mean, Gaussian, and normal curvatures, respectively, of the 

mirror
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loid. Flux density values associated with each contour represent the percentage of light inci-

dent upon a speci!c region of the receiver plane. The re$ection coef!cient of the mirror was 

assumed to be 1. (From Shealy, D.L. and Burkhard, D.G., International Journal of Heat and 
Mass Transfer, 16, 281–291, 1973. With permission.)
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It can be expressed in terms of the equation of the mirror surface and the direction 

of the incident light using the following expressions:

 K b b b
g

uu vv uv=
− 2

 (13.26)

 H g b g b g b
g

uu vv uv uv vv uu=
− +2

2  (13.27)
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For a brief discussion of some concepts from differential geometry, see Appendix A 

or Reference [36]. Alternate formulas for these curvatures will be presented in 

Section 13.2.2 when the $ux $ow equation is used to design a rotationally symmetric 

optical system for nonlaser beam shaping.

Combining Equations 13.18 and 13.23 through 13.25 with Equation 13.22 leads to 

the following expression for the $ux $ow equation for re$ection of collimated light 

from a mirror:

 E
i I

i r s S H i K i r
s S

n

d d− =
′ + + +

σ ρ( ) ( )cos cos
cos ( , )[ cos sin ] (

r r
2 2 42 2 2 ss S K i, ) cos ]′  (13.32)

Fock [37] has reported a similar expression for the intensity of a beam cross section 

that has been re$ected from a surface.

It is interesting to note that the $ux $ow equation (13.22) depends on the !rst and 

second derivatives of the equation of the optical surface with respect to the coor-

dinates (u,v). Thus, it follows conceptually that if both the input and output beam 

pro!les are known functions of the aperture coordinates, the $ux $ow equation rep-

resents a differential equation that can be used to determine the shape of the optical 

surface s. This approach to optical design of nonlaser beam shaping systems will be 

discussed in Section 13.2.2.

13.2.1.2 Flux Flow Equation: Second Case

The second expression for the $ux $ow equation is obtained by expressing the da/

dA ratio in terms of element of area on the wavefront before and after re$ection or 

refraction. These results are then expressed in terms of the wavefront curvatures that 

lead to the second alternate expression of the $ux $ow equation. Both expressions 

of the $ux $ow equation are equivalent [32]. Using Equations 13.7 and 13.8, da/dA 

can be written as

 d
d

d
d

a

A

I

i

W s

W S
=

′

′cos
cos

( )
( )  (13.33)

Then, from Equation 13.2, the $ux density over surface S can be written as

 E
i I

i

W s

W S
s Sd d

d
d− =

′

′
σ τ

 ( ) ( ) cos cos
cos

( )
( )r r  (13.34)

We will show (justify) that an element of area on the wavefront can be expressed in 

terms of the principal radii of curvature of the surface. The principal radii of curva-

ture of an element of area on a surface are the maximum and minimum curvatures 

of the surface at that point.* They are found by taking a plane through the surface 

normal at a point and rotating it around the normal. The intersection of the plane and 

the surface forms curves.

* See Appendix A for a discussion of some concepts from differential geometry which may be helpful 

to the reader in better understanding the physical meaning of the different curvatures of a surface 

discussed in this chapter.
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Born and Wolf [31] have shown that there are two focal (imaging) points for 

each point on a wavefront. The caustic surface has also been de!ned [32] to be 

the loci of the focal (imaging) points of an optical system. The irradiance, as 

computed from the $ux $ow equation (e.g., see Equation 13.22), is in!nite on the 

caustic surface, which occurs in geometrical optics when dA = 0. Points on the 

caustic surface for rays re$ected from a mirror surface s are computed by setting 

L(s) in Equation 13.22 equal to zero and solving the resulting quadratic equation 

for r(s,S):

 L s L r s S L r s S L( ) ( ) ( , ) ( ) ( , ) ( )= + + =0 1 2 21 1 1 0  (13.35)

The two roots of Equation 13.35 are labeled r1(s) and r2(s) and represent the dis-

tance from the point of re$ection to one of the focal (caustic) points on the ray 

from da. Stavroudis and Fronczek [38] have shown that the caustic points of a 

wavefront are the principal radii of curvature of the wavefront. Therefore, r1(s) and 

r2(s) are the principal radii of curvature of the wavefront as it leaves da on surface 

s. Solving the quadratic equation (13.35) for the distance from ds to the caustic 

surface gives

 r s L L L L
L1

1 12 0 2
2

1 1 4 1 1
2 1( ) ( ) ( ) ( ) ( )

( )=
− + −

 (13.36)

 r s L L L L
L2

1 12 0 2
2

1 1 4 1 1
2 1( ) ( ) ( ) ( ) ( )

( )=
− − −

 (13.37)

where:

the + and − of the radical in Equations 13.36 and 13.37, respectively, were arbi-

trarily assigned to r1(r2)

Recognizing that r(s,S) is the distance along ray path from da to dA, it has been 

shown in Refs. [23,32] that the principal radii of curvature of the wavefront as it 

reaches dA are given by

 
r S r s r s S
r S r s r s S
1 1
2 2

( ) ( ) ( , )
( ) ( ) ( , )

= −

= −
 (13.38)

where the optics sign convention [39] for the radii of curvature* has been used in 

Equation 13.38. Further, it has been shown in Refs. [23,32] that

 d
d

′
=

W s
W S

r s r s
r S r S

( )
( )

( ) ( )
( ) ( )
1 2
1 2

 (13.39)

* The radius of curvature of a surface is positive if the center of curvature of the surface is located to the 

right of the vertex of the surface with respect to the optical axis, when the light is traveling from the 

left to the right. Otherwise, the radius of curvature of a surface is negative.
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which permits Equation 13.34 to be written in terms of wavefront principal radii of 

curvature:

 E
i I

i

r s r s

r S r S
s Sd d− =

′
σ τ( ) ( ) cos cos

cos
( ) ( )
( ) ( )r r 1 2

1 2
 (13.40)

The generalized ray trace equations (13.32 and 13.33) are used to compute the princi-

pal radii of curvature of a re$ected or refracted wavefront in terms of the curvatures 

and torsion of the incident wavefront and optical interface. References [23,32] pro-

vide additional details for using the $ux $ow equation to evaluate irradiance distri-

butions over surfaces of an optical system.

13.2.2 OPTICAL DESIGN OF NONLASER ILLUMINATION SYSTEMS

As noted in Section 13.2.1, when the input beam pro!le and irradiance over a 

receiver surface are given, the $ux $ow equation can be viewed as a second-order 

differential equation that can be solved for the contour of one optical surface. This 

approach to optical design will be discussed in Section 13.2.2.1. Equivalently, the 

energy balance condition and ray trace equation can be used to obtain a !rst-order 

differential equation for the contour of one surface in the system, as discussed in 

Section 13.2.2.2.

13.2.2.1 Using the Flux Flow Equation

As noted in Section 13.2.1, the $ux $ow equation (13.22 or 13.40) depends on 

the !rst and second derivatives of the surface equation r(u,v) of the mirror as 

well as on the direction of incident radiation and σ(r). Therefore, the $ux $ow 

equation may be considered as a differential equation for the shape of the mirror. 

If both the input and output beam pro!les are given along with the geometrical 

surface parameters (boundary conditions), the resulting differential equation can 

be solved for the shape of the mirror.

To illustrate this approach for design of a nonlaser beam pro!le shaping system, 

consider a collimated beam with irradiance pro!le σ(r) incident upon a rotationally 

symmetric mirror shown in Figures 13.5 and 13.6.

The Fresnel re$ection losses are not considered in this design approach, that is, 

put τ(r) = 1 in the $ux $ow equation. Assume that the equation of the mirror surface 

can be written as

 r i j k( , ) cos sin ( )r r r z rφ φ φ= + +  (13.41)

where:

(r,ϕ) are the polar coordinates in the x–y plane

( , , )i j k  are the Cartesian unit vectors

the term z(r) is an unknown function to be determined by the solution of the $ux 

$ow differential equation to be written out below
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FIGURE 13.5 Collimated beam incident upon mirror and re$ected to detector.
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FIGURE 13.6 Rotationally symmetric solar collectors: (a) back-lighted con!guration; 

(b)  direct-lighted con!guration; (c) spherical detector. (From Burkhard, D.G. and Shealy, 

D.L., Solar Energy, 17, 221–227, 1975. With permission.)
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The metric coef!cients of the mirror are computed from Equations 13.10 

through 13.13:

 

g z
g r
g
g r z

rr

r

= + ′

=

=

= + ′

1

0
1

2

2

2 2

φφ

φ

( )

 (13.42)

The unit normal vector on the mirror surface is given by

 n r r i j k
=

×
=
− ′ − ′ +

+ ′

r
g

z z
z

φ φ φcos sin
1 2  (13.43)

where:

z′ = (dz(r)/dr)

Assuming the light incident upon the mirror is along the z-axis ( )a k= , the cosine of 

the angle of incidence on the mirror is given by

 cos i
z

= =

+ ′

a n⋅⋅ 1
1 2  (13.44)

The direction of re$ected light from the mirror can be computed from Equation 13.5:

 A i j k
=

′ + − − ′

+ ′

2 1
1

2
2

z z

z

( cos sin ) ( )φ φ
 (13.45)

The $ux $ow equation for re$ection from a rotationally symmetric mirror can 

now be evaluated explicitly using Equation 13.17 where the partial derivatives of 

r and  A with respect to (r,ϕ) are explicitly evaluated using Equations 13.41 and 

13.45. However, this direct method for evaluating the $ux $ow differential equation 

is very tedious and will not be discussed any further. Rather, the $ux $ow equa-

tion for re$ection of collimated radiation from a mirror will be evaluated using 

Equation 13.32, expressed in terms of the mean, Gaussian, and normal curvatures of 

the mirror, leading to a differential equation for the mirror surface.

From the theory of differential geometry of surfaces [36] and previous work 

[30,32], the mean, Gaussian, and normal curvature of a surface can be written in 

terms of the metric coef!cient and second fundamental form coef!cients of a surface 

by the following expressions:

 H g b g b g b
g

rr r r rr
=

− +( )φφ φ φ φφ2
2  (13.46)

 K b b b
g

rr r
=

−φφ φ( )2
 (13.47)
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 K i a a bn
i j

ij
i j r

sin
,

2 =

=

∑
ϕ

 (13.48)

where:

 b g
r
i j i j rij i j= ×
∂ ∂






















=

1 2
r r r

⋅⋅
∂ φ

φ
( , ) ,for  or  (13.49)

 a g gi ir
r

i= +a r a r⋅⋅ ⋅⋅φ
φ  (13.50)

 g g
g g g

g g g
g

rr rr r r
= = =

−φφ φφ φ φ, ,  (13.51)

or explicitly for the application shown in Figures 13.5 and 13.6 using surface equa-

tions (13.41 and 13.42) for the metric coef!cients

 

b z r
z

b rz
z

b

g z g r

rr r

rr

=
∂ ′′ ∂

+ ′
=

′

+ ′
=

=
+ ′
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1
1

1
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φφ

22 0, grφ =

 (13.52)

 a z
z ar =
′

+ ′
=1 02 , φ  (13.53)

where:
′′ ≡ ∂ ∂z z r( / )2 2

The mean, Gaussian, and normal curvatures of the surface are given by the following 

expressions:

 H z rz
r z=

′ + ′′

+ ′











1
2 1 2 3 2( ) /  (13.54)

 K z z
r z=

′ ′′

+ ′( )1 2 2  (13.55)

 K i z z
zn sin ( ) /

2
2
2 5 21=

′ ′′

+ ′
 (13.56)

Then, the $ux $ow equation for collimated light re$ected from a rotationally symmetric 

mirror can be explicitly written from Equation 13.32 in the following form:
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i I

i r s S
z r z

z
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 (13.57)
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or, after factoring the denominator,

 E
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r s S z

r z
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 (13.58)

Using the following relationships
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A R r z

zr
( , ) = −

= −
+ ′

′

1
2

2
 (13.59)

 cos I
z

z

Z

R

z

z
= =

′

+ ′


















 +

− ′

+ ′





















A N⋅⋅

2
1

1
12

2
2

d
d

11
2

+










d
d
Z

R

 (13.60)

where:

N is the unit normal vector to the receiver surface S
Z(R) speci!es the shape of the receiver surface S

Then, the $ux $ow equation (13.58) can be written as a second-order differential 

equation for the mirror surface:

 
′′

′
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−




















′ + ′ + − ′
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r
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+
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Z R

2

21 1)
( )d d  (13.61)

The above equation is equivalent to Equation 6.98 and the results of McDermit [14] 

and McDermit and Horton [18] (Equation 3.14 of Reference [14] and Equation 13 of 

Reference [18]). When appropriate boundary conditions are given, Equation 13.61 can 

be solved for the shape of the mirror surface that will illuminate the receiver surface S 

with a prescribed irradiance for a given source pro!le.

13.2.2.2 Using the Conservation of Energy Condition

Instead of using the second-order differential equation (13.61) for evaluating the 

contour of the beam shaping optics, the energy balance equation (6.35) can be inte-

grated and combined with the ray trace equations to obtain a !rst-order differential 

equation for the re$ecting surface. This approach has been used by Schruben [21] 

to design a mirror that illuminates its aperture with a speci!ed distribution. This 

approach is also equivalent to using the $ux $ow equation to obtain a second-order 

differential equation (13.61) of the mirror surface.

Consider the rotationally symmetric geometry shown in Figures 13.5 and 13.6. 

The radiation is incident upon re$ector surface s with equation z = z(r). The equation 

of the receiver surface S is Z = Z(R). The $ux density σ(r) is incident upon a circular 

ring about the z-axis of area 2πr dr and is re$ected to a circular ring on the receiver 
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surface S of area dA. The equation of the receiver surface S can be written in terms 

of the polar and radial coordinates [Φ,R]:

 R i j k( , ) cos sin ( )Φ R R R Z R= + + +Φ Φ  (13.62)

Then, applying Equations 13.10 and 13.42 to the receiver surface S, a rotationally 

symmetric element of area on the receiver surface can be written as

 d d  d d
d dA G R R Z
R R= = +









∫ 1 2

0

2 2
2 1/ Φ π

π

 (13.63)

where:
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 (13.64)

The element of area dA in Equation 13.63 represents a circular ring on the receiver 

surface as illustrated in Figure 13.7.

When the receiver surface is a disk, as shown in Figure 13.6a and b, Z = constant 

and dA = 2πR dR. For a spherical receiver, as shown in Figure 13.6c,

 d d dA R C
C R R R R

C R
= +

−























=
−

2 1 1
2
1

2 2
2 2

1 2

2 2π
π

/
 (13.65)
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FIGURE 13.7 Rotationally symmetric beam shaping mirror and spherical detector.
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when the equation of the spherical receiver surface is written in a form similar to that 

given in Equation 6.46:

 

Z R CR
C R

R X Y
C

( ) =
+ −

= +

≡

2

2 2

2 2 2
1 1

1
Radius of spherical surface

 (13.66)

The energy balance equation (6.10) is

 ER Z
R R r r1

2
+








 =

d
d d dσ  (13.67)

where:

E gives the irradiance on the receiver surface

When the receiver surface equation is speci!ed, both sides of Equation  13.67 

can  be integrated. E may be an arbitrary function of position on S, but it 

must have an adjustable parameter so that conservation of energy is satis-

!ed between  the  input  beam and the receiver surface. For a $at receiver, 

Z = Z0,  conservation of energy between the input beam and the receiver surface 

is given by

 E R R r r
r

r

R

R
 d d= ∫∫ σ

00
 (13.68)

For uniform irradiance over a $at receiver with R0 = 0, r0, rf, Rf ≠ 0, integrating 

Equation 13.68 gives

 E r r
R

f
f

0
2 02

2=
−

σ
( )

 (13.69)

This value of E0 is substituted into the integrated form of Equation 13.68 to yield a 

connection between r and R:

 R r r
E=
−σ( )2 02

0
 (13.70)

Equation 13.70 represents the conservation of energy between the input beam and 

the receiver surface and can now be used with the ray trace equations to write down 

a !rst-order differential equation of the re$ector surface required to provide this 

illumination over the receiver.
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A unit vector along the re$ected light for this geometry is given by Equation 13.45. 

Then the ray trace equation between the re$ector and the receiver in the r–z plane is 

given by

 R r
Z z

z
z

−

−
=

′

′ −0 2
2

1  (13.71)

Equation 13.71 can be solved as a quadratic equation for z′ to give
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z Z
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 (13.72)

where:

the ± sign is used when the concave side of mirror is oriented toward the positive 

or negative z-direction

R as a function of r is given by Equation 13.70

Equation 13.72 can be solved numerically to determine the shape of the re$ec-

tor. The initial conditions are z = z0 when r = r0. Reference [13] contains several 

solar collectors designed by the solution of Equation 13.72 for different initial 

conditions.

In this section, two methods of designing nonlaser beam pro!le shaping opti-

cal systems have been discussed. These methods are equivalent and are based on 

the application of conservation of energy between the input beam and the receiver 

surface, and on the ray trace equations between the re$ector and the receiver. 

These methods for designing nonlaser beam shaping systems are generally appli-

cable to all forms of incident radiation. In Section 13.3, the optical design method 

using the conservation of energy condition will be extended to include a point and 

line source of radiation for heating and illumination applications.

13.3 APPLICATION TO POINT AND LAMBERTIAN SOURCE

In Section 13.2, the principle of conservation of energy and the ray trace equations 

were used to obtain a !rst- and a second-order differential equation used in optical 

design of beam shaping systems to illuminate a receiver with a prescribed irradi-

ance when the input beam was collimated. However, for many nonlaser beam shap-

ing applications associated with heating or illumination, it is important to consider 

the !nite size and location of the source of radiation. Schruben [21] reported a dif-

ferential equation-based design of an illumination system for a re$ector and small 
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Lambertian source. Burkhard and Shealy [22] reported an optical design method 

for shaping a mirror to transform a point or line source of light into a prescribed 

irradiance over a receiver surface. In this section, the !rst-order differential equa-

tion* discussed in Section 13.2.2 will be revised to use with point or small line 

(Lambertian) source of light.

Consider the geometrical con!guration of point source, mirror, and receiver 

 surface shown in Figure 13.8, where the mirror and receiver surfaces have rotational 

symmetry around the z-axis.

The current analysis will take into account the fact that the incident radiation is 

not collimated, or its wavefront is not planar. This means that the direction of the 

incident light from the source will vary over the surface of the optics, which dif-

fers from the beam shaping applications addressed in Section 13.2.2.2 and shown in 

Figures 13.5 and 13.6 where the direction of incident light over optics was constant. 

A unit vector along an incident ray upon the mirror is given by

 a r k= +sin cosθ θ  (13.73)

where:

r i j ( cos sin )= +φ φ  is the radial polar unit vector in the x–y plane

It will be helpful to understand clearly that all the variables used in the present 

analysis (φ,θ,ρ) are the conventional spherical coordinates, where the z-axis is also 

the optical (symmetry) axis. Since the beam shaping optics has rotational symmetry 

about the optical (z-) axis, it is convenient to use the r–z plane polar coordinates 

* For a more complete discussion of differential geometry, the reader is referred to one or more of the 

comprehensive books in the literature on this topic, such as Reference [36].
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FIGURE 13.8 Geometrical con!guration of point source, mirror, and receiver surface.
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(ρ,θ) to solve for the shape of the mirror surface. The slope of the mirror in the r–z 

plane is given by

 ′ ≡ =
′ − ′

′ + ′
z z

r
d
d

( cos sin )
( sin cos )
ρ θ ρ θ

ρ θ ρ θ
 (13.74)

where:

ρ′ ≡ dρ/dθ
z = ρ cos θ
r = ρ sin θ

These variables are shown in Figure 13.8. From Equation 13.43, a unit normal vector 

of the mirror can be written in terms of the coordinates (ρ,θ) as

 n r k r k
=
− ′ +

+ ′
=
− ′ − + ′ +

′ +

z

z1 2 2 2
( cos sin ) ( sin cos )ρ θ ρ θ ρ θ ρ θ

ρ ρ
 (13.75)

The direction of the re$ected ray A can be evaluated from Equation 13.5 to give
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 (13.76)

Then, the ray trace equation in the r–z plane, connecting the point (r,z) on the re$ec-

tor to the point (R,Z) on the receiver, is given by

 R r
Z R z r

A
A
r
z

−

−
= =

′ + ′ −

′ + ′ −( ) ( )
sin cos sin
cos sin

ρ θ ρρ θ ρ θ

ρ θ ρρ θ

2 2
2

2
2 ρρ θ2 cos  (13.77)

For a planar receiver surface, Z = Z0 (a constant), Equation 13.77 can be written as a 

!rst-order differential equation for the re$ector surface:

′ =
+ − ± − − + + −

ρ
ρ θ θ ρ ρ θ θ ρ θ θ( sin cos ) ( sin cos ) ( cos sin )R Z R Z R Z0 0 2 0 2


−ρ θ θcos sinZ0

 (13.78)

where:

the ± sign in Equation 13.78 is chosen to ensure that ρ′ is positive or negative as 

required by the geometrical con!guration of source, re$ector, and receiver 

shown in Figure 13.6

In subsequent calculations in this chapter, the positive root of Equation 13.78 will 

be used.

In order to solve Equation 13.78, the energy balance equation must be used to 

obtain an expression for R(ρ,θ). For a $at receiver, the conservation of energy condi-

tion (6.35) becomes
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( ) ( ) sind d∫ ∫=  (13.79)

where:

I(θ) is the intensity of the source

the re$ectance of mirror has been assumed to be equal to unity

If the source is a small Lambertian source [39] along the z-axis, then I(r,θ)  =  I0 

sin θ/ r2, where I0 is a constant. If the optics is such that the direct illumination from 

source to receiver can be ignored, Equation 13.79 can be integrated to obtain the 

constant E0, which ensures conservation of energy for this system. For uniform 

irradiance over the receiver, E = E0, integrating Equation 13.79 over the full beam 

[θ ∈ (θ0,θm) and R ∈ (0,Rm)] leads to the following result:

 E
I

Rm
m

m
0

0
2 0

02 2
2=









 − +

−

















θ θ

θ θsin sin
 (13.80)

where:

Rm and θm are the maximum values of R and θ, respectively

Similarly, for an isotropic point source, uniform irradiance of the receiver leads to 

the following expression for E:

 E I
R

m

m

0 0
0

22= −cos cosθ θ
 (13.81)

The constants I0, θ0, and θm can be chosen to give the desired value of E0.

For backlighting con!guration (Figure 13.6a), integrating Equation 13.79 leads to an 

expression for R(θ) that can be used to integrate Equation 13.78 to determine the shape 

of mirror required for a speci!c beam shaping application. For a Lambertian source,

 R
I

E
= − − − 

0
0

0 02 2 2 2( ) (sin sin )θ θ θ θ  (13.82)

and for an isotropic point source,

 R
I

E
= −

2 0
0

0(cos cos )θ θ  (13.83)

Equation 13.78 can now be integrated to obtain the shape of the re$ector that will trans-

form point source light into uniform irradiance on the back of a detector. Figure 13.9a 

is a scaled drawing of a point source, mirror, and back-lighted detector of an example 

solution of this differential equation for the optical design of nonlaser beam shaping 

systems. Similar calculations could also be done for a Lambertian source.
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When the optical con!guration (Figure 13.6b) allows direct illumination of 

the receiver from the source as well as from the re$ector, the analysis leading to 

Equations 13.80 through 13.83 needs to take into account the direct illumination. The 

irradiance, Edirect, directly incident upon receiver from source, as shown in Figure 13.6b, 

is given by

 Edirect = σ χcos  (13.84)

where:

σ is the $ux density from source evaluated at the receiver

χ is the angle between the ray and the normal to the receiver

For a Lambertian source [39],

 σ
χ

=
I

r

0
02
sin

 (13.85)

where:

r0 is the distance from the source to a point on the receiver

From the geometry of a direct illumination system, the following relations hold:

 

r R Z
R
r
Z
r

0 2 02

0

0
0

= +

=

=

sin

cos

χ

χ

 (13.86)
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FIGURE 13.9 Uniform illumination of a $at disk by a rotationally symmetric re$ector for 

point source light incident upon (a) back-lighted and (b) direct-lighted con!gurations. (From 

Burkhard, D.G. and Shealy, D.L., Solar Energy, 17, 221–227, 1975. With permission.)
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Then, the direct irradiance on receiver is given by

 E
RZ I

R Z
direct =

+

0 0
2 02 2( )  (13.87)

To obtain a uniform irradiance (E0) over the receiver surface when both direct and 

re$ected light are considered, note that the total irradiance Etotal(R) at the receiver 

is the sum of the re$ected light Ere$ected(R) and the direct light Edirect(R) from the 

source:

 E R E R E Rtotal direct reflected( ) ( ) ( )= +  (13.88)

If Etotal(R) is to be constant, then Ere$ected(R), which appears on the left-hand side of 

Equation 13.79, will be given by

 E E Ereflected total direct= −  (13.89)

and the constant Etotal needs to satisfy the following integral equation:

 2 2
0

0 0
2 02 2 0 2

0

π π θ θ
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θRm m

E
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R Z
R R I∫ ∫−

+









 =total d d( ) sin  (13.90)

After carrying out integrals and solving for Etotal in Equation 13.90, one has
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0 21
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R Zm

 (13.91)

The above equation expresses the total energy leaving the sources that is intercepted 

by the mirror and the receiver. The value of Etotal from Equation 13.91 is substituted 

into Equation 13.90 with upper limits of R and θ to solve for R(ρ,θ) and subsequently 

solve the differential equation (13.78) numerically for ρ(θ), which is the shape of a 

mirror surface [13,21]. Figure 13.9b is a scaled drawing of point source and re$ector 

that will uniformly illuminate receiver plane when taking both direct and re$ected 

light into account. This optical design method has been extended in Reference [22] to 

include multiple point sources and continuous line sources along the symmetry axis 

when solving for the shape of a mirror that will uniformly illuminate a detector.

13.4 CONCLUSION

The design and analysis of nonlaser beam shaping systems has been discussed in this 

chapter. The ray trace equations and the principle of conservation of energy within a 

bundle of rays have been used to derive several alternate forms of the $ux $ow equa-

tion, Equations 13.22 and 13.40. Equation 13.22 is useful when computing the irra-

diance distribution for a collimated incident beam. Equation 13.40 is useful when 

computing the irradiance distribution for cases when the incident beam wavefront is 

not planar and, subsequently, when the incident beam wavefront curvatures vary over 

the beam shaping optics, which happens for point or extended sources near the optics.
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The $ux $ow equation can be used to monitor the irradiance along a ray path as 

it propagates through the optical system. When the input and output beam pro!les 

are known, the shape of a single surface is determined by a differential energy bal-

ance equation. Speci!c examples of using this optical design method are presented 

for collimated, point, and Lambertian sources of radiation.
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APPENDIX A

SUMMARY OF SOME CONCEPTS AND RESULTS 
FROM DIFFERENTIAL GEOMETRY*

In general, the equation of a surface is a constraint equation between three coor-

dinates such that when two coordinates are given the third coordinate will indeed 

* Reference [19] contains a formula for the $ux $ow equation applied to re$ection (or refraction) of point 

source light to illuminate a receiver surface. This formula for the $ux $ow equation could be used to derive 

a second-order differential equation for design of a mirror for beam shaping of point source light. However, 

it is more straightforward to use the two !rst-order differential equations resulting from application of con-

servation of energy and the ray trace equations than the second-order differential equation obtained from 

the $ux $ow equation as part of the optical design of a mirror used with point or extended source of light.
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lie on the surface. The equation of the surface can be represented by the following 

symbolic equation:

 w w u v= ( ),  (A.1)

where:

[u,v,w] are curvilinear coordinates that themselves are de!ned in terms of the 

Cartesian coordinates [x,y,z]:

 

x x u w
y y u w
z z u w

v
v
v

=

=

=

( , , )
( , , )
( , , )

 (A.2)

Combining the equation of the surface (A.l) and the relationship between the 

Cartesian coordinates [x,y,z] of a point and the curvilinear coordinates [u,v,w] 

of the same point (Equation A.2), one obtains a parametric representation of the 

surface:

 

x x u
y y u
z z u

v
v
v

=

=

=

( , )
( , )
( , )

 (A.3)

where:

[u,v] are the curvilinear coordinates of the surface that can also be considered as 

surface parameters

It will be convenient to write Equation A.3 as the vector equation:

 r r= ( ),u v  (A.4)

where:

the Cartesian components of the vector r i kj( )≡ + +x y z  are given by 

Equation A.3

The two vectors ru ≡ ∂r/∂v and rv ≡ ∂r/∂v, which are tangent to the u-parameter 

curve and the v-parameter curve on the surface, are two linearly independent vec-

tors in the tangent plane of the surface at a speci!ed point on the surface, and thus, 

any vector in the tangent plane can be written as a linear combination of the vectors 

[ru,rv]. The unit normal vector to the surface can then be written as the vector cross 

product of [ru,rv]:

 n r r
r r=
×

×

u
u

v
v

 (A.5)
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The measurement of lengths on the surface terms of the coef!cients is conveniently 

expressed in
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 (A.6)

or by

 g jk j k= ⋅r r  (A.7)

where it is understood in Equation A.7 that ( j,k) may each take on the value of u or v.

The coef!cients guv transform like a second rank symmetric tensor and are called 

the metric coef!cients of the surface or the coef!cients of the !rst fundamental form 

of the surface. The !rst fundamental form of the surface is a quadratic expression for 

the differential arc length of a curve on the surface and is given by

 

d d d d d d d

d
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d d

d  d d d
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( ) ( ) ( ) ( )
,

 (A.8)

where the simpli!ed (last) expression uses the summation convention, which means 

that if a given letter appears twice on the same side of an equation, then the summa-

tion of that letter must be carried out. For surfaces, the summation will be over the 

two curvilinear coordinates u and v.

The determinant of the metric coef!cients is given by

 g g g
g g g g guu u
u

uu u
v

v vv
vv v≡ = − ( )2  (A.9)

By direct computation, one sees that the determinant g is identically equal to the 

magnitude square of the normal vector ru × rv:

 g u v= ×r r 2
 (A.10)
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In terms of g, one can write the Cartesian components of n:
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 (A.11)

An expression for the element of area, da, on the surface in terms of the differentials 

du and dv is found by separately varying the position vector r(u,v) of a point on the 

surface by an amount du and dv, and then taking the cross product of the resulting 

differential vectors:

 d d
d d d

d d d d d da u u u g uv v v vu v= × = × =
r r r r 1 2/  (A.12)

We have seen that a knowledge of the metric coef!cients gjk is suf!cient for calculat-

ing lengths and areas on a surface; however, they do not uniquely determine a surface. 

In order to fully characterize a surface in terms of the radii of curvature, for example, 

it is necessary to introduce another quadratic form in the coordinate differentials du 

and dv, which is usually referred to as the second fundamental form of a surface and 

is given by

 b u b u bv vuu uv vv( ) ( )d d d d2 22+ +  (A.13a)

or simply by

 bjkd( j)d(k) (A.13b)

where the summation convention is implied. The second fundamental form coef-

!cients, bjk, will transform like a second rank symmetric tensor and are given by
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 (A.14)

or when rjk ≡ ∂2r/∂(j) ∂(k)

 b j k u vjk jk= ⋅ =r n; ( , , )   (A.15)
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The determinant of the coef!cients bjk is given by

 b b b buu uvv v= − ( )2  (A.16)

Since the unit normal n to the surface is given by

 n r r
=

×u v
g  (A.17)

the second fundamental form coef!cients, bjk, can be written explicitly as
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 (A.18)

or by

 b gjk
u jkv

=
× ⋅r r r

 (A.19)

Since rj is a vector in the tangent plane

 r nj ⋅ = 0  (A.20)

And therefore, one has after taking the partial derivative of Equation A.20 with 

respect to the variable k (= u or v)

 r n r njk j k⋅ + ⋅ = 0  (A.21)

Hence, the second fundamental form coef!cients bjk given by Equation A.15 can also 

be written as

 bjk j k= − ⋅r n  (A.22)

One can now write the second fundamental form as

 b j kjk  d d d d( ) ( ) = − ⋅r n  (A.23)

One can associate the second fundamental form with the distance from the tangent 

plane of a point on the surface to an adjacent point on the surface. This can be veri-

!ed if one draws a tangent plane at a point P on the surface whose position vector is 
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r(u,v). Then, the distance δ to an adjacent point P′ whose position vector is r(u + Δu, 

Δv) will be given by

 δ = ⋅∆r n  (A.24)

where:

n is the unit normal to the surface at the point P and Δr is given by

 ∆ ∆ ∆r = + + −r u u v v r u v( ) ( ), ,
or, expanding in a Taylor series,

 ∆ ∆ ∆ ∆ ∆ ∆ ∆r r r r r r= + + + + +



( ) ( ) ( )u uu u uv v vvu uv v v1

2
2 22 …  (A.25)

Hence, one has to second order in displacement
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It is interesting to note that the coef!cients bjk are strictly functionally dependent on 

the properties of the surface at the point P, whereas the location of the adjacent point 

P′ is uniquely characterized by the displacement du, dv. Thus, the interpretation of 

the second fundamental form as being proportional to the distance between P′ and 

the tangent plane to the surface at P seems to be reasonable.

We shall now be interested in deriving expressions for suitable measures of the cur-

vature of a surface. The concept of curvature of a surface is given meaning in terms of 

the curvature of an arbitrary curve C on the surface S, which is represented by

 u u s v v s= =( ) ( ),  (A.27)

where:

s is the arc length of C

For such a curve C on S, one could not expect the unit principal normal p of the curve 

C, which is given by

 p r
=

 1 2
2K

u s s
s

vd
d
( ), ( )

 (A.28)

where:

K is the curvature of C to lie along the unit normal to the surface
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On the contrary, p and n will make a nonzero angle η that will be a function of both 

the curve C and the surface S. The cosine of η is given by

 cos η = ⋅p n  (A.29)

The differentiation of r[u(s), v(s)] with respect to s appearing in Equation A.28 is 

given by
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Combining Equations A.28 through A.30 and making use of Equation A.30, one 

!nds

 K j
s

k
sjkcos ( ) ( )

η = ⋅r n d
d

d
d  (A.31)

However, we have already de!ned rjk·n as being the coef!cients bjk of the second 

fundamental form, and from Equation A.8 we have identi!ed ds2 with the !rst fun-

damental form glmd(l)d(m). Therefore, Equation A.31 becomes

 K
b j k

g l m

jk

lm

cos ( ) ( )
( ) ( )η =

d d
d d  (A.32)

It is interesting to note that the right-hand side of Equation A.32 is only a func-

tion of the point (u,v) on the surface and the direction (du/dv) of the curve passing 

through that point. Thus, at a given point P on the surface S, if we !x the tangent 

to the curve, then the right-hand side of Equation A.32 is a constant, which shall be 

denoted by Kn:

 K
b j k

g l m
n

jk

lm

=
d d
d d
( ) ( )
( ) ( )  (A.33)

Kn is called the normal curvature of the surface S at the point P. From Equations A.32 

and A.33,

 K Kncosη =  (A.34)
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If η = 0, K = Kn, and if η = π, K = −Kn. Hence |Kn| is the curvature of the intersection 

of the surface S and the plane that passes through both the tangent to the curve on 

the surface and the normal to the surface at P. Such a curve will be called a normal 

section of S. One may introduce the idea of the radii of curvature of a normal section 

by putting R = 1/Kn in Equation A.33.

We are now interested in obtaining an expression for suitable measures of the 

curvature of a surface in terms of the coef!cients gjk and bjk. We shall see that these 

measures can be expressed in terms of the two primary curvatures of a surface. 

Writing out Equation A.33 explicitly, one has

 K b u b u v b v
g u g u v g vn
uu uv vv
uu uv vv

=
+ +

+ +

( ) ( )
( ) ( )
d d
d d

2 2
2 2

2
2

d d
d d  (A.35a)

or, in terms of the direction q ≡ du/dv,

 K b q b q b
g q g q gn
uu uv vv
uu uv

=
+ +

+ +

2
2
2
2  (A.35b)

which can be written as

 ( ) ( ) ( )b K g q b K g q b K guu n uu uv n uv vv n vv− + − + − =2 2 0  (A.36)

The curvature Kn in Equation A.36 is a function of q. Therefore, if one differentiates 

Equation A.36 with respect to q and makes use of the condition for an extremum of 

Kn, namely, dKn/dq = 0, one obtains

 ( ) ( )b K g q b K guu n uu uv n uv− + − = 0  (A.37)

In order to solve for the explicit values of the extrema of the normal curvature, one 

must eliminate q between Equations A.36 and A.37 and solve for Kn. One obtains

 
( )( ) ( )b K g b K g b K gvv n vv uu n uu uv n uv− − − − =2 0

or

 K g g b g b g b K b
gn uu vv uv uv vv uu n

2 1 2 0+ − + + =( )  (A.38)

The principal curvatures K1 and K2, which are the extrema of Kn, will be the solu-

tions of Equation A.38. It then follows that

 ( )( ) ( )K K K K K K K K K Kn n n n− − = − + + =1 2 2 1 2 1 2 0  (A.39)

where the coef!cient of Kn in Equation A.38 is put equal to (K1 + K2). It is conven-

tional to denote the product of K1K2 by K, and by comparing Equations A.38 and 

A.39, one can write

 K K K b
g≡ =1 2  (A.40)
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K is called the Gaussian curvature. In spite of the fact that the Gaussian curvature 

given by Equation A.40 appears to depend on both the !rst and second fundamental 

forms, it can be shown that K depends only on the !rst fundamental form coef!cients 

and their !rst and second derivatives.

The arithmetic mean (K1 + K2)/2 of the principal curvatures is called the mean 

curvature of the surface and is denoted by H. From Equations A.38 and A.39, one sees

 H K K g g b g b g buu vv uv uv vv uu= + = − +1
2 1 2

1
2 2( ) ( )  (A.41)

The Gaussian curvature and the mean curvature are useful expressions of the curva-

ture of a surface in terms of the coef!cients gjk and blm. As seen from Equations A.40 

and A.41, a knowledge of H and K determines the principal curvatures K1 and K2 of 

a surface, which themselves are extrema of the normal curvature Kn. Furthermore, 

by the Euler theorem of differential geometry, one can express the curvature of a 

normal section in an arbitrary direction in terms of the two principal curvatures K1 

and K2 and the angle between the direction of the curve and the direction of the curve 

with the curvature K1.

This brief discussion of the theory of surfaces is intended only to highlight some 

of the key ideas of differential geometry used in Chapter 13 as well as to present an 

accessible reference to derivations of some of the results that we have used in this 

chapter. For a more complete discussion of differential geometry with application to 

the theory of surfaces, see Reference [36], for example.
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FIGURE 6.22 (b) Three-dimensional view of the tangential caustic surface of the !rst 

plano-aspheric lens of a Keplerian laser beam shaper with an input aperture radius of 5 mm. 

The   sagittal caustic spike is not visible in this view. (Reproduced from Shealy, D. L. and 

Hoffnagle, J. A. J. Opt. Soc. Am. A, 25, 2370–2380, 2008. With permission.)
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(a)

(b)

FIGURE 7.22 Example of beam shaping with πShaper: (a) input TEM00; (b) output 

from πShaper. (Courtesy of InnoLas Laser GmbH; Reproduced from  Laskin, A. and 

Laskin, V., Variable beam shaping with using the same !eld mapping  refractive beam 

shaper, in Laser Resonators and Beam Control XIV, Kudryashov, A. V., Paxton, A. H., 

and Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2011. With permission.)
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FIGURE 7.23 Evaluation of πShaper to sensitivity of misalignments, theoretical and experimental intensity pro!les: (a) input TEM00 beam; (b) output 

beam with perfect alignment; (c) output with lateral shift of 0.5 mm; (d) output with tilt of 1°. (Reproduced from Laskin, A. and Laskin, V., Variable 

beam shaping with using the same !eld mapping refractive beam shaper, in Laser Resonators and Beam Control XIV, Kudryashov, A. V., Paxton, A. H., 

and Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2011. With permission.)
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(a) (b) (c) (d)

FIGURE 7.26 Experimental and theoretical intensity pro!les as described within the text. (Figure was provided by IPG Photonics; Reproduced from 

Laskin, A. and Laskin, V., Variable beam shaping with using the same !eld mapping refractive beam shaper, in Laser Resonators and Beam Control 

XIV, Kudryashov, A. V., Paxton, A. H., and Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2011. With permission.)
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(a) (b) (c) (d)

FIGURE 7.27 Beam shaping of powerful multimode laser. (Reproduced from Laskin,  A. and Laskin, V., Refractive beam shapers for material 

processing with high power single mode and multimode lasers, in Laser Resonators and Beam Control XV, Kudryashov, A. V., Paxton, A. H., and 

Ilchenko, V. S., eds., SPIE, Bellingham, WA, 2013; Laskin, A. and Laskin, V., Proceedings of the ICALEO, 707, 2012. With permission.)
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(a)

(b)

FIGURE 12.10 (a) Commercial knife scanner; (b) Windows PC display.
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FIGURE 12.14 Pyroelectric camera video graphics array (VGA) output of CO2 laser.

(a) (b)

FIGURE 12.16 (a) Combined beam splitter and ND !lter holder; (b) mechanical diagram of 

combined beam splitter and ND !lter holder.
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FIGURE 12.33 M2 measurement display and calculation.
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K15925

"… covers the major technical areas of beam shaping in outstanding 

detail. … Clear, careful, and rigorous descriptions make this book easy 

to read and absorb."

—Sandra G. Biedron, PhD, Advanced Beam Laboratory, 

Colorado State University Foothills Campus, Fort Collins, USA

“… each topic is developed in detail, from the basic concepts to more 

the elaborate ones, and always supported by an excellent mathematical 

treatment.”

—Raul Hernandez, Department of Physics, Tecnológico 

de Monterrey, Mexico

"… a super follow up to the #rst edition, which is already established 

as the reference text on the subject."

—Prof. Andrew Forbes, CSIR National Laser Centre, 

Pretoria, South Africa

Laser Beam Shaping: Theory and Techniques addresses the theory 

and practice of every important technique for lossless beam shaping. 

Complete with experimental results as well as guidance on when beam 

shaping is practical and when each technique is appropriate, the 

Second Edition is updated to reflect significant developments in the 

field. This authoritative text:

 Features new chapters on axicon light ring generation systems, laser 

beam splitting (fan-out) gratings, vortex beams, and microlens diffusers

 Describes the latest advances in beam profile measurement technology 

and laser beam shaping using diffractive diffusers

 Contains new material on wavelength dependence, channel integrators, 

geometrical optics, and optical software

Laser Beam Shaping: Theory and Techniques, Second Edition not only 

provides a working understanding of the fundamentals, but also offers 

insight into the potential application of laser beam profile shaping in laser 

system design.
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