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Antenna Diversity in Mobile Communications

RODNEY G. VAUGHAN, MEMBER, IEEE, axD J. BACH ANDERSEN, SENIOR MEMBER, IEEE

Abstract—The conditions for antenna diversity action are investigated.
In terms of the fields, a condition is shown to be that the incident field
and the far field of the diversity antenna should obey (or nearly obey) an
orthogonality relationship. The role of mutual coupling is central, and it
is different from that in a conventional array antenna. In terms of
antenna parameters, a sufficient condition for diversity action for a
certain class of high gain antennas at the mobile, which approximates
most practical mobile antennas, is shown to be zero (or low) mutual
resistance between elements. This is not the case at the base station, where
the condition is necessary only. The mutual resistance condition offers a
powerful design tool, and examples of new mobile diversity antennas are
discussed along with some existing designs.

[. INTRODUCTION

HE DEMAND for better spectrum efficiency in

narrow-band cellular frequency reuse systems can be
eased by the application of antenna diversity. The possible
improvements from diversity are well known for reduction of
fading, but there are other advantages potentially available in
the case of mobile communications. These are the suppression
of both the random FM, which limits BER improvement in
angle modulated systems, and cochannel interference, which
limits frequency reuse base station density.

The signal conveyed through a narrow-band mobile channel
becomes impaired by long-term (shadow) fading, short-term
(Rayleigh-like) fading, random FM (including click noise),
and especially in cellular systems, cochannel interference.
Perhaps the most serious of these is the Rayleigh-like fading
caused by the multipath environment. The random FM is
caused by the Doppler shifts of the multipath signals, and the
click noise component is associated with the deeper fades. The
shadow fading is caused by a lack of power density, and this
problem cannot be solved by diversity action at the mobile
alone. The macrodiversity action required, if necessary, to
overcome shadow fading is accomplished by strategically sited
base stations. Macrodiversity will not be addressed here.

The simplest technique to maintain acceptable channel
capacity (relative to the nonfading channel) is to increase the
transmitted power. However, in doing so, the overall spec-
trum efficiency is reduced because the distance between
frequency reuse transmitters must be greater to maintain
acceptable cochannel interference levels. Moreover, the ran-
dom FM cannot be suppressed by simply increasing the
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transmitted power. Alternative techniques to maintain channel
capacity employ some kind of diversity scheme. Both antenna
and signaling based diversity systems are well known (e.g.,
Jakes [13]).

With antenna diversity, the problems of the mobile channel
are attacked directly. Higher orders of diversity are readily
available in principle. An existing mobile antenna can be
replaced by a diversity antenna with combiner so that existing
systems can be improved without the need for implementing a
signaling diversity scheme. The random FM is suppressed
according to the order of diversity and the combining
technique.

There are well-known schemes other than antenna diversity
for improving the mobile channel capacity. Proponents of
antenna diversity view the inherent advantages as follows.
While covering ‘‘system’” and ‘‘overall”” spectrum efficien-
cies requires much discussion, it is sufficient here to note that

1) antenna diversity improves the channel capacity at the
expense of adding extra equipment (antenna, combiner)
to the receive end of the link (no extra spectrum is
consumed); and

2) all other schemes consume extra spectrum to improve
the channel capacity.

Regarding the first point, it is worth adding that adaptive
retransmission with feedback allows the diversity antenna to
be at the transmitting end of the link. The price paid is the
required coding and housekeeping functions at both ends of the
link with a corresponding slightly degraded channel message
capacity compared to the receive antenna diversity case. A
possible exception to the second point is delay diversity, in
which uncorrelated signals arriving at different delay times are
aligned (in time) for combination (cf. Rake and Drake
schemes). There is no guarantee, however, that the natural
delay distribution is suitable in the general case and so the
scheme is not deemed appropriate.

The traditional disadvantage of antenna diversity is the cost
and inconvenience of the extra equipment. There is much
concern regarding efficient use of the spectrum, so it seems a
matter of time until this concern forces greater use of antenna
diversity. Much recent effort has been toward data coding to
improve the information bit error rate (BER). Considerable
progress has been made using a priori knowledge of the
channel. Specifically, the Rayleigh-like fading gi es rise to
bursts of errors during the deeper fades. The channel is often
treated as having ‘‘good’” and ‘‘bad’’ states of transmission in
a scheme known as the Gilbert-Elliot model (e.g., Ahlin, [1]).
Most coding schemes rely on the channel signal-to-noise ratio
(SNR) being exactly Rayleigh distributed, so the calculated
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Fig. 1.

Tllustration that antenna diversity can also work for wide-band (frequency hopping) systems. The three figures are group

delays from simulation of three diversity antenna elements. Dispersive (bad) channels are independent for each element. Average
group delay is about 17 s, which is exaggerated for clarity on the scale (it is typically less than 0.5 us).

performance may well be quite different from actual perform-
ance. To the authors’ knowledge, detailed investigation of the
coding gain from a diversity antenna signal have not been
reported. This should be a rather straightforward step, since
the model with diversity would involve only a modification to
the Rayleigh distribution term (maximum ratio combination
could be assumed).

Much effort has also been expended on wide-band systems.
The spread spectrum approach seems to be necessary for
implementation of optimum combining, which is discussed by
Winters [34]. Frequency hopping schemes (often referred to as
frequency diversity) do not seem to have been implemented in

public systems to date. It is worth noting that antenna diversity
offers potential channel improvement for wide-band systems
also. The scheme is illustrated by simulation results in Fig. 1,
which shows that the group delays are uncorrelated between
branches, so that a highly dispersive channel in one branch
will be well behaved in another. The group delay characteris-
tics in a wide-band system are analogous to the random FM in
the narrow-band case. There is an ‘‘irreducible’” BER effect
for wide-band systems with single-port antennas, which is
caused by the group delay characteristic. This irreducible BER
is thus analogous to that in narrow-band systems caused by the
random FM. The spikes of high dispersion in Fig. 1
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correspond to the deep fades of the Rayleigh-like envelope. By
avoiding the deep fades, depicted here in the frequency
domain, the highly dispersive channels (where low channel
bandwidths occur) are also avoided.

A note on terminology is in order, since the multidiscipli-
nary nature of mobile communcations results inevitably in
inconsistent nomenclature. Most terms used here follow from
original articles or by convention according to the pertinent
discipline. An example is the use of I' for both polarization
matrices (e.g.. (4)) and signal-to-noise-ratio (e.g., (17)).
Some inconsistencies also arise from historical ‘‘misuse.’” For
example, covariances and (complex) correlations are consid-
ered the same, despite their mathematical distinction, and the
terms carrier-to-noise ratio (CNR) and signal-to-noise ratio
are also interchangeable, although this is not generally true.
Strictly speaking, the CNR is the quantity of interest since the
signals under consideration are RF (or IF) carriers, yet to be
demodulated (predetection combining is assumed). SNR
should only be applied to a signal after detection and will not,
in general, be the same as the CNR. From here on, however,
the term SNR is used, following Jakes’ principal convention
{13]. The time average is denoted (-) and is interchangeable
with the ensemble expectation since all processes are assumed
ergodic. For matrix operations, the following superscripts
apply: T means transpose, the asterisk means complex
conjugate, and H means Hermitian transpose. When discus-
sing the mobile communications scenario (see Section II), the
word source refers to each point in space that can be
considered to supply energy to the mobile antenna. The word
signal refers to the intelligence conveyed by the energy from
the sources. (Many sources convey the same signal.) When
discussing antenna diversity, the diversity gain differs from
the diversity return in that the latter includes the effects of
mutual coupling. Strictly speaking, the diversity gain should
include mutual coupling effects, but traditionally, this has not
been the case. In referring to mobile antennas, the term high
gain is used for antennas whose receiving patterns are
confined (or almost so) to the directions of the sources.

Section II covers some basic aspects of antenna diversity
and gives a fleeting mention of other methods for improving
the mobile channel. Stein [28] and Jakes [13] discuss diversity
in great depth, and the basics are indeed well covered. Some
aspects are clarified in Section II. Not a great deal has been
reported about the scenario of sources incident on an urban-
based mobile or base station. For diversity antenna pattern
considerations, a convenient distributed souce model is used to
describe the (ensemble) average scenario, despite the fact that
the instantaneous scenario may contain only a few sources.
Energy considerations demonstrate the potential of multiple
port antennas without resorting to space diversity. A figure of
merit for a diversity antenna. the diversity gain, and its
behavior in the presence of mutual coupling receives attention.
It is shown that when correlated branches undergo nonswitch-
ed combining (or when the diversity antenna elements are
always terminated), more care than that displayed in the
literature is required to interpret the diversity gain. A
fundamental difference exists between high-gain antennas at
the mobile and base station antennas in this regard. A short
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discussion on the effect of different levels of branch mean
SNR’s concludes the section.

Section III presents several new ideas and viewpoints
regarding antenna diversity. The conditions for diversity
action are investigated. It is shown that under certain idealized
conditions, the correlation coefficient between branch signals
of a diversity antenna for the mobile can be equated with the
mutual resistance between the antenna elements. This result is
new, fundamental, and useful. It means that the performance
of a class of diversity antenna designs for urban applications
can be ascertained in the laboratory. The alternative is to
measure correlations between branch signals in the field,
normally an expensive and time-consuming exercise. The
textbooks (see Stein [28], Jakes [13], Lee [22]) divide antenna
diversity techniques into classes such as angle, polarization,
space, field component, etc. These techniques are unified into
pattern diversity. The condition for diversity action is found to
be orthogonal element patterns over the sources. This is also a
new and rather fundamental result. The formulation is given,
and the situations at both the base station and the mobile are
discussed.

Section I'V (and the remainder of the article) concentrates on
antenna diversity at the mobile. An element figure of merit
(the element directivity toward the distributed sources sce-
nario) is used to find useful design information. An array
figure of merit (the diversity return) can also be applied to find
useful and optimum diversity antenna configurations. The role
of mutual coupling is investigated in detail, and ideas are fixed
by considering rotationally symmetric two- and three-element
array designs.

Section V discusses specific examples of diversity antennas
for the mobile in terms of the pattern orthogonality. Both
existing and new designs are included. It is noted that space
diversity from concentric horizontal ring elements will not
work well at the mobile. A circular array of three outward
sloping monopoles is also discussed. The advantage is that the
feedpoint spacings can be arbitrarily close. A sinusoidal
current distribution is assumed for all configurations. As the
antennas become closely spaced, a moment method solution
would be better. However, is seems unnecessary to solve the
problem exactly since both the infinite ground plane and source
distribution are only approximations. Experimental values of
the envelope correlation are in excellent agreement with the
theory for a three-element example. The two-clement case is
mentioned and some remarks are offered for the many-
branched circular array. Section VI concludes the paper, and
the Appendix details the cumulative probability distribution of
the combined signal from a circularly symmetric three-
element array.

1I. ANTENNA DIVERSITY : SOME BasiC ASPECTS

Source Scenario at the Base Station [30]

Models are required for the scenario of sources producing
the fields at the mobile and base station. At the base station,
the incident fields due to a single mobile in an urban area
occupy a very small portion of the base station field-of-
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coverage. In fact, the incident signal is often well represented
by a single direction when the antenna is clear of obstructions.
Define the directions and extent of the sources ( from a single
mobile) by upper and lower limits 8,, ¢,; 6., ¢, where the
origin is the base station. The incident electric field is denoted
h(o: ¢9 t)=h6(0’ ¢, [)§+ho(0, ¢s t)d; (1)
where the units of 4, hy, and A, are volts/meter/steradian. The
polarization matrix for the incident fields is defined as

’ ’
Fﬁf? F%

- @
r =t F éé]

(6,1, ¢1; 02, )= [

where the elements are of the form
rg’¢(619 @13 02! ¢2):<h9(61s @1, t)h;k(eb @2, t)>' (3)

If the polarizations are considered uncorrelated and each
polarization considered spatially uncorrelated, then

L7 (61, ¢1; 62, $2)=P(6, ¢)6(0,—02)6(d, — 92)

. [XP%(D) ?] @
where
PO, ¢)=P, 0.<0, <0, o<é<P
=0, elsewhere )

is the (constant) power density per steradic square distribution
and

FI
XPD = ——

L4

)

is the cross polar discrimination (XPD). For vertically
polarized antennas in urban areas, the XPD is given by
Kozono et al. [17] as a weak empirical function of the distance
D between the mobile and base station. However, it is also a
function of the polarization of the mobile antenna and the type
of terrain along the path. For a vertically polarized base station
and a vertically polarized urban based mobile antenna, XPD
= 6 dB (Lee and Yeh [21]). For a horizontally polarized base
station, the value is = —6 dB [21]. Most existing mobile
antennas are principally vertically polarized. At the base
station, then, we choose an average value XPD = 6 dB, but
note that ‘‘instantaneous’’ values between —6 dB and 18 dB
can occur (Kozono ef al. [17]).

Source Scenario at the Urban Based Mobile [30]

At the mobile, the model is that the distributed sources
occupy the far field evenly in the directions 0° € ¢ < 360°,
60° < 6 < 90°, where 0 and ¢ are now the spherical
coordinates with the mobile at the origin. Both polarizations
are uncorrelated and equally likely, the latter property
implying that the base station receives equal powers in both
polarizations. Each polarization is assumed spatially uncorre-
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lated. The polarization matrix at the mobile is thus

T (61, &1 62, $2)=S(6, )6(8:—02)8(¢1 — 02)

10
'[0 1] @

S, 60° < 6 < 90°, 0° << 360°
0

s elsewhere

where

500, )= { ®

is the constant power density per steradic square distribution
around the mobile. It is emphasized that the XPD at the mobile
has been assumed to be unity, a case corresponding to equal
powers in the vertical and horizontal polarizations at the base
station. This scenario is referred to as the mobile communica-
tions scenario (MCS).

FEnergy Considerations at the Mobile and Base Station

The energy density at a point (or in a small volume, strictly

speaking) in space is proportional to

energy = |E|*+{Z,H |* 9
which is a six-component sum in the MCS (no earth plane is
assumed present). The envelopes of the |E,|? component and
the total energy are plotted as a function of position in Fig. 2
along with their Rayleigh curves. Very little fading of the total
energy occurs, and in principle, if an antenna could be
designed to gather the energy coherently, there would be no
need to resort to space diversity. Obviously, this antenna
cannot have just a single port (a combiner is required as in
space diversity). The presence of an earth plane close to the
antenna reduces the number of field components to three.
Pierce’s energy density antenna (Gilbert [9]) was designed to
receive these three components, and the technique is often
called field component diversity. The antenna is mentioned in
Section V. The reason it works well is that the three field
components are uncorrelated at a point in an omnidirectional
scenario (see Jakes [13, p. 38]).

One interpretation of Fig. 2 is that the Rayleigh-like fading
of the mobile channel is a result of using a single port antenna.
At (or rather above) the mobile, the total energy is relatively
constant so that compact diversity antennas are possible, at
least in principle.

At the base station, it is not unreasonable to assume that the
incident signal from a single mobile is from a single direction.
This means that the incident energy is restricted to the two
orthogonal polarizations in this direction. The maximum
theoretical performance without resorting to space diversity
(as far as the fading is concered) can thus be realized by
polarization diversity (Vaughan and Bach Andersen [31]).

There is an important difference between the fading of
energy at the mobile and at the base station. The energy at a
point above a mobile in the MCS corresponds closely to a
maximum ratio combination of five uncorrelated branches of
equal mean SNR’s (cf. Fig. 2(c)). The energy at a point at the
base station has a theoretical limit of only two combined
branches.
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Signal Combination

In this section, predetection maximum ratio combining is of
principal interest. There is little difference in diversity gains
between equal gain, selection, and maximum ratio combina-
tions. The relative performance returns for each of these
schemes are well known (e.g., Jakes, [13, ch. 5]).

Switched diversity offers economical and practical schemes
which are usually the type implemented. The local mean level
of the signal can be measured so the threshhold can be
floating, but relative to the local signal mean. Arnold and
Bodtmann [2] give an example with wide-band simulation
results of this technique. An interesting result is that the
performance is rather insensitive to the threshhold value, over
a range of several (~35) dB [2, fig. 7, p. 159]. Their
simulation used four uncorrelated signals, and the switching
rule was just sequential commutation, which surprisingly
gives significantly better results than the three-branch selec-
tion case.

While switched schemes offer practical advantages, the
maximum ratio combining is mainly of theoretical use and as a
performance benchmark. More recently, the more compli-
cated optimum combining (Bogachev and Kiselev [6], Winters
[34]) has been discussed, although implementation details are
lacking. The advantage of optimum combining is the possibil-
ity of improving strong interference suppression (over other
combining schemes), an issue which will also become of
increasing importance as the demands on spectrum efficiency
in cellular systems increase. The degree of interference
suppression is related to the number of branches, so optimum
combining motivates many-branch systems. For interferers of
similar or less power than the wanted signal, conventional
combining gives quite good interference suppression. Miki
and Hata {21] give some examples for two-branch switched
combining which include the amount of interference suppres-
sion.

In maximum ratio combining (Kahn [15]), the weights are
proportional to the conjugate of the signal voltage and the
inverse of the branch noise power. Implementation of a
maximum ratio combiner is expensive since the weights have
both amplitude and phase, and measurement of the channel
(instantaneous) SNR is required for each weight update. The
technique is the best linear combination in the sense that it
yields the largest output SNR, which turns out to be the sum of
the branch SNR’s. The latter property makes maximum ratio
combining very attractive for finding theoretical characteris-
tics of the combined signal.

If uncorrelated Rayleigh distributions and identical mean
SNR’s are assumed for each input channel, then the cumula-
tive probability of the SNR of the maximum ratio combined
signal is (e.g., Jakes [13, p. 319])

k-1
(£)

(k=1

Y

M
Py(y)=1-eT Y 10)

k=1
where M is the number of input channels and T" is the mean
SNR of each channel. Setting the number of branches M to 1
in (10) leads to the Rayleigh distribution.
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The diversity gain is defined as the decrease in SNR
compared to a nondiversity receiver for a given performance
factor. The performance factor usually used with antenna
diversity is related to Py(y). For example, two-branch antenna
diversity with maximum ratio combining gives a diversity gain
of about 16 dB for Pi(y) 0.001. After three-branch
diversity, diminishing returns from adding extra branches sets
in for this measure of diversity gain.

Rather lax application of the term diversity gain has led to
some misconceptions regarding actual diversity returns. Spe-
cifically, when branches become correlated, it is incorrect to
read the diversity gain off a Rayleigh diagram without taking
proper account of the mutual coupling. Before elaborating on
this point, some discussion is in order regarding the correla-
tion coefficient.

Correlated Branch Signals

The correlation coefficient p of two narrow-band signals
whose envelopes follow a Rayleigh distribution is known
(Pierce and Stein [27]) to obey

lp|?=p. (11)

where p, is the correlation coefficient of the envelopes. It
follows that the square root of the envelope correlation gives
the signal correlation to within an arbitrary angle. This angle is
usually considered as zero for practical purposes, and the
absolute value sign in (11) is correspondingly dropped.

The property that the correlation coefficient is never
negative for Rayleigh distributed signals is interesting. Mea-
surements by the authors of envelope correlations obtained in
urban environments have often been negative. Kozono et al.
[17] also report negative correlation coefficients from their
base station measurements. This is one way to demonstrate
that the signal envelope of the mobile channel does not have a
truly Rayleigh distribution. For diversity considerations,
signals with a negative envelope correlation coefficient can
offer better diversity gain than signals with zero correlation,
such as those indicated in Fig. 2. Consider a two-source model
in which the sources are directly in front of and behind the
mobile. If two space diversity antennas were mounted such
that the envelopes were

ry=|sin x| (12)

and

(13)

then the envelope correlation is readily established to be
—0.92. In this case, two-channel diversity is sufficient to
eliminate the fading almost completely. The reason is that the
correlation coefficient is nearly —1, which represents the
ideal value. For the scenario which gives rise to Rayleigh
fading, the best value for envelope correlations between
diversity antenna element signals, as far as curing the fading is
concerned, is zero.

When the branch signals become correlated, it becomes
very difficult to find Py(y) for combinations other than
maximum ratio. P,(y) for a finite branch correlation is well

ry=/cos x|
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known and P;s(y) for a circular array (identical correlations for
all branches in the MCS or any rotationally symmetric source
scenario) is established in the Appendix. The Rayleigh curves
for Py(y) and Ps(y) are displayed in Figs. 3(a), 3(b). The curves
for P,(v) are well known (e.g., Jakes [13, p. 327]). Note the
SNR is that of the combined signal and the reference (SNR) is
that of a single branch. It is common practice to read the
diversity gain off these curves for a given correlation
coefficient. This is correct only if the mutual impedance has no
effect. At the base station, this is not completely unreasonable
because the mutual impedance decreases much more rapidly
than the signal correlation as similar antennas are spaced
apart. Space diversity, for example, at the base station requires
distances of tens of wavelengths between elements (e.g., Lee
[22, p. 201]), which for conventional antennas means that the
mutual coupling is very low. Stated in another way, the
correlation coefficient between base station elements can be
very close to unity while the mutual coupling is negligible.

At the mobile, this cannot be the case. Consider again space
diversity, but now at the mobile. The spatial correlation
coefficient in the MCS which lies between J, (kx) and sinc
(kx) (Vaughan [30]) shows that for finite correlations (appre-
ciable values, greater than, say 0.5), the antennas must be
closer than a fraction of a wavelength. (In space diversity at
the mobile, there is seldom interest in having a larger spacing
than the first zero of the correlation function.) Now, in the
limit as p — 1, the spacing approaches zero and the elements
merge into one. Nevertheless, the curves of Fig. 3(a), (b)
indicate a 3-dB and 4.77 dB (power factors of 2 and 3,
respectively) diversity gain for this case! Evidently, the
diversity gain has to be defined in these cases as having a
reference (SNR) from a single element in the presence of the
other elements of the diversity antenna while it is operating
as a diversity antenna. This definition can only be properly
corrected by accounting for the mutual coupling. In Section
III, it is shown that, for certain high-gain mobile antenna
elements, the open circuit signal correlation coefficient py is
closely related to the normalized mutual resistance r,

po=r. (14)

For many antennas, the open circuit and terminated circuit
correlation coefficients are reasonably close (cf. for example,
Figs. 12 and 13 for sloping monopoles discussed below) and
so to a reasonable approximation,

(15)

With these results, the approximate effect of mutual
coupling can be included in the Rayleigh diagrams. The
abscissa is modified by the multiplicative factor (additive, for
dB quantities)

2 o
r’=p,.

(SNR(1 branch, mutual coupling ignored))

- (SNR(1 branch, mutual coupling accounted for)) ’

(16)

which is investigated in Section V. The form of the curves will
be the same as those of Fig. 3, but they become shifted along
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the abscissa. For small and medium values of envelope
correlation, the shift is quite small. For very large values of
correlatin coefficient, the shift is large. For example, in the
two-branch case, the curves for p, = 0, 0.1, 0.5, 0.9, and 1
are shifted to the left by about 0, 0.2, 0.9, 2.4, and 3 dB,
respectively. For the three-branch case, the corresponding
shifts are about 0.2, 0.9, 1.6, and 4.77 dB, respectively.
These shifted curves would then have the effect of mutual
coupling fully included, albeit approximately, and can be used
to read off the true diversity gain (now identical to the
diversity return).

An explicit relation between p; (the loaded circuit correla-
tion), po and r is available in Section IV, so that for a given
antenna, the curves can be derived exactly. The above
approximations are good for high-gain antennas at the mobile
and the curves will not change much for all such antennas.
Note also that the factor of (16) does not affect switched
antenna diversity systems, where mutual coupling does not
play an important role for this defintion of diversity gain (the
unused elements are assumed to be open circuit and to obey the
approximation of (14)).

The diversity gain available from Fig. 3 is not particularly
sensitive to the envelope correlation coefficient p,, as long as
pe is less than about 0.7. Indeed, p, = 0.7 is quoted almost
universally to be acceptable for diverstiy considerations. For
maximum ratio combining at the mobile, this figure corres-
ponds in a given diversity gain sense, to about 0.5 when the
mutual coupling is accounted for. A condition for good
diversity action using maximum ratio combining is that the
correlation coefficient should be ‘‘low,”” which can be taken
as p, < ~0.7 at the base station or p, < ~0.5 at the mobile.

Mean SNR Differences

It has been assumed that all branches have the same mean
SNR’s. When these become different, a combiner will, of
course, favor the branch with the highest mean SNR, and the
diversity returns will be reduced. In terms of the diversity
gain, the degradation is similar to that caused by finite
correlations. In the case of two branches, it is clear that the
condition of one branch having much higher mean SNR than
the other will result in the combined signal having the fading
characteristics of a single channel independent of the branch
signal correlation. This same effect occurs for correlated
branchs (p — 1), where the combined signal fades as a single
channel, independent of the difference in the branch mean
SNR’s. The trade-off indicates that the branch mean SNR’s
should be ‘‘similar’’ for diversity action. Stein [28, p. 438]
notes that for selection and maximum ratio combining of
uncorrelated signals with unequal mean SNRs, the geometric
mean of the branch mean SNR’s gives an effective common
branch SNR (here, I" denotes mean SNR):

N 1/N
Feff= [I-I Fk} ’
k=1

which can be interpreted as the principal parameter for
diversity performance. Stein [28, pp. 474, 480], also claims
that for both selection and maximum ratio combining of two

)
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VAUGHAN AND ANDERSEN: ANTENNA DIVERSITY IN COMMUNICATIONS

branches having a finite envelope correlation coefficient p,
(where p, 1s not too close to unity), the effective uncorrelated
common branch SNR is further reduced by a factor of
V= pe..

For two-branch maximum ratio combining, the requirement
of “‘similar’’ SNR’s (uncorrelated branches) turns out to be a
difference of less then 10 dB, which yields a diversity gain at
P;(v) = 0.001 similar to two branches of equal mean SNR
and a correlation of p, < 0.7.

III. ANTENNA DIvVERSITY: A NEW APPROACH
Conditions for Diversity

The conditions for achieving good diversity gain are already
mentioned in Section II, the correlation coefficient between
branch signals should be zero, or “‘low,’’ and mean SNR’s in
each branch should be “*similar.”” It is of interest in diversity
antenna design to see how these signal requirements are
related to, or indeed if they can be expressed in terms of, the
antenna parameters.

It is assumed that the antenna noise is negligible compared
to the receiver noise so that the SNR depends only on the gain
of the antenna element. The gain is not considered towards a
single direction as in the conventional definition, but is rather
considered toward an area, viz., the MCS. An antenna
element figure of merit is established along these lines in
Section IV. If the element pattern is confined to the MCS, the
gain of a lossless antenna becomes independent of the pattern
shape, since the source distribution is assumed uniform.
Furthermore, it is assumed that similar elements of an array
antenna will provide similar mean SNR’s. The discussion is
from now on limited to the correlation coefficient.

The following treatment uses a similar notation to Collin
and Zucker [8, ch. 4] except that the E and h vectors are
interchanged. Here A is the source vector (see (1)) and £ is the
antenna pattern vector. The open circuit voltage (here, for the
kth element) is given by (Collin and Zucker [8, p. 115])

Vou() = SSEk(Q) - h(Q, 1) dO (18)

where @ is the solid angle (6, ¢) and the appropriate time
dependence has been introduced. The kth antenna element has
been assumed to be at the origin. A two-element antenna
polarization matrix can be defined in an analogous way to the
source polarization matrix. For the jth and kth elements,

R 1)
in which a matrix element is defined
Doou(21, Q) =Egj(Q)E ¥ (D) (20)
where
Ey=Eg0+Ey . (21)

Note that the polarization matrix is different from the usual
form (e.g., Collin and Zucker [8]) for single elements. T is
known from the element far fields. The units of E are V/m, in
contrast to those of the source vector A.
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The correlation coefficient for the open circuit jth and kth
signals is

E{( VO_/_ I70_[)( VOk— I70/()*}
LE{(Vo;= Vo) YE{(Vox— Vox) *}1'?

where the expectation is taken over the same interval as in the
biased time average, which is denoted by the swung dash. For
conciseness, the demeaning and normalization processes are
from now on understood, so (22) is written

pox=E{Vo,VE}.

Using (18) and (23),

Pojk = (22)

(23)

pon=E {j E(@) - h@,, 1) d® | EX(@)
5@, 1) dﬂz} (24)

and interchanging the order of expectation and integration, as
well as dropping the element dependences of the polarization
matrix elements,

Pojk = §S (T00F9,€+ F¢¢FQ;O+F9¢P0/¢+T¢€F<;G) dQl sz
= 5 5 tr (TT') dQ, d©,, (25)

where T' and I'’ are defined in (19), (20) and (2), (3),
respectively. The correlation coefficient is thus expressible
explicitly in terms of the source and antenna element polariza-
tion matrices. This result is general.

In the presence of Rayleigh fading, the lowest correlation
coefficient is zero (as noted in Section II, a correlation
coefficient of — 1 is the ideal general value). Thus a condition
(uncorrelated signals) for ideal diversity action to combat
Rayleigh fading, is that the source and antenna polarization
matrices be orthogonal over the sources in the sense of the
inner product defined by (25), i.e.,

H tr (T, T'') dQ, dQ,=0. (26)

Signals at the Mobile

In the MCS, the expression for the open circuit correlation
coefficient (25) simplifies in a particularly interesting way.
Applying the assumption that the orthogonal polarizations are
uncorrelated, then

pos=[ | (Tl jy+TesT S,) A0 d; @7

and that each polarization is uncorrelated in space, there
results

pojic= g | (B @50 + Eo /(@) E 5(@)
S 6(Q)S(Q,-) dQ, dQ,
= “ E(Q) - EX@S(Q) dQ,

(28)
29

and finally that the source power density distributions are
constant, then

poi=| _E @ - EX@ de. (30)
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The normalization process accounts for the cancellation of
constants. For the inner products defined in (29) and (30), it is
emphasized that the integration is over the sources. The
integration could be extended over all space since the inner
product weighting (S(Q)) will be zero in this region.

The contributions of each polarization to the correlation
coefficient can be separated (the open circuit notation is
dropped),

Pjk = Pojk T Pojk (31

where

Poji= SMCS Ej(WE (D) dQ (32)

and similarly for pg.

A derivation for conventional space diversity (Clarke’s
model scenario [7]) makes a good example. Two monopoles
are spaced distance d apart on an infinite groundplane (the
groundplane could be removed and dipoles used). Equation

(29) for the correlation becomes
poji = H Py(8)e*'dS(0, ¢)sin 0 d6 dp  (33)

where Py(f) is the power pattern of one of the elements.
Insertion of Clarke’s model

S(8)=56(8) (34)
collapses the integral in (33) to
Pojk = SZV eikdcost dg
=Jo(kd). 39%5)

It is interesting that pgy is real in this example. Any identical
patterns which are circularly symmetric will give this result. In
fact, it is apparent that whenever the element patterns are
identical, the imaginary part of the coordinate translation term
is zero, leaving a real correlation coefficient.

A conclusion for mobile antennas results from (30). For
zero correlation between diversity branches at the mobile, the
antenna element patterns should be orthogonal over the
sources (here, the MCS), i.e.,

| _E/® - Ef(@ da=0. (36)
MCS

This is a requirement for.an ideal diversity antenna at the
mobile.

The Ideal Diversity Antenna for the Mobile

For a maximum gain, the far-field pattern of the diversity
antenna is confined to the source region, the MCS. Under this
condition, the open circuit correlation coefficient (or, as
shown for this case in Section IV, the terminated circuit
correlation coefficient) is the same as the normalized mutual
resistance. The ideal antenna has zero mutual resistance
between elements. Each element should provide the same
mean SNR. Ideally, the element patterns should span the space
of the sources, although this is not a necessary condition for
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the case of the MCS because of the assumption that the sources
all convey the same information.

For the mobile antenna to work outside of the urban
environment, the composite pattern should be omnidirec-
tional. Here, the omnidirectionality can be restricted to the
vertically polarized component since the vertically polarized
waves will be normally dominant close to ground level
(assuming a vertically polarized base station). This is a much
more practical restraint than having the element patterns
spanning the space of the MCS. The presence of a ground
plane in the MCS (and on the vehicle roof, for roof-mounted
antennas) suppresses the horizontally polarized component of
the wave. Other important practical properties are closely
spaced (ideally adjacent) element feed points, compactness,
ruggedness, and operation over the band of interest.

It would be unlikely that an ideal diversity antenna as
already defined could be realized. However, the diversity
returns are rather insensitive to quite large deviations from
many of the ideal diversity antenna parameters, so the ideal
parameter should be considered only as a direction in which to
aim. For example, the envelope correlation coefficient

Pek=pjpji=[Re {P;k})zzrfk (37
where rj is the normalized mutual resistance between the jth
and kth elements can be less than about 0.7 instead of being
zZero.

Mutual Impedances

Mutual impedances can be expressed in terms of the far-
field patterns if the antenna elements are minimum scattering
antennas. This idealized class of lossless antennas has the
property that when terminated by an appropriate reactance,
their scattered fields are identical to their radiated fields
(Dicke, in Montgomery et al. [24]; Kahn and Kurss [16].

If the terminating reactance is zero for this property, the
antennas are called canonical minimum scattering antennas.
Some corollaries are as follows: the antenna is rendered
invisible when it is terminated in the appropriate reactance;
when a matched load is introduced, the absorbed and scattered
powers are identical; and for reciprocal antennas, the patterns
are symmetrical in any plane through the origin.

Wasylkiwskyj and Kahn [33, p. 212] give the mutual
impedance between two minimum scattering antennas with
normalized far fields (in the sense that total radiated power
from each element is unity) E; and E,, as

2x
Zu=2 [ Ej6,6) Ex(6% ¢)eisin0 do do

(3%)

where the path of integration c¢ for 4 is from -7/2 — joo to 7/2
+ joo in the complex 6 plane. k is the incident propagation
vector and d is the vector from antenna element k to antenna
element j. The real part of the integration over real space (the
far field) will be the sole real contribution to Z in (38). This
is not obvious from inspection of the integral but can be
deduced by noting that, in a lossless environment, power
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transfer can occur only in real space. (The antennas are
already assumed lossless.) The mutual resistance can therefore
be written as the real part of the real space integration of (37),
ie.,

o

CEf6, )

Ry=2Re {\'
“E}(6% 0)e/kdsin 6 df dcb} - (39

The mutual reactance arises primarily from integration over
the invisible region. although some contributions may arise
from real space for certain antenna patterns. In principle, the
mutual reactance can be tuned out using a lossless network
between antenna ports. In practice, it sometimes turns out that
this is not necessary. since the mutual reactance is negligible.
Most single-mode antennas are considered by Bach Andersen
et al. [3] to satisfy (39) approximately. The antennas
considered are here operated as dominantly single mode so
that the relation (39) is assumed to be basically valid (but
probably not exact) from here on.

The form for normalized resistance will be of particular
interest. The coordinate translation term in (38) is assumed to
be included in the far-field pattern of one of the antenna
elements. The normalized mutual resistance becomes

ri=Re {\ E(Q) - EX(Q) dQ} (40)
in which the constants have dropped out in the normalization
process. The integral of (40) is for all real space. It is
noteworthy that the condition for zero mutual resistance
between antenna elements is that the diversity antenna element
patterns should be orthogonal over real space. i.e..

Re {\ E(Q) - EX(Q) dQ} =0. (41)

For identical antenna element patterns, the dot product in
the integrand becomes the power pattern of one of the
anntenna elements multiplied by a coordinate translation term.
Furthermore, when this term is integrated in azimuth, the
imaginary contribution is zero. The Re {:} thus becomes
unnecessary in (40). i.e., for identical antenna element
patterns with circular symmetry, the normalized mutual
resistance is

2

ru=\ P(8)e*d sin 8 do

(42)

where P(f) is the power pattern of a single element.

Relation Between Correlation and Mutual Resistance

The similarity between the real part of the normalized
correlation coefficient

Re {poy} =Re {\ E(@ - EZ@S® dQ} . @3

MC

and the normalized mutual resistance of (40) is striking. The
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imaginary part of the correlation coefficient is usually not of
interest. The Re { -} symbol therefore becomes unnecessary in
(43) and, since the inner product weighting function S(Q) is
zero over those portions of real space where no sources exist,
the (real) correlation coefficient becomes

>

o= | E(@ - EXQS(Q) dQ

(44)

where the integration is now over all real space.

Equations (40) and (44) show that the correlation coefficient
can be couched as the same inner product as the mutual
resistance but with a different weighting function. However, a
converse procedure is more revealing. If it can be assumed
that the element radiation patterns are confined to the source
region, then the normalized mutual resistance and real
correlation coefficient generated in the presence of the MCS
are identical. The assumption is not imipractical. A good
mobile antenna (high gain) will have the majority of its pattern
confined to the MCS. For example, a quarter wavelength
monopole on a