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Figure 2-15: Data conversion between the analog and digital domains. Analog signals are converted into digital by

sampling and quantization. Digital signals are converted into analog by mapping numbers into voltage levels, followed
by reconstruction filtering.

In other words,

Acos(2π f0t)
A

2
[δ ( f − f0)+δ ( f + f0)].

The PSD is

SX( f ) =
A2

4
[δ ( f − f0)+δ ( f + f0)] ,

and the average power is

Px =
∫ ∞

−∞
SX ( f ) d f =

A2

2
.

The autocorrelation function is the inverse Fourier

transform of the PSD, which is straightforward to

determine:

Rx(τ) =
A2

2
cos(2π fcτ).

2-7 Fundamentals of

Analog-to-Digital Conversion

and Vice-Versa

This section covers the conversion of analog to digital

signals, and vice-versa. There are two parts of this

conversion:

(1) sampling a continous-time signal to a discrete-

time signal, which takes on continuous values at

times that are rational numbers, and

(2) quantization of the continuous values that the

signal takes on into values that are rational

numbers. The quantized and sampled signal is

called a digital signal. This is illustrated in

Fig. 2-15.

Some sources produce analog signals, such as

speech and audio. Conversion between analog and

digital representations utilize the fundamental oper-

ations illustrated in Fig. 2-15. An analog-to-digital

converters (ADC) converts analog signals, which are

continuous in both time and amplitude, to digital
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26 CHAPTER 2 SOURCES OF INFORMATION

signals, which are discrete in both time and amplitude.

A digital-to-analog converter (DAC) converts a digital

representation into an analog signal and can be thought

of as the inverse of the ADC. The analog signal can

then be used to drive a speaker or other analog output

device.

An ADC typically requires three subsystems—an

anti-aliasing filter (AAF), a sampler, and a quantizer

(Fig. 2-16). Each one of these three subsystems is

examined next.

An�-aliasing

filter
Sample/hold Quan�zer

Figure 2-16: High-level block diagram of an ADC.

2-7.1 Sampling

Sampling a signal x(t) at a sampling period Ts is

described by

x[nTs] = x(t)
∣

∣

t=nTs
. (2.118)

Sampling can also be represented as an inner

product with a Dirac delta function at the sampling

instant t = nTs:

x[nTs] = 〈x(t), δ (t −nTs)〉

=
∫ ∞

−∞
x(t) δ (t −nTs) dt. (2.119)

The main parameter of a sampler is the sampling

frequency fs = 1/Ts. The time between two samples

is the sampling period Ts. Samplers take regularly

separated analog measurements of the signal’s ampli-

tude. Most samplers operate on voltage, but some can

operate on current. While conceptually, sampling is

performed instantaneously, in practice it can take a

small but nonzero amount of time to “sample.” Most

samplers return the average amplitude during the time

they actively “sample.”

Sampling is typically performed by electronic

circuits called sample-and-hold (S/H) circuits. The

Buffer

Hold
capacitor

Figure 2-17: Block diagram of a sample-and-hold

circuit.

purpose of the circuit is to keep the input signal

constant during the ADC conversion. Their input is

the analog signal to be sampled and the output is

a piecewise constant signal. While there are many

different implementations, all S/H circuits include a

switching circuit, a holding capacitor, and an output

buffer which is an amplifier with a gain equal to one.

A block diagram of a sample-and-hold circuit is

shown in Fig. 2-17. There could also be an input buffer

(not shown) to supply the necessary current to charge

the hold capacitor. When the switch closes, the circuit

samples the input signal. Ideally the time to sample

is infinitely small. When the switch opens, the S/H

circuit operates in hold mode. The output buffer has

a very high input impedance and the capacitor does

not discharge; i.e., the capacitor holds the voltage. The

circuit remains in hold mode for the duration of the

sampling period Ts. Therefore, the impulse response

of an ideal S/H circuit is

h(t) = u(t)−u(t −Ts) = Π

(

t

Ts

− 1

2

)

, (2.120)

and the frequency response is

H( f ) = Ts

sinπ f Ts

π f Ts

e− jπ f Ts . (2.121)

Suppose that the input to the sampler is the analog

signal x(t) with a corresponding Fourier transform

X( f ), and the output of the sampler is the sampled

signal xs(t). The sampled signal can be viewed in the

time domain as a product between x(t) and a sequence
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2-7 FUNDAMENTALS OF ANALOG-TO-DIGITAL CONVERSION AND VICE-VERSA 27

of Dirac delta functions:

xs(t) = x(t)
∞

∑
n=−∞

δ (t −nTs). (2.122)

The function ∑n=∞
n=−∞ δ (t −nT ) is called an impulse

train or a sampling function.

Because the product x(t) δ (t − nTs) is zero every-

where except at the sampling instances nTs, x(t) can

be replaced with the discrete time signal x[nTs] without

changing the result:

xs(t) =
∞

∑
n=−∞

x[nTs] δ (t −nTs). (2.123)

Example 2-11: Fourier transform of a

pulse train

Determine the Fourier transform of the impulse train

∑n=∞
n=−∞ δ (t − nT ). This will be used in the derivation

of the sampling theorem below.

Solution: From Appendix A, the Fourier transform

relationship of the Dirac delta function is

δ (t −nT ) e− j2π f nT ,

since
∫ ∞

−∞
δ (t −nT ) e− j2π f t dt = e− j2π f t

∣

∣

t=nT
= e− j2π f nT .

(2.124)

Because the Fourier transform is linear,

∞

∑
n=−∞

δ (t −nT )
∞

∑
n=−∞

e− j2π f nT . (2.125)

The above result leads to another useful relation-

ship. The signal ∑∞
n=−∞ δ (t − nT ) is periodic and can

be represented using a Fourier series with e− j2πnt/T as

basis functions:

∞

∑
n=−∞

δ (t −nT ) =
∞

∑
n=−∞

xne− j2πnt/T , (2.126)

where the coefficients xn are equal to the inner

products

xn =

〈

∞

∑
n=−∞

δ (t −nT ), e− j2πnt/T

〉

=
1

T

∫

T
δ (t) e− j2πnt/T dt =

1

T
. (2.127)

Therefore, the Fourier series of the impulse train is

∞

∑
n=−∞

δ (t −nT ) =
1

T

∞

∑
n=−∞

e− j2πnt/T . (2.128)

From the property given by Eq. (2.43) with

f0 = n/T , it follows that e j2πtn/T δ ( f −n/T ). In

conclusion, there are two Fourier transform represen-

tations:

∞

∑
n=−∞

δ (t −nT )















∞

∑
n=−∞

e− j2π f nT ,

1

T
∑
n

δ ( f −n/T ).

(2.129)

Therefore the Fourier transform of an impulse train

with period T is another impulse train with period

T−1 Hz.

Using the Fourier transform of a product is the con-

volution of the Fourier transforms (see Appendix A).

Because in the time domain the sampled signal given

by Eq. (2.122) is a product, its spectrum is given by

the convolution

Xs( f ) = X( f )∗ 1

Ts

∞

∑
n=−∞

δ

(

f − n

Ts

)

=
1

Ts

∞

∑
n=−∞

X

(

f − n

Ts

)

=
1

Ts

[· · ·+X ( f + fs)+X( f )+X ( f − fs)+ · · · ]

= fs X( f )+ fs

∞

∑
n=−∞
n6=0

X ( f −n fs) . (2.130)
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28 CHAPTER 2 SOURCES OF INFORMATION

From this equation we can conclude that the spec-

trum of the sampled signal is periodic with a period

in frequency equal to the sampling frequency

fs = 1/Ts (Fig. 2-18). In the frequency domain, there

are infinitely many replicas of the spectrum of the

continuous-time signal. These replicas are frequency-

translated versions of the spectrum of the original

signal. When these replicas overlap, the effect is

known as aliasing. Sampling maps analog frequencies

in the range [0,∞) to discrete-time frequencies in

the range [0, fs/2). The frequency fs/2 is called the

Nyquist frequency.

Let us consider in more detail the sampling of a

real-valued signal. Recall that a real-valued signal is

absolutely bandlimited if there exists an fmax such

that X( f ) = 0 for frequencies | f | > | fmax|. Figure

2-18 illustrates the spectrum of a real-valued signal,

where the signal is absolutely bandlimited to fmax.

It also shows the spectrum of the signal sampled at

fmax > fs/2 (so that there is aliasing), but the sampling

frequency is greater than the bandwidth of the signal:

fs

2
< fmax < fs. (2.131)

If there is aliasing, some higher-frequency compo-

nents of the analog signal appear “on top” of some

of the lower-frequency components. Only one com-

ponent is formed as a result; i.e., the higher-frequency

components become indistinguishable from the lower-

frequency components and cannot be separated by

filtering later. In the aliasing example in Fig. 2-18(b),

the components from fs/2 to fmax overlap with the

components from fs/2 down to fs − fmax.

The presence of aliasing over part of the spectrum

does not mean that the entire signal is useless. If the

signal of interest is in the bandwidth [0, fs − fmax],
aliasing can be acceptable since the aliased part

of the spectrum is not of interest. In Fig. 2-18(b),

over the band [0, fs − fmax] there is no aliasing and

this portion can be used and processed further. For

example, the portion with aliasing can be filtered out

with a low-pass digital filter so as to preserve the

band [0, fs − fmax]. However, if fs ≤ fmax, aliasing

will extend over the entire bandwidth of the signal,

rendering the sampled signal useless.

The replicas of the spectrum just touch each other if

fs = 2 fmax, which still results in aliasing. The replicas

of the spectrum do not overlap as long as fs > 2 fmax,

as illustrated in Fig. 2-18(c). The minimum sampling

frequency to avoid aliasing completely is

fs = 2 fmax (2.132)

and is known as the Nyquist sampling frequency.

It is important to recognize that if the signal is not

bandlimited, sampling always introduces aliasing. For

some signals the aliasing error is always significant.

For example, the Dirac delta function cannot be

sampled; i.e., the discrete-time delta function (the

Kronecker delta) cannot be obtained by sampling.

Another function that cannot be sampled is the step

function. However, for signals that are effectively

bandlimited most of the energy is in a finite band and

the aliasing error can be made small by choosing the

sampling frequency to be sufficiently large.

One objective in the design of an ADC is to

minimize the effect of aliasing. If the signal to

be sampled is not bandlimited or its spectrum is

unknown, aliasing is generally minimized by inserting

an anti-aliasing filter (AAF), in front of the ADC,

as was illustrated earlier in Fig. 2-16. The AAF is

designed to remove all frequency components above

fs/2; i.e., the AAF is ideally a lowpass filter with a

passband from 0 to fs/2 Hz.

2-7.2 Sampling a complex-valued signal

In the above discussion on sampling, we assumed

that the signal being sampled is a real-valued signal,

having a one-sided bandwidth W = fmax. Recall from

Section 2-8 that the bandwidth of complex-valued

signals is double-sided. A complex-valued signal is

bandlimited if there exists a band [ f1, f2] such that

X( f ) = 0 outside [ f1, f2]. In particular, consider a

complex-valued signal with double-sided bandwidth

W = f2 − f1 (and where f1 is negative), as was

illustrated earlier in Fig. 2-11. Then, to completely

avoid aliasing, the sampling frequency should be

fs ≥W = f2 − f1 (2.133)
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s maxf sf– f

max– f maxf

s– f

s– f

fmax

0 fs

(a) Spectrum X( f )

(b) Aliased spectrum

(c) Not-aliased spectrum

fmax– fmax

Figure 2-18: (a) Spectrum of a continuous-time real-valued signal, (b) spectrum of the discrete-time signal obtained

after sampling the signal in (a) at fmax < fs < 2 fmax, and (c) spectrum of the discrete-time signal obtained after sampling

the signal in (a) at fs ≥ 2 fmax.

or equivalently,

fs + f1 ≥ f2. (2.134)

Figure 2-19 illustrates the spectrum of a sampled

complex-valued signal, where the sampling frequency

is chosen according to Eq. (2.134), so that aliasing is

avoided.

Aliasing is only partial; i.e., there is a frequency

band that is still useful, as long as

− fs + f2 < fs + f1. (2.135)

In other words, so long as the sampling frequency is

greater than one-half of the bandwidth of the signal,

fs > ( f2 − f1)/2 =W/2, (2.136)

then there is no aliasing over the frequency band from

− fs+ f2 to fs+ f1; aliasing is limited to the band from

fs + f1 to f2 (Fig. 2-20).

If there is aliasing, some components at negative

frequencies appear ”on top” of and indistinguishable

from components at positive frequencies. The portion

with aliasing can be filtered out with a low-pass digital

filter that will preserve the band [− fs + f2, fs + f1].
However, if fs ≤ W/2 aliasing will extend over the

entire bandwidth of the signal.

Sampling complex-valued signals is referred to as

quadrature sampling. Each of the real and imaginary

components occupies only one-half of the bandwidth
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