United States Patent 9

Koenck et al.

O 1 T YT I 6 0
US005680633A

5,680,633
*QOct. 21, 1997

(111 Patent Number:
1451 Date of Patent:

[54] MODULAR, PORTABLE DATA PROCESSING
TERMINAL FOR USE IN A RADIO
FREQUENCY COMMUNICATION
NETWORK

[75] Inventors: Steven E. Koenck; Phillip Miller; Guy
J. West; Ronald L. Mahany; Patrick
W. Kinney, all of Cedar Rapids, Iowa

[73] Assignee: Norand Corporation, Cedar Rapids,
Towa

[*] Notice: The portion of the term of this patent

subsequent to Jun. 8, 2010, has been
disclaimed.

[21]1 Appl. No.: 114,872
[22] Filed: Aug. 31, 1993
Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 898,908, Jun. 12, 1992,
abandoned, Ser. No. 71,555, Jun. 4, 1993, Pat. No. 5,331,
136, Ser. No. 107,470, Aug. 17, 1993, abandoned, Ser. No.
97462, Jul. 26, 1993, Pat. No. 5,428,636, and Ser. No.
59,447, May 7, 1993, Pat. No. 5,428,636, which is a
continuation-in-part of Ser. No. 56,827, May 3, 1993, Pat.
No. 5,295,154, which is a continuation of Ser. No. 769,425,
Oct. 1, 1991, abandoned, said Ser. No. 898,908, is a con-
tinuation-in-part of Ser. No. 835,718, Feb. 12, 1992, aban-
doned, said Ser. No. 71,555, is a continuation of Ser. No.
660,615, filed as PCT/US90/03282, Jun. 7, 1990, Pat. No.
5,218,187, which is a continuation-in-part of Ser. No. 467,
096, Jan. 18, 1990, Pat. No. 5,052,020, said Ser. No.
107,470, Aug. 17, 1993, abandoned, is a continuation-in-
part of Ser. No. 81,411, Jun. 22, 1993, abandoned, which is
a continuation-in-part of Ser. No. 53,901, May 20, 1993,

abandoned.
[51] Int. CLS e GOGF 1/00; HOSK 7/10;
HO5K 7/14
[52]1 U.S. Cl oo 395/800; 361/680; 361/731
[58] Field of Searchcn..... 395/800; 364/DIG. 1;

455/11.1, 89, 90; 358/257; 340/712, 311.1;
235/472, 375; 370/85.2; 379/66

561 References Cited
U.S. PATENT DOCUMENTS

4,058,838 1171977 Crager et al. wooreomeeeeonenee 3581257

4,519,068 5/1985 Krebs et al. .cvveeerrrcrernsenrsancans 370/82
4,569,421 2/1986 Sandstedtc.seesesseieinss 186/39
4,628,193 12/1986 Blum 235/375
4,680,787 7/1987 Marry 379/63
4,761,822 8/1988 Maile 455/82
4,806,906 2/1989 Oda et al.cevceneunscorsannens 340/311.1
4,850,009 7/1989 Zook etal ..rierecncinrinsicnns 379/66
4916441 4/1990 Gombrich ... v 3407712
4,969,206 1171990 DeSrocherscimmeiserisienscenee 455/89
5,008,879 4/1991 Fischeretal. 370/85.2
5,033,109 7/1991 Kawano et al. ...occeeverrerrensiense 455/90
5,055,660 10/1991 Bertagna et al. 235/472
5,117,501 51992 Chidress et al.oorvcmecercinnne 455/11.1

Primary Examiner—Alyssa H. Bowler
Assistant Examiner—Walter D. Davis
Attorney, Agent, or Firm—Stanford & Bennett, L.L.P.

[57] ABSTRACT

Modular, portable data collection terminals are disclosed for
use in mixed wireless and hard-wired RF communication
networks, wherein various radio transmitter modules and
associated antennas may be selectively added to a base
terminal umit to solve networking problems associated with
specific types of business environments. Modularity exists
in both the hardware (splitting data collection and process-
ing control circuitry from radio transceiver control circnitry})
and software (splitting transceiver-specific, lower level com-
munication protocol from generic, higher level communi-
cation protocol). The control circuitry, including associated
microprocessors devices, interact to selectively activate
communication circuits to perform necessary communica-
tion or data processing functions and enter and remain in a
power-saving dormant state during other times. To support
such dormant or “sleeping” states, a series of communica-
tion protocols provide for channel access to the communi-
cation network. The disclosed modular design also provides
for automatic selection from a variety of available built-in
and externally mounted antennas based on the particular
type of radio transceiver(s) selected.

10 Claims, 38 Drawing Sheets

1 SAMSUNG 1019

5,680,633

Sheet 2 of 38

Oct. 21, 1997

U.S. Patent

VI "OIld
loc Jl
- - - = = - I IIIIIIIIIIIIIIIIIIIIIII —
91T :
\d uuon "
I
. *] ¥4 _ |
A aoepalu) i
lauuesg I
902 _ S
802 ~ 20T ~ g “ |
I
wey WOHd33 acepe| .
Py _ _ IA.AIT 110 001 10D eleq
edsigangtr e |
I, sze 62z
1PAUQ S0¢ [10ssao0idoioipy “ I
18jjonuo9) N ! 0ID osuelj
Aeidsig | " ajepua)u| wuwios) ejeq
o1z’ 602 0z~ 1 ez’ 82z -’
e kl ST
i (11114 \
ajnpopy pieoghayy “
20z’ |
]

5,680,633

Sheet 3 of 38

Oct. 21, 1997

U.S. Patent

= E

SUONOUN4 WSPO olpey

Juswabeuepy Jamod
SUOIIEDIUNWWIOY) JUulod 0] JUlod

Aanjag pu3 o) pu3

UoI}O8ULOY) pul 0} pul

65¢

[edisAyd =
yA14

junereg |
1114

YIOMISN /
€52

podsuels | |/
uo|ssag \—mm

uonelbip 3oels |000101d e

Aljigeiadolayul

5,680,633

Sheet 4 of 38

Oct. 21, 1997

U.S. Patent

dl/dDl be
SHoElS
Aued payy 1eyio

M}IOM]ON

uodsuel |

UuoIssag

syoels
j[020}01d
p1s Buisn
swJojie|ld

paseg Od

Il "'OId
6S¢
|eoisAyd -
15¢
yurjereq |/
........ R AR AR AAA R AR AR AR RASRASA
oz~
WIOMION IIBAON
yodsuel
UuoIsSag

062S ‘022¢ bo
S)oelS

|020]014 PUBION
Buisn sadina(g
pUBION uaLN

SIOMION |

uodsuel |

uolssag

S)OB]S [000}0.d pJepue)ls Jof yoddng e

Ajgesadosoiyg

U.S. Patent

Oct. 21, 1997

Sheet 5 of 38

5,680,633

60 60
f" Peripheral /O Moduley \\szrﬁrr.\u;wlc;a’t.lo;ﬂ.\llc;d:llé-: 61
E 1 ! S = - '
. ; o .

/i(__ Q Q s | ;5.. % 5 _j
MR EREE R AR TR

: Q> 050 ™ Sa > :
sl | B8 |S22|i[Ee | ES ! 45

. 5) o 1 . E % E '
- a a i1y 8¢ Q3 '

5 N2 :

‘l I L _f 28\

[m e em s O I P PP A T ,

; Serial /O, Scan ;| | Terminal Module “B” ;| ‘
52 i Connection i erminal Module ‘B | 55f\(;lemcury Module ;

Serial Pot |+ UAR/T D0 system |
51 dlr A i1 | |FLASH: x 16}
N\ 41 s P 5

: Scan Port e Application | 554 ! '

, aaE 1 Processor: -‘:\ : . ' 57
53 Soonninnnizinzl | | ssesxv | i i || PAMxTE L

. Keyboard/Display | |! 50 [Pt !

; Module {__:/ ! : :
| Display Sl VGA Adapter .+ ||App FLASH: |;
20 : i ; g ; l 1 x16 l

ieleieiisiatals Haeiaiiii] 54 A 3
62 | [Backiight|!| = |!||; ~]ClockControl | ! “==--r-rmemiinae '
No_| Driver [T] & |!l|; 67 ASIC :
12\ ; - [: PCMCIA

! oo | Module Bus. | | Memory Card
/‘3,.. Keyboard— g | 1] PoF\’Ner Control i —

; ! el T rocessor ! 30
1 ; | g | 1MBYS] Hessao :

! | Buzzer b 3 D | :
i 1NN B
63 1 2 |' : |Charge/ r 22

: ! > | ! Power Backup | !

. X] ! — .
/i, Pen] ; / Control Battery “;\65
66 so/J 64

Battery Pack:| 23
6Cell AA |/
FIG. 2

U.S. Patent Oct. 21, 1997 Sheet 6 of 38 5,680,633

~

L]

DDB7?
DDB6
DDBS 49
DDB4 ”///
DDB3
DDB2
DDB1
DDBO

DBO-7<

e

RS3
RS2
RS1

>
o
w

CSCK > MCLK
CTxD ——® MTXD

CRxD [@————— MRXD

Q
=
oy
3 & 9 9

Pxx (e¢——————p MATT

FIG. 3

U.S. Patent Oct. 21, 1997 Sheet 7 of 38 5,680,633

T3
|
T3
]
]
/X

//,_77

FIG. 4
FIG. 5

76

T2
7
/
T2
/
|
X

T1

NMATT
MTXD
MRXD

NMATT
MTXD
MRXD

5,680,633

<t
o™

3y
L=
-

[

(=]
N

Sheet 8 of 38

N~
0

Oct. 21, 1997
©

©
[Ty)

U.S. Patent

9 "OId

aoepau| —) goRpB| m
jeuag —»| |eueg ..\”\

aoelo| =N ”
QUASY Lo — opey |

‘'S'H 101 : i

mm f “n I _

eidsiq — _
aol 2 I \.\

emmedebe T S L X010 | 2xo10 j - p

: e 287] 8 | ... m

s | |- RS ;
wey (o | : vl

m oYem 86— ; d m

i eAY Jeyd [2 /6 J 11llss

; Z1am Ziad L !
oy : LW s6-/ | zuwer |96 wo e

; ——— " T] “ _

: €6~ IlBAY Jey]] v6 - 16— : ;

woidg [L 11ad f 1 1HM PHEN _
zmm_uw ~—T | - | yoye Zdn M W3N .

U.S. Patent Oct. 21, 1997 Sheet 90£38 5,680,633

mA
100— -~
i -
20 46 MHz .-
L - ""(;:,
04 A 101
,—?"
T — T T T MHz
2 4 6 8 10
FIG. 7
mA
100 4 e
9.2 MHz
80 - C e —103
604 -._._. :;._.‘?:.'_.55 mA
404 _.--77
20 - E
T T T m9-1 mp: max.] T MHz
4 6 8 10 12 14 16

FIG. 8

10

U.S. Patent Oct. 21, 1997 Sheet 10 of 38 5,680,633

r 301 s 305 s 309
P On Start Comm. 2
ower Apparatus)
r 303 r 307 r KR
Reset # 1 Comm. 1 Comm. 3
1 I
—————
_ 319 317 _ 315 _ 313
1 Requ. #10n Event # 1 Off Wait
Event
/— 323 e 325
Read Key Display Key —
329 331
Display Low
Check Low Batt Batt Warning >
335 337 339
Retrieve Menu p D isplav D .
Data rocess Data Display Data

FIG. 9

11

5,680,633

Sheet 11 of 38

Oct. 21, 1997

U.S. Patent

0L 'Old

l9he abpug

L0V

aoepalu| 21607 anj

SOv

1ahe oe

cov

r/ LoY

12

5,680,633

Sheet 12 of 38

Oct. 21, 1997

U.S. Patent

Juod
$S900Y

wwm\

I

IE

aoina(Q

“ Bundwon
[

aliqoW

iod
$S300Y

- Bupndwon

v—m.\

aonaQ

alIqol

el

wiod
SS90y

N_,m\

1andwo)
IsoH

c_.m.\

o O 0 0

/ L0S

13

U.S. Patent Oct. 21, 1997 Sheet 13 of 38 5,680,633

551 | Asynchronous
_ Wake Up to
Transmit

553 Sense for an

\ [Interpoll Gap
Time

555

Is the
Channel

Clear
< ?

No

v

357 | wait or Sleep for
\d a Fixed Time

559
\ Transmit an RFP

FIG. 12

14

U.S. Patent

Oct. 21, 1997

Sheet 14 of 38

5,680,633

601 | Asynchronous
Wake Up to
\ Transmit
603 Reset Retry
\ Counter
-4
605 Sense for an
\ Interpoli Gap
Time

607

Is the
Channel

Clear
?

No

609

\ Transmit an RFP

—

Increment
Counter

611

|/

613

is Retry
Counter
above MA

No

Wait or Sleep for
a Fixed Time

615

\

Sleep for-Longer
Time, Wake &
Retry

FIG. 13

15

U.S. Patent

Oct. 21, 1997

Sheet 15 of 38 5,680,633

651
\J Wake Up to Transmit
653 Timer Begins Counting;
4 Listen for Sync
655 +
\J Sync Rec’'d Terminal
Synchronized
-
657
Has
Timer
Expired
?
659
\ Sense for an Interpoll
Gap Time
661
Is the
Channel No
Clear
?
663
\ Transmit an RFP

FIG. 14

16

5,680,633

U.S. Patent Oct. 21, 1997 Sheet 16 of 38
701
\J Wake Up to Transmit
¢¢
703
\J Reset Retry Counter
+¢
705 | Timer Begins Counting;
\ Listen for Sync
707 ‘
\ Sync Rec'd Terminal
Synchronized
‘
709
Has
Timer
Expired
?
717 ~ *
711 increment Counter
N Sense for an Interpoll
Gap Time
719
Is Retry
713 s the Counter
bove MA
Channel above MAX
Clear
? Wait or
723 Sleep for a
715 \J Sleep for Longer Fixed Time
Time, Wake & Retry

\. Transmit an RFP

L

FIG. 15

17

U.S. Patent

751
\ Wake Up to Transmit

Oct. 21, 1997

Sheet 17 of 38

5,680,633

l«
753

\ Generate a
Psuedo-random Number

i 755 ~

Sense for a Few Micro-
seconds

757

|s the
Channel

Clear
?

759

Did Pseudo-
random Time

Expire
?

No

Yes
761

763 ~ l

Increment Counter

\ Transmit an RFP

767

765

Is Retry
Counter

above MAX
?

N

Sleep for Longer
Time, Wake & Retry

769 ~
Wait for a
Pseudo-
random
time

L

FIG. 16

18

U.S. Patent Oct. 21, 1997 Sheet 18 of 38 5,680,633

803 805 80
e R

809 -815 g1 817 - 813 - 819

FIG. 17

19

U.S. Patent Oct. 21, 1997 Sheet 19 of 38 5,680,633

/- 815
831 833
~ 811 7~ 817
841 843 845 847 849
/813 /819
BGA 86?4 865/$ BGA
— 869 8N

873 875 877

FIG. 18

20

5,680,633

Sheet 20 of 38

Oct. 21, 1997

U.S. Patent

ean

- SL6

61 "Old

—‘ /. 526

10d

- L16

viva H‘ _ viva

f £l6 . / 606

106

7
P T10d \\
_J

T10d ~— £06
[4
/ N 106
{
“ ddd | ~e— 06
!
_ - 506
—
|
| - £26
!
!

21

U.S. Patent Oct. 21, 1997

951 Wake Up to
\ Transmit

Sheet 21 of 38

35,680,633

953 Sense for an

\ [nterpoll Gap
Time

955

Is the

Channel No

Clear
?

l

Listen for
959 Channel
K Reservation
957 _ Information
\ Transmit an RFP ¢
961 | Calcuate Sleep
\ Time; Go to
Sleep
963
\ Wake Up to
Transmit

FIG. 20

22

U.S. Patent Oct. 21,1997 Sheet 22 of 38 5,680,633

ARl L

..

FIG. 22

23

U.S. Patent Oct. 21, 1997

1110\‘

Sheet 23 of 38 5,680,633

1111

=\

N

1113 ,//
1130

AN
1133 '/ \”\1133

FIG. 23

1131 /-‘!110
NN

000000000000000000D00000000000000 |
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOJ

\1113

FIG. 24

24

U.S. Patent Oct. 21, 1997 Sheet 24 of 38 5,680,633

1140

FIG. 25

25

U.S. Patent Oct. 21, 1997 Sheet 25 of 38 5,680,633

1140_\\

_T[T
h|l”|hl”l”|”'|

1148 /

7

Y
=l 7,
|/

1144 I ",
M
b)

1158

11585

FIG. 27

26

U.S. Patent Oct. 21, 1997 si:eet 26 of 38 5,680,633

1173
L=

d1

1160\

' o 1164
L
.lll

FIG. 30

27

U.S. Patent Oct. 21, 1997 Sheet 27 of 38 5,680,633

12. //,.1150 1162'~\\\ 12.

1173
\\~11s4
FIG. 31

1160 1171 il
:\ N\ | 7/

1172 ' I 222-—1162
N 7
NN 7 1164
D 7

1173 —— /
1167
FIG. 32

28

U.S. Patent Oct. 21, 1997 Sheet 28 of 38 5,680,633
1192 mﬂ 1163
(/W /LLLL / //\ 1194
%s/ |15
Switch_ing% ;
// ;ﬁﬂx /
1190 / / /
1195
; f://///// i,
YN 77 Z /{17//
o WIVTFT)
i _______/ o
1187 — / - é
é — / \1135
/)
L
1162

FIG. 33

U.S. Patent Oct. 21, 1997 Sheet 29 of 38 5,680,633

1212

FIG. 34

30

U.S. Patent Oct. 21,1997 Sheet 30 of 38 5,680,633

1220
10.
1210
+—
1224
/—"

1222 —

1212

31

U.S. Patent Oct. 21, 1997 Sheet 31 of 38 5,680,633

| 35.
38 & 1224
1234

:D=J'T—‘—n ‘1530
1236 'l @ \ 1232
1ME

FIG. 37

32

U.S. Patent Oct. 21, 1997 Sheet 32 of 38 5,680,633

1250

€« 39 1224 1230

FTTYURTTTTINTIONTN

1234

1235 1235
[' . 1251
1252
1232 T \\
1
1!1 I'S 7. 232
// 1241 1242
1248 1240 1249
FIG. 39

FIG. 40

33

U.S. Patent oOct. 21, 1997 Sheet 33 of 38 5,680,633

1266

1267

FIG. 41
1282 1234 1224
1235 1285
< 1286
i T ;ﬁgb
1280 :

R]

1290 1248 1295

1296

~ FIG. 42

34

U.S. Patent Oct. 21, 1997 Sheet 34 of 38 5,680,633

1305
1306
. 1307
1301 —\\\\\\
~ 249) _—1220
| ! 1\ 1248
! a 1
1211
1222—| 1212
\L ™ é

1302

FIG. 43

35

U.S. Patent Oct. 21, 1997 Sheet 35 of 38 5,680,633

1249

1220
1248\ / \/1%1305

Ww
1212 —7
‘12. 1212

1311

1312

FIG. 44

36

U.S. Patent Oct. 21, 1997 Sheet 36 of 38 5,680,633

777 77 7777 777777
1330
1337 1336

FIG. 45

37

U.S. Patent Oct. 21, 1997 Sheet 37 of 38

2
1220 1306

/ 1249 } 1305
| /

1248

1211 1

FIG. 46

38

1307

5,680,633

5,680,633

Sheet 38 of 38

Oct. 21, 1997

"U.S. Patent

Sovi

uod
SS800Y

N

!

Jeindwon
1SOH

-

113 4°

Livi

LV 'Ol

aolne(g
Bunndwon
9lIqoN

Lovi k

juiod
$S800Yy

60V .\

~1endwio)
1SOH

L0v1 /

* £opl

39

5,680,633

1

MODULAR, PORTABLE DATA PROCESSING
TERMINAL FOR USE IN A RADIO
FREQUENCY COMMUNICATION
NETWORK

This application is a continuation-in-part application of
the following:

1. U.S. application Ser. No. 07/898,908 (Attorney
Docket Nos. 92 P 447 & DN36767XZAA), by Koenck et al.,
filed Jun. 12, 1992, now abandoned, which is itself a
continuation-in-part application of U.S. application Ser. No.
07/835,718 (Attorney Docket Nos. 92 P 148 &
DN36767XZA), by Koenck et al., filed Feb. 12, 1992, now
abandoned.

2. U.S. application Ser. No. 08/071,555 (Attorney
Docket Nos. 10168US04 & DN36767X7X), by Koenck et
al., filed Jun. 4, 1993, now U.S. Pat. No. 5,331,136, which
is in turn a continuation application of U.S. application Ser.
No. 07/660,615 (Attorney Docket Nos. 91 P 398 &
DN36767XZ), by Danielson et al., filed Feb. 25, 1991, now
U.S. Pat. No. 5,218,187, which is itself a continuation-in-
part of:

a. U.S. application Ser. No. 07/467,096 (Attorney Docket

Nos. 91 P402 & DN37139), by Koenck et al., filed Jan.

18, 1990, now issued U.S. Pat. No. 5,052,020; and

b. PCT application Ser. No. PCT/US90/03282 (Attorney

Docket Nos. 91 P 392 & DN36767X-PCT), by Koenck

et al., filed Jun. 7, 1990, now abandoned, which claims

priority from two applications:

1) US. application Ser. No. 07/364,594 (Attorney
Docket Nos. 91 P 859 & DN36808X), by Cargin et
al., filed Jun. 7, 1989, now abandoned, which is itself
a continuation-in-part of U.S. application Ser. No.
07/339,330 (Attorney Docket Nos. 91 P 856 &
DN36808), by Cargin et al., filed Apr. 14, 1989, now
abandoned; and

2) U.S. application Ser. No. (7/364,902 (Attorney
Docket Nos. 91 P 393 & DN36767), by Danielson et
al., filed Jun. 8, 1989, now abandoned.

3. U.S. application Ser. No. 08/107,470 (Attorney Docket
Nos. 10126US03 a DN38000B), by Kinney et al., filed Aug.
17, 1993, now abandoned, which is itself a continuation-in-
part of U.S. application Ser. No. 08/081,411 (Attorney
Docket Nos. 10126US02 & DN38000A), by P. Kinney, filed
Jun. 22, 1993, now abandoned, which is in turn a
continuation-in-part of U.S. application Ser. No. 08/053,901
(Attorney Docket Nos. 10126US01 & DN38000), by Kin-
ney et al., filed May 20, 1993, now abandoned.

4. U.S. application Ser. No. 08/097,462 (Attorney Docket
Nos. 10222US01 & DN38017), by West et al., filed Jul. 26,
1993, now U.S. Pat. No. 5,428,636.

5. U.S. application Ser. No. 08/059,447 (Attorney Docket
Nos. 10132US03 & DN37882XA), by R. Meier, filed May
7, 1993, now U.S. Pat. No. 5,428,636 which is a
continuation-in-part of U.S. application Ser. No. 08/056,827
(Attorney Docket Nos. 10127US02 & DN37882X), by R.
Meier, filed May 3, 1993, now U.S. Pat. No. 5,295,154
which is a continuation application of U.S. application Ser.
No. 07/769,425 (Attorney Docket Nos. 91 P 668 &
DN37882), by Meier et al., filed Oct. 1, 1991, now aban-
doned.

The following applications are hereby incorporated herein
by reference in their entirety and made part of this applica-
tion.

1. U.S. application Ser. No. 07/898,908 (Attorney Docket
Nos. 92 P 447 & DN36767XZAA), by Koenck et al., filed
Jun. 12, 1992.

10

15

20

25

30

35

45

50

55

65

2

2. US. application Serial No. 08/071,555 (Attorney
Docket Nos. 10168US04 & DN36767XZX), by Koenck et
al., filed Jun. 4, 1993.

3. U.S. application Ser. No. 08/107,470 (Attorney Docket
Nos. 10126US03 & DN38000B), by Kinney et al., filed Aug.
17, 1993.

4.U.S. application Ser. No. 08/097,462 (Attorney Docket
Nos. 10222US01 & DN38017), by West et al., filed Jul. 26,
1993.

5. U.S. application Ser. No. 08/059,447 (Attorney Docket
Nos. 10132US03 & DN37882XA), by R. Meier, filed May
7, 1993.

6. U.S. application Ser. No. 08/101,254 (Attorney Docket
Nos. 10092US04 & DN37998C), by R. Mahany, filed Aug.
3, 1993.

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

This invention relates generally to portable data collection
and processing terminals for use in a Radio Frequency (RF)
communication network, and, more specifically to portable
terminals supporting a variety of RF transceivers and asso-
ciated antenna systems. Additionally, this invention relates
to methods in which a portable terminal gains access to the
RF communication network.

In particular, portable data processing terminals have
taken an increasingly significant role in business environ-
ments. For example, battery powered, hand-held data col-
lection terminals are used extensively for inventory control
in warehousing and merchandising operations. Other uses of
such terminals include invoicing, delivery route
management, order taking and return control operations—as
might be found in antomobile rental operations.

In many business environments, portable data processing
terminals often need to communicate in real-time with other
portable terminals, peripheral devices, work stations, and
host computers. To meet such communication needs, a
variety of mixed hard-wired and wireless communication
networks with associated communication protocols have
been developed, each addressing the specific requirements
of a given business environment. In the process of such
development, portable terminals have undergone tailoring of
both hardware and software to fully support a specific
communication network and associated protocol.

As a result of such tailoring, each type of portable data
collection terminal is generally only capable of operating in
a single type of business environment. Tailoring also results
in unreasonable additional costs associated with developing,
manufacturing, documenting, etc., each variety of portable
data collection terminals.

More specifically, each portable data collection terminal
includes a built-in radio transceiver. The built-in transceiver
operates pursuant to only one of a variety of types of RF
(Radio Frequency) communication characteristics, charac-
teristics that are dictated per FCC (Federal Communication
Commission) specification.

The choice of the type of radio transceiver, i.e., the type
of RF communication characteristics, to build in is based on
the nature of the business environment. For example, a
digital cellular radio might be chosen in an environment

40

5,680,633

3

having great distances between the radio and the destination
transceiver. Similarly, data might be exchanged using a
single channel UHF (Ultra-High Frequency), direct-
sequence spread-spectrum, or frequency-hopping spread-
spectrum band. Each of these bands have particular charac-
teristics which make them attractive for a given business
environment, and each generally requiring a different trans-
ceiver.

After choosing the appropriate radio transceiver, an
appropriate antenna must also be selected. Each type of
transceiver often requires a different type of antenna based
on the corresponding RF communication characteristics, the
shape of the portable terminal, and the business environment
at issue.

Thus, there is need to provide a portable data collection
terminal capable of easily supporting any of the plurality of
types of radio transceivers and associated antennas, mini-
mizing needed modifications to the terminal’s hardware and
software design.

In addition, to support real-time access to a communica-
tion network, each portable data collection terminal needs to
establish and maintain radio connectivity to the network.
However, portable terminals must also address conflicting
concerns of battery power conservation, i.e., maintaining
connectivity places a substantial load on battery power.
Moreover, the mobile nature of portable terminals also
presents difficulties in maintaining connectivity. It would
therefore be desirable to implement communication protocol
techniques which address power saving and mobility con-
cerns while providing virtually real-time access to the com-
munication link.

Thus, an object of the present invention is to provide a
modular hardware and software radio design for a portable
data collection terminal which supports multiple types of
radio transceivers and associated antennas.

It is also an object of the present invention to provide for
the selection of ones of a plurality of modular radio trans-
ceivers for use by a portable data terminal, the selection of
which addresses the specific concerns of a given business
environment.

Another object of the present invention is to provide for
the selection of ones of a plurality of modular radio trans-
ceivers for use by a portable data terminal, wherein each
modular transceiver selected isolates the data collection
terminal from transceiver specific operations by providing
hardware and software control over such functions.

A further object of the present invention is to provide a
communication protocol which addresses power saving and
mobility concerns while providing virtually real-time access
to the communication link.

Another object of the present invention is to provide a
communication protocol for use by a portable data collection
terminal which minimizes transmission collisions while
providing for virtually real-time access to the communica-
tion network.

Another object of the present invention is to provide a
communication protocol for use by a portable data collection
terminal which eliminates the need for random number
generation and random back-off techniques.

A further object of the present invention is to provide an
improved computer device apparatus for connecting a
removable card type radio to a protected, interchangeable,
environmentally sealed antenna which uses contacts located
on the housing of the radio card.

An object of the present invention is to provide an
improved antenna connector for use with radio cards which
can be inserted into various computer devices.

10

15

20

25

30

35

45

50

55

65

4

An object of the present invention is to provide an antenna
cap, for use with computer devices utilizing radio cards,
which is reliable, economical and easy to use.

A further object of the present invention is to provide an
antenna cap whereby an appropriate antenna will be con-
nected to a radio card by selectively positioning the antenna
contacts on the radio card.

Another object of the present invention is to provide an
antenna cap whereby a radio card may simultancously
connect to and utilize more than one radio antenna, and
where the radio card may contain more than one type of
radio transceiver.

A further object of the present invention is to provide an
improved antenna connector whereby an appropriate
antenna(s) will be connected to a radio card by selectively
positioning the antenna contacts on the radio card.

A further object of the present invention is to provide an
improved apparatus which utilizes only one set of contacts
on a radio card or modem card and uses a switching matrix
to connect the radio card or modem card to the appropriate
antenna or telephone line.

Other objects, advantages, and novel features of the
present invention will become apparent from the .following
detailed description of the invention when considered in
conjunction with the accompanying drawings.

SUMMARY OF THE INVENTION

These and other objects of the invention are achieved in
a portable data collection terminal comprising a first and
second data processing unit as well as a radio transceiver
selected from a plurality of transceivers. The first processing
unit is capable of executing its own set of communication
software routines. Further, each of the plurality of radio
transceivers has different operating characteristics. The sec-
ond processing unit is capable of isolating the first process-
ing unit from the differences in the operating characteristics
of the plurality of radio transceivers.

In one embodiment of the portable data collection
terminal, the first processing unit is contained in a base
module while the second processing unit and the selected
radio transceiver are located in a communication module. In
another embodiment, antennas are connected to the base
module, and the portable data collection terminal unit
includes a means for selectively interconnecting one of the
antennas to the communication module. In a further
embodiment, a preinstalled antenna is connected to the base
module. The portable data collection terminal includes an
antenna connector capable of connecting a variety of exter-
nal antennas as well as a means for selectively interconnect-
ing the preinstalled antenna or the antenna connector to the
selected radio transceiver.

The objects of the invention are also achieved in a
portable data collection terminal that operates in a commu-
nication network having a first and second subnetwork. The
portable data collection terminal comprises a base process-
ing unit and a communication processor, as well as a first
and second radio transceiver selected from a plurality of
radio transceivers. The base processing umit is capable of
executing its own set of communication software routines.
Further, each of the plurality of radio transceivers has
different operating characteristics. The communication pro-
cessor is capable of isolating the base processing unit from
the differences in the operating characteristics of the first and
second radio transceivers.

In one embodiment, the base processing unit is contained
in a base module of the portable data collection terminal.

41

5,680,633

5

The data collection terminal also has a communication
module that contains the communication processor and the
first and second radio transceivers.

The objects of the invention are also achieved in a method
used by a second device for beginning a data exchange over
an RF communication link with a polling device. (The
polling device having an interpoll gap time.) The method
comprises identifying that an RF communication link is
clear throughout a period which is at least as long as the
interpoll gap time and transmitting a request for poll frame.
In one embodiment, the method also includes generating a
first pseudo-random time which is also atleast as long as the
interpoll gap time. The channel is then sensed for a time
substantially shorter than the first pseudo-random time. Such
sensing is repeated until the channel is detected as being
busy, or until the channel is detected as being clear at every
sense until the first pseudo-random time is reached. If the
channel is busy, a second pseudo-random time delay back-
off is executed and the process beginning at the generation
of the first psendo-random time is repeated. If the channel is
clear for the entire first pseudo-random time, a request for
poll is transmitted.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a schematic pictorial representation of a modular
data collection terminal unit to which the present invention
applies which shows schematically a physical representation
of modules of the data collection terminal;

FIG. 1A is a schematic diagram of functional blocks for
illustrating major functional elements of a base module and
a respective data and communications module of a data
terminal in accordance with the present invention;

FIGS. 1B and 1C are diagrams illustrating the modularity
of the software protocol stack used by the data terminal in
accordance with the present invention;

FIG. 2 is a schematic diagram of functional interfaces
. among various modules of the data collection terminal
shown in FIG. 1.

FIG. 3 is a schematic diagram of a control
microprocessor, illustrating data bus terminals for synchro-
nous communications.

FIG. 4 is a sequencing diagram showing schematically
occurrences of a module-initiated communication sequence
in accordance with features of the invention;

FIG. 5 is a further sequencing diagram illustrating sche-
matically occurrences of a controller-initiated communica-
tion in accordance with features of the invention;

FIG. 6 is a schematic diagram of an alternate embodiment
of the invention showing major functional elements and
their interaction with a power saving microprocessor control
circuit in accordance with the invention;.

FIG. 7 is a schematic diagram showing typical, frequency
related current characteristics of a control microprocessor
device of the circuit shown in FIG. 6;

FIG. 8 is a schematic diagram showing frequency related
current characteristics of an application microprocessor
device of the circuit shown in FIG. 6;

FIG. 9 is a flow diagram showing a desired interaction of
the two microprocessor devices in FIG. 6 in accordance with
the invention;

FIG. 10 is a diagram illustrating a protocol stack used in
the data processing terminal of the present invention;

FIG. 11 is a diagram illustrating a local area communi-
cations network of the present invention;

10

15

20

25

30

35

45

50

55

60

65

6

FIG. 12 is a flow diagram illustrating another protocol
embodiment used by the data processing terminal of the
present invention for gaining access to the channel;

FIG. 13 is a flow diagram illustrating an alternate protocol
embodiment used by the data processing terminal of the
present invention for channel access which includes a retry
counter;

FIG. 14 is a flow diagram illustrating an alternate protocol
embodiment used by the data processing terminal of the
present invention for channel access which uses periodic
SYNC messages in roaming implementations;

FIG. 15 is a flow diagram illustrating another protocol
embodiment used by the data processing terminal of the
present invention for channel access which includes both
periodic SYNC messages and a retry counter;

FIG. 16 is a flow diagram illustrating a channel access
protocol using a pseudo-random number generator accord-
ing to another embodiment of the present invention;

FIG. 17 is a diagram of the basic communication structure
used in the channel access protocol of the present invention;

FIG. 18 is a diagram illustrating an exemplary commu-
nication sequence according to the channel access protocol
of the present invention;

FIG. 19 is a diagram showing an exemplary communi-
cation exchange and illustrating channel access using a
channel reservation scheme;

FIG. 20 is a flow diagram illustrating channel access using
the channel reservation scheme of FIG. 19;

FIG. 21 is a perspective view of a radio card and a
corresponding port for receiving the radio card built in
accordance with the present invention;

FIG. 22 is a partial top plan view of a radio card and port
for receiving the radio card with the radio card completely
inserted in the port;

FIG. 23 is a partial side elevational view taken along line
3—3 showing the male/female pin connection of the radio
card and the port of FIG. 22;

FIG. 24 is a front view taken along line 4—4 showing the
female pin connections of the radio card of FIG. 21;

FIG. 25 is a perspective view of a computer terminal
showing the slot for receiving the radio card;

FIG. 26 is front view taken along line 6—6 showing how
a radio card to be inserted into the slot of the computer
terminal of FIG. 25;

FIG. 27 is a perspective view of another radio card and a
corresponding port for receiving the radio card built in
accordance with the present invention;

FIG. 28 is a front view of another computer terminal and
end cap capable of receiving a radio card;

FIG. 29 is a top view taken along line 9—9 of the
computer terminal of FIG. 28;

FIG. 30 is a bottom view taken along line 10—10 of the
computer terminal of FIG. 28 with the end cap removed;

FIG. 31 is a side elevation view taken along line 11—11
of the computer terminal of FIG. 28 with the slot for the
radio card shown in dashed lines;

FIG. 32 is a partial top view taken along line 12—12 of
the computer terminal of FIG. 31 showing the slot for
receiving the radio card and the antennas;

FIG. 33 is a partial top view of yet another embodiment
of a computer terminal built in accordance with the present
invention showing the use of a switching matrix;

FIG. 34 is a back view of a computer device and radio
card built in accordance with the present invention;

42

5,680,633

7

FIG. 35 is a side elevational view taken along line 2—2
of FIG. 3 of the computer device and radio card;

FIG. 36 is a partial top view taken along line 3—3 of FIG.
34 of the computer device;

FIG. 37 is a partial side elevational view of another
computer device built in accordance with the present inven-
tion;

FIG. 38 is a top view taken along line 5—S5 of FIG. 37 of
the computer device showing the rubber cap inserted
therein;

FIG. 39 is a partial vertical sectional view taken along line
6—6 of FIG. 38 showing a radio antenna embedded within
the rubber cap;

FIG. 40 is a partial vertical section view taken along line
7—7 of FIG. 39 of the rubber cap;

FIG. 41 is a partial vertical sectional view of another
embodiment of the present invention;

FIG. 42 is a partial vertical sectional view of still another
embodiment of the present invention;

FIG. 43 is a partial back view taken along line 10—10 of
FIG. 35 of the computer device;

FIG. 44 is a partial back view of still another embodiment
built in accordance with the present invention;

FIG. 45 is a partial horizontal sectional view taken along
line 12—12 of FIG. 44 of the band showing the shielded
ribbon used to carry the antenna signals;

FIG. 46 is partial back view of a computer device of yet
another embodiment of the present invention;

FIG. 47 is a diagram which illustrates the use of the
portable data terminal according to the present invention
which utilizes a plurality of radios to access different sub-
networks of an overall communication network.

DETAILED DESCRIPTION OF THE
INVENTION

Functional interconnections and power saving features of
the present invention may be better understood by knowing
how various building blocks or modules of a portable data
collection terminal unit relate to each other. FIG. I shows a
schematic arrangement of various physical modules or com-
ponents that become integrated into the portable data ter-
minal unit which is designated generally by the numeral 10.
Hand-held terminals are of generally rectangular, elongate
shape for accepted practical user friendliness. Thus the
modular terminal unit 10 desirably has an elongate, rectan-
gular shape. An upper module 12 provides a sensory or
physical interface to an operator of the terminal unit 10. The
module 12 is referred to as a keyboard and display module
12 and features a keyboard 14 which may be a typical
alphanumerical keyboard, including also function keys and
cursor manipulation keys as part of an integrated keyboard
arrangement. The keyboard 14 may be, and desirably is, a
submodule in itself, inserted and mounted into a mounting
frame 15 of the keyboard and display module 12. In a typical
manner, the depression of molded keytops 16 generally
closes electrical contacts in a lower contact plane (not
visible) of the keyboard 14. The type of keyboard 14 is,
however, not critical and not considered limiting to the
invention. The keyboard 14 being a selected one of a number
of available keyboards is, however pertinent to the inven-
tion. For example, in one application the keyboard 14 may
be preferred to be a twenty or a twenty-four key keyboard.
Such a keyboard 14 comprises comparatively few keytops
16, the locations and functions of which are more readily
learned and accepted by an operator. Such keyboards typi-

5

10

15

20

25

30

35

45

50

55

65

8

cally do not have alphabetical key functions. Thus for many
record keeping and merchandising operations, the keyboard
14 having an array of twenty or twenty-four keytops may be
most desirable. In another operation, a greater number of
keytops 16 may be required to display the letters of the
alphabet, numbers, and to provide for the execution of
various functions. Thus, a keyboard 14 having an array of
fifty-six keytops 16 may be preferred. Numerous variations
in the arrangement of the keytops 16 within the array of the
keyboard 14 are additionally possible. Mechanical or touch
sensitive keytops 16 may be employed. In fact, touch
sensitive keyboards which are known in the art, and typi-
cally involve programming and hi-directional feedback, may
be improved by interconnection features of the present
invention which will become apparent from the detailed
description as a whole.

The keyboard and display module 12 further includes an
upper cavity 17 wherein a display screen 18 is disposed. The
display screen 18 is preferably a state-of-the-art liquid
crystal display, the liquid crystal display (“LCD”) technol-
ogy being well established in the art. A dot-addressable
liquid crystal array screen 18 is ideal for “User friendliness”
and versatility and permits the display of various alphanu-
meric characters and graphic symbols, as well as Chinese or
Japanese character symbols. Of course, dot-addressable
graphic representations are known to require a substantial
level of data processing and memory storage to permit the
symbols to be displayed or moved about on the display
screen 18 with reasonable speed. Long delays between the
time that an operator pushes a keytop 16 to obtain data and
the time that the requested data are displayed is considered
“user unfriendly” and is commercially undesirable. A dis-
play technology which has become a standard is referred to
as VGA technology. VGA screens are capable of fine gray
scale or color resolutions. The display screen 18 would be
part of a selected display screen module 19 of a number of
available display screen modules.

FIG. 1A illustrates one embodiment of the data processing
terminal of the present invention illustrating advantages in
the modular design approach. The terminal utilizes a micro-
processor controlled data transfer between the base module
201 and any of a number of data and communication
modules which may include various radio transceivers such
as frequency-hopping or direct-sequence spread spectrum
radios, UHF (Ultra-High Frequency) radios, etc. The termi-
nal 10 and all of its circuits, including those of attached
modules, are powered by a power pack module 23 as
described herein.

Specifically, FIG. 1A shows a block diagram of functions
of the base module 201 and a typical data and communica-
tions module designated generally by the numeral 200. The
base module 201 is operative in conjunction with a typical
radio frequency transceiver provided by the data and com-
munication module 200, for example. The base module 201
includes a typical keyboard module 202 interactively
coupled to a microprocessor 204. A preferred microproces-
sor is a 80C196KC device which is a 16-bit microcontroller
205 with on-chip masked ROM, RAM and built-in timers,
ports, analog to digital converters and a serial interface 206.
Thus, the microprocessor functions as a microcontroller and
as an interface for communicating data and control signals
to and from the base module 201. In addition to the on-chip
memory capacity, an external ROM 207 and an external
RAM 208 may be provided for additional data processing
and communication capacity. Display controller and driver
circuits 209 may be multi-chip circuits or may be integrated
into a single device to drive the described LCD screen 210.

43

5,680,633

9

A typical scanner interface 215 is coupled to a 9-pin con-
nector 216, such as the referred to D-subminiature connector
which may couple a laser scanner or CCD scanner to the
base module 201 for data collection.

The data and communication module 200 is of particular
interest in that an improved interfacing may be obtained by
coupling communication between the data and communica-
tion module 200 and the base module 201 through a micro-
processor 225, such as, for example an 80C51 microproces-
sor circuit. Typical on board ROM allows the
microprocessor to be programmed to interact with a number
of devices in accordance with the stored program. The
microprocessor interacts with an interface circuit 226 which
may be an analog or mixed analog and digital interface
circuit. The program for interacting with the interface circuit
226 may also be stored within an on board ROM. The
interface circuit 226 is coupled to a transceiver module 228.
The microprocessor 225 may also be coupled directly to a
data collection interface 229 to receive data from a scanner
for reading any number of different bar codes or for pro-
viding input data from other external sources. The operation
of the microprocessor 225 for coupling data to the base
module 201 allows various input patterns to be processed by
any of specific operational protocols controlled by the
microprocessor 225, such that the data input from the data
collection circuit can be made the same from any of a
number of devices. Also, with respect to the operation of the
transceiver, the program for operating the microprocessor
225 may include particular address codes for data retrieval
and data communication via the transceiver. The data sent
via a data and control bus between the microprocessors 225
and 204 can emulate a uniform data transfer protocol to the
base module 201. The addition of the microprocessor 225 in
a data and communication module 200 thus increases the
number of communications devices that may be represented
by the data communication transceiver circuit or module.

The data and communication module 200 may be
removed and replaced with a number of other modules. In
those modules, the transceiver 228 may be, for example, any
RF radio, such as a spread specttum, UHF, or cellular
transceiver. The commonality between all communication
modules is the microprocessor 225 and the associated com-
munication protocol back to the microprocessor 205 of the
base module 201. In other words, the program function
represented by the interface circuit 226 and interacting with
the microprocessor 225 permits the interactive control and
data stream between the base module 201 and the data and
communication module 200 to appear the same to the base
module 201 no matter how the module 200 communicates.

The reference to the particular microprocessor circuits
should not be considered limiting to the scope of the
invention. The combination of two microprocessors inter-
acting with each other, each controlling the environment of
arespective one of two submodules such as the base module
and the data and communication module permits an
increased number of different components and functions to
be used within the data system. The data collection terminal
unit of the present invention is particularly designed for use
in a mobile computer network. Such a network connects
mobile interactive radio-equipped computers (such as the
terminal unit 10) to an infrastructure of stationary computer
devices.

Communication within the network is generally governed
by software control through a grouping of software routines.
Together, the software routines define an overall communi-
cation protocol for the network. The software groupings also
define a stack of protocol layers; i.e., a protocol stack. The

10

15

20

25

30

35

45

50

55

65

10

protocol stack divides the overall communication protocol
into hierarchical layers of functionality.

FIG. 1B illustrates one embodiment of the software
protocol stack used by the modular data collection terminal
unit of the present invention. The protocol stack is split to
illustrate that the functionality of the software is divided
between the base module 201 and the data and communi-
cation module 200. Specifically, the functionality of the
upper layers of the protocol stack (i.e., session layer 251,
transport layer 253, and network layer 255) is performed by
the microprocessor 205 of the base module 201 while the
functionality of the lower layers (i.c., data link layer 257 and
physical layer 259 is performed by the microprocessor 225
of the data and communication module 200.

The session layer 251 performs general logic functions,
such as authentication of passwords, etc.

The transport layer 253 provides end-to-end connectivity
within a mobile computer network. It recovers from the loss
of data packets, discards duplicate data packets, and frag-
ments and reassembles logical user messages. Essentially,
the transport layer 253 provides a data pipeline between
access points in terminal modes.

The network layer 255 provides end-to-end delivery of
data packets within a mobile computer network. For
example, if a spanning tree network offers the desired good
network solution, the network layer 255 would (1) organize
nodes in the network into a spanning tree; (2) route data
packets along branches of the spanning tree; (3) provide a
service for storing data packets for sleeping terminals (i.e.
power management); (4) propagate lost terminal node infor-
mation throughout the spanning tree; (5) maintain spanning
tree links; (6) allocate and distribute network addresses; and
(7) maintain and provide diagnostic network statistics.

The data link layer 257 controls access to the communi-
cation channel and is responsible for providing reliable
transmission between any two devices in the network on
both wired and radio links.

The physical layer 259 performs radio modem functions
and is therefore very radio transceiver dependent.

As can be appreciated, the lower the Ievel in the protocol
stack, the more radio transceiver dependent the protocol
becomes. Similarly, the lower the level, the more business
environment specific the protocol becomes. Thus, a good-
dividing line for the protocol layers that exist in the com-
munication module 200 is at the data link layer 257. This
way, any communication module 200 supporting any type of
radio transceiver can communicate with the common higher
levels of protocol stack existing in the base module 201.

Alternatively, the dividing line might also be drawn at a
higher level, for example, at the network layer 255, or at
somewhere in between. For example, referring to FIG. 1C,
a portion of the network layer which addresses the specific
concerns of roaming portable terminals and power manage-
ment might be migrated into the communication module
200. Such migration permits the communication module 200
protocol substack to be able to communicate with other
higher level protocol stacks which do not directly support
such network layer functionality.

Further detail regarding mobile computer networks and
the above protocol is found in attached Appendix A, a
Masters Thesis entitled “Mobile Computer Network Archi-
tecture” authored by Robert C. Meier, a co-inventor herein.

FIG. 1C illustrates the compatibility of the lower layers of
the protocol stack (i.e., that of the data and communication
module 200 used by the data collection terminal unit of the

44

5,680,633

11
present invention with a variety of standard protocol stacks.
Particularly, the protocol of the data and communication
module 200 is capable of interfacing with any personal
computer (PC) based platforms that use a standard protocol
stack. Such PC based platforms may include, for example,
a Novell Ethernet Network or TCP/IP. The network layer
protocol associated with the mobility of a terminal unit (i.e.,
specific spanning tree and power management
functionality), data link layer, and the physical link layer is
managed by the microprocessor 225 of the data and com-
munication module 200. This protocol substack is stored in
the interface circuit 226. Similarly, the substack containing
the sessions layer transport layer and a majority of the
network layer is stored in memory in the base module 201.

In an alternate embodiment, FIG. 2 illustrates a schematic
diagram of functional interfaces among various modules of
the data collection terminal unit of FIG. 1. As will become
more apparent below, the embodiment in FIG. 2 expands on
the concept explained in reference to FIG. 1A of splitting up
the hardware functionality and software protocol layers of
the terminal unit 10 to enable ease of radio tramsceiver
substitution. FIG. 2 refers to a display screen module 20
which is similar in function to display screen module 19
discussed above, yet which may include selected differences
to illustrate the advantages of the modular concept in
combination with other features of the present invention.
Display screens may vary in size or resolution or both, such
that options among a number of display screen modules 19
may be made available to a potential user of the terminal unit
10. A display of an array of (128by240) pixels of, for
example, (0.25x0.25) millimeter is an example of what is
considered to be a desirable display screen resolution.
Another screen array size may be (64x192) pixels, for
example, of (0.35x0.50) millimeter per pixel.

The keyboard and display module 12 occupies most of the
area of the terminal unit 10 which faces an operator when the
terminal unit 10 is held and operationally used by the
operator. Assembled to an underside 21 of the keyboard and
display module 12 are preferably two major modules of the
terminal unit 10. A first module is what is referred to as the
terminal module 22. Whereas the keyboard and display
module 12 is the major interface component between the
operator and the terminal unit 10, the terminal module 22 is
a major functional component of the terminal unit 10 itself,
as will become apparent from the description herein. The
terminal module 22 functionally controls the interaction of
the various umnits or modules as described herein, and func-
tionally is the control unit of the terminal unit 10. The
terminal module 22 houses functiopal submodules and
microprocessor circuits. A significant component is, of
course, a power pack module 23. The power pack module
may contain, for example, six AA type rechargeable cells
which may be arranged in a convenient flat arrangement and
fitted into a battery end 24 of a housing 25 of the terminal
module 22. The power pack module 23 supplies the power
to various modules of the terminal vnit 10, thus providing
the capability for portable use of the terminal unit 10.

From the above description of potential choices of the
type of display on the display screen 18, and further choices
among keyboard arrangements of the keyboard 14, different
requirements for electronic support circunits are indicated.
One of the requirements to support the economical changing
of functions is a means to provide a ready change in
programmability of microprocessor circuits. Some module
selections of the terminal unit 10 require less memory usage
and different operational protocols than others. In accor-
dance with a preferred embodiment, a memory module 27

10

15

20

25

30

35

45

50

55

65

12

may be selected as one of a number of differently pro-
grammed memory modules 27. However, in addition to
being differently programmed, an alternate memory module
28 may include a different memory size (in cell numbers and
in configuration). The terminal module 22 may further
include an exchangeable memory card 30. The memory card
30 may be used to provide additional memory capacity as
well as control programs for various desired functions of the
various modules as described herein. The memory card 30 is
schematically shown as being insertible laterally into a slot
32 of the housing 25 of the terminal module 22. However,
the shown physical arrangement is but one of a number of
equally desirable arrangements. An enclosed and sealed
arrangement for the memory card 30 is desirable to protect
modules of the terminal unit 10 from the environment.

A peripheral I/O module 34 is shown at a lower or inner
end 35 (see FIG. 1) of the terminal unit 10. The inner end 35
is typically pointed toward an operator of the terminal unit
10, as the unit is held in the operator’s hand with the
keyboard and display module 12 directed upward toward the
operator. The IO (Input-Output) module 34 may typically
include externally of a housing 36 a standard RS-232 and
RS-485 connector 37. FIG. 1 also depicts a round commu-
nication connector 38. The peripheral YO module 34 pro-
vides an interface between the termiral unit 10 and such
diverse peripheral devices as “docks”. Docks may be batch
transfer devices for transferring accumulated data, battery
charging devices, or cables which may connect to a code
scanner, for example. An RS-232 interface is typically
connected to a printer, for example.

A serial YO and scan connection module 41 may be
attached at a longitudinally opposite outer end 40 (see FIG.
1) of the terminal unit 10. The scan connection module 41
is a high speed serial data communication module 41 which
provides for serial data to be received in high volume from
a scanner for example. Scanner data are typically received in
a high density data string and require significant processing.
As will become apparent below, a direct communication link
to the data processing capability of the terminal unit 10 is
provided through the scan connection module 41.

A further functional module is a communication module
44. Again in reference to FIG. 1, the communication module
44 may be disposed adjacent the terminal module 22 toward
the outer end 40 of the terminal unit 10. The communication
module 44 is selected from a group of available communi-
cation modules of distinct functions. The selection of one of
the communication modules such as the communication
module 44 in FIG. 1, may characterize or classify the
operation of the terminal unit 10. For example, a commu-
nication module 44 may have been selected from a group of
modules which include standard FM data radio transceiver
modules, spread spectrum radio tramsceiver modules,
modem communication modules, scanner device modules,
or other data input devices. FIG. 2 shows a communication
module 45 as an alternate to the physical representation of
the communication module 44 shown in FIG. 1 to indicate
a diversity of modules available for substitution. In further
reference to FIG. 1, the communication module 44 is shown
as having an antenna 46, indicating the selection being a
transceiver unit for radio frequency real time communica-
tion with a data system. Such a data system typically
includes a further transceiver station, not shown, with which
the transceiver module 44 communicates. The operator of
the terminal unit 10 also constitutes a second end of a
communication link that is established by the operator’s
manipulation of the keyboard 14 and by the operator’s visual
perception and recognition of the data displayed on the
display screen 18.

45

5,680,633

13

Referring now to FIG. 2, a functional schematic diagram
of a combination of the physical modules discussed with
respect to FIG. 1, or of alternate equivalents of the modules
in FIG. 1, is shown. The modules with respect to which
preferred physical positioning was discussed in reference to
FIG. 1 are now shown functionally related in FIG. 2. It is to
be noted that the schematic representation refers to func-
tional or communication rather than electrical connections.
The power pack 23 is typically coupled to power all elec-
trically driven circuits of the terminal unit 10. The power
pack 23 is functionally and physically coupled to the ter-
minal module 22. While electrical power is distributed from
the power pack 23 to all electrically powered or controlled
modules of the terminal unit, the remaining power of the
power pack is actually monitored by a function of the
terminal module 22. The power pack 23 as the sole portable
power source for the terminal unit 10 would, but for power
saving provisions, experience a significant power drain
during the operation of the terminal unit 10.

Power savings are implemented by selectively using
circuit functions as they are needed. Accordingly, the ter-
minal module includes preferably first and second micro-
processors 48 and 49, respectively. The first microprocessor
48 is a data processing device and is also referred to herein
as an application processor 48. The application processor
may be any of a number of available microprocessors
available. Desirably the application microprocessor 48 has
the capability of processing data with greater word length or
word width than the second processor 49. The term word
width refers to the number of data bits that are capable of
simultaneously being processed, retrieved or stored. The
application processor 48 is therefore one capable, for
example, of processing a 16-bit or a 32-bit data word. The
processing speed and clocking rate of the application pro-
cessor 48 would desirably exceed that of the second micro-
processor 49. At present, the .more powerful
microprocessors, such as the microprocessor 48, have higher
power requirements than the second microprocessor 49.
However, even with the higher power requirement during
operation, power savings may be achieved by providing a
rest state at which the microprocessor 48 is not clocked and
thus deactivated.

The second microprocessor 49 is also referred to as a
control processor 49. The second microprocessor controls
the operation of the terminal module 22 and controls com-
munication within the terminal module as well as among the
various other modules of the terminal unit 10. The control
processor 49 requires less power for operation than the
application processor 48 for reasons that will become appar-
ent. Control is an ongoing function. Because the operational
speed of the control processor 49 is comparatively slower
than that of the application processor 48, the operational
power consumption of the control processor 49 is also lower
than that of the application processor 48. The control pro-
cessor 49 may be a Hitachi H8/330 type microprocessor
device. The Hitachi H8/330 processor features on-board
memory which is convenient for its intended operation as
will be seen in reference to its operational modes as set forth
herein. The H8 type processor is an 8-bit processor, capable
of processing data in an 8-bit word length. However, the
control processor 49 need not be an 8-bit processor. In
general, the word width processing capacity of the control
processor 49 should be chosen to be relatively less than that
of the application processor 48. The control processor 49
does not require the processing speed that is desirable for the
application processor 48, and, processors with relatively low
word width processing capacity (considering processors in

10

15

20

25

30

35

45

50

55

65

14

general) require less processing power. It should be
understood, however, that the specification of any particular
device, such as the Hitachi H8-type microprocessor for the
control processor 49, is for illustrative purposes only. The
features and desired functions of the invention will be
helpful to one skilled in the art to select any of a number of
acceptable devices to function in the desired manner as
described herein.

FIG. 3 shows a schematic block representative of signal
terminals of the control microprocessor 49 which are perti-
nent to the preferred mode of implementing the present
invention. In describing the significant signal and data
terminals, a bar above a designation indicates that a low
signal is active. Herein, the inverse or signal low active state
is described with an “N” preceding the letter name at the
respective signal term. To communicate among the various
described modules, four signal leads of the control processor
49 define the leads of a communication bus 50 referred to
herein as “MBUS”. The MBUS 50 is a high speed synchro-
nous serial data signal bus which may, and preferably does,
operate at a signal rate of 500 kilo bits per second. The high
speed data bus provides reliability advantages explained
below. A modular structure in which the modules are readily
disconnected and reconnected to permit convenient changes
during the manufacture of the final product, may reduce the
reliability of the terminal unit 10. When reliability is
decreased with each additionally coupled module, the
advantages of modular structure are quickly dissipated.
Compared to typical parallel data buses used to link com-
ponents of electronic products or systems, the present sys-
tem architecture of the modular terminal unit 10 requires
significantly fewer contacts to interconnect the various mod-
ules. With fewer signal lines to manage, it becomes more
feasible to protect each line from noise and interference
effects by using well known shielding, impedance reduction
and termination techniques thereby increasing the reliability
of the terminal unit 10. As a result, the present invention is
typically more reliable than modular systems with conven-
tional parallel data transfer, due to the reduction in the
interconnections among the various modules. FIG. 3 shows
four signal terminals which constitute the MBUS concept.
“MCLK” is the clocking signal which synchronizes the
modular counterparts of the control processor 49. The clock-
ing signal provides for a bit rate of 500 kilo bits per -second.
The terminal labeled “MTXD” transfers data from the
control processor onto the MBUS 50. The terminal labeled
MRXD receives data from other modules over the MBUS
50. The low signal active “NMATT” is a control signal line
which indicates that data will be communicated over the
MBUS 50. These four lines effectively permit the various
modules to communicate among each other. A number of
signal contention protocols are available to resolve potential
collisions in data communication. It should be understood
that any standard signal contention protocol may be modi-
fied if so desired to assign specific priorities for communi-
cation among the modules. For example, data received from
a scanning operation may be accepted and processed on a
priority basis. Keystroke inputs from the keyboard and
display module 12 may be given priority over data flow from
the communication module 45. Similarly, data messages
received via radio transmission from an external master unit
(not shown) may be given priority. Program altering instruc-
tions may be embedded within the message which affect
future operations of the terminal unit 10.

Further with respect to FIG. 3, corresponding data lines
interfacing with the application processor 48 are indicated as
parallel signal lines DB0-7 and data lines A0-3. Data

46

5,680,633

15

communication and control procedures between the control
microprocessor 49 and the application processor 48 are
further described with respect to alternate embodiments.

Referring again to FIG. 2, the application processor 48 is
coupled to an asynchronous device or “UAR/T” function 51
with an output coupled to a serial port 52 of the serial YO
scan connection module 41. The serial IO scan connection
module 41 further includes a scan port 53 which links to the
control processor 49 to communicate control signals, such as
scan trigger signals, for example. The application processor
48 is further coupled to a VGA adapter circuit or driver 54
for driving the display screen 20. The display screen func-
tion is processor intensive. Data processing operations are,
therefore, managed directly through the application proces-
sor 48. The data processing operations performed by the
application processor 48 are in most instances memory-
usage intensive. Consequently, the application processor 48
is linked by a conventional data bus 55 directly to the
memory module 28. The memory module 28 is shown as
including representative data storage functions or circuits
including a 16-bit word width system FLASH-
programmable memory 56, a typical 16-bit word width
random access memory 57 (“RAM?”), and additional appli-
cation FLASH-programmable memory 58, also preferably
16-bit word width. The 16-bit word width storage devices
56, 57 and 58 are preferred in conjunction with a 16-bit
microprocessor device. Presently preferred 16-bit micropro-
cessors are a Chips and Technologies F8680 device or an
Advanced Micro Devices 386SXLV processor. The selec-
tion of other processors for the microprocessor 48 may
require different types of memory devices or different word
width or storage capacities than those described above.

The peripheral /0 module 34 may, as discussed with
respect to FIG. 1, include standard connectors for coupling
the module 34 to an external device. A particular device 59
may be a portable printer device, as shown in the function
block 59 of FIG. 2, which may be mounted or coupled
directly to the terminal unit 10. The peripheral IO device,
whether it is a printer or areader or other data input or output
device, would functionally include a microprocessor 60. The
microprocessor 60 is chosen to interact with the MBUS
system. The microprocessor 60 is coupled in each described
element to function as a terminal element, which is an
interface communicatively coupling the respective logic
circuits of the module to the MBUS. The microprocessor 60
receives control codes via theMBUS 50 and responds by
activating or de-activating the power circuits of the respec-
tive module, or conditioning the module to receive or
transmit data.

The communication module 45, which may be a modem
or any of a number of available radio frequency transceiver
modules, also includes a compatible microprocessor 60
which interfaces with a respective communication device 61
of the module 45. The communication device 61 may be a
modem or transceiver device, for example. The keyboard
and display module 12 also preferably includes its own
interfacing microprocessor device 60. The keyboard and
display microprocessor 60 is coupled to control various
functions which are directly associated with the keyboard
and display module 12. A particular function which may be
conveniently controlled via the MBUS 50 and the respective
control processors 49 and 60 is a backlight drive 62 for the
display screen 20. Another function is a buzzer 63. The
buzzer 63 may be activated to signal an incorrect key
depression by an operator. The buzzer 63 may further be
used to alert an operator when a charge and power control
circuit 64 detects that the power pack 23 has become

10

15

20

25

30

35

45

50

55

65

16

discharged and a backup battery 65 is being engaged, giving
a user time to recharge or replace battery pack 23. The power
control 64 may function to shut down the terminal unit 10
from further operation until the power pack has been
recharged. In a preferred embodiment, power from the
backup battery 65 would be maintained on the control
processor to permit it to determine when power from the
power pack 23 has been restored. The processor 60 of the
keyboard and display module 12 may also control other
input or output devices that may be coupled to the keyboard
and display module 12. For example, a pen 66 may be
coupled to the keyboard and display module 12 for use in
connection with a pen stylus sensitive keyboard module 14
or in connection with a pen stylus sensitive display screen
20. In this latter instance, the display screen module 20
becomes an input device in addition to being an output
device.

The application processor 48 and the control processor 49
are preferably controlled through a timing Application Spe-
cific Integrated Circuit 67 (“clock control ASIC”). The clock
control circuit 67 may be driven from a single clock signal
which is then divided to provide respectively different
clocking rates to each of the processors 48 and 49. The
implementation of the timing circuit 67 in a single circuit
function is more efficient and provides synchronization
among the components and modules. A second clock signal
for implementing a real time clock may also be provided.

In addition to providing better reliability as discussed
above, the MBUS 50 also provides more compact physical
routing of cables among the modules. Furthermore, control
of the functions of the various described modules via the
MBUS 50 provides power savings, as will be described
more fully below in reference to FIGS. 4 and §. To conserve
power and prolong the operational time of the terminal unit
10 between changes or recharges of the power pack 23, the
control processor 49 and the related MBUS module proces-
sors 60 place any module which is not in active use into
dormant state.

The MBUS 50 communicatively interconnects the mod-
ules of the terminal unit 10, such as the peripheral /O
module 34, the communication module 45, the keyboard and
display module 12 and the terminal module 22. Other
modules that may be included in the active communication
network of the MBUS §0 may simply be added as described
herein. For each module, one of the microprocessors 60,
having the data terminals of the microprocessor 49 shown in
FIG. 3, namely MCLK, MTXD, MRXD and NMATT are
coupled to the respective lines of the MBUS 50 to become
part of the internal communication network of the terminal
unit 10. The microprocessors 49 and 60 constitute the
terminal elements of the communication network repre-
sented by the MBUS 50. For each module, the respective
microprocessor 60, though it may be physically identical to
the control microprocessor 49, functions as a subservient
processor to the control processor 49. The microprocessors
60 become a communication interface between the MBUS
50 and the functional circuits of the respective module,
whether the module is the communication module 45, the
keyboard and display module 12 or the peripheral YO
meodule 34. Inputs from the respective module are accepted
by the processor 60. An H8/330 microprocessor includes
internal memory for receiving and temporarily storing data
communications. Programmable ROM on the H8/330 per-
mit instructions to be stored which particularly configure the
microprocessor as a module processor 60. The interface
operation of the microprocessor 60 differs from the control-
ling operation of the control processor 49 as shown below in
reference to FIGS. 4 and 5.

47

5,680,633

17

A normal state of the microprocessors 49 and 60 is a
sub-active or dormant state. In this state, the module pro-
cessors 60 and the control processor 49 are clocked at a
power saving “slow” clocking speed. The sub-active or
dormant operational state permits the module processors 60
and the control processor 49 to execute certain long-interval
control functions. For example, the keyboard and display
screen processor 60 monitors the keyboard in order to sense
a keytop depression while the control processor 49 main-
tains the charge and power control circuit 64 in order to
sense a low battery signal. Upon occurrence of an event
which that affects the operation of any typical communica-
tion function that is driven over the MBUS 50, all modules
and the control processor are placed into a fully activated
mode. The control processor 49 queries, directs and controls
communication over the MBUS 50. For example, FIG. 4
shows an activation cycle of the MBUS 50 which is initiated
by one of described modules other than the terminal module
22, i.e., from one of the processors 60. The respective
processor 60 drives the NMATT line of the MBUS 50 into
alow signal state. The low state of theNMATT line activates
all processors 60 to receive an inquiry or instructions. At T1
in FIG. 4 all modules have been placed into the active state.
During the time interval T'1 to T2 the control processor sends
a query or polls the activated modules over the MTXD line
which is reserved for transmissions originating from the
terminal module 22, i.e., from the control processor 49. The
query would typically contain at least one byte of data, the
quantitative translation of the byte of data indicating to the
processors 60 that it is a query in response to one of the
module processors 60 having driven theNMATT line to a
low state. The query shown at 70 signals the processor 60 to
transmit its data message over the MRXD line of theMBUS
50. At the onset of the data transmission 72 from the
respective communicating module processor 60, theNMATT
line is restored to a high state, placing all other modules back
into the dormant condition. As shown in FIG. 4, the data
communication may proceed for a variable length of time
past the time state T2 at which the NMATT line has returned
to a high state. Upon termination of data communication
from the respective module processor 60 to the control
processor 49, the control processor 49 sends a message 73
confirming correct receipt of the data message (at T3). Again
the confirming data message contains at least one byte of
information, the decoding of which would either indicate an
error code or signal the correct receipt of the data message.
At that time (at T3), the communicating module processor
60 and the control processor 49 also assume the power
saving dormant state.

FIG. 5 describes a very similar event in which the control
processor 49 drives the NMATT line to a low state. Again,
all processors 60 assume an active state and all processors 60
receive a communication 75 of typically at least one byte of
information from the control processor 49 during the time
interval between T1 and T2. The information 75 contains an
address of the module to which a data message from the
control processor 49 will be directed. The respective module
processor acknowledges its understanding of the address by
a responding message 76 which may be translated by the
control processor 49. In response to the receipt of the
message the control processor releases the NMATT line,
which assumes its normal high state and places all non-
affected module processors 60 again into a dormant state.
The control processor 49 then transmits its data message as
indicated at 77 to the respective, previously addressed
module processor 60. At the conclusion of the communica-
tion 77 from the control processor 49, the respective module

10

15

20

25

30

35

45

50

55

65

18

processor acknowledges receipt of the communication 77 by
its response 78. Once it is interpreted from the response 78
that the communication 77 has been received correctly, both
the control processor 49 and the respective module proces-
sor 60 assume their dormant states. It is to be noted that the
respective data messages shown in FIGS. 4 and 5 indicate -
durations of data messages. It is to be understood that the
high and low states of other than the NMATT line indicate
a time interval during which a great number of high or low
states in synchronous time slots are transmitted essentially at
the bit rate of 500 kilo bits per second. This bit rate may
include start and stop intervals.

In the described communication events, power consump-
tion by the terminal unit 10 is minimized by providing for a
quasi dormant state for substantially all functions of the
various modules, such that electrical power is used in pulses
during the described query states and only in spurts by
certain modules during real time performances. The power
saving features in communication from and to the various
modules is further present in implementing highly power
intensive data processing operations in the terminal module
22,

Referring to FIG. 6, the schematic diagram illustrates an
alternate embodiment of the present invention where major
functional logic and communications elements are coupled
to and interact with the application processor 48 and the
control processor 49 in a power-conserving microprocessor
circuit 80. The circuit 80 may control the operations of, or
be functional in the operation of, the terminal unit 10. The
terminal unit 10 may interact as described with one or more
distinct functional modules including communication
modules, such as a transceiver communication module
(*RADIO") shown at 81. Because the terminal unit 10 is
portable, the physical circuits of the functional units or
meodules shown in FIG. 6 would typically be powered by the
power pack or battery 23 (shown schematically in FIG. 2),
which is illustratively included in the power management
function (“POWER CONTR”) 64. The microprocessor
operated control circuit 80 comprises a combination of the
application microprocessor 48 and the control microproces-
sor 49, The circuit 80 can also be two circuit portions that
include specifically two microprocessor type subcircuits 48
and 49. Each of these subcircuits 48 or 49 are separately
functioning microprocessor blocks, modules or separate
microprocessor devices. In the preferred embodiment as
described herein the devices are respectively an application
processor 48 (“MP1”) and a control processor 49 (“MP2”).
It is advantageous to perform data processing operations at
a comparatively higher speed and with a more powerful
processor than is be desirable for relatively less complex
control functions. .

The term “data processing operation” may used herein in
the sense of manipulating a series of binary codes according
to programmed instructions to arrive at a desired result.
Because of the great number of discrete binary operations
required to perform many of the most common data pro-
cessing functions, higher processor speeds and more com-
plex or powerful microprocessor circuits of those typically
available are more desirable for data processing operations.

In the now described embodiment, the application pro-
cessor or data processing device 48 may be an “Intel
80C188EB” device which is “16-Bit” microprocessor
device, operated at a preferred speed of 9.2 megahertz
(MHz). At such preferred clocking speed of 9.2 MHz, the
power consumption or operating current consumed by the
data processing microprocessor device 48 is approximately
55 milliamps (“mA”). The control processor 49 may be a

48

5,680,633

19

“Hitachi H8/325” device which is an “8-Bit”
microprocessor, operated at a speed of one-half of the speed
of the data processing microprocessor 48, that is, 4.6 MHz.
Because of the smaller physical size of the control processor
49 and the slower, preferred clocking speed, the power
consumption or current required by the control processor 49
in its operational mode is only about 9 mA, that is less than
one-fifth of the power consumed by the processor 48. In
general, the control microprocessor circuit or the control
microprocessor 49 desirably operates at a slower and less
power consuming speed than the application microprocessor
circuit or the application microprocessor 48. A one-to-two
speed ratio for driving the respective microprocessors 49
and 48 is preferably chosen because of the power savings
that are realized with respect to the portable terminal unit 19.
Respective clocking circuits 82 and 83 (“CLCK 1 and
CLCK 2”) are shown as providing respective timing signal
ports coupled to the respective processors 48 and 49 to drive
the processors at the desired speeds as described.

Also, a functional arrangement of the separate clocking
circuits 82 and 83 preferably may be replaced by the clock
control circuit 67, as shown in FIG. 2. The clock control
circuit 67 may be expanded in its function to include an
interface circuit function between the processors 48 and 49
which includes data transfer as well as clocking functions.
The clock control circuit 67 would include in such coupling
arrangement a typical divide-by-two timing circuit function.
An original 9.2 MHz clocking signal port and a signal port
with the divided by two signal, comparable to the timing
signal ports 82 and 83, would be coupled to the respective
timing signal input ports of the processors 48 and 49,
respectively, to drive the processors 48 and 49 at their
respective speeds of 9.2 and 4.6 MHz. As mentioned above,
a second clock may be coupled to the clock control circuit
67 to provide a real time clock

As will become apparent from the further description, it
is within the scope of the invention to integrate the distinct
functions and operational characteristics of the separately
identified microprocessor devices 48 and 49 into a single
integrated device. The resulting integrated device 80 desir-
ably includes respective interface functions, as further
described herein, to implement the power-saving character-
istics realized by the control circuit 80. Within such inte-
grated device 80, the function of the application processor
48 is then performed by a first microprocessor circuit block
or circuit portion, and the function of the control processor
49 is performed by a second microprocessor circuit block or
circuit portion. These circuit blocks, portions or modules
interact essentially in the same manner within the circuit 80
as the currently used microprocessor devices 48 and 49.

The control processor 49 may include in its commercial
implementation, in addition to typical microprocessor reg-
isters and an arithmetic logic unit, such functional circuit
blocks as ROM, RAM and communications ports. These
circuit blocks may also be included in any integrated device
80, or their functions may be supplied by peripheral devices.
As shown in FIG. 6, additional external memory 84
(“MEM”) may optionally be provided to supplement such
on-board memory 85 (“OM”), though for typical operations
as further described herein, the external memory device 84
is not required. According to one embodiment, data com-
munication between the processors 48 and 49 occurs via an
interface circuit that includes, for example, two 8-bit data
registers or latches described in greater detail below in
relation to FIG. 6. It should be understood, however, that the
control processor 49 may have a direct bus interface to
enable direct coupling of the control processor 49 to the

10

15

20

application processor 48. The coupled processors 48 and 49
are capable of bidirectionally passing data and control
signals without the described two 8-bit data registers or
latches. Also, data latches are generally considered tempo-
rary data storage devices. Data from one device are latched
into a respective data latch to be retrieved by a second
device. Although not preferred, it is contemplated that dual
port memory may be used as an alternative to the latches
described below.

The clock control ASIC function 67 shown in FIG. 2
should be understood to not only include the clocking signal
coupling circuits to drive the respective application proces-
sor 48 and the control processor 49, but to further include the
data interface or bus to permit the desired bidirectional data
and control code communication between the processors 48

. and 49 as further described herein. In further reference to

20

25

30

35

45

50

55

65

FIG. 2, an integration of the processor devices 48 and 49 into
a single device desirably may include the described function
of the interface and clock control circuit 67.

Referring again to FIG. 6, a first latch 86 (“LATCH 1) of
the two latches is coupled through an 8-line paraliel bus 87
to the microprocessor 49, and through a similar bus 88 to the
microprocessor 48. Respective write and read lines 89 and
90 (“WRL1 and RDI.2”) provide control or trigger signals
for the processor 49 to write data into the first latch 86 and
for the processor 48 to read data from the latch 86. A
handshake or control signal line 91 (“CHARAVAIL 1)
toggles between a high or “logic 1” to indicate to the
processor 48 that data have been read into the first latch 86
by the processor 49 and a “logic 0” to signal that the
processor has read or taken the data from the first latch 86.
A second latch 92 (“LATCH 2”) similarly stores an 8-bit
data element written into the second latch 92 by the pro-
cessor 48 over a second 8-bit write bus 93. A second read bus
94 transfers the data element stored in the second latch 92
from the latch to the second processor 49. The control or
trigger signals for writing into or reading from the second
data latch 92 are provided over trigger lines 95 and 96
(“WRL2 and RDL2"), respectively. A second handshake or
control signal line 97 (“CHAR AVAIL 2”) coupled to the
second latch 92 and to the processors 48 and 49 also toggles
between high and low signal states to indicate in the high
state the availability of data in the second latch 92 and in the
low state the completion of a read operation of the most
recent data element by the control processor 49.

A control signal line 98 carries a control signal generated
by the control processor 49 which controls the duty cycle of
the application processor 48. In reference to FIGS. 7 and 8,
the current usage of the control processor 49 ranges between
a high of 9 mA in a typical operating mode and a low of
about 7 mA in a typical “idle mode” at the preferred
frequency of 4.6 MHz, (See FIG. 7, graphs 100 and 101,
respectively). It should be realized that even while “idle”,
the control processor maintains power to internal memory
and performs typical periodic monitoring functions, such as,
for example, sampling a keyboard circuit 102 (“KB”) for a
“Depressed Key” signal or routinely monitoring the power
management function 64 for a “Low Battery” indication.
However, even when in the typical operational mode as
indicated on the current vs. frequency graph 100, the control
processor uses only about one-sixth of the current used by
the application processor 48 in its preferred operational
mode. On the other hand, when the application processor 48
is placed into an idle state (i.e., when it is not driven by a
clocking signal), the required maximum current rating is 0.1
mA, as shown by the high-low indicated values at the 9.2
MHz frequency mark at and below graph 103 in FIG. 8.

49

5,680,633

21

Graph 103 indicates the typical operating current consump-
tion of the application processor 48. It should be noted that
the application processor 48 could be deactivated by a
complete electrical shut down of the device. However,
because of the low non-clocked power or current draw of the
application processor 48, the application processor function
is preferably deactivated by eliminating its clocking signal
but maintaining the application processor 48 under DC bias.
Removing the clocking signal from the application proces-
sor function achieves a desired power-down idle state while
permitting the device 48 to be reactivated immediately by an
appropriate “wake up” control signal from the control
microprocessor 49.

Typical data processing operations performed by the
application processor 48 require approximately 10 millisec-
onds of time and not more than 20 milliseconds on the
average of all operations which are typically performed by
the application processor 48. A more user friendly and
practical response time may be obtained from the terminal
unit 10 (and less power is required) when the application
processor 48 performs substantially all data processing
operations and is subsequently immediately deactivated than
if a single alternative microprocessor circuit were used
operating at a higher rate and including sufficient computing
capacity to perform all required functions in an appropri-
ately short time. The combination of the application proces-
sor 48 and the control processor 49 amounts to an approxi-
mate increase in current usage of typically only about ten
percent, and in the extreme of no more than 20 percent, over
the normal operating current level of the control processor
by itself. The power required by the application processor 48
as controlled by the control processor 49 is about one fifth
that required by the control processor 49 itself when it is
operated continuously. However, the display speed and data
manipulation speed of the terminal unit 10 essentially is the
same as if the unit 10 were controlled by the more powerful
application processor 48.

The operating current requirement for the application
processor 48 is directly related to the number of actively
switching elements in each computational operation.
Though having an interrupt function, the referred to
80C188EB processor 48 does not include, in contrast to the
control processor 49, any internal memory devices. FIG. 6
consequently shows a data bus 55 of the processor 48
coupled to external memory devices, such as the flash
electrically erasable and programmable read-only memory
58 (“FLASH EPROM”), a read-only memory 104 (“ROM”)
and atypical random access memory 57 (“37 RAM”). The
ROM 104 is also the functional equivalent to the system
FLASH memory 56. The data bus 55 further couples the
application processor directly to the display module 20
(“LCD DISPLAY™) of the terminal unit 10. The display
module 20 may be a dot addressable LCD graphic screen
module, for example. A direct data transfer by the high speed
application processor 48 to the LCD screen is preferred
because of the substantial amounts of data handling or
processing that is required in updating a particular screen.
For example, even a small graphic screen display, such as a
screen of 48x100 pixels, requires that each of the pixels be
updated om a continuous basis. Typically control circuits,
which are part of the data display function of the module 20
and are not separately shown, and which may be specific to
a particular screen display, may routinely re-apply currently
displayed information dots in a cyclic refresh operation to
the already identified pixels of the screen. However, any
screen update, such as a simple display line scrolling
operation, requires that each pixel of the screen be updated.

10

15

20

25

30

35

45

50

55

65

22

To perform such updating of information in a power efficient
and prompt, user-friendly manner, a data processing opera-
tion and the high speed passing of the updated data between
the RAM memory 57 and the data display 20 is accom-
plished during a short operational activation of the applica-
tion processor 48. More data processing with respect to the
data display screen 20 may be required for routine menu
operations. Menu operations are particularly desirable for
such portable terminal units 10, in that the typical user may
not be well acquainted with computer terminals. Well
defined menu operations with a number of available menu
levels may therefore significantly increase the usefulness of
a terminal unit. In addition to requiring the normal display
screen update, menu operators also require data base search-
ing and data retrieval. The described microprocessor circuit
(i.e., with the selectively activated data processing device 48
and the relatively smaller and slower control processor 49)
may be used to perform the above described menu opera-
tions.

Selective activation and deactivation of the microproces-
sor circuit portion implemented by the data processing
device or application processor 48 also provides power
savings when the operating speeds of the two processors 48
and 49 are the same. However, such power savings do not
appear to be as great as those realized by the embodiment
described above.

The application processor 48 may also communicate with
a high speed asynchronous communication interface 105
(“H.S. ASYNC INTRFCE”) to support facsimile or external
display screen operations. In addition, the application pro-
cessor 48 may communicate data to an RS-232/RS-485
serial interface module 34 (“SERIAL INTERFACE”).
However, it should be realized that certain communications
operations, such as outgoing communications to a printer
(not shown) for example, may occur under the control of the
control processor 49. Even when the application processor
48 selects data for communication to a line printer, a typical
printer speed, except in a graphics mode, would be suffi-
ciently slow to allow the application processor 48 to operate
in an intermittent, power saving mode. FIG. 6 consequently
shows a second RS-232/RS485 interface 106 (“SERIAL
INTRFCE”) coupled to a second data bus 107, which is
further communicatively coupled to the control processor 49
to support the above described data communication opera-
tion via the control processor 49.

The data bus 107 is further shown as being coupled via a
bus extension 108 directly to the application processor 48.
The data bus extension 108 is particularly provided for
direct data communication between the application proces-
sor and a data scanner 109 (“SCAN™), which may, for
example, be a bar code reader. Because of the high rate at
which data are generated by the operation of a data scanner,
the data are most reliably received, processed and stored by
the application processor 48. A scanning operation may
consequently involve the operation of both the application
processor 48 and the control processor 49. According to one
embodiment of the control circuit 80, the control processor
49 monitors the circuit function of the data scanner 109 to
detect a control signal that indicates the event of a scanner
trigger depression. The scanning operation results in a string
of data appearing at the data bus 107 and the associated data
bus 108. Since the application processor 48 is likely to be
idle at the time of the occurrence of a trigger signal, the
control processor places a “wake-up” signal on the control
signal line 98 to activate the application processor 48. The
control processor 49 further writes an 8-bit control character
into the first latch 86. Upon completion of loading the

50

5,680,633

23

control character into the data latch 86, the control processor
49 places a “one” signal on the character available line 91 to
allow the application processor to read the control character
from the latch 86. The application processor reads and
decodes the control character in accordance with protocol
instructions read from the ROM memory 56, for example. In
the example of a scanner trigger indication, the decoded
control character signals the forthcoming string of informa-
tion to be received by the application processor 48 directly
from the scanner 109 over the data bus 108. Hence, in
contrast to being conditioned for the event of receiving data
from the keyboard 49 or from the radio 81 (which data might
preferably be received over the data latch 86), the applica-
tion processor would in the event of scanned incoming data
be conditioned to read the “event data” as a string of data
directly from the data bus 108. The term “event data” is used
to describe data relating to an event. Any time event data
requires processing, such event data would be routed to the
application processor 48 either directly, as described with
respect to the scanner data, or between the two processors 48
and 49, such as by the circuit 67 or a similar interface circuit.
It should be understood that conditioning the application
processor to receive a string of data directly via the bus 108
need not be limited to the receipt of the scanner data. Such
conditioning is contemplated for any use of the terminal 10
which requires a high volume of data to be received and
processed within a short period of time. Upon completion of
the scanning operation, a trigger release signal is loaded into
the first latch and communicated from the control processor
49 to the application processor 48. Upon receipt of the signal
and completion of any data processing operations remaining
as a result of the receipt of data via the data bus 108, the
application processor instructs the control processor to apply
a “wake-up” signal to the control signal line 98 upon
occurrence of any specified event requiring processing of
data. Thus, in one embodiment, the control processor 49
continues to control the application processor 48 by trans-
mitting control codes to selectively enable or disable the
application processor 48 to directly receive data via the data
bus 108. The receipt of data by the application processor 48
is referred to as “direct” data input, since the contemplated
transfer of data via the data latches 86 and 92 is bypassed.

FIG. 2 shows schematically one embodiment of electrical
components of an exemplary terminal unit 10, and the
interactive relationship of such components to the applica-
tion processor 48 or the control processor 49. FIG. 2 shows
schematically a plurality of electrical components which are
generally directly related to the functional elements dis-
cussed with respect to FIG. 6. In the embodiment shown in
FIG. 2, the application processor 48 directly controls the
previously referred to high speed asynchronous communi-
cations interface 105 and the RS-232/485 standards serial
interface 34. The flash EPROM programmable read-only
memory 58 is preferred to have no less than 256K byte
storage capacity. The flash EPROM may supplement or even
replace standard ROM, such as memory 56, which is pre-
ferred to have at least a 512K byte storage capacity. The
ROM, if used, provides typical and normally non-variable
data processing protocol instructions. Such ROM may
include control instructions for standard display updating
routines as well as for other routines which are typically
implemented by standard keyboard instructions and which
pertain to typical data input and output commands.

The random access memory 56 may be a semi-permanent
static RAM type circuit. The memory may have a capacity
of 512K bytes. The preferred data storage capacity provides
sufficient storage for an on-board data base related to typical

10

15

20

25

30

35

45

50

55

65

24

inventory or delivery route type information. In view of the
portability of the terminal unit 10, an unexpected loss of
battery power may bring about a significant loss of infor-
mation unless the stored data are protected from destruction
until full battery power is restored. For example, the termi-
nal unit 10 may be returned at an initial signal of “low
battery™ to a battery charger unit {(not shown) for a recharg-
ing operation and any stored data may be transferred, even
while the battery 23 is being recharged, from the terminal
unit 10 to a host computer {not shown).

Display 20 may be a graphic display having an array of
48x100 pixels. Typical menu or special graphic screen data
may be pre-established for a particular terminal unit 10 or
for an application group of such units and may be stored
initially in the specific ROM 56 provided for the particular
unit or units 10. As previously discussed, the updating of
displayed data on the screen device 20 requires a significant
amount of data processing. Typically, such data processing
operations involve accessing permanently stored screen dis-
play information, such as from the ROM 56 or from the flash
EPROM 58, the manipulation of such information, and
temporary storage of such manipulated information in the
random access memory 57. As shown in FIG. 2, the appli-
cation processor 48 has direct functional control over the
respective devices responsible for such data updating
manipulations.

Contrast control is another function which is desirable in
LCD display screen 20. In regards to FIG. 2, such a control
may be integrally coupled to the VGA adapter circuit 54.
The contrast of the LCD display screen 20 is typically set
and adjusted by an operator and is a matter of choice. The
contrast may be adjusted, for example, by a typical key
depression or by a keyboard sequence given by an operator.
Such control input executions are within the scope of
operations of the control processor 49. Thus, in response to
an appropriate command from the keyboard 102, the display
contrast may be changed without activating the application
processor 48. The contrast display may be controlled as
indicated in FIG. 2 by the functional coupling of the
keyboard circuit 102 to the control processor 49, and the
further coupling of the processor 48 to the contrast control
circuit and then directly to the LCD display screen circuit
20.

In one embodiment, the LCD display screen 20 is
equipped with a backlighting drive 62. Many warehouse
operations, route delivery operations and even merchandis-
ing inventory operations are often performed under poor
lighting conditions, thereby requiring a backlighting source
to be supplied as a standard feature of the LCD display
screen 20. A backlight drive circuit 62 may be coupled
through the MBUS 50 to the control processor 49. A
backlight drive circuit for use in conjunction with the
exemplary terminal unit 10 is described in copending patent
application by S. E. Koenck et al., Ser. No. 07/776,059, filed
on Oct. 11, 1991, which application is assigned to the
assignee of the present application. Both the application
processor 48 and the control processor 49 may interact with
the backlight drive circuit 62 to provide for an operator
controlled brightness control sequence to be communicated
to the backlight drive 62.

It should be realized that the control circuit 67 as an ASIC
may also include, besides the timing function circuits for the
real time clock and its functions, the clocking signals to each
of the two processors 48 and 49. The control circuit 67 may
also provide the already described data communication
functions between the application processor 48 and the
control processor 49, as represented in FIG. 6 by the two

51

5,680,633

25

latching circuits 86 and 92. The function by the control
processor 49 to activate or “wake up” the application
processor for data processing operations is accentuated in
the representation of the “wake-up” feature by the separate
function line 98 in FIG. 2. In one contemplated embodiment,
the control circuit 67 may include integrally a switching
circuit function for separately switching the application
processor 48 off or on, as indicated in FIG. 9 by the function
blocks ‘“#1 OFF WAIT” and “#1 ON”. A switch in the
integrated control circuit 67 may perform the switching
operation by selectively interrupting and reestablishing the
clocking signal to the application processor 48. In another
embodiment, the application processor 48 may provide a
shutdown status signal to the control processor 49 and shut
itself down. The control processor 49 subsequently returns
the application processor 48 to an active state upon occur-
rence of any event which requires the operation of the
application processor 48. The process flow diagram of FIG.
9 generally depicts operational procedures between the
application processor 48 and the control processor 49.

Further in reference to FIG. 2, a trigger control signal of
the scanner module 41 may be received by the control
processor 49. However the data flow from the scanmer
module 41 would be received directly by the application
processor 48 for further processing and storage. Input sig-
nals which are received at speeds within the operational
capability of the control processor 49 are receivedby and
transferred through the control processor 49. For example,
key depression signals from the keyboard 49 are generally
received directly by the control processor 49. The keyboard
for the terminal unit 10 referenced herein, as indicated in
FIG. 2, may be a 6x8 key matrix. Because the real time
selection of a key by an operator is slow in comparison to the
processing speed of even the slower control processor, the
interpretation of which key has been selected may be made
by the control processor 49. An “event” indication character
communicated to the application processor 48 may already
reflect which of the available functions of a particular key
has been selected. The preprocessing of slow occurring
events limits the operational periods of the application
processor 48.

The control processor further controls an input to an
audible alarm circuit 63 (“BUZZER™). An audible alarm, a
slow occurring event, generates a signal to alert an operator
of an alarm condition or to indicate that a processing

operation has been completed. For example, when the
" application processor 48 has received a string of data from
the scanner module 41, and has further processed the
received information to verify its correctness, the applica-
tion processor 48 may communicate an acceptance code to
the control processor 49 and be shut down from further
operation. The control processor will then routinely generate
an audible signal to alert the operator that the information
has been accepted. Prior to communicating the acceptance
code to the control processor, the application processor may
retrieve from its memory 57, for example, information
relating to the bar code which has just been read and
accepted, and may compile an information screen displaying
such retrieved information to the operator prior to the
deactivation of the application processor 48. Thus, by the
time the operator is alerted by the audible signal that the
respective bar code has been read and accepted, the pertinent
information regarding the item represented by the bar code
is already displayed on the LCD display screen 20.

Other devices which may be under direct control of the
control processor 49 are the radio 81 with its included radio
interface (“RADIO INTERFACE”), and the power control

10

15

20

25

30

35

45

55

65

26

circuit 64 (“CHARGE/POWER CONTROL") of the termi-
nal unit 10. A serial interface 34 (“RS-232/RS-485 SERIAL
INTERFACE”) may optionally be controlled by the control
processor 49. Because of the power savings achieved by the
described interaction between the application processor 48
and the control processor 49, various other devices or
functions may be added to the general operation of the
terminal unit 10 without unduly limiting its operational
cycle.

The interaction between the control processor 49 and the
application processor 48 is described in greater detail in
reference to both FIG. 2 and 9. In general, as discussed
above, the application processor performs data processing
operations, while the control processor 49 performs input-
output control operations, which include periodic monitor-
ing functions. The control processor 49 controls the activa-
tion or reactivation of the application processor 48.
However, the application processor 48 processes the param-
eters and feeds to the control processor 49 the respective
instructions that control the control processor 49. The appli-
cation processor 48 is therefore, according to one
embodiment, the one device which accesses the operations
protocol of the terminal unit 10 from either the ROM or the
flash EPROM devices 56 or 58.

Referring now to FIG. 9, the depression of the power
switch by an operator, physically starts the terminal unit with
a cold start at a block 301. The turp-on starts the clocking
signal and the reset of both the control and application
processars 48 and 49. The control processor 49 may reset the
application processor 48 at a block 303. The reset operation
starts the apparatus at a block 305 with an initialization
sequence of communications between the application pro-
cessor 48 and the control processor 49. During the
initialization, the application processor 48 retrieves from its
program storage default values, such as for a battery thresh-
old value, and transfers the respective default value to the
control processor 49 at a block 307. The control processor
retains the default value and uses it in its further operations
to operate the power control circuit 64. Other initialization
functions may be performed, such as, for example, setting an
initial contrast value on the LCD screen display 20 at a block
309, and determining whether or not the backlighting func-
tion is to be activated at a block 311. The application
processor 48 further may retrieve data from memory 56, 57
or 58, and manipulate such data in a manner to indicate on
the screen that the unit 10 is operational. Once the terminal
unit 10 is initialized, the application processor 48 commu-
nicates to the control processor 49 that it is assuming its rest
state at a block 313, and is shut off pending the occurrence
of an event.

Upon occurrence of an event at a block 315, such as a
“battery low indication” or the depression of a key by an
operator, the control processor 49 causes the application
processor 48 to turn on at a block 317. Typically the clock
signal to the application processor 48 may be provided by a
control signal applied to the control device 67, or the
application processor may be otherwise enabled, such as
byan enable signal applied to the control signal line 98.
Upon being activated, the application processor 48 commu-
nicates with the control processor 49, such as via the
interface circuit 24 as described above with respect to FIG.
6, to request at a block 319 data relevant to the type of event
that has occurred. After receiving the respective communi-
cation from the control processor 49, the application pro-
cessor 48 tests the received information as to the type of
event and proceeds to process data as required according to
the program. FIG. 9 shows three typical events of a large

52

5,680,633

27

number of possible programmed events for which the appli-
cation processor 48 may be activated. A typical key depres-
sion detected at a block 321 may result in reading the value
of the depressed key, at a block 323, from the second data
latch 92 as described with respect to FIG. 6, or from an
equivalent register of the control device 67 in FIG. 2. The
information then results in the retrieval of data regarding the
addresses of pixels which will be changed to alogical “high™
to depict the information on the LCD display screen 20, at
a block 325 the respective data being transferred to the
respective circuit elements of the display screen 20.
Thereafter, the application processor communicates to the
control processor 49 that the instructions have been executed
and is shut down to await a further activation by an event at
block 315 and an instruction at block 317. The shutdown of
the application processor 48 may be initiated either by the
application processor 48 itself or by the control processor
49. Because the start-up or activation of the application
processor 48 is initiated by the control processor 49, it may
be desirable to disable the application processor 48 through
the control processor 49.

Another typical event for activating the application pro-
cessor 48 may be the detection of a low battery indication at
a block 327 in response to a threshold value transferred by
the application processor 48 to the control processor 49
during the described start-up procedure. The protocol may
require that the application processor 48 verify the low
battery indication by providing its own comparison check at
a block 329. Because of an impending shutdown due to a
low battery indication, the application processor may com-
plete any operation if the low battery indication is still within
tolerable limits or may suspend further data processing
because of risk of errors. The application processor may
further display a low battery indication on the LCD display
screen 20 at a block 331 and then be shut off pending further
event instruction as described above.

Another type event may be a special function key instruc-
tion such as the indication that a menu operation has been
selected at a block 333. The application processor 48 pro-
ceeds to access a designated program routine corresponding
to the requested menu choice (“RETRIEVE MENU
DATA”). The respective program instructions are executed
at a block 337, and the result or completion of the routine is
displayed on the LCD display screen 20 at a block 339. The
displayed result may be preceded by a repetitive interactive
data transfer between the application processor 48 and the
control processor 49, for example, when the menu choice
requires the transmission of displayed information to a host
computer. In such an event the application processor 48 may
transfer the displayed information character by character to
the control processor 49. The control processor 49 in turn
activates the radio interface and transfers the information
string to the radio interface to be transmitied in accordance
with the program instructions interpreted by the application
processor 48. FIG. 9 shows an error trap at a block 341 to
which the program instructions proceed if an event code is
not recognized by the programmed event descriptions and
resulting processing routines of the application processor 48
for the particular application of the terminal unit 10. The
data processing operations performed by the application
processor 48 generally require less than 10 milliseconds.
Thus, on the average, operations including the processing of
keystrokes and the associated display manipulations require
less than one fiftieth of the average operational period of the
terminal unit 10, Substantial power savings are consequently
achieved by selectively de-activating and re-activating the
application processor 48 for preprogrammed events which

10

20

25

30

35

45

50

55

65

28

require the execution of the respective data manipulations at
a speed not obtainable by the control processor 49.

Further in reference to FIG. 9, if none of the event tests
recognize the particular code supplied to the application
processor 48, an event error trap routine at block 341 is used
to inform the operator of the error condition. Such a routine
may, for example, instruct the operator to again enter the
most recently requested operation, and may include an
andible warning from the buzzer. Various changes in the
described control sequence may be implemented. Certain
routines may be implemented at the described slower speed
by the control processor 49 directly, while the application
processor 48 remains deactivated. Further, other micropro-
cessor devices may be chosen for the application and control
processors, respectively. The described microprocessor
devices are particularly suitable for various operations that
are performed by the terminal unit 10 in the above-referred
to operations.

FIG. 10 illustrates a portion of the software protocol stack
401 that runs on one of Norand Corporation’s Portable Data
Collection Terminal Units, Model No. TM 1100 (See
attached APPENDICES B and C). Specifically, the MAC
(Medium Access Control) layer 403 is responsible for pro-
viding reliable data transmission between the terminal unit
and any other node or device in a mobile computer network.
When a radio module (e.g., Norand RM40 RF Module) is
attached to the terminal unit and powered up, the MAC layer
403 and a Glue Logic Layer 405 are transferred to flash
memory in the radio module. The Glue Logic Layer 405
controls the microprocessor in the radio module so that it is
able to communicate with the high speed main micropro-
cessor of the terminal unit. Generally, the Bridge Layer 407
organizes the nodes or terminals of the mobile computer
network into an optimal spanning, routes data between any
two nodes or terminals in the network, and provides data
package storage to facilitate sleeping terminals. Appendix D
provides an exemplary computer program listing of the
software protocol stack 401 of FIG. 10 (Bridge Layer at pp.
1-33; MAC Layer at pp. 34-51; Glue Logic Layer at pp.
52-59). These protocol layers are actnally subgroupings of
the protocol stacks illustrated in FIGS 1B and 1C.

FIG. 11 shows an exemplary local area network (LAN)
illustrating the roaming characteristics of the portable data
collection terminals. Specifically, the illustrated LLAN con-
sists of a host computer 510, multiple access points 512,
5§14, 516 and a mobile computing device (MCD) 518. The
MCD 518, a portable data collection terminal, is commu-
nicatively coupled to the host computer 510 through an
access point 512. Although only one MCD, MCD 518, is
shown typically a plurality of MCDs would exist on the
LAN. The MCD 518 communicates with the host computer
510 through the access point 512 to which it is connected.

There are two situations in which the MCD 518 becomes
disconnected from the network 501. First, where the MCD
roams out of the range of one access point, such as access
point 512, into the range of another point, such as access
point 514 as is shown by the dashed MCD 518 position.
Alternatively, MCD 518 may enter a sleep mode where the
radio transceiver is powered down. The sleep mode provides
power savings. _

The MCD 518 and the access point 512 communicate in
a structured manner, where the MCD 518 transmits a
request-for-poll (RFP), the access point 512 responds with a
poll, the MCD 518 then transmits its data, and the access
point 512 responds with an acknowledge (ACK) signal if the
data message is finished or with another poll if there is still

53

5,680,633

29

more data to be transmitted. One data message from the
MCD 18 to the access point 512 may consist of several
POLL-DATA sequences, where each DATA transmission is
a fragment of the entire data message. To initiate such
communication exchange, channel access protocols must be
established.

FIG. 12 shows the process implemented by a mobile
computing device when it has a message to transmit to the
host computer. AMCD wakes up at a block 551 when it has
a data message to transmit to the host computer. This
wake-up can occur at any possible moment in time, i.e., a
random time. After waking up, the MCD senses, at a block
553, the communications channel for a predetermined time,
which is greater than or equal to the maximum interpoll gap
time. In this context, a maximum interpoll gap time is
defined as the maximum time between poll messages trans-
mitted from the access point to the MCD. This assures the
MCD that a transmission from the access point to another
MCD will occur within the sensing time if the channel is
currently being used. If, at a block 555, the channel is clear
for the interpoll gap time, the MCD transmits a RFP at a
block 559, and the communications sequence begins. If, at
block 555, the channel is busy during the interpoll gap time,
the MCD waits a fixed time period at a block 557 and senses
the channel at block 553 as before.

Because the MCD wakes up at some random time to send
data to the host, the probability of collision with the trans-
mission of another MCD is extremely small. By sensing the
channe] for a fixed period of time and waiting for a fixed
period of time to retry transmission, the random nature of
transmission attempts is retained even after a busy channel
is sensed. For a collision to occur in this scenario, two
MCDs would have to wake up at the exact same moment in
time, the probability of which is extremely small.

FIG. 13 shows a process similar to that of FIG. 12, except
that a retry counter implementation is used. Upon waking up
to transmit at a block 601, a MCD resets a retry counter to
zero at a block 603, indicating that it is the first attempt to
communicate on the channel. If, at block 607, the channel is
determined to be clear for the interpoll gap time, the MCD
transmits an RFP at a block 609, and the communications
sequence begins. Each time the channel is sensed at a block
605 and is determined to be busy at block 607, the retry
counter is incremented at a block 611. Once the retry counter
reaches a threshold or predetermined MAX value at a block
613, the MCD stops trying to transmit and goes back to sleep
for some relatively long period of time at a block 615 before
trying to transmit again. If instead, the predetermined MAX
value has not been reached at the block 613, the MCD may
either wait or sleep for a predetermined or fixed time before
trying to access the channel again. This channel access
protocol allows a terminal, an MCD, to save power if the
channel is heavily loaded by sleeping until the channel may
be less heavily loaded.

FIG. 14 shows the process implemented by a mobile
computing device in a configuration where the MCD may be
roaming between coverage areas and disconnecting and
reconnecting with different access points (as is illustrated in
FIG. 11). In this situation, access points periodically trans-
mit SYNC messages, so that a MCD which is roaming, or
has been sleeping for an extended period of time, can
connect to the proper base station and synchronize its clock
so that it knows when further SYNC messages will occur. In
this embodiment, therefore, after waking at a block 651, the
MCD listens to receive a SYNC message 653, 655 and 657
before attempting to transmit on the communications
channel, since it may have awakened in the coverage area of

10

15

20

25

30

35

45

50

55

65

30

a different access point. Thus, the amount of time, at a block
657, between wake-up and channel sensing or between a
busy channel sense and a further channel sense should be
greater than or equal to the time between SYNC messages
minus the maximum interpoll gap time. This assures that a
SYNC message will be received each time before the MCD
attempts to sense the channel and transmit. In addition, after
receiving a sync signal, the MCD listens for an interpoll gap
time 659 to determine if the channel is clear, at blocks 659
and 661. X clear, the MCD transmits an RFP at a block 663.

FIG. 15 shows a process similar to that of FIG. 14, except
that a retry counter implementation is used to control the
number of retry attempts. Upon waking up to transmit at a
block 701, a MCD resets a retry counter to zero at a block
703, indicating that it is the first attempt to communicate on
the channel. Each time the channel is sensed and is deter-
mined to be busy, the retry counter is incremented at a block
717. Once the retry counter reaches a predetermined MAX
value at a block 719, the MCD stops trying to transmit and
goes back to sleep at a block 723, for some relatively long
period of time before trying to transmit again. This proce- .
dure allows a terminal to save power if the channel is heavily
loaded by sleeping until the channel may be less heavily
loaded. In addition, if the channel is busy but the retry
counter has notreached the MAX vaue, the MCD may either
sleep or wait for a fixed period of time at a block 721.
Although a fixed period of time is desirable, a random or
pseudo-random back-off might also be used.

FIG. 16 is a flow diagram illustrating a channel access
protocol using a pseudo-random number generator accord-
ing to another embodiment of the present invention. Upon
waking up to transmit at a block 751, a MCD generates a
pseudo-random number (e.g., 5—-8 milliseconds) at a block
753. The MCD then senses the communication channel for
a few microseconds at a block 755. If the channel is
determined to be clear at a block 757, the MCD determines
whether the psendo-random time period has expired at a
block 757. If it has expired, the MCD transmits an RFP at
ablock 761, and the communications sequence begins. If the
pseudo-random time period has not expired, the MCD again
senses the communication channel for a few microseconds
determined at a block 755 to determine if the channel is clear
at block 757, i.e., repeating the above.

I the channel is determined to be busy at block 757, the
MCD increments a retry counter at a block 763. If the retry
counter has not reached a predetermined maximum value at
a block 765, the MCD waits for a pseudo-random time (e.g.,
10 milliseconds) at a block 769 and then generates another
pseudo-random number at block 753 and repeats the above
procedure. Once the retry counter reaches the predetermined
maximum value, at block 765, the MCD quits trying to
transmit and goes to sleep for a longer period of time at a
block 767, before reawakening at block 751 to retry the
transmission.

FIG. 17 shows the basic communication structure in one
embodiment of the present invention. Access points peri-
odically transmit a series of SYNC messages such as
809-813, while allowing time for communication exchanges
during the periods 815-819 between SYNC messages. In
general, the SYNC message itself takes much less time than
the amount of time allocated for communication between
SYNC messages. The time allocated for a SYNC message
and for subsequent terminal communication (i.e., until
another SYNC message is transmitted) is depicted by peri-
ods 803-807.

FIG. 18 shows a series of exemplary communication
exchanges and channel access attempts where three MCDs

54

5,680,633

31

are attempting to communicate in the same general time
frame. The three units attempting to communicate are
referred to as unit 1, unit 2, and unit 3. Unit 1 wakes up first
at 831, in the first time interval 815. It must wait until it
receives a SYNC message at 811, so it cannot attempt to
transmit in time interval 815. Unit 2 is the next to wake up
at 833, also in time interval 815. As with unit 1, unit 2 cannot
transmit until a SYNC 811 is received, and therefore cannot
transmit in time interval 815.

After the timer set by unit 1 when it initially woke up
expires, SYNC message 811 has been received by unit 1.
Thus, unit 1 can listen to the communications channel at 841
for the maximum interpoll gap time, determine a clear
channel, and begin its communications sequence at 843, all
in this time interval 817. The timer initially set by unit 2 also
expires during time interval 817, and unit 2 has therefore
received the SYNC message 811 and senses the communi-
cations channel at 847. However, unit 1 has not yet finished
its transmission when unit 2 senses the channel for the
maximum interpoll gap time. Thus, unit 2 must defer
transmission, and waits until time interval 819 to retry
communication.

Meanwhile, also in time interval 817, unit 3 initially
wakes up to transmit at 845. Unit 3 must wait for a SYNC
before attempting to transmit, so it does not transmit in the
time interval 817.

In time interval 819, after the SYNC message 813, unit 2
and unit 3 have both received a SYNC message and can
sense the channel to attempt transmission. In this case, unit
3 listens to the channel at 861 slightly before unit 2 senses
the channel at 863, such that the channel is not busy when
unit 2 begins to sense the channel. However, after unit 3 has
sensed the channel for the maximum interpoll gap time, it
begins communication on the channel at 865. Unit 2 finishes
listening to the channel, also for the maximum interpoll gap
time, after unit 3 has begun its communication, so unit 2
must defer communication. Unit 3 ends its transmission at
867. Finally, after SYNC message 869 in time interval 871,
unit 2 ‘senses an idle channel at 873 and transmits its
communication to-the access point at 875. Unit 2 ends its
transmission at 877. This sequence illustrates the interpoll
gap time channel sense and the wait to transmit until after a
SYNC message has been received.

The operation of the protocol of the present invention
takes advantage of the inherently random wake-up time of a
mobile computing device in a local area communications
network. Rather, than performing a random back-off routine,
the time of wake-up is used to ensure random communica-
tions attempts, thereby preventing collisions due to many
terminals atternpting to transmit immediately after a certain
common event. This is done by preserving the random
wake-up time and adding a fixed amount of time to the time
of wake-up in back-off procedures. The protocol of the
present invention eliminates the need for random number
generation and the implementation of random back-off algo-
rithms.

FIG. 19 is a timing graph illustrating an exemplary
communication exchange between a portable data terminal
901 and an access point 903. Upon determining that the
channel is clear, the portable data terminal 901 begins by
transmitting an RFP (request for poll) frame 905. After an
interframe gap time 923, the access point 903 responds with
a POLL frame 907 to indicate to the portable data terminal
901 that it is available to receive data. The portable data
terminal 901 then sends a DATA frame 909. The access point
903 acknowledges receipt of DATA frame 909 with a POLL

5

10

15

20

25

30

35

45

50

55

65

32
frame 911. The portable data terminal 901 then transmits
DATA frame 913 which indicates that data transmission is
complete. The access point 915 then transmits a CLEAR
frame 915 to acknowledge receipt.

A channel reservation scheme is used to generally restrict
channel access contention to RFP frames. Each frame trans-
mitted during the communication exchange contains a chan-
nel reservation field (e.g., field 931 in POLL 907) which may
indicate either the number of outstanding frames or the
amount of time required to transmit the outstanding frames.

This scheme enables other terminals attempting to access
the busy channel to determine the actual amount of time
during which they may sleep. Sleeping, i.e., powering-down
the radio for the duration of the channel reservation period
(i.e., until the channel becomes clear) conserves battery
power and aids in collision avoidance. Further, channel
reservation may be implemented with the other channel
access embodiments discussed above during heavy commu-
nication traffic. In other words, channel reservation may
supplement other channel access protocols when terminals
using those protocols are continuously failing to gain access
to the channel.

FIG. 20 is a flow diagram illustrating an embodiment of
the channel access reservation scheme described above. A
portable data terminal (or mobile computer device (“MCD”)
wakes up to transmit data at a block 951. It then senses the
channel for an interpoll gap time at a block 953 before
determining if the channel is clear at a block 955. If the
channel is clear, the portable data terminal transmits an RFP
and the communication sequence begins (e.g., that shown in
FIG. 19). If the channel is busy, the portable data terminal
listens for the channel reservation information on the chan-
nel at a block 959, and calculates the time that it should
“sleep” and powers down at a block 961. At the end of the
calculated sleep period, the portable data terminal wakes up
to transmit at a block 963 and repeats the process by sensing
the channel for an interpoll gap time at block 953.

FIG. 21 shows a radio card 1110 and a receiving device
1111 built in accordance with the present invention. The
radio card 1110 has a housing 1113 inside of which is a
completely operational radio transceiver (not shown). The
receiving device 1111 in this embodiment of the present
invention uses a pair of opposed slots 1114 to receive and
guide the incoming radio card 1110.

The radio card 1110 has a pair of antenna contacts 1115
positioned along the edge of the housing 1113. The receiving
device 1111 has a corresponding pair of antenna contacts
1116. As can be seen in FIG. 22, when the radio card 1110
is inserted into the receiving device 1111 the antenna con-
tacts 1115 on the radio card housing 1113 electrically
encounter the corresponding set of antenna contacts 1116
positioned on the receiving device 1111. The antenna con-
tacts 1116 on the receiving device 1111 are connected to an
antenna cable 1118. The antenna cable 1118 is in turn
connected to an antenna not shown. Thus, when the radio
card 1110 is completely inserted into the receiving device
1111 the radio card 1110 automatically is connected to an
antenna.

Referring again to FIG. 21, a radio card 1110 may have
antenna contacts 1120 shown in dashed lines, located at
different positions on the housing 1113. Similarly, the
receiving device 1111 may have several additional pairs of
antenna contacts 1122. The additional pairs of antenna
contacts 1122 on the receiving device 1113 can be nsed to
allow access to several different antennas depending on the
type and frequency of radio communication to be utilized by

55

5,680,633

33

the radio card 1110. This access is accomplished through
additional antenna cables 1123 attached to the additional
contacts 1122. Thus, if the receiving device 1113 is part of
a hand held computer terminal which has more than one
antenna attached or built in, different pairs of contacts 1116
& 1122 can be used to allow access by the radio card to the
different antennas depending upon the frequency and range
characteristics of each antenna. While a radio card 1110 may
only operate at one frequency and thereby only need one
antenna and therefore only have one pair of antenna
contacts, the receiving device 1111 still may have several
pairs of antenna contacts 1116 & 1122 all but one of which
do not correspond to any pair of radio card 1110 antenna
contacts 11185,

Referring to FIGS. 23 and 24, when the radio card 1110
is inserted into the receiving device 1111 an interface
between the radio card 1110 and the receiving device 1111
is produced. The receiving device 1111 has a plurality of pins
1130 which form the male portion of a connector. The radio
card 1110 has a corresponding plurality of holes 1131 which
form the female portion of the connector and which engage
the pins 1130. The pins 1130 are connected to the computer
terminal not shown by a series of electrical connections 1133
such as wires or electrical ribbon. The holes 1131 in the
radio card 1110 are electrically connected to the radio. When
the pins 1130 are engaged in the holes 1131, electrical
signals can be exchanged between the radio card 1110 and
the computer terminal. The electrical signals can be in the
form of information exchange, power supply or both.

The radio card 1110 of FIGS. 21-24 might also be a
modem card not shown. In this embodiment, the connections
would be the same as previously described with the only
difference being that instead of the contacts connecting the
modem card to a radio antenna, the modem card would be
connected to a traditional telephone line, a cellular phone or
an antenna for a cellular phone if the cellular phone was built
within the modem card.

Referring to FIGS. 25 and 26, a computer terminal 1140
is shown built in accordance with the present invention. The
computer terminal 1140 has a slot 1142 for receiving a radio
card 1144. The user of the computer terminal 1140 lifts up
aflexible cover 1146 and inserts the radio card 1144 into the
slot 1142. The radio card 1144 engages with the computer
terrninal 1140 in a similar manner as described in FIGS.
21-24. The radio card 1144 has a pair of antenna contacts
1148 which will engage with a corresponding pair of con-
tacts inside the computer terminal 1140. The pair of antenna
contacts inside the computer terminal are connected to a
radio antenna not shown.

Referring to FIG. 27, another embodiment of the present
invention is shown. The radio card 1150 has two pairs of
antenna contacts 1152 & 1153 which will encounter respec-
tively two pair of antenna contacts 1155 & not shown on the
receiving device 1158. This embodiment accommodates a
radio card 1150 which can operate at two different frequen-
cies which require two different antennas. Standardization of
antenna contact position with antenna type is anticipated and
covered by the present invention.

Referring to FIGS. 28-32, another embodiment of a
computer terminal 1160 built in accordance with the present
invention is shown. The computer terminal 1160 has a
removable end cap 1162. When the end cap 1162 is
removed, a slot 1160 is revealed which is used to receive a
radio card 1166. The slot 1164 in the computer terminal 1160
has three pairs of antenna contacts 1167, 1168 and 1169
which are respectively connected to three different radio

10

15

20

25

30

35

45

50

55

60

65

34

antennas 1171, 1172 and 1173. The radio card 1166 in this
embodiment only has one pair of antenna contacts 1175.
Thus, when the radio card 1166 is inserted into the slot 1164,
the antenna contacts 1175 will match up to the antenna
contacts 1167 and the radio will utilize the internal antenna
1171. The external antenna 1173 and the other intermal
antenna 1172 will not be used by this particular radio card
1166.

Referring now to FIG. 33, still another embodiment of a
computer terminal 1180 built in accordance with the present
invention is shown. A communication card 1185 is inserted
into the computer terminal 1180. The card 1185 can either be
aradio card or a modem card. The card 1185 has a set or pair
of contacts 1187 which encounter a set or pair of contacts
1188 disposed on the receiving portion of the computer
terminal 1180. The contacts 1188 are electrically connected
to a switching matrix 1199, thus the radio card or modem
card 1185 is electrically connected to the switching matrix
1190.

The switching matrix 1190 is connected to a plurality of
antennas 1192, 1193 and 1194 and to a telephone jack 1195.
The switching matrix 1190 is used to electrically and selec-
tively connect the radio or modem card 1185 to the appro-
priate antenna or to a telephone line. The switching matrix
1190 is controlled by the control microprocessor 1198 of the
computer terminal 1180. The control microprocessor inter-
rogates the card 1185 to determine what kind of card it is and
to determine what antenna or telephone connection it needs.
The control microprocessor then signals the switching
matrix 1190 which connects the card 1185 to the appropriate
antenna 1192, 1193 or 1194 or to the phone jack 1195.

FIGS. 34, 35 and 36 illustrate another embodiment
wherein a computer device 1211 utilizes a radio card 1210
built in accordance with the present invention. The computer
device 1211 has a housing 1212. Inside the radio card 1210
is a completely operational radio transceiver (not shown).
The computer device 1211 has an opening 1214 in the
housing 1212 through which the radio card 1210 can be
inserted into the computer device 1212. In the present
embodiment of the invention, the receiving means for the
computer device is a slot 1215.

‘When the radio card 1210 is inserted into the slot 1215 in
the computer device 1211 an interface between the radio
card 1210 and the computer device 1211 is produced. The
computer device 1211 has a plurality of pins not shown
which form the male portion of a connector. The radio card
1210 has a corresponding plurality of holes not shown which
form the female portion of the connector and which engage
the pins. The pins are connected internally and electrically to
the, computer device 1211 by a series of electrical connec-
tions such as wires or electrical ribbon. The holes in the
radio card 1210 are electrically connected to the radio
transceiver. When the pins engage the holes, electrical
signals can be exchanged between the radio transceiver
inside the radio card 10 and the computer device 1211. The
electrical signals can be in the form of information
exchange, power supply or both. The radio card 1210
includes antenna contacts 1217 to engage corresponding
radio antenna contacts that are connected to an appropriate
antenna.

The computer device 1211 includes a cap 1220 which is
designed to matingly engage the opening 1215 in the hous-
ing 1212 of the computer device 1211 and thereby cover the
slot 1215 used to receive the radio card 12190. A flexible band
1222 attaches the cap 1220 to the housing 1212 of the
computer device 1211. One end of the band 1222 is con-

56

5,680,633

35
nected to the cap 1220 while the other end is attached to the
housing 1212. A handle 1224 helps assist the removal of the
cap 1220 from the housing 1212 of the computer device
1211,

The cap 1220 is constructed of a closed cell foam material
with high air content for low dielectric losses. Alternatively,
a quality dielectric material may be used to reduce the size
of the antenna structure. The cap 1220 when made of a foam
material helps to protect the radio card from the physical
trauma typically associated with computer devices of these
types. Additionally, as will be discussed in further detail
below, the cap 1220 helps to environmentally seal the
opening 1214 preventing harmful material from the outside
such as dust or moisture from reaching the radio card 1210
and helps to reduce the escape of electronic noise from the
housing 1212 created by the radio card 1210 and computer
device 1211. As will be discussed below, a grounded metal
shield covering a portion of the cap 1220 is used to reduce
the escape of electronic noise.

While the cap 1220 helps to seal the opening, protect the
radio card 1210 and hold the radio card in place, the primary
function of the cap is to provide the radio card 1210 access
to an appropriate antenna or antennas. The connection of the
radio card 1210 to the antenna is made through the cap 1220.
The antenna or antennas can be embedded in the cap 1220,
embedded in the band 1222 or even attached to, mounted on,
or embedded in the housing 1212 of the computer device
1211.

Referring now to FIGS. 37 and 38, a computer device
1230 built in accordance with the present invention is shown
~with a cap 123 engaged in the opening of the housing 1232
wherein aradio card can be inserted. Aband 1236 is attached
to both the cap 1234 and the housing 1232. The band 1236
helps prevent the loss of the cap 1234 when the cap 1234 is
not engaged in the housing 1232 of the computer device
1230.

Referring now to FIGS. 39 and 40, the cap 1232 is shown
engaged with the housing 1232 of the computer device 1230.
The cap 1234 includes an outwardly extending lip 1236
which helps to environmentally seal the opening in the
housing 1232 preventing harmful material from the outside
such as dust or moisture from reaching the radio card 1240
which has been inserted into the computer device 1230.
When the cap 1234 is completely inserted or fully engaged
in the housing 1232, the lip 1235 sealingly engages the
housing 1232.

Embedded in the cap 1234 is an antenna 1250. The
antenna 1250 is connected to the radio card 1240 through
contacts 1251 and 1252 disposed on the cap 1234 and
contacts 1241 and 1242 disposed on the radio card 1240.
Contact 1252 is the ground contact for the antenna 1250 and
is connected to the end of the antenna 1250. Contact 1242
is the ground contact for the radio card 1240. Contact 1251
is the signal contact and is connected to the antenna 1250 a
short distance from the end of the antenna 1250. Contact
1241 is the signal contact for the radio card 1240.

Contact 1251 and contact 1241 are disposed on the cap
1234 and the radio card 1240, respectively, such that the
contacts engage each other when the cap 1234 is inserted
into or engaged with the housing 1232 of the computer
device 1230. Similarly, contact 1252 and contact 1242 are
disposed on the cap 1234 and the radio card 1240,
respectively, such that the contacts engage each other when
the cap 1234 is inserted into or engaged with the housing
1232 of the computer device 1230. The contacts shown in
the present embodiment are of the metal button type wherein

10

15

20

25

30

35

45

50

55

65

36

the connection is made when the two metal surfaces meet.
Many variations of the contacts are possible including the
use of male/female connections and spring type contacts.

A shield 1248 is disposed around the bottom portion of the
cap 1234 and is used to reduce the escape of electronic noise.
Typically in computer devices of this type, the inside of the
housing of the computer device is shielded. Additionally, the
area immediately surrounding the radio device such as a
radio card may also be shielded. By shielding the cap 1234,
the integrity of the housing and radio shields are not
breached by the opening used to insert and remove the radio
card. The shield 1248 is connected to the antenna ground
contact 1252 on the cap 1234, A hole 1259 in the shield 1248
allows the signal contacts 1251 and 1241 to engage without
being grounded.

Referring now to FIG. 41, the cap 1234 is shown embed-
ded within which are two antennas 1260 and 1262 designed
toreceive and transmit different radio frequency signals. The
first antenna 1260 and the second antenna 1262 are both
connected to a common ground contact 1267 which is
connected to the shield and which engages the ground
contact 1277 on the radio card 1270. The first antenna 1260
is connected to a first signal contact 1265 and is disposed on
the cap 1234 to engage a first signal contact 1275 disposed
on the radio card 1270. Similarly, the second antenna 1262
is connected to a second signal contact 1266 and is disposed
on the cap 1234 to engage a second signal contact 1276
disposed on the radio card 1270. Thus the radio card 1270
will use a signal via contact 1275 or via contact 1276
depending upon which antenna it would like to use. Which
antenna it would like to use is dependent upon the desired
frequency upon which it want to transmit and receive.

The radio card 1270 as shown has three contacts 1275,
1276 and 1277. However, if the radio transceiver in the radio
card 1270 is designed such that it would only be able to
transmit and receive signals which correspond to the first
antenna 1260, then it would not need to have contact 1276
and it could be left off. Similarly, if the radio card 1270 were
only going to use second antenna 1262 then contact 1275
could be omitted. Thus, standardizing contact position with
respect to antenna type allows for flexibility in cap usage
with various radio cards such that only appropriate antennas
will be connected to the radio card.

Referring to FIG. 42, two antennas 1280 and 1282 are
embedded in the cap 1234. In this embodiment built in
accordance with the present invention, the two antennas
1280 and 1282 not only share a common ground contact
1286 which engages the ground contact 1296 of the radio
card 1290, but they also share a common signal contact 1285
which engages the signal contact 1295 on the radio card
1290. Thus, both antennas receive and transmit signals using
the same two contacts. This embodiment requires a radio
card 1290 which can filter the different signals and thus use
the signal from the desired antenna while ignoring the
signals which arrive via the other antenna.

Referring to FIG. 43, a computer device 1211 built in
accordance with the present invention is shown which is
designed to implement an antenna diversity scheme. A first
antenna 1301 is embedded in the cap 1220. A second
antenna 1302 is shown embedded in the band 1222. As
discussed in the embodiment as shown in FIG. 41, the two
antennas 1301 and 1302 share a common ground contact
1307. The first antenna 1301 is connected to a signal contact
1305. Likewise, the second antenna 1302 is connected to a
signal contact 1306. The hole 1249 in the shield 1248 which
prevent the signal contacts 1305 and 1306 from grounding
is shown in dashed lines.

57

5,680,633

37

The first antenna 1301 is similar to the second antenna
1302 and both are designed to transmit and receive similar
radio frequency signals. When the cap 1220 is engaged in
the opening of the housing 1212, the first antenna 1301 and
the second antenna 1302 will be perpendicular with respect
to each other. The quality of the signal received by the first
antenna 1301 and the quality of the signal received by the
second antenna 1302 may be greatly different since the
antennas are placed at right angles with respect to each other.
In the present embodiment, the radio card can check the
quality of each signal and use the antenna which is currently
receiving the stronger signal. Additionally, it can switch to
the other antenna when the conditions change such that the
signal is no longer acceptable. Utilizing two similar anten-
nas in this matter, antenna diversification, can be very
important in computer terminals of this type since they are
often mobile and are often subjected to a rapidly changing
environment. An antenna diversification scheme of this type
can be used to help eliminate the reception problems asso-
ciated with signal multipath.

Referring now to FIG. 44, ancother embodiment of the
present invention is shown with the first antenna 1311 and
the second antenna 1312 attached to the housing 1212 of the
computer terminal 1211. As in the embodiment shown in
FIG. 43, the first antenna 1311 is similar to the second
antenna 1312 and both are designed to transmit and receive
similar radio frequency signals and are perpendicular with
respect to each other such that an antenna diversity scheme
can be implemented. The antennas 1311 and 1312 are
connected to the contacts 1305, 1306 and 1307 through the
cap 1220 and though the band 1212.

Referring to FIG. 46, the embodiment of FIG. 44 is shown
with the only differences being that the first antenna 1321
and the second antenna 1322 are positioned slightly differ-
ently and the antennas are designed to transmit and receive
different radio frequency signals. Thus, the radio card uses
the signal on contact 1305 when it wants to receive signals
via the first antenna 1321 and uses the signal on contact 1306
when it wants to receive signal via the second antenna 1322.

In FIGS. 43, 44 and 46, the portion of the connection
between the contacts 1305, 1306 and 1307 and the antennas
which pass through the band 1212 are shown schematically
as wires. In the best mode of the present invention, the
transmission of the signal through the band 1212 would be
accomplished through the use of a micro shield strip 1330 as
shown in FIG. 45. The micro shield strip consists of several
conductive ribbons running the length of the band 1212 and
separated by the non-conductive material of the band 1212.
A wide top ribbon 1333 and a wide bottom ribbon 1334 are
used to sandwich two smaller ribbons 1336 and 1337. The

10

15

20

25

30

35

45

38

smaller ribbons 1336 and 1337 are used to transmit the
antenna signals and are connected to contacts 1305 and 1306
respectively. The wide bands 1333 and 1334 are common to
each other and are used to ground each of the antennas and
are connected to the ground contact 1307 on the cap 1220.
The wide ground ribbons 1333 and 1334 shield the smaller
antenna signal ribbons 1336 and 1337 and help to maintain
the signal integrity.

FIG. 47 is a diagram illustrating the use of portable data
terminals according to the present invention which utilizes a
plurality of radios to access different subnetworks of an
overall communication network. Specifically, subnetworks
1403 and 1405 are illustrated which provide for an overall
network environment for MCD 1401. Each subnetwork
1403 and 1405 may have a host computer, such as 1407 and
1411, and an access point, such as 1409 and 1413. The
access point 1409 provides for communication via one type
of radio communication while access point 1403 provides
for another. For example, access point 1409 may provide a
long-distance digital cellular link while access point 1413
provides for local spread spectrum link.

In addition, access points 1409 and 1413 might also exist
on a single network for providing multiple communication
paths in case one access point fails or becomes overloaded.

To accommodate multiple radios, the communication
module of MCD 1401 contains multiple transceivers, and
associated protocol substacks and antennas. Specifically, the
communication module might include a single processing
unit which handles multiple sets of software protocol
substacks, i.e., one for each of the included transmitters.
Similarly, if the protocol substacks and the processing unit
functionality of each radio is too different, additional sepa-
rate processing units may be included. Finally, the MCD (the
portable data collection terminal) might also be designed to
receive multiple communication modules.

In addition, the base module may interrogate the selected
(“inserted”) communication module(s) to determine which
antennas to interconnect. Alternatively, the communication
modules may interrogate the base module and request from
the available antennas. Where a suitable antenna is not
available, an external antenna connector is selected. Avail-
able antennas may be installed inside or on the outside of the
base unit. Of course the antennas might also be selected via
the physical communication module connectors as described
below.

It should be realized that various other changes and
modifications in the structure of the described embodiment
would be possible without departing from the spirit and
scope of the invention as set forth in the claims.

58

5,680,633
39

APPENDIX A:

A COPY OF A MASTERS THESIS ENTITLED

"MOBILE COMPUTER NETWORK ARCHITECTURE"

9Copyright 1993 by ROBERT c. MEIER

59

5,680,633
41 42

MOBILZ COMPUTER NETWORK ARCHITECTURE

by

Robhert C. Meier

A thesis submitted in partial fulfillment
of the requirements for the Master of
Science degree in Computer Science
in the Graduate Colliege of
The University of Iowa

- August 1993

Thesis supervisor: Professor Donald Epley

60

5,680,633

TABLE OF CONTENTS

LIST OF TABLES B A T
LIST OF FIGURES . ..ottt v
CHAPTER
I. INTRODUCTION ...ttt e 1
Summary of Contributions 2
Organization of Thesis e e 3
II. NETWORK OVERVIEW.t 4
Logical modes it 4
Physical devicescoounnnn. 5
Communications links 6
Network addresses e e g
Network design iSSU@S. «....vveeonen 190
IIT. DATA LINK LAYER Ce e e e e 17
Functional regquirements e et 17
Data Link Controlvuuonono ... 18
Data Link Control services 18
Data Link Control frame definitions 19
Bracket transmission 21
Ffame/packet filtering et e e, 25
Transmit and Receive State Machines 25
Bracket Transmit State Machine. 26
Transmit state descriptions 25
Transmit state timers 27
Bracket Receive State Machine 30
Receive state descriptions 32
Receive state timers 32
Medium Access Control 33
IV. NETWORK LAYER R T T T T S 38
ii

61

5,680,633

45 46
Functoional raquirementsc.ouononnnnn. 38
Network layer serviceseiiiiiincnenn.. 38
Network layer packet definiticens. 39
Spanning tree organization.39
Attaching to the spanning tree 45
Network laver routing.ocivuuenn 48
Dynamic changes in the spanning
=1 1 52
Detach packet logic. 55
Hello synchronization.cvvieeeinn, 56
Sleeping terminal support 37
2ddress Resolubion. . ..o e ieinnenanennnnn 58
Reverse Address Resclution Protocol
(RARP} . v i i it et v bttt e s snnssaasneas 59
RARP routing.c.ceovuuvn e e 50
Address Resolution Protocol (ARP). 62
Address maintenance.vecrrineennnn 62
Root resoluktion e e e 63
Root resolution states 63
Hello packet priority. P 65
V. TRANSPORT LAYER (it tvenerusmaeuencsioanencnanaeenses 68
VI. SUMMARY ... it mr i rimvnsanraanassnns e i e 73
CONCLlUSIONS & v it e ittt e eeeticecair et 73
Future MCNA ExXtensionsceeveeeennaannan 74
REFERENCES 4ttt st v e it vt e vnosaenmeossnsassnsnnesssosesan 76
iii

62

Table

9]

6.

5,680,633

LIST OF TABLES

Page
DLC Frame TVDeS . . e i e iencnnnnen- e e 20
DLC Control Fields.......... ... e e e 21
DLC Transmit State Transition Table............. 29
DLC Receive State Transition Table.............. 31
Network Header Control Word..................... 40
Network Layer Packet TypeS.....vvuerrvnrennnnnn. 41
Root Resolution State Transition Table.......... 67

iv

63

5,680,633
49 50

LIST OF FIGURES3

Figure Page
L. Terminal and Router Protoceol Stacks............. 4
2. An example MCNA Network........ e 3
3. Coverage Aresas with Hidden Nodes 15
4.‘ Example DLC Bracket TransSmission................ 22
5. DLC Bracket Transmission Timing Graph........... 23

5. A Block Diagram of Physical Devices and Links...42

7. A SPANNING Tre v i o aaeieeneanens P 3¢
8. A Spanning Tree with Network Addresses.......... 49
9. An Example Network Routing Table................ 50
10. An Example RARP Routing Table................... 61

v

64

5,680,633
51 52

o

CHAPTER T

INTRODUCTION

Mobile Computer Network Architecture (MCNA) is a
computer network architecturs designed to connect mobile
interactive radio-equipped caomputers to an infrastructure of
stationary computer devices. The network architecture is
based on protccol layering principles developed by the
Internaticnal Standards Organization (ISQ) for COpen Systems
Interconnection (0SI}). The ISO/0SI model specifies seven
distinct communications layers. Each layer provides a
distinct service ahd isolates other layers from changes in
the éomputer network._ MCNA implements the first four
protocol layers - 1) the physical layer, 2) the data link
layer, 3) the network layer and 4) the transport layer. The
physical layer includes short-range spread spectrum radio
links to facilitate terminal mobility. Multiple overlapping
radio coverage areas are used to provide a multi-hop data
path from intelligent mobile radic-equipped computers to a
fixed network of computers and to other radio-equipped
computers. Multi-hop radio links, overlapping radio
coverage areas, and mobile network nodes present unigue

network design issues which are primarily addressed by the

65

5,680,633
53 ' 54

data link layer and the network layer. This thesis defines
network requirements and design issues which infiuvenced the
development of MCNA, and then presents data link and network
layer sclutions and transport layer requirements in the
context of a specific hardware solution and a working

functional model.

mm. f Jal

The radio networking concepts presented in this thesis
include extensions and adaptations of earlier work, and
include original work by the author which is listed in
patent applications filed by Norand Corporation of Cedar
Rapids, Iowa. The problems and design issues related to
packet radio networking are well documented in several of
the listed references. Nielson and Tobagi provide the best
summary of packet radio design issues in [1]. The data link
layer presented in this thesis includes a channel
reservation technique which has been used in earlier
collision avoidance protocols designed for wired links. The
network layer organizes nodes into a spanning tree.
Spanning trees are_ commonly used for network layer routing;
however, the approach used in MCNA was actually inspired by
the IEEE 802.1 standard for transparent bridging. Backes
provides an excellent bverview of the 802.1 bridging
standard in [9]. It should be noted that MCNA and

transparent bridging are considerably different. MCNA

66

5,680,633

55 56

defines a layered protocol stack for a packet switched
network. Transparent bridging defines a method for
forwarding data link frames across local area subnets and is
not a part of any protocol layer. The transport laver usead
in MCNA is an extension of the IEEE 802.2 logical link

control standard described in [10].

Organizaticn of Thesig

Chapter II contains an overview of MCNA and presents
design issues which affected the development ofAthe MCNA
protocol stack.

Chapter III contains a detailed description of the MCNA
data link layer which encompasses channel access and logical
link control.

Chapter IV contains a detailed description of the MCHNA
netw5rk layer.

Chapter V contains a brief description of the functions
and services provided by the MCNA transport layer. A
detailed specification of the transport layer can be found
in (10].

Chapter VI summarizes advantages of the MCNA approach

and discusses possible extensions to MCNA.

67

5,680,633
57 58

CHAFPTER II

NETWORK OVERVIEW

Logi de
A logical node in the MCNA network is an addressable
protocol entity, The network contains two logical ncde
types: 1) terminal nodes and 2} router nodes. Figure 1
shows the protocol stacks for both node types. The arrows

represent the flow of data between'layers in the stacks.

terminal terminal
protocal router protacol
stack protocol stack
{higher) stack {higher}
transpont network transport
netwark "—h network
data link data link | data link data link
physicsl physical | physical physical

N S

Figure 1. Terminal and Roukter Protocol Stacks

68

5,680,633
59 60

W

Terminal nodes are end points in the network; router
nodes are used to forward data packets at the network layer.
Any logical terminal can communicate with any other logical
terminal at the network layer. The network is designed to
support up to 1000 logical terminals which correspond to
hardware devices such as radio-equipped computers, host

computers, printers, etc.

] ical devi

A typical MCNA network might consist of the following
hardware device tvpes:

Base station - A stationary radio-equipped computer
which is used teo extend the range of a controller node.
Base-station-to-controller links or base-station-to-base-
station links can be wired or radio. Base stations contain
a single router node.

Mobile Radio-equipped COmputer (MRC) - A radio-equipped
mobile computer which contains one or more terminal nodes.
MRCs are often battery powered and go into a sleeping state
whenever possible to conserve power. 2an MRC does not
receive network data while it is sleeping. The MCNA network
provides several features to accommodate sleeping terminal
nodes. MRCs communicate with base stations at the data link
layer.

' Controller - A gateway device which connects peripheral

devices to the network. A controller contains one router

69

5,680,633
61 62

node and one or more termiral nodes. Each controller-based
tarminal ncde corresponds to an attached periphsral device.
A rypical MCNA network hnas one or more controiler devices.

Paripheral Device - Any device which does not directly
support the MCNA protocol stack, such as a prihter or host
computer. A peripheral device must be connected to a
concroller device and is represented by a terminal protocol
stack in the controller.

Host Computer (or host) - A computer which communicates
with associated MRCs in an MCNA network. A host computer

can be viewed as a peripheral device.

o ni iong link

A communication link is used to make a physical layer
connection between devices. In an MCNA network, physical
layef connections can be made with either wired or radio
links. Each link is restricted to a single communications
channel, where a channel can accommocdate only one data
transmission at any given time. (In some networks,
frequency or time division multiplexing can be used to

multiplex multiple communications channels on a single

physical link.) The network architecture assumes that both
=} i rovi medi
link laver. All unicast and multicast data link frames

transmitted on a medium are received by all nodes physically

connected to the medium.

70

5,680,633
63 64

Low-power direct-sequenced spread-spectrum radio is
used to facilitate mobility for MRCs. The bit rate of the
spread-spectrum radio channel is approximately 200 Kbps.
although the coverage area of a single radio transmitter is
rastricted, the total radio coverage area of an MCNA network
must be virtually unlimited by the network design. Multiple
base stations are used to extend the radio coverage area.

It is a requirement that MRCsS can move freely throughout the
total coverage area without significant response time and
throughput penalties. Roaming is the process of moving out
of the coverage area of one base station and into the
coverage area of a second base station. Link level error
rates are relatively high on radio links due to roaming {and
the nature of the medium).

Base stations and controllers can be connected on a
multi-drop relatively high-speed wired backbone LAN. (Note
that if an IEEE 802 medium access LAN standard is used for
the backbone LAN, multicast IEEE 802.1 addresses are
required to broadcast unicast data link frames at the medium
access control sublayer.) Base stations can also be
connected on radio‘links, at the physical layer. A
peripheral device can be connected to an MCNA controller by
any physical standard which both devices support. As noted
above, a peripheral device is represented by a terminal

protocol stack in an attached controller; therefore, the

71

5,680,633
65 ’

physical connection to -a peripheral device 1s not considered
to be an MCNA network link. Differences in MCNA physical
layer links are hidden from higher layers by the MCNA data
link layer.

Figure 2 shows an example MCNA network. Note that base

stations can be wired (i.e. to the backbone LAN} or

wireless.

MCNA backbonae LAN

base
station

Figure 2. An example MCNA Network

72

5,680,633
67 68

t K = S
Data link frames contain a hop destination and hop

source address in the data link header. ©Network layer

in the network header. Transport headers contain source and
destination service access point (SAP) identifiers. Data
link and network addresses are consistent and have the same
format .

All devices must have either a unique long identifier
which is programmed into the device at the factory and/or an
alias which is typically entered by the user and is well-
known. The long address and/or alias binds to a short 16~
bit network address, obtained from an address server. A
network address uniquely identifies a logical terminal or
router node.

Network addresses consist of 2 parts: a 1) node type
and a 2} 1l-bit node identifier. MCNA has terminal and
router node types. A node type of all 1's is used to
specify all node types. The node identifier is used to
uniquely identify a node of the specified type. 2 node
identifier of all 1's is used to specify any node of the
associated type. ©Note that a node type of all 1's and a
node identifier of 1's can be used to specify all nodes.

A unicast address is used to identify a single MCNA

node. A multicast or broadcast address is used to identify

73

5,680,633
69 70

a group of nodes. The high-order bit is always set ON in a
multicast or broadcast address. The high-order bit can be
set ON in a unicast address to turn off data link
handshaking.

The default network address used when a datce _ink
entity is first enabled consists of the multicast node type
concatenated with a node identifier of all l1's. TFor
example, the default address for a router node is
hexadecimal A7FF. The network laver is responsible for
obtaining a network address and assigning it to the data
link entity assigned to a physical port.

In addition, to source and destination addresses, each
transmitted network packet contains an MCNA network
identifier (LAN ID) in the data link header. The network
identifier is used to filter radio traffic from adjacent

MCNA networks.

k_desi .
Although MCNA is designed to be a general purpose
network architecture, terminal emulation is the predominant

application which MCNA is required to support. In an
example emulation system, an MRC might look like a data
entry terminal to a host computer. In this case, a
controller attached to the host computer (directly or
indirectly} would contain a logical terminal node which

provided a gateway to the host. The application on top cf

74

5,680,633
71 72

1L

the logical terminal protocol stack might emulace a terminal
controller device. In addit:ion to terminal emulation, the
retwerk must facilitate mail messaging, file transfsrs, and
clienc-server applications.

Due to the nature of the supported applicaticns, data
traffic in an MCNA network is normally bursty and light, but
can be heavy at times. Fast on-line response times for
terminal emulation are essential, but the network can not go
into an overloaded state when traffic occasionally gets
heavy.

MCNA is a fully-interconnected network at the transport
layer. For example, in figure 2, any of the MRCs in the
network can log onto either host, can send mail messages to
each other, or request records from the file server.

Most network architectures fall into one of two
categories: 1) packet-switching, or 2) circuit-switching.

In a packet-switched network, each data packet associated
with a transport layer connection can be routed along a
different path. Packets can be lost and arrive out of
order. In a circuit-switched network, a fixed path, called
a virtual circuit, is defined when a transport layer
connection is established. Packets always arrive in order
and are rarely lost. In an MCNA network, radio links (and
data packets) can be lost frequently if an MRC roams during

a transpeort layer connection. The frequent loss of physical

75

5,680,633
73 74

links prohibits the use of pure circuit-switching at the
network layer.

In a packet-switched (or circuit-switched) network,
ncdes periodically exchange or distribute routing tables so
that each ncde can learn the path to other nodes in the
network. Routing table entries typically contain the cost
to other nodes in ths network and allow a node to select the
best first hop to use to send data to another node.
Unscheduled rouring table exchanges can be triggered when
the cost to a node suddenly changes significantly, possibly
due to a node or link failure. The overhead associated with
routing table exchanges can be significant, esven when
physical links are relatively stable. Sewveral factors
preclude the use of routing table exchanges in an MCNA
network: 1) radio links are transient, 2) the primary
application requires consistent fast response times, and 3}
the bandwidch on the radio channel is limited. Frequent
table exchanges, triggered by the loss of radio links, would
be required to suppeort fast response times for roaming MRCs.
It is easy to envision a network saturated by routing table
exchanges. ’

In an MCNA network, logical nodes are organized into a
spanning tree with a router node at the root of the tres.
Other router nodes serve as interior nodes in the tree and

terminal nodes are leaves in the tree. With the exception of

L2}
*

76

5,680,633
75 76

13

che root node, each (chiid) node is connected by a single
logical link to a parent node. Parent router ncdes may have
multiple children. Like a sink tree, nodes closer to the
roet node of the spanning tree are said to be downstream
from nodes which are further away. Conversely, all nodes
are upstream from the root. Network layer packets are
routed along branches of the spanning tree. Router nodes
use a technique called backward learning, to "learn" the
path to upstream nodes (i.e. nodes in the subtree rooted at
the router). The explicit exchange of routing tables is not
required.

Responsiveness and guaranteed throughput, especially
under heavy loads, are often conflicting goals in netwark
design. Maximum throughput under heavy loads can be
guaranteed by token-passing or polling schemes. Nodes gain
access to a communications channel only after receiving a
token or poll (i.e. from a master node) . Responsivensss 1is
degraded since a node must wait for a token or poll in order
to communicate. On lightly loaded networks, the best
response times (i.e. for on-line applications} can be
obtained by using a technique called multiples access. In a
multiple access system, nodes are allowed to access the
channel asynchronously, without waiting for a poll or token.
However, throughput under heavy loads can be degraded due to

contention - multiple concurrent access to & communications

77

5,680,633 _
77 78

14

channel resulting in collisions. In a carrier-
gsense/multiple access (CSMA) or listen-before-talk (LBT)
multiple access system, collisions are reduced because nodes
*listen” = the channel, to determine if it is busy, before
accessing the channel. Hybrid channel access techniques
exist, which allow multiple access to the channel under
lignt loads, but which migrate to a pelling scheme as
traffic increases. Such technigues usually reguire
cocrdination from a master node.

As mentioned earlier, MCNA must provide fast response
times for bursty traffic from up to 1000 nodes. The time
required for polling or passing a token to idle nodes
prohibits the use of a polling or token-passing sqheme. “he
coordination required for any sort of hybrid scheme is
complex, since a network can contain multiple overlapping
coverage arsas. No single *master' node can be heard
throughout the radic network. Polling, token-passing, or
hybrid schemes are even more difficult to implement if the
network contains sleeping nodes. MCNA uses a multiple
access techniqué on both wired and radio communications
channels. The tecﬁnique is called Listen-Before-Talk
Channel Regervation with Bupy Pulse (LBTCR/BP), and is
described in detail below.

Packe:r radio nstworks present unigue channel access

design issues, which are not present in wired networks. The

78

5,680,633
79 80

15

existence of multiple overlapping radio coverage areas can
be both an advantage and disadvantage. The total data rate
on tne radio network can actually exceed the bandwidth of
the radio channel due to a phenomenon called spatial reuse.
Two pairs of MRCs can communicate concurrently, if the radic
coverage area of the first pair is disjoint from the
coverage area of the second pair. Concurrent communications
sessions are possible even when coverage areas are not
disjoint due to the capture effect. The capture effect
allows a radic receiver to correctly interpret the signal
from a strong transmitter in the presence of signals from
weaker transmitters.

A CSMA or LBT scheme 1s more complicated in a muiti-hop
radic network due to the presence of hidden nodes. A node
is said to be "hidden" from a transmitter if it is not in
the coverage area of the transmitter, but is within the
coverage area of the intended receiver. Figure 3 shows one
example of hidden nodes. The circles represent the radio
coverage areas of each of the nodes - A, B, C, and D.
Consider the following scenario. Assume A is transmitting
to B. C now wants‘to begin a conversation with D. 3ince C
can not hear A, C assumes the channel is idle and begins
transmitting to D. Since B is in the coverage area of both

A and C, i1t will lose the transmission from A.

79

5,680,633
81 82

16

AVEN

Figure 3. Coverage Areas with Hidden Nodes

The design of a packet radio network is also
complicated by the existence of transient and unidirectional
radio links. Links can be transient because the range and
quality of a radio link can vary over time. A link can be
unidirectional because transmitter strength and receiver

sensitivity can vary from node to node.

80

5,680,633

CHAPTER III

OATA LINK LAYER

The MCNA Data Link laver controls access to the channel
and is responsible for providing reliable transmission
between any two devices in the network {(i.e. MRC-to-base-
station), on both wired and radio links. MCNA's data link
layer has a Medium Access Control (MAC) component and a Data
Link Control (DLC) component. The MAC and DLC components of
the MCNA data link layer are not strictly lavered and can
not be presented independently. This paper focuses on che
data link layer used on radio links, however the radio DLC
component is also appropriate for wired links with
significant error races (i.e. due to access collisions) .,

The radio MAC can be used on wired LAN links if an
underlying MAC service is not provided by the LAN standard

(i.e. IEEE 802.3).

.] .
The data link layer: 1) accepts frames from the network
laver and passes frames to the physical layer for

transmission; 2) appends data link layer framing bytes and

CCITT-15 frame check segquence (FCS) bytes to transmitted

81

5,680,633
85 86

multicast and unicast frames; 3) removes data link layer
framing bytes and FCS bytes from received frames; 4)
verifies the FCS bytes in raceived frames; 5) filters out
frames which do not belong to the MCNA network of the local
device; 6) filters out packets which are not directed to the
local device; 7) forwards packets to the netwark layer which
are addressed to the local device, or are broadcast or
multicast to the local device; 8) regulates access to the
communications channel on wired LAN links and spread
spectrum radic links; 9) recovers lost unicast frames; 10)
maintains and provides diagnostic statistics; and 11)
transparently fragments and reassembles network layer
packets, which exceed the maximum data link frame size. 3
group of frames which is associated with a single network
layer packet is called a bracket.
Data Lipk Control
Data Link Control services
The DLC component provides "acknowledged
connectionless" services to the MCNA network layer. A data
link connection is’not required to transmit a network layer
packet; however, each packet is acknowledged at the data
link layer and errors are reported to the network layer.
The network layer uses a DL_UNITDATA.request primitive to

transmit a unicast packet to a child or parent node or to

82

5,680,633
87 88

transmit a multicast packet to a group of nodes. The
network layer receives a DL_UNITDATA.indication when a
packet 1s received. The network layer can enable and
disable the data link layer with DL_START ana DL_STOP,

respactivsly.

Data Link Control frame definitions

All DLC frames contain a destination address, a source
address, a data link controcl byte, and a channel reservation
field in the DLC header. Bits in the DLC control byte are
used to specify the frame type. DLC frames are cne of two
types: 1) request, or 2) response, depending on the state of
the REQ/RSP control bit.

Table 1 briefly describes each of the request and
response frame types. Table 2 briefly describes several
control byte fields.

The source address, in the DLC header, is the network
address of the local node. The destination address is
passed to the DLC by the network layer. The destination (or
source) can be a broadcast, multicast, or unicast address.
If the destination_ (or source) is a multicast address, then
the DLC transmits the network layer packet as a single

rmulticast EOD frame.

83

89

5,680,633

Table 1. DLC Frame Types

4. Reguest Frame Types

DATA

request frame used to send data in a bracket of frames containing
network fayer data

EOD

end-of-data request frame used to send the last data frame in a
bracket of frames containing network layer data. Note that a
bracket of frames may contain a single multicast EOD frame.

request-for-poll request frame used to request polling from the
destination node. An RFP is used to initiate the transmission of
a unicast bracket of frames.

ENQ

inquiry frame used to determine the frame sequence state of the
destination and used to abort an active transmission.

b. Response Frame Types

POLL

response frame used to solicit the next DATA or EOD frame, in
a bracket, from the destination.

WAIT

response frame which is used to notify the destination that the
local node is busy.

CLEAR

response frame used to signal the end of the transmission of a
unicast bracket of frames.

REJECT

response frame used to indicate that a request frame is invalid or
that the frame sequence state is undefined.

84

3]

<>

5,680,633
91 92

Table 2. DLC Control Fields

REQ/RSP The REQ/RSP bit is set OFF in request frames and is set ON in
response frames.

SEQ The SEQ bit is used to sequence DLC frames in a unicast
bracket. modulo 2. The SEQ bit is used to detect duplicate
frames.

MORE [n data request frames, the MORE bit is used to distinguish

between DATA frames and EOD frames. The last frame sent in
a bracket of data frames is always an EOD frame.

PRIORITY | The priority bit is set ON in request frames for high priority data
transmissions. MCNA provides normal and high priority data
pipelines.

LANID The LAN ID bits contain a network identifier. Frames which do
not belong to the local network are discarded.

Bracket transmission

In the discussion which follows, *source" is used to
denote a node sending request frames and "sink" is used to
dencte a node sending response frames. On radio links (and,
opticnally, on wired links), the DBLC fragments a network
layer unicast packet into short fixed length frames before
the packet is sent. The fragments are reassembled by the
sink and are posted to the sink's network layer if, and only
if, all frames in the packet are received. As noted above,
a group of frames which is associated with a single network
layer packet is called a bracket. Fragmentation at the data

link layer allows the DLC sntity to use a frame size which

85

5,680,633
93 94

22

is suitable for the link error rate without impacting packet
sizes at the network layer.

Tigure 4 illustrates an example data link unicast
conversacion between two nodes - A and B. A conversation is
initiated when the network layer in node A posts a
DL_UNITDATA.request to the DLC layer in A. After the
channel is accessed by the data link MAC component, DLC A&
sends an RFP frame to DLC B. DLC B responds with a POLL
frame to solicit DATA frames from DLC A. The last data
fragment in the bracket 1s sent, by DLC A, in an EQOD frame.
DLC B responds with a CLEAR frame which ends the

conversation.

node A node 8
RFP 4
< POLL(0)
DATA())
4 POLL (1)
£0D(1) »
I & CLEAR

Figure 4. Example DLC Bracket Transmission

86

5,680,633
95 96

Figure 5 shows a timing graph for the example bracket

transmission in figure 4.

W |- tgap

» BN W T
o O ol

i Y
time L

|‘"f_*_thp'—’|

Figure 5. DLC Bracket Transmission Timing Graph

The example transmission illustrated in figures 4 and 5
assumes that no errors occurred. A data link error can
occﬁr if a frame is lost or corrupted. A frame check
sequence field is appended to the end of all data link
frames. The FCS field is used to perform a complimentary
transmitter/receiver cyclic redundancy check on each frame
ta determine if the frame was corrupted. Corrupted frames
are ignored by the_data link layer and are viewed as lost.
The DLC component of the data link layer is responsible for
retransmitting lost unicast fragments. The sink is
primarily responsible for error recovery during a unicast
conversation. If a DATA or EOD frame fragment is lost, the

sink times out and resends a POLL frame to solicit

87

5,680,633
97 ’ 98

retransmission of the fragment. A 1-bit sequence number is
used to determine whether a POLL is for the previous (i.e.
lost) fragment or the next fragment. The sequence number is
reset to O at the start of a conversation. The source is
responsible for rescovery from lost RFP frames. (It shculd
be noted that an ambiguous situation can occur when a source
sends an RFP frame and misses the first POLL frame from the
sink. The scurce can not distinguish the missed POLL from a
lost RFP and, as a result, both the source and sink actively
attempt to recover.) If a CLEAR frame is missed in a
unicast seguence, the source can send an ENQ frame to
determine the status of the conversation. If the CLEAR was
lost, the sink responds to an ENQ by resending the CLEAR. 2
REJECT is sent to indicate that the sink exceeded a
MAX_ POLL_RETRY count and did not receive the EOD fragment.
If a sink does not respond, a radio source can assume that
the sink is no longer in range. A sink must cache the
appropriate receive state information to determine whether a
CLEAR or REJECT should be returned in response to an ENQ.

A source can reset an active conversation, at any time
before the EOD frame is sent, by resending the RFP frame. A
source can abort an active conversation by sending an ENQ

frame.

88

5,680,633
99 100

[39]
T

Frame/packet filtering

When the DLC entity is in an ENABLED/ON state it is
continuously listening on its assigned port. The DLC entity
receives all data link layer frames. Frames which do not
pass an FCS check are invalid and are discarded. Valid data
frames are reassembled into a complete packet which is
posted to the network layer if: 1) The LAN ID in the DLC
header matches the LAN ID of the local node, and 2) The
destination address in the DLC header a) is equal to the
network address of the local node, or b) is an acceptable
multicast or broadcast address.

The high~order multicast bit is set ON in all multicast
or broadcast frames. A multicast or broadcast frame is
accepted if the node type specifies a group to which the
local node belongs and either a) the node identifier is all
1's, or b) the node identifier is equal to the identifier of
the local node. A response is never reguired when the

multicast bit is set ON.

Transmit and Receive State Machines
State logic ig not required to transmit multicast and
broadcast frames. Multicast and broadcast frames can be
transmitted in a single segment whenever the channel is
available. Received multicast or broadcast frames are
simply posted to the network layer if the destination node

belongs to the specified multicast or broadcast group.

89

5,680,633
101 102

| o8
(o)

Unicast bracket transmission is best described in the
context of a transmit and receive state machine. A source
node uses a transmit state machime to send a bracket of
unicast Irames to a sink node. A sink ncde use a receive
state machine to receive a bracket of unicast frames. A
node can not be in the transmit state machine and receive
state maciiine at the same time. An active node is in one of
three high level states: 1) LISTEN, 2) TRANSMIT, or 3)
RECEIVE. A node in the LISTEN state is not in either the
transmit or receive state machine. A node in the TRANSMIT
state is in the transmit state machine. A node in the
RECEIVE state is in the receive state machine. Only one

bracket transmission can be in progress per node at any

time.
Brackest Transmit State Machine

The transmit state machine specifies socurce actions
which are dependent on the current state and the input to
the state machine. Transmit state input is limited to: 1)
unicast response frames addressed to the local node, and 2}

transmit state timers.

Transmit state descriptions
States in the DLC transmit state machine are described

below:

90

5,680,633
103 104

IDLE - The state machine iz idle and is waiting for a
bracket of frames to transmit.

READY - The state machine has a bracket of frames to
transmit and is waiting to acquire the channel.

S_RFP - The state machine has sent an RFP frame and is
waiting for a POLL frame.

S_DATA - The state machine has sent a DATA frame and is
wailting for a POLL frame.

S_EOD - The state machine has sent an EOD frame and is
waiting for a CLEAR frame.

RDY_ENQ - The state machine has lost a CLEAR frame and
is waiting to acquire the channel before sending an ENQ

frame.

Transmit state timers

The transmit scate machine requires threse timers: A
RSP_TIMEOUT receive timer is started when an RFP or ENQ
frame is transmitted. The time-out value is larger than the
interframe gap time plus the time required to transmit a
POLL or CLEAR frame. 1IE the RSP_TIMEOUT timer expires
before an expected._response is received, a retry counter is
incremented énd the RFP or ENQ request frame is
retransmitted, if the retry count has not been exceeded.

A POLL_TIMEOUT timer is started whenever a DATA or EOD
frame is transmitted following the reception of a POLL

frame. The time-out value is larger than the time required

91

5,680,633
105 106

for the maximum number of poll retry attempts. The DLC
layer returns an error to the network layer if the timer
expires before an expected POLL frame is received. Note
that the sink is responsible for recovery when the
FCLL_TIMEOUT timer is running.

A TX_WAIT timer is started whenever a node is in the
transmit state machine and is waiting to access the channel.
The transmit state machine maintains an internal
sequence state variable which is equal to the l-bit sequence
value of the next frame to transmit. The sequence variable
is reset to 0 at the beginning of a conversation and follows
the state of the SEQ bit in received POLL frames. The SEQ
bit in POLL frames is the seguence number of the next frame

expected. Successive POLL frames with the same seguence
number cause a DATA or EOD frame to be retransmitted. A
DATA or EOD frame is "accepted® when a POLL or CLEAR frame
is received with the next sequence number.

The state machine must maintain a "current pointer*
variable which points te the current frame, in a bracket of
frames, to be transmitted. The current pointer is advanced
if, and only if, a’POLL for the next frame in the bracket is
received. The transition taken when a POLL frame is
received depends on whether the current pointer is pointing

to a DATA or EOD frame.

92

5,680,633

107 108
29
Table 3. DLC Transmit Stcate Transition Table
state event action next state
IDLE A bracket of frames is Resetretry count: execute | READY
passed to the state machine | channel access algorithm
READY Channel acquired Increment retry count; send | S_RFP
RFP frame; start
RSP_TIMEOUT timer
S_RFP RSP_TIMEOUT timer Return error IDLE
expires and max. retry
count exceeded
RSP_TIMEOUT timer Execute channel access READY
expires alporithm
POLL received Send current DATA frame; | S_DATA
start POLL_TIMEOUT
timer
POLL received Send current EOD frame; | S_ECD
start POLL_TIMEOUT
receive timer
WAIT received Start TX_WAIT timer IDLE
REJECT received Return error (invalid IDLE
transition)
S_DATA POLL_TIMEOQUT timer Return error IDLE
expires
POLL received Advance current pointer if | S_DATA
frarne was accepted: send
current DATA frame; start
POLL_TIMEOUT timer
POLL received Advance current peinter if | S_EOD
frame was accepted; reset
i retry count; send current
EOD frame; start
POLL_TIMEOQUT timer
REJECT received Retumn error (invalid IDLE

transition)

93

5,680,633

109 110
30
Table 3--continued
S_EOD POLL_TIMEOQOUT timer Reset retry count; execute | RDY_ENQ
expires channel access algorithm
POLL recetived Retransmit EOD frame; S_EOD
start POLL,_TIMEQUT
timer
CLEAR received; EOD Retum error (invalid IDLE
frame not accepted transition)
REJECT received Return error (invalid IDLE
transition)
CLEAR received; EOD Return good IDLE
frame accepted
RDY_ENQ Channel acquired Increment retry count; send | S_ENQ
ENQ; start
RSP_TIMEQUT timer
S_ENQ RSP_TIMEQUT timer Retum error [DLE
expires and max. retry
count exceeded
RSP_TIMEQUT timer Execute channel access RDY_ENQ
expires algorithm
CLEAR received; EOD Retumn error {invalid [DLE
frame not accepted transition)
REJECT received Retum error {invalid IDLE
transition)
CLEAR received; EOD Remurn good IDLE
frame accepted

Table 3 specifies state transitions for unicast bracket

transmissions.

B | . .
The receive state machine specifies sink actions which
are dependent on the current state and the input to the

state machine.

94

5,680,633

111 112
31
Table 4. DLC Receive State Transition Table
state event action next state
IDLE_LISTEN | RFP received Send POLL, reset rewy | BUSY
count; start
RSP_TIMEOQUT timer
ENQ received; entry for | Send CLEAR IDLE_LISTEN
source node is in the
SEQ state table
ENQ received; no entry Send REJECT [DLE_LISTEN
for source node in the
SEQ state table
DATA or EOD received | Send REJECT IDLE_LISTEN
BUSY RSP_TIMEOUT timer Flush; delete SEQ state | [IDLE_LISTEN
expires; max. retries table entry
exceeded
RSP_TIMEOQUT timer Increment retry count; | BUSY
expires execute channel access
algorithm; acquire
channel; resend POLL;
start RSP_TIMEOUT
timer
DATA received from Reset retry count; send | BUSY
active node next POLL; start
RSP_TIMEOUT timer
DATA or EOD received | Send REJECT BUSY
from inactive node
EOD received from Send CLEAR; IDLE_LISTEN
active node reassemble and post
complete packet; flush
ENQ received from Send CLEAR; flush BUSY
inactive node; entry for
source node in SEQ state
table
ENQ received from Send REJECT; flush BUSY
inactive node; no entry
for source node in SEQ
state table

95

5,680,633
113 114

22
Table 4--continued

ENQ received from Send REJECT ; flush; | IDLE_LISTEN
active node delete SEQ state table

entry
RFP received from Send WAIT BUSY
inactive node
RFP received from active | Send POLL; reset BUSY
node retry count; start

RSP_TIMEOUT timer

Receive state input is limited to: 1) unicast request
frames addressed to the local node, and 2) receive stare

timers.

Receive state descriptions

States in the receive state machine are described
below:

IDLE_LISTEN - The receiver is not receiving a bracket
of frames.

BUSY - The receiver has sent a POLL frame and is

waiting for the next frame in a bracket.

Receive state timers

A RSP_TIMEOUT timer is started when a POLL frame is
transmitted. The time-out value is larger than the
interframe gap time plus the time required to transmit a
DATA or EOD frame. If the RSP_TIMEOUT timer expires before

an expected response is received, a retry counter is

96

5,680,633
115 116

33

incremented and a POLL frame with the same SEQ value 1is
retransmitted, if the retry count has not been exceeded.

Each node maintains a receive SEQ state table which has
an entry for all nodes which have recently transmitted valid
data frames. A receive 5EQ state value is reset to 0 when
an RFP frame is received, and is incremented when a DATA or
EOD frame is accept=2d. The SEQ state variable is cached in
the table so that a source node, which missed a CLEAR
response, can inguire as to the status of its last
transmission. A CLEAR is (re)sent if a node receives an ENQ
and has an entry in its SEQ state table for the source node.
A REJECT is sent if an ENQ is received and an entry is not
in the table.

The receive state machine uses a routine called "flush"
to free any buffers, allocated to a bracket of frames, if an
error occurs before the complete bracket is received.

Receive state transitions are specified in table 4.

Medium Access Coptrol

As Tobagi points out in [1], the hidden node problem
can severely limit.bandwidth utilization in a simple CSMa
radio network. Tobagi discusses a channel access technique
referred to as listen-before-talk with busy tone (LBT/BT).
LBT/BT requires a second transceiver in each radio-equipped
device and a second control channel (i.e. on another

frequency) used to broadcast a "busy tone" whenever a node

97

5,680,633
117 118

34

is actively receiving a radio transmission. For example, in
figure 3, if A 1s transmitting data to B, then B must
broadcast a busy tone on the control channel for the
duration of the transmission. C is able to sense the busy
tone, and refrains from broadcasting to D until the both the
data and control channels are idle. The busy tone solution
is expensive for obvious reasons. MCNA uses an analogous,
but less exPensive technique referred to as busy pulse. 2s
noted earlier, the DLC component fragments and reassembles
network layer packets. A fragment can occupy a channel for
a known fixed time period. In figure 5, assume node A is
engaged in a bracket transmission with node B. If a third
node, C, listens to a radio channel for a worst-case time,
tpp, it is guaranteed that it will detect the active
conversation if either node A or B (but not necessarily
both) 1is within range of C. The busy pulse technique
prevents interrupted cenversations by requiring sleeping
nodes to listen to the channel for a busy pulse period after
awakening, before initiating a transmission. The busy pulse
period is egual to the time required to transmit a DATA
frame plus two intérframe gap times. In figure 5, Lgap
defines the interframe gap time and tbp defines the busy
pulse time.

MCNA uses a channel reservation technigue to generally

restrict channel access contention to RFP frames. Each DLC

98

5,680,633
119 120

35

request frame contains a channel reservation field which
indicates the amount of time required te send any
oucstanding frames in a bracket, without error. The
reservation is echoed by the sink in PCLL response frames.
iNote that the reservaricn field is always zero in EOD and
CLEAR frames.) an LBT algeorithm is generally executed cnly
once per conversation. After an RFP frame is sent, the
source owns the channel for the entire conversation and
subsequent request and response frames can be sent without
additional channel access logic. As a result, interframe
gap times and, hence, busy pulse times can be well-defined.
Channel reservation can be implemented with a
continuous millisecond clock, a RESERVE_TIME wvariable, and a
RESERVE_NODE variable. If RESERVE_TIME is greater than the
current millisecond time, the channel is considered reserved
and can nct be used. The RESERVE_TIME variable is updated
when a unicast reguest or response frame 1s received as
follows: 1) If the destination address in the DLC header is
not the local node address and the calculated reserve time
of the frame is greater than RESERVE_TIME, then RESERVE_TIME
is set to the calcﬁlated reserve time and RESERVE_NCDE is
set to the source address, 2) If the calculated time is less
than RESERVE_TIME and the source address is equal to
RESERVE_NODE then RESERVE_TIME is set to the calculated

time, 3) If the local node address is equal to the

99

5,680,633
121 122

destination address and the source address aguals
RESERVE_NODE then RESERVE_TIME is set to the current
millisecond time (i.e. the reservation is cancelad).

Befors a unicast conversation or a multicast
transmission is initiated, an LBT algorithm is executed to
determine if the channel is available. The transmission zan
begin immediately, if the channel is not active and is not
reserved. If the channel is not free, a random backoff
algorithm specifies backoff delays as a function of the LBT
slot time and the number of retries. An LBT slot is defined
as a function of the best case and worst case busy-sense
time. The best case busy-sense time is eqgual to the amount
of time from the point at which a node detected the channel
idle, before transmitting, until another node can detect the
transmission in progress. The worst cast busy-sense time is
best defined by an example. In figure 3, suppose nodes A
and C attempt to initiate a conversion with B at
approximately the same time. If node A determines that the
channel is idle and begins transmitting an RFP frame at time
0, then the worst case busy-sense time is equal to the time
tp,in figure 5, at/which node B begins sending a response
POLL frame. ©Node C can not determine that the channel is
busy between time {0 and time tp.

If a channel is detected busy, the access delay time is

simply the calculated random backoff time. If a channel is

100

5,680,633
123 124

37

reserved, a random delay is calculated by adding the
reserved time to the calculated random backoff time. HNote
that zhe daza link layer must continue to monitor link
activicy Iuring a backoff period.

The tackoff algorithm is repeated, whenever a collision
is suspectad, to randomly distribute retries over an
increasing number of LBT slots. The channel access
algorizhm rmust assume that a collision may have occurred
whenever an expected reply is missed, since collisgion
detection (CD) is not available. A& sink must back off
whenever a POLL frame is lost, before it retransmits the
POLL frame. A source must back off before retrying whenever
an RFP cr ENQ frame i1s lost.

The network layer can indicate to the data link layer
that-a packet is being sent as a response to a multicast or
brecadcast message. If a network layer packet is being sent
in response to a multicast message, then the data lirnk layer
waits Eor a random délay period before transmitting the
response.

The total retry time, including backoff time, at the
data link laver muét be relatively short so that lost
branches in the network layer spanning tree can be guickly

detected and new branches quickly re-established.

101

5,680,633
125 126

38

CHAPTER IV

NETWORK LAYER

F i irem

The network layer provides the following functions: 1)
The network layer organizes nodes in the network into an
spanning tree rooted at a root router node, hereafter simply
referred to as the root. The spanning tree is used to
prevent loops in the topology. 2) The network layer routes
packets along branches of the spanning tree. 3) The network
layer provides a service for storing packets for sleeping
terminals. Packets which can not be delivered immediately
can ke saved by the network entity in a parent node for one
or more HELLO times. 4) The network layer propagates lost
terminal node information throughout the spanning tree. 5)
The network layer maintains the spanning tree links. 6} The
network layer allocates and distributes network addresses.
7) The network layér maintains and provides diagnostic

statistics.

Network lavexr ssrvices
The transport layer uses an NL_UNITDATA.reguest

primitive to send a transport layer message. The alias or

102

5,680,633
127 128

network address of the destination node must be passed along
with the message. If an alias 1is passed,'the network layer
will.l automatically resolve i1t into a network address. The

alias and associated address are cached in the local network
entity. The network header contains several protocol bits

which are used to identify data which belongs to a transport
layer protocol. When data arrives for a transport protocol,
the spécified transport protocol entity is notified with an

NL_UNITDATA.indication.

i 1 inition

The network header in network layer packets contains a
destination address, a source address, and a control word.

Table 5 describes fields in the network header control
word. Table 6 describes each of the network layer packet
cypes.

. . i

The network layer organizes nodes into a spanning tree
with a single router ncode at the root of the tree. (Note
that the LAN ID in the data link header allows more than cne
logical tree to exist in the same coverage area.) Interior
branches of the spanning tree are relatively stable (i.e.
controllers and base stations do not move often).
Terminals, which are leaves on the spanning tree, may become

unactached and must be reattached frequently. All messages

103

5,680,633
129 130

40

are routed along branches of the spanning tree. Restricting
each node in the tree to a single parent guarantees that

there will be no loops in the logical topclogy.

Table 5. Network Header Control Word

PACKET This field is used to specify the network layer packet type.
TYPE

NETWORK | If this bit field is set ON then optional network layer parameters
PARMS immediately follow the network header.

RSPRQ This field can be used to request an end-to-end network layer
response packer. Normally this field should be set ON for
ATTACH, RARP and ARP request packets, and should be set
OFF for all other network layer packets.

PROTOCOL | This field is used to indicate the presence and type of higher
layer data.

REQ/RSP This bit is set OFF in network request packets and is set ON in -
network response packets.

ATTI A router node will set this bit ON in an ATTACH.request
packet whenever the source node is not in its routing table. The
bit value in an ATTACH.response packet follows the state of
the bit in the associated ATTACH.request. If a terminal receives
an ATTACH.response packet with the ATTI bit set ON, it isa
positive indication that the terminal was detached and has
reattached to the network.

104

131

5,680,633
132

Table 5. DNetwork Layer Packet Types

DATA

DATA request packets are general purpose network layer
packets used to send higher layer data and/or network layer
parameters.

HELLO

HELLOQ.response packets are used to build the spanning tree and
are used to advertise pending message information and lost node
information. Scheduled HELLO.response packets are broadcast
periodically at calculated time intervals by each router node in
the spanning tree. In addition, router nodes will broadcast an
unscheduled HELLO.response packet whenever a
HELLO.request packet is received,

ATTACH

A node transmits an ATTACH.request packet to attach to the
network and to maintain its path in the network. If the RSPRQ
bit is set ON the root node will return an ATTACH.response
packet. Higher layer data can be piggybacked on
ATTACH.request packets.

DETACH

DETACH.request packets are used to notify the network that a
node has detached.

ARP

An address resolution packet (ARP) is used to acquire the 16-bit
network address of a destination node, when only the alias (or
48-bit identifier) of the node is known. An ARP packet is
generated autormatically by the network layer whenever address
resolution is required.

A reverse address resolution packet (RARP) is used to set or
change the alias and/or 48-bit long identifier of a device and to
acquire a 16-bit network address.

Figures 6 and 7 illustrate how physical devices are

organized into logical nodes in a spanning tree.

cepicts devices and the physical communication links.

Figure 7 depicts the same devices organized as nodes on

105

41

Figure &

5,680,633
133 134

42

branches of a spanning tree. The root node in figure 7 is

labeled with an R.

SNA TCPAP
host -] bhest
]
cantroller controller
| wired LAN I /

hase

base
station

station [A—

i |
SN N

I IMRC station -LI -1_.
- radio l1
link
|

Figure 6. A Block Diagram of Physical Devices and Links

Nodes in the network are generally categorized as
attached or unattached (i.e. to the spanning tree).
Initially. only the root is attached. & single controller
can be designated to contain the root node, or multiple rcot

candidates can negotiate to determine which node assumes the

106

5,680,633
135 136

43

rcot status. The root and other attached router nodes
broadcast HELLO.response packets at calculated intervals.
The HELLO packets enable unattached nodes to learn the
optimum path to the root node hefore attaching to the

network.

SNA TCPAIP
host hest

@ ronter node

I terminal node !

a1

Figure 7. A Spanning Tree

The HELLO.response packets include: 1) the source

address; 2) a broadcast destination address; 3) the “cost*

107

5,680,633
137 138

44

to the root; 4) a "seed* value used to calculate the time of
the next HELLO.response packet; 5) a hellc displacement
time; 6) the priority of the root node (or root candidate);
7) the unigue device identifier of the rocot node {or root
candidate); and 8) a root node sequence number, used to
distinguish between multiple occurrences of the spanning
tree with the same root ncde.

The HELLO "ccst® field indicates the total *distance”
to the root, and is equal to the sum of the costs of each
hop on the path to the root. (Note that the root node
broadcasts HELLO packets with the cost field set to zero.)
The incremental cost of the hop between a node and its
parent is primarily a function of the physical link type
{i.e. ethernet, RS485, or radio). The cost component is
intended to bias path selection toward high-speed (i.e.
wired) connections. On radio links, spanning tree attachment
is biased toward the link with the best signal strength.
Signal strength is not a factor in the cumulative path cost.

The HELLC "displacement" field specifies the
displacement cof the actual hello time from the calculated
hello time or to indicate that the hello time was
unscheduled. A well-known randomization algorithm is used
to calculate the next hello time. The HELLO "seed" field is

used as a seed for the calculation.

108

5,680,633
139 140

45

The "root identifier" and “root seqguence" fields are
used to define a single instance of the network. Attached
nodes must forget their network address and return ©o the
uynattached state whenever a HELLC.response packet is
received with a new root node identifier or root sequence
number.

HELLO.response packets can contain opticnal parameters
such as: 1) a descendent count; 2) a pending message list,
and 3} a detached-node list.

aA pending message list consists of 0 or more network
addresses of sleeping terminals and is used to indicate that
a message is pending in the network for each terminal in the
list. Pending messages are stored in the parent node of the
terminal.

Detached-node lists contain the addresses of terminal
nodes which have lost packets or detached from the spanning
tree. A router node learns which entries should be in its
list from DETACH packets which are distributed throughout
the network when a terminal is lost. Detached nodes are
included in detached-node lists in HELLO.response packets

for DETACH_MSG_LIFE hello times.

Attaching to the spanning tree
Nodes without a parent in the spanning tree are in an
UNATTACHED state. In the unattached state, a node learns

which attached router node is closest to the root node by

109

5,680,633
141 142

46

listening to HELLO.response packets. (If no HELLO.response
packets are received, the node can wait {i.e. sleep) and
retry later.) After the learning period expires an
unattached node sends an ATTACH.request packet, with the
RSPRQ bit set ON, to the attached router node with the
lowest cost to the rcot. {Nodes without a network address
must first send a RARP.reguest packet to the root to obtain
a network address.) The attached router node forwards the

ATTACH.request packet onte the root node. h ~to-en

ATTACH. request functions as a discoverv packet and enables

router nodes alopng the path tgo the root node ko guickly

I n n . The root node returns
the request as an end-to-end ATTACH.response packet. When
the unattached node receives the ATTACH.response packet it
goes to an ATTACHED state and sets internal root port and
parent variables. (Note that the ATTACH.request musk be
repeated if an ATTACH.response is not received.} The root
port is the physical port on which the response packet
arrived and the parent (address) is equal to the data link
source address. If the newly attached node is a router
node, it calculates its cost to the root, by adding its root
port link cost to the HELLO cost of its new parent, and
begins to broadcast HELLO.response packets.

Unattached terminai nodes can optiocnally broadcast a

global HELLO.request packet with a rulticast router

110

5,680,633
143 144

47

destination address to solicit unscheduled HELLO.response
packets from attached router nodes. The net effect is that
the UNATTACHED state can {cptionally) be shortened. (Note
that only attached routers or the root may respond to
request packets.) The HELLO.request facility i1s intended
for unattached terminals with transaétions in prcgress.

" an attached node can change {i.e. shorten) its path in
the spanning tree at any time simply by selecting a new
parent and repeating the attach process.

Each attached node must transmit an ATTACH.reguest or
DATA ., reguest packgt at least once per ATTACH_TIMEOUT time
period to maintain its path in the network. Higher layer
data can be piggybacked ontc ATTACH.regquest packets by
setting the network layer destination address to the 16-bit
address of the node for which the data is intended. If data
is piggybacked onto an ATTACH.request packet, the network
layer will split the ATTACH packet into separate ATTACH and
DATA reguest packets as soon as the next hop to the
destination address is not on the path teo the rcot node
(i.e. the first upstream hop). The destination address of
the generated ATTACH.request packet is the well-known
address of the root node.

Active nodes do not need to axplicitly generate

ATTACH.request packets. An ATTACH.request 1is autcomatically

gererated (or & DATA.request is converted teo an

111

5,680,633
145 146

43

ATTACH.request), by a router node, whenever a reguest packet
arrives from an upstream node and an entry for the source
node does not exist in the router node's routing table. an
attach indication (ATTI) bit is set ON in the
ATTACH.response packet to notify the source node it has just

attached to the network.

Network layer routing

All packets are routed along branches of the spanning
tree. Routers “learn* the path to nodes by monitecring
traffic from upstream nodes {i.e. traffic directed toward
the root). Whenever a router receives a packet from an
upstream node, the router creates or updates an entry in its
routing table for the source node. The entry includes the
node address, and the address of the router which sent the
packet (i.e. the hop source address). When a router
receives a packet from a downstream node the packet is
forwarded to the upstream hop which is specified in the
routing entry for the destination. The packet is discarded
if a routing entry does not exiét.

Packets from upstream nodes are simply forwarded to the
next downstream node (i.e. :the parent) in the branch of the
spanning tree. icit ing i | £

g r i
ructure of t nni ree. A packet travels dewnstream

until a node is reached which has an entry in its routing

112

5,680,633
147 148

49

rable for the destination address. The packet is then

explicitly routed upstream until it reaches its destination.

Thus,) -to-t b}

routing all traffic through the nearest <CQmmON ancestor of

the root is the nearest

both terminals. In the worst case,

COMMON ancestor.

§ router node

801 802

! 803
2001

2002
2004
605 804

Figure 8. A Spanning Tree with Network Addresses

I terminal node

Figure 8 reproduces the spanning tree from figure 7

along with the hexadecimal address of each node. As an

113

5,680,633
149 150

50

example, assume terminal 804 sends a packet destined for
terminal 806. The packet will follow one downstream hop
from 804 to 2003. The routing function at 2¢03 has an entry
for 806 in its routing table which specifies 2004 as the
first upstream hop to 806. The packet is routed upstream to
2004. An entry in the routing table at 2004 specifies 806
as the first upstream hop to 806, and the packet is routed
from 2004 to 806.

The routing table in each router node defines the
subtree roocted at the router node. The routing table for

router node 2003 in figure 8 is shown in figure 9 below.

destination port first hop age child flag |
2004 2 2004 i true
803 2 803 i true
804 2 804 2 true
805 2 BOS 0 true
806 2 2004 1 false

Figure 9. An Example Network Routing Table

Routing table entries are created or updated whenaver a
downstream unicast DATA, ATTACH, or ARP packet is received.
If an entry does not exist for the source address in the

network header, an entry is created with the destination

h

ield set to the network layer source address. The other

fields in the (old or new) entry for the destination are

114

5,680,633
151 152

51

modified as follows: 1) the first hop field set to the
source address in the data link header, 2) the port field is
set to identify the data link entity which delivered the
packet, 3) the age field is set to 0, and 4} if the
destination and first hop fields are identical, the child
flag field is set to true. ‘

The age field for each entry is incremented at regular
intervals. An entry's age field is reset to 0 whenever a-
packet is received from the destination associated with the
entry. If no packets are received from the destination of
an entry for ROUTE_TIMEQUT minutes, the entry is deleted
from the route table. Nodes can maintain their path in the
network by sending an ATTACH.request packet to the root node
once every ATTACH_TIMEOUT minutes, where ATTACH_TIMEOUT must
be shorter than ROUTE_TIMECUT.

If a router receives a DETACH.request packet from an
upstream router ncde, then each entry in its route table,
with a destination field which matches an entry in the
packet's detached list, is deleted.

All nodes, except the root node, keep a parent and root
port variable. A packet traveling downstream is forwarded
by setting the data link destination address to the parent

address and then passing the packet to the data link encity

associated with the root port.

115

5,680,633
153 154

52

Dynamic changes in the spanning tree

Paths in the spanning tree can change for a number of
reasons:

1) Any node may select a new path to the roct whenever
a better path is found. For example, a better path might be
one where the cost of a node's parent from the root is
CHANGE_THRESHOLD greater than the cost in a HELLO.response
packet from another node. Rapidly moving terminals can
cache a short list of alternate parents. Periodically,
sleeping terminals, must stay awake for 1 or more HELLO
times tc discover changes (i.e. shorter paths) in the
network topology.

2) A parent node detaches the subtree rooted at a child
node, whenever a message cannot be delivered to the child.
This- occurs when the data link layer in a parent node fails
to deliver a unicast network layer packet to a child node.

3} A child node goes into the UNATTACHED state whenever
its data link layer fails to deliver a message to its
parent. If the child node is a router, it must continue to
broadcast scheduled HELLO.response packets with an infinite
distance for MAX _HELLO_LOST+l1 times. If the child node is a
terminal, it may solicit unscheduled HELLO.response packets
to shorten the UNATTACEED state. After the UNATTACHED

learning state has expired the node reattaches by

116

5,680,633
155 156

53

transmitting an ATTACH.reguest to the router node closest to
the root.

4) If a node in an ATTACHED state receives a DETACH
packet cr a HELLO.response packet with its network address
in the detached list, it must enter the UNATTACHED state and
reattach to the spanning tree. (Note that it may not
actuaily be unattached.) After reattaching, the node must
remain in a HOLD_DCWN state for MAX_HELLO_LOST+1 hellc
times. During the HOLD_DOWN state, the node ignores its
address in DETACH packet and HELLO.response packet detached
lists. Afﬁer the HOLD_DOWN period expires the node must
send a second ATTACH.request to the root, to insure that it
is still actached.

5) Entries in routing tables are aged pericdically and
old entries are discarded. When routing table space for a
new entry is required, either an unused entry or the oldest
(i.e. least recently used) entry is selected. If a used
entry is selected, then the o©ld informaticn is simply
discarded.

6) A sleeping node must wake up and enter an ATTACHED
listen state whenever a threshold number of HELLO.response
packets (i.e. 1 or 2}, from its parent, are missed. The
state ends when the node receives a data or HELLO.response
packet from its parent. The node enters the UNATTACHED

state when a) its address appears in the detached list of a

117

5,680,633
157 158

54

DETACH or HELLO.response packet, or b) a total of
MAX_HELLO_LOST consecutive HELLO.response packets are
missed.

The time that a node spends in the ATTACHED listen
state ﬁust be less than the lifetime of detached node
information in the network. This insures that a detached
node will always enter the UNATTACHED state {i.e. either the
node will find its address in a detached node list or the
node will miss MAX_HELLO_LOST HELLO.response packets and go
into the UNATTACHED state before it sees a “good"
HELLO.response packet from its (former) parent}.

7) Any node which receives a HELLO.response packet from
its parent with an infinite distance immediately enters the
UNATTACHED state. If the node is a router, it must continue
to broadcast HELLO.response packets with an infinite
distance for MAX_EELLO_LOST+1 times.

Note that old invalid paths may exist in the
spanning tree for a period of time. ~For example, if a
terminal detaches and reattaches to a different branch in
the spanning tree, all downstream nodes in the new branch
"learn" the new path to the terminal. Nodes which were also
in the old path change their routing tables and no longer
forward packets along the old path. At least one node, the
root, must be in both the old and new path. A& new patk Iis

established as soon as an end-to-end attach request packet

118

5,680,633
159 160

from the terminal reaches a node which was also in the old
path. Any remaining old path fragment will be disjoint from

the new path and will be aged away.

Detach packst logic

Since terminals can be mobile they can lose messages
often and must be notified quickly. A router handles lost
messages differently for each of the following three cases:
1) the data link hop destination of a lost message is a
downstream router (i.e. the parent), 2) the hop destination
is an upstream router, or 3)the hop destination is a
terminal . In the first case, the upstream router will
detach from the network and will begin broadcasting
HELLO.response packets with an infinite cost, causing the
subtree below the rcuter to detach and reattach to the
network. In the last two cases, the router node will
generate a DETACH.request packet which includes a detached
node list. The detached node list contains the network
layer destination address of the terminal which lost the
message. Initially, the detach packet is fcrwarded to thé
parent node (if it exists) and router nodes which are
children. Router nodes which receive a DETACH.request must
forward it along all branches of the spanning tree except
che branch it was received on. A router node does not
forward a DETACH.reguest if the DETACH.request came frcm an

upstream node, and the upstream node is not the first hop in

119

5,680,633
161 162

N
o

the routing table entry associated with the terminal in the
detached list. Each router node must broadcast the
DETACH.request to all terminal nodes one time sc that the
cerminal can guickly discover that it is detached or has
lecst a message. In either case, the terminal respcnds by
reattaching to the network. Each router node, which
receives the DETACH.request, purges the detached terminal
from its routing table and adds the terminal to its detached
node set. Detached node information is broadcast in

HELLO.response packets for MAX_HELLO_LOST+1 times or until

~he router determines the terminal has reattached.

Hello synchronization

All attached non-terminal nodes broadcast periodic
HELLO.response packets at calculated intervals. On the
'avefage, the intervals are separated by HELLO_PERIOD
seconds. The HBELLO.respconse packet contains a "seed" field
used in a well-known randomization algorithm to determine
the next hello time node and the next seed. The address of
the transmitting node is used as a factor in the algorithm
to guarantee randomization. Nodes can execute the algoritchm
i times to determine the time (and seed} of the i-th hello
packet from the transmitter.

After attaching, a roﬁter cheoses a random initial seed
and hello time and broadcasts a hello packet. The router

chocses succeeding hello times by executing the

120

5.680,633
163 164

randomizaticn algorithm. If the transmission of a
HELLO.response packet is delayed, then the delay is entered
into a "hello displacement" field in the packet, so that the
calculated time can be accurately derived by a receiver.
Cumulative delavs are not allowed (i.e. contention delays

during the i-th hello transmission do not effect the vime of

the i+l heilc transmission).

Sleeping terminal support
A sleeping node initially "synchronizes® on a

HELLO.response packet from its parent. The node can
calculate the time of the next expected HELLO.response
packet from its parent and can power-down with an active
timer interrupt set to wake it just before the
HELLO.response vacket is transmitted. The network layer
entigy in a parent node can store a message for a sleeping
node until the node “reguests® the message by notifying its
parent that it is awake. A terminal learns that it must
request unsolicitced saved message by examining the pending
message list in the HELLO.response packet. This
implementation enables sleeping terminals to receive
unsolicited messages and relaxes the timing constraints for
transaction oriented messages.

ATTACH, DATA, and ARP reguest packets can contain
several network parameters which are used for storing

pending messages for sleeping terminals in the parent router

121

5,680,633
165 166

node. A “delivery service type® parameter, indicates that a
terminal (i.e. which sent the request) is sleeping. An
nswake time window" parameter is used to specify an awake
time period. An "awake time offset" parameter is used to
specify the start of the awake time window. (The awake time
window is effective immediately if an awake time offset is
not specified.} &An "auto awake" delivery service type can
be used to implicitly set an awake time window each time the
parent node receives a message from the sleeping terminal.

A 'maximum stored message count' field specifies the
maximum number of HELLO times that a message should be
stored in the parent router ncde. The network layer entity
in a parent node will store pending messages until 1) the

message is delivered, or 2} "maximum stored message count®

hello times have expired.

Address Resolution

an address server in the root node maintains network
addressing information in an address table, distributes
network addresses to reguesting nodes, and resclves network
addressing problems. Each entry in the address table
contains a device type field, a network address field, a
long ID field, an alias field, an in-use fieid, and an age
field. Entries in the table are aged so that thay can pe
reused after MAX_ADDRESS_LIFE minutes. Aged entries are

kept in the table indefinitely. The age field in an entry

122

5,680,633
167 168

is reset to 0 wherever a RARP.request or ATTACH.request
packet is received from the ncde associated with the entry.
A separate segquential set of unique node identifiers is
mainrained for router nodes and terminal ncdes. Each set
begins with an identifier of 1 and ends with the maximum

raﬁge for the device type.

Reverse Address Resolution Protocol (RARP)

A RARP.reguest packet can be used to: 1) acguire a
necwork address from the address server, 2} change an
existing 48-bit long identifier in the address table, or 3)
change an existing alias in the address table.

2 node which does not yet have a unique 16-bit network
address must request a 1l-bit node identifier from the
address server. The node uses a multicast address until a
unique node identifier is assigned. A RARP.request packet,
containing the requesting node's unigue 48-bit long
identifier and/or an alias, is sent to the address server by
the requesting node. When a node requests a new address,
rhe server first checks its address table to determine 1f
the node already has a {valid or aged) address. If the ncde
doesn't already have an address, the server allocates the
next available node identifier, for the device type, to the
node. TIn either case, if an address is available, the
server will set a network address field in the RARP packet

to the allocated address and will set a RARP return code to

123

5,680,633
169 170

60

6. TIf an address is rot available, or an entry already
exists in the address table with ambiguous identifiers, the
address server will set the network address field to all 1l's
and will indicate the error in the return code fi=ld.

The address servers returns the RARP.request packet to
the requesting node as a RARP.response packet. If the node,
which gererated the RARP.request packet, does not receive a

RARP.response packet within PATH_TIMEOUT saconds, it must

resend the RARP.request.

RARP routing

RARP packets can not be routed with regular routing
tables because a node does not have a unigque network address
until it receives a RARP response packet. Each router node
maintains a separate RARP routing table which contains
entries for upstream nodes which have recently sent a
RARP.request packet to the root node. An example RARP route
table is shown in figure 10.

Wwhenever a RARP.request packet is received, an entry is
created (or updated) in the RARP route table and the lorng ID
and/or alias fields in the entry are set to the values
specified in the request packet. The node which initiated
the request is defined by the long 1D and/or alias. The
return code is inicialized to “invalid” to indicate that an
associated RARP.response packet, destined for the nede which

originated the RARP.request, has not been received. The

124

5,680,633
171 172

61

port field points to the port on which the RARP.request was
received. The network address is set to the network layer
source address of the RARP.request packet. The default
global node identifier {i.e. all 1's) is used before a
unigque network node identifier is obtained. (If a node 1is
attempting to change its long ID or alias, then the network

address may be unique.) The first hop field will be set to

the MAC source address. The age field will be set to 0.

long ID alias port | firsthop | network return age
address code

hex null l hex hex FFFF | invalid 0

1003508A990C 020A '

hex term2 1 hex hex 080C 0 3

1003508A9208 87FF

Figure 10. Aan Example RARP Routing Table

Normally, a router node will forward RARP.request
packets to the root node. However, if a router node
receives a RARP.request packet, and a valid entry for the
node which initiated the request is already in the RARP l
route table, the router can simply return a RARP.response
packet to the scurce node.

when a router node receives a RARP.response packet from

the root node, it will update the return code and network

address fields in the RARP route table entry for the node

125

5,680,633
173 ‘ 174

which initiated the request. RARP.response packets are
forwarded on the port specified in the route table entry.
The MAC destination address is set to the first hop address.
Note that the last hop is often made with a broadcast
transmission.

RARP route table entries are aged (quickly} so that

older encries are discarded in RARP_TIMEOUT seconas.

Address Resolution Protocol (ARP)

2a node can reguest the 16-bit network address of
another node by sending an ARP.reguest packet to an address
server in the root node. The ARP.request packet must
contain either the 48-bit identifier or the alias of the
target node, but not borh. The address server returns the
16-bit network address of the target node in an ARP.response
packet, if the target node exists in the server's address
table. An address of all 1's and an error is returnéd if
the target node is not in the address table or if the entry

for the target node is aged.

Address maintenance
A node will lose its address if: 1) the root node
changes (i.e. either a different ROOT ID or root sequence
numper is detected in a HELLO.response packet); 2) it has

not received an ATTACH.response packet, from the root node,

126

5,680,633
175 176

within an ADDRESS_TIMEOUT time period; or 3) no network
activity is detected within a NETWORK_TIMEQUT time period.
A node can maintain its address by sending an
ATTACH.request packet to the root node at least once per
ADDRESS_TIMEOUT time pericd. Note that a node must send an
ATTACH.request to the root at least once per ROUTE_TIMEQOUT
time period, to maintain its path to the root in the
spanning tree; therefore no special logic is required for
address maintenance. If the node is active it can simply
piggyback the ATTACH.request cn a higher-layer downstream
data packet. The root node will return an ATTACH.response

packet, and the node can reset its ADDRESS_TIMEQUT timer

when the response packet is received.

Root resolution states
The network layer entity in each router node is in one

of the following high-level node states:
R - Root node. The node owns the root node address.
RC - Root candidate node.

NR - Router node which has a non-zero root priority.

An 'a’ subscript is used to denote nodes without a

network address.

127

5,680,633
177 178

64

All node states are further gualified by one of three

attach states:

D - The node is Disabled and unattached.
U - The node iz enabled and Unattached.

A - The node is enabled and Attached to the network.

T - The node is in an Intermediate hold-down state.

For example, RC.U, is used to denote the node and
attach state of a root candidate which is not attached to
the network.

The following substates are used to gqualify an

unattached node:

idle - No network activity has been detected.
wait - Wait for the first HELLO.response packet.

hello - A HELLO.response packet has .been received.

Each MCNA network must have one or more root
candidates. Each root candidate node enters the RC.U state
when the network layer entity in the node is enabled. This
state ends when 1)} the root candidate determines that a
higher priority root node already exists and enters the NR.U
state, or 2) the root candidate assumes ownership of the

roct node status and enters the R.A state. A node in any NR

128

5,680,633
179 180

state assumes the root node status if 1) the network becomes
idle, or 2) a lower priority root node is detected.

A root candidate which does not detect any activity
assumes the roct node status. If activity is detected, the
root candidate remains in the RC.U.wait state untili a
HELLO.response packet is received or until network activity
ceases.

In the R.A state the root node broadcasts a
HELLO.respcnse packet once per HELLO_PERIOD time pericd,
according to a random distribution algorithm. The root
HELLO.response packets contain a path cost of 0, the
prioricty of the root node, & root sequence number, and a
ROOT ID which is either the unique long identifier or the
unique alias of the root device. IThe prioritv. rcot

i el . .]
had i — hoy
in the network. The root sequence number is stored in non-
volatile storage by all root candidates. The segquence
number is copied into RAM by the root node when it
determines that it is the root and the copy in non-volatile

storage is incremented.

Hello packet priority
3 '"higher pricrity HELLQ.response packet” is defined as
any HELLO.response packet which contains a matching LAN ID

and either 1) a higher ROCT PRIORITY field, or 2) an equal

129

5,680,633
181 182

priority field and a higher pricrity ROOT ID. A ROOT ID can
consist of a unigue 48-bit device ID and/or a device alias.
A "higher priority RQOT ID" is defined as 1) the ID with the
higher 48-bit ID, or, 2) if neither candidate has a 48-bit
ID, the ID with the alias with highest string wvalue. Note
that if the ROOT ID does not contain’a unigue 48-bit device
ID, then the 48-bit device ID is assumed to be all 0's.

It may be possible for a root candidate to receive a
HELLO.response packet with an equal priority if the ROOT ID
field in the HELLO.response packet matches the candidate's
de&ice identifier. Received HELLO.response packets with a
ROOT ID field that matches the identifier of the local
device and a non-zero path cost are assumed to be associated
with an out-of-date spanning tree and are discarded by the
network layer. Received HELLQO.response packets with a
matching ROOT ID and a zero path cost cause a fatal error.

The state transition table below defines transitions in

the root resolution process.

130

5,680,633

183 184
67
Table 7. Root Resolution State Transition Table

state event action next state

RC.D Network iayer entity Enable data link layeron | RC.U.idle
enabled. all network ports; set

HELLO_TIMEOUT
inactivity-timer.

RC.U.idle [nactivity-timer expires. - R.A
Non-HELLO packet Set R_IDLE_TIME RC.U.wait
received. inactivity-timer.

Higher priority HELLO | Set R_IDLE_TIME NRa.U.hello
packet received. inactivity-timer; set
HELLO_TIMEOUT
hello- timer.
Lower prioritcy HELLO R.A
_packet received.

RC.U.wait Inactivity-timer expires. R.A
Non-HELLO packet Set R_IDLE_TIME RC.U.wait
received. inactivity-timer.

Higher priority HELLO | Set R_IDLE_TIME NRa.U.hello
packet received. inactivity-timer; set
HELLO_TIMEQUT
hello- timer.
Lower priority HELLO R.A
packet received.

NR.U Lower priority HELLO | Set R_IDLE_TIME NR.I then
packet received. inactivity-timer. RC.U.wait

R.A Higher priority HELLO | Transmit HELLO packets | R.I then
packet received, with an infinite path cost | NRa.U.heilo

for

MAX_HELLO _LOST+!
HELLO periods; set
R_IDLE_TIME
inactivity-timer; set
HELLO_TIMEOUT
hello-timer.

131

5,680,633
185 186

HAPTER V

0

TRANSPORT LAVER

The MCNA transport layer provides a reliable cecrnecticn
oriented service and an unreliable connectionless service.
The MCNA network layer does not provide a reliable end-to-
end service because it can lose packets over transient radio
1inks. Go-back-n transport error recovery is sufficient
since the network layer does not fragment packets and
packets are normally delivered in sequence. The transport
layer recovers from lost packets, discards duplicate
packets, and fragments and reassembles logical user
messages. Essentially, it provides a data pipeline between
access points in terminal nodes.

Connection oriented services are provided with the

following primitives:

TL_CONNECT.request (alias,DSAP, . . .)
TL_CONNECT.indication (destination, DSAP,SSAP, . . .J
TL_LISTEN.request (SS&P, . . .)

TL_SEND.request (connection, buffer, length}
TL_RECEIVE.indication (connection, buffer, length)

TL_DISCONNECT.request (connection)

*

132

5,680,633
187 188

Connectionless services are provided with the following

primitives:

TL_UNITDATA.request (alias, DSAP, SSAP, buffer, length);

TL_UNITDATA_LISTEN,.request (SSAP, ...} ;

A transport connection is defined by a destination and
source network address and a destination and source service
access point (SAP). The TL_CONNECT and TL_LISTEN functions
are used to establish a transport connection between two
service access points. A transport application in a first
node can use TL_LISTEN to “listen" on a well-known source
service access point (SSAP). A transport application in a
second node can "connect’ to the well-known access point
with the TL_CONNECT function. The TL_CONNECT.regquest DSAP
parameter is the same as the SSAP parameter used in the
TL_LISTEN.request. A connect SSAP is generated by the
svstem in the second node. The "alias' passed to the
TL_CONNECT.request function is the network name of the first
node. The network layer converts the alias into a network
address. Once a connection is established, data is sent and
received with the TL_SEND.request and TL_RECEIVE.indication
functions. A node which initiates a connection must insure

rhat at least a MAX_PACKET LIFE time period has expired

133

5,680,633
189 190

70

since an old connection existed before issuing a new
TL_CONNECT.request with the same alias, DSAP, and SSAP.

Since all packets sent during a connection may not
folilow the same path, no more than MAX_SEQ frames may be
sent in a MAX_PACKET_LIFE time period, where MAX_SEQ is the
maximum message sequence number and ﬁix_PACKET_LIFE is the
longest time that a packet can be delayed in the network.
Note that the spanning tree topology insures that packets
will not loop.

The transport entity in a terminal node stores messages
for possible retransmission. Retransmissions may not always
follow the same path, as the original transmission, due
{primarily) to moving terminals and the resulting changes in
the spanning tree. For example, the network layer entity in
a parent node may disconnect a child after the data link
entity reports a message delivery failure. The child will
soon discover that it is detached and will reattach to the
spanning tree with a different parent. Now when a transport
layer message i3 (re)sent, it will follow the new path.

Network packets can ke lost due to terminal roaming or
network congestion. In a ccongested network a packer can be
discarded by a router node when the router does not have a
free buffer. A timer is started for each transmitced
transport message which reguires a response. If the

expected response 1s not received within a reasonable time

134

5,680,633
191 ' 192

S
s

period, the message is retransmitted. Retransmitting
discarded messages too quickly can aggravate the congestion
problem. The MCNA transport layer uses an adaptive timer
aigorithm to adjust the expected propagation delay for
transport messages to the end-to-end distance and traffic
load, without causing speoradic changés or dramatic swings in
time-out values. The algorithm prevents the transport laver
from saturating the network by increasing message time-out
values {i.e. increasing the time between retransmissions)
whenever a message is lost. The algorithm prevents
saturation when the network is congested but reduces
response times when messages are lost due to roaming
terminals. To alleviate this problem, the MCNA network
layer notifies the transport layer when a network layer path
change is detected. The notification can trigger an
immediate retransmission if unacknowledged messages exist on
a connection, or an expected response has not been received.

Since network addresses are a component of a transport
connection identifier, the transport entity in each node
must be notified when the root node changes. 0ld network
addresses are invalid if the root node changes and the
asscciated transport connections are lost.

A separate trivial transacticn-oriented transport
protocol (TTTP} is required to reliably gather network

statistics and to send mail messages between terminals.

135

5,680,633
193 194

72

TTTP allows information to ke reliably exchanged between
nodes without the overhead of creating and deleting
connections. TTTP regquires a response at the application
layer and retries transaction requests until a response is

received. All transactions are assumed to be idempotent.

136

5,680,633
195 196

73

CHAPTER VI

SUMMARY

gonclusions

The MCNA backward learning technique eliminates the
need to broadcast or exchange routing information. Roaming
terminal nodes can switch paths immediately with little
added overhead. & disadvantage of the backward learning
technigue is that a terminal node can not directly
communicate with another terminal node. All data traffic
must be routed through the nearest common ancestor, thus
increasing the total data traffic in the network. MCNa
assumes that most of the extra traffic can be localized to
high-speed wired links. This is certainly a valid
assumption if the predominant application is terminal
emulaticn, since most traffic is directed to a host
computer.

An MCNA network is inherently redundant. If a router
node fails, the subtree underneath it can gquickly re-attach
to the netwerk, with minimum overhead, provided a coverage

area is not lost. If the root node is lost, the root

137

5,680,633
197 198

74

resolution protocol enables another node to assume the root
status and the spanning tree can be re-built.

MCNA provides an efficient and robust solution for
connecting a periphery of mcbile terminals to a stable

network infrastructure.

Euture MCNA extensiOns

MCNA requires a hierarchical network for communications
between any two nodes. A desirable extension, would be to
allow two MCNA nodes to communicate directly in the absence
of the hierarchical network. Such point-to-point sessions
are often referred to as ad hoc conversations in current
papers on wireless networks. A problem arises because data
link and network addresses are dispensed by the MCNA
network. This problem could be overcome. by defining a
global LAN identifier, reserved for ad hoc conversations,
and by allowing nodes to independently choose data link
addresses as part of an initial handshaking phase prior to
an ad hoc sessicn. Predefined unique network addresses
(i.e. IEEE 802 addresses) could be assigned to each MCNA
node to avoid problems arising from ambiguous data link
addresses. Note that the use of predefined (i.e. large)
data link addresses would add substantial overhead for
unicast transmissions.

As a second possible extension, the MCNA architecture

could be modified to enable transparent bridging to wired

138

5,680,633
199 200

75
802 local area networks. Such an extension requires each
nede in the MCNA network to be idenrified by an IEEE 802
address. The device which contained the MCNA root node
would have to function as the designated bridge for the
"MCNA subnet®'. The details of this extension are peyond the

scope of this thesis and are the subject of a patent

application submitted by Norand Corporation.

139

5,680,633
201 202

76

REFERENCES

{1] B. M. Leiner, bp. L. Nielson, and F. A, Tobagi, Issyes ip
< 10 Design, Proceedings of the IEEE, Vol. 75,
No. 1, January 1987,

(2] L. RKleinrock and F. a. Tobagi, Facket Switching i Radjo
Channels; Part I - mﬁlﬂn&m&mﬁ
mﬂhﬂﬁmﬂhmnmgmmﬁ IEEE

Transactions on Communications, vol. COM-23, No. 12,
December 1975.

(31 L. Kleinrock and F. a. Tobagi, mg!—m:hmg_.n_agm

Solution, IEEE Transactions on Communications, vol.
COM-23, No. 12, December 1975.

[4] L. Rleinrock ana F. A. Tobagi, i] in R
-

Channels: Part 1v - <tability Considerations and
Dyvnamic control in Carrier Sense Myltiple Access, IEEE
Transactions an Communications, vol. COM-25, No. 10,

October 1977.

[5] L. Kleinrock and J. Silvester, Qg the Bebavior of Muylti-
i + Proceedings of the IEEE,
Vol. 75, No. 1, January 1987.

[6] M. B. pursley, in P
i + Proceedings of the IEEE, Vol. 75, No.
1, January 1987. -

{71 J. o. Onunga and R. W. Donaldson, Enggxmangg_Anaizsig

Mmmw)#ﬂ
Noisvy Datg Networks with Figite User Population, IEEE
Transactions on Communications, vol. 39, No. 7, July

1991.

[8] L. Rleinrock and J. Silvester, Spatial Reuse g Multi-
h 2 10 Nety + Proceedings of the 1EEE,
Vel. 75, No.1, January 1987.

140

5,680,633

203 204
77
[9] F. Backes, Zransparent Bridaes for Intercomnection of
4AEEE 802 LANs, IEEE Network, Vol. 2, No. 1, January
1988.

(10] International Standard ISO/DIS 8802-2.2.

[11] A. S. Tanenbaum, Computer Networks, Prentice Hall,

Second Edition

[12] D. E. Comer, Internetworking with TCP/IP, Prentice Hall

141

5,680,633
205 206

APPENDIX B:

TM 1100 DATA TERMINAL EPECIFICATIONS

©Copyright 1992 by NORAND CORPORATION

142

207

5,680,633
208

980-000-096
April 1993

NBRANDG

_ service
instruction book

TM1100
Data Terminal

This instruction book is in four sections:
General Information

Theory of Operation

Maintenance

Diagrams and Parts Lists

¥ 1992 Norand Corporation. All rights reserved

143

5,680,633
209 210

We weicome your comments concerning this service instruction book. Although every effort has been made to
keep it free of errors, some may occur. When reporting a soecific problem, please describe it briefly, include the
book titte and part number, and inciude the page number on wrch It Gecurs.

Send your comments to:

NORAND CORPQRATION
PUBLICATIONS DEPARTMENT—BL 11
550 SECOND STREET S.E.

CEDAR RAPIDS, IOWA 52401

NGRAND

Norand Corporation

560 Second Street SE
Cedar Rapids, lowa 52401
Phone: {319) 363-3100

® Registered Trademark; Marca Registrada by Norand Corperation, Cedar Rapids, lowa, U.S.A.

© 1992 Norand Corporation. All rights reserved

NOTICE

This equipment has been tested and found 10 comply with the limits for a Class A digital device, pursuant to
Part 15 ofthe FCC Rules. These fimits are designed to provide reasonable protection against harmful interfer-
ence when the equipment is operated in a commercial environment. This equipment generates, uses, and
can radiate radio frequency energy and if not installed and used in accordance with the instruction manual,
may cause harmiful interference to radio communications. QOperation of this equipment in a residential area
is likely ta cause interference in which case the user will be required to correct the interference at the user'’s
Own expense.

NOTICE

This document contains confidential information and is proprietary to Norand Corporation. Itis bein1g supplied
to you with the express understanding that the information contained herein be held in confidence. This docu-
ment is not to be capied, distributed, or displayed to third parties with out the express written consent of Norand
Corporation, and shall be returned to Narand Corporation upon written reguest. itapurchase, license, or non—
disclosure agreement has been executed, the terms of that agreement shall govern this document.

NOTICE
This publication is turnished for intormauon only, and the information in it is subject to change without notice.

Alihough every effort has been made ta provide complete and accurate information, NORAND Carporation
assumes no responsibility or liability for any errors or inaccuracies that may appear in this document.

144

5,680,633

21

1.1 INTRODUCTION

This service instruction book (SIB} contains the
theory of operation, maintenance procedures,
and diagrams and parts lists for the
NORAND® 1100 Series Data Terminal (NPN
225-001-XXX). The 1100 Series Data Terminal
is shown in Figure 1-1. Refer to table 1-1 for
the terminal specifications.

1.2 PURPOSE OF EQUIPMENT

The 1100 series terminal is a portable, hand-
held computer terminal. 1t is used in various
NORAND data networks as a data gathering
device. The operaior enters data into the ter-
minal using the terminal keyboard, an attached
bar code scanner, an integrated barcode scan-
ner, or a combination of the three. The
terminal transfers the entered data to a host
computer over a radio frequency link or
through a local area network {LAN), via the
remaining components of the network.

The 1100 Series Data Terminal contains 512K of
non-volitale RAM, 128K of FLASH and 512K
of masked ROM memory.

The terminal uses a variety of attached (as
opposed to integrated) five volt bar code
scanning devices. Attached bar code scanners
are connected to the terminal at the 9-pin
D-sub connector located on the bottom of the
terminal. The terminal controls the operation
of the scanner.

Terminals with integrated bar code scanners
have a built-in scanning device. Integrated
scanning terminals feature four “triggers” to
operate the scanner — two on the inlegrated bar
code scanning device, and two on the terminal
keypad.

212

~eneral information

The terminal display is a 4-line by 16—harac-
ter, reflective super—twist LCD. The reflective
super-twist LCD enhances the display’s read-
ability, even in low lighting.

The terminal keypad has 47 alphanumeric
keys, includng the ON/OFF key. Four keys are
programmable in both the normal and shift
modes, for a total of eight special characters or
function .

e

A]
/
f
f:

Figure 1-1
1100 Series Data Terminal
(RT1140 model shown)

1.3 COMMONLY USED ABBREVIATIONS

Table 1-2 lists the abbreviations used through-
ouwt this service instruction book.

145

213

general informatic. .

5,680,633

214

Table 1-1. RT1100 Data Terminal Specifications

CHARACTERISTIC SPECIFICATION
PHYSICAL
Size:
Length 6.875 inches (17.46 cm)
Width 2.625inches (6.68 cm)
Depth 1.25 inches {3.18 cm)
Weight: 15.2 aunces {431 grams) without scanning module
18.2 ounces {516 grams) with scanning module
ELECTRICAL

Battery Pack Characteristics:
Normal recharge time
Pack life

Radio Transceiver Characteristics:
Radio Power
Frequency Range
RF Data Rate

Display

Memory:
RAM
FLASH ROM
MASKED RCM

Bar Code Scanning Support
EMI ana AF!
ESD .

Line Transients

Compilete in 8 hours using Norand NC100 Charger.
At least 500 discharge/charge cycles.

1 watt (maximum)
450 to 470 MHz
4800 baud (8600 with RTC protocol)

6 or 8 Line with 12 or 16 character LCD.

512K bytes

256K bytes

512 bytes

Any 5 voit scanning device; CCD, Visible Laser Diade,
and Pen Wand.

Complies with FCC part 15, subpart J, for Class A
computing devices.

Will not undergo irreversible damage when subjected
1o 20KV electrostatic discharge or all surfaces.

Capable of withstanding unfiltered power line t-ansc:-
ents up to 32V dc for 1 msec.

146

215

5,680,633

216

qeneral information

Table 1-1. RT1100 Data Terminal Specifications (continued)

CHARACTERISTIC

SPECIFICATION

External Conneciors
Scanner linterface:
J2-1
J2-2
J2-3
J2—4
J2-5
J2—6
J2-7
J2-8
J2-9

RS232/485
J1
J2
J3
Ja
J5
J6

Charger:
J3-1

9-pin D subminiature
SOS

DATA

LED

MOTORFAIL
TRIGGER

ENABLE

GND

GND

+V

&—pin mini~DIN
ERXD/DATA
ETXO/DATAL
RTS

CTS

CHG

GND

é—pin DIN
NOT USED
NOT USED
NOT USED
GND
CHARGE
NOT USED

147

217

general informatic

5,680,633

Table 1-1. RT1100 Data Terminal Specifications (continued)

218

CHARACTERISTIC SPECIFICATION
Internal Connectors
RT1100 Host Board
Ji-1 ‘ NOT USED
Ji-2 ON/OFF
J1-3 RADGPOQ
Ji-4 RADGP1
J1-5 RADGP2
Ji-6 RADGP3
Radio/Scanner Interface Signal
P2-1 BATTV+
p2-2 RADION
pP2-3 PTT
P24 RXDATA
P2-5 TXDATA
P2-8 SP48_96
p2-7 +8V
P2-8 RX_AUDIO
P2-9 TXDC188
P2~10 RXDC 188
P2-11 TXFQ
P2-12 GND
P31 DATA
P3-2 S08
P3-3 RSTRIG
P3— RENABLE
P3-5 VSCAN+
P3-6 BUZZER

148

5,680,633
219 220

Jeneral information

Table 1-1. RT1100 Data Tenninal Specifications (continued)

CHARACTERISTIC SPECIFICATION
Flextail Callouts

P3-1 ENABLE
P3-2 S80S
P3-3 GND
P34 SDATA
P3~5 GND
P3-6 SCNLED
P3-7 VSCAN+
P3-8 GND
P3-9 TRIGGER
P3-10 EATSA
P3-11 CHARGE
P3~-12 ERXDA
P3-13 ETXDA
P3-14 ECTSA
P3—-15 GND

Radio Transceiver

J1-1 GND

J1-2 SW B+
J1-3 XMIT B+
J1-4 RX +5

J1-5 TX +5

J1-6 TX MOD
J1-7 SQ DET
J1-8 SQ ADJ OUT
J1-9 SQ ADJ IN
J1-10 DISCR OUT
Ji-11 CHSELB
J1-12 CH SEL A

149

221

general informatic .

5,680,633

222

Table 1-1. RT1100 Data Terminal Specifications (continued)

CHARACTERISTIC SPECIFICATION
J1-13 AUX TX MOD
J1-14 UNSW BATT

Input signal levels
Minimum mark (logic 1)
Maximum space {logic 0)
{nput impedance

Qutput Signal Levels:
Minimum mark {logic 1)
Maximum space (iogic 0)
Minimum drivable load

—3V dc (OV or open appears as logic 1)
+3V de

3kQ minimum; 7kQ maximum

-3V dc (OV or open appears as logic 1)
+3V dc
i3e]

ENVIROMENTAL

Temperature:
Storage
Operating

Relative Humidity

Dust

Shock/Vibration

—4010 1568° F (—401070° C)
3210 104° F (0 to 40° C)
10% to 90%, noncondensing

Envircnmentally sealed to withstand penetration of
dust.

Will suffer cosmetic damage only and shall operate
after drop tested as per the Electronic Industries
Association Standard RS-316-8 method 5.6.

150

5,680,633

223 224
aeneral information
Table 1-2 Commonly Used Abbreviations
ABBREVIATION MEANING COMMENTS

A Ampere Unit of measurement for electrical
current,

ac Alternating Current Current that periodically changes
magnitude and direction of flow.

aux Auxiliary. (backup)

cm Centimeters

CMOS Complementary Metal-Oxide

Semiconductor

CPU Central Processing Unit Circuit which contains a micropro-
cessor. Can also designate the mi-
croprocessor itself.

de Direct Current Current which always flows in the
same direction.

EEPROM Electrically Erasable Programmable | Medium for permanent storage of

Read-Only Memory operating program,
EPRCM Erasable Programmable Read— Medium for permanent storage of
Only Memory operating program.

ESD(S) Electro Static Discharge (Sensitive) | Voltage induced into equipment by
static charges present in most work/
lab environments. (Units or subas-
sembilies that may fail when sub-
jected to electrostatic charges.)

FM Frequency Modulated Methed of integrating data ontc an
RF carrier signal.

Hz Herz Unit of frequency measurement. 1
Hz = 1 ¢cycle per second.

l{e] Input/Output Data going to (input) or coming from
{output) a device or component.

in Inches

Kk kilo One thousand (e.g., kY = 1 thousand
volts).

LCD Liquid Crystai Display

m mill A thousandth {e.g., mV = 1 thou-
sandth of a volt).

max Maximum

min Minimum

mux Muitiplexer

NPN Norand Part Number

151

5,680,633

225 226
general informatic
Table 1-2 Commonly Used Abbreviations {continued)
ABBREVIATION MEANING COMMENTS
gty quantity The number of items required.
RAM Random~Access Read-Write Medium for temporary storage of
Memory instructions or data.

RF Radio Frequency

ROM Read-Only Memary Medium for permanent storage ot
instructions or data.

RTV return to vendor Indicates that a component ¢r as-
sembly is repaired by the manufac-
turer and not by Norand Customer
Support Centers.

TTL Transistor—Transistor Logic

uuT Unit Under Test Designator used to indicate the radio
data terminal in the testing/trouble-
shooting procedures.

Vv Volt Unit of measurement for electricat
pressure.

1-8

152

5,680,633

227

2.0 General

This section contains the theory of operation
for the TM1100 Data Terminal. The TM1100
terminal is positioned toward the high end of
the Cricket family of portable data terminals
with a 16-bit 8086 compatible microprocessor,
program and data memary, radio/scanner ex-
pansion modules that are compatible with the
RT1000 and new expansion modules with in-
creased functionality.

2.1 TM1100 Functionality

The TM1100 terminal shares a number of char-
acteristics with the RT1000 terminal including
its battery pack, 47 key keyboard, moving
beam scanner interface, compatibility with the
RT1000 radio/scanner expansion modules and
a slightly modified version of the plastic case.
The primary differences between the TM1100
and the RT1000 terminals are in the areas of
processor intelligence, memory capacity and
peripheral connection capability.

The TM1100 has an 80C188EB microprocessor
as its main data processing unit with 512K by-
tes of masked ROM, 512K bytes of RAM and
up o 256K bytes of Flash EPROM. This pro-
cessor and memory combination allow
significant application program functionality
to be resident within the terminal including
“IBM PC-like” DOS, "C”, and other personal
computer derived programming methods.

The TM1100 LCD display is also substantially
different from the RT1000 type. A single inte-
grated circuit graphic display controtler is
assembled with the LCD glass and electrolumi-
nescent backlight panel into a module form.
The display format is a graphic type with 48
rows x 100 columns which form 6 lines of 16
3x7 dot matrix characters with the remaining 4
pixel columns used for icon style annunciators.
The display is backlighted by an integral elec-

228

theory of operation

troluminescent panel which is powered by
high voltage AC drive circuits on the main cir-
cuit board. -

Other areas of expanded functionality inthe
TM1100 include its R5-232 and R5—485 inter-
face capability, battery backed RAM and real
time clock, and its unique combination of two
microprocessors which partition the terminal
operation requirements into the two parts of
1/0 and power management which is con-
trolled by an H8/325 microprocessor and
application processing which is the function of
the BOC188EB microprocessor. This combina-
tion provides improved power conservation
while maintaining the necessary processing
performance for popular programming and
application development environments. Much
of the terminal functionality is included ina
custom LS] circuit (ASIC) which implements
the memory interface, processor and real time
clocks, interprocessor communications and
backlight drive control.

2.2 System Block Diagram Overview

The TM1100 Data Terminal is a microprocessor
based terminal with features that allow it to be
used and programmed similarly to popular
personal computers. The block diagram of the
terminal is shown in Figure 2-1, on page 2-2.

The main CPU is an Intel 80C188EB micropro-

- cessor which is a 16-bit microprocessor with
on—hip interrupt interface, I/O ports, imers
and serial interface.

The 1/0 and power management processor is a
Hitachi H8/325 single chip microcontroller
with 32K bytes of on-board masked ROM,
1024 bytes of RAM, serial interface, timer/
counters and external I/0O ports.

The ASIC provides a parallel communication
path between the two processors using back-
to-back memory mapped ports that allow data

'y

153

229

theory of operatic.

High speed
Async
Interface

5,680,633

RS-232
RS—485
Interface

Application
Processor:

Scanner
Interface

230

ROM
512K

80CI1RS8EB

Keyboard
8x8

PSRAM
512K

Buzzer

Radio
Interface

ASIC

Flash
EPROM
256K

LCD
Display
48x 100

(graphic)

Charge/
Power
Control

Bauery

Control
Processor:
H8/325

Figure 2-1
TM1100, Functional Block Diggram

154

Backlight

ve

5,680,633

231

to be written by one processor and read by the
other. The ASIC also includes the bus demulti-
Plexing circuits for the 80C188ER as well as
memory decoding and processor clock genera-
tion.

The memory organization of the terminal is a
combination of masked ROM, Flash EPROM
and pseudostatic RAM. The pseudostatic
RAM and real ime clock in the ASIC are pow-
ered by a backed up power supply.

The liquid crystal display is a module featur-
ing a 48 line by 100 pixel graphic format with
an integral LS] driver /controller integrated cir-
cuit and electroluminescent backlight panel.
The display is interfaced to the BOC188EB pro-
cessor through memory ma pped I/0O. The
keyboard is directly interfaced to the H8/325
processor by processor ports. A radio module
s interfaced to the H8/325 with processor
ports and the H8/325 serial interface, Expan-
sion modules of types other than a radio
module are interfaced to the H8/325, however,
a high speed serial interface facility to the
80C188EB is available for direct coupling. This
may be useful for interface to devices that re-
quire high data rates such as solid state disk
modules or certain high speed radio modules.

Externally attached or integrated scanners are
interfaced through ESD protection circuits to
processor ports. The power control block con-
sists of the terminal battery and power control
and voltage regulator circyits.

2.3 Application Microprocessor

The main processor in the TM1100 is an
BOC188EB which s a highly integrated fully
static low power 16-bit microprocessor featur-
ing an 8086 compatible instruction set with an
S=bit external data bus, chip select generation
logic. 3 counter/ timer naits, two seral com-
munication ports, [/0 ports, a power

232

theory of operation

management unit and an interrupt controller
unit. Since the 80C188EB s a fully static de-
vice, the clock may be turned off compietely
without losing its state resulting in significant
Power savings,

2.4 Memory

2.4.1 Masked ROM

The masked ROM is a 512K byte device which
contains two basic blocks of information. The
bootstrap loader which controls loading and
programming of the Flash EPROM is con-
tained in the masked ROM so that there is a
guaranteed ability to initialize or restore the
condition of the terminal under conditions
ranging from manufacture to fauit recovery.
The other information stored in the masked
ROM is the character generator used by the
80C188EB to form characters in the graphic
display. This character generator contains the
so—called “shift-JIS” character set which in-
cludes a complete set of international text
characters as well as a 6500 character Japanese
Kanji symbol set. Initia] TM1100 units will use
an OTP (One Time Programmable) EPROM de-
vice until the masked units are available.

2.4.2 Flash EPROM

The Flash EPROM is a 256K byte device which
contains stored system and application pro-
grams. Flash EPROM is a technology similar
to the ultraviolet erasable EPROM except the
erase function is performed electrically. Conse-
quently, there is no need to remove the device
from the circuit for reprogramming so the de-
vice can be directly soldered to the circuit
board. The Flash EPROM s the primary ap-
plication program storage location. The
masked ROM contains a bootstrap load and
Flash programming utility that is used to re-

2-3

155

5,680,633

233

theory of operatioi

ceive the program from an external computer
and program it into the Flash device.

2.4.3 Pseudostatic RAM

The TM1100 RAM is a 512K byte pseudostatic
device which employs a combination of dy-
namic and static RAM technology. The storage
mechanism is a dynamic cell which requires
retresh for data retention. The pseudostatic
memory includes on-board circuits to perform
this refresh function in such a way that the de-
vice looks to the system like a static RAM. In
standby, the refresh function is performed in-
ternally in a very low power mode, so the
pseudostatic device performs similarly to a full
static RAM while providing memory density
comparable to a dynamic RAM. The other im-
portant benefit of the pseudostatic RAM is its
bytewide organization which allows the use of
a single memory device in the system.

2.5 Power Control, I/0 Microprocessor

While the 80C188EB is a low power device, it
still consumes too much current to be left oper-
ating constantly.- The H8/325 microcontroller
is a much lower power microprocessor and it
has efficient timer /counter facilities on board
for further power reduction by allowing the
processor to remain in its idle mode most of
the time.

In general, terminal operation is partitioned
into I/O and application related parts. The
1/0O portions of the terminal operation are pri-
marily controlled by the HB/325, while the
application portion is handled by the
S80C188EB. The 1/0 operations controlled by
the H8/325 include kevboard interface, scan-
ner interface (up to the count collection
operation), UHF radio interface inctuding the
entire communication protocol, buzzer and
power management including battery terminal
voltage monitoring, LCD bias voltage control,

234

LCD backlight control, R5-232/485 driver con-
trol, and pseudostatic RAM refresh enable in
standby. The H8/325 also provides a rich set
of /O ports which generally helps reduce
parts count and complexity.

2.6 Display

The TM1100 terminal features a unique display
with extremely compact packaging technology
to provide increased functionality in the Crick-
et form factor. In essence, the TM1100 display
module consists of a sandwich of the display
glass, EL backlight panel and circuit board con-
nected together with heat—seal tape. This very
thin structure allows the module to be located
in the space originally designed for the RT1000
LCD glass alone.

The TM1100 display is controlled by a Hitachi
66108 graphic controller /driver which is con-
tained in a 208 pin Tape Automated Bonding
(TAB) package. The 66108 is a complete single
chip driver with on—board RAM, multiplexing
and driving circuits for the 100 pixel column
by 48 pixel row dispiay format used in the
TM1100. The interface to the 66108 is a
memory mapped bus connected to the
80C188EB so that the display is directly con-
trollable by the high speed application
processor. The display character format is gen-
erated by the 80C188EB by retrieving the
character generator information from the
masked ROM as described in section 2.3.1.
Display formats of 6 lines x 16 characters, 6
lines x 12 characters and 8 lines x 16 characters
are available under processor control. While
the entire display contents are controllable by
the application program, in general the charac-
ter display mode will be used, and the right 4
pixel positions will be used for icon-type an-
nunciators indicating the shift, battery, charge
and communication staius without preempting
displayable character positions.

156

5,680,633

235

The display is backlighted by an integral EL
panel which is driven by high voltage AC
drive circuits located on the CPU circuit board.

2.7 Keyboard

The TM1100 terminal has 47 keys including the
power—on key. The keyboard is organized as a
crosspoint matrix in 8 row x 6 column format
and is interfaced to the H8/325 microcontrol-
ler. The row lines are connected to processor
outputs and the column lines are connected to
inputs with pullups. Keyboard scanning is ac-
complished by sequentially driving a single
row line low and reading the column lines to
determine when one of those lines is low. The
indicated line corresponds to the column in
which the activated key is located, so the key is
located by the junction of the selected row line
and the indicated column line. Since the key is
a switch, there is switch bounce associated
with the electromechanical contact, so a firm-
ware routine is included to deal with the
switch bounce effects.

2.8 Expansion Interface

As a member of the Cricket product family, the
TM1100 terminal has been developed initially
to be a radio data terminal. However, with the
significant application program and data stor-
age capability of the terminal, it is clear that
the TM1100 has excellent capacity to be used as
a site-based batch terminal as well. Conse-
quently, the RT1000-style modular radic
interface has become a much broader concept

" in the TM1100.

2.8.1 Radio Interface

Radio communication in the TM1100 includes
the RT1000 stvle radio module for UHF ap-
plications as well as an expanded radio
module for Spread Spectrum (5ST) commu-

236

theory of operation

nications. As in the RT1000, the UHF
communication capability is built around the
Motorola Radius P10™ and P60™ radio trans-
ceivers. The H8/325 processor handles UHF
radio communications completely including
power control to the radio module, receiving
and transmitting characters, and complete im-
plementation of the radioc protocol. When a
complete, error free block of information is re-
ceived and contained in the H8/325 memory.
“wakes up” the 80C188EB processor and trans-
fers the block at high speed, thereby
significantly reducing the amount of time that
the 80C188EB has to be powered and operat-
ing. Transmission of a block of information is
handled in a similar manner, with the
80C188EB transferring a block to be trans-
mitted to the H8/325 memory and powering
off while the H8325 performs the radio com-
munication function.

SST communication is handled somewhat dif-
ferently in the TM1100 due to the high data
rate and HDLC format of the SST radio. Be-
cause of this somewhat unique communication
requirement, the SST radio module has its own
self—contained microcontroller, Serial Commu-
nication Controller (SCC) and counter/timer
circuit imbedded in a digital ASIC which al..
includes the digital circuits required by the 551
radio itself. The SST radio module with its
processor and ASIC handle the 55T commu-
nications and protocol completely and transfer
received and transmitted data directly to and
from the 80C188EB processor. Asin the case of
the UHF module, power is conserved by using
a low power processor to perform the commu-
nication and protocol handling function.

2.8.2 Scanner Interface
The TMIT100 has the capability to support a va-

rietv of attached or integrated scanners.
Interface to scanning devices is shared between

2-5

157

5,680,633

237

theory of operatfio,.

the H8/325 and 80C188EB processors. The
H8/325 is interfaced to the TRIGGER input so
it can sense when the operator initiates a scan
operation and the scanner must be enabled by
turning on ENABLE to the scanner. Once this
operation begins, the count collection portion
of the scanner interface is handled by the
80C188EB with its high speed 16 bit counter/
timer circuits and resident scan decode
algorithms. The basic scanner interface is the
industry standard 9 pin scanner definition
shown in Table 2-1.

Table 21 Scanner Interface Pin Definition

SIGNAL
PIN LEVEL /O | DESCRIPTION
5 volt logic
T (pullup) | SOS
5 volt logic
2 | (pullup) | DATA
3 |5voltbuffered | O LED
nc, ESD
4 |protectiononty | || MOTORFAILL
5 volt logic
5 (pullup) ! TRIG
Switched +5
6 |volts o ENABLE
7 | Ground GND
Ground GND
5 volt power ¢} +V

238

port an integrated scanner module which is
associated with the expansion module. The
integrated scanner module is physically larger
than the “radio only” unit, though its interface
connector and physical mounting structure are
identical. The integrated modules may employ
moving beam laser, charge coupled device
(CCD) or other types of scanner technology.

2.8.3 R5-232, R5-485 Interface

The TM1100 terminal has two separate serial
interface facilities for wired communications to
computers and peripherals. Both the R5-232
and the RS-485 interfaces are accessed through
the 6~pin mini~-DIN connector by sharing two
of the pins. The mini~-DIN pin configuration is
as follows:

Table 2-2 Charger/Data Interface Pin Definition

This scanner interface may be used to support
- a wide varietv of industrv compatible scan-

ners, and may also be used to support digital
wand scanners. :

In addition to the externally connected scanner,

the TM1100 terminal has the capability to sup-

»

SIGNAL
PIN| TEVEL /O | DESCRIPTION

RS-232/RS-485

Y (puillup) 10 | EXRD/DATA
RS-232/RS-485

2 | pulidown) /O | ETXD/DATAL

4 |RS-232 | cTS

5 |Charge input i CHG

6 |Ground GND

The R5-232 RXD and TXD lines are shared
with the RS-485 DATA and DATAL lines by
separately enabling the line drivers under soft-
ware control. The RS&-232 interface is generally
intended to be used for point-to—point inter-
face to devices such as computers for Flash
program download and to printers or other at-
tached peripherals. The RS5-485 interface is

158

5,680,633

239

generally used for networked interface connec-
tions where the multidrop capability is needed.

2.8.4 ASIC

A digital Application Specific Integrated Cir-
cuit (ASIC) is used to implement a significant
portion of the logic functionality of the
TM1100. The ASIC includes the back-to-back
8-bit ports that are used by the 80C188EB and
H8/325 microprocessor to communicate with
each other, bus demultiplexing, memory de-
coding and control for the B0C188 ROM, Flash
EPROM and pseudostatic RAM, drive and
control for the electroluminescent backlight
high voltage generation circuit, clock oscilla-
tors for both microprocessors and the battery
backed real time clock.

2.8.5 Power Control

The TM1100 is powered by a standard Motoro-
la P10™ 7.2 volt NiCad battery pack or
equivalent. The terminal is powered on and
off by a momentary contact SPST power—on
key which toggles a latch to control power.

The terminal 5 volt operating power is gener-
ated by a voltage regulator with an external
pass transistor. The negative voltage required
by the LCD is generated by a charge pump
driven by the digital ASIC. Backup power for
the real ime clock and pseudostatic RAM is
provided by a 0.3 Farad supercap and a low
power voltage regulator. Battery charging is
accomplished by a constant current regulator.
The battery and charge voltage are monitored
by the H8/325 using its pulse width modulator
outputs to create an analog voltage that may be
used in a successive approximation analog to
digital conversion.

240

theory of operation

2.9 Detailed Description

The following paragraphs describe the opera-
tion of the 1100 terminal in detail. Component
names and reference designators used in the
following paragraphs match those used in the
schematic diagrams of the 11000 terminal, con-
tained in the Diagrams and Parts List section of
this book.

2.10 Processor

The heart of the TM1100 is the 80C188EB mi-
croprocessor U9 with its high speed, high
integration and 8086 compatible instruction
set. With the BOC188EB as its core, it is possible
for application programs to be developed for
the TM1100 in a manner similar to that used by
popular personal computers such as the TBM—
C.

Power-on reset of the TM1100 is controlled by
the H8/325. Specifically, the reset signal
RESC188 is generated by the H8/325 U10 pin
31 and is applied to pin 68 RESIN of 80C188EB
U9.

The 80C188EB U9 pin 71 is clocked with a digi-
tal clock signal OSC_16MHZ that is derived
from an 18.432 Mhz crystal oscillator and is
gated and driven by U3 74HCO2 pin 1 through
resistor R22 392Q When the 80C188EB is
placed in its shutdown condition, the
OSC_16MHZ signal is gated off to reduce
power consumption. The 80C188EB divides
this clock input by 2 for a net processor execu-
ton cycle speed of 9.216 Mhz.

Since the 80C188EB employs a multiplexed ad-
dress/data bus, it is necessary to demultiplex
the bus by latching the address information on
the bus with the falling edge of the ALE signal
pin 38 of U9. This function is performed by the
ASIC U6 which receives the multiplexed ad-
dress/data bus on the lines DB0-DB7 and
outputs the address information on the lines

159

5,680,633

241

theory of operatio.

AO-A7. While address lines A8-A15 do not
require latching, it is necessary to latch address
lines A16-A18 since the 80C188EB does not
guarantee that these signals will not change
during a memory access function. This is ac-
complished by the ASIC U6 by receiving lines
PA15-P18 and latching them to create the lines
A15-A18. The 19-bit address bus is then used
by the various memory devices for memory
addressing.

Selection of a specific memory device is con-
trolled by the 80C188EB chip select logic block,
which generates the signals ROM, FLASH,
C188_CSL, DISCE and RAMCSINL. The sig-
nals ROM and FLASH are selection signals for
the masked ROM and FLASH EPROM devices.

ROM is connected to the UCS or Upper Chip
Select line of the 80C188EB. Upon power-up,
this is the memory block that is accessed fol-
lowing reset of the processor, so valid program
storage is required to be addressed by the UCS
line. In the case of the TM1100, the masked
ROM contains the system setup and bootstrap
loader programs such that if valid programs
are in place in memory, execution may pro-
ceed, and if no programs are resident, loading
and storing of those programs is supported.

The FLASH signal is the chip select for the
Flash EPROM which may be used to store sys-
tem or application programs, FLASH is
connected to the 80CI88EB GCS6 line which is
one of the general purpose chip select signals
generated by the S0C188EB memory decoder.

The RAMCSINL select signal for the pseudo-
static RAM is connected to the LCS chip select
line since RAM must be the Jowest memory for
storage of interrupt vectors. Further discus-
sion of the generation of the chip enable signal
for the pseudostatic RAM is included in sec-
tion 3.4.

2-8

242

C188_CSL is the select signal for the interface
to the ASIC that provides the data exchange
mechanism between the 80C188EB and the
H8/325. C188_CSL is connected to the
80C188EB GC line.

DISCE is the select signal for the 66108 display
controller and is connected to the 80C188EB
GCS7 select line.

The memory blocks decoded by the GCSx lines
are not defined until the decoder is setup fol-
lowing execution of code in the masked ROM.
It should be noted that the memory map of the
80C188EB is addressed by 20 address bits for
1M bytes total. Because of the programmable
chip select block, however, more than 1M byte
may be addressed by modifying the extents of
the selects so effective overlaying may be ac-
complished. For example, if the character
generator section of the masked ROM is used
only by the display driver routine, that routine
may be the only code that extends the address
range for the masked ROM te its full 512K byte
extent. All other operational contexts may
map the masked ROM to a minimum amount,
which may be zero if the masked ROM is not
accessed at all. Since the largest physical
memory device is 512k bytes, only 19 address
lines from the processor are used externally,
with the total memory map managed through
the chip select generator block from the inter-
nally accessible address lines.

Interface to all memory mapped devices for
read and write operations requires the coinci-
dence of the appropriate device chip select
along with either RD or WR respectively.

The 80C188EB includes a number of on-board
functions that are used to interface to various
peripheral devices in the TM1100. The
80C188EB has two serial interface ports that
are used for external asynchronous data com-
munication to the TM1100. Serial port 0 is
used to communicate to the R5-232 /R5-185

160

5,680,633

243

port which will be described in more detail in
section 3.13, while serial port 1 is used for high
speed communication to the peripheral expan-
sion unit, which is often a radio module but
mav be some non-radio unit such as a modem,
solid-state disk, automatic identification inter-
face or some other type of peripheral interface.
This high speed interface uses the 80C188EB
RXD1 and TXDI1 signals to drive the RXDC188
and TXD(C188 signals respectively to the ex-
pansion module. These high speed signals will
normally be connected to and interpreted by a
separate microprocessor in the expansion mod-
ule.

Two of the 80C188EB on-~board high speed
16-bit timer/counter units are be used to cap-
ture the relative widths of bars and spaces as
detected by bar code scanners of either at-
tached or integrated type. The scan data signal
DATA representative of bar and space widths
is connected to TOIN U9 pin 76. The comple-
ment DATALOW is generated by an inverter
in the ASIC U6. DATA is connected to the
ASIC U6 pin 30 and DATALOW is generated
at U6 pin 29. DATALOW is then connected to
the 80C188EB T1IN timer/counter input U9
pin 78. By tying the scan DATA signal and its
complement to two separate timer/counter in-
puts, it is possible to operate the

timer /counters in gated count mode which
generates count values proportional to bar and
space widths that may be interpreted by the
scan decode algorithms. DATALOW is also
connected to processor port P2.5 U9 pin 4 so its
level may be monitored to identify the pres-
ence of a wand scanner. For a more detailed
description of the scanner interface and control
operation, see section 3.9.

A number of the control and interface signals
necessary for the operation of the TM1100 ter-
minal are generated by 80C188EB ports. These
signals include SCANLEDL, SCANPWR,
RSENABLE, ENABLEL, and SOS which sup-

244

theory of operation

port the scanner interface and SRTS, SCTS,
and TXDEN485 which control the R5-232 and
R5—385 interfaces.

2.11 ROM Memory

As described in section 2.3.1, the RT1100 termi-
nal has 512K bytes of masked ROM which
contains the bootstrap loader and character
generator tables. (For initial test and produc-
tion units, the masked ROM may be replaced
by a programmed EPROM device.) The ROM
U5 is addressed by 19 bits of the B0C188EB ad-
dress bus A0~A18 and selected by the UCS
chip select line ROM connected to the ROM
CE input U5 pin 22. Data is gated to the pro-
cessor data bus by RD which is connected to
the ROM OE input U5 pin 24.

2,12 FLASH EPROM Memory

The TM1100 terminal has up o 256K bytes of
FLASH EPROM memory which is a memory
technology that is similar to the well known
ultraviolet erasable EPROM except that erasure
is accomplished electrically. Consequently, no
unit disassembly, sockets, service handling or
the like are necessary for program modificatic:
or updates. The FLASH EPROM is addresse...
by 18 bits of the 80C188EB address bus
A0-A17 and is selected by the GCS6 chip select
line FLASH connected to the FLASH CE input
U8 pin 30. Data is gated to the processor data
bus by RD which is connected to the FLASH
OE input U8 pin 32. Programming the FLASH
U8 requires application of a 12 volt power sup-
ply VPP to the VPP input at pin 9 of U8. The
TM1100 charge input is the source of the 12
volt supply which is switched by the H8/325
processor to control the VPP programming
supply. The switch uses both sections of Q1
FMC3 consisting of a PNP and an NPN transis-
tor with bias resistors controlled by the
H8/325. When FLASH programming is en-

161

5,680,633 .

245

theory of operatio

abled, the H8/325 drives its port pin P7.4 high,
which sources current into the base of the NPN
switch of Q1. The collector of the NPN switch
is connected to the collector of the PNP switch
of Q1 which switches the PNP switch on sourc-
ing 12 volts from CHARGE to VPP

When the 12 volt progamming voltage is ap-
plied to VPP of the FLASH EPROM, its erase
and program functions are enabled and may
proceed under the control of the 80C188EB.
Data to be programmed into the FLASH is re-
ceived by the 80C188EB through the R5-232
port under control of the bootstrap load pro-
gram residing in masked ROM. In the
program mode, the FLASH looks like a writ-
able device, so the WK line from the 86C138EB
is connected to the WE input of the FLASH at
pin 7 of U8.

2.13 Pseudostatic RAM

The TM1100 pseudostatic RAM U4 is orga-
nized as a 512K byte device which is addressed
by the LCS chip select line RAMCSINL from
the BOC188EB processor. Since the pseudostat-
ic RAM device utilizes dynamic RAM storage
and retrieval mechanisms, certain dynamic
RAM characteristics are evident, particularly
the latched address bus characteristic. Conse-
quently, it is possible to connect the
multiplexed Address/Data bus signals
DBO0O-DB? and the multiplexed address signals
PA15-PA17 directly to the pseudostatic RAM
U4. The selection of the pseudostatic RAM is a
bit more complex than a fully static device
since the OF and CE lines are used to place the
device into its self refresh data retention
modes. For this reason, the LCS chip select
RAMCSINL and RD signals from the
SUC18BEB are gated through the ASIC to prop-
vrly generate these signals. For a normal read
and write operation the LCS signal from the
R0C188EB is passed through the ASIC to create

246

the signal RAMCSOUTL which is applied to
the CE input pin 22 of U4. A read operation
involves the 80C188EB RD signal passed
through the ASIC to create the signal
RAM_RDL which is connected to the OE input
pin 24 of U4. The 80C188EB WR is connected
directly to the WE input pin 29 of U4.

The self refresh mode of the pseudostatic RAM
is invoked by driving the OE input low for
more than 8 psec. with the CE input high.
Since this won't occur in the normal addres-
sing operation of the 80C188EB, the ASIC must
force this condition when self refresh is to be
initiated. This is controlled by the H8/325
when it has determined that the 80C188EB is to
be powered off by driving REFRESH_EN U10
pin 24 high to the ASIC U6 pin 55. Since this
signal is only driven high when the 80C188EB
is to be in its low power non-operating state
{Note pullup resistor R35 100k which insures
that self refresh will be enabled in the standby
condition), REFRESH_EN is also used to gate
the 18.432 Mhz. clock to the 80C188EB which
further reduces its power consumption. This
is accomplished by gating an input to the
74HC02 NOR gate U3-C at pin 8. The other
input to that gate is derived from the VCC_VH
power valid signal which also must be high for
proper operation of the terminal. When
VCC_VH is high, the gate at U3-B inverts the
signal from its input pin 6 to its output pin4
which is connected to U3-C pin 9. U3~D
serves as an additional inverter to gate the
proper polarity to the gating section at U3-A
which ultimately drives the external clock sig-
nal to the 80C188EB processor U9 at pin 71. [t
should be noted that the need for the 74HC02
NOR gate as a clock gate and driver is due to
the fact that the ASIC clock driver does not
gate the clock off when the REFRESH_EN sig-
nal is received. This deficiency will be
corrected in a further iteration of the ASIC cir-
cuit.

162

5,680,633

247

While not as power efficient as full static
CMOS RAM, the pseudostatic RAM is a CMOS
device with favorable data retention power
consumption. The worst case standby reten-
tion current in the self-refresh mode is 200 pa.
Power for memory data and real time clock
retention in the ASIC is provided through a
power backup system'consisting of the main
terminal battery and a “supercap” for retention
when the main battery is removed. When the
main battery is in place, the backup power
supply RAMV+ is generated by a low power
MAX667 voltage regulator REG2 whose output
is directed through a diode CR5 to the RAMV+
bus. Resistors R69 309K and R73 100KS2 set
the output voltage of the regulator to +5 volts.
It should be noted that the blocking diode CR5
does not contribute to error in the setting of
RAMV+ since the output voltage is sensed af-
ter the diode. The MAX667 regulator REG2
has a voltage sense capability that detects that
the output voltage has dropped out of regula-
tion using its LBI (pin 3) and LBO (pin 7) pins
connected through resistors R56 475K, R66
3.9M2, R83 267KQ and R57 100K R83 and
R57 form a voltage reference, R66 provides
switching hysteresis, and R56 is a puliup of the
open drain output for logic interface to the
ASIC for its VCC valid VCC_VH input. Back-
up power is provided by the supercap C29 0.3F
when the main terminal battery is removed.
Charging current to the supercap C29 is lim-
ited by the 10022 resistor R58 so the regulator
REG2 is able to generate the +5 volt RAMV+
voltage immediately. During standby opera-
tion, the delivered current is so low that
virtually no voltage drop is seen through the
1002 impedance to the backup load of the
RAM and ASIC. Capacitors C25 10uF and C35
O 1uF provide supply bypassing for the
RAMV+ cupplv. Resistor R67 17,482 and ca-
pacitor C36 1ui provide byvpass filtering and
isolation for the RAMYV + backup supply cir-
cuit, .

248

theory of operation

it should be noted that since the power supply
for the ASIC is the RAMV+ supply, pullup
derived voltages must be pulled up to this sup-
ply. Consequently, the pullups R16 100K, R18
100K and R23 100K and reset circuit R41
100K 2 and capacitor C23 0.1pF are all con-
nected to the RAMV+ supply.

2.14 Display

The TM1100 display is a moduie using liquid
crystal technology which includes a Hitachi
66108 controller /driver, an electroluminescent
backlight panel, a circuit board and intercon-
nection to the glass. The 66108 controller is a
graphic mode device with internal pixel
mapped memory, so character generation must
be done externally. In the case of the TM1100,
the character generation function is performed
by the 80C188EB with character generation
storage contained in the masked ROM as de-
scribed in sections 2.3.1 and 3.2. The display
drive configuration is as shown in Figure 2-2.

80C188EB In-
Lerface

Display

100 i ./[
Controller/Driver
66108 :48

DISPLAY

Figure 2-2
Display Driver Configuration
The display is physically arranged as 48 pixel
rows x 100 pixel columns, which allows char-
acter or graphic information to be displayed.
The most typical display mode will be the 5 x 7

163

5,680,633

249

theory of operatic.

character generator mode, which allows 6 lines
x 16 characters to be displayed. For compat-
ability to the IBM PC display modes, the 8 x 8
character generator mode may be used which
allows 6 lines x 12 characters to be displayed.

- A "squashed” character generator mode of 5 x
5 is also available which allows 8 lines x 16
characters to be displayed. Graphic display
capability is inherent in the 66108 driver/con-
troller and is a function of the application
program resident in the 80C188EB.

1t should be noted that all of the display for-
mats described use only 96 of the 100 pixel
columns. The remaining 4 pixel columns are
accessible by the 80C188EB application pro-
gram, but will generally used for icon style
annunciators to indicate battery status, charge
connection, radio communication loss, key-
boeard shift and the like.

1/48 duty cycle multiplexing is used by the
66108 to drive the display. To achieve this level
of multiplexing, stepped multiplex drive volt-
ages derived from a negative power supply
voltage are necessary. The step voltages and
negative power supply along with a processor
controlled display bias control are all gener-
ated on the TM1100 circuit board and
connected to the display module.

The negative power supply is created by using
a capacitor /diode ladder structure with the
switches implemenied in the ASIC and driven
at 32768 hz. as derived from the real time clock
crystal. A complementary drive method is
used to minimize the number of diodes and
capacitors at the expense of doubling the bias
voltage of the capacitors, which is trivial in this
case. The configuration is a negative voltage
tripler operating from the 3 volt power supplv
that powers the ASIC. The signals

250

PHZ1_32KHZ and PHZ2_32KHZ are driven
by high current buffers in the ASIC. Capaci-
tors C11, C12 and C13 pump charge which is
stored on capacitor C1. The voltage V-12 is
nominally -15 volts +4 diode drops (through
CR1 and CR2) or approximately —12 volts.
V-12 powers 5 M(C33174D op-amps U2-A,
U2-B, Ul-A, U1-B and U1-C which are con-
nected to a voltage divider string consisting of
resistors R4, R8, R13, RY, R5, R6 and R10. The
top of the string generates the most positive
voltage V1, and the bottom of the string gener-
ates the most negative voltage V6. The bottom
voltage V6 is created by an inverting amplifier
U1-D which converts a positive voltage VLCD
to a negative voltage scaled by —4.75 times.
The voltage VLCD is created by a pulse width
derived D-A converter which is developed by
the H8 processor using the pulse width modu-
lated output at U1l pin 10 P4.1_TMCO0
integrated by resistor R46 100 K2 and capaci-
tor C21 1uF. Contrast control to the LCD
display is accomplished by changing the pulse
width value of this output to change the value
of the step voltage V6 and all of the other step
voltages proportionately.

The 66108 display controller /driver controls
the graphic display by multiplexing the com-
mon and segment lines indicated in Figure 2-2.
The multiplexing technique is unique to liquid
crystal displays in that the drive voltage be-
tween the common and segment lines must
contain no DC component, but there is a volt-
age threshold that causes an individual pixel
element to be activated. The multiplexing
method involves applying differential stepped
AC drive voltages to the common and segment
lines such that pixels that are to be activated
receive a differential AC voltage above the

164

5,680,633

251

switching threshold. The multiplexing wave-
forms are as shown in Figure 2-3.

V]

LY O —
V3 ———.I V3

Va

W L
vé Ve

66108 row output

66108 column output

Figure 2-3
LCD Multiplexing Waveforms

The row and column multiplexing and driving
circuits are completely contained in the display
module. A further description of the LCD
multiplexing technique may be found in the
RT1000 Theory of Operation, Norand docu-
ment 561-014-029.

2.15 Display Backlight

The TM1100 display module contains an inte-
gral electroluminescent backlight panel for
operation in low light environments. Genera-
tion of the high voitage AC power supply
required to energize the electroluminescent
panel is accomplished on the TM1100 circuit
board. The electroluminescent drive circuit
consists of logic in the ASIC, external switch-
ing transistors Q7-A and Q7-B, a toroidal
transformer T1, diode CR6 and optically iso-
lated SCRs U12 and U13 with drive waveforms
as shown in Figure 2—4. The drive method in-
volves driving the transformer T1 via the ASIC
signal QPH1 Q7-A at a 115 Khz rate for 8
cvcles with SCR U13 turned on which causes
the voltage at the panel EL (waveform 5) to
ramp up to approximately 50 volts. SCR U12
is then turned on which causes the stored
charge in the capacitive electroluminescent

252

theory of operation

panel and capacitor C49 4700 pf. to flow
through the transformer secondary. As the
current builds up, reaches its peak and begins
to decay, charge is delivered back to the elec-
troluminescent panel in the reverse direction
which causes the panel voltage EL to become
negative. After this polarity reversal has been
concluded, the ASIC signal QPH2 causes 8
pulses at the 115 khz rate to be driven in the
reverse direction through the transformer T1
via Q7-B which further drives the voltage EL
to -50 volts. Waveforms 1 and 2 illustrate the
pulsed drive voltages to transistors Q7-A and
Q7-B. Waveforms 3 and 4 indicate the drive
signals to SCR switches U13 and U12. Wave-
form 6 indicates the current required from the
power supply BATT+ and the filter capacitor
C43 33 pF. to the center tap of the transformer
T1, and waveform 7 indicates the current flow
through the electroluminescent panel itself.
The frequency of a complete cycle as illus- -
trated from the time T1 to time T7 is 920 hz.

Control and timing of the signals shown is
generated by the digital ASIC U4, Timing is
provided by the 18.432 Mhz processor crystal
which is divided down to develop the neces-
sary frequencies. The frequency of the 8 pulses
is 115 khz, with duty cycle modulation of the
pulse width to allow modification of the out-
put voltage and resulting panel brightness.
The duty cycle of the drive pulses is adjustable
by the processor in 16 — 2.5% steps from 20% to
57.5%. The initial duty cycle after reset is 20%.

The optically isolated SCR switches are some-
what unique devices in that they switch on
with a coincidence of the optical drive and gate
current. To insure that the switch stays on du::-
ing the entire pulsing time, the optical drive is
maintained for the whole time. The gate cur-
rent for U13 is provided through resistor R65
22.1 k&2 and capacitor C34 1000 pf and for U12
through R63 22.1 kQ and {28 1000 pf. The

165

5,680,633

253

theory of operatio:

LED drive current for U13 and U12 is limited
by resistors R70 and R81 392Q2

254

Table 2-4 Keyswitch matrix locations (cont.)

Figure 2-4 LCD Backlight Drive Waveforms

2.16 Keyboard

The TM1100 keyboard is an elastomer rubber
type with carbon plunger switches that short
printed circuit traces to make contact closure.
There are a total of 47 keys organized as shown
in Figure 5. The keys are identified by the
H8/325 processor using a scanning crosspoint
matrix technique with the exception of the
ON/OFF key, which has both of its contacts
brought out separately. The keyswitch row
and column locations are as indicated in
Table 2-3.

Table 2-3 Keyswitch matrix locations

COL | COL | COL | COL | COL | COL

0 1 2 3 4 5
Row A | F | K|P|U
RWiskii B |G | L | Q |V

214

COL | COL | COL | COL | COL | COL

0 1 2 3 4 5
Rozw skz | C H M R | W
ROWlska| D | I | N | s | X
AWlska| E [y |O | T | Y
ROW! z | 7 . 4 | 1 |CLR|SHF
AWlaa| 8 ls5 2|0V

TS 16 T7 Rc;w NO | 9 6 3 -Eg’;

The keys labelled SK1-4 are the special func-

" tion keys located in the row above the alpha
~ keys beside the ON/OFF key. Key definitions

are custom programmable under control of the
BOCI188EB. The physical key is detected and
identified by the key scanning program in the
H8/325, while the key logical value may be
modified by the 80C188EB. Identification of
closure of an individual key is done by first de-
tecting that there is closure of at least one key.
The row lines of the key matrix are all con-
nected to port 1 outputs of the H8/325 which
are driven low when key input is to be re-
ceived. The column lines COLQ - COLS are
HB8/325 processor port 2 inputs that have inter-
nal pullups to +5 volts. When no keys are
pressed, the column inputs to the processor
will all be high. When any key is pressed, the
processor will read the column input port in its
10 msec. cyclic input sampling program, and
will detect that the column port input is not all
high. The individual key is identified by selec-
tivelvy driving each row line low and reading
the column input port. The activated key is
identified as the key that resides in the selected
row whose column input is low. Identification
of an activated key may require as few as one

166

5,680,633

255

to as many as 8 steps depending on which key
is activated. Because the keyswitch is an elec-
tromechanical contact, there is associated
switch bounce which causes the input signal to
oscillate between its closed and open states for
a period of a few milliseconds. This switch
bounce is handled by repeatedly reading the
column line inputs until the states have not
changed for 30 msec., at which ime the key
input is received and processed. Note that the
power-on key is brought out separately as a
single pole/single throw switch for control of
the power control latch. This key is identified
to the scanning matrix by use of an isolation
diode CR3 such that when the switch is
pressed, the COLO line is pulled low with no
ROW line driven by the H8/325, which can
occur under no other condition.

The keyboard interfacing method described
here is intended to be used with only a single
key pressed at a time. If more than one key is
pressed, it is possible that one of the keys will
be received correctly, although some ambiguity
may exist depending on which keys are
pressed. In general, it is assumed that pressing
multiple keys simultaneously is an improper
operation, and an error may result.

As key input is detected by the H8/325 proces-
sor, the BOC188EB is alerted and the key codes
are transferred to the 80C188EB application
program in a manner similar to a typical per-
sonal computer.

256

theory of operation

BEREEHEE0

FHEEO0E0
O HHEEEE0

(L BEEEERS
DEEEHEEO

./
N
[e4]
—/
)

80
a0

8

—~
o
™~
by

—

TN
(e}

o/
m
z
m

\ 23/

Figure 2-5 Keyboard Layout

2.17 Expansion Module Interface

The TM1100 terminal has the facility for a sep-
arately removeable module which may contain
a variety of peripherals including radio trans-
ceivers, scanners, modems, automatic
identification units or memory of several
tvpes. At the initial introduction of the
TMI100, the expansion module will contain
either a radio module or will be a blank unit
utiiizing only the basic terminal memory and
peripherals.

2-15

167

5,680,633
257 258

theory of operatio.

The expansion module connectors are divided Table 2-6 Expansion Module Connector 2, Pin
into three sections defined as follows: Definition (continued)
Table 2-5 Expansion Module Connector J1, Pin PIN SI.IS\IIVSLL vo DESCRIPTION
Definition
7 5 volt (6] +5V
PIN | SIGNAL | VO DESCRIPTION power
LEVEL 8 |Test Lo RX_AUDIO
1 |{0-20volts| | CHARGE signal
2 |0-+BATT | 1O ON/OFF 9 |5 volt [¢] TXDC188
3 |urey | wO RADGPO logic
10 |5 voit | RXDC188
4 (future) | WO RADGP1 logic
5 i{future) o RADGFZ2 i1 {Test C TXFO
6 | future) Vo ASDGP3 signal
12 | Ground 1o GROUND
Table 2-6 Expansion Module Connector |2, Pin))
Definition Table 2-7 Expansion Module Connector |3, Pin
PIN | SIGNAL | 1O DESCRIPTION Definition
LEVEL PIN | SIGNAL | VO DESCRIPTION
TBATT 0 BATTERY VOLTAGE LEVEL
2 |5voltiog- | O RADIO ON ! f;‘;""l:ﬁg' ' DATA
ic (puliup on %upup
in radic board)
module}
3 |Svoltiog- | O PTT 2 |Svottlog- | | 508
ic {pullup ic (pullup
in radio gga?é))U
module)
4 |5voitlog- RXDATA 3 |Svotioo-) | RSTRIG
ic (pullup 'Cn(%upsp
in radio goard)
. module)
5 svoltlag- | O TXDATA 4 |Buftered | O RENABLE
ic (pullup +5 volts 4
in radio 5 Switched [VSCAN+
module) +5 volts
6 |5voitiog-| O SP48_g6 6 |Buffered5| O BUZZER
ic {pultup voit logic i
in ragio
module)

168

5,680,633

259

2.17.1 Radio/Scanner Interface Signal De-
scriptions

2.17.1.1 BATT+ (P2-1)

BATT+V is the +7.2 volt positive battery termi-
nal. This signal is unswitched, so the
expansion module must be switched so that
the off state current consumption is virtuaily
zero. The power is switched by RADION and
+5V.

2.17.1.2 RADION (P2-2)

RADION is the basic power control for the ex-
pansion module. When this signal is high, the
expansion module is powered off.

2.17.1.3 PTT (P2-3)
PTT enables the expansion module transmitter
when driven low.

2.17.1.4 RXDATA (P2-4)

RXDATA is the received data from the expan-
sion module.

2,17.1.5 TXDATA (P2-5)

TXDATA is the transmitted data to the expan-
sion module.

2.17.1.6 SP48_96 (P2-6)

SP48_96 is the data rate select to the expansion
module. When low, the data rate is 4800 bps,
and when high the data rate is 9600 bps.

2.17.1.7 +5V (P2-7)

+5V is the regulated +5 volt power from the
terminal.

260

theory of operation

2.17.1.8 RX_AUDIO (P2-7)

RXAUDIO is a signal generated by the expan-
sion module that is used only for test purposes
and is not connected on the processor board.
RXAUDIO is the raw received analog signal
from the radio transceiver.

2.17.1.9 TXD(188 (P2-9)

TXDC188 is the serial async transmitted data
line from the 80C188EB processor and may be
used for high speed communication without
delay through the H8/325 processor.

2.17.1.10 RXDC188 (P2-10)

RXDC188 is the serial async received data line
from the BOC188EB processor and may be used
for high speed communication without delay
through the H8/325 processor.

2.17.1.11 TXF0 (P2-11)

TXFO is a test signal from the H8/325 proces-
sor. When the expansion module is an RF
transceiver, TXFC is driven into the radio mod-
ule to force the transmitter to output the
unmodulated center frequency.

2.17.1.12 GND (P2-12)

Ground.

2.17.1.13 DATA (P3-1)

DATA is the signal from the integrated scanner
corresponding to the widths of bars and spaces
of the bar code being read.

169

5,680,633

261

theory of operatio.

2.17.1.14 SOS (P3-2)

SOS is the Start Of Scan signal from the inte-
grated scanner which indicates the position of
the scan field.

2.17.1.15 RSTRIG (P3-3)

RSTRIG is the trigger switch for the integrated
scanner. When the trigger is actuated, RSTRIG
is shorted to ground.

2.17.1.16 RENABLE (P3-4)

RENABLE is the enable cunidrol for the inte-
grated scanner. The scanner is enabled when
RENABLE is high.

2.17.1.17 VSCAN+ (P3-5)

VSCAN + is the power for the integrated scan-
ner. The VSCAN+ voltage is regulated to +5
volts and is switched by the processor.

2.17.1,18 BUZZER (P3-6)

BUZZER is the drive signal from the processor
that drives the buzzer located in the radio/
scanner module. This signal is a square wave
driven at the buzzer frequency.

2.17.2 Radio Communications

The TM1100 terminal has capability to be used
either as a self-contained batch memory termi-
nal or as an on-line radio terminal depending
on the type of expansion module that is used.
In addition, several types of radio transceivers
may be used for on-line communications. In
cach case, the radio module consists of analog
signal processing circuits and a radio transceiv-
er to perform an equivalent “modem” function
such Lhat the terminal is able to receive and
transmit data to the remote base transceiver
which is typically connected to a host comput-

262

er. The communication protocol is dependent
on the type of radio transceiver used. The two
basic radio modules that will be used initially
in the TM1100 terminal are the narrowband
UHF module operating in the 450-470 Mhz
range, and a wideband direct sequence Spread
Spectrum transceiver operating'in the 902-928
Mhz range. The UHF module is used for com-
patible communications with the RT1000,
RT2210 and RT3210 products with the En-
hanced Adaptive Poll protocol, while the S5T
module is used in advanced high speed ap-
plications.

Operation of the radio module in UHF applica-
tions is controlled by the H8/325 processor
with the Enhanced Adaptive Poll protocol im-
plemented in the H8/325 masked ROM so that
the 80C188EB processor may be be powered off
during the time that data is transmitted and
received. When a block is received and buff-
ered in the on—board RAM of the H8/325, the
80C188EB processor is alerted and the data is
rapidly transferred from the H8/325 to the
80C188EB. Power to the UHF radio module is
switched under the control of the RADION
signal, which places the radio in the receive
mode. Data transmission occurs when the PTT
signal is driven low which keys the radio
transmitter. Data is received on the RXDATA
line and is transmitted on the TXDATA line at
4800 bps according to the Advanced Adaptive
Poll protocol definition.

Operation of the Spread Spectrum (SST) radio
module is somewhat different from the UHF
module. The program residing in the Flash
EPROM of the 80C188EB is modified for the
special interface requirements of the 55T mod-
ule. A key difference in the SST module over
the UHF module is that the SST module has its
own self-contained microprocessor to control
the communication protoco! and data han-
dling. This is made necessary by the 192,000
bps data rate and HDLC protocol used by the

170

5,680,633

263

SST system which is more complex than the
resident H8/325 processor in the TM1100 is
able to support. Consequently, the SST module
has built~in facilities for the protocol require-
ments and a direct interface to the 80C188EB
processor through the RXDC188 and

TXDC188 signals. Power control is still han-
dled by the H8/325 so that the 80C188EB is in
its lowest power operating state until data
must be handled for transmission or reception.

2.17.3 Integrated Scanner

Signals are included on the expansion module
interface to support an integrated scanner of
several types similar to the cable attached
moving beam scanners. Several of the inte-
grated scanner interface signals are identical to
the cable attached scanner signals including
SOS5, DATA and VSCAN+. The RSTRIG and
RENABLE signals are specifically received
from the integrated scanner to determine when
the operater has depressed its trigger switch
and desires for that scanner to operate. A
more detailed description of the scanner inter-
face is included in section 3.9.

2.18 Scanner Interface

The external scanner interface consists of a “de
facto” industry standard locking 9~pin “D”
subminiature connector with interface circuits
to the processor. Operation of a typical mov-
ing beam scanner is initiated by the operator
depressing the trigger switch, which shorts the
TRIGGER line (pulled up to +5V through
2.21kLQ resistor R50) to ground. This signal,
like all of the lines connecting to the external
connector, is passed through an ESD protection
network consisting of a resistor and tranzorb.
In the case of the TRIG line, the resistor is R51
2.21k€2 and the tranzorb is TZ2-B. The
clamped signal is connected directly to an in-
put port to the H8/325 processor. When TRIG

264

*theory of operation

is activated, the H8/325 processor responds by
asserting ENABLE high to enable the scanner
to operate. This is accomplished by driving
the signal ENABLEL low which turns on tran-
sistor Q10 FMAS. The transistor emitter is tied
to +5V, so the transistor collector voltage is
switched to nearly +5V. The ENABLE output
is routed through ESD protection consisting of
TZ1-D and 3922 R78 to the 9 pin connector.

As soon as ENABLE is received by the scanner,
it will shortly begin outputting SSOS which is
an approximately square wave indicating the
area of the scanning field. The S80S signal is
pulled up through 2.21KQ R47 and coupled
through ESD protection network 2.2K$2 R48
and TZ1-C to the H8/325 processor. As soon
as a bar coded label is placed in the scanning
field, information is encoded on the SDATA
output which is representative of the bar and
space widths of the code. The SDATA signal is
pulied up through 2.21K€Q R49 and is coupled
through ESD protection network 2.21KQ R45
and tranzorb TZ1-B to the H8/325 processor.

As soon as the H8/325 processor determines
that the TRIGGER switch has been activated,
it immediately alerts the 80C188EB processor
which has high speed counters on board for
high resolubion signal capturing. Scan decod-
ing is performed by the 80C188EB by
converting the signal received on the SDATA
line to digital counts that are proportional to
the widths of the signal pulses, which of course
are representative of the widths of the bars and
spaces. Once all of the counts are captured, de-
coding of the encoded information proceeds.
The TM1100 may contain decoding algorithms
for any number of bar code types. Any or all
of these algorithms may be enabled depending
on configuration settings in the terminal. The
decoding procedure attermnpts to decode the
stored counts using all of the enabled algo-
rithms until all possibilities have been
exhausted. If none of the algorithms results in

171

265

theory of operatio.

a successful decode, the count acquisition pro-
cess is repeated until the operator releases the
TRIGGER switch.

Scanning is only allowed when the TM1100
terminal firmware enables the VSCAN+ pow-
er line to the scanner. This signal may be
enabled either by command from the host
computer or under control of the 80C188EB ap-
plication program which indicates that scan
data entry is allowed for the next input.
VSCAN+ is switched under the control of the
SCANPWR signal which is generated by an
H8/323 processor output port. The port out-
put is connected to the gate of P~channel FET
Q9-A 519953 which is configured as a high-
side switch. When the gate signal SCANPWR
is driven low, the VSCAN+ output sources
current from the VCC power bus. Q9 turn—on
is slowed by 1K€ resistor R90 and .1uF capaci-
tor C50 to limit the step load transient current.
ESD protection and filtering are provided by
tranzorb TZ2-D and .1 pf capacitor C44.

Many typical external cable connected scan-
ners have a built-in LED that provides an
indication to the user when a successful scan
has been completed. Source drive current for
this LED must be provided by the controlling
equipment, in this case the TM1100 terminal.
The circuit that drives this LED consists of the
signal SCNLEDL generated by an H8/325 pro-
cessor output port which is connected to
transistor Q10 FMAS whose emitter is tied to
+5V. The collector of Q10 is connected through
ESD protection network TZ1-A and 352Q R84
to the output connector. The LED is conse-
quently turned on by driving the processor
output port signal SCNLEDL low which turns
on Q10 and drives SCNLED high to the scan-
ner. Note that the SCNLED pin is also used as
a test facility for the UHF radio RX_AUDIO
signal. This signal is connected to the pin
through a 0.1pf. capacitor C46 so that there is
no interference with the normal operation of

5,680,633

266

an LED driving circuit, but the low level audio
signal can be observed on this signal line if the
scanner is removed.

The integrated scanner is operated similarly to
the cable attached scanner. The integrated
scanner actuation indication is the RSTRIG
signal which is connected to an input port of
the HB/325 processor. The integrated scanner
is enabled to read when the RSENABLE out-
put of the processor is activated. This output is
connected to the gate of FET Q%-B 519953 con-
figured as a high side switch to +5V. When the
H8/325 processor drives the RSENABLE line
low, the RENABLE line is driven high to the
integrated scanner. Since there are separate
trigger and enable controls for the cable at-
tached and integrated scanner functions, it is
possible for the TM1100 to actually operate

.with two scanners connected.

2.19 Power Control

Power for operation of the TM1100 terminal is
provided by a 6 cell NiCad battery pack. The
pack configuration is the industry standard
Motorola P10™ type consisting of 6-2/3A¢
cells with built~in short—circuit protection. The
nominal capacity of the P10™ pack is 600 ma—
hrs.

The power—on control of the TM1100 is con-
trolled electronically rather than by a
mechanical switch. The ON/OFF key is a mo-
mentary contact elastomeric switch which
grounds the ON_OFF signal. A cross—coupled
latch consisting of NAND gates U11-B and
U11-C CD4093 powered directly by the battery
is the latching device that turns power on and
off. Set/reset operation of the latch with only a
single—throw single—pole switch is accom-
plished by using a 10k puilup resistor R54
and two R—C time delay circuits. The short
time constant is implemented by 10KQ resistor
R53 and .1 puf capacitor C27, and the long time

172

5,680,633
267

constant is implemented by 1.2MQ resistor R52
and .1pf capacitor C24. Power is turned on by
momentarily depressing the power—on switch
which causes the set input of the latch at pin8
of CD4093 U11-C to go low quickly. The long
time constant at the reset input of the latch at
pin 6 of CD4093 U11-B causes the reset input
to be held high for several seconds after the
switch is depressed. Consequently, if the ON/
OFF key is depressed for a time shorter than
this time constant, the set input will prevail
and set the latch output. If the ON/OFF key is
depressed for a time longer than this time
constant, both the set and reset input will be
held low for the time that the key is depressed,
but the set input will g0 high much sooner
than the reset input, so the latch will be reset.
The result of this configuration is that the unit
will be powered off by pressing and holding
the ON/OFF key for a time longer than the
time constant of the reset input. This time is
nominally around 3 seconds. The NAND gates
used to implement the power control latch are
Schmitt trigger input types to properly handle
the very sjowly changing inputs and prevent
oscillation or mistriggering as the R-C voltages
charge and discharge. The supply voltage for
the CD4093 is created by the 15 volt
MMBZ5245 zener diode Z2, limiting resistor
2.21KQ R55 and 10puF capacitor C26 which pre-
vents overvoltage from being a pplied to the
CD4093 if the battery pack is removed while
the unit is connected to a charger.

The output of the latch controis the TM1100
voltage regulator by driving the gate of a P-
channel MOSFET Q5 ZVP3306 which switches
the base current path for the regulator pass
transistor Q6 XT2907A. The voltage regulator
uses an LP2951 REG1 as the regutator control-
ier with the external pass transistor. Since the
Juiescent current consumption of the LP2951 is
quite low, it is possible to configure the exter-
nal pass regulator such that the regulator is

268

theory of operation

powered by the bias current for the pass tran-
sistor. Regulation is performed by controlling
the base current of the external pass transistor
through the output of the LP2951 to ground.
The maximum base current is limited by tying
the LP2951 output to ground through a 392Q
limiting resistor R59. The LP2951 has a builf-
in voltage reference and feedback ratio for +5V
regulation which is implemented by connect-
ing the SENSE input to the regulated output
and connecting the +5VTAP to the FEEDBACK
input. The +5VTAP is a tap in a voltage divid-
er resistor circuit internal to the LP2951 that
accurately sets the output voltage to +5V.

Power is turned off by resetting the power con-
trol latch which turns Q5 off. The bias current
to the XT2907A pass transistor Q6 is switched
off, and the 4.75KQ back bias resistor R64 in-
sures that Q6 doesn't leak any current. Power
is switched off by the operator depressing the
ON/OFF key momentarily which alerts the
H8/325 processor that a shutdown sequence
has been initiated. The H8/325 then signals
the 80C188EB to prepare to shut down and
then drives transistor switch Q3 FMG2 with
the signal PWRDN to reset the power control
latch. The H8/325 may also initiate a shut-
down sequence when it senses that the battery
voltage has discharged to its lower limit to pre-
vent excessive discharge of the battery.

Filtering of the regulated output voltage for
noise and stability considerations is provided
by capacitors C37 100 pf and C32 33pf. Capaci-
bor C30 100pf is required for stability of the
regulator. Capacitor C31 1000 pf is a noise by-
pass capacitor.

2.20 Battery Charger

The NiCad batteries used in the TM1100 termi-
nal are rechargeable batteries that require
constant current charging. The basic charge
circuit consists of transistor Q8 XT2907A, par-

173

5,680,633

269

theory of operafioi

allel 100Q2 resistors R82, R79 and R89, zener
diode Z3 MMBZ5229B 4.3 volts, and resistor
R741.00KQ Current regulation is performed
by regulating the voltage across the 33Q equiv-
alent resistance of the parallel resistors R82,
R79 and R89. When voltage is applied to the
CHARGE input, current flows through the
33Q resistance, through the emitter to base
path of QB and through R74 to ground. As this
current flows through the 33Q resistance, the
voltage across the 33Q resistance increases
while the Vbe between the emitter and base of
Q8 remains relatively constant. When the sum
of the voltage across the 33Q resistance and the
Vbe of Q8 reaches 4.3 volts, the zener Z3 be-
gins to divert current away from the the 33Q
resistance path through R74. This 4.3 volt
constraint causes 4.3 volts —.7 volts or 3.6 volts
to appear across the equivalent 33Q with a re-
sultant current of 110 ma. The temperature
coefficient of Q8 and Z3 are nearly identical, so
the current will change little as temperature
changes. Diode CR7 prevents the charge cir-
cuit from discharging the battery if the charger
is not connected. Zener diode Z2 limits the
voltage that will be present if the battery is re-
moved while the unit is connected to a charger
s0 that no components will be damaged by ex-
cessive voltage under these conditions. TZ4
prevents damage to the charge circuits by ESD.
The base of transistor Q3 FMG2 is driven by
the application of voltage to the CHARGE line
which causes the CHGSENSE signal to be
driven low indicating that the terminal has
been connected to a charger. Gates U11-A and
U11-D prevent application of the battery sense
voltage when the processor is turned off.

A duplicate of the basic charge circuit consist-
ing of Q2 XT2907 A, 100L resistors R60, R68,
and Rol, zener diode Z1 MMBZ5229B, transis-
tor switch FMC3 and resistor R52 1.00KQ is
used to provide additional charge current to
the battery when high current consumption

270

devices such as the Spread Spectrum radio
transceiver are operating. This additional
charge current is enabled under the control of
the XTRA_CHARGEH signal which deter-
mines that the terminal is not in the standby
low current consumption state.

2.21 Battery Voltage Sense

While the H8/325 processor has no built-in
A-D or D-A converters, these functions can be
created using its pulse width modulated out-
puts along with a simple lowpass filter
consisting of R38 47.5KQ and C19 1uF to
smooth the pulsing frequency. As mentioned
in section 3.5, an H8/325 processor PWM out-
put port is used to control the LCD negative
bias voltage. The battery voltage sense is con-
trolled in a similar fashion except that the
PWM generated analog voltage is used as a
test voliage for a successive approximation
analog to digital converter with the use of an
external comparator U7-A and sense resistors
R32 47.5KQ, R33 47 5K, hysteresis resistor R44
1M and noise filter capacitor C18 100 pf. A
test voltage consisting of 50% of the full scale
voltage is applied to the - input of the
comparator and the output is sampled to see if
it is low or high. If the outputis high, it is indi-
cated that the sensed battery voltage is higher
than the test voltage, so the MSB of the binary
value is a “0” and the next bit is tested. If the
output is low, the sensed battery voltage is
lower than the test voltage, so the M5B isa "17,
and so on. Using this method, it is possible to
measure the battery voltage to approximately 6
bits of resolution with good repeatability.

2.22 External Serial Interface

The TM1100 terminal includes both RS-232
and RS485 interface facilities either of which
may be enabled or both may be disabled to
conserve power. Both interfaces use the mini-

174

- e—————— L

5,680,633

271

DIN connector with the ERXDA and ETXDA
signals shared by both.

The R5-232 signals are generated and received
by a MAX242 U14 which contains a +12 volt
power supply circuit and high voltage drivers
and receivers. The 12 volit supply uses 0.1 pf
capacitors 39, C401, C41 and C42 to generate
those voltages from +5 volts using the charge
pump technique. The MAX242 is placed in its
shutdown mode by the SHUTDN signal from
the H8/325 processor to conserve power when
it is not being used. ESD protection of the
RS-232 signals is provided by resistors R71,
R88, R76 and R72 1KQ, and tranzorbs
TZ3-AB,Cand D. ECTSA is tied through re-
sistor R75 100K for a default “off” condition.

The RS—485 interface consists of an LTC485
CMOS RS485 transceiver integrated circuit
which may be enabled when the MAX242
R5-232 driver is disabled. The driver enabling
is done under the control of the H8/325 pro-
cessor as part of the terminal configuration
function. When the LTC485 is enabled, its re-
ceiver is turned on by the H8/325 driving the
REN485 signal iow, and its transmitter is
turned on similarly by driving the TXDEN485
high. The outputs of the MAX~242 are turned
off by driving its EN input through inverter
connected comparator U7-B when the REN485
signal is driven low. The outputs of the
LTC485 are connected to the connector pins
through pullup resistor 100K R85 and series
resistor 17.4C2 R86 and pulldown resistor
100K42 R87 and series resistor 17.4Q R77 to
hold the proper default levels on the R5—485
lines while providing ESD protection. When
the LTC485 drivers and receivers are off, the
LTC485 device presents a high impedance to
the multidrop bus. In addition to meeting the
R&—85 multidrop requirements, this also al-
iows sharing of the pins in the mini-DIN
connector with the R5-232 RXD and TXD
lines.

272

theory of operation

In the cases of both the RS-232 and RS—485 in-
terfaces, the received and transmitted data is
routed to the 80C188EB processor serial port 0
which allows direct interaction with the ap-
plication program and communication
structures typically required. In general, op-
eration of the serial port will be a high current
consumption mode, since it is necessary for the
80C188EB to be operating to support the com-
munication function.

2.23 ASIC

As has been mentioned at several points, a sig-
nificant portion of the functionality of the
TM1100 is implemented in a digital ASIC.
Figure 2-6 is an outline of the ASIC, showing
pin locations and signal names. Table XX de-
fines each signal name and describes the
functin of each. The ASIC provides the proces-
sor clocks, real time clock, memory decoding,
processor intercommunication, backlight drive
and miscellaneous functions that otherwise
would require a significant number of inte-
grated circuit devices to implement.

The ASIC is primarily a bidirectionai interface
chip linking the 80C188 processor with the H8
processor. Logic within the ASIC controls data
flow through the 8 bit bus. Also part of the
ASIC are a 32 bit real time clock, backlight con-
troller/driver circuit, an 11 bit address latch for
the 80C188 processor, and two oscillators—one
32,768 Hz osdillator and one 18.432 MHz oscil-
lator. The two oscillators provide timing
signals for the ASIC, H8 processor, and back-
light circuitry. .

Refer to figure XX. The ASIC must always
have power applied to maintain the real time
clock (RTC). To reduce power consumption,
power management logic is provided by the
VCC_VH signal. When VCC_VH is at logic 0,
the ASIC is in the low power consumption
state. During this state, only the 32,768 Hz os-

2-23

175

5,680,633
273 274

theory of operatic,

80 79 78 77 7675 7473 72 71 70 69 6867 €6 65 64 63 62 61
| I AN N R (OO IS N N [N A

[1 1 |

o X - © % v © N N |5

2z § Q 8 3 0 0 A 0 0 o -~ n @& <« w o © N X Z

O X « <« <« < o € <L < < « L <« < < <« <« x O
- veer vces 60
2 A6 ‘ ALEH — 59
3 a7 WRL |58
4 A8 RDL L 57
5 ats cicsL [— %6
S~ a1 RFRENCH— 55
— a8 RAMRDL [— 54
g| GND2 RMCSOL | 53
g—] OsG1stl RMCSIL [52
o ASIC -

0sG160 (APPLICATION SPECIFIC INTEGRATED CIRCUIT) SLBUSY
Mt LgEXTL SMOS SLA7160 SLCRDY L 50
NPN 149-023-601

12— H8XTL HEDo e 43
13— GND3 HsD1 48
14— LED2 H8D2 — 47
15 LeDt H8D3 — 46
164 vGC2 HBD4 — 45
17— opH1 HeDs [44
18 gpH2 HeDs [~ 43
19— BKUITE ‘ Hep7 [2
20 L 41

Velex) - VCC4

< % % d o E‘ -ll :§I d1 24 § § 8 a)“' EZJ 5’ (e

32 Jd S B8E8g28 B35 235 ¢

5 x £ s s a8 o b oo B T I IOH

T rrr1r1rrr1rrr 717 1 17 1T 1T/

21 22 23 24 25 26 27 28 2930 31 32 33 34 35 36 37 38 39 40

Figure 2-6 ASIC Cutline

176

5,680,633

275

cillator and RTC are powered. The 18.432
MHz oscillator is stopped and the following
inputs are pulled to logic 0 through pull down
resistors:

BKLITE H8CSL HB8D (7:0) WRL

DATA All6 AD (7:0) AllR
H8WRL Ci_CSL An7 RFRENH
H8RDL RDL RMCSIL ALEH

276

theory of operation

Table 2-8 ASIC Pin Name Definitions and

Descriptions
PIN | NAME DESCRIPTION
1
16
20 VCC |tbd
41
60
th2ru Al16thru | Highest three bits of address data
4 Ang from the BOC188 processor
5 A161h Highest three bits of address data
thru g | applied to te B0C188 address bus
7 {latched by ALEH—pin-58)
8
13
21
33 GND | Ground
40
61
80
g | oscie |!nputfrom crystai for 18.432 MHz os-
cillator circuit
Output to crystal for 18.432 MHz os-
10 |OsC160 cillator circuit
Inverted clock signal, referenced to
1| HEEXTL | pin 13 (HeXTL)
Clock signal for HB processor. Fre-
12 HexTL |auecy equals 9.216 MHz, or one—
half the 18.432 MHz oscillator fre-
quency
High source—current output for back-
14 LED2 |light power circuit (complimentry sig-
nalto LED1)
High source—current output for back-
15 LED' light power circuit (complimentry sig-
nal to LED2)
Phase 1 drive signal for electrolumi-
17 QPH1 | nescent backlight transformer circuit
(complimentry signal to QPH2).
Phase 2 drive signal for electrolumi-
18 QPH2 | nescent backlight transformer circuit
{complimentry signat to QPH1).
Command signal from HB processar
19 BKLITE |that activates display backlight (ac-

177

tive high).

5,680,633

277

theory of operatio:.

Table 2-9 ASIC Pin Name Definitions and
Descriptions (continued)

278

Table 2-10 ASIC Pin Name Definitions and

Descriptions (continued)

PIN 1 NAME DESCRIPTION PIN | NAME DESCRIPTION
22 : XXX2 | Unused 42 H8D7 ,
: Bufiered 32,768 Hz signal for —12 M ey | &0 data bus for HB processor
23 PH2_32 | volt charge pump circuit (complimen-
try signal to PH1_32). indicates the H8 processor has writ-
- 50 | SLCRDY |ten data (to be read by the C188 pro-
Buffered 32,768 Hz signal for —-12 ; 8
24 PH1_32 | wvoit charge pump circuit {complimen- cessor) to the latch (active high).
Disable signat for ASIC autputs ex- - . -
25 | OD_L |ceptLEDT, LED2, and oscillator cut- Psuedo-static RAM chip select re-
puts (active low). 52 | RAMCSIL | quest line from C188 processor (ac-
26 | TEST2L | TEStinput—used to inject clock sig- t;ve ::jw). Ty I
nals. suedo-static chip select iing
- - to RAM chip (active low)—signal is
Test input—used as a control signal 53 | RMGSOL | active only when RMCSIL and
27 TESTL | to configure internal ASIC circuitry VGG VH are asserted and
for efficient testing. RFRS ENisi N
| S inactive {not asserted).
Reset signal used 10 initiglize internal -
28 | RESETL ASIC circuitry (active low). 54 | RAMRDL ?AM rread request from G188 pro
29 | DATA_L g:?oe?u‘x‘%g‘)" of input signal on Prohibits psuedo—static RAM access
. 55 | RFRENH |during refresh (active high—gener-
Received SCAN data (from bar code ated by C188 processor).
DATA . Si isi i -
0. :ﬁ?jngftgu 2?;;‘_55%%%? Ln)ASiC Strobe signal from C188 processor
i . that latches the 3 least significant ad-
VCC valid, active high. Indicates 56 | C1_CsL |dress bits of the C188 multiplexed
31 | vee wn | Main Power Bus is within specifica- data bus for the internal 1 of 8 de-
- tions, and high power mode is avail- coder.
able. Read signal from C188 processor
QOscillator enable—connects test sig- 57 ROL (active low).
32 | OSC_EL |nal to 32KHz oscillator input to test —
oscillator operation. 58 WRL 2‘;’2;3:’%’;3‘ from C188 processor
34 | oscazo |Quiputlo crystal trom 32,768Hz os- s | ALen |Address latch sirobe from C188 pro-
Ciliator circuit. » CESSor (active low).
25 | oscaz [Wputfrom crystai to 32,768Hz oscil- 62 XXX4 | Not used
lator circuit.
: - 63 A7 8 least significant bits latched from
36 | TSTOSC Iﬁﬁt_'_r;%ﬁ é?egz‘;;‘z?] }g)zs%scglia ‘g}g& thru thru the C188 processor multiplexed data
= . 70 AD bus.
a7y HecsL | HB8 processor chip select signal (ac-
tive low). | A5 I Muttiplexed aodressidata bus forthe
ag | umwar | H8 processor write request (active 78 apo | C188 processor
iow). -
a9 rarpL | HB processor reac request (active 79 | XXX1 INotused.

low}.

178

5,680,633

279

2.23.1 H8 Interface

The H8 processor sends data to the 80C188
data bus by first placing the data on the H8 bus
and asserting HSWRL and H8CSL. This
latches the H8 data and asserts the SLCHRDY
output, telling the 80C188 processor that data
is ready for transfer.

The H8 processor receives data from the
80C188 when SLBUSY is asserted, indicating
new data is in the data latch. When SLBUSY is
asserted, the H8 processor asserts HSRDL and
HBCSL, placing the new data on the H8 bus
and clearing SLBUSY.

2.23.2 80C188 Interface

The 80C188 processor controls most functions
performed by the ASIC. It can transfer data to
or from the H8 processor, controls the opera-
tion of the backlight circuitry, and reads the
RTC 32 bit value.

To send data to the HS, the 80C188 performs a
two step function. The first step is to load ad-
dress 06 into the address latch in the ASIC. In
step two the 80C188 places data onto the bus
and asserts C1_CSL and WRL. This latches the
80C188 data and asserts the SLBUSY output,
telling the HB8 processor data is ready for trans-
ter.

To receive data from the H8 processor,
SLCHRDY must be asserted, indicating new
data is present in the address latch. When
SLLCHRDY is asserted, the 80C188 asserts RDL
and C1_CSI.. This places the data in the ad-
dress latch onto the 80C188 data bus and clears
SLCHRDY.

The 50C188 interface is memory mapped based
on the three least significant address bits.

Once the addrss is latched and C1_CSL s as-
serted, a read or write operation can occur.

280

theory of operation

The memory map for the 80C188 processor is
shown in Table 2-11.

Table 2-11 80C188 Memory Map

ADDRESS | OPERATION FUNCTION

0 C18Bread |Read byte0 of the RTC

1 CiBBread |Readbytel ofthe RTC

2 C1BBread |Read byte2 ofthe RTC

3 Ci8Bread | Readbyte3d ofthe RTC

4 C188 write | Reset the RTC

5 C188 read |Read SLBUSY and
SLCHRDY signals on
data bus.

6 C188 read |Read latched HB data
and reset SLCHRDY sig-
nal. ’

6 C188 write | Latch C188 databus
and assert SLBUSY.

7 C188 read |Clear SLBUSY and
SLCHRDY signals.

2.23.3 Psuedo-static RAM Control

The ASIC controls the read and refresh opera-
Hons of the psuedo-static RAM using its
VCC_VH, RDL, and RNCSIL inputs, and its
RAMRDL and RMCSOL outputs. Control of
the psuedo-static RAM is described in

Table 2-12, by showing the logic state of the
ASIC psuedo-static RAM control lines for each
RAM function.

2.23.4 Backlight Control

ASIC control of the electroluminescent back-
light is accomplished with the ASIC’s QPH1
and QPH2 outputs. QPH1 and QPH2 drive
drive two FETS in the backlight power circuit-
rv (refer to paragraph 3.6 Backlight), which
then excite primary winding of the EL trans-
former.

The LEDT and LED2 outputs of the ASIC trig-
ger the LED inputs on two optically isolated

179

5,680,633

281

theory of operatio.

SCRs. The pump circuit creates the high volt-
age required by the backiight.

282

Table 212 Logic Levels (by function) of ASIC Psuedo-static RAM Control Lines

ASIC INPUT LINES OUTPAL?1|'(:.INES
vCC_VH l ROL RMCSIL | RFRENH | RAMRDL | RMCSOL FUNCTION

0 X X x 0 1 Low power mode
1 0 0 0 0 0 Read RAM

1 .0 0 1 0 1 Self refresh

1 | O 1 0 0 1 Self refresh

1 70 1 1 0 1 Self refresh

1 1 0 0 1 0 Write RAM

1 1 0 1 0 1 Self refresh

1 1 1 0 1 1 Self refresh

1 1 1 1 0 1 llegal operation

x = grounded O = logic low 1 = logic high

2.23.5 Real Time Clock

The real time clock in the ASIC consists of 8
four bit counters whose values are held in 32
latches. The 32 bit value of the RTC is read out
as four seperate bytes. To prevent the output
of the clock from being updated during a read.
a second set of 32 latches is used to double
buffer the clock output. The second set of
latches, latches the clock value whenever the
least significant byte is read. For a proper read
to occur, the least significant byte of the RTC
must be read before the remaining three bytes.

The RTC is updated every second, with its ac-
curacy determined by the 32,768 Hz oscillator.
A divide by 32,768 circuit in the ASIC deter-
mines the rate of the RTC.

The 80C188 processor can reset the RTC to zero

by issuing a write to address04 (refer to the
paragraph 80C188 Interface).

2.23.6 12 Volt Pump Control

ASIC outputs PH1_32 and PH2_32 resonate at

32,768 Hz and are applied to a diode/capacitor
pump circuit on the host circuit board (refer to

paragraph 3.5 Display). The pump circuit uses
these signals to produce a —12 voit supply.

180

5,680,633
283 ' 284

APPENDIX C:

RT/DT 1100 RADIO DATA TERMINAL SPECIFICATIONS

®copyright 1992 by NORAND CORPORATION

181

5,680,633

285

Compact, Poosecoaced ternanal Olfers
Scanning and Memory Capabilities Simply

by Changing Medules

The RT/DTTO0 Terminals olfer more npions m i fight
weight, compact terminal that 15 oae-third the size and hall the
wenght of other wemunals. The unigue modubar design allows the
user o add capabilities simply by chinging madules.

The base terminal can be purchased with your choice of
modules w fit your specific necds. The integrated scanning
version frees a user's hand for uninhibited kev entry operation
and for handling merchandise, while improving relubility

The RT/DTLHN) incorporates an LCD backlit display tor high
visibilily in dark environments. Fhe dispiy can be programmed
mid 6 8, 0or 9 line by 12 or 16 character format. This provides
the user with the display screen Heibility 1o sccommaodare
various applications.

The RT/DT1100 has dual processors for Taster lerminal
performance and erhanced system distnibuted processing
capabdily. This teature provides the end user with a ool for
maximizing productivily,

Terminal emulation for 3270, 3250, 7527, NORAND* Native
Made (Async). and VT220 is supporiad by the RT10 system.
These emulations enable casy communications with networks
operating SNA. TCP/[P. DECnet. and Async protocois. This
allows easy integration into your exisung system and gives you
the freedom to work directly with host data from remote arcus of
your facility. You can also develop your own applications in
MS-DOS compatible languages (MS-DOS V5.0 optional). or in
Microsoft C.

The RT/DT 100 will suppost printers and other RS232 and
multtdrop RS$485 interface devices. This connectiviry provides
the expansion capabilities 10 meet your changing needs.

ff you only need batch data terminal functivnality now. start
with the DT, then upgrade to RF when vou're ready. This
modular architecture dltows you to adapt 1o the changing
demands of your environment while preserving your investment.

§;+iORw

Standard UHF
Ruihio Modide

TM K
Terminal Module

Inwgrated Scannet
GHF Radio Modute

5 U w
‘ OR OR
)
=y v
S
lateprated Tntegrated
T™I00 Stanlarg UHF Seamer UHE Scanner §8T
Terminul Module Radiv Viadule Ranlio Module Ruados Minlule
—
)
= -
=| + OR
I 1
—t .
Standurd Inteerates Seanner
TMIT) Maoddule Mislule

Teraumal Moduic

286

o
Radio Data
Terminal

g
Ly

Lol i
UL i

gL

FEATURES

= Flexible modular design provides added
capabilities for less cost

* One-handed operation with integrated scanning
options

* Terminal emulation (or easy implementation
* MS-DOS compatible application environment

* Easy to install and service

182

5,680,633

287

Radio Data

Terminal

LSPECIFICATION

PRODUCT FEATURES

‘Transceiver: lacorporates a 1 watt (UHI') frequency modulated (FM) radio
transcesvee contyalled by the micraprocessor. Type accepled per FCC Rules &
Regulattons, Pants 2 & 90. Private Land Mobile Radio Service

Liguid Crystal Display (L.CD): 4, 6.8, or 9lines x 12 ur 16 character with
backlight and annunciators. plus full bit-mapped graphics capability

Keyboard: Elastomer 47-key aiphanumeric
Annunciators: Fully progrummable

Radio Medule: Patented self-contamed. interchangeable 1-channel radio module
with built-in receiver seli-test

Optional Modules: UHF ar 5T radio with CCD tup to 1 depth of field) or laser
(¥ o 30" depth of field} scanming

Radia Ant: Screw-in directly 10 the end of the rudio
module. lategrated scanning versions have an internal antenna

Pracessors: Two 16-bit micropeocessors
ROM: 512 Masked plus 256K Flash
RAM: 512K Pseudo-static RAM

Terminal System Emulation: 3270, 5250, 7527. NORAND® Native Mode
{Async). and VT220

Application Support: Micrasoft “C* and "C" libraries: ather languages with
optional MS-DOS V5.0

Peripkeral/Host Direct Connect Interface: 6-pin mini-DIN for R$232 and multi-
drop R8483 interface devices

Drop Survival: Designed to withstand multiple 4-feot drops to concrete

Hand Strap: Incorporates a user replaceabdle. elastic hand strap 10 secure
the eominal fiemly in hand

Relt Attachment Point: Removable clip allows terminal 1o be fasiened to
the belt

Shielding: Conlomms to FCC Part 15 for Class A computing devices
Audible Tome: Audible annunciator to alen operator of action

Scanner Interface: 9-pin D-subminiature connector for interface o S-volt
scanning peripherals with built-in scanning self-test

Flectrostatic Discharge: Designed to withstand up 10 20KV for Class C products
PHYSICAL DIMENSIONS

Size: 6.875" x 2.625" x 1.25" (LWD) (17.46cm x 6.68cm x 3. 1&cm)

Antenna Length: 2" (5.08cm)

Weight: 5.2 ounces (430.9g)

ENYIRONMENTAL CHARACTERISTICS

Operating Temperature: 32° 10 122°F (-0¥ 10 50°C)

Storage Temperature: -22° w 158°F (.30° s 70°()
Recharging Temperatuce: 41° to HM°F (3° 10 40°C)
Humidity: 10 o 90% nancondensing

Altitude: To 10,000 feel (3,048 meters) above sea tevel

288

T N o
u‘:i:'tu',\ Are unt, anef muy wat pe
ANfered for vale or lense, or \'uld' or
icased until thy approvel of the f¢ ¢
faty boca abtdined,

&

INTERNAL POWER SOURCYE
Battery Cells: Stanard rechargeable sicket-cadnium batten pack
Yoltage: 7.2 VDC (nominal}

Operating Time Between Charges: S hours iypical. hised on customer
usage of & scansMransmissions per meiile

RTHWO BATTERY PACK CHARACTERISTICS

Normal Recharge: 12 hour i tesmma,, 3+ 4 hours externa!
Pack Life: At least 500 dischargeicharge cvvles

Low Battery Indicator: Visual annunciator mdicating low hattery is
displayed on the L.CD

Charging Seurces: AC adapier-type single terminai chargers and mulri-
battery pack chargers available

RADIO CHARACTERISTICS
Radiated Power: | wan {maximums
Frequency Range: 450 10470 MHz
RF Data Rate: 2800 baud

BAR CODE SCANNING SUPPORT

Bar Code Scanners Supported: CCD (3V3, Visible Laser Diode (5V),
Pen Wand (5V)

Bar Code Symbologies Supported: UPC. UPC with add-ons, EAN, EAN with
add-ons, Code 39, Interleaved 2 of 5. Code 128, Plessey, Code 93, Codubar,
ABC Codabar, Straight 2 of 5, Encoded Code 39, Extended Code 39

The goat of Norand is 100% customer
satisfaction. Customer Satisfaction
Hot Line: 1-800-221-9236

NGRAND

DATA SYSTEMWE

Naorand Italia SRL
Via Caduti Di Melissa, 12

Norand Corporation
550 Second Sueet S.E.

Cedar Rapids. fowa 52401
Phone: 319-369-3156
1-800-252-2757 toll free

Norand International Corporation
and Norund (U.K.) Limited

5 Bennet Court. Bennet Road
Reading, Berkshire RG2 OQX
Eagland

Phone: 34.734-861221

FAX: 44-733-86i 156

K033 Casalecchio Di Reno (BQ)
Phone: 051-6130252
Fax: 051-6130254

Nornd Dala Systems, Lid.
85 Citizen Court. L'nit #1
Markham. Ontario

Canada L6G 1AR

Phone: 416-477-18138
1-800-633-6157 101l free
FAX: 416-477.2242

¥ Trad k Marca Repis
fewa, U.S.A.

syistered by Norand Corporation. Cedar Rapids,

© Copyright 1992, All rights reserved. 960-353-205 Pninted in U.S.A.

This document cottains prelimtisary peoduct xpeciications. §n a continuing cffor! 10 imptove our products.
Norarwd Corporation reserves the nght 10 change speciticalions and leanures without prier notice.

183

5,680,633
289 290

APPENDIX D:

A PORTION OF THE PROTOCOL STACK UTILIZED BY THE TM 1000

@copyright 1992, 1993, by NORAND CORPORATION

184

#define

291

_DEBUG

5,680,633
292

/* *i*****i***

/* % de de e e de de e e ok de e ok e e ok ok e

#define

ss_brid.c
PhIl}ip Miller
version 24
version 23
version 22
version 21
version 20
version 19
version 18
version 17
version 16
version 15
version 14

version 13

version 12
version 11
version 10
version 9
version 8

version 7
version 6
version 5

version 4
version 3
version 2
Version 1

VERSICN

T£1140/5940 sst bridge layer

7/1/94

post reset error on tx_done

6/28/93

delete unnessary reset error

6/8/93

attach backoff only on detach

6/4/93

post netword error in missing hello

5/25/93

do not rarp on base cost=0xffff

5/19/93

fix detach packet response

5/10/93

have h8 monitor bases

5/6/93

fix radio strength selection

5/5/93

fix attach timeout sw

3/19/93

lint version of version l4/msc ver 7

3/11/93

set high order bit on NETWORK_RESET

3/5/93

move power management from hello to attach
delete hello timers

do not send attach to chan. acqg err.
3/3/93 fix TX DONE problems

2/25/93
2/18/93
2/16793
2/12/793

1/28/93

1/15/93
1/14/93

1/11/93

£ix cost=0oxffff logic

require attach response

fix radio strength selection
fix version.base adr

remove self test 3

change error handler

remove test code

fix tx done

change init parms

check for cost=0xXffff in hello
check interprocessor data check

12/03/92 reset attach timer when data send
11/13/92 fix self test

11/5/%2

version control begins

*i**

#define BH_ROM_ CODE VERSION

#define
#include
‘#include
#include
#include
#include
#include
#include
#include
#define
#define

SPREAD_CODE

24
50
o]

"bufpool.h"
"ss_timer.n"
"ss brid.h"
“errcodes.h"

"brgerr.

hll

"llcbrg.h"
“"sst_ver.h"

"say.h"

RSSI_72DB_MARK 11
RSSI_74DB_MARK 12

185

*/

5,680,633

203 294
#define RS.._76DB_MARK 13
#define RSSI_78DB MARK 14
#define RSSI_ 80DB MARK 15

/* ***k**** */
int mememp(} ;

void * memcpy () ;
unsigned int strlen();

char * strepy();

void * memset () ;

/* ***************************it********************************* */
static void disable _mac();

static void load code();

static void state_detach();

static void enable_mac();

static wvoid send hello(),

static void send_inquire();

static void wrlte_base_adr();

static void sort_bases();

static void write _terminal_adr();

static void send_attach();

static void send_rarp(),

static int find_rarp_optional parm{);
static veoid post_llc();

static int try next_base();

static void ck_for_out data();

static void process_attach_data();

static void process_attach_timer request();
static void process "attach _write request();
static void process_attach “data _hello();
static void process_attach _data attach(),
static void process attach data _arp();
static void process_ attach data_ _detach();
static void wrt_int buf(),

extern int . radio _write(unsigned char * ,int);
static void send_arp();

static void send data();

static void write_lan _adr();

extern int radlo _read();

static int rd lonq id(});

static int rd ver51on(),

extern void _radio_ss();

extern void radlo ss_timer_init();

extern void radlo _Ss update . timers();
static void process _bridge();

.static void process_attach data_data();
static void set_power management();

extern void llc_evt_handler (T EVENT _far *);
extern int sst _h8_code load(),

static void small delay(],

static unsigned char get_strength(unsigned char s);

/* **************************i*************i#******************** */

#define DATA

#define TIMER

#define WRITE RESPONSE
#define ATTACH TIMER

W o

186

| 5,680,633
295 296

SEP-@9-1997 16:083

/* timegut const all time are in .0l seconds *

#define HELLO TIMECUT 1 60
#define HELLO TIHEOUT 2 200
fdefine RARP TIHEOUT 300
#define ERRDR_OFF_TIHE 300
#define ATTACH TIMEOUT 48000
#define ATTACH_ SHORT TIMEOUT 1000
#define ATTACH | BACKOFF '_TIMEOUT 800
#define ARP TIMEOUT 500

/* retry const =/

#define ARP_TRIES 5
#define HELLQO_TRIES 3
#define RARP TRIES 5
#define MAC DEST ADDR 1
#define MAC . SDURCE . _ADDR MAC DEST ADDR+2
#define RADTIO STRENGTH MAC_ SOURCE , _ADDR+2
#define BRIDGE CONTROL RADTO STRENGTH+1
#define BRIDGE | ,_DEST ADDR BRIDGE ._CONTROL+2
#define BRIDGE SOURCE . _ADDR BRIDGE | _DEST_ ADDR+2
#define BRIDGE . PACKET '_PARMS BRIDGE SOURCE . ADDR+2
#define BRIDGE COST BRIDGE PACKET '_PARMS
#define BRIDGE SEED_PRIORITY BRIDGE COST+2~
#define RARP NETHORK ._ADR BRIDGE . , PACKET ' _PARMS+1
#define ARP_ NETWORK ADR BRIDGE . PACKET PARMS+1
#define BRIDGE HELLO _OPTIONAL FIELD BRIDGE | PACKET _PARMS+6
#define BRIDGE_ HELLO) _ROOT_SEQ_| “No BRIDGE | PACKET PARMS+5
static T_TIMER bridge_timer;
static T TIMER attach timer;
static T TIMER attach_backoff timer;
static unsigned int data_in_len;
static unsigned char tirst_time sw=o;
struct BASE INFO
{

unsigned char strength;

unsigned char base cost(2];

unsigned char radic _strength;

unsigned char hase_priorxty,

unsigned char £il;

unsigned int base_short_adr;
i
static struct BASE_INFO bases(32];
static int baze_ptr;
static int attach timeout _type_sw;
static int alias_len;
static char alias name(32];

static unsigned char data buf[1200];
static unsigned char bridge _state=DETACH;

static unsigned char terminal _long 1d[6},
statie unsigned int terminal_ shcrt . adr;
static int retry cnt.

static int arp_ len;

static int root_seq_number;
static unsigned int root_id_len=o0;
static unsigned char root id[aZ],

static unsigned char attach _request_sw;

187

5,680,633
297 298

SEP-83-1997 16:84

static unsigned char write request sw=0;
static unsigned char link : Status_sw=LINK DISABLED;
static unsigned char inquire sw=0;
static T_EVENT _far *tx_pending,

static SST VERSION CONTROUL sst_version;
static unsigned char tamp_out_buf[lOO],
static unsigned char tenp_in_buf[100];
static unsigned int hello_reasocn_code;
static unsigned int current_base=0;
static unsigned int next_base;

static unsigned char current_cost[2];
static unsigned char next cost[2];

static unsigned char current_strength;
static unzsigned char next strength,
static unsigned char next base valid=0D;
static char reei valxd—o,

static unsigned char spread_cade,

static unsigned char rssi_tab[40];

/* e Y L 2 a2 e 2 e I T T TR Y TR S R R S A RS2 a L L2 2222222 2o i attd */
static void state_detach()

{
disable mac();

}t ARghdneakrbtbd e bbb bbb bbb bbbt tada bbbk bbb bRk kA kA A */
/t kAR DR AR Ak bk kbbb bbbk bk kb d bbbk bk hd b h kb dhdd by &/
static void start_acgquire bases(int send helle _ESW)
{

_radio_ss _timer_ stop(sbridge_timer);

rad;o ss_ “timer step(&attach timer);

retry ent=0;

sst_version.base_short_addr=0;

enable mac();

1£(=end hella_sw)

{
send_hello();
}
else
{
bridge timer.interval=HELLO TIMEOUT_2;
hridge timer.periodic=0;
bridge timer.task_adr=0;
say(“BTSs hw-1\n");

_radio_ss_timer_ start(&bridge_timer);
brldge stata-DETACH WAITING FOR _HELLO;
base ptr=0.

1

/i L2 22232223 23 222122221l d 4l il 22t 23 2212211 L T I122]] 12] */
static veid state_detach _helle_write()
{
bridge_timer. interval=HELLO TIMEOUT_ 1;
bridge_timer.periodic=0;
bridge timer.task adr=0;
say ("BTS hw\n");
_radig_ss_timer start(&bridge_timer);
bridge_state=DETACH WAITING_FOR_HELLO;
base_ptr=0;

/* e e o e e ol S o ok e e e o o v ok w o o o ol o o o ol ol o e o o e e o e e o e e ol e o S ol o ok el o e ok o o e o ok o */

188

P.04-32

5,680,633
299 300

SEF-@9-1997 16:04 P.ES. 32

static vold state detach waiting_for_hello(type)

int type;

{
unsigned int i;
int J:

if (type==DATA)

{
if(data_in_len < 14)return;
if (base_ptr > 31)return;

if{(data_buf [BRIDGE_CONTROL] & 0x17) != 0x12)
return; /* raturn if not hello response

i=data_buf [MAC_SOURCE_ADDR] ;
i <<= B;
|= (data_buf[MAC_SOURCE_ADDR+1] & Ox00ff);

for (j=0;j<base ptr;j++)
{

if{i==bases(]).basa_short_adr)return;
}

bases[base_ptr].strength=get_ strength(data buf[RADIC_STRENGTH]) ;
bases{base ptr].radio strength°(unszqned char) (unsigned int) (256
bases(base_ptr].base_short_adr=i;;

bases[base ptr].base_ cost[O]sdata buf {BRIDGE COST];

bases(base _ptr]. base_ _cost[1] = data buf[BRIDGE , COST+1];
lf(bases[base_ptr]‘base cost[0] == Oxff)return;

bases[base ptr].base prlorlty-data _Puf (BRIDGE SEED PRIORITY)] & 3
bases[base ptr). £i1=0;

base ptr++;
raturn;

}

if (type==TIMER])

{
if {base ptr==0)
{

if(retry cnt < HELLO_TRIES)
{

_radio_ss_timer stop(&bridge_timer);
retry cnt++;
bridge_timer. interval=HELLO _TIMEOUT 2;
bridge timer. perlodic=o,
bridge timer.task_adr=0
Sly(“BTS hv 1\nll))

radio_ss_timer start(&br;dge timer) ;
bridge state=DETACH _WAITING_ FOR _HELILO;
base_ptr=0;

return;

}
retry cnt=0;
disable : mac();
bridge . state=DETACH | BACKCFF;
brldge timer. 1nterva1-ERRpR OFF_TIME;
say ("BTS backofri\n");
_xadio_ss_timer start(&bridge_timer);
if(write request sW && (link_ status sw==LINK ENABLED))
{

£

189

5,680,633
301 302

[ag)

N
(&
18]

SEP-85-1997 16:B4 =

evt _set group(tx pending, BRG_POST) ;
evt_ “set _type(tx_pending,TX DONE) ;
evt set _error (tx_pending, BRG_ERR MAC) ;
vrite request _Bw=0;
say("Tx DONE err-mac 1\n");
llc_evt_handler(tx_pendlng),

}

return;

sort_bases(};
say ("Number of bases=");
sayword(base_ptr);
say("\n",-
if(rssi_wvalid)
{
say("72db=") ;
sayword (rssi_tab[RSSI_72DB _MARK]) ;
say(",76db=");
sayword (rssi tab[RSSI_76DB _MARK]);
say(",8038b=") ;
sayword{rssi tab[RSSI 80DB_MARK]) ;
say("\n"};
tfor (j=0; j<base ptr;j++)
{
sayhex((unsigned char *) (&bases[j]), sizeof (struc
say("\n");

}
else

{

}
current base~bases{0].base_short_adr;

current” _cost[0]=bases[D].base :ast[O],
current_cost[l]=bases([0].base cost{1];
current_strength=z56-bases[0].radio _strength;
retry cnt=on;

1f(11nk status_sw != LINK_DISABLED)

say("rssi table invalid\n");

{
write_terminal _adr(terminal_short _adr) ;
send attach(].
return;
}
else
{
send _rarp();
return;
1

}

/* ********t***i*ii***t**i*ti*ﬁ****i‘ii*i**i**iiiiiit*tti***i*i** i/
static unsigned char get_strength(unsigned char s)

{
if(rssi valxd—=0)return(0),

if (s >= rsei_tab[RSSI_72DB MARK])return(o);
if (3 »= rssi tab[RssI 76DB_MARK])return(l);
if(s >= resi tah[RSSI B80DB_MARK]}return(2) ;
return(3i);

190

5,680,633
303 304

/* AR AL ER 2SR EEEE AL FT R IR RS2SR TR Y T LT T O Y Y P R T */
static void state_detach backoff(type)

int type,
{

if (type==TIMER}
{

hello reason_code |= HELLO_REASON_DETACH BACKOFF;
start acqulre bases(1); /* send hello */

}

/* EREREEKAKRKERARRKRR AR AR R KK ARA AR AR R AR AR RN AR AR A A R IR R AR AR Nk kh */
static void state _detach_waiting for rarp(type)

int type;

{
unsigned int i;
int i

if (type==DATA)
{
if(data_in_len < 14)return;

if{(data_buf[BRIDGE_CONTROL] & 0x17) != O0x16)
return; /* return if not rarp response *

for(j=0:;)
j=find rarp optional parm(j);
if (j<0)return;
if ((data_buf{j] & 0x7f)!=0x02)continue;
j=memcmp ((unsigned char far *)&data buf[j+2], (unsigned
1f(j)return,
_radio_ss_timer stop(&bridge timer);
i = data_buf[RARP_NETWORK ADR] << 8;
|= data buf[RARP NETWORK . ADR+1];
1f(1==0xffff)

SN

-

retry cnt=0;

disable_mac();

bridge state=DETACH BACKOFF;

bridge_timer. interval= ERRCOR_OFF TIME;

say ("BTS backoff 1\n");

_radio_ss_timer start(&brldge timer);

lf(wrlte request sw && (link_status_sw==LINK_ENA

{
evt_set_group(tx_pending,BRG_POST) ;
evt set_type(tx_pending,TX DONE);
evt _set error(tx _pending,BRG_ERR MAC) ;
write request sw=0;
say("tx done err-mac 2\n");
llc_evt_handler(tx pending);

}

else

{
post_11c(BRG_ERR_AR_NO_ID);

}

return;

}

terminal_short_adr=i;

sst verSLOn term short_addr=i;
write _terminal adr(l),

191

5,680,633
305 306

D
[ay]
-3
~
n

SEP-89-1997 16124

send_attach();
return;
}

}
if (type=~TIMER)
{

retry_ cnt++;
if(retry cnt » RARP_TRIES)
{

retry cnt=o;
if(try_ next_base())
{

hello_reascn_codel=HELLD_REASON“RARP_FAILURE-
start_acquire_bases(0);
rsturn;
}
}
send_rarp();

]

i* t****ii**i**ti*i****iit**'l*t**iti*******iit!*iﬁ*i*t*&***ti*&li t/
static veoid sState_detach waiting for_attach{type)

int type;
{

T_EVENT _far ravt;

if (type==DATA)
{
if(linkﬁstatus“sw==LINK_DISABLED)

return;

}
sst_version.base short_addr=current_base;

process_attach_data();
return;

}
if (type==WRITE_RESPONSE)
{

sst_version.base_short_addr=current_base;
attach_request sw=0;
if(data_buf[1]==0)
{
set_power management(0);
attach_timeout _type_sw=1;
say ("HTS attw\n");
attach_timer.interval=ATTACH SHORT TIMEOUT;
say ("ATS attw\n");
_radic_ss_timer start(&attach_timer);
bridge_state=ATTACH;
if(link_status_sw==LINK_DISABLED)
{

link_status sw=LINK_ENABLED;
attach_request sw=0;
write_request sw-0;
evt=event get();

1f (evt==0)

{

say("unable to get event ptli\n");

link_status_sn-LINK_DISABLED;
return;;

192

5,680,633

307 308

}
evt_set_group(evt,BRG_POST);
evt_set_type(evt,START);
say("BRIDGE_START\n");
1lc_evt_handler(evt);

1

ck_for_out_data();

return;

}
if(try_next~base())
{

hello_reason_code| =HELLO_REASON_ATTACH_WRITE_ ERROR;
start_acquire_bases(l);
return;

}

send_attach{();

/* ** */
/* ** */

static void state_attach(type)

int type;
{
switch(type)
{
case DATA:
Process_attach_data();
break;
Case TIMER:
process attach_timer request();
break;
case WRITE_RESPONSE:
process~attach_write_request();
break;
case ATTACH TIMER:
if(attach_request_sw==0)
if(attach_timeout_type_sw)
{
attach_request_sw =2;
hello_reason_code |= HELLO REASC
}
else
attach_request_sw =1;
}
break;
default:
break;
}
ck_for_out_data();
}

/i ************i*i*************t*t******************************* */
static voiag Process attach_data()

{
switch(data_buf[BRIDGE_CONTROL] & 0x07)
{

case 0: /* data packet */
process_attach_data data();
break;

case 1:

193

5,680,633

310
309

break;

case 2: /* hello packet iy
if(bridga.state 1= ATTACH)break:
process_attach“data~he1lo();
break;

case 3; /* attach packet /
pPracess_attach data_attach():
break; -

case 4: /* detach Packet =/
if(bridgq_stata != ATTACH) break;
process_ ttach_data_detach():
break;

case §: /* arp packet &/
iffbridge*state != ATTACH) break;
pracess_attach_data_arp{);
break;

case §: /* rarp packet *f
break;

case 7:
break;

default:
break;

}

/* *a**tt*t*t*i*i*t**tti:*t*ii*iit****t*****aaai*t!!t***t*it**t** *
static voiq process_attach_datahdata()

T_EVENT _far *evt;
T_PACKET far *pkt;
unsigned Int i;
unsigned char type;
unsigned char size;
unsigned int len;
unsigned .int adr;
1en=data_in_1en—1;

j=len;

if(j > 25)5=2s;
j=data_buf[BRIDGE_CONTROL+1];
;

j))a]

J &= 0x07;) /* Jj= data 1ink type 4/
if(3 1=1) /* return if not llc =*y

{

return;
].
if(1insttatuq_sw==LINK_DISABLED)raturn:
j=BRIDGE_PACKET;PARMS;
if(data‘buf{BRIDG!_CONTROL+1] & Ox89) /* optiona} Parms »;
{

for(;;)

{
type=datq_buf[j++];
size=data_bur[j++];
J += size7
if{type & Ox80)break ;
if(3 > data_in_len)

return;

194

P.@8/32

33
5,680,6 312

311

}
} .
evt=evt_pkt_buf_mac_get(1000);
if(evt == ()
{

return;
}
pkt=evt_pkt~ptr(evt);
(void)pkt_mac_copy_to(pkt,(char _far *)&data_buf[l],len);
(void)pkt_mac_del_hdr(pkt,BRIDGE_CONTROL-MAC_DEST_ADDR);
j o=-= BRIDGE_CONTROL; '
(void)pkt_brg_del~hdr(pkt.j};
if(data_buf[BRIDGE_CONTROL] & 0x10)
{

evt_set_group(evt,BRG_POST);
evt*sep_type(evt,ERROR);
evt_set_error(evt,BRG_ERR_UNABLE_TO_SEND);
Say("unable to send\n") ;
llq_evt_handler(evt);

else

adr=data_buf[BRIDGE_SOURCE_ADDR]<<8;
adr]=data_buf[BRIDGE_SOURCE_ADDR+1];

evt_set_group(evt,BRG_POST);

pkt_set_addr(pkt,adr);

evt_seq_type(evt,RX_DONE);

say ("RX DONE\n"} ;

llc_evt_handler(evt);

}

;* ** */
static voigqg process_attach_data_detach()

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

o e,
N Ne wa we g

if(_radio_ss_timer‘running(&attach_backoff_timer))return;
if((data_buf[BRIDGE_CONTROL] & 0x07) != 0xD4)
return; /* return if not detach req/response */
if(data_buf[BRIDGE_CONTROL+1] & 0x80)

return; /* return no optional parms */
j=BRIDGE_PACKET_PARMS;
for(;;)

i=data_buf[j]:
switch(i & ax7£)
{

case 0x04: /* detached 1ist */
J++;
k=data_buf[j];
if(k & 1l)return;

J++;

K >>= 3.,
for(l=o;l<k;1++)
{

m=data_buffj++];

195

5,680,633 314

313
P.83-32
B <<= g
h)= {dataThut[j++J & Oxoorr;;
if(n==term1nal_short_adr)
{
1f (attach requegy Sw==Q}
attach_raquest_s
_radio_ss_timer
) -
}
}
break;
defaylt:
J++;
b] +=data_buf[jj;
J++;
break;
}

ir(i & Dxac)break;
if(§ > data~in_1en)return;

Unsigned int 3
unsigned ins i
unsigned int k
uUnsigned ing 1
Unsigned jng m;

unsigned jint hase_adr:

if((Eﬁta_buf[BRIDGﬁ‘COSTJ == OXff) &4 (data_buf[BRInGE_cosm+1] == OXfE) .
{

if(bnsq_adr == Current bage)

1

if(attach Fequest gy 1. oxffJattach_request Sw=2;

heua_:eann_code‘J= HELLO REASON_cOsr FFFPT

if(!(datq_huf[BRIDGE_CONTROL+1] & Oxaoj)
return; /* returp no optiona) Parms «;
if(raat_seq_number < 0)
{
roct_seq_numher-data_buf[BRIDGELHELLQ_ROOI_SEQ_NO];
}
2lse
if(rootﬁsaq_number I=data buf[BRIDGE‘HELLQ~ROOT_SEQ_NO]J
{
root seq_number=data buf[BRIDGE HELLO ROOQT SEQ NOj;
|="HELLO ER

H

{2

196

315

SEP-83-1957 16185

}

5,680,633
316

P.18.-32

root_seq_number=-1;

link status_sw=LINK DISABLED;
say ("Root seq changed\n");
if(vrite_request_sw)

evt set group(tx_pending,BRG_POST) ;
evt_set type(tx_pending, ERROR) ;
evt_setwezror(tx‘pundinq,BRG_ERR,NET_RESETJ;
llc_evt _handler (tx_pending) ;

}

else

{

}

return;

post_llc(BRG_ERR NET_RESET) ;

}
J=BRIDGE_HELLO_OFTIONAL_FIELD;

for(;;}

i=data buf[j};
switeh(i & 0x7f)

{

case 0x04: /* detached list #y
Jt+;
k=data_buf{jj;
J++;
K >»= 1;
for{l=0;1<k;1++)
{

m=data_ buf[Jj++];

n <<= 8;

m |= (data_buf[j++] & OX00ff);

ir(_radio_ss_timer running(&atta
if(m==terminal_ short_adr
{

if (attach_reques

radio s
attach r
¥
break;
}

}
}
break;

case 0x05: /* pending list =»;

J++i
k=data buf[j];
J++;
k >>= 1;
for{l=0;1<k;1l++)
i

m=data_ buf[j++];

m <<= §;

m |= (data_ Buf[3++] & OxOO0ff);

if (m==terminal_short_adr)

{

if (inquire_sw==0)
&

197

317

case Ox0a:
case 0x0b:

5,680,633

318
{ .
if (base_adr ==
{
if (inqui
}
}
break;
}
}
break;
/* root long id */
/* root alais */
J++;)
k=data buf[ji;
if (root_id len==0)
{
if{(kx > 20)break;
root_id len=k;
J++;
memcpy((un51gned char _far *)roc
j += k;
break;
3
if(k != root_id len)
{
hello reason_code |= HELLO REASO
root__ id 1en—0,
root_. ._seq_number=-1;
llnk status _sw=LINK_DISABLED;
say ("Root id len not equal\n");
if(write_request ._SW)
{
evt_set group(tx_pending
evt set _type(tx pending,
evt set _error{tx pending
1lc_evt_handler (tx_pendi
}
else
{
post_11c(BRG_ERR _NET RE:
}
return;
¥
J++5
for(1=0;1<k;1++)
{
if(root_id[1] != data_buf[j++])
{

hello_reason_code |= HEL
root_ ia len—o,
root _Seq number=-1;
llnk status_sw=LINK_DISA
say ("Root id changedd\n"
if(write_request_sw)
{
evt_set group(tx
evt_set_type(tx_
evt_set error(tx
lilc_evt_handler(

1

198

5,680,633

319 320
}
else
{
post_1lc(BRG_ERR
}
return;
}
}
break;
default:

J++;

j +=data_buf[j];

J++;

break;

}

if(i & 0x80)break;
if(3 > data_in_len)return;
}
set_power_management(l);
1

/* ***i****i*******************i**********
static void process_attach_data_attach()

{
if((data_buf[BRIDGE_CONTROL] & Ox1
return; /* return

_radio _ss_timer stop(&attach timer

hkkhhh kA A RAR AR Ak ok */

7) 1= 0x13})
if neot attach response */

);

attach_timer.interval=ATTACH TIMEOUT;

say ("ATS da\n");
_radio_ss_timer_start(&attach_time
attach_timecut_type sw=0;

if(!(data_buf{BRIDGE_CONTROL+1] &
return; /* return
post_llc(BRG_ERR_ATTI);

/* ********i******************************
static void process_attach data_arp()
{

)i

0x04))
if not ATTI */

e sk ok e e o o o e e e e ol e ok ek ok ke ek o ok */

unsigned int i;
char _far *arp_adr;
T_BRG_LLC_FD _far *ptr;

ptr=(T_BRG_LLC FD far *)tx_pending->info;

arp_adr=ptr->alias;

if(write request _sw != 3)return;
if(data_in len < 14)return;

if((data_buf[ERIDGE_CONTROL] & OX17) != 0x15)

return; /*

return if not arp response * f

if (memcmp((unsigned char _far *)&data_buf[ARP_NETWORK_ADR+7],(unsigned c

_radio_ss_timer_stop(&bridge_timer
1= data_buf[ARP_NETWORK_ADR] << 8
i |= data_buf[ARP_NETWORK ADR+1];
if (i==0xffff)

{

)i

’

evt_set_group(tx_pending,BRG_POST);
evt_set_type(tx_pending,TX_DONE);

/5

199

5,680,633

321 322

SEP-BR-1997 16:95

}

evt_set_ezroz(tg_pending,BRG_ERR_AR_NOT_FDUNDJ;
writaQrequest_sw=0;

say ("TX DONE AR NOT FOUND\n");

llc_evt handler (tx_pending);

return;

ptr->address=i;
write_request_sw=1;
ck_for_ out_data();

*

/ ® ti***itt#*!*!i*ittittttt*iI'**ii**i*i‘l**!*iti**t**i**i**i*tt*ti */
static void process_attach write request()

{

if (link_status_sw==[INK_DISABLED)
i

inquire_sw=0;

write regquest sw=0;

start_acquire_bases(1); /* send hello #/
return;

if(inquire_sw==2)
{

)]

inguire_sw=0;
if (data buf[1]==0) /* good *;
{

}
send_attach();
return;

raturn;

switch(write_request sw)

{

case 2: /* completion of arp write %/
if (data_buf[1]==0) /* good */
{
bridge timer.interval=aRP TIMEOUT:

200

P.11-32

5,680,633
323 324

SEP-@9-1997 16:0S P.12/352

if (try_next_base())
{

helloc_reason_code|=HELLO_REASON WRITE_ERROR;
start_; _acquire bases(l); T/* send hello %/
returh;

}

send_attach();

return;
default:

break;

}* RAER AR AR RRRR IR Ak hdb S b sk kbt kA A Ak kb kb b wkw bbbt */
static void process_attach timer_request()
{
if (write_request sw==3} /* arp timeout */
{
retry_cnt++;
ir(retry cnt > ARP_TRIES)
{
evt_set grcup(tx_pending,BRG POST) ;
evt_set_type(tx_pending,TX_DONE) ;
evt_set —error (tx_pending,BRG_ERR_AR_INV_ALIAS);
write _request sw=0;
say ("TX DONE INV ALIAS\n");
llc_avt_handler(tx_pendlnq),
return;

}
write request_sw=l;
ck_for out_data();
return;

}

}
I* Y2 I S R e e SRR PSR IS 2222 2 RS L R R RS L AR s 2 2 s 2 it L) L e LI ol
/* dakkdhhddbd kN hkhkrk ket kk bbbt bbb kA hd b hh bbbk Ak hdk A f

static void send_rarp()

write base adr (current_base);
write terminal_adr (oxofff);
data buf[OJ-BH WRITE_MULTICAST;
wrt_Int_buf (1,0x06c0) ;
Hrt int buf(: 0x2000) ;
wrt int_buf (5,0x8fff);
data buf[7]-sto, /* rarp operation */
wrt_int buf(®,0); .
data buf[lo]-z.
data_buf[11]=8;
meucpy((unsmgn-d char _far *)&data_buf[12], (unsigned char _far *)termina
bridge_timer. interval=RARP TINEOUT,
brldge timer.periodic=0;
bridge timer.task_adr=0;
say ("BTS rarp\n");
radlc ss_timer_start(&bridge_ timer);
xf(allas Jen==0)
{
data_buf([l0]=0x82;
say(''send rarp\n");

201

5,680,633
325 326

else

data_buf[18]=0x87;

data_buf(19]=(unsigned char)alias_len;

memcpy ((unsigned char _far *) &data _buf(20], {(unsigned char _far *
say("send rarp\n");

(void)_radio_write(data buf,1B+2+alias_len};

¥
bridge state=DETACH_WAITING_FOR_RARP;

/* RERRARARTRTRRAEEER R AR R I RRAR AN IR AR R I A IIRATARR AR AR h ok dhkdhhddhk */
static void send_arp()
{

char _far *arp adr;

T_BRG_LLC_FD _far *ptr;

ptr=(T_BRG_LLC FD _far *)tx_pending->info;
arp_ adr—ptr->allas,
arp_len=(int)strlen(arp_adr};
data_buf[0]=BH_WRITE_MODIFY;

data buf[l] =16;

data buf[2] =25;

data buf[3]—80,

wrt_ Int _buf (4,0x05¢c0) ;

wrt int buf(s 0x2000) ;

wrt int buf(B terminal_short_adr);

data buf[lo] =0x00; /* arp operation */
wrt int _buf(11,0);

data buf[13] =0x0¢;

data_ _buf[l4]=1;

data buf[15] 24;

data_ | . buf[16]=0x87;

data_ _buf[17]=(unsigned char)arp_len;
memcpy ((unsigned char _far *)&data buf(18], (unsigned char _far *)arp adr
write request_sw=2;

say("send arp\n");

(void)_radio write(data_buf,arp_len+18);

/* ok ot ok A de e e e ke ok e e ok e ek de & ok ke e o ok ok e e e de kR o e o e ok ok vk o e e ok vl e e ol e ol e kel e e de e b ke e */
-static void send_inquire()
{

data_buf[0]=BH_WRITE . MODIFY;
data_buf[1]=12;

data_ _buf[2]=25;

data_| buf[3}—80,

wrt_ Int _buf(4,0x0088);

wrt int buf(6 current_base) ;
wrt int buf(B terminal short_adr};
data buf[10]=0x80,

data_| _buf[11l}=1;

data . _buf[12]=24;

inquire_sw=2;

say("send ing\n");

(void)_radic write(data_buf,13);

Jh hRhhhkhkhkrrk kAR RARAKAR K hh AR AR Rk kA hhkhhkhrhrhhhkhkhrrrhhhrthrkadhhnd */

202

5,680,633

327 - 328
T_BRG_LLC_FD far *ptr;
T_ "PACKET _far *pkt;
unslgned Int len;

ptr=(T_BRG_LLC_FD _far *)tx pending->info;
pkt=evt_] pkt ptr(tx pendlng),
data_buf[0]=BH_WRITE_MODIFY;
data_buf[l] =127
data_buf{2]=25;
data” | buf[3] =80;
wrt_int_buf (4,0x0088);
wrt int_buf (6,ptr->address);
wrt int buf(8 terminal_short_adr);
data buf[lO] ox8¢c;
data_buf[11]=1;
data buf[12] =24;
(vold)pkt llc_copy (pkt, (char _far *)&data_buf[13}, 1100);
write_request_sw=4;
len={unsigned int)pkt llc tot_len(pkt);
if(len > 1090)
{
write request_sw=0;
evt set group(tx_pendlng,BRG POST) ;
vt set_type(tx pending, TX_| DONE) ;
evt set error(tx pending,BRG_ERR_INVALID_LENGTH};
say ("TX DONE INVALID LENGTH ");
sayword(len) ;
say ("\n"};
1lc_evt_handler (tx_pending);
return;

say("send datalen=");

sayword(len) ;

say ("\n");

(void)_: radlo _write(data_buf, (int) (len+13));

/* **ii************t*i*i*t*****i***i*******i**#****itti**i******* */
static void send_attach()
{

radio_ss_timer _stop(&bridge | timer);
radlo ss_timer stop(&attach " timer);
attach request sw=0xff;
write_. base adr(current base) ;
data buf[O] =BH_WRITE_ MODIFY;
data buf[l] =157
data_buf[z] 25;
data_buf(3]=80;
wrt_ Iint _buf(4,0x03c0};
wrt int buf(s 0x2000) ;
wrt int buf(s terminal_short_adr);
data buf[ln] =0x0f%; /* max mesg count */
data buf[11]=1;
data_buf[12]=3;
data_buf{13]1=0x0c;
data_buf{14)=1;
Aata nfl1R1=241:

203

5,680,633
329 330

SEP-88-1997 16:B6 FL13-32

data_buf{18]=2;

say("send attach\n");

(veid)_radio write(data buf,19);
attach “timeout _type sw=0;

brldge state=DETACH_WAITING_FOR ATTACH;

IR AR RS R AR AR AR RERR AR A RA AR AR RAN S ETRA RS AN RSN CTARERNRIHRRE k]
static void send_hellos()
{

radio_ss_timer_stop{kbridge timer);

Write Dase adr (Ox27ff); /* any base address */
data buf[OJ-BH WRITE MULTICAST;

wrt_int_buf (1,0x0280) ;

urt int | _buf (3,0xffff);

urt int buf(s {ox8000 | hello reason_code));
data, buf[?]-oxsd,

data buf{sj-l,

data buf[B] o;

say ("send hello\n");
(void)_radio_write(data buf,10};
bridge _ state-DETACH WAITING_FOR_HELLO WRITE;
hello reason_code=0;

* *ttii**iti***ittattttt*ittt*ttitiiw*****ttttiii*iti**tiiiit*** */
static int find_rarp_optional_parm(pos)
int pos;

{
if {pos==0)

if (data_buf({BRIDGE CONTROL+1] & DX80)

{
return(BRIDGE_PACKET PARMS+3};

.
return(-1);

1
if(data_ buf(pos]) & Ox80)return(-1);
return(pos+z+data buf [pos+l]);

A AR AR A AR AR R ANRARAR AR AR SNk kAN ARk ARk Ak AR Ak dddrdk i d */
static void ck_for_out_data()

{
T_BRG_LLC_FD _far *ptr;

if (inguire sw > l)return;
if(write request sw > l)return;
if(attach request sw)
{
if{attach_request sw==1) /* normal attach request =/
{
if (1ink_status_sw==LINK DISABLED}
{
inquire sw=0;
vrite requeast_sw=0;
start acquize bages (1)} /* sand hallo %/
return;

¥
send_attach();

204

5,680,633
331 332

{
if(1ink_status_sw==LINK_DISABLED)
{
ingquire_sw=0;
write request sw=0;
start _acquire_] “bases (1) ; /* send hello #*/
return;
}
if (try_next_base(})
{
attach_request_sw=0;
hello_reason_code|=HELLC_REASON ATTACH_ 3;
start_ _acguire_| bases (Q) ;
return;
}
send_attach();
return;

}
if (1link_status_sw==LINK_DISABLED)
{
inquire_sw=0;
write request sw=0;
start_ _acquire_bases(1); /* send hello */
return;

}
if (bridge_state != ATTACH)return;
if (write_request_sw)
{
inguire_sw=0;
ptr=(T_BRG_LLC_¥D _far *)ExX] pending->info;
1f[ptr->address=-0)
{
send_arp();
return;

}
send_data() ;
return;

if (inquire_sw)

send_inquire();
return;

}

}
/* ************************l'***'k*'k**i**************************** */
static int try next_base()

/7 return 1 if no base available
/7 return 0 if base available

if (next_base va11d==0)return(1),
next_| base valld—u,

current base=next ._base;
memcpy(current cost,next cost,2);
current strength—next strength,
return(0);

205

5,680,633
333 334

SEP-B9-1997 16396 F.14.32
int indx;
unsigned int data;

data_buf[indx++]=(unsigned char) {data >> 8);
data_puf[indx]={unsigned char) (data & OxXOOLf);

7% e L S LR LSS Al bl bbb bbb
static void sort bases()

{
int i,j,k,sort_sv;

unsigned char buf[sizecf(struct BASE INFO)];

if {(base_ptr < 2)raturn;
j=base ptr-1;
for(;;

for (i=0,sort_sw=0;i<];i++}

k=mamcep ((unsigned char _far *)tbases[1], (unsigned char
if(x > 0)
{
sort_sw=l;
memcpy{ (unsigned char _far *)buf, (unsigned char
memcpy ((unsigned char _far +) gbases[1i], (unsigned
memcpy ((unsigned char _far *) gbases[i+1], (unsign

}

}
if (! (sort_sw))return;

12

}

}
/* t#i*iiitt**i**i*ii*i****ﬁit****!!i!*iilii!iiiii**iittlii****!i *®/

static veid write_terminal adr(adr)
unsigned int adr;
{

temp_out_buf[0]=BH_WRITE_SHORT_ADDR;
tenmp_out _buf[l]=adr >> 38;
temp_out_buf[2)=adr & 0x00fLf;
say("write term adr ");
saywerd(adr);

say("\n"};
(void)_radin_yrita(teng_nut_buf,3);

Ii **i*ii*t.*ﬁ**i*i--i***'tiil*f"*.itit*i**t***tiitt**iititit*t* */
static void write base adr(adr)
. e =
unsigned int adr;
{

temp_ocut buf[0)-BH_WRITE BASE ADDR;
temp out buf[l)=adr >> 8;
temp_out_buff2]=adr & Ox00ff;

memcpy (&Eemp_out_buf(3],current_cost,2);
temp_outwhuf[5]-cuzr=nt_=trenqth;

say ("write base adr ");

sayhex(temp_out buf,é);

say(“\n");
(void)_radio_write(temp_out buf,6);

206

5,680,633
335 336

static void write_lan_adr(adr)
unsigned int adr;
{

adr &=3;
temp_out_buf[0]=BH_WRITE_LAN_ADDR;
temp_cut_buf[1]=(unsigned char) adr;
say(Pwrite lan adr "};

sayword (adr) ;

say("\n");
(void)_radio_write(temp_out_buf,2);

}

/* i*i***i************************ﬁ**************ii**i*********** */
static void disable_mac()

{

temp_out_buf{0]=BH_COMM_DISABLE;
say ("disable\n");
(void) _radio_write(temp_out_buf, 1);

/* i**i****************************i******ii*********i********t** */
static void load_code(code)

unsigned char code;
{

temp_out_buf{0]}=BH_CODE_LOAD;
temp_out_buf[l]=code;
(void)_radio_write(temp_out_buf,2);

/h ***i***i******i*****i****i*i******************i*************** */
static void enable_mac()
{

temp_out_buf[0]=BH_COMM_ENABLE;
say("enable\n"};
(void) _radio_write(temp out buf,1);

}
/* ****i***************i***i************************************* */
static int rd_long_id{)

{ : s
int i;

temp_out_buf[0]=BH_RD_LONG_ID;

i= radio_write(temp_out_buf,1);

if (i <0)return(-1);

i= radio_read(temp_in_buf,20);

if (i < 0)return(-1);

if (temp_in buf[0]==BH_ROM_CODE_VERSION)return(l);
if(temp_in_buf[O]!=BH_RD_LONG_ID)return(z);

if(i 1= 10)return(3};

if (temp_in_buf[8] != temp_in_buf(9])return(3);

memcpy ((unsigned char _far *yterminal long_id, (unsigned char _far *)&tem
memcpy ((unsigned char _far *)sst_versfon.long_id,(unsigned char _far *)&
return(0);

7% FTrareeanaanpeammemrre T TR T ST S T EET I T L LSS A SRS LSS
static int rd_version()
.

207

5,680,633
337 338

temp_out_buf[0]=BH_RD_VERSION;
i= radio wrlte(temp out buf,1);

lf(1 <0)return(-1);

i= radio_read(temp_in_buf,20);

if{i < OYreturn(-17;

if (temp_in_buf[0]==BH_ROM CODE VERSION)return(-2);
1f(temp in buf[O]'-BH RD VERSIONJreturn(U)

if (i != 3)return(0),
j=temp in buf([2];
j<<=8;

j |= temp_in _buf[1};
return((int)J);

R e e L L T S T Ty
static int sst_self test 1()
{

int i;
temp_out_buf{0]=BH_SELF_TEST 1;

temp ocut buf[l]—spread code,

i= radio_write(temp_ out _buf,2);

1741 <0)return{-1i);

small delay();

i= radio_read(temp_in_buf,20);

if(i < O)Ieturn(1y;

if (temp_in buf[0]==BH_ROM_CODE_VERSION)return(=2);
1f(temp in_buf[0]!= BH SELF TEST_1)return(l);
if(i t= . 2)return(l);

return((int)temp_in buf[1]);

}

R e L T T I T Ty
static int sst_self_ test_2()

{

int i;

temp_out buf([0]=BH_SELF _TEST 2;

temp out_| buf[l]—spread code;

i= radie _write(temp out _buf,2);

if (i <Q)return(-1);

small_delay();

i= radio_read(temp in _buf,20);

if (i < o)return(1);

lf(temp in_buf(0)==BH_ROM_CODE _VERSION)return(-2);
lf(temp in buf[O}'—BH SELF _TEST _2)return(l);
if(i != 2)return(l);

return((int)temp_in_buf(1]);

/* hRddkkkhhhkhhhkhhhhkhhkhkhhhdhhhhhhhkhhkhRhAhdhhhhhhhrhkrhdrrArAbrhis */
static int sst_rd_rssi_table()
{
int i;
int hH
unsigned char lre;

for{i=0;i<31;i++)

{
temp out bufl0l1=BH RD EEPROM;

208

5,680,633
339 340

if{j <0)
{

say("rssi write fault "};
sayword (i) ;
say{("\n");
return(-1i);

)
j=_radio_read{temp_in_buf,20);
if{j < 0)

{

say ("rssi read fault ");
sayword (i) ;
say ("\n");
return{-1);

}

if (temp_in_buf{0)==BH_RCM_CODE_VERSION)return(-2);
if(temp_in_buf[0)!=BH_RD_EEPROM)return(1);

if(j != 2)return(l);

rssi_tab{i)=temp in buf[1};

}
for{i=0,lrc=47;i<30;i++)

{
lrc "= rssi_tab[i]);
+
1f(1rc != rssi_tab[30])return(l);

rssi_valid=1;
return(o) ;

/* Khkhhhkkkhhkhhhkhkkhrrhhkkdk kA hhrkdhkkkrhkkhkrhkhhrdkhhhhrhhdhkhhdhs */
static int sst_self test_tx power()

int b

load_code(spread_code) ;

temp out buf[0]= =BH _RD_TX_POWER;

j=_1 radio wrlte(temp out buf, 1),

1£7§ <0)

{
say("sst_self test tx power-i\n");
return(-1);

¥

j=_radic_read(temp_in_buf,20);

if{j < 0)

{

say("sst_self test_tx power-2\n");
return(-1);

}
if(temp_in buf[0)==BH_ROM CODE_VERSION}
{

say ("sst_self_test_tx_power-3\n");
return{-2);

say("sst_self test tx power-4\n");
if({temp_in buf[O]'-BH RD_TX POWER)return(l);
say("sst self test_tx | powar S\n");

if(rssi tab[21]>tamp in buf[l])return(l),
say("sst self test tx_power 6\n"};

209

5,680,633
341 342

SEP-@9-1397 1R:@G
I itt**i**i*t'**i*ii*tilii*ti*itii**i*iti**tt**i**i*i**iti**i*i* */

static veid small delay()
{
int i;

for(i-o;i<3oooo;i++1

static veoig set_power_managament(type)
unsigned char type;
{

temp_out_buf[a]-BH_HELLO_HANDLE;
temp_out_buf[l]-type;
temp_uut_bur[z]=(unsigned char)roct_seq_number;
temp_out buf{3]=(unsigned charlroot_id_Jen;
if{root _Id_1len)

{

memcpy ((unsigned char _far *)&temp_ouq*huf[4],(unsigned char
}
say(“"power management ");
sayword(type) ;
say(™\n")};
(void)_radio_writu(temp_cut_buf,{int){root_id~len+4)):
}t i***tiittkt*tti*ill****ii*t**t*t**ti*t*l*t*tt**i*ii**i****t*tt t/
statie void post llc{code)
unsigned int code;
{
T_EVENT _far *ptr;

ptz-.vent_get();
if(ptr==o)
{

82y ("POST LLC evant get error\n»);
return;

}

evt‘set_group(ptr,BRGhPOST);

evt _set type(ptr,zRROR);

evt_set_error(ptr,code);
say ("POST LLC »);
Sayword(code) ;
say("\n");
11c_evt_handlez(ptr);

- call after SERIAL READ from wait *
) tﬁ**iiii**i*ti*iiit**ib***ﬁ**iliti&t*tt*itit*i*it*tii*****i**t */
tatic void (*state_table[])()=

{

state_detach,
State detach_hello write,

state_detach_wa;t1Eq_far_hello,

210

_fa

5,680,633

343 344

/* Feddededhdede kR ARk R KRk kR ke kAR Rk kA kA kk kR kkhhdhkhkhhkihk */
static void process_bridge(type)

{

int type;
void (*state_call) ();

state_call=state table[brldqe statel;
{*state call)(type),

[RRE kR kR k kR AR R R HA RN R IINRR R KAk ok k ok ko gk ko ke k Rk kR &/
void _radio_ ss_bridge_shutdown(}

{

alias len=0;

disable _mac();
_radio_ss_timer stop(&bridge_timer);
“radio ss_] “timer . ~stop(&attach_timer);
radlo ss tlmer delete(&brldge timer);
“radio_ss tlmer delete(&attach “timer);
attach request sw=0;

write request sw=0;

root_seq_ number=-1;

brldge state=DETACH;

J% REAREAERIEKIKARIAAIRR IR KRR AN KRR R R Id kR IR ddk kAot dededeokok ok deok %ok ko
SST_VERSION CONTROL _far *_radio_ss_bridge init(

unsigned int™ Tan,
unsigned char _far *alias
)

int i;

int bH

T_EVENT _far *evt;

int code_load sw;

spread_code=SPREAD CODE;
alias_len=0;
i=(int)strlen((char _far *)alias)j
radio_ss_timer 1n1t(),
1f(1 <= 16)
{
strcpy(alias_name,alias);
alias len=i;

radio ss(),
sst_version.sst_hardware_errors_major=0;
1f(‘(flrst time | _5W))
{
first_time sw=1;
sst_ version. sst_hardware_errors_] minor=0;
sst version. sst h8_ rom code vers;on=0'
sst version. sst he _ram_ _code_version=0;
sst version.sst | brldge code verslon=VERSION,
say{"Bridge version="}7;
sayword (VERSION) ;
say { U] \n" H
sst verslon sst_digital_board_type=0;
sst version.base short addr=0;

211

*/

5,680,633
345 346

SEP-@3-1397 16:B6

sst_version.rssi _a_to d _value=0;
menset(sst version. 1onq ~id,0,6);

}
code load sw=0;
for (1=0;i<10; 1++}

{
j=_radic read(data_buf, 1200} ;
if(j < 0)
{
say("rd ver i= ");
sayword(i);
say("\n");
sst_version.sst_hardware errors major=SST_ERROR_MODULE N
return(isst version) ;
}
if (j==0)
{
code load_sw=1;
break;
}
if{data_buf[Q]==BH_ROM CODE_VERSION)
{
sst_version.sst_h8 rom_code version=data buf(1];
say("H8 version=")7;
=ayvcrd(data_huf[1]];
say("\n");
break ;
}
}
1f(i >= 10)
{

sst_version.sst_hardware_ errors_major=SST_ERROR UNABLE_TO_CLR BU
return(&sst_version);

}
say(*hB version=%);
sayword(sst version.sst_h8_rom code_version);
say("\n");
if (! (code_load sw))
{
say("I1\n");
i= sst_he_code_load({);
if7i 1= 0y

sst_version.sst_hardware_errcrs_major=SST_ERROR _UNABLE T
return{ksst verslon),

}

i=rd versaion(};

say("I2\n");

if{i == -1)

{
sst_version.sst_hardware errors_major=SST ERROR_MODULE N

return(&sst version) ;

if(i == -2)

i
sst_version.sst _hardware_errors_major=SST_ERROR UNABLE T
return{&sst vetsion),

}

if(i == o)

212

347

SEF-83-1397

16:06

}

5,680,633

Sst_version.sst_hardware_errors_major=s

return(&sst_version);

say("H8 ram code version = 7);
sayword(i & OxO0Off);

say["\n") H
sst_version.sst_digital_board_type=(unsigned char) ((unsigned int
sst_version.sst_hardware_errors_minor=0;
if(sst_version.sst_digital_board_type >= 2)

{

Bay({"XI3\n");
i=sst_self test 1();

{

}
LE(] ==
{

}
if (i)
{

ir(i ==

-1)

sst_version.sst_hardware_errors
return(&sst_version);

-2)

sst_version.sst_hardware_errors
return(&sst version);

sst_version.sst_hardware errors

return(&sst_version);

}
say("I4\n");
i=sst_se1£_tast_2();

if(i ==
}
1r(f ==
{

!
ir(i)
{

_l)

348

P. 17732

ST_ERROR_INVALID_

sst_version.sst h8_ram_code Versions(unsigned char)(i & OxODff};

_Major=SST_ERROR_

major=SST ERROR_

naj or=5ST_ ERROR_

sst_version.sst_hardware errors_major=sSST_ERROR

return(&sst_version);
-2)

8st_version.eet hardware errors

return(&sst_version);

_major=SST_ERROR_

sst_version.sst_hardware_errors_minor [= SST_ERR

}
say("I5\n");
i=sst_rd_rssi_table();

if(i ==

{

if{i ==

H
%f(i)

-1
agt_version.sst_hardware_errors
say("I5a\n");
return(&sst_version);

-2)

_Mmajor=SST_ERROR_

sst_version.sst_hardware errore_major=sST_ERROR_

say("ISb\n"); '~ -
return(&sst_version);

213

5,680,633
349 350

Se3-1997 16:67 P.1a.32

Sst_version.sst hardware_errors_minor |= SST_ERR

}
else
{
say ("I6\n");
i=sst . salf tast _tx_power();
if(i == -1)
{
sst_veraion.sst_hardware _errors_major=ss
say("IGa\n"),
return(&sst_version);
}
1f(i == -2)
{
sst_version.sst_hardware _errors_major=Ss
say("IGb\n")‘
return{&sst_vcrsxon);
}
if(i)
{
sst_versinn.sst_hardvare_errcrs_minor =
}
}

}

}

xay (*I7\n");
i=rd _long_id{);
if(i < 0)

{

sst_version.sst_hardware _errors na)or-ssT_ERROR_HDDULE_NON_RESPO
return(ssst _version):

} s

1f({i == 1)

{
sst _version.sst_hardware errars_major=SST_ERROR_UNABLE_TO_LDAD_E
return[isst varsxon),

}

if(i 1= 0)

{

sst_version.sst_hardware errarn_majcr=SST_ERROR_INVALID_LONG‘ID;
return(&snt vetslon).

load_code(epread code);

disable mac();

write 13n_adr(lan);

attach ,_request_sw=D;

write _request: . aw=0'

root_Td len=07

root_seq_number=-1;

(vcid) radio ss_timer _Creata{kbridge tiner],

(void) radlo BS tlmer ~_create(kattach | _timer);

{void) radlc £S5 tlmer _Create(fattach™] _backoff timer);
attach_timer.. xntarval-ATTACH _TIMEOUT;

attach timer.periodic=0;

attach_timer.task adr-o,

attach _backoff timer.interval=ATTACH _BACKOFF _TIMEOUT;
attach_backaff _timer.periodie=0;

attach_backoff | _timer.task _adr=0;

vrxte _Terminal” _adr(OXtEEf) :

214

5,680,633
351 352

SEP-B9-1397 16:07 £.19,32

link_status_sw=LINK_DISABLED;
start_acquire_bases(1); /* send hella #*/
return(&sst_version);

f* iit‘.*ti’t*l‘*t***'ﬁ**ﬁl**ﬁ*ii*iiiiii!i**t**i‘iﬁ**li*l**tit*ti**t* */
void radio_ss_bridge_interrupt()

unsigned int i;
unsigned int b
for(;;

i={unsigned int)_rudio_read(data_hur,1200);
data_in len=i;

if(1{i & oxB0OOO))break;

say("radio read--error ");

sayword(i);
say ("\n"};
}
if (i==D)
1{
say("_l');
return;
}
j=20;

say ("s=");
sayword(bridge_state);
say(” len="};
sayword (i) ;

say (" Ls=");
sayword(link_statusﬁsw);
say ("\n"};

if{ici)j=i;
sayhex(data_buf,j);
say("\n"); .
switch(data_buf[0])

{

case BH_TIMER:
radio*ss_update_timers(data_buf[1]);
If(‘radio_ss_timer_stopped(ibridge_tiner))
{

say ("BT\n") ;
process_bridge(TIMER) ;

}
if(_radio_ss_timer_stoppad(&attach_timer))

say ("AT\n");
process bridge {ATTACH_TIMER) ;

}
break;
case BH_READ:
sat_version.rssi_a_to_d_va1ue=data_huf[5];
process_bridge (DATA) ;
break;

process_brildge (WRITE_RESPONSE} ;
break;

case BH_HELLO TIMEQUT:
sSav("BH HELI.Q TTYMRAITM mub .

case BH WRITE:

215

5,680,633
353 354

if(write_request_sw==0)
post_11c(BRG_ERR ATTI);

break;

case BH_BASE INFO:
say("BH_BASE_INFO\n");
i=data_buf(1];

i <<= B;

i |= data_buf(2]; '
if (i==0)

{

next base_valid=0;
break;

next_base=i;

next cost[0]=data buf[3];
next_cost[l]=data buf([4];
next_strength=data buf[5];
next base_valid=1;
say("next base=");

sayword (next_base) ;

say("\n");
break;
default:
say ("UNKNOWN 1\n");
break;
}
say("Es=");
sayword(bridge_state);
say(" ");
sayword (write_request_sw);
say(" ");
sayword(attach request sw);
say ("\n") ;
switch(bridge_state)
{
case DETACH:
sst_version.link_status=LINK_DETACH;
break;
case ATTACH:
sst_version.link_status=LINK_OK;
break;
default:
sst_version.link_status=LINK_QUESTIONABLE;
break;
}

/* **************************************i********************i** */‘
void _far brg_evt _handler(T EVENT _far *evt)
{
say("B1\n");
if (evt_type(evt) == TX_REQ)
{
if(link_status_sw==LINK_DISABLED)

say("tx_done--1link disabled\n");
evt_set_group(tx pending,BRG POST);

216

355

SEP-@9-1997

5,680,633

16:87

llc _evt_handler{evt);
return;

}

if(write_ request_sw)

1
say("tx_done--brg_err busy\n");
evt_set_group(tx_pending, BRG_FOST) ;
avt_set_type(tx_pending,TX_DONE);
avt set_error(evt,BRG_ERR_BUSY);
1llc_evt_handler(evt);
return;

}

tx_pending=evt;

write_reguest_sw=1;

say (Bl state=");

sayword (bridge_state);

say("\n"] H

if(bridge_ state==ATTACH)
ck_for cut_data();

return;

}
say("B2\n");

217

356

}
/* EER L AR 2R LA L e P T T e s P S T P YT 2R L L] *f

5,680,633
357 358

/* Ahhkkhkkhkkkjdehhhhhhkhhkrk kkkhkRkkhhrkrhkhk AR KA hdkd: * */

/* MAC layer process */
* *i*i****i***************t*t***********************i*t* */
#define EXTERN
#include "sshB.h"
/* ***********i*ii***i****t************************************* */
static void set mac backoff_time(unsigned int,unsigned int);
static int mac_acqufre_channel();
static void send multicast msg();
static void mac_send_rfp();
static void set_mac _timer();
static void reset_mac_timer();
static void send_ss_data();
extern void process_bridge_layer({);
static void process mac_idle();
static void process_mac_tx_machine();
static void process_mac_rx_machine();
static void process_mac_layer_data_entry();
static void process_mac_rx_timeout();
static void process_mac_layer_timeout();
static void process mac_tx_ready();
static void process_mac_tx_s_data();
static void process_mac_tx_s_eod(]);
static void process_mac_tx_rdy_enq();
static void process_mac_tx_s_enq();
static void process mac_tx_s_rfp();
static void process_tx_send_record();
static int ck_tx_seq_state();
static void mac_send_enq();
static void mac_send_poll();
static void mac send_clear();
static void mac_send_reject();
static void ss_write_control();
void ss_set standby():;
gtatic unsigned char check_address();

void set_ignore_c188_timer{unsigned char);
T T e e e e R L LA A AR bh b ddb b dotoliatddalbd ol aintiiel

extern void (*hdlc_write_data_ptr)(unsigned char *,unsigned char *,unsigned
/* ************i*****************i************i***************** */

extern unsigned char hdlc_data_in_buf(];

extern unsigned char mac_timer_flag;

extern unsigned char mac_rx_strength;

T sttt e e L R R LA L E L AR bt bbb bbb dotoh bl */
static void check_tx_pending()
{
if (! (u.s.tx_pending_sw))return;
u.s.mac_state=MAC_TX MACHINE;
u.s.mac_retry_cnt=0;
u.s.mac_acq_retry_cnt=0;
u.s.mac_wait_cnt=0;
set_mac_backoff_time(0,T 4 MILLI);
u.s.mac_tx_state=TX_READY;

/* ***i************ﬁ****** */
static void process_mac_bridge_interface(size)
int size;

{
if((size & Ox7fff) == O)return;

218

5,680,633
359 360

N
[y

S
La
hl

SEP-09-1937 16:07 P.

if(u.s.mac_state==MAC RX_MACHINE)
{
u.s.tx pending sw=l;
return;

¥

u.s.mac_state=MAC_TX MACHINE;
u.s.mac_retry_cnt=0;
u.s.mac_acqg _retry cnt=0;
set_mac_backoff_time(0,T_4_MILLI);
u.s.mac_tx_state=TX_ READY;
return;

¥
/i o o ol o e o sl ol e ol ok ol ol ol oy S ke ol o ol ol e ol o ol ol e o e ol sl e ol e b e ol ol e ol e b ol e A e o o o o e o e e e e e o W l/
static void send_multicast_msg()
{
unsigned char control;
unsigned int size;

raset _mac_timer();
sizewmu.s.mac_tx _size & OX7fLf;
if(size < 100)

{
control = u.s.lan address;
send_se&_data(control, (unsigned char)size,bridge tx buffer, (unsig
u.s.mac_states=MAC_IDLE;
process_bridge layer (MAC,MAC_TX_ COMPLETE,0);

}

/i Rk kbR R ANk bk bk bk bbbk d b bk kR d Rk kR Rk Ak dok ke t/
static void process_mac_layver data entry{siza)

int sizae;
{

switch(u.s.mac_state)
{
case MAC_IDLE:
if (u.s.mac_dest_adr & O0xB000)
{

H
else

oxz2¢

if{(u.s.nac_source adr & O0x7800)

if{check_ address())return;

process_mac_idle(size);
break; :
case MAC_TX_MACHINE:
process_mac_txX wachine(DATA,size);
break;
case MAC_RX_MACHINE:

i if (check address())return;
process_mac_rx machine(size);
break;

default:
return;

}

}
/* LA AL LR R L DR R R 2 R 22l 2 YT DR T YT LT R AR TR R R e A) i/
. void set ignore_ c188 timer(unsigned char time)

219

5,680,633
361 362

toter=0;
totcora=time;
t0tent=0;
totcsr &= Oxlf;
totcr=0x03;

/* *****************i*** */
static unsigned char check_address()

{
if ((u.s.short_address) != (u.s.mac_dest_adr & Ox7fff))

return(l);

if (u.s.mac_source_adr != u.s.base_address)
return(l);

return(0);

/* *i************i** */
static void process_mac_layer_timeout()

{
switch(u.s.mac_state)
{
case MAC_IDLE:
reset_mac_timer();
break;
case MAC_TX_MACHINE:
process_mac_tx_machine (TIMER, 0} ;
break;
case MAC_RX_MACHINE:
process_mac_rx_timeout();
break;
default:
return;
}

/* **i*************t**** */
static void process_mac_tx_machine(type,size)

int type;

int size;

switch(u.s.mac_tx_state}
{

case TX_READY:
process_mac_tx_ready(type,size);
return;

case TX_S_RFP:
pracess_mac_tx_s_rfp(type,size);
return;

case TX_S5_DATA:
process_mac_tx_s_data(type);
return;

case TX_S_EOD:
process_mac_tx_s_eod(type,size);
return;

case TX_RDY_ENQ:
process_mac_tx_rdy_enq(type,size);
return; ’

case TX_S_ENQ:
process_mac_tx_s_eng(type,size);
return;

220

5,680,633
363

}

364

/* P e T T T I SR LT LR SR LR a2 T 22 22T S PR T L AL L Lt b s

static void process_mac_tx ready(type,size)

int type;
int size;
{
unsigned int time;
unsigned int rand_time;

if {type==TIMER)
{
reset_mac_timer();
if (! (mac_acquire_channel(}})

{
u.s.mac_acq_retry cnt++;
if (u.s.mac_acq_retry_cnt >= MAX TX ACQUIRE_TRIES)
{
u.s.tx_pending_sw=0;
u.s.mac_state=MAC_IDLE;
process_bridge_layer (MAC,MAC_TX_ACQUIRE_FAILURE,
return;
¥
time=T_ 2 MILLI;
rand_time=T_d4_MILLI;
if(u.s.mac_acqg_retry_cnt > 4}
{
time=T 6_MILLI;
rand_time=T_10_MILLI;
}
if(u.s.mac_acqg_retry_cnt > 10}
{
time=T_16_MILLI;
rand_time=T_16_ MILLI;
1
set_mac_backoff_time(time,rand_time):
return;
if (u.s.mac_tx_size & 0x8000) /* multicast */
{

n.s.tx_pending_sw=0;
send_multicast msg();
return;

u.s.mac_tx_state=TX_S_RFP;
mac_send_rfp{);
set_mac_timer (RSP_TIMEOUT) ;
return;

}
i1f (type==DATA)
{

if(u.s.mac_dest_adr & 0x8000)
{

if((u.s.mac_source_adr & 0x7800) != 0x2000)return;

else

221

5,680,633
365 366

return;
}

reset_mac_timer({);
u.s.tx_pending_sw=1;
process_mac_idle(size);

/* **************i****t*****i************i************it******** */
static void process_mac_tx_s_rfp(type, size)

int type;

int size;

if (type==TIMER)
{

u,s.mac_retry_cnt++;
if(u.s.mac_retry_cnt >= MAX TX RFP _TRIES)

{
u.s.tx pendlng sw=0;
reset_mac_timer();
u.s.mac_state=MAC_IDLE;
process “bridge_ layer (MAC,MAC_TX_RFP_FAILURE,O);
return;
}

u.s.mac_tx_state=TX READY;
set mac_| “backoff t1me(0 T_4_ MILLI);
return;

}

if (check_address ()) return;

~ /* data record */

switch(u.s.mac_control & Oxe0)
{
case 0xe0: /* poll */
u.s.tx_pending_sw=0;
u.s.mac_retry_cnt=0;
process_ tx send_record() ;
return;
case 0x60: /* rfp */
reset _mac_timer();
u.s.tx ._pending_sw=1;
process_mac_idle(size);
return;
default:
break;
}

Jh okkdk Kok o kAR R AR kAR kAR R kR R R ARk R R Rk ARk h ok ke */
static void process mac tx_s_data(type)
int type;

if {type==TIMER)

{
reset_mac_timer();
n.s.mac retry cnt++;

if (u.s.mac_retry_cnt < MAX_TX_ TRIES)
H

222

5,680,633
367 368

}

u.s.mac_state=MAC_IDLE;

process_ brldge layer (MAC,MAC_TX_FAILURE,C);
return;

}
if (check_address ())return;

if ({u.s.mac_contrcl & Oxe0) == 0xel) /* poll recard */
{
if (ck_tx_seq_state())
{
u.s.mac_retry_cnt=0;
u.s.mac_ Ttx . _seq_statet+;
u.s.mac_tx_ _seq_state &= 1}
u.s.mac_tx_ptr += 100;
else
{
u.s.mac_retry_cnt++;
if (u.s.mac_retry cnt >= MAX TX TRIES)
{
reset_mac_timer();
u.s.mac state-MAC IDLE;
process_] “bridge_. layer (MAC,MAC_TX_FAILURE,O0);
return;
}
process_tx_send_record();
return;

¥

reset_mac_timer(};

u.s.mac state=MAC _IDLE;

Process_ “bridge_ layer (MAC,MAC_TX_SEQ_ FAILURE,O0);

/* ************'ﬁ************i'k*****************i**************** */
static void process_mac_tx_s_eod(type, size)

int type;

int size;

if (type==TIMER)
{

u.s.mac_retry_cnt++;
if(u.s.mac_retry cnt >= MAX IDLE _TRIES)

{
reset_mac_timer();
u.s.mac_state=MAC_IDLE;
process_| brldge layer (MAC,MAC_TX_COMPLETE QUESTION 0);
return;
¥

u.s.mac_tx_state=TX_RDY ENQ,
set mac_| “backotf t1me(0 _4_MILLI);
return;
¥
1f (check_address())return;
if{(u.s.mac_control & Oxe0) == 0xe0) /* poll */

AfFirk tv ced atateli)

223

5,680,633
369 370

B
i

SEP-@5-1997 15:87 P.

u.s.mac_state=MAC IDLE;
pProcess brldge layer(nhc MAC TX EOD FAILURE,0};
return;
}
u.s.mac_retry_cnt++;
if{u.s.mac retzy ent >= MAX_TX_TRIES)
{
reset_mac_timer();
u.s.mae state—nac IDLE;
process bridge layer (MAC, MAC _TX_EOD_FAILURE, 0} ;

return;
}
process_tx send _record();
return;
}
if{{u.s.mac_control & OxeDd) == 0xcO) /* clear */

if(ck_tx seq_state())
{

reset_mac_timer();

u.s.mac tx _8eq_state++;

u.s8,.mac tx seq*state &= 1;

u.s.mac_state=MaC ' IDLE;

process hrldge layer (MAC, MAC_TX COMPLETE,D);

return;
}
alse
{
reset mac_timer();
u.s.mac _state=MAC IDLE;
process_| _bridge 1ayer(HAc MAC_TX EOD FAILURE,O);
raturn;
}
} .
if((u.s.mac_control & Oxe0)== Ox60) /* rip */

reset_mac_timer();

U.8. mac state=MAC > IDLE;

process hridge layer (MAC, MAC TX COMPLETE,0);
process_mac idle(size);

return;

}
reset_pac_timer();

u.s.mac_state=MAC _IDLE;

Process hrzdge layer(HAc MAC_TX_EOD_FAILURE,O0);

/* Ii.t!i**0&**********i**i**i**'****!**t*iti‘**ii**llit!!l‘**i*** 'l/
static int ck_tx seq_state()
{

if (u.s.mac_tx_seq_state & 1)
{

if(u.s.mac_centrol & 0x10) /* seq */
return{o)};
else
return(l);
}
if (u.s.mac_control & 0x10) /* Beq ¥/
return{l);
return(o0) ;

224

5,680,633
371 372

/* hkkkhkkkhdrhkdkkihkkrthkkdenxkkhhkhhhhhhkbkhkdhkhkhhhkhrohon chkkhikhid */
static void process_mac_tx_rdy_enqg(type,size)

int type;

int size;

if (type==TIMER)
{

u.s.mac_retry_cnt++;
if(u.s.mac_retry cnt >= MAX_TX TRIES)
{
reset_mac_timer();
u.s.mac_state=MAC_IDLE;
process_bridge_layer {MAC,MAC_TX_COMPLETE_QUESTION,O0);
return;

}
if (! ({mac_acquire_channel(}))
{
set_mac backoff time(0,T_4_ MILLI);
return;
}
u,s.mac_retry_cnt++;
mac_: send _eng();
set _mac tlmer(RSP _TIMEOUT} ;
u.s.mac _tx state—TX S_ENQ;
return;

}
if(check_address())return;
if((u.s.mac_control & Oxe0) == Oxe0) /* poll */

if(ck_tx seq_state())
{
reset_mac_timer();
u.s.mac_state=MAC _IDLE;
process brldge layer(HAC MAC_TX_EOD_ FAILURE 0);
return;

u.s.mac_retry_cnt++;

if(u.s.mac_retry_ cnt >= MAX_TX_TRIES)

{
reset_mac_timer();
u.s.mac_state=MAC_IDLE;
process_bridge_layer (MAC,MAC_TX EOD_FAILURE,0);
return;

process_tx send_record{();
return;

}
if((u.s.mac_control & Oxel) == 0xc0) /* clear */

if(ck_tx seq _state())
{
reset_mac_timer();
u.s. mac tx _seq_state++;
u.s.mac_ tx_ _seqg_state &= 1;
u.s.mac_; “state=MAC IDLE;
process__ brldge layer (MAC, MAC_TX_COMPLETE, 0) ;
return:

225

5,680,633
373 374

reset_mac_timer () ;

u.s.mac state=MAC IDLE;

process brldge layer(MAc MAC_TX_EOD_FAILURE,0);
return;

}

}
if((u.s.mac_control & Oxe0)== 0x60) /* rfp */
{
reset_mac_timer(};
u.s. mac state=MAC *_IDLE;
process brldge 1ayer(MAC MAC_TX COMPLETE,O0};
process_mac 1d1e(51ze),
return;
}
reset mac_timer();
u.s.mac_state=MAC_IDLE;
process br1dge layer (MAC, MAC_TX_EOD FAILURE,O);

}* LA RS E AR SR TR LTy L R Y T L T Y T R R R TR B TR AP A ST RO TR ey */
static void process_mac_tx_s_eng(type,size)

int type;

int size;

if (type==TIMER)
{

u.s.mac_retry_cnt++;
if(u.s.mac_retry | cnt >= MAX TX TRIES)
{
reset_mac_timer();
u.s.mac_state=MAC_IDLE;
Process brldge layer (MAC, MAC_TX COMPLETE_QUESTION,O);
return;

}

if (! (mac_acquire channel(}))

{
set mac_backoff time(0,T 4_MILLI);
return;

}

mac_send_eng () ;

set mac_timer (RSP_TIMEOUT) ;

u.s.mac_tx_ state-TX S _ENQ;

return;

}
if (check_address())return;
if((u.s.mac_control & Oxe0d) == 0Oxe0) /* poll %/

if(ck_tx seq_ state{())
{
reset_mac_timer();
u.s.mac_state=MAC IDLE;
process brldqe layer (MAC,MAC _TX_EOD_FAILURE,0) ;
return;
}
u.s.mac_retry cnt++;
if(u.s.mac retry cnt >= MAX TX TRIES)

{

226

5,680,633

375 376

o
ol
)

Sz-—kfI-1397 16198 P.23.

process_bridge_layer(HAC,HAC_TX_EOD_FAILURE,OJ;
return;

}
- process_tx_send record();

return;

}

if ({u.s.mac_control & Oxe0) == 0xco) /* clear */
if (ck_tx_seq_state())
{

reset _mac_ timer(); .
.8, mac X _seq state++;

u.s.mac_| ExX_ _seq_state &= 1;

u.s.mac stata-HAC _IDLE;

process brldqe layer (MAC,MAC _TX_COMPLETE, 0);
return;

else

reset_mac_timer() ;
u.s.mac state-MAc IDLE;
process brldge layer(HAc,HAQ_TX_EOD_FAILURE,OJ;
return;
}

}
if((u.s.mac_ccntrol & OxeQ)== 0x60) /% rfp *;
{
reset mac timer();
u.s. mac state=MAC_IDLE;
precess b!ldge layar(HAC,HAC_TX_COHPLETE,0);
process mac idle(size);
return;”
H
reset_mac_timer{);
u.s.mac _state=MAC *_IDLE;
Process brldqa _la¥er (MAC,MAC _TX_EOD_FATLURE, D) ;

+
/i iit*ii*i*itt**ii*i***ii*i*iit**i*ii**ii**iﬁiiii*i**Ii*****i*i */
static void process_tx send_record()

{
int cantrol;
int size;
unsigned char data_rem;

data_rem=0;
if((u.s.mac tx_size - u.s.mac _tx_ptr) > 100)

{
U.8.mac_tx state=TX 5 DATA;
size=100;
control=ox20; /* data %y
data_rem=(unsigned char) (((u.s.mac_tx eize - u.s.mac_tx ptr) - 1
}
else
{

u.s.mac_tx_state~TX § _EOD;
size=(int) (u.s.mac tx size - u.s-mac_tx ptr);
control=0x00; /* eod =}

}
if(u.s.mac_tx_s-$_st;§g)

227

5,680,633
377 378

e IbiEB P.24.32

control |= u.s.lan_address;

send ss_data(control, {(unsigned char)size,&hridge_tx_buffer[u.s.nac tx_pt
set_mac_timer (POLL TIMEOUT); T
setQignore_claB_time:(ClBB_DELAY_TIHE);

/* tii*ti****lii*ﬁ**iii*tltiiﬂti*iii*ii*iti*it‘ti*itiiiitﬂ*ﬁiii* i/
static void process_mac_rx_timeout()
{
’ u.s.mac_ratry_cnt++;
if(u.s.mac_retry_cnt >= MAX RX TRIES)
{
reset_mac_timer();
u.s.nac_stateaMAC IDLE;
U.s.mac_rx_seq state=SEQ ACCEPT ANY;
check_tx_pending(); X
return;

}
if (! (mac_acquire_channel()))

set_mac backoff_time(O,T_4_yILLI);

return;
}
switch(u.s.mac_rx_seq_state)
{
case SEQ_ACCEPT ANY:
case SEQ ACCEPT O:
mac_send_poll(0);
break;
default:
mac_send_poll(l);
break;
}

set*mac_tiner(RX_TIHEOUT);

/* iiiiii*i**i*i*tt*iti*i*lt**i*iiit*ii*iﬁ&t*ii&****‘*i*iii**i** *,
static vold process_mac_rx_pachine (size)

int size;

{
char frame_accept_sw;
int Ci;

unsigned char *ptl;
unsigned char *pt2;

switch(u.s.mac_control & Oxeo)
{ .
casa 0: /* aod %
case Ox20: /* data */
switch(u.s.mac_rx_seq_state)

case SEQ*ACCEPT_D:
if(u.s.mac_contrel & 0x10)

{
frame_accept sw=0;
U.S.mac_rx_seqg state=SEQ
else
{

frame accept sw=l;
U.8.pac rx seg mtate=SEo

228

379

SEP-B9-1937 16:B2

case

default:

Ox€0:

5,680,633
380

FL.25-32

break;
case SEQ ACCEPT 1:
It(u.s.mac_control & 0x10)

{
frame accept sw=1l;
u.s.mac_rx_seq_state=SEQ
H
else
{
frame accept_sw=0;
U.S.mac_rx_ seq state=SEQ
}
break;

default:
U.s.mac_state=MAC_IDLE;
reset mac txnnr(),
check_tx_pending() ;
return;

}
if (frame_accept sw)

if((u.s.mac_rx_ptr +. (unsigned int)size)
{
u.s.mac_state=MAC_IDLE;
reset_mac_timer();
check - tx_pendlng(),
return;
}
u.s.mac_retry cnt=0;
pti=mac rx butfer;
pt2=ibridge_rx_buffer(u.s.mac rx . ptr);
u.s.mac rx ptr += (unsigned int)size;
for(i=07i<eize; 14+) *pt2a++=iptls+;

}
if(u.s.mac_control & Ox20) /* data */

if(u.s.mac _TX_5eq_state=mSEQ ACCEPT 0)
mac_send_poll(0);

else
mac_send_poll(l};

set mac_timer(RX ._TIMECUT) ;

return;

}
if(u.s.mac_rx_seq_state==SEQ_ACCEPT_0)

mac send_clear(0);
else

mac_send clear(l)};
u.s.mac stat-:unc >_IDLE;
recet _mac_timer();
process bridge layer (MAC,MAC RECORD,u 5.WAC_Trx p
check _tx pendinq(),
raturn;

/* rfp ¥/

mac_send_poll(0);
u.s.mac rx seq_state=SEQ ACCEPT_0;
set_mac txncz(kx _TIMEQUT) ;
u.s. mac rx_ptr=Q;
return;

229

5,680,633
381 382

}
if (u.s.mac_rx_seq state==SEQ_ACCEPT_l)

{
mac_send_reject(l);
}
else
{ 0
mac_send_reject(0);
¥

u.s.mac_state=MAC_IDLE;
reset mac_timer();
check_tx_pending();

/* e B ok Je g e de ok ke e K Je & & Je k% de o g g vk T Je do e de e o ok e ok ok v Sk vk e de Tk gk o o e ke o e ok ok ok ek ke ke */
static void process_mac_idle(size)

int size;
{ :

unsigned char *ptl;

unsigned char *pt2;

int i
if((u.s.mac_control & 0Oxe0) == 0) /* eod */
if(u.s.mac_dest_adr & 0x8000)
{
ptl=mac_rx_buffer;
pt2=bridge rx buffer;
for (i=0;i<size;i++) *pt2++=*ptl++;
process_bridge_layer (MAC,MAC_RECORD, (unsigned int)size);
check_tx pending();
return;
}
} N
if (u.s.mac_dest_adr & 0x8000)
{
check_tx_pending() ;
return;
}
if((u.s.mac_control & Oxe0d) == 0x60) /* rfp %/
{
mac_send_poll(0);
u.s.mac_rx_seq state=S5EQ ACCEPT 0;
u.s.mac_state=MAC RX_MACHINE;
set_mac_timer (RX_TIMEOUT);
u.s.mac_retry cnt=0;
u.s.mac_rx_ptr=0;
return;
}
if((u.s.mac_control & Oxe0) == 0x40) /* eng */

if(u.s.mac_rx seq state==SEQ ACCEPT 0}
{
mac_send_ clear (0}
check_tx_pending(
return;

i

}
if(u.s.mac_rx_seq state==SEQ ACCEPT_1)
{

230

5,680,633

383 384

a-=-1R9T 16108

return;
}

}
check_tx pending();

)5
J* itiitit***i*tti!iiit**iit!t*tiﬁii**i*****itbiii*iitiiiii*t*** */
static void mac _Send_poll(seq)

unsigned char geq;

{
unsigned char data;

if(saeq)
{

data=0xfn;
}
else
{

data=0xe0;
}

data |= u.s.lan_address;
sand 58 data(data,0,0.0,u.s.mac _data_renm);
set 1gnnre <188 t;nor(Claa _DELAY TIHE),

/t i*it*ii*****!i**t*i*t******if*****i*****ii*it*&tl****ﬁ****’** ﬁ/
static void mac_send rfp()

{
unsigned char data;

u.s.mac_tx_seq state=0;
u.s.mac tx_ptr-u,
data=0x60;

data |= u.s.lan_address;

P.26 32

send ss _data(data,0,0 +0, (un=igned char) ((u.s. mac_tx_size + 15)/16});

set lgnorﬁ c188 timer(CISB _DELAY_ TIME);

J* t*iiit***ii*i**tt*ih*l*ti**i*ii**i!*iiil*i*!i****&********!*i */
static void mac_send_enq()

unsigned char data;

if(u.s.mac_tx_seq state)

data=0x50;
}
else
{

data=0x40;

}

data |= u.s.lan _address;
send_ss_data(data,0,0,0, 0);

set 1gnore <188 tlmer(ClBB DELAY TIME) ;

ri it*ttiiattitt**!t*it*tii*li*iiﬁiiiittt*iit*i*it*tiiii*t*ttfat */
static void mac_send _reject(seq)

unsigned char seq;
unsigned char Qata;

if (seq)

231

5,680,633

385 386

Sz--i2-1997 16:08 P. 2732
data=0xbo;
}
else
{
data=0xa0;
}

data |= u.s.lan_address;
snnd*ss_data(data,o,o,o,u);
/i *itiittt*!**itli*tiiti!i**it*t*ii*i***it*iit*t*i*ﬁ!iﬁ***i*t** */

static void mac send_clear(seq)
unsigned char seg;

{
unsigned char data;
if (seq)
1
data=0xdo;
¥
else
{
data=0xcD;

}
data |= u.s.lan_address;
send_ss_data(data,o,0,0,0);

;* i**t*!****i***i*it*’***’*'**it**ti*ﬁ'*l!***i*t!tlit*iiit*t**t */
static wold send_ss_data(control,size,huff-r,multicast,data rem)
unsigned char control; -
unsigned char size;
unsigned char *buffar;
unsigned char multicast;
unsigned char data_rem;

unsigned int ;
unsigned char Preluda{e6];

j-u.s.base_addr-ss;
if(multicast)j |= oxsoo0a;
prelude({0]=(unsigned char) (j >> B);
prelude(l]=(unsigned char)j;
j=u.s.short_address;

if (multicast)j |= oxaooo;
rrelude[2]=(unsigned char) {
prelude[3}={unsigned char)j
prelude[4]=control;
prelude[S]-data_rem:
t*hdlc_write_data_ptr)(prelude,butfer,size);

i >>8);

/> *t***i*iiiii*i****i&i*t*i*****-iiiti*ii*ttttt*i*i*iili*it**t* s/
void ss_disabla_rec()

ss_write_control(3,0xeo);

/i Q**it*ttt***iit*i*t******ﬁ*t****it!i,ttt*t**tiii**i*i******** */
int ss_standby()

{
if(pédr & Ox08)return(n) ;

return(l1) ;

232

5,680,633
387 388

/* o de gk e e e e g e e K e ok Ak ko ok ke de e de e e de K de ek Aok ok e e ke ok ke ke kb ek kA dkkokk ok */
void ss_set_standby(type)

int type;
{

unsigned char iz
1f (type==TRUE)
{

p6 &=0xfd;
p6dr=p6; /* make sure rts low */
for(i=0;i<40;i++) /* delay #*/

}
pé &= Ox£7;
pédr=p6;

else

p6 |= 8;
pédr=p6;
ss_write_control(9,0x80); ’
ss_write_control(4,0x20); /* hard wired in macro */
ss_write_control(10,0x80);
ss_write_control (7, 0x7e);
ss_write_control(3,0xc0);
ss_write_control (5,0x60);
ss_write_control(l,0x00);
ss_write_contrel(11,0x28);
ss_write_contrel(14,0x00);
ss_write control(15,0x00);
Ss_write control(0,0x30);
ss_write control(3,0xd9);

}

/* *i**********i*********i************************************** */
static void ss_write control(adr,data)

unsigned char adr;

unsigned char data;

hdlc_control_out=adr;
hdlc_contrel out=data;

/* *** */
static char ss_read_process()

int i;
unsigned int 3;

i=hdlc_data_in_buf(0};

j=(unsigned int)i << 8;
i=hdlc_data_in_buf[1];

j |= (unsigned int}i;

u.s.mac_dest adr=j;
i=hdlc_data_in_buf[2];

j = (unsigned Int)i << §;
i=hdlc_data_in buf(3];
u.s.mac_source_ adr= (unsigned int)i | j;
i=hdlc_data_in_buf[4];

233

5,680,633
389 390

SEP-89-1937 16:@9 P.2R 32

u.s.mac_contreol=(unsigned char)i;
i=hdlc_data_in buf[5];
u.s.mac_data_rem=(unsigned char)i;
return(0);

}
/* **i**iii*iii****iii!t****i*tii**I****i*t*iiii*ii***ﬁ**!i**i** t/
static void reset mac_timer()

{
unsigned char t;

mac_timer_flag=0;
=tftC8r;
t &= Oxfb;
tftcsr=t;

¥
li i!iii*i*iitiiili*ii*ii*iiiiiIii*****i!i**i*****ii*i*tiiii*i** t/
static void set_mac_timer(time)

unsigned int time;

{
unsigned char t;

mac_timer_ flag=1;
tftocr=0x10;
tfocr_a_b=tffrc + time;
t=tftesr;

t &= Oxfb;

tftesr=at;

}
/i iiti*tt*i!!tt**tt**i*liit***i*****!**i*i*tfi*t!*!****f****i*i t/
static veoid set_mac_backoff time(unsigned int time, unsigned int rand_time)

{
unsigned char t;

u.s.save. last_addr=0;

mac_timer_ flag=l;

tftocr=0x10;

tfocr_a_b = tffrc + {(tffrc = u.s.short_address) /rand_time)+time;
t=tftcsr;

t &= OXfh}

tftesr=t;

}
/t it*#i*i**iii*ttt*tttii***!i*t!tti***itt**t*!i*t*i*ii*ttttitt* t/
static int mac_acquire channel(]

{
unsigned char ¢t;
unsigned char i;

tftocr=0x10; /* select ocr b #*/
tfocr_a_b = tffrc + T 6 MILLI;
t=tftcsr;
t &= Oxfb;
tfitesr=t;
for{; (cftoar & 0x04)==0;}
{
for{i=0;i<30;i++) /* check for falsing */
if (p6dr & Ox01)break;

}
ifri >=3D0V\raturn{0):

234

5,680,633
391 392

return(l);

/i *** i/
void process_mac_layer(type,size)

unsigned char type;

int size;

i1f {type==DATA}

{

if(ss_read_process() < Q)return;

if((u.s.mac_source_adr & OX7fff) == u.s.save_base)
{
if (mac_rx_strength >= (u.s.save_strength-2))
{
u.s.save_strenqth=mac_rx_strength;
u.s.save_base_timer=3000;
¥
!
if((u.s.mac_source_adr & Ox7fff) == u.s.base_address)
{

if (mac_rx_strength >= (u.s.strength-2))
{

}

u.s.strength=mac_rx_strength;

process_mac_layer_data_entry(size—s);
return;

¥
if (type==TIMER}
{

process_mac_layer_timeout();
return;

1
if (type==BRIDGE_LOW)
{

process_mac_bridge_interface(size);
return;

}

return;

H
/* *********************i*************************************** */

235

5,680,633
393 394

/* khhkkkkdkikkkkkkhrhkkhkrk, :*******k***i************* /
/* bridge process : *x/
* ***'h**********************ii********************** */
#define EXTERN extern

#include "ssh8.h"

#define DS2400_DATA ox04

#define P5_CONFIG oxfd

#define P5_CONFIG_DS_IN (P5_CONFIG & (~DS2400_DATA})
#define SCL 0x%40

#define SDA 0x20

#define CODLD 0x04

#define CODDAT 0x02

#define CODCLK 0x01

#define RETURN_NO 3}

#define RETURN_YES 1

static void process_bridge_from mac();
static unsigned char getubridge_high_tx_buffer();
static void write_bridge_high_tx_buffer();
static void send bridge high tx buffer(};
extern int ss_standby();

extern void ss_set_standby();

static vaid process_bridge_high();

static unsigned char process_low_bridge_hello();
void memcpy();

static void set_hello_timer();

static unsigned char check_on_charger(};
static void process_rd_long _id();

static void process_rd_version();

static void process_rd_diag():

void process_mac_layer();

static void ds2400_reset();

static void ds2400 _write();

static unsigned char ds2400_read{();

static void do_crc();

static void int_cl8B();

static void int_high_speed();

static int get_high_speed();

static void put_high_speed()};

static veid init_code();

static void load_code();

static void prog_code();

static void high_speed_delay():

void process_bridge_layer();

int c188_read_process();

static void iZbadr (unsigned char);

static void i2bend();

static void i2bwrt{unsigned char);

static unsigned char iz2brd{);

static veoid delay 5us();

static void sda_high(};

static veoid sda_low();

static void scl_high();

static void scl_low();

static void sda_output made(};

static void sda_input_mode()};

static void wrt eeprom(unsigned char,unsigned char};
static unsigned char rd_eeprom(unsigned char);
«tatin nnsianed char rd aac(void);

236

5,680,633
395 396

SEP-BS-1837 16:@9 P.29-32

static void bh_self test_1{int);

static void bh self test 2(1nt),

static wvoid bh self test 3(int),

static void bh_test code_load(vaid);

void memset(void *to, unsigned char, unsigned int size);
extern veid write_h8_com();

extern void set lgnnre c©l38_timer (unsigned char};
1% B N T T L2 LR L ety P A VL R ST SR L2 S L AL L

extern unsigned char mac_enable_sw;

extern veid (*process_mac_ptr) ();

extern veid (*process_bridge_ptr)();

extern int (¥c1B8 read_prncess ptr) ():

extern void (*ss_transmitter_setup ptr)}{);
extern void (*ss wzxte_ptr)(),

extern unsigned int (*wrlte clB88_response_ptr) (),
extern unsigned char power cantrol - H

extern unsigned char nac_rx strength

/i ii*itt******i**i*!*i*ii*****i*******it***i*iilit*it*ti*ii*ti* i/
static unsigned char cre;

/t iﬁitiit*iit**&i**i**iii**#!**i*lli*i.iitiiitiii*i’ﬁtit*tttii* i/
const unsigned char . code_tab_type 2[]=

{

0x02, 0%76,0x84, 0X37,0x36, OxbB ,0x67, Oxd2, 0x4b, Oxeé, 0x1d, Ox6c, Oxec, Oxbl, Ox
oxa5,0x63, 0x68, 0x28, O0xbb, 0x23,0xdb, OXa6, Ox65, Oxdb, Oxc4, Ooxdd, 0x14,0x16,0x
oxal, 0x25,0%x71,0%x38,0x80, Oxcl, Ox8d, 0x54, Oxba, 0xbl, 0x83,0x0D1,0xlc, Ox8e, Ox
oxsd,oxaz.Oxss.0xc6,0xdb,0x35,0x45,Dx78,0xla,oxsz,0x6c,0xdh,oxsa,Oxsl,Ox
oxde, Oxdf ,0x£8, 0x39,0xb3, OxbB, 0xd3, 0x5f, Oxfa, Oxch, Ox1d, Oxcd, 0x9c, OX1L, Ox
oxe3,0xal, 0%29,0x1c, Oxas, 0x9r , 0x50, 0x2c, Ox34 ,0x0a, 0%xr9,0xES, Ox3IB, 0x94,Dx
OXEE,OREE, OXEE,OxLL, OXL L, OXES, OxEE, OREL, ONEE, OxEL, OXEL, OXLE, OxLE, OXEE, Ox
OxDD,OXDO,DXOD,OXD0,0XDD,DxOO,DxDO,DxOO,DxDD,OXOD,OxOO,GxDD,DxDO,DXOO,Dx
0xaa,Oxaa,Oxaa,Oxaa,Oxaa, Oxaa,Oxaa, Oxaa, Oxaa,0xaa, Oxaa,Oxaa, 0xaa,0xaa, 0x
0x02,0x76,0x8d, Ox37,0%36, Oxb8, 0x67, 0xd2, O0x4b, Oxe6, O0x1d, Ox6c, Oxec,Oxbl,0x

7

const unsigned char code_tab_type 1[]=

{
0x02,0%x76,0x8d, 0x37,0%36,0xb8, 0x67, 0xd3, 0x4b,0xe6, Ox1d, Ox6c, Oxec, OXbl, Ox
oxa5,0x63,0x68,0x28, 0xbb, 0x23,0xdb, Oxa6, 0x65, 0xdb, Oxc4, Oxdd, 0x14,0x16,0x
Oxal,0x25,0x71,0x38,0x80,0xcl, Ox8d, 0x5d, Oxba, 0xbl, 0x83,0x01,0xlc, Ox8e,0x
ox5d, OxB2,0x86,0xceé, Oxdl, Ox36, 0x46,0x7B, OxX1e, 0X62Z, 0X6C,0xdb, 0x63, OX61,0x
oxde, Oxdf, Oxr8,0x39,0xb3, 0xb8, 0xd3, Ox5f ,0xLa, OxXcb, Ox1d, oxed, ox9c, OX1f, Ox:
oxcs,oxal,oxzs,oxlc,oxas,Ox9f,0x50,0x2c,0x34,0x0a,0xf9,ox65,0x38,0x94,0x
Oxff,Oxff,0xEL,OXEE, OxEE, OKLL, OxL L, OxLEf, OxLL , OxfL, Oxff, OxEf, OxEE, OXEL, Ox
0x00, 0x00, 0x00, 0x00, Cx00, Ox00, 0x00, OX00, Ox0D0C, 0X00, OXDO, OX00, Ox00, Ox00,0x
Oxaa,Oxaa, 0Oxaa,Oxaa,0xaa,Oxaa, 0xaa, Oxaa,Oxaa, 0xaa, 0xaa, Oxaa, Oxaa,0xaa,0x
0x02,0x76,0x8d,0x37,0x%36, 0xb8,0x67,0xd2, Ox4b,0xe6, Ox1ld ,0x6¢, Oxec, Oxbl, Ux

;; Y2132 2222222232222 2 PR R 22222228 2222 bR g 2t a b e El by Lh b t/

void memepy(void *to, void *#from, unsigned int size)

{

if{!aiza)raturn;

asm(void," mov.w 8(4,r6),rs5 ir5=to");

asm(void," mov.w B(6,r6),r4 ;ra=from");
asm(void," nav.w 8(8,rs),xrl jri=size");
asm(void, " push T2 "),
asm(void," sub.w r2,r2 ");
asm{veid," adds #1,r2 ")z

asm({void, "memcpyl:");
asm(void,™ mov.b 8r4+,ro0l");

237

/* hkkkhkhkd
void memset(void *to, unsigned char data,

{

}
/* **

5,680,633
397

asm(void," adds #1,r5 "y ;
asm(void," sub.w r2,rl "y
asm(vo@d," bne memcpyl ") ;
asm(voigd," pop r2 ")

if(!size)return;

asm(void,” mov.w @(4,r6),r5
asm(void,” mov.w a(6,r6),r4
asm(void," nov.w e(s,r6),rl
asm{void," push r2
asm{void," sub.w r2,r2
asm(void," adds #1,r2
asm{void,"memset1:");

asm(veid," mov.b rd4l,ers");
asm(void," adds #1,rS "y
asm(void," sub.w r2,rl "
asm(void," bne memsetl ");
asm(void,™ pop r2

void bridge_init()

{

¥* *******i************************

unsigned char i

~e

disable;
sda_output_mode();
scl_low();
sda_high(}:
scl_high(};
memset (&u,0,sizecf(u));
p8ddr=0xf2;
p8 |=1;
p8dr=p8;
u.s.board_type=2;
if(p8dr & 1)
{

u.s.board_type=1;

u.s. interrupt_cnt=3;
u.s.hase_address=0xffff:

iscr=0x77;
ier=ClB8_1NT_ENABLE+BRIDGE_LOW_INT_ENABLE;
t+ftcr=TFTCR_INIT;
for(i=0;i<48;i++)diag_cnt[i]=o;
power_control_sw=TRUE;
process_mac_ptr=process_mac~layer;
process_bridge_ptr=process_bridge_layer;
c18B_read_process_ptrzc188_read_process;
ss_set_standby(TRUE);

enable;

void process_bridge_layer(process,type,size)

unsigned char process;
crmmiSemnA Ahar Fune:

238

398

ti****t* */
unsigned int size)

srS=to");
;jra=data")
jri=size")
')
)
)

e v es e we

")

Akkdkkkkkdkkhrkkrkhkki */

/* clock divided by 8 */

e o e e e e e ok ok ok ok A ok e e ek ok */

5,680,633
399 400

SEF-@9-1597 1h:@12

if (type >= ox20)return;
diag_cnt[type]++;
if(type >= 0x10) /* rx machine %/
{
if(type != MAC RECORD)return;
if (process_low hridga_helln(size)-RETURN_No)return;
j—get_bridge high_tx buffer();
£ (T))

diag_cnt[BUF_NOGLAVAILJ++;
return;

}
write bridge high_ tx buffer (BH_READ);

]
)

write bridge high_tx_buffer({unsigned char) (u.s.mac_dest_adr >>
write bridge_high_tx buffer ((unsigned char)(u.s.mac_dest_adr & 0
write_bridge high_tx buffer((unsigned char)(u.s.mac_anurcevadr >
write bridge_high_tx buffer ((unsigned chaz)(u.s.mac_source_gdr &
buffer({unsigned char)(nac_rx_strength]];

memcpy(&bridge_high_tx_buffer[u.s.bridge_high_tx_burfer~leadJ[u.

f

write bridge high tx

u.s.bridge_high_txyburfer_ptr += size;

/* holdeff cl88 if possible 3270 large s

send_bridge_high tx buffer();

if({(size > To030) &4 (u.s.bridge_high_tx_buffer cnt==1))
{

set_ignoze_cls!_timer(Clas_LONG_DELAY_TIME);
+
return;
H
u.s.bridge tx notify evant=type | oxgo;
int_ci8s{);

/* o et e e e ol **i***tii*i****i*i*t**ii**ti*******ii**ﬁ***iﬁ*titt ek */
static unsigned char Process_low bridge_hello(size)

{

unsigned int size;
unsigned char i;
unsigned int bH
unsigned char Kk;
int 1;
unsigned int m;

unsigned int n;
unsigned char seed;
unsigned char offset;
unsigned int cost ;

if(u.:.hridge_hel1o_watcn_anab1e==a]return(RETURN_YEs):
1:((u.s.mac_dest_adr & uxsooo]==D)return(RETURN_YES);
i:bridqewrx_hufter[U];

if(size < 2)return (RETURN_NO) ;
i1f(1(i & 0x10)) return (RETURN NO) ;

P.30/32

/* make sure it response

1£((i & ox07) I= oxoz)teturnTRETURN_YES); /* not hellc frame %/

switch({i & oxco)
{
case Q0:
j=6;
break;
case 0x40:

239

5,680,633

401

16109

L

break;
default:

402

P.3132

return(RETURN_YES) ;

}

ccsttbridge_xx_buffer[j++];
cost <<= 8;
cost j=hridga_rx_buffer[j++];

/* 1 pts to cost te root */

if(cnst=-0xtfff)return(RETURN_YES);

seed = bridge_rx buffer[j];
seed >>= 2;

seed &= Ox3f;

J++s

offset = bridge_rx_buffer[j];
J++;
J++;

if(u.s.root

-_id_seq_number < o)
{

/* J pts to seed/attach */

/* J pts to offset

/* j pts to pPriority =

/* J pts to root id seq number *

u.s.root_id_seq_number=bridge_rx_buffer[j];

}

bridge_rx_buffer[j])

/* j pts to optional fields #*;

else
{
if{u.s.root_id_seq number i=
return(RETURN_YES);
}
Jt+;
for(;;)
{

i=hridge_rx_buffer[j];
switch(i & Ox7f)
{
case 0x04:
case 0xD05:

case OxDa:
case OxOb:

/* detached list =/
/* pending list */
J++;
k=bridge_rx_butfer[j];
@f(k & l)return(RETURN_YES);
1443
k >>= 1,

p=(u.s.short address & Ox07ff) | oxosoo;

'for(1-0;1<k;1++)

{
m=bridge rx_buffer([j++];
W <<= B;
n {= tbridqe_rx_huffer[j++] & Ox
if(n=~n)return(RETURN_YES);

}
break; :

/* root long id */

/* root alais #/

J++;

k=bridgg_rx_huffer[j];

;f(k (£ u.s.root_id_len)return(RETURN_YE
ot

gﬂ?;1=ﬂ‘1/"-7¢¢‘

240

5,680,633
403 404

P

=3

SEP-O9-1997 16310 P.32,
if(u.s.root_id[1l] != bridge rx b
h
break;
dafault:
J++i:
j +=bridge_rx buffer[j);
I++s
break;

}
if (i & OoxB0O)break;
if (1 > size)break;

}
if((u.=.mac_source adr & OX7fff) != u.s.base_address)

if(cost > u.s.cost)return(RETURN _NO);
if(mac_xrx_strength <= u.s. strength)raturn(RETURN _NO) :
1f((u s.mac_source_adr & Ox7f£ff) != u.s.save hnse)

if(mac_rx_strength < u.s.save strength)return(RETURN _NO)
u.s. suve Cost=cost;

u.s.save stranqth-nac r¥_strength;

u.s.cave_ " base=u. s.mac _source adr &k Ox7Eff;
u.s.save_base _timer=3000;

u.s. base info_event=i;

}

return(RETURN_NO);
}
u,s.strength=mac_rx_strength;
u.5.0ld_seed=seed;
set_hello timer(seed,offset);
2.5, nxsslng hello_cnt=0;
u.s.hello_| off timer _ent=0;
return (RETURN | _NO);

3
/i it’i**i*****i*i*ii.**ii****tiii*iit**ittitt**t!i*****iitit*** */
static unsigned char check_on_charger()

if (p4dr & Ox10)return(o);
return(l);

/* *iiit*‘*ttt*t*t"ﬁiitﬁ**'*i*tﬁi*ﬁ**ﬂ**iitii***ii**tt***!ii*** */

/* compute next haellc time
/* offset is in 10’s of milliseconds */

static void set_hello timer(seed,offset)
unsignad char seed;
unsigned char offset;

unsigned int next_slot;
unsigned int i;

i=u.s.base_address;

i += seed;

next slot=(i ¥ HELLO MOD_VAL) + HELLO _MOD_VAL;
i=next_slot = HELLO_ SLoT : '_STZE;

i == offset; /* time in 10's of milliseconds »/
i >>=1; i /* time in 20 milliseconds */
if(i >150)3i=100; /* time should never be greater then 3 &

u.s.hello_on_timer_cnt=i;

241

405

switch(process)

case MAC:

case TIMER _LOW:

5,680,633
406

process bridge from mac(type,size);
return;

if(u.s.save_base_timer)u.s.save_base_ timer--;
if(u.s.save_| —base _timer==0)

{
if{ u.s.save_base != 0}
{
if(u.s.base_info_event==0)
{
u.s.save base=0;
u.s.base_info_event=1;
}
}
} . .
if {(u.s.interrupt_cnt)u.s.interrupt_cnt--;
if (! (u.s.interrupt_cnt))
{

if((u.s.bridge_high tx special_len) ||
{u.s.bridge_tx_notify event) ||
{(u.s. brldge timer_event)
{u.s.bridge_] hello _event)
(u.s.bridge_high Tx_buffer_cnt) |
{u.s.base_ info event))

{

int_c188();

u.s.interrupt _cnt=3;

}
if(u.s.bridge_hello _watch_enable)
{
if(u.s.hello_on timer_ecnt)u.s.hello on t
if(u.s. hello on_ tlmer cnt==0}
{
mac_enable sw=TRUE;
u.s% missing_hello_cnt++;
u.s.old_seed=((u.s.old seed + 3)
set_hello _timer(u.s. old seed, 0);
u.s. hello off_timer_ cnt—HELLO WA
if (ss_ standby ())
sgs_set standby (FALSE);
if{u.s. mlsszng hello cnt > MAX H

{
u.s.missing _hello cnt=0;
u.s.bridge_hello event=1
int_c188();

}

}
if(u.s.hello_off timer cnt)u.s.hello_off
if(u.s.non_hello off timer cnt)

{

u.s.non_hello off_timer cnt--;

else

242

5,680,633
407 408

b
if{(u.s.hello_off timer cnt==0) &&
(u.s.non_hello off timer cnt==0))

{
ss_set_standby (TRUE) ;
mac_enable sw=FALSE;
}
}
return;
case TIMER_HIGH:
disable;
ier &=~BRIDGE_HIGH_INT_ENABLE;
enable;

if(u.s.bh_timer_in_use_sw)

{
u.s.bh_timer_in_use_sw=0;
u.s.bridge timer event=1;
u.s.bridge_timer_opt=u.s.bh_timer versio
int_c188();

return;

case BRIDGE_HIGH:
process_bridge_high(size);
return;

case BRIDGE_POWER_CONTROL:
if(u.s.c188_sent_sw)

{.
u.s5.c188_sent_sw=0;
tftocr=0; /* select ocr a
tfocr_a_b=tffrc + T_250_MICRO;
tftcsr &= Ox£7;
for(;!{tftcsr & 0x08);)
{ .
if{(c188_sw) || (bridge_low_time
{
return;
}
}
}
disable;
if({c188_sw) || (bridge_low_timer sw) || (bridge
{
enable;
return;
enable;
sleep;
tfter=TFTCR_INIT;
return;
default:
break;

}

/* e e 1 e v Y ok ke b & e e 3k ok e e e T e Ak e gk e e vk b ok ok ok ke vk ok ok ke ko e ok o ok e o e e e e e ke e vk e e ke ok e e ok */
static void process_bridge_from_mac({type,size)

unsigned char type;

unsigned int size;

243

5,680,633

409
We claim:
1. A portable data collection terminal comprising:
a base module comprising a first processing unit and a first
storage element that stores base module communica-
tion software;

th

410
a plurality of antennas connected to said base module; and
means for selectively interconnecting at least one of said
plurality of antennas to the selected one of the plurality
of the radio transceiver modules.
6. The portable data collection terminal of claim 5

a selected one of a plurality of communication modules,
each communication module comprising a second pro-
cessing unit, a second storage eclement that stores
communication module software, and at least one of a
plurality of radio transceivers, each of the plurality of

wherein the plurality of antenpas are connected to said base
module prior to selecting the selected one of the plurality of
the radio transceiver modules.

7. The portable data collection terminal of claim 4 furor

10 -
comprising:

radio transceivers being communicatively incompat-
ible with the other of the plurality of radio transceivers;

said base module receiving said selected one of the
plurality of communication modules in an assembled

a preinstalled antenna disposed on said base module;

an antenna connector disposed on said base module to
couple to at least one of a variety of external antennas;

s N o e 15
position which communicatively couples the first and and
second processing units enabling said base module to means for selectively interconnecting the preinstalled
communicate using said communication module; and antenna or the antenna connector to the selected one of
wherein the second processing unit, using the communi- the plurality of radio transceiver modules.
cation module software, enables time first processing 5, 8- In 2 communication network having a first and second

unit, which uses the base module communication
software, to communicate with at least one of the
plurality of radio transceivers regardless of which of
the plurality of communication modules is selected.
2. The portable data collection terminal of claim 1 further

subnetwork a data collection terminal comprising:

a base processing unit operating per a first set of com-
munication software routines;

a first selected one of a plurality of radio transceivers,

comprising: 2 each of the plurality of radio transceiver having differ-
i . . . ent operating characteristics such that each of the
a base c.onnector, disposed on said base quule, Tlfat 18 plurality of radio transceivers are communicatively
electrically connected to said first processing unit; and incompatible with the other of the plurality of radio
a common communication connector disposed on the 20 transceivers;
ﬁ?ﬁ:ﬁ;ﬁghs éﬁﬂ?c]tlg iﬂcﬁlﬁnlﬁcfgﬁﬁgg;f; a second selected one of the plurality of radio transceiv-
unit, said common communication connector matingly ers; and
cngaging the base connector when said base module a communication processor which enables the base pro-
receives said selected one of the plurality of commu- cessing unit to communicate via the first and second
nication modules in the assembled position. 35 selected ones of the plurality of radio transceivers
3. The portable data collection terminal of claim 1 further despite differences in the operating characteristics of
comprising: the first and second selected ones of the plurality of
a predetermined plurality of antennas connected to said radio transceivers.
base module; and 0 9. The portable data collection terminal of claim 8

means for selectively connecting at least one of said
predetermined plurality of antennas to the selected one
of the plurality of communication modules.

4. A portable data collection terminal comprising:

wherein the communication processor comprises:

a first processing unit permitting the base processing unit
to communicate via the first selected one of the plu-
rality of radio transceivers despite differences in oper-

a base module operating per a first set of communication 45 ating characteristics between the first selected one of
software routines; the plurality of radio transceivers and others of the
a selected one of a plurality of radio transceiver modules, plurality of radio transceivers; and
each of the plurality of radio transceiver modules being a second processing unit permitting the base processing
communicatively incompatibility with the other of the unit to communicate via the second selected one of the
plurality of radio transceiver modules; 50 plurality of radio transceivers despite differences in
each of the plurality of radio transceiver modules having operating characteristics between the second selected
a processor which enables the base module to commu- one of the plurality of radio transceivers and others of
nicate via the selected one of the plurality of radio the plurality of radio transceivers.
transceiver modules; and 10. The portable data collection terminal of claim 8
55 further comprising comprising:

the base module communicates, using the first set of
communication software routines, via the selected one
of the plurality of radio tramsceiver modules without
having to know which of the radio transceiver modules
has been selected.

5. The portable data collection terminal of claim 4 further

comprising:

a base module containing the base processing unit; and

a communication module containing the communication
processor and the first and second selected ones of the
plurality of radio transceivers.

L . T

244

