
Behavior Research Methods & Instrumentation
1978, Vol. 10 (2),249-253

Input and output for microprocessors

STEVE GOLDBAND
State University ofNew York, Buffalo, New York 14226

Several alternative strategies for input and output for microprocessors are described, with
examples for 8080 machines and the S·100 bus. The strategies are compared in terms of cost,
complexity, flexibility, and speed in typical psychology laboratory tasks. Flag testing, interrupt
processing, and direct memory access are considered in both parallel and serial modes.

The recent proliferation of microprocessors has
made computing power available to more psychologists
than ever before. As machines are installed in labora­
tories, the need for implementing various input and
output devices will become more apparent. Since many
microcomputer systems are designed around standard
bus structures (such as the S-lOO), peripherals from
many manufacturers may be used with a single main
computer. In addition, blank prototype boards for
custom circuits are available at low cost. Many psych­
ologists, then, will need to evaluate a variety of
peripherals, and some will design circuits for their own
needs.

The purpose of this paper is to present an overview
of some alternative strategies for implementing input
to and output from microprocessors. These strategies
are compared in terms of cost, speed, complexity, and
flexibility for use in typical laboratory tasks. Examples
are taken from a system using the 8080 microprocessor
and the S-100 bus configuration. Although other
machines may vary in details, much of the conceptual
material cuts across various microcomputers.

MICROCOMPUTER INPUT AND OUTPUT

There are basically three strategies for accomplish­
ing input and output (I/O) in microcomputers (Smith,
1977): flag testing, interrupt processing, and direct
memory access (DMA). Flag testing and interrupt pro­
cessing can each be subdivided into serial and parallel
modes. In flag-testing input, the program tests a "flag"
bit while waiting in a loop. When data from a peripheral
becomes available, the flag bit changes state and the
program exits from the loop to accept the data. In
interrupt-processing input, a main program is free to
execute until the data is available. At that point, an
"interrupt" line on the processor is activated by an
external device, and the program branches to a separate
"interrupt service routine" to accomplish the transfer.
When the transfer is complete, the main program
resumes at precisely the point at which it was inter­
rupted. DMA devices accomplish I/O by sharing the
memory with the processor. When data is available, a
processor line called "hold" is activated, and the DMA

249

device "borrows" the system memory to make the
actual transfer. Like interrupt processing, the main
program is unaffected, but there is no software support
in DMA. Instead, logic wired into the DMA device
itself determines how the transfer is to be accomplished.

Output processing is handled similarly. Usually the
computer outputs to a relatively slow device such as a
printer. Consequently, the computer must wait for the
device to complete each operation before sending it the
next command. A flag-polled output driver waits in a
loop for the peripheral to send a "done" signal, indicat­
ing readiness for the next command. An interrupt-driven
output interface sends a command and is free to execute
a main program while waiting for the peripheral to
complete its operation. When the peripheral is ready, it
interrupts the processor, which in turn sends the next
command.

Serial and parallel I/O modes are distinguished in
terms of the hardware that actually transfers the data. In
serial I/O, the data are available one bit at a time on one
Wire, ordered in a precisely timed series. A group of
8 bits (called a "byte") is preceded by a start bit. The
serial interface (often implemented around an LSI chip
called a UART, for universal asynchronous receiver­
transmitter) looks for each data bit at a specified interval
after receipt of the start bit. The data word is usually
terminated by one or more "stop" bits as well.

Parallel interfaces, by comparison, are composed of a
series of separate wires (eight in most microprocessors)
where each bit of the data is made available simultan­
eously. A ninth wire often serves as either a "flag" or
input to an interrupt circuit depending on the type of
I/O being used.

FLAG TESTING

Figure 1 illustrates a portion of an assembly language
program written for the 8080 that implements a flag­
testing algorithm for input (Scelbi, 1976).

The S-100 hardware for this application is shown in
Figure 2 (Lancaster, 1974). The interface consists of a
series of eight simple switches that represent alternative
responses from a subject (SI-S8). (The switches are
assumed to be "bounceless.") These are connected to a

Smart Mobile Technologies LLC, Exhibit 2013
Page 2013 - 1

IPR2022-01248, Samsung Electronics Co., Ltd. et al. v. Smart Mobile Technologies LLC

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

250 GOLDBAND

INTERRUPT PROCESSING FLAG TESTING

PUSH B
PUSH D
PUSH H
PUSH PSW
LDA P'L'P
MOV H,A
LDA PTR+1
MOV L,A
IN 01
MOV M,A
INX H
MOV A,H
STA PTR
MOV A,L
STA PTR+1
POP PSW
POP H
POP D
POP B
EI
RET

SAVE REGISTERS STRT IN
IN STACK CPI

JNZ
IN

GET POINTER OF STORAGE TABLE RET
PUT IT IN REGISTER H
GET LOW PART OF POINTER
PUT IT IN REGISTER A
GET DATA FROM PORT 1
PUT IN MEMORY OF POINTER
INCREMENT POINTER
READY TO RESTORE POINTER
PUT HIGH PART IN MEMORY
NOW LOW PART
TO MEMORY
GET REGISTERS BACK
FROM STACK
IN REVERSE
ORDER
ENABLE INTERRUPTS
RETURN TO MAIN PROGRAM

o
1
STRT
1

GET FLAG BYTE
COMPARE TO 1 (READY IF =)

IF NOT LOOP TO STRT
GET DATA FROM PORT 1
RETURN TO MAIN PROGRAM

Figure 1. Assembly language subroutines for flagtestingandinterrupt for the 8080 processor.

PORTO
Decoders

PORT 1
Decoders
010

011

012

013

014

015

016

017

5*+
R1: Rt;>R3~> R4 R5: R6. R7·>R8. 5.6K• > > •

51

~f2

~~ 7430 E10 1.0.. E1~IS!l NAND r-

~~6
~S7

~_~.~<S8

~-=-.
~
~E1-9:74367 ~

E10 7430 v::::
~R1-8 5.6K

~
WV::: .
~
~
~

Figure 2. Parallel port hardware for flag-poUed input for the 5-100 busand 8080 processor.

Smart Mobile Technologies LLC, Exhibit 2013
Page 2013 - 2

IPR2022-01248, Samsung Electronics Co., Ltd. et al. v. Smart Mobile Technologies LLC

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INPUT AND OUTPUT FOR MICROPROCESSORS 251

"NAND" gate (E I0), such that when no switch is
pressed, the output of the gate is low; when any switch
is pressed, the output is high. When the computer exe­
cutes a "read" from input port 0, the output of the
NAND gate is allowed to appear on bit 0 of the data bus
by enabling a tri-state buffer (EI). When port I is read,
the state of each of the switches is put on a separate bit
of the data bus by a series of buffers (E2·E9).

When the main program is ready for input from the
subject, it branches to the subroutine in Figure 1. The
subroutine reads port 0 and checks for a 1 on bit 0 (data
ready). If a 1 is not present, the subroutine loops. When
it sees a I, the program reads from port 1, inputting the
data from the eight switches and returning to the main
program with this information.

If an experiment is structured so that nothing else
needs to be done while waiting for the subject's
response, this method may be satisfactory. However, if
the computer must continue to run a main program
while waiting for the subject's response, then interrupt
processing may be a better choice than flag testing.

INTERRUPTPROCESSING

An interrupt hardware interface that implements a
similar function is diagrammed in Figure 3 (Lalrage,
1977a, 1977b). Note that the primary difference is
that the flag bit is replaced by a more complex circuit
that activates the interrupt line and puts the interrupt
signal on the data bus at the proper time.

When a switch is closed, the clock input of flip-flop
E19 is enabled, transferring the data on the D input
(hard-wired 1) to the Q and Qoutputs. The resultant °
on the Q output pulls down the interrupt line to the
processor, which acknowledges with a high on SINTA
(note that the software interrupt-enable flagmust be set
for this to take place). SINTA and PDBIN (a processor
signal indicating that a data input is expected from the
bus) are gated through ANDgate E18 and enable buffers
El O·E 17, which in turn gate a RST 0 instruction onto
the data bus.

The processor executes its current machine cycle,
stores the program counter on the stack, and then exe-

NT

ORT1
ecoders
SINTA
POBIN

010

011

012

013

014

015

016

017

~+5

Rl:
>- >-

R~ R7:>~~.~~IB'~IM ~; R >
~ ? --'I •> • 'I • SINTA

~~~+5

Sl RiO'

~P2
~

o CLR Q
~S3 7474
~P4 E1 Ei9 SI
~IS5

I-..

C SET Q7430 ~

p
~~6 0
1_/}7

*+5 ~J~8
R9~

-...:- »: 010~. ?:::
i-RiO 5.6K ~ OI1"~~z»: L.--::::
17430 ~ 012 ~~
2-E17 ~ l.--:::

1/6 74367 ~ 013 E~
18 1/4 7408

~ ~
19 1127474 014 ....L.--;:::

20 1/67404 ~ 015 ~....v::::
~ 016..~
~ OI7 .......~

-'-

E
E
E

R
E
E

Figure 3. Parallel port hardware for interrupt-processed input for the S-IOO bus and the 8080 processor.
Smart Mobile Technologies LLC, Exhibit 2013 

Page 2013 - 3 
IPR2022-01248, Samsung Electronics Co., Ltd. et al. v. Smart Mobile Technologies LLC

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


252 GOLDBAND

cutes the RST instruction by jumping to one of eight
contiguous locations on page 0 of memory, where an
interrupt service routing (ISR) must exist. SINTA is
also inverted by E20 and clears flip-flop E19 in readi­
ness for the next interrupt.

Note the increased complexity in the interrupt
compared to the flag-polled software presented in
Figure 1. This is necessitated by the fact that the ISR
must maintain the integrity of all registers by first
PUSHing them on the stack, and then POPing them off
before relinquishing control. In addition, the 8080
always disables further interrupts when it is interrupted
(to avoid confusion of signals), so that the programmer
must remember to enable interrupts somewhere in the
ISR to await further signals. Other cautions in using
interrupt software arise from the fact that many
programs (especially BASIC interpreters) ordinarily
begin on the first memory page, so that the programmer
must patch them around to use interrupts with the
8080. Furthermore, some BASIC interpreters use the
"stack" in such a way as to make interrupt processing
virtually impossible; check with the manufacturer of
your software to be sure it is compatible before adopt­
ing an interrupt interface.

Some advanced systems are structured around many
interrupt devices, each of which has a priority and can
interrupt other devices of lower priority. Both the
hardware and software complexity of such systems rise
considerably above the simple example presented here.
However, these applications of interrupts can dramatical­
ly increase the processing power of a microcomputer in
a complex laboratory environment at relatively low cost.

DIRECT MEMORY ACCESS

The third class of I/O devices commonly used in
microcomputers is DMA. These are complex peripherals,
usually designed to accomplish a particular job very
efficiently. DMA devices are often actually other micro­
processors that share the same memory as the main
processor. Although many high-speed peripherals avail­
able to psychologists use DMA, such as floppy disk
controllers and video interfaces, it is unlikely that many
psychologists will design custom DMA devices for their
labs. Note that no software is used in DMA, since the
peripheral itself "knows" what to do with the data
according to its circuitry or, in the case of a micro­
processor, its program.

COMPARISON OF STRATEGIES

As in most computing applications, there are trade­
offs among these approaches that make some more
suitable for a given application than others. The trade­
offs are on dimensions of cost and complexity, flexibili­
ty in performing a variety of tasks simultaneously,
speed, compatibility across systems, and ease of imple­
mentation. Figure 4 summarizes the author's subjective
ratings of the various I/O strategies for each of these
dimensions.

In the hardware aspect of I/O, parallel interfaces are
often the least costly, least complex electronically, and
have adequate speed and flexibility for most applica­
tions. They are commonly found on plug-in modules
such as analog/digital converters, real-time clocks, relay

Hardware Capability Ease
cast Software Software Hardware of complex of

complexity comelexitv fIexi bi Ii tv fIexi bil i tv SDeed oroarams Use Exomoles

Serial ++ +++ ++ ++ -- -- +++ terminals, printers
cassette I/O

Flag polled

Parallel +++ +++ ++ + - - ++ fast printers, I/O
boards, AID conv.,

Serial + - + - + +++ + terminals, time-
share stations

Interrupt

Parallel ++ - + - ++ +++ + clocks, subject
'.tn+:nn,

Direct Memory
Access - * * - +++ +++ + video interfaces,

disk controllers

+++ Excellent
++ Good
+ Acceptable *

Marginal
Poor
Not applicable

Figure 4. Comparison of I/O strategies on several significant dimensions.

Smart Mobile Technologies LLC, Exhibit 2013 
Page 2013 - 4 

IPR2022-01248, Samsung Electronics Co., Ltd. et al. v. Smart Mobile Technologies LLC

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


INPUT AND OUTPUT FOR MICROPROCESSORS 253

interfaces, speech synthesizers, some printers, and other
medium-speed devices. Parallel I/O has the drawback of
requiring at least 8, and as many as 20, separate wires
for the connection (if both input and output are
needed). Furthermore, because the signals are logic
level (TTL), it is not good practice to extend them
more than a few feet from the CPU. Thus, parallel
devices are best suited for peripherals that are installed
in or near the computer's cabinet and for those that
require moderate speed.

Serial I/O methods are typically slower than parallel,
and require somewhat more complex and expensive
hardware. Their primary advantage is that they require
only one signal wire in each direction and one ground
wire. As a result, it is feasible to convert the TTL level to
a more robust signal or frequency modulated tone (using
a MODEM) and transmit it over a distance without
degrading. Most timesharing systems on large computer
systems use serial interfaced terminals. Another advan­
tage of serial I/O is that a standard exists (RS-232)
for connectors and signal levels which facilitates inter­
connection of microcomputers to peripherals made by a
large number of manufacturers, including those of mini
and full-size computers. Serial I/O is frequently used in
relatively low-speed devices such as terminals, Teletypes,
printers, and cassette storage systems.

DMA interfaces are electronically complex. However,
they are extremely fast and require no management
from the CPU. They must be tailored to the specific
task and system on which they are used, and so suffer
from relatively poor compatibility across systems. Be­
cause of cost and complexity, they are best suited to
critical and demanding tasks that would otherwise
burden the processor with their service, such as video
displays and floppy disk controllers.

Flag-polled I/O software is probably the simplest and

cheapest to implement. Its primary disadvantage is that
it monopolizes the CPU while waiting for a peripheral,
drastically reducing potential throughput. In many situa­
tions this may be quite acceptable, though, since the
machine may be dependent on a slow peripheral device
such as a person. Operating systems that require user
commands often use flag polling, as do programs that
simulate terminals, and text editors.

In many real-time applications the computer may
have to continue processing while waiting for random
events from the lab environment. In such cases, inter­
rupt I/O may be the best alternative despite the com­
plexity of hardware and software implementations. For
instance, if a computer must monitor a subject's
responses on several dimensions while at the same time
presenting stimuli based on those responses. flag polling
would tie up the machine most of the time. An interrupt
system would allow computation for stimulus presenta­
tion while always being available for input. In complex
interrupt systems, one machine might even service
several such experiments.

Programming for interrupts can be difficult, since it
must be carried out at the machine language level, and
requires careful attention to all possible sequences and
priorities of events and to links between high-level
programming languages and machine language.

REFERENCES

LA DAGE. D. Interrupts exposed: Using microprocessor interrupts
effectively.Kilobaud, 1977. 4, 18-21. (a)

LA DACE. D. Interrupts exposed: Implementing an interrupt­
driven system. Kilobaud, 1977. S, 78-80. (b)

LANCASTER. D. TTL Cookbook. Indianapolis: Howard W. Sams ,
1974.

SCELBI COMPUTER CONSULTING INC. 8080 Software guide and
gourmet cookbook. Milford, Conn: Scelbi, 1976.

SMITH, M. L. Build your own interface. Kilobaud, 1977,6,22-28.

Smart Mobile Technologies LLC, Exhibit 2013 
Page 2013 - 5 

IPR2022-01248, Samsung Electronics Co., Ltd. et al. v. Smart Mobile Technologies LLC

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/

