
Larry L. Peterson & Bruce S. Davie

A Systems Approach

Morgan Kaufmann Publishers, Inc.
San Francisco, California

SAMSUNG 10111

Sponsoring Editor Jennifer Mann

Production Manager Yonie Overton
Production Editor Julie Pabst

Editorial Assistant Jane Elliott
Cover and Text Design Ross Carron Design

Illustration ST Associates, Inc.
Copyedltor Jeff Van Bueren
Proofreader Ken DellaPenta

Composition Ed Sznyter, Babel Press

Indexer Steve Rath

Printer Courier Corporation

Morgan Kaufmann Publishers, Inc.

Editorial and Sales Office

340 Pine Street, Sixth Floor

San Francisco, CA 94104-3205 USA
Telephone 415/392-2665
Facsimile 415/982-2665

Internet mkp@mkp.com

Order toll free 800/7 45-7323

© 1996 by Morgan Kaufmann Publishers, Inc.
All rights reserved

Printed in the United States of America

00 99 98 97 96 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means-electronic, mechanical, photocopying, recording, or otherwise-without
the prior written permission of the publisher.

Library of Congress Cataloging-In-Publication Data

Peterson, Larry L.

Computer networks : a systems approach / Larry L. Peterson and Bruce S. Davie.
p. cm.

Includes bibliographical references and index.
ISBN 1-55860-368-9

1. Computer networks.
TK5105.5.P479 1996
004.6'5-dc20

I. Davie, Bruce S. II. Title.

96-1590

2

CONTENTS .

Foreword

Preface

1 Foundation

Problem : Building a Network

1. 1 Motivation

1. 1. 1 Explosive Growth

1. 1.2 Network Applications

1.2 Requirements

1.2. 1 Connectivity

1.2.2 Cost-Effective Resource Sharing

1.2.3 Functionality

1.2.lt Performance

1.3 Network Architecture

1.3. 1 Layering and Protocols

1.3.2 OSI Architecture

1.3.3 Internet Architecture

1.lt Plan for the Book

1.lt.1 Chapter Organization

1.lt.2 Systems Approach

1.5 Summary

Open Issue : Ubiquitous Networking

Further Reading

Exercises

2 Protocol Implementation

Problem : Protocols Have to Be Implemented

2. 1 Object-Based Protocol Implementation

2.2 Protocols and Sessions

2.2.1 Configuring a Protocol Graph

vii

xvii

3

It

It

5

10

10

1 It

17

22

29

29

35

37

39

ltO
,. 1

lt3

lt3 ,.,.
lt6

51

52

53

55

3

X

2.2.2 Operations on Protocol Objects

2.2.3 Operations on Session Objects

2.2.lti Process Models for Protocols

2.3 Messages

2.3 . 1 Manipulating Messages

2.3.2 Implementation

2.lti Events

2.lti. 1 Scheduling Timeouts

2.lti.2 Implementation

2.5 ldMap
2.5.1 Demultiplexing Packets

2.5.2 Implementation

2.6 Example Protocol

2.6. 1 Protocol Semantics

2.6.2 Header Flies

2.6.3 Initialization

2.6.lti Opening Connections

2.6.5 Demultiplexing Incoming Messages

2.6.6 Sending and Receiving Messages

2.6. 7 Closing the Connection

2.7 Summary

Open Issue : Cost of Network Software

Further Reading

Exercises

3 Direct Link Networks

Problem : Physically Connecting Hosts

3. 1 Hardware Building Blocks

3.1. 1 Nodes

3.1.2 Links

3.2 Encoding (NRZ, NRZI, Manchester, ltiB/5B}

3.3 Framing

3.3.1 Byte-Oriented Protocols (BISYNC, IMP-IMP, DDCMP}

3.3.2 Bit-Oriented Protocols (HDLC}

3.3.3 Clock-Based Framing (SONET}

3.lti Error Detection

3.lti. 1 Cyclic Redundancy Check

3.lti.2 Two-Dimensional Parity

/

Contents

56

57

59

61

62

65

66

67

67

69

70

71

71

72

72

71ti

75

78

80

81

82

82

83

81ti

89

90

90

91

91ti

98

98

100

102

105

106

108

4

Contents xi

3.lt.3 Internet Checksum Algorithm 109

3.5 Reliable Transmission 110

3.5. 1 Stop-and-Wait 111

3.5.2 Sliding Window 113

3.5.3 Concurrent Logical Channels 121

3.6 CSMA/ CD (Ethernet) 121

3.6. 1 Physical Properties 122

3.6.2 Access Protocol 123

3.6.3 Experience with Ethernet 127

3.7 Token Rings (FDDI) 127

3. 7 . 1 Physical Properties 128

3.7.2 Timed-Token Algorithm 130

3. 7 .3 Token Maintenance 132

3.7.lt Frame Format 133

3.8 Network Adaptors 13/e

3.8. 1 Components 135

3.8.2 View from the Host 136

3.8.3 Example Device Driver 140

3.9 Summary 143

Open Issue : Does It Belong In Hardware? 14/e

Further Reading 145

Exercises 11t6

It Packet Switching

Problem : Not All Machines Are Directly Connected 151

lt. 1 Switching and Forwarding 152

It. 1. 1 Source Routing 15/t

lt.1.2 Virtual Circuit Switching 156

lt.1.3 Datagrams 158

lt.1.lt Implementation and Performance 161

lt.2 Routing 162

lt.2. 1 Network as a Graph 163

lt.2.2 Distance Vector 16/e

lt.2.3 Link State 169

lt.2.lt Metrics 17/t

lt.2.5 Routing, Addressing, and Hierarchy 176

lt.3 Cell Switching (ATM) 177

lt.3. 1 Cells 177

5

xii Contents

,.,3.2 Segmentation and Reassembly 182

,.,3.3 Virtual Paths 186

,.,3,,. Physical Layers for ATM 187

"·" Switching Hardware 188

"·"· 1 Design Goals 188

,.,,.,2 Ports and Fabrics 190

,.,,.,3 Crossbar Switches 192

"·"·" Self-Routing Fabrics 196

"·"·5 Shared-Media Switches 200

,.,5 Summary 202

Open Issue : What Makes a Route Good? 202

Further Reading 203

Exercises 201ti

5 lnternetworking

Problem : There Is More than One Network 209

5.1 Bridges and Extended LANs 210

5. 1. 1 Learning Bridges 210

5.1.2 Spanning Tree Algorithm 211

5. 1.3 Broadcast and Multicast 215

5.1.,. Limitations of Bridges 216

5.2 Simple lnternetworking (IP) 217

5.2. 1 What Is an Internetwork? 217

5.2.2 Service Model 219

5.2.3 Global Addresses 229

5.2,,. Datagram Forwarding in IP 231

5.2.5 Address Translation (ARP) 233

5.2.6 Error Reporting (ICMP) 236

5.3 Global Internet 237

5.3.1 Subnetting 239

5.3.2 Route Propagation (RIP, OSPF, BGP) 2"3

5.3.3 Classless Routing (CIDR) 250

5,,. Next Generation IP (1Pv6) 252

5.,., 1 Historical Perspective 253

5,,.,2 Addresses and Routing 25"

5.,.,3 1Pv6 Features 258

5.5 Multicast 262

5.5.1 Link-State Multicast 263

6

Contents

5.5.2 Distance-Vector Multicast

5.6 Host Names (DNS)

5.6. 1 Domain Hierarchy

5.6.2 Name Servers

5.6.3 Name Resolution

5.7 Summary

Open Issue : IP versus ATM

Further Reading

Exercises

6 End-to-End Protocols

Problem : Getting Processes to Communicate

6.1 Simple Demultiplexer (UDP)

6.2 Reliable Byte Stream (TCP)

6 .2. 1 End-to-End Issues

6.2.2 Segment Format

6.2.3 Connection Establishment and Termination

6.2.lt Sliding Window Revisited

6.2.5 Adaptive Retransmission

6.2.6 Record Boundaries

6.3 Remote Procedure Call

6.3. 1 Bulk Transfer (BLAST)

6.3.2 Request/Reply (CHAN)

6.3.3 Dispatcher (SELECT)

6.3.lt Putting It All Together (SunRPC)

6 .lt Application Programming Interface

6.5 Performance

6.5.1 Experimental Method

6.5.2 Latency

6.5.3 Throughput

6.6 Summary

Open Issue : Application-Specific Protocols

Further Reading

Exercises

7 End-to-End Data

Problem : What Do We Do with the Data?

7. 1 Presentation Formatting

xiii

261a

267

268

269

272

271a

276

277

278

283

281a

285

286

289

292

296

301

301a

305

309

315

321a

326

332

335

335

336

337

338

339

3la0

31t1

3la7

3la8

7

xiv Contents

7. 1. 1 Taxonomy 31t9

7. 1.2 Examples (XDR, ASN. 1, NDR) 353

7.2 Data Compression 357

7 .2. 1 Lossless Compression Algorithms 358

7 .2.2 Image Compression (JPEG) 360

7 .2.3 Video Compression (MPEG) 36/t

7.3 Security 368

7 .3.1 Secret Key versus Public Key Cryptography 369

7 .3.2 Encryption Algorithms (DES, RSA) 371

7.3.3 Authentication Protocols (Kerberos) 378

7 .3.lt Message Integrity Protocols 382

7.lt Summary 385

Open Issue : Presentation-Layer of the 90s 386

Further Reading 387

Exercises 388

8 Congestion Control

Problem : Allocating Resources 393

8.1 Issues In Congestion Control 39/t

8. 1. 1 Network Model 39/t

8. 1.2 Taxonomy 397

8. 1.3 Evaluatlon Criteria 399

8 .2 Queuing Dlsclpllnes lt01

8.2.1 FIFO la01

8.2.2 Fair Queuing la02

8 .3 TCP Congestion Control lt06

8.3.1 Additive lncrease/ Multlpllcatlve Decrease la06

8.3.2 Slow Start lt09

8.3.3 Fast Retransmit and Fast Recovery la13

8 .lt Congestion-Avoidance Mechanisms lt15

8.la. 1 DECblt la15

8.lt.2 RED Gateways la17

8.lt.3 Source-Based Congestion Avoidance lt19

8.5 Virtual Clock lt21a

8.5.1 Defining Rate la25

8.5.2 Virtual Clock as a Queuing Dlsclpllne lt26

8.5.3 Virtual Clock as a Flow Meter la28

8 .5.lt Other Rate-Based Mechanisms (ABR) lt28

8

Contents

8.6 Summary

Open Issue : Inside versus Outside the Network

Further Reading

Exercises

9 High-Speed Networking

Problem : What Breaks When We Go Faster?

9.1 Latencylssues

9.1 .1 Latency/Throughput Tradeoff

9. 1.2 Implications

9.2 Throughput Issues

9.2. 1 Memory Bottleneck

9.2.2 Techniques for Avoiding Data Transfers

9.3 Integrated Services

9.3. 1 New Service Model

9.3.2 Mechanisms (RSVP)

9.lt Summary

Open Issue : Realizing the Future

Further Reading

Exercises

APPENDIX Network Management

A. 1 SNMP Overview

A.2 MIB Variables

A.2. 1 System Group

A .2.2 Interfaces Group

A.2.3 Address Translation Group

A.2.lt IP Group

A.2.5 TCP Group

A.2.6 UDP Group

Glossary

References

Index

xv

lt30

lt30

lt31

lt32

lt37

lt38

lt38

lt39

/tit 1

ltlt2

ltlt3

lt50

lt51

lt56

lt61t

lt65

lt65

lt66

lt72

lt73

lt11t

lt76

lt77

lt78

lt81t

lt88

lt91

511

521

9

1 O
1 Foundation

1.2 Requirements
Before trying to understand how a network that supports applications like FTP, WWW, and

NV is designed and implemented, it is important to identify what we expect from a network.

The short answer is that there is no single expectation; computer networks are designed and

built under a large number of constraints and requirements. In fact, the requirements differ

widely depending on your perspective:

■ a network user would list the services that his or her application needs, for example,

a guarantee that each message the application sends will be delivered without error

within a certain amount of time;

■ a network designer would list the properties of a cost-effective design, for example,

that network resources are efficiently utilized and fairly allocated to different users;

and

■ a network provider would list the characteristics of a system that is easy to administer

and manage, for example, in which faults can be easily isolated and where it is easy

to account for usage.

This section attempts to distill these different perspectives into a high-level introduction to

the major considerations that drive network design, and in doing so, identifies the challenges

addressed throughout the rest of this book.

1.2. 1 Connectivity

Starting with the obvious, a network must provide connectivity among a set of computers.

Sometimes it is enough to build a limited network that connects only a few select machines.

In fact, for reasons of privacy and security, many private (corporate) networks have the explicit

goal of limiting the set of machines that are connected. In contrast, other networks (of which

the Internet is the prime example), are designed to grow in a way that allows them the poten­

tial to connect all the computers in the world. A system that is designed to support growth

to an arbitrarily large size is said to scale. Using the Internet as a model, this book addresses

the challenge of scalability.

Links, Nodes, and Clouds

Network connectivity occurs at many different levels. At the lowest level, a network can con­

sist of two or more computers directly connected by some physical medium, such as a coaxial

cable or an optical fiber. We call such a physical medium a link, and we often refer to the

computers it connects as nodes. (Sometimes a node is a more specialized piece of hardware

rather than a computer, but we overlook that distinction for the purposes of this discussion.)

As illustrated in Figure 1.4, physical links are sometimes limited to a pair of nodes (such a

link is said to be point-to-point), while in other cases, more than two nodes may share a single

physical link (such a link is said to be multiple-access). Whether a given link supports point­

to-point or multiple-access connectivity depends on how the node is attached to the link. It

10

1.2. Requirements 11

<• > □~--□

Figure 1.la Direct links: (a) point-to-point; (b) multiple-access.

Figure 1.5 Switched network.

is also the case that multiple-access links are often limited in size, in terms of both the geo­
graphical distance they can cover and the number of nodes they can connect. The exception
is a satellite link, which can cover a wide geographic area.

If computer networks were limited to situations in which all nodes are directly con­
nected to each other over a common physical medium, then networks would either be very
limited in the number of computers they could connect or the number of wires coming out of
the back of each node would quickly become both unmanageable and very expensive. Fortu­
nately, connectivity between two nodes does not necessarily imply a direct physical connec­
tion between them-indirect connectivity may be achieved among a set of cooperating nodes.
Consider the following two examples of how a collection of computers can be indirectly con­

nected.
Figure 1.5 shows a set of nodes, each of which is attached to one or more point-to-point

links. Those nodes that are attached to at least two links run software that forwards data re­
ceived on one link out on another. If organized in a systematic way, these forwarding nodes

11

12 1 Foundation

form a switched network. There are numerous types of switched networks, of which the two
most common are circuit-switched and packet-switched. The former is most notably employed_
by the telephone system, while the latter is used for the overwhelming majority of computer
networks and will be the focus of this book. The important feature of packet-switched net­

works is that the nodes in such a network send
discrete blocks of data to each other. Think of
these blocks of data as corresponding to some
piece of application data such as a file, a piece
of email, or an image. We call each block of
data either a packet or a message, and for now
we use these terms interchangeably; we discuss
the reason they are not always the same in Sec­

tion 1.2.2.
Packet-switched networks typically use a

strategy called store-and-forward. As the name
'--

suggests, each node in a store-and-forward net-
work first receives a complete packet over some
link, stores the packet in its internal memory,
and then forwards the complete packet to the
next node. In contrast, a circuit-switched net­
work first establishes a dedicated circuit across
a sequence of links and then allows the source
node to send a stream of bits across this circuit
to a destination node. The major reason for us­
ing packet switching rather than circuit switch­
ing in a computer network is discussed in the

next subsection.
The cloud in Figure 1.5 distinguishes be­

tween the nodes on the inside that implement
the network (they are commonly called switches
and their sole function is to store and forward
packets) and the nodes on the outside of the
cloud that use the network (they are commonly
called hosts and they support users and run ap­
plication programs). Also note that the cloud
in Figure 1.5 is one of the most important icons

DANs, LANs, MANs,
andWANs
One way to characterize networks is
according to their size. Two well­
known examples are LANs (local
area networks) and WANs (wide
area networks)- the former typically
extend less than 1 kilometer, while
the latter can be worldwide. Other
networks are classified as MANs
(metropolitan area networks), which,
as the name implies, usually span
tens of kilometers. The reason such
classifications are interesting is that
the size of a network often has impli­
cations for the underlying technology
that can be used, with a key factor
being the amount of time it takes for
data to propagate from one end of the
network to the other; we discuss this
issue more in later chapters.

An interesting historical note
is that the term wide area network
was not applied to the first WAN s
because there was no other sort of
network to differentiate them from.
When computers were incredibly rare
and expensive, there was no point in

of computer networking. In general, we use a cloud to denote any type of network, whether it
is a single point-to-point link, a multiple-access link, or a switched network. Thus, whenever
you see a cloud used in a figure, you can think of it as a placeholder for any of the networking

technologies covered in this book.

12

1.2. Requirements 13

A second way in which a set of computers can be indirectly connected is shown in Fig­
ure 1.6. In this situation, a set ofindependent networks (clouds) are interconnected to form an
internetwork, or internet for short. We adopt the Internet's convention of referring to a generic
internetwork of networks as a lowercase i internet, and the currently operational TCP/IP

thinking about how to connect all
the computers in the local area-there
was only one computer in that area.
Only as computers began to prolifer­
ate did LANs become necessary, and
the term WAN was then introduced
to describe the larger networks that
interconnected geographically distant
computers.

One of the most intriguing kinds
of networks that is gaining attention
today is the DAN (desk area net­
work). The idea of a DAN is to
open up the computer setting on your
desk and to treat each component
of that computer--e.g., its display,
disk, CPU, as well as peripherals like
cameras and printers--as a network­
accessible device. In essence, the
I/0 bus is replaced by a network (a
DAN) that can, in turn, be intercon­
nected to other LANs, MANs, and
WANs. Establishing this intercon­
nection provides uniform access to all
the resources that might be required
by a network application.

Internet as the capital I Internet. A node that
is connected to two or more networks is com­
monly called a router or gateway, and it plays
much the same role as a switch-it forwards
messages from one network to another. Note
that an internet can itself be viewed as another
kind of network, which means that an internet
can be built from an interconnection of inter­
nets. Thus, we can recursively build arbitrar­
ily large networks by interconnecting clouds to
form larger clouds.

Just because a set of hosts are directly
or indirectly cpnnected to each other does not
mean that we have succeeded in providing
host-to-host connectivity. The final require­
ment is that each node must be able to say
which of the other nodes on the network it
wants to communicate with. This is done by
assigning an address to each node. An address is
a byte string that identifies a node; i.e., the net­
work can use a node's address to distinguish it
from the other nodes connected to the network.
When a source node wants the network to de-
liver a message to a certain destination node, it
specifies the address of the destination node. If
the sending and receiving nodes are not directly
co.nnected, then the switches and routers of the
network use this address to decide how to for­
ward the message toward the destination. The
process of determining systematically how to
forward messages toward the destination node
based on its address is called routing. _

This brief introduction to addressing and routing has presumed that the source node
wants to send a message to a single destination node (unicast). While this is the most common
scenario, it is also possible that the source node might want to broadcast a message to all the
nodes on the network. Or a source node might want to send a message to some subset of

13

►

1 Foundation

Figure 1.6 Interconnection of networks.

the other nodes, but not all of them, a situation called multicast. Thus, in addition to node­
specific addresses, another requirement of a network is that it support multicast and broadcast
addresses.

The main thing to take away from this discussion is that we can define a network re­
cursively as consisting of two or more nodes connected by a physical link, or as two or more
networks connected by one or more nodes. In other words, a network can be constructed
from a nesting of networks, where at the bottom level, the network irmplemented by some
physical medium. One of the key challenges in providing network connectivity is to defi11e
an address for each node that is reachable on the network (including support for broadcast
and multicast connectivity), and to be able to use thi~ address to route messages toward the
appropriate destination node(s).

1.2.2 Cost-Effective Resource Sharing
As stated above, this book focuses on packet-switched networks. This section explains the key
requirement of computer networks-in short, efficiency-that leads us to packet switching as
the strategy of choice.

Given a collection of nodes indirectly connected by a nesting of networks, it is possible
for any pair of hosts to send messages to each other across a sequence of links and nodes. Of
course, we want to do more than support just one pair of communicating hosts-we want to
provide all pairs of hosts with the ability to exchange messages. The question, then, is how
do all the hosts that want to communicate share the netwprk, especially if they want to use it
at the same time? And, as if that problem isn't hard enough, how do several hosts share the
same link when they all want to use it at the same time?

14

1,2, Requirements 15

....
~ L
7 "--....

Switch 1 Switch 2

Figure 1.7 Multlplexlng multiple loglcal flows over a single physical link.

To understand how hosts share a network, we need to introduce a fundamental concept,
multiplexing, which means that a system resource is shared among multiple users. At an intu­
itive level, multiplexing can be explained by analogy to a timesharing computer system, where
a single physical CPU is shared (multiplexed) among multiple jobs, each of which believes it
has its own private processor. Similarly, data being sent by multiple users can be multiplexed
over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1. 7, where
the three hosts on the left side of the network are sending data to the three hosts on the right
by sharing a switched network that contains only one physical link. (For simplicity, assume
that the top host on the left is communicating with the top host on the right, and so on.)
In this situation, three flows of data-corresponding to the three pairs of hosts-are multi­
plexed onto a single physical link by Switch 1 and then demultiplexed back into separate flows
by Switch 2. Note that we are being intentionally vague about exactly what a "flow of data"
corresponds to. For the purposes of this discussion, assume that each host on the left has a
large supply of data(mat it wants to send to its counterpart on the right.

There are several different methods for multiplexing multiple flows onto one physical
link. One method, which is commonly used in the telephone network, is synchronous t ime­

division multiplex ing (STDM). The idea ofSTDM is to divide time into equal-sized quanta,
and in a round-robin fashion, give each flow a chance to send its data over the physical link.
In other words, during time quantum 1, data from the first flow is transmitted; during time
quantum 2, data from the second flow is transmitted; and so on. This process continues until
all the flows have had a turn, at which time the first flow gets to go again, and the process re­
peats. Another common method is frequency -div ision multiplexing (FDM). The idea ofFDM
is to transmit each flow over the physical link at a different frequency, much the same way that
the signals for different TV stations are transmitted at a different frequency on a physical cable
TV link.

Although simple to understand, both STDM and FDM are limited in two ~ays. First,
if one of the flows (host pairs) does not have any data to send, its share of the physical link­
i.e., its time quantum or its frequency-remains idle, even if one of the other flows has data
to transmit. For computer communication, the amount of time that a link is idle can be very

15

16 1 Foundation

large-for example, consider the amount of time you spend reading a Web page (leaving the
link idle) compared to the time you spend fetching the page. Second, both STDM and FDM
are limited to situations in which the maximum number of flows is fixed and known ahead of
time. It is not practical to resize the quantum or to add additional quanta in the case of STD M
or to add new frequencies in the case ofFDM.

The form of multiplexing that we make most use of in this book is called statistical mu!-
- tiplexing. Although the name is not all that helpful for understanding the concept, statistical
multiplexing is really quite simple; it involves two key ideas. First, it is like STDM in that
the physical link is shared over time-first data from one flow is transmitted over the physical
link, then data from another flow is transmitted, and so on. Unlike STDM, however, data is
transmitted from each flow on demand rather than during a predetermined time slot. Thus,
if only one flow has data to send, it gets to transmit that data without waiting for its quantum
to come around and thus without having to watch the quanta assigned to the other flows go
by unused. It is this avoidance of idle time that gives packet switching its efficiency.

As defined so far, however, statistical multiplexing has no mechanism to ensure that all
the flows eventually get their turn to transmit over the physical link. That is, once a flow be­
gins sending data, we need some way to limit the transmission, so that the other flows cap
have a turn. To account for this need, statistical multiplexing defines an upper bound on the

·size of the block of data that each flow is permitted to transmit at a given time. This limited­
size block of data is typically referred to as a packet, to distinguish it from the arbitrarily large
message that an application program might want to transmit. The fact that a packet-switched
network limits the maximum size of packets means that a host may not be able to send a com­
plete message in one packet-the source may need to fragment the message into several pack­
ets, with the receiver reassembling the packets back into the original message.

In other words, each flow sends a sequence of packets over the physical link, with a
decision made on a packet-by-packet basis as to which flow's packet to send next. Notice that
if only one flow has data to send, then it can send a sequence of packets back to back. However,
should more than one of the flows have data to send, then their packets are interleaved on the
link. Figure 1.8 depicts a switch multiplexing packets from multiple sources onto a single
shared link.

The decision as to which packet to send next on a shared link can be made in a number
of different ways. For example, in a network consisting of switches interconnected by links
such as the one in Figure 1. 7, the decision would be made by the switch that transmits packets
onto the shared link. (As we will see later, not all packet-switched networks actually involve
switches, and they may use other mechanisms to determine whose packet goes onto the link
next.) Each switch in a packet-switched network makes this decision independently, on a
packet-by-packet basis. One of the issues that faces a network designer is how to make this
decision in a fair manner. For example, a switch could be designed to service the different
flows in a round-robin manner, just as in STDM. However, statistical multiplexing does not

16

►

1.2. Requirements 17

"' 'III C:=JC:=J C:=JC:=J- ...

~
,

Figure 1.8 A switch multiplexing packets from multiple sq_urces onto one shared link.

require a round-robin approach. In fact, another equally valid choice would be to service each

fl.ow's packets on a first-in-first-out (FIFO) basis.
Also, notice in Figure 1.8 that since the switch has to multiplex three incoming packet

streams onto one outgoing link, it is possible that the switch will receive packets faster than
the shared link can accommodate. In this case, the switch is forced to buffer these packets
in its memory. Should a switch receive packets faster than it can send them for an extended
period of time, then the switch will eventually run out of buffer space, and some packets will
have to be dropped. When a switch is operating in this state, it is said to be congested:

The bottom line is that statistical multiplexing defines a cost-effective way for multiple
users (e.g., host-to-host flows of data) to share network resources (links and nodes) in a fine­
grained manner. It defines the packet as the granularity with which the links of the network
are allocated to different flows, with each switch able to schedule the use of the physical links
it is connected to on a per-packet basis. ~airly allocating link capacity to different flows and
dealing with congestion when it occurs are the key challenges of statistical multiplexing.

I

1.2.3 Functionality
While the previous section outlined the challenges involved in providing cost-effective con­
nectivity among a group of hosts, it is overly simplistic to view a computer network as simply
delivering packets among a collection of computers. It is more accurate to think of a net­
work as providing the means for a set of application processes that are distributed over those
computers to communicate. In other words, the next requirement of a computer network is
that the application programs running on the hosts connected to the network must be able to
communicate in a meaningful way.

17

28li 6 End-to-End Protocols

6. 1 Simple Demultiplexer (UDP)
The simplest possible transport protocol is one that extends the host-to-host delivery service
of the underlying network into a process-to-process communication service. There are likely
to be many processes running on any given host, so the protocol needs to add a level of demul­
tiplexing, thereby allowing multiple application processes on each host to share the network.
Aside from this requirement, the transport protocol adds no other functionality to the best­
effort service provided by the underlying network. The Internet's User Datagram Protocol
(UDP) is an example of such a transport protocol. So is A Simple Protocol (ASP) described
in Chapter 2.

The only interesting issue in such a protocol is the form of the address used to identify
the target process. Although it is possible for processes to directly identify each other with
an OS-assigned process id (pid), such an approach is only practical in a "closed" distributed
system in which a single OS runs on all hosts and assigns each process a unique id. A more
common approach, and the one used by both ASP and UDP, is for processes to indirectly iden­
tify each other using an abstract locater, often called a port or mailbox. The basic idea is for a
source process to send a message to a port and for the destination process to receive the mes­
sage from a port.

The header for an end-to-end protocol that implements this demultiplexing function
typically contains an identifier (port) for both the sender (source) and the receiver (destina­
tion) of the message. For example, the UDP header is given in Figure 6.1. Notice that the
UDP port field is only 16 bits long. This means that there are up to 64-K possible ports,
clearly not enough to identify all the processes on all the hosts in the Internet. Fortunately,
ports are not interpreted across the entire Internet, but only on a single host. That is, a pro­
cess is really identified by a port on some particular host-a (port, host) pair. In fact, this pair
constitutes the demultiplexing key for the UDP protocol.

The next issue is how a process learns the port for the process to which it wants to send
a message. Typically, a client process initiates a message exchange with a server process. Once
a client has contacted a server, the server knows the client's port (it was contained in the mes­
sage header) and can reply to it. The real problem, therefore, is how the client learns the
server's port in the first place. A common approach is for the server to accept messages at a
well-known port. That is, each server receives its messages at some fixed port that is widely
published, much like the emergency telephone service is available at the well-known phone
number 911. In the Internet, for example, the Domain Name Server (DNS) receives mes­
sages at well-known port 53 on each host, the Unix talk program accepts messages at well­
known port 517, and so on. This mapping is published periodically in an RFC and is available
on most Unix systems in file /etc/services. Sometimes a well-known port is just the starting
point for communication: the client and server use the well-known port to agree on some
other port that they will use for subsequent communication, leaving the well-known port free
for other clients.

18

6.2. Reliable Byte Stream (TCP) 285

0 16 31

SrcPort DstPort

Checksum Length

Data

Figure 6. 1 Format for UDP header.

As just mentioned, a port is purely an abstraction. Exactly how it is implemented differs
from system to system, or more precisely, from OS to OS. Typically, a port is implemented by
a message queue. When a message arrives, the protocol (e.g., UDP) appends the message to
the end of the queue. Should the queue be full, the message is discarded. There is no flow­
control mechanism that tells the sender to slow down. When an application process wants
to receive a message, one is removed from the front of the queue. If the queue is empty, the

process blocks until a message becomes available.
Finally, although UDP does not implement flow control or reliable/ordered delivery, it

does a little more work than to simply demultiplex messages to some application process-it
also ensures the correctness of the message by the use of a checksum. (The UDP checksum is
optional in the current Internet, but will become mandatory with IPv6.) UDP computes its
checksum over the UDP header, the contents of the message body, and something called the
pseudoheader. The pseudoheader consists of three fields from the IP header: length, source
IP address, and destination IP address. UDP uses the same checksum algorithm as IP, as
defined in Section 3.4.3. The motivation behind having the pseudoheader is to verify that this
message has been delivered between the correct two endpoints. For example, if the destination
IP address was modified while the packet was in transit, causing the packet to be misdelivered,

this fact would be detected by the UDP checksum.

6.2 Reliable Byte Stream (TCP)
In contrast to a simple demultiplexing protocol like UDP, a more sophisticated transport pro­
tocol is one that offers a connection-oriented, reliable byte-stream service. Such a service has
proven useful to a wide assortment of applications because it frees the application from hav­
ing to worry about missing or reordered data. The Internet's Transmission Control Protocol
(TCP) is probably the most widely used protocol of this type. It is also the most carefully

optimized, which makes it an interesting protocol to study.
In terms of the properties of transport protocols given in the problem statement at the

start of this chapter, TCP guarantees the reliable, in-order delivery of a stream of bytes. It is a
full-duplex protocol, meaning that each TCP connection supports a pair of byte streams, one

19

►

286 6 End-to-End Protocols

flowing in each direction. It also includes a flow-control mechanism for each of these byte
streams that allows the receiver to limit how much data the sender can transmit. Finally, like
UDP, TCP supports a demultiplexing mechanism that allows multiple application programs
on any given host to simultaneously carry on a
conversation with their peers.

In addition to the above features, TCP TCP Extensions
also implements a highly tuned congestion­
control mechanism. The idea of this mecha­
nism is to throttle how fast TCP sends data,
not for the sake of keeping the sender from
overrunning the receiver, but so as to keep the
sender from overloading the network. A de­
scription ofTCP's congestion-control mecha­
nism is postponed until Chapter 8, where we
discuss it in the larger context of how network
resources are fairly allocated.

Since many people confuse conges­
tion control and flow control, we restate the
difference. Flow control involves preventing
senders from overrunning the capacity of re­
ceivers. Congestion control involves preventing
too much data from being injected into the
network, thereby causing switches or links to
become overloaded. Thus, flow control is an
end-to-end issue, while congestion control is
more of an issue of how hosts and networks
interact.

6.2.1 End-to-End Issues
At the heart of TCP is the sliding window al­
gorithm. Even though this is the same ba­
sic algorithm we saw in Section 3.5.2, because
TCP runs over the Internet rather than a point­
to-point link there are many important differ­
ences. This subsection identifies these differ­
ences and explains how they complicate TCP.
The following five subsections then describe
how TCP addresses these complications.

First, whereas the sliding window algo-

We have mentioned at three different
points in this section that proposed
extensions to TCP may help to mit­
igate some problem that TCP is fac­
ing. These proposed extensions are
designed to have as small an impact
on TCP as possible. In particular,
they are realized as options that can
be added to the TCP header. (We
glossed over this point earlier, but the
reason that the TCP header has a
Hdrlen field is that the header can be
of variable length; the variable part of
the TCP header contains the options
that have been added.) The signif­
icance of adding these extensions as
options rather than changing the core
of the TCP header is that hosts can
still communicate using TCP even if
they do not implement the options.
Hosts that do implement the optional
extensions, however, can take advan­
tage of them. The two sides agree that
they will use the options during TCP's
connection-establishment phase.

The first extension helps to im­
prove TCP's timeout mechanism. In­
stead of measuring the RTT using a
coarse-grained event, TCP can read
the actual system clock when it is
about to send a segment, and put

rithm presented in Section 3.5.2 runs over a single physical link that always connects the
same two computers, TCP supports logical connections between processes that are running

20

6.2. Reliable Byte Stream (TCP) 287

on any two computers in the Internet. This means that TCP needs an explicit connection­
establishment phase during which the two sides of the connection agree to exchange data with

each other. This difference is analogous to having to dial up the other party, rather than hav-

this time-think of it as a 32-bit

timestamrin the segment's header.

The receiver then echoes this time­
stamp back to the sender in its ac­

knowledgment, and the sender sub­

tracts this timestamp from the current

time to measure the RTT. In essence,
the timestamp option provides a con­

venient place for TCP to "store" the

record of when a segment was trans­

mitted; it stores the time in the seg­
ment itself N ote that the endpoints

in the connection do not need syn­

chronized clocks, since the timestamp

is written and read at the same end of

the connection.
The second extension ad­

dresses the problem of TCP's 32-bit

SequenceNum field wrapping around
too soon on a high-speed network.

Rather than define a new 64-bit

sequence number field, TCP uses

the 32-bit timestamp just described

to effectively extend the sequence

number space. In other words, T C P

decides whether to accept or reject a
segment based on a 64-bit identifier

that has the SequenceNum field
in the low-order 32 bits and the

timestamp in the high-order 32

bits. Since the timestamp is always

ing a dedicated phone line. TCP also has an ex­

plicit connection-teardown phase. One of the

things that happens during connection estab­

lishment is that the two parties establish some
shared state to enable the sliding window algo­

rithm to begin.
Second, whereas a single physical link

that always connects the same two computers
has a fixed RTT, TCP connections have highly

variable round-trip times. For example, a TCP

connection between a host in Tucson and a
host in New York, which are separated by sev­

eral thousand kilometers, might have an RTT

of 100 ms, while a TCP connection between a

host in Tucson and a host in Phoenix, only a
few hundred kilometers away, might have an

RTT of only 10 ms. The same TCP protocol

must be able to support both of these connec­
tions. To make matters worse, the TCP con­

nection between hosts in Tucson and New York
might have an RTT of 100 ms at 3 a.m., but

an RTT of 500 ms at 3 p.m. Variations in the

RTT are even possible during a single TCP

connection that lasts only a few minutes. What

this means to the sliding window algorithm is
that the timeout mechanism that triggers re­

transmissions must be adaptive. (Certainly, the
timeout for a point-to-point link must be a set­

table parameter, but it is not necessary to adapt

this timer frequently.)
The third difference is also related to the

variable RTT of a logical connection across the
Internet, but it is concerned with the patholog­

ical situation in which a packet is delayed in the

network for an extended period of time. Recall

from Section 5 .2 that the time to live (TTL) field

of the IP header limits the number of hops that a packet can traverse. (In IPv6, the TTL field is

renamed the Hoplimit field.) TCP makes use of the fact that limiting the number of hops in-

21

288 6 End-to-End Protocols

directly limits how long a packet can circulate in the Internet. Specifically, TCP assumes that
each packet has a maximum lifetime of no more than 60 seconds. Keep in mind that IP does
not directly enforce this 60-second value; it is simply a conservative estimate that TCP makes
of how long a packet might live in the Inter-
net. This sort of delay is simply not possible
in a point-to-point link-a packet put into one
end of the link must appear at the other end in
an amount of time closely related to the speed
of light. The implication of this difference is
significant-TCP has to be prepared for very
old packets to suddenly show up at the receiver,
potentially confusing the sliding window algo­
rithm.

Fourth, the computers connected to a
point-to-point link are generally engineered to
support the link. For example, if a link's de­
lay x bandwidth product is computed to be
8 KB-meaning that a window size is selected
to allow up to 8 KB of data to be unacknowl­
edged at a given time-then it is likely that the
computers at either end of the link have the
ability to buffer up to 8 KB of data. Design­
ing the system otherwise would be silly. On the
other hand, almost any kind of computer can be
connected to the Internet, making the amount
of resources dedicated to any one TCP con­
nection highly variable, especially considering
that any one host can potentially support hun­
dreds of TCP connections at the same time.
This means that TCP must include a mech-
anism that each side uses to "learn" what re­
sources (e.g., how much buffer space) the other
side is able to apply to the connection.

Fifth, because the transmitting side of a
directly connected link cannot send any faster
than the bandwidth of the link allows, and only
one host is pumping data into the link, it is not
possible to unknowingly congest the link. Said
another way, the load on the link is visible in the

increasing, it serves to distinguish be­
tween two different incarnations of
the same sequence number. Note
that the timestamp is being used in
this setting only to protect against
wraparound; it is not treated as part of
the sequence number for the purpose
of ordering or acknowledging data.

The third extension allows
TCP to advertise a larger window,
thereby allowing it to fill larger delay
x bandwidth pipes that are made
possible by high-speed networks.
This extension involves an option
that defines a scaling factor for the
advertised window. That is, rather
than interpreting the number that
appears in the AdvertisedWindow
field as indicating how many bytes
the sender is allowed to have un­
acknowledged, this option allows
the two sides of TCP to agree that
the AdvertisedWindow field counts
larger chunks (e.g., how many 16-
byte units of data the sender can have
unacknowledged). In other words,
the window scaling option specifies
how many bits each side should left­
shift the AdvertisedWindow field
before using its contents to compute
an effective window.

form of a queue of packets at the sender. In contrast, the sending side of a TCP connection
has no idea what links will be traversed to reach the destination. For example, the sending

22

►

6.2. Reliable Byte Stream (TCP) 289

machine might be directly connected to a relatively fast Ethernet-and so, capable of sending
data at a rate oflOMbps-but somewhere out in the middle of the network, a 1.5-Mbps Tl
link must be traversed. And to make matters worse, data being generated by many different
sources might be trying to traverse this same slow link. This leads to the problem of network
congestion. Discussion of this topic is delayed until Chapter 8.

We conclude this discussion of end-to-end issues by comparing TC P's approach to pro­
viding a reliable/ ordered delivery service with the approach used by X.25 networks. In TCP,
the underlying IP network is assumed to be unreliable and to deliver messages out of order;
TCP uses the sliding window algorithm on an end-to-end basis to provide reliable/ordered
delivery. In contrast, X.25 networks use the sliding window protocol within the network, on
a hop-by-hop basis. The assumption behind this approach is that if messages are delivered
reliably and in order between each pair of nodes along the path between the source host and
the destination host, then the end-to-end service also guarantees reliable/ordered delivery.

The problem with this latter approach is that a sequence of hop-by-hop guarantees does
not necessarily add up to an end-to-end guarantee. First, if a heterogeneous link (say, across
an Ethernet) is added to one end of the path, then there is no guarantee that this hop will
preserve the same service as the other hops. Second, just because the sliding window protocol
guarantees that messages are delivered correctly from node A to node B, and then from node B
to node C, it does not guarantee that node B behaves perfectly. For example, network nodes
have been known to introduce errors into messages while transferring them from an input
buffer to an output buffer. They have also been known to accidentally reorder messages. As a
consequence of these small windows of vulnerability, it is still necessary to provide true end­
to-end checks to guarantee reliable/ ordered service, even though the lower levels of the system
also implement that functionality.

This discussion serves to illustrate one of the most important principles in system design­
the end-to-end argument. In a nutshell, the end-to-end argument says that a function (in our
example, providing reliable/ ordered delivery) should not be provided in the lower levels of the
system unless it can be completely and correctly implemented at that level. Therefore, this rule
argues in favor of the TCP/IP approach. This rule is not absolute, however. It does allow for
functions to be incompletely provided at a low level as a performance optimization. This is
why it is perfectly consistent with the end-to-end argument to perform error detection (e.g.,
CRC) on a hop-by-hop basis; detecting and retransmitting a single corrupt packet across one
hop is preferable to having to retransmit an entire file end-to-end.

6.2.2 Segment Format
TCP is a byte-oriented protocol, which means that the sender writes bytes into a TCP con­
nection and the receiver reads bytes out of the TCP connection. Although "byte stream" de­
scribes the service TCP offers to application processes, TCP does not, itself, transmit indi­
vidual bytes over the Internet. Instead, TCP on the source host buffers enough bytes from the
sending process to fill a reasonably sized packet and then sends this packet to its peer on the
destination host. TCP on the destination host then empties the contents of the packet into

23

290

Application process

CJ
c=:::::::JWrite

bytes

D
TCP

Send buffer

Application process

D
D Read

bytes

D
TCP

!Receive buffed

I Segment I I Scgmenr I .. -I Segmenr I
Transmit segments

Figure 6.2 How TCP manages a byte stream.

6 End-to-End Protocols

a receive buffer, and the receiving process reads from this buffer at its leisure. This situation
is illustrated in Figure 6.2, which, for simplicity, shows data flowing in only one direction.
Remember that, in general, a single TCP connection supports byte streams flowing in both
directions.

The packets exchanged between TCP peers in Figure 6.2 are called segments, since each
one carries a segment of the byte stream. One question you might ask is, how does TCP decide
that it has enough bytes to send a segment? The answer is that TCP has three mechanisms
to trigger the transmission of a segment. First, TCP maintains a threshold variable, typically
called the maximum segment size (MSS), and it sends a segment as soon as it has collected
MSS bytes from the sending process. MSS is usually set to the size of the largest segment
TCP can send without causing the local IP to fragment. That is, MSS is set to the MTU
of the directly connected network, minus the size of the TCP and IP headers. The second
thing that triggers TCP to transmit a segment is that the sending process has explicitly asked
it to do so. Specifically, TCP supports a push operation, and the sending process invokes this
operation to effectively flush the buffer of unsent bytes. (This push operation is not the same
as the the x-kernel's xPush.) This operation is used in terminal emulators like Telnet because

each byte has to be sent as soon as it is typed. The final trigger for transmitting a segment is
a timer that periodically fires; the resulting segment contains as many bytes as are currently
buffered for transmission.

Each TCP segment contains the header schematically depicted in Figure 6.3. The rele­
vance of most of these fields will become apparent throughout this section. For now, we simply
introduce them.

The SrcPort and DstPort fields identify the source and destination ports, respectively,
just as in UDP These two fields, plus the source and destination IP addresses, combine to
uniquely identify each TCP connection. That is, TCP's demux key is given by the 4-tuple:

24

6.2. Reliable Byte Stream (TCP)

0 Li 10 16 31

SrcPort DstPort

SequenceNum

Acknowledgment

Hdrlen 0 Flags AdvertisedWindow

Checksum

Options (variable)

Data

Figure 6 .3 TCP header format.

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

UrgPtr

Receiver

291

Figure 6.lt Slmpllfled Illustration (showing only one direction) of TCP process, with data Plow
In one direction and ACKs In the other.

(SrcPort, SrclPAddr, DstPort, DstlPAddr).

Note that because TCP connections come and go, it is possible for a connection between a
particular pair of ports to be established, used to send and receive data, and closed, and then
at a later time for the same pair of ports to be involved in a second connection. We sometimes
refer to this situation as two different incarnations of the same connection.

The Acknowledgment, SequenceNum, and AdvertisedWindow fields are all involved
in TCP's sliding window algorithm. Because TCP is a byte-oriented protocol, each byte
of data has a sequence number; the SequenceNum field contains the sequence number for
the first byte of data carried in that segment. The Acknowledgment and AdvertisedWindow
fields carry information about the flow of data going in the other direction. To simplify our
discussion, we ignore the fact that data can flow in both directions, and we concentrate on
data that has a particular SequenceNum flowing in one direction and Acknowledgment and
AdvertisedWindow values flowing in the opposite direction, as illustrated in Figure 6.4. The
use of these three fields is described more fully in Section 6.2.4.

25

292 6 End-to-End Protocols

The 6-bit Flags field is used to relay control information between TCP peers. The pos­
sible flags include SYN, FIN, RESET, PUSH, URG, and ACK. The SYN and FIN flags are used
when establishing and terminating a TCP connection, respectively. Their use is described
in Section 6.2.3. The ACK flag is set any time the Acknowledgment field is valid, implying
that the receiver should pay attention to it. The URG flag signifies that this segment contains
urgent data. When this flag is set, the UrgPtr field indicates where the non-urgent data con­
tained in this segment begins. The urgent data is contained at the front of the segment body,
up to and including a value of UrgPtr bytes into the segment. The PUSH flag signifies that
the sender invoked the push operation, which indicates to the receiving side of TCP that it
should notify the receiving process of this fact. We discuss these last two features more in
Section 6.2.6. Finally, the RESET flag signifies that the receiver has become confused-for
example, because it received a segment it did not expect to receive-and so wants to abort the
connection.

Finally, the CheckSum field is used in exactly the same way as in UDP-it is computed
over the TCP header, the TCP data, and the pseudoheader, which is made up of the source
address, destination address, and length fields from the IP header. The checksum is required
for TCP in both IPv4 and IPv6. Also, since the TCP header is of variable length (options
can be attached after the mandatory fields), a Hdrlen field is included that gives the length of
the header in 32-bit words. This field is also known as the Offset field, since it measures the
offset from the start of the packet to the start of the data.

6.2.3 Connection Establishment and Termination
A TCP connection begins with a client (caller) doing an active open to a server (callee). As­
suming that the server had earlier done a passive open, the two sides engage in an exchange
of messages to establish the connection. (Recall from Chapter 2 that a party wanting to ini­
tiate a connection performs an active open, while a party willing to accept a connection does
a passive open.) Only after this connection-establishment phase is over do the two sides be­
gin sending data. Likewise, as soon as a participant is done sending data, it closes its half of
the connection, which causes TCP to initiate a round of connection-termination messages.
Notice that while connection setup is an asymmetric activi~ne side does a passive open
and the other side does an active open-connection teardown is symmetric--each side has
to close the connection independently. Therefore, it is possible for one side to have done a
close, meaning that it can no longer send data, but for the other side to keep its half of the
bidirectional connection open and to continue sending data.

Three-Way Handshake

The algorithm used by TCP to establish and terminate a connection is called a three-way
handshake. We first describe the basic algorithm and then show how it is used by TCP. The
three-way handshake involves the exchange of three messages between the client and the
server, as illustrated by the timeline given in Figure 6.5.

26

6.2. Reliable Byte Stream (TCP)

Active participant
(client)

Passive participant
(server)

ACK A
. Cknowie

dgrnent .. Y +
1

Figure 6.5 Tlmellne for three-way handshake algorithm.

293

The idea is that two parties want to agree on a set of parameters, which, in the case
of opening a TCP connection, are the starting sequence numbers the two sides plan to use
for their respective byte streams. In general, the parameters might be any facts that each side
wants the other to know about. First, the client (the active participant) sends a segment to
the server (the passive participant) stating the initial sequence number it plans to use (Flags=

SYN, SequenceNum = x). The server then responds with a single segment that both acknowl­
edges the client's sequence number (Flags = ACK, Ack = x + 1) and states its own beginning
sequence number (Flags= SYN, SequenceNum = y). That is, both the SYN and ACK bits are
set in the Flags field of this second message. Finally, the client responds with a third seg­
ment that acknowledges the server's sequence number (Flags= ACK, Ack= y + 1). The reason
that each side acknowledges a sequence number that is one larger than the one sent is that
the Acknowledgment field actually identifies the "next sequence number expected," thereby
implicitly acknowledging all earlier sequence numbers. Although not shown in this timeline,
a timer is scheduled for each of the first two segments, and if the expected response is not

received, the segment is retransmitted.
You may be asking yourself why the client and server have to exchange starting sequence

numbers with each other at connection setup time. It would be simpler if each side simply
started at some "well-known" sequence number, such as 0. In fact, the TCP specification re­
quires that each side of a connection select an initial starting sequence number at random.
The reason for this is to protect against two incarnations of the same connection reusing the
same sequence numbers too soon, that is, while there is still a chance that a segment from an
earlier incarnation of a connection might interfere with a later incarnation of the connection.

State-Transition Diagram

TCP is complex enough that its specification includes a state-transition diagram. A copy of
this diagram is given in Figure 6.6. This diagram shows only the states involved in opening
a connection (everything above ESTABLISHED) and in closing a connection (everything

27

6 End-to-End Protocols

CLOSED

Active open/SYN

Passive open Close

LISTEN

SYN/SYN + ACK
~---~ SYN/SYN+ ACK

SYN_RCVD SYN_SENT

ACK SYN + ACK/ACK

Close/FIN

Close/FIN FIN/ACK

FIN_WAIT_ l CLOSE_WAIT

FIN/ACK
Close/FIN

CLOSING

ACK Timeout after two ACK
~-~-~ segment lifetimes ~--'---~

,_ _____ ____,~ TIME_ WAIT ,__ ___ ___, .. FIN/ACK
CLOSED

Figure 6.6 TCP state-transition diagram.

below ESTABLISHED). Everything that goes on while a connection is open-i.e., the op­
eration of the sliding window algorithm-is hidden in the ESTABLISHED state.

TCP's state-transition diagram is fairly easy to understand. Each circle denotes a state
that any TCP connection can find itself in. All connections start in the CLOSED state. As
the connection progresses, the connection moves from state to state according to the arcs.
Each arc is labeled with a tag of the form event/action. Thus, if a connection is in the LIS­
TEN state and a SYN segment arrives (i.e., a segment with the SYN flag set), the connection
makes a transition to the SYN _RCVD state and takes the action of replying with an ACK +

SYN segment.
Notice that two kinds of events trigger a state transition: (1) a segment arrives from the

peer (e.g., the event on the arc from LISTEN to SYN_RCVD), and (2) the local application
process invokes an operation on TCP (e.g., the active open event on the arc from CLOSE to
SYN_SENT). In other words, TCP's state-transition diagram effectively defines the semantics
of both its peer-to-peer interface and its service interface, as defined in Section 1.3.1. The

28

6.2. Reliable Byte Stream (TCP) 295

syntax of these two interfaces is given by the segment format (as illustrated in Figure 6.3),
and by some application programming interface (an example of which is given in Section 6.4),

respectively.
Now let's trace the typical transitions taken through the diagram in Figure 6.6. Keep in

mind that at each end of the connection, TCP makes different transitions from state to state.
When opening a connection, the server first invokes a passive open operation on TCP, which
causes TCP to move to the LISTEN state. At some later time, the client does an active open,
which causes its end of the connection to send a SYN segment to the server and to move to the
SYN _SENT state. When the SYN segment arrives at the server, it moves to the SYN _RCVD
state and responds with a SYN+ACK segment. The arrival of this segment causes the client
to move to the ESTABLISHED state and to send an ACK back to the server. When this
ACK arrives, the server finally moves to the ESTABLISHED state. In other words, we have

just traced the three-way handshake.
There are three things to notice about the connection-establishment half of the state­

transition diagram. First, if the client's ACK to the server is lost, corresponding to the third
leg of the three-way handshake, then the connection still functions correctly. This is because
the client side is already in the ESTABLISHED state, so the local application process can start

sending data to the other end. Each of these data segments will have the ACK flag set, and the
correct value in the Acknowledgment field, so the server will move to the ESTABLISHED
state when the first data segment arrives. This is actually an important point about TCP­
every segment reports what sequence number the sender is expecting to see next, even if this
repeats the same sequence number contained in one or more previous segments.

The second thing to notice about the state-transition diagram is that there is a funny

transition out of the LISTEN state whenever the local process invokes a send operation on
TCP. That is, it is possible for a passive participant to identify both ends of the connection
(i.e., itself and the remote participant that it is willing to have connect to it), and then for it to
change its mind about waiting for the other side and instead actively establish the connection.
To the best of our knowledge, this is a feature ofTCP that no system-specific interface allows

the application process to take advantage of
The final thing to notice about the diagram is the arcs that are not shown. Specifically,

most of the states that involve sending a segment to the other side also schedule a timeout that

eventually causes the segment to be resent if the expected response does not happen. These

retransmissions are not depicted in the state-transition diagram.
Turning our attention now to the process of terminating a connection, the important

thing to keep in mind is that the application process on both sides of the connection must
independently close its half of the connection. This complicates the state-transition diagram
because it must account for the possibility that the two sides invoke the close operator at the
same time, as well as the possibility that first one side invokes close and then at some later time,
the other side invokes close. Thus, on any one side there are three combinations of transitions

that get a connection from the ESTABLISHED state to the CLOSED state:

29

296 6 End-to-End Protocols

■ This side closes .first:
ESTABLISHED ➔ FIN_WAfT_l ➔ FIN_WAJT...2 ➔ TIMLWAJT -+

CLOS~D.

■ The other side closes first:
ESTABLISHED ➔ CLOSE_WA1T ➔ LAST _ACK-+ CLOSED.

■ Both sides close at the same time:
ESTABLISHED➔ FIN_WAfT_l ➔CLOSING➔ TIME_WA1T ➔ CLOSED.

There is actually a fourth, although rare, sequence of transitions that lead to the CLOSED
state; it follows the arc from FIN_WAfT_l to TIME_WAJT. We leave it as an exercise for
you to figure out what combination of circumstances leads to this fourth possibility.

The main thing to recognize about connection teardown is that a connection in the
TIME_WAJT state cannot move to the CLOSED state until it has waited for two times the
maximum amount of time an IP datagram might live in the Internet (i.e., 120 seconds). The
reason for this is that while the local side of the connection has sent an ACK in response to
the other side's FIN segment, it does not know that the ACK was successfully delivered. As
a consequence, the other side might retransmit its FIN segment, and this second FIN seg­
ment might be delayed in the network. If the connection were allowed to move directly to
the CLOSED state, then another pair of application processes might come along and open
the same connection (i.e., use the same pair of port numbers), and the delayed FIN segment
from the earlier incarnation of the connection would immediately initiate the termination of
the later incarnation of that connection.

6.2.lii Sliding Window Revisited
We are now ready to discuss TCP's variant of the sliding window algorithm. As discussed in
Section 3.5.2, the sliding window serves several purposes: (1) it guarantees the reliable de­
livery of data, (2) it ensures that data is delivered in order, and (3) it enforces fl.ow control
between the sender and the receiver. TCP's use of the sliding window algorithm is the same
as we saw in Section 3.5.2 in the case of the first two of these three functions. Where TCP
differs from the earlier algorithm is that it folds the flow-control function in as well. In partic­
ular, rather than having a fixed-sized sliding window, the receiver advertises a window size to
the sender. This is done using the AdvertisedWindow field in the TCP header. The sender is
then limited to having no more than a value of AdvertisedWindow bytes of unacknowledged
data at any given time. The receiver selects a suitable value for AdvertisedWindow based on
the amount of memory allocated to the connection for the purpose of buffering data. The
idea is to keep the sender from overrunning the receiver's buffer. We discuss this at greater
length below.

Reliable and Ordered Delivery

To see how the sending and receiving sides of TCP interact with each other to implement reli­
able and ordered delivery, consider the situation illustrated in Figure 6. 7. TCP on the sending

30

6.2. Reliable Byte Stream (TCP) 297

Sending application Receiving application

TCP TCP

LastByteWritten LastByteRead

t t
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

Figure 6. 7 Relationship between TCP send buffer (left) and receive buffer (right).

side (pictured on the left) maintains a send buffer. This buffer is used to store data that has
been sent but not yet acknowledged, as well as data that has been written by the sending ap­
plication, but not transmitted. On the receiving side, TCP maintains a receive buffer. This
buffer holds data that arrives out of order, as well as data that is in the correct order (i.e., there
are no missing bytes earlier in the stream) but that the application process has not yet had the
chance to read.

To make the following discussion simpler to follow, we initially ignore the fact that both
the buffers and the sequence numbers are of some finite size, and hence will eventually wrap
around. Also, we do not distinguish between a pointer into a buffer where a particular byte
of data is stored and the sequence number for that byte.

Looking first at the sending side, three pointers are maintained into the send buffer,
each with an obvious meaning: LastByteAcked, LastByteSent, and LastByteWritten. Clearly,

LastByteAcked S LastByteSent

since the receiver cannot have acknowledged a byte that has not yet been sent, and

LastByteSent S LastByteWritten

since TCP cannot send a byte that the application process has not yet written. Also note that
none of the bytes to the left of LastByteAcked need to be saved in the buffer because they have
already been acknowledged, and none of the bytes to the right of LastByteWritten need to be
buffered because they have not yet been generated.

A similar set of pointers (sequence numbers) are maintained on the receiving side:
LastByteRead, NextByteExpected, and LastByteRcvd. The inequalities are a little less in­
tuitive, however, because of the problem of out-of-order delivery. The first relationship

LastByteRead < NextByteExpected

is true because a byte cannot be read by the application until it is received and all preceding
bytes have also been received. NextByteExpected points to the byte immediately after the
latest byte to meet this criterion. Second,

31

298 6 End-to-End Protocols

NextByteExpected ::; LastByteRcvd + 1

since, if data has arrived in order, NextByteExpected points to the byte after
NextByteExpected, whereas if data has arrived out of order, NextByteExpected points to the
start of the first gap in the data, as in Figure 6. 7. Note that bytes to the left of LastByteRead
need not be buffered because they have already been read by the local application process, and
bytes to the right of LastByteRcvd need not be buffered because they have not yet arrived.

Flow Control
Most of the above discussion is similar to that found in Section 3.5.2, the only real difference
being that this time we elaborated on the fact that the sending and receiving application pro­
cesses are filling and emptying their local buffer, respectively. (The earlier discussion glossed
over the fact that data arriving from an upstream node was filling the send buffer, and data

being transmitted to a downstream node was emptying the receive buffer).
You should make sure you understand this much before proceeding, because now comes

the point where the two algorithms differ more significantly. In what follows, we reintroduce
the fact that both buffers are of some finite size, denoted MaxSendBuffer and MaxRcvBuffer,

although we don't worry about the details of how they are implemented. In other words, we
are only interested in the number of bytes being buffered, not in where those bytes are actually

stored.
Recall that in a sliding window protocol, the size of the window sets the amount of data

that can be sent without waiting for acknowledgment from the receiver. Thus, the receiver
throttles the sender by advertising a window that is no larger than the amount of data that it

can buffer. Observe that TCP on the receive side must keep

LastByteRcvd - NextByteRead ::; MaxRcvBuffer

to avoid overflowing its buffer. It therefore advertises a window size of

AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd - NextByteRead),

which represents the amount of free space remaining in its buffer. As data arrives, the receiver
acknowledges it as long as all the preceding bytes have also arrived. In addition, LastByteRcvd

moves to the right (is incremented), meaning that the advertised window potentially shrinks.
Whether or not it shrinks depends on how fast the local application process is consuming

data. If the local process is reading data just as fast as it arrives (causing NextByteRead to
be incremented at the same rate as LastByteRcvd), then the advertised window stays open

(i.e., AdvertisedWindow = MaxRcvBuffer). If, however, the receiving process falls behind,
perhaps because it performs a very expensive operation on each byte of data that it reads, then

the advertised window grows smaller with every segment that arrives, until it eventually goes

to 0.
TCP on the send side must then adhere to the advertised window it gets from the re­

ceiver. This means that at any given time, it must ensure that

LastByteSent - LastByteAcked ::; AdvertisedWindow.

32

6.2. Reliable Byte Stream (TCP) 299

Said another way, the sender computes an effective window that limits how much data it can
send:

EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

Clearly, EffectiveWindow must be greater than O before the source can send more data. It is
possible, therefore, that a segment arrives acknowledging x bytes, thereby allowing the sender
to increment LastByteAcked by x, but because the receiving process was not reading any data,
the advertised window is now x bytes smaller than the time before. In such a situation, the
sender would be able to free buffer space, but not to send any more data.

All the while this is going on, the send side must also make sure that the local application
process does not overflow the send buffer, that is, that

LastByteWritten - LastByteAcked ::; MaxSendBuffer.

If the sending process tries to write y bytes to TCP, but

(LastByteWritten - LastByteAcked) + y > MaxSendBuffer,

then TCP blocks the sending process and does not allow it to generate more data.
It is now possible to understand how a slow receiving process ultimately stops a fast

sending process. First, the receive buffer fills up, which means the advertised window shrinks
to 0. An advertised window of O means that the sending side cannot transmit any data, even
though data it has previously sent has been successfully acknowledged. Finally, not being able
to transmit any data means that the send buffer fills up, which ultimately causes TCP to block
the sending process. As soon as the receiving process starts to read data again, the receive-side
TCP is able to open its window back up, which allows the send-side TCP to transmit data
out of its buffer. When this data is eventually acknowledged, LastByteAcked is incremented,
the buffer space holding this acknowledged data becomes free, and the sending process is un­
blocked and allowed to proceed.

There is only one remaining detail that must be resolved-how does the sending side
know that the advertised window is no longer O? As mentioned above, TCP always sends a
segment in response to a received data segment, and this response contains the latest values
for the Acknowledge and AdvertisedWindow fields, even if these values have not changed
since the last time they were sent. The problem is this. Once the receive side has advertised
a window size of 0, the sender is not permitted to send any more data, which means it has no
way to discover that the advertised window is no longer O at some time in the future. TCP on
the receive side does not spontaneously send nondata segments; it only sends them in response
to an arriving data segment.

TCP deals with this situation as follows. Whenever the other side advertises a window
size of 0, the sending side persists in sending a segment with 1 byte of data every so often. It
knows that this data will probably not be accepted, but it tries anyway, because each of these
1-byte segments triggers a response that contains the current advertised window. Eventually,
one of these 1-byte probes triggers a response that reports a nonzero advertised window.

33

►

300 6 End-to-End Protocols

Bandwidth Time until Wraparound

Tl (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes

STS-3 (155 Mbps) 4 minutes

STS-12 (622Mbps) 55 seconds

STS-24 (1.2 Gbps) 28 seconds

Table 6. 1 Time until 32-bit sequence number space wraps around.

Note that the reason the sending side periodically sends this probe segment is that TCP
is designed to make the receive side as simple as possible-it simply responds to segments
from the sender, and it never initiates any activity on its own. This is an example of a well­
recognized (although not universally applied) protocol design rule, which, for lack of a better
name, we call the smart sender/dumb receiver rule. Recall that we saw another example of this

rule when we discussed the use ofNAKs in Section 3.5.2.

Keeping the Pipe Full

We now turn our attention to the size of the SequenceNum and AdvertisedWindow fields and
the implications of their sizes on TCP's correctness and performance. TCP's SequenceNum
field is 32 bits long and its AdvertisedWindow field is 16 bits long, meaning that TCP has
easily satisfied the requirement of the sliding window algorithm that the sequence number
space be twice as big as the window size: 232 > > 2 x 216 • However, this requirement is not
the interesting thing about these two fields. Consider each field in turn.

The relevance of the 32-bit sequence number space is that the sequence number used
on a given connection might wrap around-a byte with sequence number x could be sent at
one time, and then at a later time, a second byte with the same sequence number x might
be sent. Once again, we assume that packets cannot survive in the Internet for longer than
60 seconds. Thus, we need to make sure that the sequence number does not wrap around
within a 60-second period of time. Whether or not this happens depends on how fast data
can be transmitted over the Internet, that is, how fast the 32-bit sequence number space can
be consumed. (This discussion assumes that we are trying to consume the sequence number
space as fast as possible, but of course we will be if we are doing our job of keeping the pipe
full.) Table 6.1 shows how long it takes for the sequence number to wrap around on networks
with various bandwidths.

As you can see, the 32-bit sequence number space is adequate for today's networks, but
it won't be long (STS-12) until a larger sequence number space is needed. The IETF is already

34

6.2. Reliable Byte Stream (TCP) 301

Bandwidth Delay x Bandwidth Product

Tl (1.5 Mbps) 18KB

Ethernet (10 Mbps) 122KB

T3 (45Mbps) 549KB

FDDI (100 Mbps) 1.2MB

STS-3 (155 Mbps) 1.8MB

STS-12 (622Mbps) 7.4MB

STS-24 (1.2 Gbps) 14.8MB

Table 6.2 Required window size for 100 ms RTT.

working on an extension to TCP that effectively extends the sequence number space to protect
against the sequence number wrapping around.

The relevance of the 16-bit AdvertisedWindow field is that it must be big enough to al­
low the sender to keep the pipe full. Clearly, the receiver is free to not open the window as large
as the AdvertisedWindow field allows; we are interested in the situation in which the receiver
has enough buffer space to handle as much data as the largest possible AdvertisedWindow
allows.

In this case, it is not just the network bandwidth but the delay x bandwidth product that
dictates how big the AdvertisedWindow field needs to be-the window needs to be opened far
enough to allow a full delay x bandwidth product's worth of data to be transmitted. Assuming
an RTT of 100 ms (a typical number for a crosscountry connection in the U.S.), Table 6.2 gives
the delay x bandwidth product for several network technologies.

As you can see, TCP's AdvertisedWindow field is in even worse shape than its
SequenceNum field-it is not big enough to handle even a T3 connection across the conti­
nental U.S., since a 16-bit field allows us to advertise a window of only 64 KB. The very same
TCP extension mentioned above provides a mechanism for effectively increasing the size of
the advertised window.

6.2.5 Adaptive Retransmission
Because TCP guarantees the reliable delivery of data, it retransmits each segment if an ACK
is not received in a certain period of time. TCP sets this timeout as a function of the RTT it
expects between the two ends of the connection. Unfortunately, given the range of possible
RITs between any pair of hosts in the Internet, as well as the variation in RTT between the
same two hosts over time, choosing an appropriate timeout value is not that easy. To address
this problem, TCP uses an adaptive retransmission mechanism. We now describe this mecha­
nism and how it has evolved over time as the Internet community has gained more experience
using TCP.

35

302 6 End-to-End Protocols

Original Algorithm

We begin with a simple algorithm for computing a timeout value between a pair of hosts. This
is the algorithm that was originally described in the TCP specification-and the following
description presents it in those terms-but it could be used by any end-to-end protocol.

The idea is to keep a running average of the RTT and then to compute the timeout
as a function of this RTT. Specifically, every time TCP sends a data segment, it records the
time. When an ACK for that segment arrives, TCP reads the time again, and then takes the
difference between these two times as a SampleRTT. TCP then computes an EstimatedRTT

as a weighted average between the previous estimate and this new sample. That is,

EstimatedRTT = ax EstimatedRTT + {3x SampleRTT

where

a+{3= 1.

The parameters a and {3 are selected to smooth the EstimatedRTT. A large {3 value tracks
changes in the RTT but is perhaps too heavily influenced by temporary fluctuations. On
the other hand, a large a value is more stable but perhaps not quick enough to adapt to real
changes. The original TCP specification recommended a setting of a between 0.8 and 0.9
and {3 between 0.1 and 0.2. TCP then uses EstmatedRTT to compute the timeout in a rather
conservative way:

Timeout= 2 x EstimatedRTT.

Karn/Partridge Algorithm

After several years of use on the Internet, a rather obvious flaw was discovered in this simple
algorithm. The problem was that an ACK does not really acknowledge a transmission; it ac­
tually acknowledges the receipt of data. In other words, whenever a segment is retransmitted
and then an ACK arrives at the sender, it is impossible to determine if this ACK should be
associated with the first or the second transmission of the segment for the purpose of measur­
ing the sample RTT. It is necessary to know which transmission to associate it with so as to
compute an accurate SampleRTT. As illustrated in Figure 6.8, if you assume that the ACK is
for the original transmission but it was really for the second, then the SampleRTT is too large
(a), while if you assume that the ACK is for the second transmission but it was actually for
the first, then the SampleRTT is too small (b).

The solution is surprisingly simple. Whenever TCP retransmits a segment, it stops tak­
ing samples of the RTT; it only measures SampleRTT for segments that have been sent only
once. This solution is known as the Karn/Partridge algorithm, after its inventors. Their pro­
posed fix also includes a second small change to TCP's timeout mechanism. Each time TCP
retransmits, it sets the next timeout to be twice the last timeout, rather than basing it on the
last EstimatedRTT. That is, Karn and Partridge proposed that TCP use exponential backoff,
just as the Ethernet does.

36

6.2. Reliable Byte Stream (TCP)

Sender

f-

5::
V
a.
E
<1J

(fl

Receiver

(a)

Sender Receiver

(b)

Figure 6.8 Associating the ACK with original transmission (a) versus retransmission (b).

Jacobson/Karels Algorithm

303

The Karn/Partridge algorithm was introduced at a time when the Internet was suffering from
high levels of network congestion. Their approach was designed to fix some of the causes of
that congestion, and although it was an improvement, the congestion was not eliminated. A
couple of years later, two other researchers-Jacobson and Karels-proposed a more drastic
change to TCP to battle congestion. The bulk of that proposed change is described in Chap­
ter 8. Here, we focus on the aspect of that proposal that is related to deciding when to timeout
and retransmit a segment.

As an aside, it should be clear how the timeout mechanism is related to congestion-if
you timeout too soon, you may unnecessarily retransmit a segment, which only adds to the
load on the network. As we will see in Chapter 8, the other reason for needing an accurate
timeout value is that a timeout is taken to imply congestion, which triggers a congestion­
control mechanism. Finally, note that there is nothing about the Jacobson/Karels timeout
computation that is specific to TCP. It could be used by any end-to-end protocol.

The main problem with the original computation is that it does not take the variance of
the sample RTTs into account. Intuitively, if the variation among samples is small, then the
EstimatedRTT can be better trusted and there is no reason for multiplying this estimate by 2
to compute the timeout. On the other hand, a large variance in the samples suggests that the
timeout value should not be too tightly coupled to the EstimatedRTT.

In the new approach, the sender measures a new SampleRTT as before. It then folds
this new sample into the timeout calculation as follows:

Difference = SampleRTT - EstimatedRTT
EstimatedRTT = EstimatedRTT + (8 x Difference)
Deviation= Deviation+ 8 (IDifferencej - Deviation)

where 8 is a fraction between O and 1. That is, we calculate both the mean RTT and the
variation in that mean.

37

6 End-to-End Protocols

TCP then computes the timeout value as a function of both EstimatedRTT and
Deviation as follows:

Timeout=µ x EstimatedRTT + <I> x Deviation

where based on experience, µ is typically set to 1 and </> is set to 4. Thus, when the variance
is small, Time0ut is close to EstimatedRTT, while a large variance causes the Deviation term
to dominate the calculation.

Implementation

There are two items of note regarding the implementation of timeouts in TCP. The first is
that it is possible to implement the calculation for EstimatedRTT and Deviation without using
floating-point arithmetic. Instead, the whole calculation is scaled by 2n, with 8 selected to
be 1/2n. This allows us to do integer arithmetic, implementing multiplication and division
using shifts, thereby achieving higher performance. The resulting calculation is given by the
following code fragment, where n = 3 (i.e., 8 = 1/8). Note that EstimatedRTT and Deviation
are stored in their scaled up forms, while the value of SampleRTT at the start of the code and
ofTime0ut at the end are real, unscaled values. If you find the code hard to follow, you might
want to try plugging some real numbers into it and verifying that it gives the same results as
the equations above.

SampleRTT -= (EstimatedRTT >> 3) ;
Esti matedRTT += SampleRTT ;
if (SampleRTT < 0)

SampleRTT = -SampleRTT ;
SampleRTT -=(Devi ati on>> 3) ;
Devi ation+= SampleRTT;
Timeout= (Esti matedRTT >> 3) +(Deviation>> l) ;

The second point of note is that J a_cobson and Karels's algorithm is only as good as the
clock used to read the current time. On a typical Berkeley Unix implementation, the clock
granularity is as large as 500 ms, which is significantly larger than the average crosscountry
RTT of somewhere between 100 and 200 ms. To make matters worse, the Berkeley Unix
implementation of TCP only checks to see if a timeout should happen every time this 500-ms
clock ticks, and it only takes a sample of the round-trip time once per RTT. The combination
of these two factors quite often means that a timeout happens 1 second after the segment was
transmitted. Once again, the proposed extensions to TCP include a mechanism that makes
this RTT calculation a bit more precise.

6.2.6 Record Boundaries
As mentioned earlier in this section, TCP is a byte-stream protocol. This means that the
number of bytes written by the sender are not necessarily the same as the number of bytes

38

6.3. Remote Procedure Call 305

read by the receiver. For example, the application might write 8 bytes, then 2 bytes, then
20 bytes to a TCP connection, while on the receiving side, the application reads 5 bytes at a
time inside a loop that iterates 6 times. TCP does not interject record boundaries between
the eighth and ninth bytes, nor between the tenth and eleventh bytes. This is in contrast to a
message-oriented protocol, such as UDP, in which the message that is sent is exactly the same

length as the message that is received.
Even though TCP is a byte-stream protocol, it has two different features that can be

used by the sender to effectively insert record boundaries into this byte stream, thereby in­
forming the receiver how to break the stream of bytes into records. (Being able to mark record
boundaries is useful, for example, in many database applications.) Both of these features were
originally included in TCP for completely different reasons; they have only come to be used

for this purpose over time.
The first mechanism is the push operation. Originally, this mechanism was designed to

allow the sending process to tell TCP that it should send whatever bytes it had collected to
its peer. This was, and still is, used in terminal emulators like Telnet because each byte has
to be sent as soon as it is typed. However, push can be used to implement record boundaries
because the specification says that TCP should inform the receiving application that a push
was performed; this is the reason for the PUSH flag in the TCP header. This act of informing
the receiver of a push can be interpreted as marking a record boundary.

The second mechanism for inserting end-of-record markers into a byte stream is the
urgent data feature, as implemented by the URG flag and the UrgPtr field in the TCP header.
Originally, the urgent data mechanism was designed to allow the sending application to send
out- of-band data to its peer. By "out of band" we mean data that is separate from the normal
fl.ow of data, e.g., a command to interrupt an operation already under way. This out-of-band
data was identified in the segment using the UrgPtr field and was to be delivered to the re­
ceiving process as soon as it arrived, even if that meant delivering it before data with an earlier
sequence number. Over time, however, this feature has not been used, so instead of signify­
ing "urgent" data, it has come to be used to signify "special" data, such as a record marker.
This use has developed because, as with the push operation, TCP on the receiving side must
inform the application that "urgent data" has arrived. That is, the urgent data in itself is not
important. It is the fact that the sending process can effectively send a signal to the receiver

that is important.
Of course, the application program is always free to insert record boundaries without

any assistance from TCP. For example, it can send a field that indicates the length of a record

that is to follow, or it can insert its own record boundary markers into the data stream.

6.3 Remote Procedure Call
As discussed in Chapter 1, a common pattern of communication used by application pro­
grams is the request/reply paradigm, also called message transaction: a client sends a request
message to a server, the server responds with a reply message, and the client blocks (suspends

39

