
80 Java Card for E-Payment Applications

smart card and its applications. These are discussed in detail in later sections
of this chapter.

Java Card is characterized by the following major benefits:

• Platform independence. Java Card applications written in accordance
with the specifications are intended to run on any Java Card-com­
pliant smart card. This feature was thought to ensure a high degree
of portability of Java Card applications. Unfortunately, individual
smart card manufacturers frequently introduce their own packages
with a manufacturer-dependent API (especially security-related
APis) or still support different versions of Java Card. This signifi­
cantly decreases the portability of Java Card applications.

• Multiple-application support. More than one application can be run
on a Java Card technology smart card. Furthermore, the data of each
application is securely protected from any other application run on
the same card.

• Power of Java. Java Card inherits many benefits of the Java program­
ming language. In the particular case of smart cards, such benefits
are object-oriented programming and language-level security.
However, some limitations on Java introduced in Java Card (see
Section 8.2) frequently lead to a style of programming that is differ­
ent from conventional Java. Another advantage of Java Card is that
its applications can be developed using any development tool or
environment for standard Java.

The Java Card architecture is illustrated in Figure 8 .1. As can be seen, it
looks very similar to traditional Java. The smart card operating system (OS)
is layered on top of a smart card microcontroller and is aimed at providing
common services like file and data management, communication, and com­
mand execution. From the communication point of view, Java Card is fully
compliant with ISO/IEC 7816. In particular, Java Card supports communi­
cation protocols 1 and commands in accordance with ISO/IEC 7816-3 and
ISO/IEC 7816-4, respectively.

The Java Card run-time environment QCRE) is layered on top of the
smart card operating system and consists of the Java Card Virtual Machine
0CVM), the Java Card API, also referred to as the framework, and native

I. T == 0 and T == I protocols.

IPR2022-01239
Apple EX1022 Page 52

Java Card Basics 81

Java Card API

- - -~~---- -"

Java Card virtual
Native methods

machine

Java Card Runtime Environment

Smart card operating system

Smart card microcontroller
\ I

\ ------------- I ' / ,, ;/ ~------------------------------~
Figure 8.1 Java Card architecture.

methods. Native methods are needed to implement certain special platform­
dependent operations like 1/0 operations or cryptographic operations in a
compact and efficient way. That is why the implementation of such opera­
tions interacts directly with the smart card operating system and is usually
done in languages other than Java (typically, C or Assembler). The Java Card
API is formed by a number of packages containing classes dedicated to vari­
ous purposes (see Chapter 1 I). In addition to the standard Java Card API,
particular JCRE implementations frequently contain some manufacturer­
specific extension APis. On the one hand, they provide some additional
functions, but on the other, they decrease the cross-platform portability of
Java Card applications.

Java Card applications, called card applets or simply applets, written in
the Java programming language are located on the topmost level of the Java
Card architecture. More than one applet can be run on a card. Each applet
on a card is uniquely identified by its AID. Chapter 10 of this book addresses
security issues involved with the Java Card's multiple-application support.

The main task of the JCVM is to execute an applet bytecode on a card
and to provide the Java language support. The core difference between the
JCVM and the conventional Java Virtual Machine is that the first one is
actually split into two independent parts. One part of JCVM, called the Java
Card Converter, is executed off-card, for instance, on a personal computer.

IPR2022-01239
Apple EX1022 Page 53

82 Java Card for E-Payment Applications

The second part ofJCVM is run on-card and is capable of applet code exe
CU-

tion, managing classes, and providing interapplet security mechanisms. In
contrast to Java, the lifetime of the on-card JCVM is limited only by the life­
time of a smart card. In other words, the on-card JCVM cannot be stopped
and then started new again-it always runs on a card and is merely temporar­
ily paused when power is removed from the card.

The Java Card Converter is a software tool that prepares a card applet
bytecode (all applet class files put into one package) for uploading to a
card. This preparation includes verification of classes to be loaded, various
checks for Java Card-specific restrictions and violations, allocation and crea­
tion of the applet data structures, and resolution of symbolic references to
the applet data structures. The result of the conversion is a convened applet
(cap) file containing a complete image of the applet prepared and optimized
for an execution on a card.

Figure 8.2 illustrates the principle described above and shows the main
steps of card applet development. A card applet code can be written and
compiled using any Java development tool and environment. Debugging and
testing is a different case-because of the specifics of Java Card and the use of
manufacturer-specific packages, this can be done in most cases only with the
help of development tools provided by the smart card manufacturer.

After compilation of all source j ava files related to the applet, the
resulting class files are passed to the Java Card Converter, which generates
the applet cap file as an output. The applet cap file then can be uploaded to
a card. Java Card specifications do not define exactly how the applet cap ftle
is uploaded to a card-this also remains a manufacturer-specific issue.

Any Java
development tool

t
j ava files

',

Java compiler

t
class files

cap file

.H

Java Card
converter

' '
C

Figure 8.2 Java Card applet preparation.

Java Card
.... technology smart ,,..-

card

IPR2022-01239
Apple EX1022 Page 54

Java Card Basics 83

A few words must be said about how an applet is uploaded to a card.
Any Java Card technology smart card contains a special application called the
installation program that is capable of loading an applet cap file and storing
it on the card. Thus, there is no need for J CVM to take care of loading the
applet-this is accomplished by the installation program. From an architec­
tural point of view, the installation program can be seen as an ordinary Java
Card application layered on top of JCVM and implementing an applet cap
file upload over certain format APDUs sent to the card by a terminal.

Note that, in order to increase applet uploading security, certain JCRE
implementations allow the applet cap file to be uploaded in a digitally
signed and encrypted manner. In this case, the applet is uploaded successfully
only if the applet' s digital signature is successfully verified on the card.

Another remarkable feature of Java Card is that it does not provide
ISO/IEC 7816-4 file system support on-card. In other words, the Java Card
API has no means of working with files in terms of creating, writing, reading,
and so forth. All functions related to file representation and handling should
be implemented within an applet. Although this looks like a restriction, it
gives more flexibility and allows implementation of only those file support
features that are really needed by an applet.

Initially, the plan was to provide file system support on Java Card.
Even the previous version of Java Card, Java Card 2.0, contained a set of
classes dedicated to operations on files. It is said that manufacturers could
not come to an agreement on an underlying API and therefore file system
support was left out of Java Card 2.1.

A practical object-oriented implementation of a Java Card file system is
demonstrated in Part IV of this book.

JCVM, JCRE, and the Java Card API are defined by Sun Microsystems
Inc. specifications [1-3], which are available online. 2 As of February 2001,
not all existing Java Card implementations were based on Java Card 2.1. For
instance, iButton from Dallas Semiconductor and Schlumberger Cyberflex
follow the Java Card 2.0 specification.

In May 2000, the Java Card 2.1.1 specification was released [4]. In
comparison with Java Card 2.1, Java Card 2.1.1 contains a number of minor
improvements and pays more attention to some aspects of Java Card
implementation.

2. http://java.sun.com/ products/javacard.

IPR2022-01239
Apple EX1022 Page 55

84 Java Card for E-Payment Applications

8.2 Differences from Java

A smart card is a resource-constrained device. It cannot provide the amounts

of memory and high performance that are available on modern computer
architectures. That is why it is impossible to implement the standard Java
platform in a one-to-one manner on a smart card. The decision was made,
therefore, to implement Java Card as a subset of standard Java, omitting
some features and adding some restrictions.

First of all, because of the resource constraints and limited CPU per­
formance, Java Card does not support multithreading. Second, Java Card does
not support dynamic class loading, for an obvious reason: It is very problem­
atic and almost impossible to ensure loading of additional classes to the card
during applet execution. Object cloning is also not supported by Java Card.

All objects once created by an applet will exist as long as the applet
exists, that is, until the applet is deleted from the card. This means that all
objects3 created by the applet are persistent, that is, their values are preserved
when power is removed from the card. Therefore, Java Card does not need
and does not support garbage collection. As a consequence, the method
finalize () is not supported. This feature also increases applet safety:
References to nonexistent objects are avoided because objects cannot be
destroyed during an applet' s lifetime. On the other hand, implementation
of garbage collection could be quite useful in that it could prevent a loss of
memory occupied by a dynamic object that leaves the applet' s scope. Some
Java Card implementations, like iButton from Dallas Semiconductors, sup­
port garbage collection.

The following sections discuss in detail certain differences between Java
Card and Java.

8.2.1 Primitive Data Types and Arrays

Like Java, Java Card supports such primitive data types as byte, short, and
boolean. A byte is an 8-bit signed number with values that can range from
-128 to 127. A short is a 16-bit signed number with values that can range
from -32,768 to 32,767. A boolean value is represented internally by a byte.

In contrast to Java, Java Card does not support such data types as float,
double, long, and char at all. Data type int is optional; that is, some par­
ticular Java Card implementations may support it, some not. A summary of sup­
ported and unsupported Java Card primitive data types is given in Table 8.1.

3. Except transient objects that are created in a special manner and whose value is resec
upon certain Java Card system events.

. -

IPR2022-01239
Apple EX1022 Page 56

Java Card Basics 85

Table 8.1
Supported and Unsupported Primitive Data Types in Java Card

Data Type Width (bits) Supported?

byte 8 Yes

short 16 Yes

boolean 8 Yes

int 32 Optional

char 16 No

float 32 No

long 64 No

double 64 No

Java Card supports only one-dimensional arrays, not multidimensional
arrays. This limitation is also because of the limited resources available on a
Java Card technology smart card. As in Java, elements of an array may be of
any supported primitive data type or objects. The following example demon­
strates valid declarations of arrays:

byte byte_array[] = new byte[3];
byte states[] = {O, 1, 2} ;
PIN app_pins[] = new PIN[3];
II references to PIN objects

II array containing 3

The following array declarations are invalid because they declare multidi­

mensional arrays:

byte a [] [] = new byte [3] [3] ;
boolean flags[][] = new boolean[5] [5];

As in Java, Java Card arrays are represented by objects. This means that
methods of the class Object can be applied to them. For instance, an equal­
ity of two array references can be checked using the method equa 1 s () of
the Object class:

if (states.equals(byte_array)) {
. . .

}

r
►

..

IPR2022-01239
Apple EX1022 Page 57

86 Java Card for E-Payment Applications

The method returns a boolean value indicating whether the array references
are equal or not. More advanced operations on arrays (copying, comparing,
etc.) can be performed with the help of static methods of the class Util

)

which is a member of the Java Card framework classes.

8.2.2 Operations and Type Casting

Java Card supports all arithmetic, logical, and bit-wise operations defined
in Java. However, typecasting rules used in Java Card are slightly different
from rules defined in Java. The main typecasting rule of Java Card states that
results of intermediate or unassigned operations must be explicitly cast to
a type of a desired value. An intermediate calculation is part of a complex
expression involving a number of operations on a number of values. A result
of an unassigned operation is not assigned to any variable. An example of an
unassigned operation could be an array index calculation.

The reason behind the explicit typecasting rule is that, in Java, results
of intermediate or unassigned operations are cast to the type int by default.
However, Java Card supports the type int only optionally, which implies
that not all Java Card implementations will have it. Hence, casting either to
the types short or byte must be specified explicitly. The following exam­
ple demonstrates correct explicit casting of results of intermediate or unas­
signed operations:

byte byte_array[] = new byte[3];
byte b;
shorts;

b = byte_array[(byte} (s-1)]; // unassigned operation
b = (byte} ((byte} (s+6} *2 } ; // intermediate operation

The example below demonstrates erroneous typecasting:

b = byte_array[s+l];
b = (byte} ((s+6} *2 } ;

Typecasting errors related to Java Card restrictions are reported by the Java
Card Converter.

8.2.3 Exceptions

In principle, Java Card supports all Java mechanisms for exception han­
dling. Card applets may contain try, catch, and finally statements.

IPR2022-01239
Apple EX1022 Page 58

es•-

Java Card Basics 87

Obviously, exceptions related to unsupported features, like multithreading
or dynamic class loading, are not supported. Moreover, the constrained
resources of a smart card also have an impact, resulting in the following three
features of Java Card exception handling:

1. Not all of the Java exception classes are supported.

2. Descriptive string messages in exceptions are not supported.
Instead, a reason code of the type short is used.

3. Creating instances of exception classes is not recommended.
Instead, static J CRE instances of exception classes should be used.

We now discuss each aspect of this list in detail. All Java Card
exceptions are subclasses of a superclass Throwable. Exception classes are
stored in two core packages of the Java Card framework, j ava. lang and
j avacard. f rarnework. Exceptions contained in the first package repre­
sent erroneous situations related to Java language programming. Table 8.2
gives a general overview of exceptions contained in the j ava. lang package.

Table 8.2
j ava. lang Package Exceptions

Exception Description

Ari thmeticException Indicates a certain arithmetic run-time
error. An example could be the
division-by-zero error.

ArrayindexOu tOfBoundsException Indicates that an array index is outside of
the array boundaries.

ArrayStoreException Indicates that there was an attempt to
store an object of an incorrect type in an
array.

ClassCastException

NegativeArraySizeException

NullPointerException

SecurityException

Indicates an incorrect attempt to cast an
instance of one class to another class.

Indicates an attempt to create an array with
a negative size.

Indicates a null reference access.

Indicates a violation of access rights for a
certain object.

IPR2022-01239
Apple EX1022 Page 59

88 Java Card for E-Payment Applications

One important fact must be mentioned: Java Card specifications do
not define J CVM behavior for the case in which a certain exception is
thrown and is not caught by a card applet. As a first consequence of an
uncaught exception, JCVM will halt, that is, card applet execution will be
stopped. What will happen then depends on the particular Java Card imple­
mentation. For instance, the Sm@rtCafe Java Card technology smart card
from Giesecke & Devrient, which is used to implement a sample EMV
application later in this book, will respond to a terminal with a status word
indicating a general card error.

Exceptions contained in the j avacard. framework package repre­
sent smart card-specific erroneous situations that occur during a card applet
execution. Table 8.3 gives their general description.

Java Card does not support the object type string. Therefore, Java
Card exceptions do not provide descriptive string messages. Instead, addi­
tional information about the reason for an exception is reported by a reason
code. The reason code is a value of the type short. A remarkable thing about
exception reason codes is that most exception classes, mainly smart card-spe­
cific exception classes, contain predefined static constants representing main
reason codes typical of the underlying exception.

To conclude the description of Java Card exceptions, a few words must
be said about exception usage. First of all, it is strongly recommended not to
create a new exception object each time an exception is thrown. Instead, all
exception objects needed by an applet should be created during the applet
initialization phase, the references to them stored, and the objects reused

Table 8.3
j avacard. framework Package Exceptions

Exception Description

APDUException Indicates errors related to APDU handling.

ISOException Is used to issue a response APDU with a given
status word.

PINException Indicates errors related to PIN handling.

Sys temException Indicates errors occurring on the Java Card at
system level.

TransactionException Indicates errors occurring during transaction
processing.

UserException Is used to implement user-defined exceptions.

IPR2022-01239
Apple EX1022 Page 60

Java Card Basics 89

each time an exception must be thrown. In this context, « reused" means that
an exception object is created just once but thrown as many times as needed
with a desired reason code. The reasoning behind such a practice is obvious:
Creating new instances of exception classes will simply waste the limited card
memory available.

There is an even more efficient method of exception throwing. JCRE
precreates all exceptions defined in the Java Card APL In other words, J CRE
creates instances of all Java Card exceptions by default. This means that these
precreated exception objects can be used instead of objects created by a card
applet, so there is no need to create most of the exception objects at all. All
exceptions defined in the j avacard. framework package (see Table 8.3)
have a static method throwI t () that throws a JCRE (a precreated) instance
of the class.

Let us demonstrate this principle with an example. Assume that an
applet must report that the instruction (INS value) given in a command
APDU is not supported. This can be achieved with the following statement:

ISOException.throwit(IS07816.SW_INS_NOT_SUPPORTED);

First of all, execution of this statement will throw a JCRE instance of
the ISOException exception class with the desired reason code. As a
consequence, this exception will force J CRE to issue a response APD U
with the ISO 7816-4 status word 6D 00 H defined by the static
constant SW_INS_NOT_SUPPORTED of the Java Card framework interface
IS07816.

8.3 Java Card Applet

The lifetime of a Java Card applet consists of a number of stages. After being
compiled and converted to a cap file (see Section 8.1) by the Java Card Con­
verter, the applet is loaded to a card by the card installation program. This is
the moment when the on-card life of the applet begins. First of all, the applet
must be installed and registered within J CRE. If the applet registration
is accomplished successfully, the applet becomes available for selection via
SELECT APDU, sent to the card, and processed by JCRE. The selected applet
is ready to receive incoming command APDUs delivered to it by JCRE, to
process them, and to generate response APDUs that are sent out by JCRE.

As pointed out in Section 8.1, the lifetime of a card applet is limited by
the lifetime of the Java Card Virtual Machine, that is, by the lifetime of the

IPR2022-01239
Apple EX1022 Page 61

90 Java Card for E-Payment Applications

card. However, note that certain Java Card implementations may allow
clearing of the application area of a card's EEPROM. In this way, all applets
existing on the card and all data objects belonging to them are completely
deleted from the card.

The Java Card API provides handy mechanisms for card applet imple­
mentation. Any card applet is implemented on the basis of an abstract
base class Applet located in the j avacard. framework package. The
class Applet contains all methods necessary for applet installation, selec­
tion, and deselection, and APDU processing. Those methods and aspects
related to them are discussed in detail in the following section.

- 8.3.1 Installation and Registration

After an applet has been successfully loaded to the card, it must be installed.
The installation procedure is initiated by the INSTALL APDU sent to the
card. Java Card specifications do not define the exact format of this APDU;
they instead leave it up to the manufacturer. The INSTALL APDU is
received and processed by the same card application that loaded the applet
cap file to the card-the installation program.

On receiving the INSTALL APDU, the card installation program sim­
ply invokes a special method of the applet that is to be installed. This method
is called install and is defined in the abstract class Applet extended
by any card applet. The installation program also passes to the ins tall
method applet initialization options received with the INSTALL APDU.
The applet install method is called only once (obviously, an applet is
installed on a card only once).

The core task of the install method is to create an instance
of the loaded applet class and to register the instance within JCRE. Natu­
rally, the applet constructor is called when the applet instance is created. The
constructor may create data objects used by the applet, and it is good pro­
gramming practice to create all applet objects in the applet constructor.

The applet instance registration is mandatory: If it is not performed,
the applet installation fails. The registration is done via invocation of the
register method of the applet. The register method exists in two ver­
sions, one with parameters, the other without. The register method with
parameters is used to specify an AID of the applet instance.

Summarizing everything said above, the main steps of an applet instal­
lation procedure (assuming that the applet is already loaded to the card) are
as follows:

IPR2022-01239
Apple EX1022 Page 62

Java Card Basics 91

1. Card installation program receives INSTALL APDU and invokes
the ins tal 1 method of the applet to be installed.

2. An instance of the applet class is created in the ins tal 1 method.

3. The applet instance is registered via invocation of the register
method.

If the applet is installed successfully, J CRE makes it available for selection.

8.3.2 Selection and Deselection

Any applet installed on a card must be explicitly selected before command
APO Us are sent to it. An applet is selected by means of the SELECT APDU
with the following defined format:

CLA

00

INS

A4

Pl

04

P2 Le Data

00 AID length AID

The data field of the APDU contains an AID of the applet to select. Other
fields of the SELECT APDU are fixed and defined in accordance with
1S0/IEC 7816-4. If JCRE finds an applet with the given AID, it marks it as
selected and forwards it to it all further command APDUs. If no applet with
such an AID is found, JCRE reports the fact with the respective status word
in the response APDU.

After a card reset, all applets on the card are in a suspended state. In
other words, none of the applets is marked as selected. Therefore, if J CRE
receives any4 APDU different from SELECT, it will answer with the
response APDU indicating that no applet is selected (status word 69 99 H).
Note that some Java Card implementations may allow specification of a
default applet. A default applet is marked as selected after a card reset and
JCRE will forward to it all received APDUs even if there was no explicit
SELECT command. However, Java Card 2.1 specifications address no
means for defining a default applet and leave this question up to the
manufacturer.

The abstract class Applet contains two methods related to applet
selection and deselection. The first one is called select () and is invoked

4. Except manufacturer-proprietary command APDUs related to card personalization and
management, for example, applet load or install APDUs. Command APDUs of this kind
are not considered further in this discussion.

IPR2022-01239
Apple EX1022 Page 63

92 Java Card for E-Payment Applications

by JCRE whenever the applet becomes selected. An applet may perform
operations needed for further processing of commands; for example, it may
change the values of internal flags. The select () method should return a
boolean value indicating whether it is ready to accept commands or not. By
default, the value true is returned.

The applet method deselect () is called by JCRE when a currently
selected applet becomes deselected, that is, when another applet on the card
is selected. Obviously, this method is not called when power is removed from
the card.

An interesting feature of SELECT APDU processing is that theAPDU
is also passed to the applet after its selection by JCRE. This means that the
applet also has possibilities of processing this APDU and answering it in a
desired manner.

Aspects related to the processing of command APDUs by an applet are
addressed in the next section.

8.3.3 APDU Processing

Figure 8.3 demonstrates a general scheme for incoming APDU processing by
JCRE. Applet selection mechanisms were presented in the previous section.
The abstract class Applet extended by any Java Card applet contains the
method process. This method is invoked by JCRE for each received com­
mand APDU. All operations dealing with processing the APDU, performing
all necessary application-specific operations in response to the APDU, and
preparing the response APDU are done in the applet process method.

The process method has one single parameter. This parameter is an
instance of the APDU class, another Java Card framework class located in the
j avacard. f rarnework package. This class provides a handy interface to

the communication facilities of a smart card and is designed in a protocol­
independent manner. Therefore, an applet developer does not have to deal
with specifics of T = 0 or T = 1 protocols (those are the only protocols sup­
ported by Java Card 2.1)-all of them are "hidden" inside the APDU class
and its methods implementation.

A core field of the APDU class is a byte array buffer that is used
for reading data of the incoming APDU and preparing data of the outgoing
(response) APDU. In addition, the class APDU provides a number of meth­
ods for easy access to the byte buffer.

If no exception is thrown during the process method execution,
JCRE sends out data in the APDU buffer (if the response was constructed by
the applet) with the success status word 90 00 H automatically attached. If

IPR2022-01239
Apple EX1022 Page 64

Java Card Basics

Incoming APDU

yes

no yes

93

no Response APDU
"no applet found"

no
Response APDU ,,-<-

"no applet selected

Select applet, invoke
applet's select ()
method

Incoming APDU SELECT APDU

I
Invoke applet's
process method

ISOException
Perform all is thrown
operations

Response APDU with SW 90 00
or DATA and SW 90 00

Response APDU
with respective SW

Figure 8.3 Command APDU processing by JCRE and an applet.

the applet throws an ISOException (see Section 8.2.3), JCRE catches it
and sends out a response APDU with the status word given in the exception
reason code. If any other exception is thrown during the process method
execution, JCRE will send out a response APDU with the status word «No
precise diagnosis" 6F 00 H.

[I]

[2]

[3]

[4]

The APDU class and the App 1 et calls are discussed in Chapter 11.

References

Sun Microsystems Inc., "Java Card 2.1 Virtual Machine Specification," Mar. 1999.

Sun Microsystems Inc., "Java Card 2.1 Runtime Environment UCRE) Specification,"
Feb. 1999.

Sun M· • • I f: " F b
1

tcrosystems Inc., "Java Card 2.1 Applicanon Programming nter ace, e .
999.

Sun Microsystems Inc., "Java Card 2.1.1 Specifications. Release Notes," May 2000.

IPR2022-01239
Apple EX1022 Page 65

Deployment of Java Oard Technology

S art cards can in general be used in mobile phones, personal digital assis­
t:ts, set-top boxes, and other devices. Java Card technology supports plat­
form independence, makes it possible to implement multiple applications on
a single card in a secure way, and allows downloading of applications after a
card has been issued. In addition, Java is a programming language in wide­
spread use, which reduces the time-to-market for new smart card appli­
cations. All of these properties make Java Card interesting for a range of com­
mercial applications. The following sections give some examples of Java Card
technology deployment. •

In addition to industry and financial institutions, government agencies
have expressed strong interest in Java Card-based products. For example,
in 1999, Citibank1 issued multiple-application smart cards based on Java
Card technology to General Services Administration employees. The cards
provided a number of functions, including logical access, physical access,
property management, e-ticketing, and e-boarding.

9.1 Java Card Forum

The Java Card Forum OCF)2 is an interindustry initiative to promote the
Java Card API specification as the industry standard. It was founded by

1 • http:/ /www.ciribank.org.
2• http://www.javacardforum.org.

95

IPR2022-01239
Apple EX1022 Page 66

~~ ., .
.., ,t

96 Java Card for E-Payment Applications

Schlumberger and Gemplus in 1997 following JavaSoft's (a division by Sun
Microsystems) announcement of the Java Card API in 1996. The member
list includes chip manufacturers, card manufacturers, companies, and
agencies in the financial, telecommunications, health care, transportation,
and information technology sectors. Current work is focused on vertical
market extensions to the core specification for GSM, banking, and informa­
tion technology.

9.2 Card Management

As soon as one starts loading and unloading applications to and from smart
cards after they have been issued, the problem of managing a card population
arises. This is called the card management problem.

The Java Card Management QCM) Task Force of the JCF was initi­
ated in 1998 with the goal of defining a framework for a card management
system (CMS). Specifically, the idea was to define a core CMS on top of
which companies could build their own CMS, and to define on-card APis
for Java Card management to be used through an off-card CMS. For exam­
ple, it is necessary to define the following core features:

• A card repository describing cards with general attributes;

• A card application repository describing the applets with general
attributes;

• Card state management functions;

• Life cycle transition management functions;

• Post-issuance applet management.

As of 2001, one package is specified, org. j avacardforum. management
[l]. In addition to this document, several commercial card and application

management specifications are available, such as MXI by MAOSC0,3 Open
Platform by Global Platform (see Section 9.4), and the Platform Manage­
ment Architecture (PMA) by platform?. 4

3. http:// www.multos.com.

4. http://www.platform7.com.

V

IPR2022-01239
Apple EX1022 Page 67

Deployment of Java Card Technology 97

9.3 SIM Application Toolkit

Mobile subscriber-relevant data and security algorithms are stored on
the SIM (GSM 11.11 [2]). 5 The SIM can be implemented in two forms,
either as a smart card or as a plug-in SIM. The SIM card initially played a
«passive" role, providing the user with the authentication necessary to access
the network and encryption keys to achieve speech confidentiality. SIM
Application Toolkit, a part of the GSM standard (GSM 11.14 [3]), extends
the card's role such that it becomes the interface between the mobile device
and the network. SIM Toolkit supports the development of smart card appli­
cations for GSM networks. It is based on the client-server principle, with
SMS as the bearer service. In the future, other transport mechanisms such as
USSD or GPRS will be used. With SIM Toolkit it is possible to personalize a
SIM card, to update existing SIM functions and services, and to install new
functions and services by downloading data over the network. This has usu­
ally been done by adding or modifying data in the card files and records, not
by downloading executable code.

In November 1999, ETSI adopted Java Card technology for inclusion
in SIM Toolkit [4]. In the same year, ETSI issued a standard (GSM 03.19
[5]) describing the following extensions to the Java Card 2.1 API:

• The sim. access package provides the means for the applets to
access the GSM data and file system of the GSM application defined
in the GSM 11.11 specification.

• The sim. toolkit package provides the means for the toolkit
applets to register the events of the toolkit framework, to handle
TL V (tag-length-value) information, and to send proactive com­
mands according to the GSM 11.14 specification.

The resulting cards provide GSM operators with the ability to deploy a
wide range of value-added services, such as secure remote banking, stock
trading, and unique dial-back roaming services. There are already Java Card
2.0-based SIM cards on the market, such as Giesecke & Devrient' s StarSIM,
Gemplus' s GemXplore98, or Schlumberger' s SIMera. Card applets can usu­
ally be transported to the card by SMS, either from a content provider or at a
point-of-sale terminal. Cards have a Java Virtual Machine that supports the

5. GSM standards are issued by the European Telecommunications Standards Institute
(ETSI); see http://www.etsi.org/.

IPR2022-01239
Apple EX1022 Page 68

98 Java Card for E-Payment Applications

sandbox security model, strong bytecode verification and fi
' 1rewa11s b

card applets. etween

9.4 Visa Open Platform

An interesting development in the smart card and e-comm . erce area •
Visa Open Platform [6] supported by vanous financial institu . is the

tlons se •
providers, mobile network operators, and hardware manufactur T,h rvice

. . ers. e goal
are to develop standardized soluuons for secure mobile electroni s

1 c h" h ·11 c commerce and also an Open P atrorm c ip t at wi allow financial insti"t Utlons to
dynamically download Visa payment apphcauons to a mobile phone on the
basis of Java Card technology. The technology is chosen in such a way th .

. ~tt
ensures these goals will be reached:

• Interoperability of cards, terminals, operating systems, software
products, and bank office support systems from different vendors;

• Secure support of multiple applications coexisting on the card Qava,
Java Card, Windows for Smart Cards) in such a way that each appli­
cation provider is assigned a separate security domain;

• Strongest commercially feasible security, which will be evaluated
using the Common Criteria (see Chapter 3);

• Support of existing standards such as EMV (see Section 7.1) 3:11d
ISO 7816 (see Section 1.5) so that the card can be used in the eXIS

t-

• ing ISO/EMV-compliant terminals.

d. d stored-value
An Open Platform card could serve as a corporate ere it car ' elec-
purse for small purchases, security token for Internet commerce, or an

• • k . T 1 mart cards: tron1c nc et earner. wo specifications are re evant to s

d om­. fi the off-car c
1. The Open Platform Card Specification speci ies municacion

munication with the terminal and the on-caf d c~en platform
with the applications. In other words, it defin~s the p
API and how to use it to develop card applicanons. th enhance-

Th · •fi • defines e Visa-
2. e Visa Open Platform Card Spec1 1canon . 1ement

ded co unp
ments to the Open Platform that are nee
specific applications (e.g., cryptography support).

IPR2022-01239
Apple EX1022 Page 69

Deployment of Java Card Technology 99

In the run-time environment, two different stacks are possible. One stack
includes the Java Card Virtual Machine with the Java Card API layered over
a proprietary card vendor operating system. Another stack includes Windows
for Smart Cards (WfSC) with the corresponding Virtual Machine and API,
layered over the WfSC operating system. In addition, the stack includes the
Open Platform API, which extends the standard card API to allow additional
security control (e.g., secure channel establishment, key verification before
loading it on the card, card lock if a security threat is detected). The Open
Platform environment also places some additional constraints on applica­
tions (e.g., secure card auditing, application loading after a card has been
issued). For example, if an application is loaded after the card is issued, a
secure channel is established between the card and the platform from which
the application is loaded. In this way the card can authenticate the applica­
tion provider, and the integrity of the application is guaranteed. The Open
Platform defines its own card management (see also Section 9.1).

References

[I] Java Card Management Task Force, "Java Card Management Specification,» Version
I .Ob, Oct. 2000; available at http://www.javacardforum.org/Documents/ docu­
ments.html.

[2] European Telecommunications Standards Institute, "Digital Cellular T elecommuni­
cations System (Phase 2+); Specification of the Subscriber Identity Module-Mobile
Equipment (SIM-ME) Interface (GSM 11. 11, Version 8.3.0 Release 1999)," 2000.

[3] European Telecommunications Standards Institute, "Digital Cellular T elecommuni­
cations System (Phase 2+); Specification of the SIM Application Toolkit for the
Subscriber Identity Module-Mobile Equipment (SIM-ME) Interface (GSM 11.14,
Version 8.3.0 Release 1999)," Aug. 2000.

[4] Hassler, V., Security Fundamentals for £-Commerce, Norwood, MA: Artech House,
2001.

[5] European Telecommunications Standards Institute, "Digital Cellular Telecommuni­
cations System (Phase 2+); Subscriber Identity Module Application Programming
Interface (SIM API); SIM API for Java Card (TM); Stage 2 (GSM 03.19, Version
7.1.0 Release 1998)," May 2000.

[6] Visa International, "Visa Open Platform: Overview," 2000; available at http://

www.visa.com/nt/suppliers/open/overview.html.

IPR2022-01239
Apple EX1022 Page 70

Java Card Secu~ity

Smart card security issues can be divided into four areas: (1) card body
security, (2) hardware (i.e., chip) security, (3) operating system security, and
(4) card application security. In addition to these general issues, which are
addressed in Part I of this book, Java Card security encompasses the follow­
ing areas: Java Card language subset security, card applet security mecha­
nisms, and Java Card crypto AP Is for writing secure programs. This chapter
gives a brief overview of these aspects of Java Card. 1 For more details, please
ref er to [1] .

10.1 Java Card Language Subset Security

As of mid-2001, Java was probably the most popular programming language
[2, 3]. Its development started in 1991 at Sun Microsystems when James Gos­
ling developed the Oak programming language. Oak was designed for con­
sumer electronics software that could be downloaded (i.e., upgraded) over a
network. The programs written in Oak were supposed to be very compact and
highly reliable. Because portability (i.e., platform independence) was one of
the major design goals, the source code was compiled into an interpreted byte­
code to run on a virtual machine. In other words, the Oak bytecode contained
a set of instructions not typical of any particular microprocessor, but for a spe­
cially designed "virtual microprocessor" (virtual machine).

1. http:/ /java.sun.com/ products/javacard.

101

IPR2022-01239
Apple EX1022 Page 71

102 Java Card for E-Payment Applications

Java is a general-purpose object-oriented programming language simi­
lar to C++. It began from a subset of C++ in which all features considered
error prone or unsafe were eliminated [4]. Some of Java's object-oriented
properties are dynamic binding, garbage collection, and inheritance. Java
programs are compiled into a processor-independent bytecode, which is
loaded into a computer's memory by the Java Class Loader to be run on a
Java Virtual Machine GYM). JVM can run programs directly on an operat­
ing system or be embedded inside a Web browser. It can execute the Java
bytecode directly by means of an interpreter, or use a «just-in-time" OIT)
compiler to convert the bytecode into the native machine code of the par­
ticular computer. JVM enforces Java safety, privacy, and isolation rules.
These make it possible to protect against unauthorized access and to isolate
one application from another within the same address space, so that it is not
necessary to enforce address space separation between applications [5].

As a subset of the Java programming language and virtual machine
specifications, the Java Card platform inherits the main Java security features
such as Java safety and Java type safety, which are briefly described in the fol­
lowing two sections.

10.1.1 Java Safety

The term safety denotes the absence of undesirable behavior that can cause
system hazards. Java is a safe programming language: Many of the confusing
or poorly understood features of C++ cannot be found in it. For example,
Java manages memory by reference and does not allow pointer arithmecic.
Another feature that makes Java simpler and thus safer is that it does not
allow multiple class inheritance. On the other hand, Java allows multiple
interface inheritance. However, an interface, in contrast to classes, may not
be used to define an abstract data type, since it may contain only constants

and method declarations, and no implementations. Java also provides the
final modifier, which disables subclassing when applied to class definitions
and disables overriding when applied to method definitions.

In addition, some new mechanisms that can be programmed in Ct+
only by very experienced programmers are a part of the language in Java. For
example, a useful mechanism is exception handling, which can be employed

by a programmer to specify how a program should manage an error condi­

tion. If a Java program tries to open a file that it has no privilege co read,

an exception will be thrown, but the program will not abort. Some of the

security-related problems in other languages resulted from programming

faults, but the fact that Java is safe cannot protect executing hosts against

IPR2022-01239
Apple EX1022 Page 72

Java Card Security 103

intentionally malicious programs or smart cards against malicious card

applets [5].

10.1.2 Java Type Safety

Java is a strongly typed language. This effectively means that an object must

always be accessed in the same way, so that illegal type casting is impossible.
By using a cast expression it is possible to instruct a compiler to treat, for

example, an integer as a pointer, or a pointer to one type as a pointer to
another type. In Java, it cannot happen that one part of the program sees an

object as having one type, and another part of the program sees that object as
having another type.

Java employs both static and dynamic type checking. Pure dynamic
type checking is the safest way to perform type checking. It can be done by
checking an object's tag before every operation on it to make sure that the
object's class allows such an operation. Unfortunately, dynamic type check­
ing makes programs run slowly. Therefore, Java also employs static type
checking, which is much more complicated but can be performed before pro­
gram execution (i.e., only once). If Java can determine that a particular
tag-checking operation will always succeed, then there is no reason to check it
dynamically. Static (or load-time) type checking is performed by the bytecode
verifier and ensures that the program does not forge pointers, violate access
restrictions (i.e., public, protected, private), violate the type of any object, try a
forbidden type conversion (illegal casting), or contain stack overflows.

Static checking is performed by the off-card JCVM. Dynamic (or run­
time) type checking is performed by the on-card JCVM (i.e., JCRE) and
ensures that there are no array boundary overflows or type incompatibilities.
Type safety has direct implications on Java security [6].

As pointed out in [7], it would be rather difficult to prove type sound­
ness for Java. Type soundness is based on specifying all possible behaviors
that a well-typed program can exhibit, basically by enumerating all errors
that may cause the program to abort according to the programming language
semantics. In Java many possible reasons exist for run-time errors (e.g.,
invalid class format), and Java programs may, under some circumstances, ter­
minate in unexpected ways (i.e., cause a segmentation violation).

10.1.3 Transient Objects

Temporary data can be stored in transient objects in RAM. Their contents
are set to a default value (e.g., NULL or false) at the end of their lifetime. If

IPR2022-01239
Apple EX1022 Page 73

104 Java Card for E-Payment Applications

the lifetime is defined as CLEAR_ON_RESET, a transient object's contents
are set to a default value when the card is reset. If the lifetime is defined as
CLEAR_ON_DESELECT, a transient object's contents are set to a default
value when the applet is deselected. This feature is very important for secu­
rity parameters such as the PIN, session keys, or private keys. If such parame­
ters were stored as persistent objects and were not explicitly cleared before the
applet was deselected, the applet to be selected next would be able to read
their values.

10.1.4 Atomicity of Transactions

An e-payment transaction must be atomic, meaning that it is either fully per­
formed or not at all. In other words, it must not remain in an undefined
state. For example, consider the situation in which a card is pulled out of a
card reader in the middle of a payment transaction just before the balance
on the card is updated but after a valid payment message has been sent to
the payee. Without atomicity, this would imply that the payee received the
money and would deliver the goods, but the payer's card balance was not
reduced. With atomicity, this transaction would simply be aborted.

Java Card supports a transaction model in the following three ways [I]:

1. A single update to a field of a persistent object or a class is always
atomic. If an error occurs during update, the content is restored co
its previous value.

2. Block updates of multiple data elements in an array are atomic if
the arrayCopy method is used.

3. An update of several different fields in different persistent objects
performed by an applet can be atomic so that either all updates
take place or all fields are restored to their previous values.

10.2 Card Applet Security Mechanisms

There are basically two types of applets [I]:

1. Preissuance applets' classes are burned (or "masked") into ROM
at the same time as the JCRE during the manufacturing phase of
the card life cycle. They are also called ROM applets. Preissuance
applet instances are instantiated in EEPROM by the JCRE,
Because they are provided by the card issuers (i.e., by a cru5ted

IPR2022-01239
Apple EX1022 Page 74

Java Card Security 105

source) they may declare native methods. Native methods are writ­
ten in another programming language and are not subject to Java
security checks.

2. Postissuance applets' classes can be downloaded (e.g., into
EEPROM) onto the card after the manufacturing phase. For secu­
rity reasons they are not allowed to declare native methods because
their content and behavior cannot be controlled by the JCRE.

An applet can register itself with the JCRE by its AID (applet iden­
tifier). Card applet authentication is usually based on the AID, but for
improved security it is recommended that a cryptographic mechanism be
used in addition. For example, all postissuance applets may need to be signed
by the origin so that the digital signature of the cap file can be verified before
downloading.

The following sections explain two important card applet security
mechanisms: an applet firewall enforced by the JCRE and secure object shar­
ing among applets.

102.1 Card Applet Firewall

One of the main advantages of Java Card is that it can host multiple applica­
tions, that is, multiple applets can reside on one card. This feature, however,
raises security issues of code and data sharing, or in other words, the issues of
controlling access to code and data on the card. Applets should not be able to
access each other's data. For example, no cardholder would be happy if the
tax collecting application on his Java Card could read data from his personal
bookkeeping application. Therefore, the Java Card has a mechanism called
an applet firewall, which means that applets cannot access each other's data
unless they explicitly allow it through the Shareable interface. PIN-based
cardholder authentication is also supported.

The applet firewall is also a Java Card run-time security check, in addi­
tion to Java Card language subset type safety checks (see Section 10.1.2). The
"normal" Java programming language allows access to public methods even
across packages. The Java Card introduces the concept of a context, which
represents a separate object space shared by all applets belonging to the same
package. Because of the firewall mechanism enforced by the J CRE, an applet
may not access objects from a different context. The JCRE has access to all
applets and objects created by applets (i.e., all contexts), and all applets have
access to global arrays owned by the JCRE, such as the APDU buffer.

IPR2022-01239
Apple EX1022 Page 75

106 Java Card for E-Payment Applications

Applets gain access to JCRE services through JCRE entry point objects.
This means that the public methods of such objects may be invoked from
any context. References to temporary JCRE entry point objects (for example,
APDU objects or JCRE-owned exception objects) cannot be stored by
the invoking applet. References to permanent JCRE entry point objects may
be stored and reused. Examples are AID instances created by the JCRE to
encapsulate an applet's AID when the applet instance is created [I]. Global
arrays are a special type of JCRE entry point object. By using them, applets
from different contexts may share only primitive data. The shareable inter­
face mechanism explained in the next section makes object sharing possible
among applets from different contexts.

10.2.2 Secure Object Sharing

The first Java Cards based their applet data-sharing policy on access control
lists. An access control list defined for each identity which item it could
access and with which particular access permissions (e.g., read, write). The
items were files, and the identities were defined by means of key files and
PINs. That approach did not, however, allow object methods to be shared
between different applets, but only data. In other words, it was not possible
for an applet to invoke another applet's method [8]. The means of sharing
objects between applets was introduced by the Java Card 2.1 specification.

Basically, the Java Card 2.1 object-sharing mechanism also uses access
control lists, but this time the identities are established through the unique
applet identifiers (AIDs). A card applet with a specific AID may obtain an
interface belonging to another applet and thus invoke its methods.

The following explanation of the Java Card object-sharing mechanism
is based on [8]. If an applet instance (server applet) wishes to share some
methods with applets from different contexts, with the Java Card 2.1 API it
does the fallowing:

• The server applet defines a shareable interface PI extending the
interface j avacard. framework. Shareable.

• The server applet defines a class PC implementing the shareable
interface.

• The server applet creates an instance PO of class PC.

• The server applet registers with the JCRE by submitting its AID.

IPR2022-01239
Apple EX1022 Page 76

►

Java Card Security 107

Object PO is referred to as the shareable interface object (SIO). This mecha­
nism was introduced by the Java Card 2.1 specification. When an applet
instance (client applet) wishes to access object PO from the server applet, it
performs the following steps:

1. The client applet creates an object reference CO of type PI.

2. The client applet calls a system method getAppletShare­
ableinterf aceObj ect (Server AID, byte) with the AID of
the server applet and with an optional byte carrying the identifier of
the selected interface (if more than one is provided by the particular
server applet). The J CRE forwards the request to the server applet
with the first argument replaced by the client applet' s AID.

3. When the server applet receives the request, it makes its access con­
trol decision based on the client applet' s AID; if the client is per­
mitted to share object PO, the server returns a reference to PO (of
type SIO), otherwise it returns a null to the JCRE.

4. The JCRE forwards the object reference to the client applet; the
client casts the object reference to type PI and stores it in CO.

Now when the client applet invokes a method on CO, a context switch is
triggered in the J CRE. This means that because of the applet firewall the cli­
ent can see only the object SO, and the server can see only the arguments
passed on the stack (as well as the APDU buffer).

This object sharing model does, however, have some serious security
problems:

• AID spoofing. Access control decisions made by the server applet are
exclusively based on AIDs. If a malicious and fake applet has the
AID falsely set to be the same as a client applet known to the server
and it (instead of the genuine client applet) is loaded onto the card,
it may gain access to the shared interface. The solution to this prob­
lem is to allow loading of only applets signed by a trusted source.

• Inflexible access control. Because access control is based on AIDs, a
server applet must know in advance (i.e., before being loaded onto
the card) the AIDs of all applets with which it will share objects. If
an applet to share an interface with is written after the server applet
has been loaded, there is no flexible way to add the new AID to the

server applet' s access control list.

IPR2022-01239
Apple EX1022 Page 77

108 Java Card for E-Payment Applications

• Illegal reference casring. Suppose a server applet shares interface PII
with an applet specified by AID 1, and interface PI2 with an applet
specified by AID2. Client applet AID 1 could, after legitimately
obtaining interface Pll, cast interface Pll into interface PI2 and
thus gain access to methods not intended to be shared with it by the
server applet. In [8] two work-arounds are proposed: (I) to use a
separate delegate object for each shared interface that redirects calls
to the intended object, or (2) to check the AID of a client applet
each time it tries to access a server applet' s method.

• Inability to pass object parameters. The only way to pass object
parameters between the server and the client is to use the APDU
buffer (i.e., global array; see Section 10.2. I). This approach is some­
times very inconvenient because the data to be passed must first be
converted into a representation suitable for this type of exchange.
Unfortunately, allowing applets to access objects including their
data and not only interfaces could potentially open up new security
holes.

10.3 Java Card Crypto APls

Java Card cryptography APls are based on the Java Cryptography Archi­
tecture OCA),2 which represents a framework for accessing and developing
cryptographic functionality for the Java platform. Because of U.S. export
regulations on cryptography it was necessary to provide algorithm extensi­
bility and independence so that different cryptographic algorithms could be
implemented by the JCRE providers. In addition, implementation
interoperability ensures that applets can access cryptography services on the
card without knowing the actual name of the implementation class. This
is achieved by factory methods and naming conventions for specifying
algorithms and their parameters. For example, SHA can be specified as Mes­

sageDi ge st. ALG_SHA; an instance of a class implementing SHA can be
obtained by calling the factory method get Instance (algorithm,
externalAccess) of the MessageDigest class. The algorithm
parameter is set to SHA, and the externalAccess parameter can be set
to true or false. If it is set to true, the Mes sageDiges t instance may be
shared among multiple applet instances and it is accessible via a Shareable

2. http://java.sun.com/produccs/jdk/I .3/docs/guide/securicy/CrypcoSpec.hcml.

IPR2022-01239
Apple EX1022 Page 78

Java Card Security 109

interface when the owner of the instance is not the currently selected applet
(see also Section 10.2).

The two crypto API packages are j avacard. security and
j avacardx. crypto. The j avacard. security package contains inter­
faces for implementing the following:

• Symmetric and asymmetric keys (Key, SecretKey, DESKey,
PrivateKey, PublicKey, RSAPrivateKey, RSAPri­
vateCrtKey, RSAPublicKey, DSAKey, DSAPrivateKey,
DSAPublicKey, KeyBuilder, KeyPair);

• Authentication (MessageDiges t, Signature);

• Random data generation (RandornDa ta);

• Crypto exceptions (CryptoException).

The classes in the j avacardx. crypto package (Cipher, Key­
Encryption) are subject to U.S. export control (strong encryption).

10.4 PIN Verification

To prevent unauthorized use of a smart card, the user is usually required to
enter a PIN, an alphanumerical string having six to eight characters at most
(otherwise it would be too difficult for the user to remember it). The card
owner types his PIN on a PC keyboard or on a keypad on the card reader
(i.e., CAD). The keypad is more secure because it is not possible on the PC
to intercept the PIN from the keyboard strokes. The card locks after a certain
number (e.g., three) of unsuccessful attempts to enter the right PIN. PIN ini­
tialization is performed at applet creation and installation [9]. This means
that it is possible to define a different PIN for each application (i.e., applet)
on the card.

The PIN is represented by a public PIN interface in the
j avacard. framework package. An implementation maintains the fol­
lowing values:

• PIN value;

• Maximum number of unsuccessful attempts allowed;

• Maximum PIN length;

• Remaining number of unsuccessful attempts allowed;

• Validated flag (true if a valid PIN has been presented).

IPR2022-01239
Apple EX1022 Page 79

110 Java Card for E-Payment Applications

References

[1] Chen, Z., Java Card Technology for Smart Cards, Reading, MA: Addison-Wesley,
2000.

[2] Gosling, J., B. Joy, and G. Steele, The Java Language Specification, Reading, MA:
Addison-Wesley, 1996.

[3] Lindholm, T., and F. Yellin, The Java Virtual Machine Specification, Reading, MA:
Addison-Wesley, 1997.

[4] MageLang Institute, "Fundamentals of Java Security," Jan. 2000; available at http://dcvd.
oper .java.sun.com/ developer/ online Training/ Securi cy/F undamencaJs/index.honJ.

[5] Hassler, V., Security Fundamentals for E-Commerce, Norwood, MA: Artech Ho~,
2001.

[6] McGraw, G., and E. Felten, "Java Security and Type Safety," Byte, Vol. 22, No. I,
1997, pp. 63-64.

[7] Volpano, D., and G. Smith, "Language Issues in Mobile Program Security," Mohik
Agents and Security, G. Vigna (ed.), LNCS 1419, Berlin: Springer Verlag, 1998,
pp. 25-43.

[8] Montgomery, M., and K. Ksheerabdhi, "Secure Object Sharing in Java Card," Pro(.

USENIX Workshop on Smartcard Technology, Chicago, IL, May 10-11, 1999; available
at http://www.usenix.org/ publicaitons/library/ proceedings/ smartcard99 I rnoncgomery.honl.

[9] Chen, Z., "How to Write a Java Card Applet: A Developer's Guide," JavaWor/d,
July 1999; available at http://www.javaworld.com/jw-07- l 999/jw-07-javacard.html.

IPR2022-01239
Apple EX1022 Page 80

I ..

Application Development

This chapter gives an introduction to Java Card application development,
beginning with an overview of core classes and methods of the Java Card
APL The API is explained on a general level. Readers interested in details
of particular classes or methods should refer to the Java Card API reference
manuals. The section concludes by presenting Java Card implementations
currently available on the market.

11.1 Java Card API

The Java Card API , also referred to as the framework, consists of four core
packages. Two packages, called j ava. lang and j avacard. framework,
were mentioned in previous sections of the book. The j ava. lang package
contains all classes related to support of the Java programming language
subset. The j avacard. framework package contains classes related to Java
Card applet functionality.

The other two packages, j avacard. security and j avacardx.
crypto, play a particularly important role for several reasons. First of all,
they contain classes related to the security functionality of an applet. This
security functionality mainly covers the cryptographic API and its support.
Unfortunately, implementation of the security-related Java Card classes is
still not standardized among smart card manufacturers. Usually, smart card
manufactures provide security-related classes within their own proprietary
packages, which are shipped in a form of an extension APL Therefore, their

111

IPR2022-01239
Apple EX1022 Page 81

112 Java Card for E-Payment Applications

description is omitted in the sections that follow (see also Section 10.3).
However, a closer look at manufacturer-specific issues of the Java Card API
will be taken in Section 11.2, where existing Java Card implementations are
presented.

The following sections provide an overview of the core classes of the
j avacard. framework package.

11.1.1 JCSystem Class

The JC Sys tern class contains a number of methods for applet execution
control, object management, and atomic transaction support. All methods
of the class are static. A rather large group of the class methods is used for
performing atomic transactions (see Section 10.1.4). The methods begin­
Transaction (), abortTransaction (), and commi tTransac­
t ion () are dedicated to starting, aborting, and committing an atomic
transaction, respectively. Some other methods provide additional data on
atomic transactions, for example, the transaction depth, the memory used,
and the memory still available in the transaction commit buffer.

Methods of the group MakeTransient ... Array are used to create
transient arrays of the types boolean, byte, short, and any other custom
object type. Apart from specifying the number of elements in an array, these
methods identify an event determining when the array elements are cleared
(see Section 10.1.3). The method isTransient may be used to verify
whether the given object is transient or not, and, if yes, to determine the type
of event on which the content of the object is cleared to a default value.

Other class methods are rather specific, and their detailed description
can be found in the Java Card API reference manuals.

11.1.2 Applet Class

The abstract class Applet must be implemented by any Java Card applet.
The class inherits all necessary functionality for an applees installation, reg­
istration, and execution. The core methods of the class were discussed in
Section 8.3; Table 11.1 gives a brief summary of these core methods.

Two other class methods should also be mentioned. The purpose
of the method selectingApplet () is quite interesting. It returns a boo­
lean value indicating whether an applet has just been selected or not. The
method is used in an applet process method in order to distinguish che
applet SELECT APDU from any other SELECT APDUs that might be sent
to the applet (see Figure 8.3).

IPR2022-01239
Apple EX1022 Page 82

-,

Application Development 113

Table 11.1
Summary of the Class App 1 et Core Methods

Method Description

ins tall Called by JCRE in order to create an instance of an applet.

register Invoked by an applet in order to register itself within JCRE.

select () Called by JCRE to inform an applet that it was selected. Must return true to
indicate a successful selection.

deselect () Called by JCRE to inform an applet that either another applet was selected
or the applet was selected again.

process Called by JCRE in order to process an incoming APDU. The APDU itself is
given as a method parameter.

The getShareableinterfaceObj ect method is called by JCRE
in order to obtain a shareable interface object from this applet. For details
related to object sharing between applets run on one card, see Section 10.2.2.

11.1.3 APDU Class

The APDU class encapsulates a complete set of features needed to process an
incoming APDU, to prepare an outgoing response APDU, and to send it
out. The APDU object is owned by JCRE. An applet receives its instance as
a parameter of the applet process method. The APDU object has a byte
array buffer that is used for storing both header and data bytes of incoming
APDUs and data bytes of response APDUs.

We should mention that the class is dedicated only to command and
response APDUs built in accordance with ISO/IEC 7816-4. Another con­
venient feature of the APDU class is that its methods apply to any (T = 0 or
T = 1) communication protocol used by a smart card.

When the APDU object is passed by JCRE to the process method of
an applet, its buffer array already contains the incoming APDU header, that
is, the CLA, INS, Pl, P2, and Le bytes. The reference to the APDU byte
array buffer can be obtained with the class method ge tBu ff er () . To place
data bytes, if any, in the buffer array, another method of the APDU class is
called: the setincomingAndRecei ve () method. A remarkable property
of this method is that it places only as many bytes to the array buffer as can
si?.curely fit there, thereby avoiding buffer overflow.

IPR2022-01239
Apple EX1022 Page 83

114 Java Card for E-Payment Applications

If the incoming APDU contains more data bytes than will fit the arra
buffer (as it was copied by the setincomingAndRecei ve () method),
the remaining bytes can be placed to the buffer using subsequent calls of the
recei veBytes method. This method also copies to the buffer only as
many bytes as it will fit there.

The following example demonstrates the basics of reading APDU
header and data bytes:

public void process(APDU apdu) {
// get the reference to the array buffer
byte[] buffer= apdu.getBuffer();
// read CLA and INS bytes from the buffer
byte cla = buffer[ISO7816.OFFSET_CLA];
byte ins = buffer[ISO7816.OFFSET_INS];

I I incoming APDU has some data bytes; read them
short bytesRead = apdu.setincomingAndReceive();

} // process(APDU apdu)

Abstract interface I S07 816 contains static constants defining offsets of par­
ticular APDU bytes in the array buffer. Naturally, CLA, INS, Pl, P2, and L,
have offsets 0, I, 2, 3, and 4, respectively. The offset of the beginning of the
data bytes is 5 and is defined by the static constant OFFSET_CDATA of
the interface IS07 816.

Generating a response APDU is as easy as processing a command
APDU. The class has a number of methods for preparing and sending
out a response APDU. The easiest and most convenient method is setOut­

goingAndSend. This method prepares a response APDU and sends it out
immediately. It is used when all response APDU data fit into the array
buffer. For instance, sending two bytes of response can be accomplished in
the following way:

buffer(O] = (byte) Ox.AO;
buffer[!]= (byte) 0xB0;
setOutgoingAndSend((short) O, (short) 2);

The first parameter of the method specifies an offset of the outgoing da~a in

the array buffer (note that the same buffer is used for receiving and sendtn~f
The second parameter specifies the length of the outgoing data. As a result 0

the method execution, JCRE will send out a response APDU with rwo data

bytes and the success status word 90 00 H automatically attached.

I

A

IPR2022-01239
Apple EX1022 Page 84

Application Development 115

The same can be accomplished by using three other methods sequen­
tially: setOutgoing (), setOutgoingLength, and sendBytes. To
send large response APDUs, the method sendBytesLong is used.

11.1.4 OwnerP:IN Class

The OwnerPIN class is an implementation of the PIN interface comprising
functionality related to PIN verification (see Section 10.4). The class main­
tains the PIN value, a maximum number of unsuccessful tries allowed, and
a try counter. If the maximum number of unsuccessful tries exceeds the
defined limit, the PIN is blocked, meaning that even at this point presenting a
correct PIN value will not result in successful PIN verification.

The class maintains the PIN validation flag indicating whether the PIN
was successfully verified since the last reset of the card or of the OwnerPIN

object. The validation flag is stored in the volatile memory of a card, which
guarantees that its value is cleared after each card reset. The value of the vali­
dation flag is accessible via the method called isValidated.

Another class method check allows the PIN value to be verified
against a given value. If the correct value is presented, the try counter is reset
to its maximum value and the validation flag is set to true. The method
returns a boolean value indicating whether the PIN verification was success­
ful or not.

Other class methods make it possible to unblock the PIN (resetAnd­
Unblock), to change the PIN value (update), to retrieve the remaining
number of tries until the PIN will be blocked (getTriesRemaining), and
to reset the PIN (reset).

11.1.5 Util Class

The Uti 1 class provides a number of handy utility functions that may be
needed by an applet. Java Card specifications allow some of those functions
to be implemented as native methods in order to increase their performance.
As all methods of the class are static, the class does not need to be instanti­
ated. Instead, the J CRE instance of the class can be used to invoke a desired
method.

Basically, the class consists of two groups of methods. The first group
contains several methods for operations on arrays: comparing two byte arrays
(arrayCompare), copying byte arrays atomically (arrayCopy) and non­
atomically (arrayCopyNonAtomic), and filling a byte array with a given
byte value nonatomically (arr ayF i l lN onA tomi c).

IPR2022-01239
Apple EX1022 Page 85

;ri>rrsr

116 Java Card for E-Payment Applications

The second group contains methods that deal .th
d h ~ ~ .

between types short an byte. T e methods make it pos .61 nvers1ons
. Sl e to C

a short value from two byte values given separately or in ab onstruq
to divide a short value into two byte values. yte array, and

11.1.6 Interface IS07 816

Interface I S07 816 contains a wide range of constants related t

d fi d •
0 protocols

and data structures e 1ne 1n ISO /IEC 7816-3 and ISO/IEC 7816_4
general, the constants fall into the following main groups: • In

• Constants defining an offset of particular bytes (e.g., CI.A, INS,
etc.) in the APDU buffer;

• Constants defining CI.A and INS codes in accordance with
ISO/IEC 7816-4;

• Response status word codes defined in accordance with ISO/IEC
7816-4.

Each of the constants can be accessed through the respective JCRE instance.

11.2 Existing Implementations

During the last few years, Java Card has met with good support from smart
card manufacturers, and a number of Java Card implementations have
appeared on the market. Apart from the standard Java Card APL theach

r Th. • resents ree manuracturer also provides some extension APL 1s section P
h • ial features.

well-known Java Card implementations and discusses t eir spec h
T bl

. f th main c arac-
a e 11.2 at the end of the chapter presents an overview o e_

teristics of the Java Card implementations discussed in this secnon.

11.2.1 Giesecke & Devrient Sm@rtCafe 1

. eke & Devrient,
The Sm@nCafe 1.1 card from the German company Giese liant with
though based on the Java Card 2.1 specifications, is not fully compl chat are

J d T - 1 protoco s
ava Card 2.1. The card supports both T = 0 an - l nred on a • ·mp erne

s~lectable through protocol type selection (PTS) • It is 1. The ca.rd has
smgle-chip microcontroller of the Siemens SLE66 family.

1. hnp://www.gdm.de.

IPR2022-01239
Apple EX1022 Page 86

Application Development 117

1,280 bytes of RAM, 32 Kbytes of ROM, and from 8 to 16 Kbytes of

EEPROM for operating systems, applications, and data. The card chip is

based on an 8-bit architecture and operates on the 7.5-MHz frequency.

The Sm@rtCafe 1.1 card exists in two variations: standard and
crypt. The crypt version extends the basic Java Card functionality of the
standard version by a comprehensive cryptographic API delivered as
separate packages: com. gieseckedevrient. j avacardx. crypto and
com.gieseckedevrient.javacardx.cryptox.

Basically, the cryptographic API provides support of the following
algorithms and services:

• DES and DES3 algorithms;

• RSA algorithm with the key length up to 1,024 bits;

• Secure hash algorithm SHA-1;

• External and mutual authentication services based on the DES
algorithm;

• Digital signature service according to ISO/IEC 14888-3;

• Session key derivation service.

The functionality of each service and algorithm is encapsulated in a separate
class. For instance, the Authentication class provides all necessary func­
tionality for performing external or mutual card terminal authentication.
The class methods make it possible to request challenge data from a card, to
generate a session key, and to perform mutual or external authentication by
simple methods invocation. In a similar manner, classes Signer and Ver i­
f ier include the functionality needed to generate and verify, respectively,
RSA digital signatures.

In addition, Sm@rtCafe 1.1 cryptographic API contains the Secure­
Random class, which provides a source of cryptographically secure random
numbers; that is, random numbers that cannot easily be guessed, predicted,
and so on. This feature is very important for security of challenge-response
authentication services or session key derivation services.

The installation program of the Sm@rtCafe 1.1 card, called the Main
Loader, allows the definition of four security levels for loading an applet:

1. An applet is loaded in plaintext.

2. A loaded applet is digitally signed and the signature is verified by
the Main Loader.

IPR2022-01239
Apple EX1022 Page 87

118 Java Card for E-Payment Applications

3. A loaded applet is encrypted.

4. A loaded applet is both digitally signed and encrypted.

The Main Loader can be configured in such a way that further reconfigu­

rations are not allowed and the card application memory area cannot be

cleared. This ensures that a loaded applet (or applets) cannot be deleted from
the card or replaced.

The development environment that comes with the Sm@rrCafe I.I
development toolkit makes it possible to perform complete simulation of the
Sm@rtCafe 1.1 Java Card virtual machine and to perform applet bytecode­

level debugging and tracing.

11.2.2 Gemplus GemXpresso 211

GemXpresso 211 is a family of smart card products from the Gemplus com­
pany. 2 GemXpresso 211 V2 is the currently available representative of this
family and is the first Java Card technology smart card that complies with
both Java Card 2.1 specifications and Visa Open Platform 2.0 specifications.
The card supports both T = 0 and T = 1 protocols; the T = I protocol is
available only after a warm reset of the card. The card is based on the 8-bit
microcontroller and has 32 Kbytes of ROM, 32 Kbytes of EEPROM, and
2 Kbytes of RAM.

The security of Gem.Xpresso 211 V2 and its components has been
evaluated and certified by a number of international bodies. The card itself
was certified by Visa with the highest security level 3. Security of the previous
version of the card was evaluated according to the Common Criteria and
received the assurance level EALl. Security of the card cryptographic hard­
ware components was evaluated according to the Common Criteria and
received the assurance level EAL3.

Cryptographic support of the Gem.Xpresso 211 V2 is limited only to

DES and DES3 implementation. The RSA algorithm, secure hash algo­
rithms, and digital signature algorithms are not supported. Also, the card
provides no support for authentication services. In accordance with Java
Card specifications, cryptographic functions are placed in the packages
j avacard. security and j avacardx. crypto.

Implementation of the Visa Open Platform specification makes it pos­
sible to establish a secure communication channel between a GemXpresso

2. http://www.gemplus.com.

IPR2022-01239
Apple EX1022 Page 88

Application Development 119

211 V2 card and a card terminal on the APDU level. A secure channel
ensures APDU integrity and confidentiality as well as communication
session authenticity. Visa Open Platform API is provided in the form of a
separate package visa. openplatform.

We should mention that the next-generation card of the GemXpresso
211 family, GemXpresso 211/PK, will support the RSA algorithm and
secure hash algorithms MDS and SHA.

The GemXpresso 211 V2 toolkit is supplied with the GemXpresso
RAD 211 development environment. It allows simulation of applet execu­
tion on the card and performance of debugging.

11.2.3 Schlumberger Cyberflex Access

The Schlumberger company was the first smart card manufacturer to release
a smart card programmed in the Java programming language. The latest Java
Card technology smart card from Schlumberger is Cyberflex Access. 3 Cyber­
flex Access is compliant with an earlier version of Java Card, namely, Java
Card 2.0. The card supports only T = 0 protocol and has 16 Kbytes of
EEPROM.

The cryptographic facilities of Cyberflex Access include the following:

• DES and DES3 algorithm implementation;

• RSA algorithm implementation with the key size up to 1,024 bits;

• External and internal card terminal authentication services;

• SHA-1 secure hash algorithm implementation.

The cryptographic API that covers the implementation of the algorithms
mentioned above is located in the j avacardx. crypto package.

An interesting feature of Cyberflex Access is that, in contrast to other
Java Card technology smart cards, it supports the ISO/IEC 7816 file system.
The files are accessed and managed via the Loader application of a Cyberflex
Access card. The Loader application can be regarded as an extended variation
of the Java Card installation program. Besides loading applets, the Loader
also supports commands for file access and management and basic security
mechanisms, such as card holder verification (CHY).

3. http://www.cyberflex.slb.com.

IPR2022-01239
Apple EX1022 Page 89

120 Java Card for E-Payment Applications

Cyberflex Access is supplied with an extension API delivered as a sepa­
rate package, j avacardx. f rarnework. The extension API provides classes
and methods for card-specific APDU processing (Cyberf lexAPDU class),
operations related to files (Cyb er f 1 exF i 1 e class), and native operating sys­
tem calls (Cyberf lexOS class).

Table 11.2 summarizes the Java Card implementations just discussed.

Table 11.2
Summary of Java Card Implementations

Sm@rtCafe GemXpresso 211 Cyberflex Access

Manufacturer Giesecke & Devrient Gemplus Sch I um berger

Resources 1,280 bytes RAM, 2 Kbytes RAM, 16 Kbytes EEPR0M
32 Kbytes ROM, up to 32 Kbytes ROM,
16 Kbytes EEPROM 32 Kbytes EEPROM

Supported protocols T=0 T=1 , T=0 T=1 , T=0

Java Card version Java Card 2.1 Java Card 2.1 Java Card 2.0

Other specifications - Visa Open Platform 2.0 -
Cryptographic DES, DES3, RSA SHA-1 DES,DES3 DES, DES3,
algorithms RSA SHA-1

Security services External and mutual - External and internal
authentication, ISO/IEC authentication
14888-3 digital
signature, session key
derivation

IPR2022-01239
Apple EX1022 Page 90

ISBN 1-58053-291-8

I 111

9

r r>
9 781580 532914

IPR2022-01239
Apple EX1022 Page 91

