
IPR2022-01227
EXHIBIT 1019 - PAGE 0001

<P

TCP/IP
itustrated.

Q
The P

ps
Nad
iene|

Se
WN

‘arers

Fi
|

i
—
Rm

WN
si
aE

a

0
rS
lame
ee
as
we

CF
N

e
a
>
a

eS
a

:
a

is
=
if
a
WN
2

8

ae

WN

IPR2022-01227

EXHIBIT 1019 - PAGE 0001

IPR2022-01227
EXHIBIT 1019 - PAGE 0002

TCP/IP illustrated, Volume 1

The Protocols

W. Richard Stevens

A
vv

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam
Bonn Sydney Singapore Tokyo Madrid San Juan

Seoul Milan Mexico City Taipei

IPR2022-01227

EXHIBIT 1019 - PAGE 0002

IPR2022-01227
EXHIBIT 1019 - PAGE 0003

UNIXis a technology trademark of X/Open Company, Ltd.

The publisher offers discounts on this book when ordered in quantity for specialsales.
For more information please contact:

Corporate & Professional Publishing Group
Addison-Wesley Publishing Company
One Jacob Way
Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
Stevens, W. Richard

TCP/IP Illustrated: the protocols/W. Richard Stevens.
p. cm. — (Addison-Wesley professional computingseries)

Includes bibliographical references and index.
ISBN 0-201-63346-9 (v. 1)
1.TCP/IP (Computer network protocol)I. Title. IT. Series.

TK5105.55S74 1994

004.6°2—dc20

Copyright © 1994 by Addison-Wesley Publishing Company,Inc.

All rights reserved. No part of this publication may be reproduced,stored in a retrieval
system, or transmitted, in any form, or by any means,electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher. Printed in the
United States ofAmerica. Published simultaneously in Canada.

Text printed on recycled and acid-free paper

ISBN 0-201-63346-9

7891011 12 13 14 15-MA-99989796

Seventh printing, March 1996

IPR2022-01227

EXHIBIT 1019 - PAGE 0003

IPR2022-01227
EXHIBIT 1019 - PAGE 0004

TCP/IP Illustrated, Volume 1

IPR2022-01227

EXHIBIT 1019 - PAGE 0004

IPR2022-01227
EXHIBIT 1019 - PAGE 0005

Addison-Wesley Professional Computing Series

Brian W. Kernighan, Consulting Editor

Ken Arnold/John Peyton, A C User’s Guide to ANSI C
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M.Bellovin, Firewalls and Internet Security: Repelling the Wily Hacker
David A. Curry, UNIX® System Security: A Guidefor Users and System Administrators
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements ofReusable

Object-Oriented Software
John Lakos, Large-Scale C++ Software Design
Scott Meyers, Effective C++: 50 Specific Ways to Improve Your Programs and Designs
Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs
Robert B. Murray, C++ Strategies and Tactics
David R. Musser/Atul Saini, STL Tutorial and Reference Guide: C++ Programming with the Standard

Template Library
John K. Ousterhout, Tel and the Tk Toolkit

Craig Partridge, Gigabit Networking
J. Stephen PendergrastJr., Desktop KornShell Graphical Programming
Radia Perlman,Interconnections: Bridges and Routers
David M.Piscitello/A. Lyman Chapin, Open Systems Networking: TCP/IP and OSI
Stephen A. Rago, UNIX® System V Network Programming
Curt Schimmel, UNIX® Systemsfor Modern Architectures: Symmetric Multiprocessing and

Cachingfor Kernel Programmers
W.Richard Stevens, Advanced Programming in the UNIX® Environment
W.Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W.Richard Stevens, TCP/IP Illustrated, Volume 3: TCPfor Transactions, HTTP, NNTP,andthe
UNIX Domain Protocols

Gary R. Wright/W.Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

IPR2022-01227

EXHIBIT 1019 - PAGE 0005

IPR2022-01227
EXHIBIT 1019 - PAGE 0006

To Brian Kernighan and John Wait,
for their encouragement,faith, and support

over the past 5 years.

IPR2022-01227

EXHIBIT 1019 - PAGE 0006

IPR2022-01227
EXHIBIT 1019 - PAGE 0007

Praise for TCP/IP Illustrated, Volume 1: The Protocols

“This is sure to be the bible for TCP/IP developers and users. Within minutesof picking upthetext,
I encountered several scenarios which had tripped-up both my colleagues and myself inthe past.
Stevens reveals many of the mysteries once held tightly by the ever-elusive networking gurus.
Having been involved in the implementation of TCP/IP for some years now,I consider this by far
the finest text to date.”

— Robert A. Ciampa, Network Engineer, Synemetics, division of 3COM

“While all of Stevens’ books are readable and technically excellent, this new opus is awesome.
Although manybooks describe the TCP/IP protocols, Stevens provides a level of depth and real-
world detail lacking from the competition. He puts the reader inside TCP/IP using a visual approach
and showsthe protocols in action.”

— Steven Baker, Networking Columnist, Unix Review

“TCPIHP Illustrated, Volume 1 is an excellent reference for developers, network administrators, or
anyone who needsto understand TCP/IP technology. TCP/IP Illustrated is comprehensive in its
coverage of TCP/IP topics, providing enoughdetails to satisfy the experts while giving enough
background and commentary for the novice.”

— BobWilliams, V.P. Marketing, NetManage,Inc.

*,.. the difference is that Stevens wants to show as wellas tell about the protocols. His principal
teaching tools are straight-forward explanations, exercises at the ends of chapters, byte-by-byte
diagrams of headers andthe like, and listings of actual traffic as examples.”

— Walter Zintz, UnixWorld

“Muchbetter than theory only ... W. Richard Stevens takes a multihost-based configuration and uses
it as a travelogue of TCP/IP exampleswithillustrations. TCP/IP Illustrated, Volume I is based on
practical examplesthat reinforce the theory — distinguishing this book from others on the subject,
and making it both readable and informative.”

— Peter M. Haverlock, Consultant, IBM TCP/IP Development

“The diagramshe uses are excellent and his writing style is clear and readable. In sum, Stevens has
made a complex topic easy to understand. This book merits everyone’s attention. Please read it and
keep it on your bookshelf.”

— Elizabeth Zinkann, Sys Admin

“W. Richard Stevens has produceda fine text and reference work.It is well organized and very
clearly written with, as the title suggests, many excellentillustrations exposing the intimate details
of the logic and operation of IP, TCP, and the supporting cast of protocols and applications.”

— Scott Bradner, Consultant, Harvard University OIT/NSD

IPR2022-01227

EXHIBIT 1019 - PAGE 0007

IPR2022-01227
EXHIBIT 1019 - PAGE 0008

Contents

Preface

Chapter 1 Introduction

1.1 Introduction 1

1.2 Layering 1
1.3 TCP/IP Layering 6
1.4 Internet Addresses 7

1.5 The Domain Name System 9
1.6 Encapsulation 9
1.7 Demultiplexing 11
1.8 Client-Server Model 12

1.9 Port Numbers 12

1.10 Standardization Process 14

1.11 RFCs 14

1.12 Standard, Simple Services 15
1.13 The Internet 16

1.14 Implementations 16
1.15 Application Programming Interfaces 17
1.16 Test Network 18

1.17 Summary 19

XV

IPR2022-01227. Vii
EXHIBIT 1019 - PAGE 0008

IPR2022-01227
EXHIBIT 1019 - PAGE 0009

viii TCP/IP Illustrated Contents

Chapter 2. Link Layer 21

Introduction 21

Ethernet and IEEE 802 Encapsulation 21
Trailer Encapsulation 23
SLIP: Serial Line IP 24

Compressed SLIP 25
PPP: Point-to-Point Protocol 26

Loopback Interface 28
MTU 29

Path MTU 30

Serial Line Throughput Calculations 30
Summary 31

IP: Internet Protocol 33

Introduction 33

IP Header 34

IP Routing 37
Subnet Addressing 42
Subnet Mask 43

Special Case IP Addresses 45
A Subnet Example 46
ifconfig Command 47
netstat Command 49

IP Futures 49

Summary 50

ARP: Address Resolution Protocol 53

Introduction 53

An Example 54
ARP Cache 56

ARP Packet Format 56

ARP Examples 57
Proxy ARP 60
Gratuitous ARP 62

arp Command 63
Summary 63

RARP: Reverse Address Resolution Protocol 65

Introduction 65

RARP Packet Format 65

RARP Examples 66
RARP Server Design 67
Summary 68

IPR2022-01227

EXHIBIT 1019 - PAGE 0009

IPR2022-01227
EXHIBIT 1019 - PAGE 0010

TCP/IP Illustrated

Chapter 6.

Chapter 10.

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

ICMP: Internet Control Message Protocol

Introduction 69

ICMP Message Types 70

Contents ix

69

ICMP Address Mask Request and Reply 72
ICMP Timestamp Request and Reply 74
ICMP Port Unreachable Error 77

4.4BSD Processing of ICMP Messages 81
Summary 83

Ping Program

Introduction 85

Ping Program 85
IP Record Route Option 91
IP Timestamp Option 95
Summary 96

Traceroute Program

Introduction 97

Traceroute Program Operation 97
LAN Output 99
WAN Output 102
IP Source Routing Option 104
Summary 109

IP Routing

Introduction 111

Routing Principles 112
ICMP Host and Network Unreachable Errors

To Forward or Not to Forward 119

ICMP Redirect Errors 119

ICMP Router Discovery Messages 123
Summary 125

Dynamic Routing Protocols

Introduction 127

Dynamic Routing 127
Unix Routing Daemons 128
RIP: Routing Information Protocol 129
RIP Version 2 136

OSPF: Open Shortest Path First 137
BGP: Border Gateway Protocol 138
CIDR: Classless Interdomain Routing 140
Summary 141

85

97

111

117

127

IPR2022-01227

EXHIBIT 1019 - PAGE 0010

IPR2022-01227
EXHIBIT 1019 - PAGE 0011

x

Chapter 11.

11.1

11.2

11.3

11.4

—> Chapter 14.

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10

TCP/IP Illustrated Contents

UDP: User Datagram Protocol 143

Introduction 143

UDP Header 144

UDP Checksum 144

A Simple Example 147
IP Fragmentation 148
ICMP Unreachable Error (Fragmentation Required) 151
Determining the Path MTU Using Traceroute 153
Path MTU Discovery with UDP 155
Interaction Between UDP and ARP 157

Maximum UDP Datagram Size 159
ICMP Source Quench Error 160

UDP Server Design 162
Summary 167

Broadcasting and Multicasting 169

Introduction 169

Broadcasting 171
Broadcasting Examples 172
Multicasting 175
Summary 178

IGMP: Internet Group Management Protocol 179

Introduction 179

IGMP Message 180
IGMP Protocol 180

An Example 183
Summary 186

DNS: The Domain Name System 187

Introduction 187

DNS Basics 188

DNS Message Format 191
A Simple Example 194
Pointer Queries 198

Resource Records 201

Caching 203
UDP or TCP 206

Another Example 206
Summary 208

IPR2022-01227

EXHIBIT 1019 - PAGE 0011

IPR2022-01227
EXHIBIT 1019 - PAGE 0012

TCP/IP Illustrated

~~+ Chapter 15.

Chapter 17.

17.1

17.2

17.3

17.4

Chapter 18.

18.1

18.2

18.3

18.4

18.5

18.6

18.7

18.8

18.9

18.10

18.11

18.12

Chapter 19.

Contents xi

TFTP: Trivial File Transfer Protocol 209

introduction 209

Protocol 209

An Example 211
Security 213
Summary 213

BOOTP: Bootstrap Protocol 215

Introduction 215

BOOTP Packet Format 215

An Example 218
BOOTP Server Design 219
BOOTP Through a Router 220
Vendor-Specific Information 221
Summary 222

TCP: Transmission Control Protocol 223

Introduction 223

TCP Services 223

TCP Header 225

Summary 227

TCP Connection Establishment and Termination 229

Introduction 229

Connection Establishment and Termination 229

Timeout of Connection Establishment 235

Maximum Segment Size 236
TCP Half-Close 238

TCP State Transition Diagram 240
Reset Segments 246
Simultaneous Open 250
Simultaneous Close 252

TCP Options 253
TCP Server Design 254
Summary 260

TCP Interactive Data Flow 263

Introduction 263

Interactive Input 263
Delayed Acknowledgments 265
Nagle Algorithm 267
Window Size Advertisements 274

Summary 274

IPR2022-01227

EXHIBIT 1019 - PAGE 0012

IPR2022-01227
EXHIBIT 1019 - PAGE 0013

xii TCP/IP Illustrated

Chapter 20.

20.9

Chapter 21.

21.1

21.2

Chapter 22.

22.1

22.2

22.3

22.4

Chapter 23.

23.1

23.2

23.3

23.4

Chapter 24.

24.1

24.2

24.3

24.4

TCP Bulk Data Flow

Introduction 275

Normal Data Flow 275

Sliding Windows 280
Window Size 282

PUSH Flag 284
Slow Start 285

Bulk Data Throughput 286
Urgent Mode 292
Summary 296

TCP Timeout and Retransmission

Introduction 297

Simple Timeout and Retransmission Example
Round-Trip Time Measurement 299

_ An RTT Example 301
Congestion Example 306
Congestion Avoidance Algorithm 310
Fast Retransmit and Fast Recovery Algorithms
Congestion Example (Continued) 313
Per-Route Metrics 316

ICMP Errors 317

Repacketization 320
Summary 321

TCP Persist Timer

Introduction 323

An Example 323
Silly Window Syndrome 325
Summary 330

TCP Keepalive Timer

Introduction 331

Description 332
Keepalive Examples 333
Summary 337

TCP Futures and Performance

Introduction 339

Path MTU Discovery 340
Long Fat Pipes 344
Window Scale Option 347

Contents

275

297

298

312

323

331

339

IPR2022-01227

EXHIBIT 1019 - PAGE 0013

IPR2022-01227
EXHIBIT 1019 - PAGE 0014

TCP/IP [llustrated

24.5

24.6

24.7

24.8

24.9

—>Chapter 25.

25.1

25.2

25.3

25.4

25.5

25.6

25.7

25.8

25.9

25.10

25.11

25.12

25.13

—= Chapter 26.

~—>Chapter 27.

27.1

27.2

27.3

27.4

~—+ Chapter 28.

28.14

28.2

28.3

28.4

28.5

Contents xiii

Timestamp Option 349
PAWS: Protection Against Wrapped Sequence Numbers 351
T/TCP: A TCP Extension for Transactions 351

TCP Performance 354

Summary 356

SNMP: Simple Network Management Protocol 359

Introduction 359

Protocol 360

Structure of Management Information 363
Object Identifiers 364
Introduction to the Management Information Base 365
instance Identification 367

Simple Examples 370
Management Information Base (Continued) 372
Additional Examples 382
Traps 385
ASN.1 and BER 386

SNMP Version 2 387

Summary 388

Telnet and Rlogin: Remote Login 389

Introduction 389

Rlogin Protocol 391
Rlogin Examples 396
Telnet Protocol 401

Telnet Examples 406
Summary 417

FTP: File Transfer Protocol 419

Introduction 419

FTP Protocol 419

FTP Examples 426
Summary 439

SMTP: Simple Mail Transfer Protocol 441

Introduction 441

SMTP Protocol 442

SMTP Examples 448
SMTP Futures 452

Summary 459

IPR2022-01227

EXHIBIT 1019 - PAGE 0014

IPR2022-01227
EXHIBIT 1019 - PAGE 0015

xiv TCP/IP Mustrated

—> Chapter 29.
29.1

29.2

29.3

Chapter 30.

30.1

30.2

30.3

30.4

30.5

30.6

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Appendix E.

Appendix F.

Bibliography

Index

NFS: Network File System

Introduction 461

Sun Remote Procedure Call 461

XDR: External Data Representation 465
Port Mapper 465
NFS Protocol 467

NFS Examples 474
NFS Version 3 479

Summary 480

Other TCP/IP Applications

Introduction 481

Finger Protocol 481
Whois Protocol 483

Archie, WAIS, Gopher, Veronica, and WWW
X Window System 486
Summary 490

The tcpdump Program

BSD Packet Filter 491

SunOS Network Interface Tap 493
SVR4 Data Link Provider Interface 494

tepdump Output 495
Security Considerations 496
Socket Debug Option 496

Computer Clocks

The sock Program

Solutions to Selected Exercises

Configurable Options

BSD/386 Version 1.0 526

SunOS 4.1.3 527

System V Release 4 529
Solaris 2.2 529

AIX 3.2.2 536

4.4BSD 537

Source Code Availability

484

Contents

461

481

491

499

503

507

525

539

543

555

IPR2022-01227

EXHIBIT 1019 - PAGE 0015

IPR2022-01227
EXHIBIT 1019 - PAGE 0016

Preface

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective than
other texts on TCP/IP. Instead of just describing the protocols and what they do, we'll
use a popular diagnostic tool to watch the protocols in action. Seeing how the protocols
operate in varying circumstances provides a greater understanding of how they work
and why certain design decisions were made. It also provides a look into the imple-
mentation of the protocols, without having to wade through thousands of lines of
source code.

Whennetworking protocols were being developed in the 1960s through the 1980s,
expensive, dedicated hardware wasrequired to see the packets going “across the wire.”
Extremefamiliarity with the protocols was also required to comprehendthe packets dis-
played by the hardware. Functionality of the hardware analyzers was limited to that
built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous workstation
to monitor a local area network [Mogul 1990]. Just attach a workstation to your net-
work, run some publicly available software (described in Appendix A), and watch what
goes by on the wire. While many people consider this a tool to be used for diagnosing
network problems,it is also a powerful tool for understanding how the network proto-
cols operate, which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP protocols
operate: programmerswriting network applications, system administrators responsible
for maintaining computer systems and networks utilizing TCP/IP, and users who deal
with TCP/IP applications on a daily basis.

IPR2022-01227

EXHIBIT 1019 - PAGE 0016

IPR2022-01227
EXHIBIT 1019 - PAGE 0017

xvi TCP/IP Illustrated Preface

Organization of the Book

The following figure shows the various protocols and applications that are covered.
The italic number by each box indicates the chapter in which that protocol or applica-
tion is described.

Chap.7 27 28 25 2926 30 8 14 15 G

Ping ||TelRet&!) Erp||sme||x=||B®||pns||Tere||BOOTP |_NFS|
Rlogin route|RPC|

17, 18, 19, 20 11,12TCP 101, 22, 23, 24|UDP|

4 2| Data 5a RAR?

media

(Numerous fine points are missing from this figure that will be discussed in the appro-
priate chapter. For example, both the DNS and RPC use TCP, which we don’t show.)

We take a bottom-up approach to the TCP/IP protocol suite. After providing a
basic introduction to TCP/IP in Chapter 1, we will start at the link layer in Chapter 2
and work our way up the protocol stack. This provides the required background for
later chapters for readers whoaren’t familiar with TCP/IP or networking in general.

This book also uses a functional approach instead of following a strict bottom-to-
top order. For example, Chapter 3 describes the IP layer and the IP header. But there
are numerous fields in the IP headerthat are best described in the context of an applica-
tion that uses or is affected by a particular field. Fragmentation, for example, is best
understood in terms of UDP (Chapter11), the protocol often affected by it. The time-to-
live field is fully described when we look at the Traceroute program in Chapter 8,
because this field is the basis for the operation of the program. Similarly, many features
of ICMP are described in the later chapters, in terms of how a particular ICMP message
is used by a protocolor an application.

Wealso don’t wantto saveall the good stuff until the end, so we describe TCP/IP
applications as soon as wehave the foundation to understand them. Ping and Trace-
route are described after IP and ICMP have been discussed. The applications built on
UDP (multicasting, the DNS, TFTP, and BOOTP) are described after UDP has been

IPR2022-01227

EXHIBIT 1019 - PAGE 0017

IPR2022-01227
EXHIBIT 1019 - PAGE 0018

TCP/IP Illustrated Preface xvii

examined. The TCP applications, however, along with network management, must be
saved until the end, after we’ve thoroughly described TCP. This text focuses on how
these applications use the TCP/IP protocols. We do not provideall the details on run-
ning these applications.

Readers

This book is self-contained and assumes no specific knowledge of networking or
TCP/IP. Numerous references are provided for readers interested in additional details
on specific topics.

This book can be used in many ways. It can be used as a self-study reference and
covered from start to finish by someoneinterested in all the details on the TCP/IP
protocol suite. Readers with some TCP/IP background might want to skip ahead and
start with Chapter 7, and then focus on the specific chapters in which they’re interested.
Exercises are provided at the end of the chapters, and most solutions are in Appen-
dix D. This is to maximize the usefulnessof the text as a self-study reference.

Whenusedas part of a one- or two-semester course in computer networking, the
focus should be on IP (Chapters 3 and 9), UDP (Chapter 11), and TCP (Chapters 17-24),
along with someof the application chapters.

Many forward and backward references are provided throughout the text, along
with a thorough index, to allow individual chapters to be studied by themselves.Alist
of all the acronyms used throughoutthe text, along with the compoundterm for the
acronym, appears on the inside back covers.

If you have access to a network you are encouraged to obtain the software used in
this book (Appendix F) and experiment on your own. Hands-on experimentation with
the protocols will provide the greatest knowledge (and makeit more fun).

Systems Used for Testing

Every example in the book was run on an actual network and the resulting output
savedinafile for inclusion in the text. Figure 1.11 (p. 18) shows a diagram ofthe differ-
ent hosts, routers, and networks that are used. (This figure is also duplicated on the
inside front cover for easy reference while reading the book.) This collection of net-
works is simple enough that the topology doesn’t confuse the examples, and with four
systems acting as routers, we can see the error messages generated by routers.

Most of the systems have a namethat indicates the type of software being used:
bsdi, svr4, sun, solaris, aix, slip, and so on. In this way wecan identify the type
of software that we're dealing with by looking at the system namein the printed output.

A wide rangeof different operating systems and TCP/IP implementations are used:

¢ BSD/386 Version 1.0 from Berkeley Software Design, Inc., on the hosts named
bsdi and slip. This system is derived from the BSD Networking Software,
Release 2.0. (We show thelineage of the various BSD releases in Figure 1.10 on
p. 17.)

IPR2022-01227

EXHIBIT 1019 - PAGE 0018

IPR2022-01227
EXHIBIT 1019 - PAGE 0019

xviii TCP/IP Illustrated Preface

¢ Unix System V/386 Release 4.0 Version 2.0 from U.H. Corporation, on the host
named svr4. This is vanilla SVR4 and contains the standard implementation of
TCP/IP from Lachman Associates used with most versions of SVR4.

e¢ SunOS 4.1.3 from Sun Microsystems, on the host named sun. The SunOS4.1.x
systems are probably the most widely used TCP/IP implementations. The
TCP/IP codeis derived from 4.2BSD and 4.3BSD.

¢ Solaris 2.2 from Sun Microsystems, on the host named solaris. TheSolaris 2.x
systems havea different implementation of TCP/IP from the earlier SunOS4.1.x
systems, and from SVR4. (This operating system is really SunOS 5.2, but is com-
monly called Solaris 2.2.)

¢ AIX 3.2.2 from IBM on the host named aix. The TCP/IP implementation is
based on the 4.3BSD Renorelease.

¢ 4.4BSD from the Computer Systems Research Group at the University of Califor-
nia at Berkeley, on the host vangogh.cs.berkeley.edu. This system has the
latest release of TCP/IP from Berkeley. (This system isn’t shown in the figure on
the inside front cover, but is reachable across the Internet.)

Although these are all Unix systems, TCP/IP is operating system independent, andis
available on almost every popular non-Unix system. Most of this text also applies to
these non-Unix implementations, although some programs (such as Traceroute) may
not be providedonall systems.

Typographical Conventions

When wedisplay interactive input and output we’ll show our typed input in a bold
font, and the computer output like this. Comments are addedinitalics.

bsdi % telnet svr4 discard connect to the discard server

Trying 140.252.13.34... this line and next output by Telnet client
Connected to svr4.

Also, we always include the name of the system as part of the shell prompt (bsdi in
this example) to show on which host the commandwasrun.

Throughout the text we'll use indented, parenthetical notes such as this to describe historical
points or implementation details.

We sometimesrefer to the complete description of a commandin the Unix manual
as in ifconfig(8). This notation, the name of the command followed by a numberin
parentheses, is the normal way of referring to Unix commands. The numberin paren-
theses is the section number in the Unix manual of the “manual page” for the com-
mand, where additional information can be located. Unfortunately not all Unix systems
organize their manuals the same, with regard to the section numbers used for various
groupings of commands. We'll use the BSD-style section numbers (which is the same
for BSD-derived systems such as SunOS4.1.3), but your manuals may be organized
differently.

IPR2022-01227

EXHIBIT 1019 - PAGE 0019

IPR2022-01227
EXHIBIT 1019 - PAGE 0020

TCP/IP Illustrated Preface xix

Acknowledgments

Although the author’s nameis the only one to appear on the cover, the combinedeffort
of many people is required to produce a quality text book. First and foremost is the
author’s family, who put up with the long and weird hours that go into writing a book.
Thank you once again, Sally, Bill, Ellen, and David.

The consulting editor, Brian Kernighan, is undoubtedly the best in the business. He
wasthefirst one to read various drafts of the manuscript and mark it up with his infi-
nite supply of red pens. His attention to detail, his continual prodding for readable
prose, and his thorough reviewsof the manuscript are an immenseresourceto a writer.

Technical reviewers provide a different point of view and keep the author honest by
catching technical mistakes. Their comments, suggestions, and (most importantly)criti-
cisms add greatly to the final product. My thanks to Steve Bellovin, Jon Crowcroft, Pete
Haverlock, and Doug Schmidt for comments on the entire manuscript. Equally valu-
able comments were provided on portions of the manuscript by Dave Borman, Tony
DeSimone, Bob Gilligan, Jeff Gitlin, John Gulbenkian, Tom Herbert, Mukesh Kacker,
Barry Margolin, Paul Mockapetris, Burr Nelson, Steve Rago, James Risner, Chris
Walquist, Phil Winterbottom, and Gary Wright. A special thanks to Dave Borman for
his thorough review of all the TCP chapters, and to Bob Gilligan who should be listed as
a coauthor for Appendix E.

An author cannot workin isolation, so I would like to thank the following persons
for lots of small favors, especially by answering my numerous e-mail questions: Joe
Godsil, Jim Hogue, Mike Karels, Paul Lucchina, Craig Partridge, Thomas Skibo, and
Jerry Toporek.

This book is the result of my being asked lots of questions on TCP/IP for which I
could find no quick, immediate answer. It was then that I realized that the easiest way
to obtain the answers was to run smalltests, forcing certain conditions to occur, and just
watch what happens. I thank Pete Haverlock for asking the probing questions and Van
Jacobson for providing so much of the publicly available software that is used in this
book to answerthe questions.

A book on networking needs a real network to work with along with access to the
Internet. My thanks to the National Optical Astronomy Observatories (NOAO), espe-
cially Sidney Wolff, Richard Wolff, and Steve Grandi, for providing access to their net-
works and hosts. A special thanks to Steve Grandi for answering lots of questions and

' providing accounts on various hosts. My thanks also to Keith Bostic and Kirk McKu-
sick at the U.C. Berkeley CSRGfor accessto thelatest 4.4BSD system.

Finally, it is the publisher that pulls everything together and does whatever is
required to deliver the final product to the readers. This all revolves around the editor,
and John Wait is simply the best there is. Working with John andtherest of the profes-
sionals at Addison-Wesley is a pleasure. Their professionalism and attention to detail
showin the end result.

Camera-ready copy of the book was produced by the author, a Troff die-hard, using
the Groff package written by James Clark. I welcomeelectronic mail from any readers
with comments, suggestions, or bugfixes.
Tucson, Arizona W.Richard Stevens
October 1993 rstevens@noao.edu

http: //www.noao.edu/~rstevens
IPR2022-01227

EXHIBIT 1019 - PAGE 0020

IPR2022-01227
EXHIBIT 1019 - PAGE 0021

1.1

1.2

Introduction

introduction

The TCP/IP protocol suite allows computers ofall sizes, from many different computer
vendors, running totally different operating systems, to communicate with each other.
It is quite amazing becauseits use has far exceededits original estimates. What started
in the late 1960s as a government-financed research project into packet switching net-
works has, in the 1990s, turned into the most widely used form of networking between
computers. It is truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms the
basis for what is called the worldwide Internet, or the Internet, a wide area network

(WAN)of more than one million computers thatliterally spans the globe.
This chapter provides an overview of the TCP/IP protocol suite, to establish an ade-

quate background for the remaining chapters. For a historical perspective on the early
developmentof TCP/IP see [Lynch 1993].

Layering

Networkingprotocols are normally developed in layers, with each layer responsible for a
different facet of the communications. A protocol suite, such as TCP/IP, is the combina-
tion of different protocols at various layers. TCP/IP is normally considered to be a
4-layer system, as shown in Figure 1.1.

IPR2022-01227

EXHIBIT 1019 - PAGE 0021

IPR2022-01227
EXHIBIT 1019 - PAGE 0022

2 Introduction Chapter 1

Telnet, FTP, e-mail, etc.

Figure 1.1 The four layers of the TCP/IP protocolsuite.

TCP, UDP

IP, ICMP, IGMP

device driver and interface card

Each layer hasa different responsibility.

1. The link layer, sometimescalled the data-link layer or network interface layer, nor-
mally includes the device driver in the operating system and the corresponding
network interface card in the computer. Together they handle all the hardware
details of physically interfacing with the cable (or whatever type of media is
being used).

. The network layer (sometimes called the internet layer) handles the movement of
packets around the network. Routing of packets, for example, takes place here.
IP (Internet Protocol), ICMP (Internet Control Message Protocol), and IGMP
(Internet Group Management Protocol) provide the network layer in the
TCP/IP protocolsuite.

. The transport layer provides a flow of data between twohosts, for the applica-
tion layer above. In the TCP/IP protocol suite there are two vastly different
transport protocols: TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol).

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passedto it from the application into appropri-
ately sized chunks for the network layer below,-acknowledging received pack-
ets, setting timeouts to make certain the other end acknowledges packets that
are sent, and so on. Becausethis reliable flow of data is provided by the trans-
portlayer, the application layer can ignore all these details.

UDP, on the other hand, provides a much simpler service to the application
layer. It just sends packets of data called datagrams from one hostto the other,
but there is no guarantee that the datagramsreach the other end. Any desired
reliability must be addedbythe application layer.

Thereis a use for each type of transport protocol, which we’ll see when we look
at the different applications that use TCP and UDP.

IPR2022-01227

EXHIBIT 1019 - PAGE 0022

IPR2022-01227
EXHIBIT 1019 - PAGE 0023

Section 1.2 Layering 3

4. The application layer handles the details of the particular application. There are
many common TCP/IP applications that almost every implementation pro-
vides:

Telnet for remote login,
FTP, the File Transfer Protocol,

SMTP, the Simple Mail Transfer protocol, for electronic mail,
SNMP, the Simple Network ManagementProtocol,

and many more, some of which wecover in later chapters.

If we have two hosts on a local area network (LAN) such as an Ethernet, both run-
ning FTP, Figure 1.2 showsthe protocols involved.

handles

user application
application processes details

transport kernel handles
communication

details

network

Ethernet Ethernet

driver driver
link

Figure 1.2 Two hosts on a LAN running FTP.

We havelabeled one application box the FTP client and the other the FTP server.
Most network applications are designed so that one endis the client and the other side
the server. The server provides sometype of service to clients, in this case accessto files
on the server host. In the remote login application, Telnet, the service provided to the
client is the ability to login to the server’s host.

Each layer has one or more protocols for communicating with its peer at the same
layer. One protocol, for example, allows the two TCP layers to communicate, and
anotherprotocollets the two IP layers communicate.

On the right side of Figure 1.2 we have noted that normally the application layer is
a user process while the lower three layers are usually implemented in the kernel (the
operating system). Althoughthis isn’t a requirement,it’s typical and this is the wayit’s
done under Unix.

IPR2022-01227

EXHIBIT 1019 - PAGE 0023

IPR2022-01227
EXHIBIT 1019 - PAGE 0024

Introduction Chapter 1

There is anothercritical difference between the top layer in Figure 1.2 and the lower
three layers. The application layer is concerned with the details of the application and
not with the movementof data across the network. The lowerthree layers know noth-
ing aboutthe application but handle all the communication details.

We showfour protocols in Figure 1.2, each at a different layer. FTP is an application
layer protocol, TCP is a transport layer protocol, IP is a network layer protocol, and the
Ethernet protocols operate at the link layer. The TCP/IP protocol suite is a combination of
many protocols. Although the commonly used name for the entire protocol suite is
TCP/IP, TCP and IP are only twoof the protocols. (An alternative nameis the Internet
Protocol Suite.)

The purpose of the network interface layer and the application layer are
obvious—the former handles the details of the communication media (Ethernet, token
ring, etc.) while the latter handles one specific user application (FTP, Telnet, etc.). But on
first glance the difference between the network layer and the transport layer is some-
whathazy. Whyis there a distinction between the two? To understand the reason, we
have to expand our perspective from a single networkto a collection of networks.

Oneof the reasons for the phenomenal growth in networking during the 1980s was
the realization that an island consisting of a stand-alone computer madelittle sense. A
few stand-alone systems were collected together into a network. While this was
progress, during the 1990s we have cometo realize that this new, bigger island consist-
ing of a single network doesn’t make sense either. People are combining multiple net-
works together into an internetwork, or an internet. An internet is a collection of
networksthat all use the same protocolsuite.

The easiest way to build an internet is to connect two or more networks with a
router. This is often a special-purpose hardware box for connecting networks. The nice
thing aboutrouters is that they provide connections to many different types of physical
networks: Ethernet, token ring, point-to-point links, FDDI (Fiber Distributed Data Inter-
face), and so on.

These boxesare also called IP routers, but we'll use the term router.

Historically these boxes were called gateways, and this term is used throughout muchofthe
TCP/IP literature. Today the term gateway is used for an application gateway: a process that
connects two different protocol suites (say, TCP/IP and IBM’s SNA)for one particular applica-
tion (often electronic mail orfile transfer).

Figure 1.3 showsan internet consisting of two networks: an Ethernet and a token
ring, connected with a router. Although we show only two hosts communicating, with
the router connecting the two networks, any host on the Ethernet can communicate with
any host on the tokenring.

In Figure 1.3 we can differentiate between an end system (the two hosts on either
side) and an intermediate system (the router in the middle). The application layer and the
transport layer use end-to-end protocols. In our picture these twolayers are needed only
on the end systems. The network layer, however, provides a hop-by-hop protocol andis
used on the two end systems and every intermediate system.

IPR2022-01227

EXHIBIT 1019 - PAGE 0024

IPR2022-01227
EXHIBIT 1019 - PAGE 0025

Section 1.2 Layering 5

FTP ookFTPprotocol8 FTP
client ~ ~ server

TCP|g----------- TCPprotocol TCP

router
|

recefe podreer
|
(
(
|
|
|

Ethernet _Ethernet_ Ethernet token ring|!tokenring token ring
driver protocol || driver driver || protocol driver

L

Ethernet

token ring

Figure 1.3 Two networks connected with a router.

In the TCP/IP protocol suite the network layer, IP, provides an unreliable service.
Thatis, it does its best job of moving a packet from its source to its final destination, but
there are no guarantees. TCP, on the other hand, provides a reliable transport layer
using the unreliable service of IP. To provide this service, TCP performs timeout and
retransmission, sends and receives end-to-end acknowledgments, and so on. The trans-
port layer and the networklayer have distinct responsibilities.

A router, by definition, has two or more networkinterface layers (since it connects
two or more networks). Any system with multiple interfaces is called multihomed. A
host can also be multihomedbut unlessit specifically forwards packets from oneinter-
face to another, it is not called a router. Also, routers need not be special hardware
boxes that only move packets around an internet. Most TCP/IP implementations allow
a multihomedhostto act as a router also, but the host needs to be specifically config-
ured for this to happen. In this case we can call the system either a host (when an appli-
cation such as FTP or Telnet is being used) or a router (whenit’s forwarding packets
from one network to another). We'll use whichever term makes sense given the context.

Oneof the goals of an internet is to hideall the details of the physical layout of the
internet from the applications. Althoughthis isn’t obvious from our two-network inter-
net in Figure 1.3, the application layers can’t care (and don’t care) that one host is on an
Ethernet, the other on a token ring, with a router between. There could be 20 routers
between, with additional types of physical interconnections, and the applications would
run the same. This hiding of the details is what makes the concept of an internet so
powerful and useful.

IPR2022-01227

EXHIBIT 1019 - PAGE 0025

IPR2022-01227
EXHIBIT 1019 - PAGE 0026

1.3

Introduction Chapter1

Another way to connect networks is with a bridge. These connect networks at the
link layer, while routers connect networks at the network layer. Bridges makes multiple
LANsappearto the upperlayers as a single LAN.

TCP/IP internets tend to be built using routers instead of bridges, so we’ll focus on
routers. Chapter 12 of [Perlman 1992] compares routers and bridges.

TCP/IP Layering

There are more protocols in the TCP/IP protocol suite. Figure 1.4 shows someof the
additional protocols that we talk aboutin this text.

meee eee eee ee ee Le ee ee teeeee 7
|
|

User User User User | application
Process Process Process Process ; PP.

|
een eb ee ee ee ee LL Ke fe ee ee ee ----J4

po--yrr rrr poc cn ---4

; TCP UDP | transport
|
L-~--X---}----f---- 4

potter rrr ee ~ pox ame mam 7
] |
] |

ICMP or IGMP network|

L-~~-~----------f- ~~~eee 4

potsrts re bo eer cre trae 7

|
Hardware || cae|ca _

L-----~-----~~--F-- 4

media

Figure 1.4 Variousprotocolsatthe different layers in the TCP/IP protocolsuite.

TCP and UDPare the two predominant transport layer protocols. Both use IP as
the networklayer.

TCP providesareliable transport layer, even though the service it uses (IP) is unreli-
able. Chapters 17 through 22 provide a detailed look at the operation of TCP. We then
look at some TCP applications: Telnet and Rlogin in Chapter 26, FTP in Chapter 27, and
SMTPin Chapter 28. The applications are normally user processes.

IPR2022-01227

EXHIBIT 1019 - PAGE 0026

IPR2022-01227
EXHIBIT 1019 - PAGE 0027

Section 1.4 Internet Addresses 7

1.4

UDPsends andreceives datagrams for applications. A datagram is a unit of infor-
mation (i.e., a certain number of bytes of information that is specified by the sender)
that travels from the sender to the receiver. Unlike TCP, however, UDPis unreliable.
There is no guarantee that the datagram evergets to its final destination. Chapter 11
looks at UDP, and then Chapter 14 (the Domain Name System), Chapter 15 (the Trivial
File Transfer Protocol), and Chapter 16 (the Bootstrap Protocol) look at some applica-
tions that use UDP. SNMP (the Simple Network Management Protocol) also uses UDP,
but since it deals with many of the other protocols, we save a discussion of it until
Chapter25.

IP is the main protocolat the network layer. It is used by both TCP and UDP. Every
piece of TCP and UDP data that gets transferred aroundan internet goes through the IP
layer at both end systems and at every intermediate router. In Figure 1.4 we also show
an application accessing IP directly. This is rare, but possible. (Some older routing pro-
tocols were implemented this way. Also,it is possible to experiment with new transport
layer protocols using this feature.) Chapter 3 looksat IP, but we save someof the details
for later chapters where their discussion makes more sense. Chapters 9 and 10 look at
howIP performsrouting.

ICMP is an adjunct to IP. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. Chapter 6 looks at
ICMP in more detail. Although ICMPis used primarily by IP, it is possible for an appli-
cation to also access it. Indeed we'll see that two popular diagnostic tools, Ping and
Traceroute (Chapters 7 and 8), both use ICMP.

IGMP is the Internet Group ManagementProtocol. It is used with multicasting:
sending a UDP datagram to multiple hosts. We describe the general properties of
broadcasting (sending a UDP datagram to every host on a specified network) and
multicasting in Chapter 12, and then describe IGMP itself in Chapter 13.

ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution

Protocol) are specialized protocols used only with certain types of network interfaces
(such as Ethernet and token ring) to convert between the addresses used bythe IP layer
and the addresses used by the network interface. We examine these protocols in Chap-
ters 4 and 5, respectively.

Internet Addresses

Every interface on an internet must have a unique Internet address (also called an IP
address). These addresses are 32-bit numbers. Instead of using a flat address space such
as 1, 2, 3, and so on,thereis a structure to Internet addresses. Figure 1.5 showsthefive
different classes of Internet addresses.

These 32-bit addresses are normally written as four decimal numbers, one for each
byte of the address. This is called dotted-decimal notation. For example, the class B
addressof the author’s primary system is 140.252.13.33.

The easiest way to differentiate between the different classes of addresses is to look
at the first number of a dotted-decimal address. Figure 1.6 shows the different classes,
with the first numberin boldface.

IPR2022-01227

EXHIBIT 1019 - PAGE 0027

IPR2022-01227
EXHIBIT 1019 - PAGE 0028

8 Introduction

Class A

Class B

Class C

Chapter 1

7 bits 24 bits

14 bits 16 bits

epreid esti

21 bits 8 bits

Teett

28 bits

P|

|

Class D fiafa}ajo| multicast group ID

27 bits

Class E fafafali]o| (reserved for future use)

Figure 1.5 The five different classes of Internet addresses.

0.0.0.0 to 127.255.255.255

128.0.0.0 to 191.255.255.255

192.0.0.0 to 223.255.255.255

224.0.0.0 to 239.255.255.255

240.0.0.0 to 247.255.255.255

Figure 1.6 Ranges for different classes of IP addresses.

It is worth reiterating that a multihomed host will have multiple IP addresses: one per
interface.

Since every interface on an internet must have a unique IP address, there must be
one central authority for allocating these addresses for networks connected to the
worldwide Internet. That authority is the Internet Network Information Center, called the
InterNIC. The InterNIC assigns only network IDs. The assignmentof host IDsis up to
the system administrator.

Registration services for the Internet (IP addresses and DNS domain names) used to be han-
dled by the NIC, at nic.ddn.mil. On April 1, 1993, the InterNIC was created. Now the NIC
handles these requests only for the Defense Data Network (DDN). All other Internet users now
use the InterNIC registration services, at rs .internic.net.

There are actually three parts to the InterNIC: registration services (rs.internic.net),
directory and database services (ds.internic.net), and information services
(is.internic.net). See Exercise 1.8 for additional information on the InterNIC.

There are three types of IP addresses: unicast (destined for a single host), broadcast
(destined for all hosts on a given network), and multicast (destined for a set of hosts that
belong to a multicast group). Chapters 12 and 13 look at broadcasting and multicasting
in moredetail.

IPR2022-01227

EXHIBIT 1019 - PAGE 0028

IPR2022-01227
EXHIBIT 1019 - PAGE 0029

Section 1.6 Encapsulation 9

1.5

1.6

In Section 3.4 we’ll extend our description of IP addresses to include subnetting,
after describing IP routing. Figure 3.9 showsthe special case IP addresses: host IDs and
networkIDsof all zerobits or all onebits.

The Domain Name System

Although the network interfaces on a host, and therefore thehostitself, are known by IP
addresses, humans work best using the name of a host. In the TCP/IP world the Domain
Name System (DNS)is a distributed database that provides the mapping between IP
addresses and hostnames. Chapter 14 looks into the DNSin detail.

For now we mustbe aware that any application can call a standard library function
to look up the IP address (or addresses) corresponding to a given hostname. Similarly a
function is provided to do the reverse lookup—given an IP address, look up the corre-
sponding hostname.

Most applications that take a hostname as an argumentalso take an IP address.
Whenweuse the Telnet client in Chapter 4, for example, one time we specify a host-
nameandanothertime wespecify an IP address.

Encapsulation

Whenan application sends data using TCP, the data is sent down the protocol stack,
through each layer, until it is sent as a stream of bits across the network. Each layer
adds information to the data by prepending headers (and sometimes addingtrailer
information) to the data that it receives. Figure 1.7 showsthis process. The unit of data
that TCP sendsto IP is called a TCP segment. The unit of data that IP sendsto the net-
workinterface is called an IP datagram. The stream of bits that flows across the Ethernet
is called aframe.

The numbersat the bottom of the headers andtrailer of the Ethernet frame in Fig-
ure 1.7 are the typical sizes of the headers in bytes. We'll have more to say about each of
these headersin later sections.

A physical property of an Ethernet frameis that the size of its data must be between
46 and 1500 bytes. We’ll encounter this minimum in Section 4.5 and wecover the maxi-
mum in Section 2.8.

All the Internet standards and most books on TCP/IP use the term octet instead of byte. The
use ofthis cute, but baroque term is historical, since much of the early work on TCP/IP was
done on systems such as the DEC-10, which did not use 8-bit bytes. Since almost every current
computer system uses 8-bit bytes, we'll use the term byte in this text.

To be completely accurate in Figure 1.7 we should say that the unit of data passed between IP
and the network interface is a packet. This packet can be either an IP datagram or a fragmentof
an IP datagram. We discuss fragmentationin detail in Section 11.5.

Wecould draw a nearly identical picture for UDP data. The only changesare that
the unit of information that UDP passesto IP is called a UDP datagram, and thesize of
the UDP headeris 8 bytes.

IPR2022-01227

EXHIBIT 1019 - PAGE 0029

IPR2022-01227
EXHIBIT 1019 - PAGE 0030

10 Introduction Chapter 1

user data

a-- <q--
Appl user data

~<a--
TCP

header

IP TCP —_

header application data

~<—_——_——__——— IPdatagram —————————__»

Ethernet IP TCP application data Ethernet
header header header PP on trailer

application data

“a--7-

<_<

_i
I

14 20 20 4

/-—————————_—— Ethernet frame+!
+46 101500 bytes>

Figure 1.7 Encapsulation of data as it goes downtheprotocol stack.

Recall from Figure 1.4 (p. 6) that TCP, UDP, ICMP, and IGMP all send data to IP. IP
must add sometypeofidentifier to the IP header that it generates, to indicate the layer
to which the data belongs. IP handles this by storing an 8-bit valuein its header called
the protocol field. A value of 1 is for ICMP, 2 is for IGMP, 6 indicates TCP, and 17is for
UDP.

Similarly, many different applications can be using TCP or UDPat any onetime.
The transport layer protocols store an identifier in the headers they generate to identify
the application. Both TCP and UDP use 16-bit port numbers to identify applications.
TCP and UDP store the source port number and the destination port numberin their
respective headers.

The network interface sends and receives frames on behalf of IP, ARP, and RARP.

There must be some form of identification in the Ethernet header indicating which net-
work layer protocol generated the data. To handle this there is a 16-bit frame type field
in the Ethernet header.

IPR2022-01227

EXHIBIT 1019 - PAGE 0030

IPR2022-01227
EXHIBIT 1019 - PAGE 0031

Section 1.7 Demultiplexing 11

1.7 Demultiplexing

Whenan Ethernet frameis received at the destination hostit starts its way up the proto-
col stack andall the headers are removed by the appropriate protocol box. Each proto-
col box looks at certain identifiers in its header to determine which box in the next

upperlayer receives the data. This is called demultiplexing. Figure 1.8 shows how this
takes place.

demultiplexing based on
destination port number
in TCP or UDP header

ICMP IGMP

demultiplexing based on
protocolvalue in IP header

os

demultiplexing based on
frame type in Ethernet header

Ethernet

driver

incoming frame

Figure 1.8 The demultiplexing of a received Ethernet frame.

Positioning the protocol boxes labeled “ICMP” and “IGMP”is always a challenge. In Fig-
ure 1.4 we showed them at the samelayeras IP, because theyreally are adjunctsto IP. But here
we show them aboveIP, to reiterate that ICMP messages and IGMP messagesare encapsulated
in IP datagrams.

Wehavea similar problem with the boxes “ARP” and “RARP.” Here we show them abovethe
Ethernet device driver because they both have their own Ethernet frame types, like IP data-
grams. But in Figure 2.4 we'll show ARP aspart of the Ethernet device driver, beneath IP,
becausethat’s where it logically fits.

Realize that these pictures of layered protocol boxes are not perfect.

When wedescribe TCP in detail we'll see that it really demultiplexes incoming seg-
ments using the destination port number, the source IP address, and the source port
number.

IPR2022-01227

EXHIBIT 1019 - PAGE 0031

IPR2022-01227
EXHIBIT 1019 - PAGE 0032

12

1.8

1.9

Introduction Chapter 1

Client-Server Model

Mostnetworking applications are written assuming oneside is the client and the other
the server. The purposeof the application is for the server to provide some defined ser-
vice for clients.

We can categorize servers into two classes: iterative or concurrent. An iterative
serveriterates through the following steps.

Il. Wait for a client request to arrive.

I2. Process the client request.

I3. Send the response back to the client that sent the request.

14. Go backto step I1.

The problem with an iterative server is when step 12 takes a while. During this time no
otherclients are serviced.

A concurrent server, on the other hand, performs the following steps.

Cl. Wait for a client requestto arrive.

C2. Start a new server to handle this client’s request. This may involvecreating a
new process,task, or thread, depending on what the underlying operating sys-
tem supports. Howthis step is performed depends on the operating system.

This new server handlesthis client’s entire request. When complete, this new
server terminates.

C3. Go backto step C1.

The advantageof a concurrentserveris that the server justspawnsotherservers to han-
dle the client requests. Each client has, in essence, its own server. Assuming the operat-
ing system allows multiprogramming, multiple clients are serviced concurrently.

The reason wecategorize servers, and notclients, is because a client normally can’t
tell whetherit’s talking to an iterative server or a concurrent server.

As a general rule, TCP servers are concurrent, and UDPserversare iterative, but
there are a few exceptions. We'll look in detail at the impact of UDPonits servers in
Section 11.12, and the impact of TCP onits servers in Section 18.11.

Port Numbers

We said that TCP and UDPidentify applications using 16-bit port numbers. How are
these port numbers chosen?

Servers are normally known bytheir well-known port number. For example, every
TCP/IP implementation that provides an FTP server provides that service on TCP port

IPR2022-01227

EXHIBIT 1019 - PAGE 0032

IPR2022-01227
EXHIBIT 1019 - PAGE 0033

Section 1.9 Port Numbers 13

21. Every Telnet server is on TCP port 23. Every implementation of TFTP (the Trivial
File Transfer Protocol) is on UDP port 69. Those services that can be provided by any
implementation of TCP/IP have well-known port numbers between 1 and 1023. The
well-known ports are managedbythe Internet Assigned Numbers Authority (IANA).

Until 1992 the well-known ports were between 1 and 255. Ports between 256 and 1023 were
normally used by Unix systems for Unix-specific services—thatis, services found on a Unix
system, but probably not found on other operating systems. The IANA now manages the
ports between 1 and 1023.

An example of the difference between an Internet-wide service and a Unix-specific service is
the difference between Telnet and Rlogin. Both allow us to login across a network to another
host. Telnet is a TCP/IP standard with a well-known port numberof 23 and can be imple-
mented on almost any operating system. Rlogin, on the other hand, wasoriginally designed
for Unix systems (although many non-Unix systems now provide it also) so its well-known
port was chosenin the early 1980s as 513.

A client usually doesn’t care what port numberit uses on its end. All it needs to be
certain of is that whatever port numberit uses be unique on its host. Client port num-
bers are called ephemeralports(i.e., short lived). This is because a client typically exists
only as long as the user runningthe client needsits service, while servers typically run
as long as the hostis up.

Most TCP/IP implementations allocate ephemeral port numbers between 1024 and
5000. The port numbers above 5000 are intended for other servers (those that aren’t
well knownacrossthe Internet). We'll see many examples of how ephemeralports are
allocated in the examples throughoutthetext.

Solaris 2.2 is a notable exception. By default the ephemeral ports for TCP and UDPstart at
32768. Section E.4 details the configuration options that can be modified by the system admin-
istrator to change these defaults.

The well-known port numbers are contained in the file /etc/services on most
Unix systems. To find the port numbers for the Telnet server and the Domain Name
System, we can execute

sun % grep telnet /etc/services
telnet 23/tcp says it uses TCP port 23

sun % grep domain /etc/services
domain 53/udp says it uses UDP port 53
domain 53/tcp and TCPport 53

Reserved Ports

Unix systems have the concept of reserved ports. Only a process with superuserprivi-
leges can assign itself a reserved port.

These port numbersare in the range of 1 to 1023, and are used by someapplications
(notably Rlogin, Section 26.2), as part of the authentication between the client and
server.

IPR2022-01227

EXHIBIT 1019 - PAGE 0033

IPR2022-01227
EXHIBIT 1019 - PAGE 0034

14 Introduction Chapter 1

1.10 Standardization Process

Whocontrols the TCP/IP protocol suite, approves new standards, and the like? There
are four groups responsible for Internet technology.

1. The Internet Society (ISOC) is a professional society to facilitate, support, and
promote the evolution and growth ofthe Internet as a global research communi-
cations infrastructure.

2. The Internet Architecture Board (IAB) is the technical oversight and coordination
body. It is composed of about 15 international volunteers from various disci-
plines and servesas the final editorial and technical review board for the quality
of Internet standards. The IABfalls under the ISOC.

3. The Internet Engineering Task Force (IETF) is the near-term, standards-oriented
group, divided into nine areas (applications, routing and addressing, security,
etc.). The IETF develops the specifications that become Internet standards. An
additional Internet Engineering Steering Group (IESG) was formed to help the
IETF chair.

4. The Internet Research Task Force (IRTF) pursues long-term research projects.

Both the IRTF and the IETF fall under the IAB. [Crocker 1993] provides additional
details on the standardization process within the Internet, as well as someofits early
history.

RFCs

All the official standards in the internet community are published as a Request for Com-
ment, or RFC. Additionally there are lots of RFCs that are notofficial standards, but are
published for informational purposes. The RFCs range in size from 1 page to almost
200 pages. Eachis identified by a number, such as RFC 1122, with higher numbers for
newer RFCs.

All the RFCsare available at no charge through electronic mail or using FTP across
the Internet. Sending electronic mail as shown here:

To: rfc-info@ISI.EDU

Subject: getting rfcs

help: ways_to_get_rfcs

returns a detailed listing of various ways to obtain the RFCs.
The latest RFC index is alwaysa starting point when looking for something. This

index specifies when a certain RFC has been replaced by a newer RFC, and if a newer
RFC updates someof the information in that RFC.

There are a few important RFCs.

1. The Assigned Numbers RFC specifies all the magic numbers and constants that
are usedin the Internet protocols. At the time of this writing the latest version

IPR2022-01227

EXHIBIT 1019 - PAGE 0034

IPR2022-01227
EXHIBIT 1019 - PAGE 0035

Section 1.12 Standard, Simple Services 15

of this RFC is 1340 [Reynolds and Postel 1992]. All the Internet-wide well-
knownportsare listed here.

Whenthis RFC is updated(it is normally updatedat least yearly) the indexlist-
ing for 1340 will indicate which RFC hasreplacedit.

2. The Internet Official Protocol Standards, currently RFC 1600 [Postel 1994]. This
RFC specifies the state of standardization of the various Internet protocols. Each
protocol has oneof the following states of standardization: standard, draft stan-
dard, proposed standard, experimental, informational, or historic. Additionally
each protocol has a requirementlevel: required, recommended,elective, limited
use, or not recommended.

Like the Assigned Numbers RFC, this RFC is also reissued regularly. Be sure
you're reading the current copy.

3. The Host Requirements RFCs, 1122 and 1123 [Braden 1989a, 1989b]. RFC 1122
handles the link layer, network layer, and transport layer, while RFC 1123 han-
dles the application layer. These two RFCs make numerous corrections and
interpretations of the important earlier RFCs, and are often the starting point
whenlooking at any of the finer details of a given protocol. Theylist the fea-
tures and implementation details of the protocols as either “must,” “should,”
“may,” “should not,” or “must not.”

[Borman 1993b] provides a practical look at these two RFCs, and RFC 1127
[Braden 1989c] provides an informal summary of the discussions and conclu-
sions of the working group that developed the Host Requirements RFCs.

4. The Router Requirements RFC. Theofficial version of this is RFC 1009 [Braden
and Postel 1987], but a new version is nearing completion [Almquist 1993]. This
is similar to the host requirements RFCs, but specifies the unique requirements
of routers.

1.12 Standard, Simple Services

There are a few standard, simple services that almost every implementation provides.
We'll use some of these servers throughoutthe text, usually with the Telnet client. Fig-
ure 1.9 describes these services. We can see from this figure that when the sameservice
is provided using both TCP and UDP, both port numbers are normally chosen to be the
same.

If we examine the port numbers for these standard services and other standard TCP/IP ser-
vices (Telnet, FTP, SMTP, etc.), most are odd numbers. This is historical as these port numbers
are derived from the NCP port numbers. (NCP, the Network Control Protocol, preceded TCP
as a transport layer protocol for the ARPANET.) NCP was simplex, not full-duplex, so each
application required two connections, and an even-odd pair of port numbers was reserved for
each application. When TCP and UDP becamethe standard transport layers, only a single
port number was needed per application, so the odd port numbers from NCP were used.

IPR2022-01227

EXHIBIT 1019 - PAGE 0035

IPR2022-01227
EXHIBIT 1019 - PAGE 0036

16

1.13

1.14

Introduction Chapter 1

echo Server returns whateverthe client sends.

discard Server discards whateverthe client sends.

daytime Server returns the time and date in a human-readable
format.

chargen TCP server sends a continual stream of characters, until the

connectionis terminated by the client. UDP server
sends a datagram containing a random numberof
characters eachtimethe client sends a datagram.

Server returns the time as a 32-bit binary number. This
numberrepresents the numberof seconds since
midnight January 1, 1900, UTC.

Figure 1.9 Standard, simple services provided by most implementations.

The Internet

In Figure 1.3 we showed an internet ‘composed of two networks—an Ethernet and a
token ring. In Sections 1.4 and 1.9 we talked about the worldwide Internet and the need
to allocate IP addresses centrally (the InterNIC) and the well-known port numbers(the
IANA). The word internet means different things depending on whetherit’s capitalized
or not.

The lowercase internet means multiple networks connected together, using a com-
monprotocol suite. The uppercase Internet refers to the collection of hosts (over one
million) around the world that can communicate with each other using TCP/IP. While
the Internet is an internet, the reverse is nottrue.

Implementations

The de facto standard for TCP/IP implementations is the one from the Computer Sys-
tems Research Group at the University of California at Berkeley. Historically this has
been distributed with the 4.x BSD system (Berkeley Software Distribution), and with the
“BSD Networking Releases.” This source code has been thestarting point for many
other implementations.

Figure 1.10 shows a chronology of the various BSDreleases, indicating the impor-
tant TCP/IP features. The BSD Networking Releases shownontheleft side are publicly
available source code releases containing all of the networking code: both the protocols
themselves and manyof the applications and utilities (such as Telnet and FTP).

Throughout the text we'll use the term Berkeley-derived implementation to refer to
vendor implementations such as SunOS 4.x, SVR4, and AIX 3.2 that were originally
developed from the Berkeley sources. These implementations have much in common,
often including the same bugs!

IPR2022-01227

EXHIBIT 1019 - PAGE 0036

IPR2022-01227
EXHIBIT 1019 - PAGE 0037

Section 1.15 Application Programming Interfaces 17

_—
BSD Networking Software
Release 1.0 (1989): Net/1

_—-
BSD Networking Software

Release 2.0 (1991): Net/2

ee
4.4BSD-Lite (1994)

also referred to as Net/3

4.2BSD (1983)
first widely available

release of TCP/IP

4.3BSD (1986)
TCP performance improvements

4.3BSD Tahoe (1988)
slowstart,

congestion avoidance,
fast retransmit

4.3BSD Reno (1990)
fast recovery,

TCP headerprediction,
SLIP header compression,

routing table changes

4.4BSD (1993)
multicasting,

long fat pipe modifications

Figure 1.10 Various BSD releases with important TCP/IP features.

Muchof the original research in the Internet is still being applied to the Berkeley
system—new congestion control algorithms (Section 21.7), multicasting (Section 12.4),
“long fat pipe” modifications (Section 24.3), and the like.

1.15 Application Programming Interfaces

Two popular application programming interfaces (APIs) for applications using the TCP/IP
protocols are called sockets and TLI (Transport Layer Interface). The former is some-
times called “Berkeley sockets,” indicating where it was originally developed. Thelat-
ter, originally developed by AT&T, is sometimes called XTI (X/Open Transport
Interface), recognizing the work done by X/Open,an international group of computer
vendors that produce their ownset of standards. XTI is effectively a superset of TLI.

IPR2022-01227

EXHIBIT 1019 - PAGE 0037

IPR2022-01227
EXHIBIT 1019 - PAGE 0038

18

1.16

Introduction Chapter 1

This text is not a programmingtext, but occasional reference is made to features of
TCP/IP that we look at, and whether that feature is provided by the most popular API
(sockets) or not. All the programmingdetails for both sockets and TLI are available in
[Stevens 1990].

Test Network

Figure 1.11 showsthe test network that is used for all the examples in the text. This fig-
ure is also duplicated on the inside front cover for easy reference while reading the
book.

Internet

AIX 3.2.2 Solaris 2.2 SunOS4.1.1 104.1

solaris emini atewa: Cisco
g 3 ¥|router

1.92 1.32 111 14

ernet 1.183

Telebit

NetBlazer

SLIP|(dialup)

BSD/386 1.0 BSD/3861.0 SunOS4.1.3 |.1.29 SVR4

. SLIP“13.65 15.66 ES poet
13.35 13.33 13.34

emet

Figure 1.11 Test network used forall the examples in the text. All IP addresses begin with 140.252.

Mostof the examples are run on the lower four systems in this figure (the author’s sub-
net). All the IP addressesin this figure belong to the class B network ID 140.252. All the
hostnamesbelong to the .tuc.noao.edu domain. (noaostandsfor “National Optical
Astronomy Observatories” and tuc stands for Tucson.) For example, the lower right
system has a complete hostname of svr4.tuc.noao.edu and an IP address of
140.252.13.34. The notation at the top of each box is the operating system running on
that system. This collection of systems and networks provides hosts and routers run-
ning a variety of TCP/IP implementations.

IPR2022-01227

EXHIBIT 1019 - PAGE 0038

IPR2022-01227
EXHIBIT 1019 - PAGE 0039

Chapter 1 Exercises 19

1.17

It should be noted that there are many more networks and hosts in the noao.edu
domain than we show in Figure 1.11. All we show here are the systems that we'll
encounter throughoutthe text.

In Section 3.4 we describe the form of subnetting used on this network, and in Sec-
tion 4.6 we'll provide more details on the dialup SLIP connection between sun and
netb. Section 2.4 describes SLIPin detail.

Summary

This chapter has been a whirlwind tour of the TCP/IP protocolsuite, introducing many
of the terms and protocols that we discussin detail in later chapters.

The four layers in the TCP/IP protocol suite are the link layer, network layer, trans-
port layer, and application layer, and we mentioned the different responsibilities of
each. In TCP/IP the distinction between the network layer and the transport layer is
critical: the network layer (IP) provides a hop-by-hop service while the transport layers
(TCP and UDP) provide an end-to-endservice.

An internetis a collection of networks. The common building block for an internet
is a router that connects the networks at the IP layer. The capital-I Internetis an internet
that spans the globe and consists of more than 10,000 networks and more than one mil-
lion computers.

On an internet each interface is identified by a unique IP address, although users
tend to use hostnamesinstead of IP addresses. The Domain Name System provides a
dynamic mapping between hostnames and IP addresses. Port numbers are used to
identify the applications communicating with each other and wesaid that servers use
well-known ports while clients use ephemeralports.

Exercises

11 Calculate the maximum numberof class A, B, and C network IDs.

1.2 Fetch the file nsfnet/statistics/history.netcount using anonymous FIP (Sec-
tion 27.3) from the host nic.merit.edu. This file contains the number of domestic and

foreign networks announced to the NSFNETinfrastructure. Plot these values with the year
on the x-axis and a logarithmic y-axis with the total number of networks. The maximum
value for the y-axis should be the value calculated in the previous exercise. If the data
shows a visual trend, extrapolate the values to estimate when the current addressing
scheme will run out of network IDs. (Section 3.10 talks about proposals to correct this
problem.)

13 Obtain a copy of the Host Requirements RFC [Braden 1989a] and look up the robustness
principle that applies to every layer of the TCP/IP protocol suite. Whatis the reference for
this principle?

1.4 Obtain a copy of the latest Assigned Numbers RFC. Whatis the well-known port for the
“quote of the day” protocol? Which RFC defines the protocol?

IPR2022-01227

EXHIBIT 1019 - PAGE 0039

IPR2022-01227
EXHIBIT 1019 - PAGE 0040

20=Introduction Chapter 1

1.5

1.6

1.7

1.8

If you have an accounton a hostthat is connected to a TCP/IP internet, whatis its primary
IP address? Is the host connected to the worldwideInternet? Is it multihomed?

Obtain a copy of RFC 1000 to learn where the term RFC originated.

Contact the Internet Society, isoc@isoc.org or +1 703 648 9888, to find out aboutjoining.

Fetch the file about~internic/information-about-the-internic using anony-
mous FTP from the host is. internic.net.

IPR2022-01227

EXHIBIT 1019 - PAGE 0040

IPR2022-01227
EXHIBIT 1019 - PAGE 0041

20.1

20.2

20

TCP Bulk Data Flow

introduction

In Chapter 15 we saw that TFIP uses a stop-and-wait protocol. The sender of a data
block required an acknowledgmentfor that block before the next block wassent. In this
chapter we'll see that TCP uses a different form of flow control called a sliding window
protocol. It allows the sender to transmit multiple packets before it stops and waits for
an acknowledgment. This leads to faster data transfer, since the sender doesn’t haveto
stop and wait for an acknowledgmenteach time a packetis sent.

Wealso look at TCP’s PUSHflag, something we’ve seen in manyof the previous
examples. We also look at slow start, the technique used by TCP for getting the flow of
data established on a connection, and then we examine bulk data throughput.

Normal Data Flow

Let’s start with a one-way transfer of 8192 bytes from the host svr4 to the host bsdi.
Werun our sock program on bsdiasthe server:

bsdi % sock -i -s 7777

The -i and ~s flagstell the program to run as a “sink” server (read from the network
and discard the data), and the server’s port number is specified as 7777. The corre-
spondingclient is then run as:

svr4 % sock -i -n8 bsdi 7777

This causes the client to perform eight 1024-byte writes to the network. Figure 20.1
showsthe timeline for this exchange. We haveleft the first three segments in the out-
put to show the MSSvaluesfor each end.

IPR2022-01227 275
EXHIBIT 1019 - PAGE 0041

IPR2022-01227
EXHIBIT 1019 - PAGE 0042

0.0

0.002185 (0.0022)

0.007295 (0.0051)

0.017868 (0.0106)

0.022699 (0.0048)

0.027650 (0.0050)

0.027799 (0.0001)

0.031881 (0.0041)

0.034789 (0.0029)

0.039276 (0.0045)

0.044618 (0.0053)

0.050326 (0.0057)

0.055286 (0.0050)

0.055441 (0.0002)

0.061742 (0.0063)

0.066206 (0.0045)

0.066850 (0.0006)

0.068216 (0.0014)

0.069358 (0.0011)

0.075414 (0.0061)

Chapter 20
276 TCP Bulk Data Flow

svr4.1056 bsdi.7777

SYN 1305814529:1305814529(0)}
win 4096, <mss 1024>

 PSH_ 1:1025(1024) ack 1, win 4096

5 PSH 1025:2049(1024) ack 1, win 4096
PSH 2049:3073(1024) ack 1, win 4096

ack 2049, win 4096

k 3073, wi 8

ac numPSH 3073:4097(1024) ack 1, win 4096

ack 4097, win 4096 amPSH 4097:5121(1024) ack 1, win 4096

PSH 5121:6145(1024) ack 1, win 4096

PSH_6145:7169(1024) ack 1, win 4096

ack 6145, win 4096 -PSH. 7169:8193(1024) ack 1, win 4096
un

12

13

15

ack 8193, win 4096

FIN 8193:8193(0) ack 1, win 4096

ack 8194, win 4096

F . 194, win 4096

17

1:1(0) ack 8194, wiIN

ack 2, win 4096
20

Figure 20.1 Transfer of 8192 bytes from svr4 to bsdi.

IPR2022-01227

EXHIBIT 1019 - PAGE 0042

IPR2022-01227
EXHIBIT 1019 - PAGE 0043

Section 20.2 Normal Data Flow 277

The sender transmits three data segments (4-6) first. The next segment (7)
acknowledges the first two data segments only. We know this because the acknowl-
edged sequence numberis 2049, not 3073.

Segment7 specifies an ACK of 2049 and not 3073 for the following reason. When a
packetarrivesit is initially processed by the device driver’s interrupt service routine
and then placed onto IP’s input queue. The three segments 4, 5, and 6 arrive oneafter
the other and are placed onto IP’s input queuein the received order. IP will pass them
to TCP in the same order. When TCP processes segment 4, the connection is marked to
generate a delayed ACK. TCP processes the next segment (5) and since TCP now has
two outstanding segments to ACK, the ACK of 2049 is generated (segment 7), and the
delayed ACK flag for this connection is turned off. TCP processes the next input seg-
ment (6) and the connection is again marked for a delayed ACK. Before segment 9
arrives, however, it appears the delayed ACK timer goesoff, and the ACK of 3073 (seg-
ment8) is generated. Segment8 advertises a window of 3072 bytes, implying that there
are still 1024 bytes of data in the TCP receive buffer that the application has notread.

Segments 11-16 show the “ACK every other segment” strategy that is common.
Segments 11, 12, and 13 arrive and are placed on IP’s input queue. When segment11is
processed by TCP the connection is marked for a delayed ACK. When segment12is
processed, an ACK is generated (segment14) for segments 11 and 12, and the delayed
ACKflag for this connection is turned off. Segment 13 causes the connection to be
marked again for a delayed ACK butbefore the timer goesoff, segment 15 is processed,
causing the ACK (segment 16) to be sent immediately.

It is important to notice that the ACK in segments 7, 14, and 16 acknowledge two
received segments. With TCP’s sliding-window protocol the receiver does not have to
acknowledge every received packet. With TCP, the ACKs are cumulative—they
acknowledgethat the receiver has correctly received all bytes up through the acknowl-
edged sequence number minus one. In this example three of the ACKs acknowledge
2048 bytes of data and two acknowledge 1024 bytes of data. (This ignores the ACKs in
the connection establishmentand termination.)

What we are watching with tcpdump are the dynamics of TCP in action. The
ordering of the packets that we see on the wire depends on manyfactors, most of which
we haveno control over: the sending TCP implementation, the receiving TCP imple-
mentation, the reading of data by the receiving process (which depends onthe process
scheduling by the operating system), and the dynamics of the network (ie., Ethernet
collisions and backoffs). There is no single correct way for two TCPs to exchange a
given amountof data. .

To show howthings can change, Figure 20.2 shows another time line for the same
exchange of data between the same twohosts, captured a few minutesafter the one in
Figure 20.1.

IPR2022-01227

EXHIBIT 1019 - PAGE 0043

IPR2022-01227
EXHIBIT 1019 - PAGE 0044

Chapter 20
278 TCP Bulk Data Flow

svr4.1057 bsdi.8888

0.0 1 SYN 1332182529:1332182529(0)win 4096, <mss 1024>

SYN 1394129409:1394129409(0) 2
0.002159 (0.0022) ack 1332182530, win 4096, <mss 1024>
0.007097 (0.0049) 3 ack 1, win 4096

0.017558 (0.0105) 4 PSH 1:1025(1024) ack 1, win 4096

ack 2049, win 4096 7

0.027595 (0.0001)

0.035231 (0.0076) 8 PSH _3073:4097(1024) ack 1, win 4096

ack 4097, win 4096 10

0,040402 (0.0001)

ack 5121, win 4096 12

0.046930 (0.0001)

|seeinwinatns7169, win 4096 15
0.060662 (0.0001)

0.066479 (0.0058) 16 FIN 8193:8193(0) ack 1, win 4096

0.067878 (0.0014 eenwines8194, win 4096 7oan's FIN 1:1(0) ack 8194, win 4096 18
0.068994 (0.0011)

0.087556 (0.0186) 19 ack 2, win 4096
Figure 20.2 Another transfer of 8192 bytes from svr4 to bsdi.

A few things have changed. This time the receiver does not send an ACKof 3073;
instead it waits and sends the ACK of 4097. The receiver sends only four ACKs (seg-
ments 7, 10, 12, and 15): three of these are for 2048 bytes and onefor 1024 bytes. TheACKof the final 1024 bytes of data appears in segment17, along with the ACK ofthe
FIN. (Compare segment 17 in this figure with segments 16 and 18 in Figure 20.1.)

IPR2022-01227

EXHIBIT 1019 - PAGE 0044

IPR2022-01227
EXHIBIT 1019 - PAGE 0045

Section 20.2 Normal Data Flow 279

Fast Sender, Slow Receiver

Figure 20.3 shows anothertime line, this time from a fast sender (a Sparc) to a slow
receiver (an 80386 with a slow Ethernet card). The dynamics are different again.

gsun.1181 bsdi.discard

0.0 1 SYN 690560000:690560000(0)
SYN 2566353409:2566353409(0)

0.002238(0.0022)

0.003020 (0.0008) 3 ack 1, win 4096

0.006806 (0.0038) 1 PSH 1:1025(1024) ack 1, win 4096
0.008838 (0.0020) 5
0.010490 (0.0017) gL___PSH2049:3073(1024)ack1,win4096
0.012057 (0.0016) 7|_____ PSH_3073:4097(1024)ack1,win4096
0.038562 (0.0265) °
0.055994 (0.0174)

0.057815 (0.0018) 10
0.059777 (0.0020) rm
0.061439 (0.0017) pL8145:7169(1024)ack1,win4096
0.062992 (0.0016) 13

‘

0.071915(0.0089) 15
0.074313 (0.0024) 6

0.075746 (0.0014) : ownage
0.076439 (0.0007) 17 ack 2, win 4096

Figure 20.3 Sending 8192 bytes from a fast senderto a slow receiver.

The sender transmits four back-to-back data segments (4-7) to fill the receiver’s
window. The sender then stops and waits for an ACK. The receiver sends the ACK
(segment 8) but the advertised window is 0. This means the receiver has all the data,butit’s all in the receiver’s TCP buffers, because the application hasn’t had a chance to
read the data. Another ACK(called a window update) is sent 17.4 ms later, announcing
that the receiver can now receive another 4096 bytes. Althoughthis looks like an ACK,
it is called a window update because it does not acknowledge any new data,it just
advancestheright edgeof the window.

IPR2022-01227

EXHIBIT 1019 - PAGE 0045

IPR2022-01227
EXHIBIT 1019 - PAGE 0046

280 TCP Bulk Data Flow Chapter 20

20.3

The sendertransmits its final four segments (10-13), again filling the receiver’s win-
dow. Notice that segment 13 contains twoflag bits: PUSH and FIN.This is followed by
another two ACKs from thereceiver. Both of these acknowledgethe final 4096 bytes of
data (bytes 4097 through 8192) and the FIN (numbered 8193).

Sliding Windows

The sliding windowprotocol that we observed in the previous section can be visualized
as shown in Figure 20.4.

offered window

(advertised by receiver)

usable window

1 2 3 4 5 6 7 8 9 10 11

can’t send until_———— .
sent and sent, not ACKed window moves—————_aaa

acknowledged can send ASAP

Figure 20.4 Visualization of TCP sliding window.

In this figure we have numberedthe bytes 1 through 11. The window advertised by the
receiver is called the offered window and covers bytes 4 through 9, meaning that the
receiver has acknowledged all bytes up through and including number 3, and has
advertised a window size of 6. Recall from Chapter 17 that the windowsizeis relative
to the acknowledged sequence number. The sender computesits usable window, which
is how muchdatait can send immediately.

Overtime this sliding window movesto the right, as the receiver acknowledges
data. Therelative motion of the two endsof the window increases or decreases the size

of the window. Three terms are used to describe the movementof the right and left
edges of the window.

1. The window closes as the left edge advances to the right. This happens when
data is sent and acknowledged.

2. The window opens when the right edge movesto the right, allowing more data
to be sent. This happens whenthe receiving process on the other end reads
acknowledged data, freeing up space in its TCP receive buffer.

3. The windowshrinks when the right edge movesto the left. The Host Require-
ments RFC strongly discourages this, but TCP must be able to cope with a peer
that does this. Section 22.3 shows an example when one side would like to
shrink the window by movingthe right edgeto theleft, but cannot.

Figure 20.5 showsthese three terms. The left edge of the window cannot move to
the left, because this edge is controlled by the acknowledgment number received from

IPR2022-01227

EXHIBIT 1019 - PAGE 0046

IPR2022-01227
EXHIBIT 1019 - PAGE 0047

Section 20.3 Sliding Windows 281

| closes shrinks | opens
window

Figure 20.5 Movement of window edges.

the other end. If an ACK were received that implied moving the left edge to theleft, it
is a duplicate ACK,and discarded.

If the left edge reaches the right edge, it is called a zero window. This stops the
sender from transmitting any data.

An Example

Figure 20.6 shows the dynamics of TCP’s sliding window protocolfor the data transfer
in Figure 20.1.

ea7

windowadvertised by segment 2 ;
L-~~~--~--~-~-~-~-~-~~---~-~--~-+-~-+-+- a

| data sentin |segments 4, 5, 6
pot t tr tats seats arsrs 1

_ - ACKedby __ > window advertised by segment 7
segment 7 LLeee4

ACKed by 771
~t- —---» window advertised by segment8 |
segment8 4

| data sent in |
segment9

ACKed by 77enq
<---> window advertised by segment 10 1
segment10,=Tt4

| data sent in |segments 11,12, 13

ACKed by “windowadvertised
segment 14 m by segment14

segment 16

Figure 20.6 Sliding window protocol for Figure 20.1.

IPR2022-01227

EXHIBIT 1019 - PAGE 0047

IPR2022-01227
EXHIBIT 1019 - PAGE 0048

282 TCP Bulk Data Flow Chapter 20

There are numerouspoints that we can summarize usingthis figure as an example.

1. The sender does not have to transmit a full window’s worth of data.

2. One segmentfrom the receiver acknowledges data and slides the window to the
right. This is because the windowsizeis relative to the acknowledged sequence
number.

3. The size of the windowcan decrease, as shown by the change from segment7 to
segment8, but the right edge of the window mustnot moveleftward.

4. The receiver does not have to wait for the windowto fill before sending an
ACK. Wesawearlier that many implementations send an ACK for every two
segments thatare received.

We'll see more examples of the dynamics of the sliding window protocol in later
examples.

20.4 Window Size

The size of the window offered by the receiver can usually be controlled by the receiv-
ing process. This can affect the TCP performance.

4.2BSD defaulted the send buffer and receive buffer to 2048 bytes each. With 4.3BSD both were
increased to 4096 bytes. As we can see from all the examples so far in this text, SunOS 4.1.3,
BSD/386, and SVR¢4still use this 4096-byte default. Other systems, such as Solaris 2.2, 4.4BSD,
and AIX 3.2, use larger default buffer sizes, such as 8192 or 16384 bytes.

The sockets API allows a process to set the sizes of the send buffer and the receive buffer. The
size of the receive buffer is the maximum size of the advertised window for that connection.

Some applications change the socket buffer sizes to increase performance.

[Mogul 1993] shows someresults for file transfer between two workstations on an
Ethernet, with varying sizes for the transmit buffer and receive buffer. (For a one-way
flow of data such asfile transfer, it is the size of the transmit buffer on the sending side
and the size of the receive buffer on the receiving side that matters.) The common
default of 4096 bytes for both is not optimal for an Ethernet. An approximate 40%
increase in throughput is seen by just increasing both buffers to 16384 bytes. Similar
results are shown in [Papadopoulos and Parulkar 1993).

In Section 20.7 we’ll see how to calculate the minimum buffer size, given the band-
width of the communication media and the round-trip time between the two ends.

An Example

Wecan controlthe sizes of these buffers with our sock program. We invoke the server
as:

bsdi % sock -i -s -R6144 5555

IPR2022-01227

EXHIBIT 1019 - PAGE 0048

IPR2022-01227
EXHIBIT 1019 - PAGE 0049

Window Size 283
Section 20.4

which sets the size of the receive buffer (-R option) to 6144 bytes. Wethen start the
client on the host sun andhaveit perform one write of 8192 bytes:

sun % sock —i -ni -wB192 bsdi 5555

Figure 20.7 showsthe results.
sun.1126 bsdi.5555

0.0 1 SYN_1227520000:1227520000(0)win 4096, <mss 1460>

SYN 9363371521:2363371521(0) >
0.002282 (0.0023)

0.003067 (0.0008) 3 ack 1, win 4096

0.022170 (0.0191) 4 1:1025(1024) ack 1, win 4096
0.024136 (0.0020) 5
0.026084 (0.0019) gL_2049:3073(1024)ack1,win4096
0.027711 (0.0016) 7 PSH 3073:4097(1024) ack 1, win 4096
0.029334 (0.0016) 8
0.030910(0.0016) gL5121:6145(1024)ack1,win4096|

0.044570 (0.0137)

0.046510(0.0019) 11 6145:7169(1024) ack 1, win 4096
0.048234 (0.0017) 12

i

0.050074 (0.0018) “4
0.054250 (0.0042) 5
0.056215 (0.0020) 16

0.058233 (0.0020) ”

0.059518 (0.0013) mae
0.060167 (0.0006) 18 ack 2, win 4096

Figure 20.7 Data transfer with receiver offering a window size of 6144 bytes.
First notice that the receiver’s windowsizeis offered as 6144 bytes in segment 2.

Because of this larger window,theclient sends six segments immediately (segments
4—9), and then stops. Segment 10 acknowledgesall the data (bytes 1 through 6144) but
offers a window of only 2048, probably because the receiving application hasn't had a
chance to read more than 2048 bytes. Segments 11 and 12 complete the data transfer
from the client, and this final data segmentalso carries the FIN flag.

IPR2022-01227

EXHIBIT1019-PAGE0049_

IPR2022-01227
EXHIBIT 1019 - PAGE 0050

286 TCP Bulk Data Flow Chapter 20

The senderstarts by transmitting one segment and waiting for its ACK. When that
ACKis received, the congestion window is incremented from one to two, and two seg-
ments can be sent. When each of those two segments is acknowledged, the congestion
windowis increased to four. This provides an exponential increase.

At some point the capacity of the internet can be reached, and an intermediate
router will start discarding packets. This tells the sender that its congestion window
has gotten too large. When wetalk about TCP’s timeout and retransmission algorithms
in the next chapter, we'll see how this is handled, and what happens to the congestion
window. For now,let’s watch slowstart in action.

An Example

20.7

Figure 20.8 shows data being sent from the host sun to the_host
vangogh.cs.berkeley.edu. The data traverses a slow SLIP link, which should be
the bottleneck. (We have removed the connection establishmentfrom this timeline.)

Wesee the sender transmit one segment with 512 bytes of data and then wait for its
ACK. The ACKis received 716 mslater, which is an indicator of the round-trip time.
The congestion windowis then increased to two segments, and two segments are sent.
When the ACK in segment5 is received, the congestion window is increased to three
segments. Although three more could be sent, only two are sent before another ACKis
received.

We'll return to slow start in Section 21.6 and see howit’s normally implemented
with another techniquecalled congestion avoidance.

Bulk Data Throughput

Let’s look at the interaction of the window size, the windowedflow control, and slow

start on the throughput of a TCP connection carrying bulk data.
Figure 20.9 showsthe steps over time of a connection between a senderontheleft

and a receiver on the right. Sixteen units of time are shown. We show only discrete
units of time in this figure, for simplicity. We show segments carrying data going from
the left to right in the top half of each picture, numbered 1, 2, 3, and so on. The ACKs
go in the other direction in the bottom half of each picture. We draw the ACKs smaller,
and show the segment numberbeing acknowledged.

IPR2022-01227

EXHIBIT 1019 - PAGE 0050

IPR2022-01227
EXHIBIT 1019 - PAGE 0051

Section 20.4 Window Size 283

which sets the size of the receive buffer (-R option) to 6144 bytes. We then start the
client on the host sun and haveit perform one write of 8192 bytes:

sun % sock —i -nl -w8192 bsdi 5555

Figure 20.7 showsthe results.
sun.1126 bsdi.5555

0.0 1 SYN 1227520000:1227520000(0)win 4096, <mss 1460>

0.002282 (0.0023)

0.003067 (0.0008) 3

0.022170 (0.0191) 4 1:1025(1024) ack 1, win 4096
0.024136 (0.0020) 5|1025:2049(1024)ack1,win409%1024) ack 1, win 4096
0.026084 (0.0019) gL___20493073(1024)ack1,win4096ack 1, win 4096
0.027711 (0.0016) j|___ PSH3073:4097(1024)ack1,win4096|3073:4097(1024) ack 1, win 4096
0.029334 (0.0016) 8 4097:5121(1024) ack 1, win 4096
0.030910 (0.0016) 9 5121:6145(1024) ack 1, win 4096

ack 6145, win 2048 100.044570 (0.0137) ao,in
0.046510 (0.0019) 1 6145:7169(1024)ack 1, win 4096
0.048234 (0.0017) 2|_FIN,PSH7169:8193(1024)ack1,win4096|7169:8193(1024) ack 1, win 4096

ack 6145, win 4096 13

0.050074 (0.0018) 8194, win 2048 im
0.054250 (0.0042) ack 8194, win 4096 15
0.056215 (0.0020) 1 8194, win 6144 6
0.058235 (0.0020) FIN 1:1(0) ack 8194, win 6144 v7
0.059518 (0.0013)

0.060167 (0.0006) 18 ack 2, win 4096

Figure 20.7 Data transfer with receiver offering a windowsize of 6144 bytes.
First notice that the receiver’s window size is offered as 6144 bytes in segment2.

Because of this larger window,the client sends six segments immediately (segments
4-9), and then stops. Segment 10 acknowledgesall the data (bytes 1 through 6144) butoffers a window of only 2048, probably because the receiving application hasn't had a
chance to read more than 2048 bytes. Segments 11 and 12 complete the data transfer
from theclient, andthis final data segment also carries the FIN flag.

IPR2022-01227

EXHIBIT 1019 - PAGE 0051

IPR2022-01227
EXHIBIT 1019 - PAGE 0052

284 TCP Bulk Data Flow Chapter 20

20.5

Segment 13 contains the same acknowledgment sequence number as segment10,
but advertises a larger window. Segment 14 acknowledges the final 2048 bytes of data
and the FIN, and segments 15 and 16 just advertise a larger window. Segments 17 and
18 complete the normal close.

PUSH Flag

We've seen the PUSH flag in every one our TCP examples, but we've never described
its use. It’s a notification from the sender to the receiver for the receiver to pass all the
data that it has to the receiving process. This data would consist of whateveris in the
segment with the PUSHflag, along with any other data the receiving TCP hascollected
for the receiving process.

In the original TCP specification, it was assumed that the programming interface
would allow the sending processtotell its TCP when to set the PUSH flag. In an inter-
active application, for example, when the client sent a commandtothe server, the client
would set the PUSH flag and wait for the server’s response. (In Exercise 19.1 we could
imaginetheclient setting the PUSH flag when the 12-byte request is written.) By allow-
ing the client application totell its TCP to set the flag, it was a notificationto the client’s
TCPthat the client process didn’t want the data to hang around in the TCP buffer, wait-
ing for additional data, before sending a segment to the server. Similarly, when the
server’s TCP received the segment with the PUSH flag, it was a notification to pass the
data to the server process and not wait to see if any additional data arrives.

Today, however, most APIs don’t provide a way for the applicationto tell its TCP to
set the PUSH flag. Indeed, many implementors feel the need for the PUSH flag is out-
dated, and a good TCP implementation can determine whentoset the flag byitself.

Most Berkeley-derived implementations automatically set the PUSHflag if the data
in the segment being sent empties the send buffer. This means we normally see the
PUSHflag set for each application write, because data is usually sent whenit’s written.

A comment in the code indicates this algorithm is to please those implementations that only
pass received data to the application when a buffer fills or a segment is received with the
PUSH flag.

It is not possible using the sockets APIto tell TCP to turn on the PUSHflag orto tell whether
the PUSHflag wassetin received data.

Berkeley-derived implementations ignore a received PUSH flag because they nor-
mally never delay the delivery of received data to the application.

Examples

In Figure 20.1 (p. 276) we see the PUSH flag turned on forall eight data segments (4-6,

9, 11-13, and 15). This is because the client did eight writes of 1024 bytes, and each
write emptied the send buffer.

Look again at Figure 20.7 (p. 283). We expect the PUSH flag to be set on segment 12,
since thatis the final data segment. Why was the PUSHflag set on segment 7, when the

IPR2022-01227

EXHIBIT 1019 - PAGE 0052

IPR2022-01227
EXHIBIT 1019 - PAGE 0053

Section 20.6 Slow Start 285

20.6

sender knew there were still more bytes to send? The reason is that the size of the
sender’s send buffer is 4096 bytes, even though wespecified a single write of 8192
bytes.

Another point to note in Figure 20.7 concerns the three consecutive ACKs, segments
14, 15, and 16. We saw two consecutive ACKs in Figure 20.3, but that was because the
receiver had advertised a window of 0 (stopping the sender) so when the window
opened up, another ACK wasrequired, with the nonzero window,to restart the sender.
In Figure 20.7, however, the window never reaches 0. Nevertheless, when thesize of
the windowincreases by 2048 bytes, another ACK is sent (segments 15 and 16) to pro-
vide this window update to the other end. (These two window updates in segments 15
and 16 are not needed,since the FIN has been received from the other end, preventingit
from sending any more data.) Many implementations send this window updateif the
window increases by either two maximum sized segments (2048 bytes in this example,
with an MSS of 1024) or 50% of the maximum possible window (2048 bytes in this
example, with a maximum window of 4096). We'll see this again in Section 22.3 when
we examinethe silly window syndromein detail.

As another example of the PUSHflag, look again at Figure 20.3 (p. 279). The reason
wesee the flag on for the first four data segments (4-7) is because each one caused a
segment to be generated by TCP andpassedto theIP layer. But then TCP hadto stop,
waiting for an ACK to movethe 4096-byte window. While waiting for the ACK, TCP
takes the final 4096 bytes of data from the application. When the window opens up
(segment 9) the sending TCP knowsit has four segments that it can send immediately,
so it only turns on the PUSHflag for the final segment(13). ,

Slow Start

In all the examples we've seen so far in this chapter, the senderstarts off by injecting
multiple segments into the network, up to the window size advertised by the receiver.
While this is OK when the two hosts are on the same LAN,if there are routers and

slower links between the sender and the receiver, problems can arise. Some intermedi-
ate router must queuethe packets, andit’s possible for that router to run outof space.
[Jacobson 1988] shows how this naive approach can reduce the throughput of a TCP
connection drastically.

TCP is now required to support an algorithm called slow start. It operates by
observing that the rate at which new packets should be injected into the networkis the
rate at which the acknowledgments are returned by the other end.

Slow start adds another window to the sender’s TCP: the congestion window, called
cwnd. When a new connection is established with a host on another network, the con-

gestion windowis initialized to one segment(i.e., the segment size announced by the
other end). Each time an ACKis received, the congestion window is increased by one
segment. (cwnd is maintained in bytes, but slow start always incrementsit by the seg-
mentsize.) The sender can transmit up to the minimum of the congestion window and
the advertised window. The congestion window is flow control imposed by the sender,
while the advertised window is flow control imposed by the receiver.

IPR2022-01227

EXHIBIT 1019 - PAGE 0053

IPR2022-01227
EXHIBIT 1019 - PAGE 0054

286 TCP Bulk Data Flow Chapter 20

The senderstarts by transmitting one segment and waiting for its ACK. Whenthat
ACKis received, the congestion windowis incremented from one to two, and two seg-
ments can be sent. When each of those two segments is acknowledged, the congestion
windowis increased to four. This provides an exponential increase.

At some point the capacity of the internet can be reached, and an intermediate
router will start discarding packets. This tells the sender that its congestion window
has gotten too large. When wetalk about TCP’s timeout and retransmission algorithms
in the next chapter, we'll see how this is handled, and what happens to the congestion
window. For now,let’s watch slow start in action.

An Example

20.7

Figure 20.8 shows data being sent from the host sun to the host
vangogh.cs.berkeley.edu. The data traverses a slow SLIP link, which should be
the bottleneck. (We have removedthe connection establishment from this timeline.)

Wesee the sender transmit one segment with 512 bytes of data and then waitfor its
ACK. The ACKis received 716 ms later, which is an indicator of the round-trip time.
The congestion windowis then increased to two segments, and two segments are sent.
When the ACK in segment5 is received, the congestion windowis increased to three
segments. Although three more could be sent, only two are sent before another ACKis
received.

We'll return to slow start in Section 21.6 and see how it’s normally implemented
with another techniquecalled congestion avoidance.

Bulk Data Throughput

Let’s lookat the interaction of the windowsize, the windowedflow control, and slow
start on the throughput of a TCP connection carrying bulk data.

Figure 20.9 showsthe steps over time of a connection between a senderontheleft
and a receiver on the right. Sixteen units of time are shown. We show only discrete
units of timein this figure, for simplicity. We show segments carrying data going from
the left to right in the top half of each picture, numbered 1, 2, 3, and so on. The ACKs
go in the other direction in the bottom half of each picture. We draw the ACKs smaller,
and show the segment number being acknowledged.

IPR2022-01227

EXHIBIT 1019 - PAGE 0054

IPR2022-01227
EXHIBIT 1019 - PAGE 0055

0.0

0.716330 (0.7163)

0.716967 (0.0006)

0.717640 (0.0007)

1.466086 (0.7484)

1.466778 (0.0007)

1.467425 (0.0006)

1.946065 (0.4786)

1.946709 (0.0006)

1.947350 (0.0006)

2.576084 (0.6287)

2.576294 (0.0002)

2.576841 (0.0005)

2.906014 (0.3292)

3.085978 (0.1800)

3.326275 (0.2403)

3.356106 (0.0298)

3.356543 (0.0004)

Section 20.7

sun.1118

cwnd =1

cwnd =2

cund =3

cwnd =4

cwnd =5

cwnd =6

Bulk Data Throughput 287

vangogh.discard

1:513(512) ack 1, win 4096

ack 513, win 8192 —
513:1025(512) ack 1, win 4096

 ack 1537, win 8192 —
2561:3073(512) ack 1, win 4096

3073:3585(512) ack 1, win 4096

ack 2049, win 8192
k 2561, win 8192 12ac

 ———anasnienson|3585:4097(512) ack 1, win 4096
ack 3073, win B192 14

_ win 8192

10

 13

ck 3585, win 15a

ack 4098, win 7680 16

FIN 1:1(0) ack 4098, win 8192
(mon2, win 4096

18

Figure 20.8 Example of slow start.

IPR2022-01227

EXHIBIT 1019 - PAGE 0055

IPR2022-01227
EXHIBIT 1019 - PAGE 0056

288 TCP Bulk Data Flow

time 0: 1

_—
time 1: 1

time 2:

time 3: 1

_| —® receiver
time 4:

time 5:

time 6:

oe
ack |

time 7:

—ee
ack 1

Chapter 20

time 8: 2

time 9: 3 2

sender—»| |
time 10: 3 2

time 11: 3 2

me!_
time 12: 3

— receiver

~#— receiver

ack 2

time 13:

—a— receiver

ack2 ack3

time 14:

ack2 ack3

time 15:

sender <a—

ack2 ack3

Figure 20.9 Times 0-15 for bulk data throughput example.

At time 0 the sender transmits one segment. Since the senderis in slow start(its
congestion windowis one segment), it must wait for the acknowledgmentof this seg-
mentbefore continuing.

At times 1, 2, and 3 the segment moves one unit of time to the right. At time 4 the
receiver reads the segment and generates the acknowledgment. At times 5, 6, and 7 the
ACK movesto the left one unit, back to the sender. We have a round-trip time (RTT) of
8 units of time.

We have purposely drawn the ACK segment smaller than the data segment, since
it’s normally just an IP header and a TCP header. We're showing only a unidirectional

IPR2022-01227

EXHIBIT 1019 - PAGE 0056

IPR2022-01227
EXHIBIT 1019 - PAGE 0057

Section 20.7 Bulk Data Throughput 289

flow of data here. Also, we assumethat the ACK movesat the same speed as the data
segment, which isn’t alwaystrue.

In general the time to send a packet depends on twofactors: a propagation delay (caused by
the finite speed of light, latencies in transmission equipment, etc.) and a transmission delay
that depends on the speed of the media (how manybits per second the media can transmit).
For a given path between two nodes the propagation delay is fixed while the transmission
delay depends on the packet size. At lower speeds the transmission delay dominates(e.g.,
Exercise 7.2 where we didn’t even consider the propagation delay), whereas at gigabit speeds
the propagation delay dominates(e.g., Figure 24.6).

Whenthe senderreceives the ACK it can transmit two more segments (which we’ve
numbered 2 and 3), at times 8 and 9. Its congestion window is now two segments.
These two segments moveright toward the receiver, where the ACKsare generated at
times 12 and 13. The spacing of the ACKs returned to the senderis identical to the spac-
ing of the data segments. This is called the self-clocking behavior of TCP. Since the
receiver can only generate ACKs whenthe data arrives, the spacing of the ACKsat the
sender identifies the arrival rate of the data at the receiver. (In actuality, however,
queueing on the return path can changethearrival rate of the ACKs.)

Figure 20.10 shows the next 16 time units. The arrival of the two ACKs increases
the congestion window from twoto four segments, and these four segments are sent at
times 16-19. Thefirst of the ACKs returns at time 23. The four ACKs increase the con-

gestion windowfrom four to eight segments, and these eight segments are transmitted
at times 24-31.

Attime 31, and atall successive times, the pipe between the sender and receiveris
full. It cannot hold any more data, regardless of the congestion window or the window
advertised by the receiver. Each unit of time a segmentis removed from the network by
the receiver, and anotheris placed into the network by the sender. However manydata
segments fill the pipe, there are an equal number of ACKs making the return trip. This
is the ideal steady state of the connection.

Bandwidth-Delay Product

We can now answerthe question: how big should the window be? In our example, the
sender needs to have eight segments outstanding and unacknowledgedat any time, for
maximum throughput. Thereceiver’s advertised window mustbethatlarge, since that
limits how much the sender can transmit.

Wecan calculate the capacity of the pipe as

capacity (bits) = bandwidth (bits/sec) x round-trip time (sec)

This is normally called the bandwidth-delay product. This value can vary widely, depend-
ing on the network speed and the RTT between the two ends. For example, a T1 tele-
phoneline (1,544,000 bits/sec) across the United States (about a 60-ms RTT) gives a
bandwidth-delay product of 11,580 bytes. This is reasonable in terms of the buffer sizes
wetalked aboutin Section 20.4, but a T3 telephone line (45,000,000 bits/sec) across the
United States gives a bandwidth-delay product of 337,500 bytes, which is bigger than
the maximum allowable TCP window advertisement (65535 bytes). We describe the

IPR2022-01227

EXHIBIT 1019 - PAGE 0057

IPR2022-01227
EXHIBIT 1019 - PAGE 0058

TCP Bulk Data Flow

time 16: 4

sender —=

sender <q

ack 3

time 17; 5 4

sender —»

time 18: 6 5 4

sender —»

time 19: 7 6 5 4

sender —» —sereceiver

time 20: 7 6 5

—esreceiver

~a— receiver

ack 4

time 21: 7 6

—rm receiver

~t— receiver

ack4 ack5

time 22; 7

—e receiver

~a— receiver

ack4 ack5 ack6

time 23:

sender <a— ~a— receiver

ack4 ack5 ack6 ack7

Chapter 20

time 24: 8

sender —»

sender <q—

ack5 ack6@ ack?

time 25; 9 8

sender —»>

sender <«—

ack6 ack?

time 26: 10 9 8

sender —»

sender <—I
ack 7

time 27: 10 9 8

————_
time 28: 12 1 10 9

sender —»—=receiverJ ~a— receiver

ack 8

time 29: 13 12 11 10

sender —> —e& receiver

~— receiver

ack8 ack9

time 30: 14 13 12 i

sender —» —>receiver

~a— receiver:
ack8 ack9 ack10

time 31: 15 14 13 12

sender —»> — receiver

sender <a— ~a— receiver

ack8 ack9 ack10 ackll

Figure 20.10 Times 16-31 for bulk data throughput example.

new TCP windowscale option in Section 24.4 that gets aroundthis currentlimitation of
TCE

The value 1,544,000 bits/sec for a T1 phoneline is the raw bit rate. The data rate is actually
1,536,000 bits/sec, since 1 bit in 193 is used for framing, The raw bit rate of a T3 phoneline is
actually 44,736,000 bits/sec, and the data rate can reach 44,210,000 bits/sec. For our discussion
we'll use 1.544 Mbits/sec and 45 Mbits/sec.

Either the bandwidth or the delay can affect the capacity of the pipe between the
sender and receiver. In Figure 20.11 we show graphically how a doubling of the RTT
doubles the capacity ofthe pipe.

IPR2022-01227

EXHIBIT 1019 - PAGE 0058

IPR2022-01227
EXHIBIT 1019 - PAGE 0059

Section 20.7 Bulk Data Throughput 291

a+ wr +

Prfe2tayetsfe7]8

IH double the RTT+

Figure 20.11 Doubling the RTT doubles the capacity of the pipe.

In the lowerillustration of Figure 20.11, with the longer RTT, the pipe can hold eight
segments, instead of four.

Similarly, Figure 20.12 shows that doubling the bandwidth also doubles the capacity
of the pipe.

Figure 20.12 Doubling the bandwidth doubles the capacity of the pipe.

In the lower illustration of Figure 20.12, we assumethat the network speed has doubled,
allowing us to send four segments in half the time as in the top picture. Again, the
capacity of the pipe has doubled. (We assumethat the segments in the top half of this
figure have the same area, that is the same numberofbits, as the segments in the bot-
tom half.)

Congestion

Congestion can occur when data arrives on a big pipe (a fast LAN) and gets sent out a
smaller pipe (a slower WAN). Congestion can also occur when multiple input streams
arrive at a router whose output capacity is less than the sum of the inputs.

Figure 20.13 showsa typical scenario with a big pipe feeding a smaller pipe. We say
this is typical because most hosts are connected to LANs, with an attached router thatis
connected to a slower WAN. (Again, we are assuming the areasofall the data segments
(9-20) in the top half of the figure are all the same, and the areas ofall the acknowledg-
ments in the bottom half are all the same.)

In this figure we have labeled the router R1 as the “bottleneck,” because it is the
congestion point. It can receive packets from the LANonits left faster than they can be

IPR2022-01227

EXHIBIT 1019 - PAGE 0059

IPR2022-01227
EXHIBIT 1019 - PAGE 0060

292. TCP Bulk Data Flow Chapter 20

sender —» | | | —» receiver

|
|
|
|
|
|
|
|

) |
sender << || ~¢— receiver

Figure 20.13 Congestion caused by a bigger pipe feeding a smaller pipe.

sent out the WAN onits right. (Commonly R1 and R3 are the same router, as are R2 and
R4, but that’s not required; asymmetrical paths can occur.) When router R2 puts the
received packets onto the LANonits right, they maintain the same spacing as they did
on the WANonitsleft, even though the bandwidth of the LAN is higher. Similarly, the
spacing of the ACKs on their way back is the sameas the spacing of the slowestlink in
the path.

In Figure 20.13 we have assumedthat the sender did notuse slowstart, and sent the
segments we’ve numbered 1-20 as fast as the LAN could take them. (This assumesthe
receiving host advertised a window ofat least 20 segments.) The spacing of the ACKs
will correspond to the bandwidth of the slowestlink, as we show. We are assuming the
bottleneck router has adequate buffering for all 20 segments. This is not guaranteed,
and can lead to that router discarding packets. We'll see how to avoid this when we
talk about congestion avoidancein Section 21.6.

20.8 Urgent Mode

TCP provides whatit calls urgent mode, allowing one end to tell the other end that
“argent data” of some form has been placed into the normal stream of data. The other
endis notified that this urgent data has been placed into the data stream,andit’s up to
the receiving end to decide whatto do.

The notification from one endto the other that urgent data exists in the data stream
is done by setting two fields in the TCP header (Figure 17.2, p. 225). The URG bit is
turned on and the 16-bit urgent pointer is set to a positive offset that must be added to
the sequence numberfield in the TCP header to obtain the sequence numberofthelast
byte of urgent data.

There is continuing debate about whether the urgent pointer points to the last byte of urgent
data, or to the byte followingthe last byte of urgent data. The original TCP specification gave

IPR2022-01227

EXHIBIT 1019 - PAGE 0060

IPR2022-01227
EXHIBIT 1019 - PAGE 0061

Section 20.8 Urgent Mode=.293

both interpretations but the Host Requirements RFC identifies which is correct: the urgent
pointer points to the last byte of urgent data.

The problem, however, is that most implementations (i.e., the Berkeley-derived implementa-
tions) continue to use the wronginterpretation. An implementation that follows the specifica-
tion in the Host Requirements RFC might be compliant, but might not communicate correctly
with most other hosts.

TCP must inform the receiving process when an urgent pointer is received and one
wasnotalready pending on the connection,orif the urgent pointer advancesin the data
stream. The receiving application can then read the data stream and mustbeabletotell
whenthe urgent pointer is encountered. As long as data exists from the receiver’s cur-
rent read position until the urgent pointer, the application is considered to be in an
“urgent mode.” After the urgent pointer is passed, the application returnsto its normal
mode.

TCPitself says little more about urgent data. There is no way to specify where the
urgent data starts in the data stream. The only information sent across the connection
by TCPis that urgent mode has begun (the URGbit in the TCP header) and the pointer
to the last byte of urgent data. Everythingelse is left to the application.

Unfortunately many implementations incorrectly call TCP’s urgent mode
out-of-band data. If an application really wants a separate out-of-band channel, a second
TCP connection is the easiest way to accomplish this. (Some transport layers do pro-
vide what most people consider true out-of-band data: a logically separate data path
using the same connection as the normal data path. This is not what TCP provides.)

The confusion between TCP’s urgent modeand out-of-band datais also because the predomi-
nant programminginterface, the sockets API, maps TCP’s urgent modeinto whatsockets calls
out-of-band data.

Whatis urgent mode used for? The two most commonly used applications are Tel-
net and Rlogin, when the interactive user types the interrupt key, and we show exam-
plesof this use of urgent mode in Chapter 26. Another is FTP, when the interactive user
aborts a file transfer, and we show an exampleofthis in Chapter 27.

Telnet and Rlogin use urgent mode from the serverto the client becauseit’s possible
for this direction of data flow to be stopped by the client TCP(i-e., it advertises a win-
dow of 0). But if the server process enters urgent mode, the server TCP immediately
sends the urgent pointer and the URG flag, even thoughit can’t send any data. When
the client TCP receives this notification, it in turn notifies the client process, so the client
can readits input from the server, to open the window,andletthe data flow.

Whathappens if the sender enters urgent mode multiple times before the receiver
processes all the data up through the first urgent pointer? The urgent pointer just
advances in the data stream, and its previous position at the receiver is lost. There is
only one urgent pointer at the receiver and its value is overwritten when a new value
for the urgent pointer arrives from the other end. This meansif the contents of the data
stream that are written by the sender whenit enters urgent mode are important to the
receiver, these data bytes must be specially marked (somehow)by the sender. We'll see
that Telnet marks all of its command bytes in the data stream by prefixing them with a
byte of 255.

IPR2022-01227

EXHIBIT 1019 - PAGE 0061

IPR2022-01227
EXHIBIT 1019 - PAGE 0062

294 TCP Bulk Data Flow Chapter 20

An Example

Let’s watch how TCP sends urgent data, even when the receiver’s window is closed.
We'll start our sock program on the host bsdi and haveit pause for 10 secondsafter
the connection is established (the —-P option), before it reads from the network. This lets
the other endfill the send window.

bsdi % sock -i -s -P10 5555

Wethenstart the client on the host suntelling it to use a send buffer of 8192 bytes (-S
option) and perform six 1024-byte writes to the network (-n option). We also specify
-UStelling it to write 1 byte of data and enter urgent mode before writing the fifth buff-
er to the network. We specify the verboseflag to see the order of the writes:

sun % sock -v ~i -n6 -S8192 -U5 bsdi 5555

connected on 140.252.13.33.1305 to 140.252.13.35.5555

SO_SNDBUF = 8192
TCP_MAXSEG = 1024
wrote 1024 bytes

wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1 byte of urgent data

wrote 1024 bytes
wrote 1024 bytes

Weset the send buffer size to 8192 bytes, to let the sending application immediately
write all of its data. Figure 20.14 shows the tcpdump output for this exchange. (We
have removed the connection establishment.) Lines 1-5 show the senderfilling the
receiver’s window with four 1024-byte segments. The sender is then stopped because
the receiver’s windowis full. (The ACK on line 4 acknowledges data, but does not
movethe right edge of the window.)

After the fourth application write of normal data, the application writes 1 byte of
data and enters urgent mode. Line6 is the result of this application write. The urgent
pointer is set to 4098. The urgent pointer is sent with the URG flag even though the
sender cannotsend any data.

Five of these ACKs are sent in about 13 ms (lines 6-10). Thefirst is sent when the
application writes 1 byte and enters urgent mode. The next two are sent when the
application does the final two writes of 1024 bytes. (Even though TCP can’t send these
2048 bytes of data, each time the application performs a write, the TCP output function
is called, and when it sees that urgent mode has been entered, sends another urgent
notification.) The fourth of these ACKs occurs when the application closes its end of the
connection. (The TCP output function is again called.) The sending application termi-
nates milliseconds after it starts—before the receiving application has issuedits first
write. TCP queuesall the data and sends it when it can. (This is why wespecified a
send buffer size of 8192—soall the data can fit in the buffer.) The fifth of these ACKs is
probably generated by the reception of the ACK online 4. The sending TCP has proba-
bly already queuedits fourth segment for output (line 5) before this ACK arrives. The
receipt of this ACK from the other end also causes the TCP outputroutineto becalled.

IPR2022-01227

EXHIBIT 1019 - PAGE 0062

IPR2022-01227
EXHIBIT 1019 - PAGE 0063

Section 20.8 Urgent Mode 295

1 0.0 sun.1305 > bsdi.5555: P 1:1025(1024) ack 1 win 4096

2 0.073743 (0.0737) sun.1305 > bsdi.5555: P 1025:2049(1024) ack 1 win 4096
3 0.096969 (0.0232) sun.1305 > bsdi.5555: P 2049:3073(1024) ack 1 win 4096

4 0.157514 (0.0605) bsdi.5555 > sun.1305: . ack 3073 win 1024
5 0.164267 (0.0068) sun.1305 > bsdi.5555: P 3073:4097(1024) ack 1 win 4096

6 0.167961 (0.0037) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098
7 0.171969 (0.0040) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

8 0.176196 (0.0042) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098
9 0.180373 (0.0042) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

10 0.180768 (0.0004) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

11 0.367533 (0.1868) bsdi.5555 > sun.1305: . ack 4097 win 0

12 0.368478 (0.0009) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

13° 9.829712 (9.4612) bsdi.5555 > sun.1305: . ack 4097 win 2048

14 9.831578 (0.0019) sun.1305 > bsdi.5555: . 4097:5121(1024) ack 1 win 4096

urg 4098
15 9.833303 (0.0017) sun.1305 > bsdi.5555: . 5121:6145(1024) ack 1 win 4096

16 9.835089 (0.0018) bsdi.5555 > sun.1305: . ack 4097 win 4096

17 9.835913 (0.0008) sun.1305 > bsdi.5555: FP 6145:6146(1) ack 1 win 4096

18 9.840264 (0.0044) bsdi.5555 > sun.1305: . ack 6147 win 2048
19 9.842386 (0.0021) bsdi.5555 > sun.1305: . ack 6147 win 4096

20 9.843622 (0.0012) bsdi.5555 > sun.1305: F 1:1(0) ack 6147 win 4096
21) 9.844320 (0.0007) sun.1305 > bsdi.5555: . ack 2 win 4096

Figure 20.14 tcpdump output for TCP urgent mode.

The receiver then acknowledgesthe final 1024 bytes of data (line 11) but also adver-
tises a window of 0. The sender responds with another segment containing the urgent
notification.

The receiver advertises a window of 2048 bytes in line 13, when the application
wakes up and reads someof the data from the receive buffer. The next two 1024-byte
segments are sent (lines 14 and 15). The first segment has the urgent notification set,
since the urgent pointer is within this segment. The second segment has turned the
urgentnotification off.

Whenthe receiver opens the window again (line 16) the sender transmits the final
byte of data (numbered 6145) and alsoinitiates the normal connection termination.

Figure 20.15 shows the sequence numbers of the 6145 bytes of data that are sent.
Wesee that the sequence numberof the byte written when urgent modewasenteredis
4097, but the value of the urgent pointer in Figure 20.14 is 4098. This confirmsthat this
implementation (SunOS 4.1.3) sets the urgent pointer to 1 byte beyond the last byte of
urgent data.

| write | write | write | write | urg | write write

seq #}1 1024|1025 2048|2049 3072|3073 4096 ex 4098 5121|5122 6145
+ segment | segment | segment | segment | segment segment

Figure 20.15 Application writes and TCP segments for urgent mode example.

IPR2022-01227

EXHIBIT 1019 - PAGE 0063

IPR2022-01227
EXHIBIT 1019 - PAGE 0064

296 TCP Bulk Data Flow Chapter 20

This figure also lets us see how TCP repacketizes the data that the application
wrote. The single byte that was output when urgent mode wasentered is sent along
with the next 1023 bytes of data in the buffer. The next segmentalso contains 1024 bytes
of data, and the final segmentcontains 1 byte of data.

20.9 Summary

Aswesaid early in the chapter, there is no single way to exchange bulk data using TCP.
It is a dynamic process that depends on many factors, some of which we can control
(e.g., send and receive buffer sizes) and some of which wehave nocontrol over(e.g.,
network congestion, implementation features). In this chapter we’ve examined many
TCPtransfers, explaining all the characteristics and algorithms that we could see.

Fundamentalto the efficient transfer of bulk data is TCP’s sliding windowprotocol.
We then looked at whatit takes for TCP to get the fastest transfer possible by keeping
the pipe between the senderandreceiver full. We measured the capacity of this pipe as
the bandwidth-delay product, and saw the relationship between this and the window
size. We return to this concept in Section 24.8 when we look at TCP performance.

Wealso looked at TCP’s PUSHflag, since we'll alwaysseeit in trace output, but we
have no control over its setting. The final topic was TCP’s urgent data, which is often
mistakenlycalled “out-of-band data.” TCP’s urgent modeis just a notification from the
senderto the receiver that urgent data has been sent, along with the sequence number
of the final byte of urgent data. The programming interface for the application to use
with urgentdata is often less than optimal, which leads to much confusion.

Exercises

20.1 In Figure 20.6 (p. 281) we could have shown a byte numbered 0 and a byte numbered 8193.
Whatdothese 2 bytes designate?

20.2. Look ahead to Figure 22.1 (p. 324) and explain the setting of the PUSH flag by the host
bsdi.

20.3. In a Usenet posting someone complained about a throughput of 120,000 bits/sec on a
256,000 bits/sec link with a 128-ms delay between the United States and Japan (47%utili-
zation), and a throughputof 33,000 bits/sec when the link was routed overa satellite (13%
utilization). What does the window size appear to be for both cases? (Assume a 500-ms
delayfor the satellite link.) How big should the windowbeforthesatellite link?

20.4 If the API provided a way for a sending application totell its TCP to turn on the PUSH
flag, and a wayforthe receiverto tell if the PUSH flag was on in a received segment, could
the flag then be used as a record marker?

20.5 In Figure 20.3 why aren’t segments 15 and 16 combined?

20.6 In Figure 20.13 we assumethat the ACKs come back nicely spaced, corresponding to the
spacing of the data segments. What happensif the ACKs are queued somewhere on the
return path, causing a bunch of them to arrive at the same timeat the sender?

IPR2022-01227

EXHIBIT 1019 - PAGE 0064

IPR2022-01227
EXHIBIT 1019 - PAGE 0065

ACK
API

ARPANET

AS
ASCII

ASN.1
BER
BGP
BIND

BOOTP
BPF

BSD
CIDR

CIX
CLNP
CRC
CSLIP

CSMA
DCE

DDN

DHCP
DLPI

DNS
DSAP
DTS
DVMRP
EBONE
EGP
EOL
FCS
FDDI

FIFO

FQDN

HDLC
HELLO
IAB

IANA
ICMP
IDRP
IEEE

IESG
IETF

IGMP
IGP

IRTF
IS-IS
ISN
IsO
ISOC

LBX

Lcp
LFN

LIFO
LLC

ACRONYMS

acknowledgmentflag, TCP header, p. 227
application program interface, p. 17
Address Resolution Protocol, p. 53
Advanced Research Projects Agency network, p. 548
autonomoussystem, p. 128
American Standard Code for Information Interchange,p. 401
Abstract Syntax Notation One, p. 386
Basic Encoding Rules,p. 386
Border GatewayProtocol, p. 138
Berkeley Internet Name Domain,p. 188
Bootstrap Protocol, p. 215
BSD PacketFilter, p. 491
Berkeley Software Distribution, p. 16
classless interdomain routing, p. 140
Commercial Internet Exchange, p. 119
Connectionless Network Protocol, p. 50
cyclic redundancy check,p. 22
compressed SLIP, p. 25
carrier sense multiple access, p. 21
Distributed Computing Environment, p. 462
Defense Data Network,p. 8
don’t fragmentflag, IP header, p. 149
Dynamic Host Configuration Protocol, p. 222
Data Link Provider Interface, p. 494
Domain NameSystem,p. 187
Destination Service Access Point, p. 22
Distributed Time Service, p. 77
Distance-Vector Multicast Routing Protocol, p. 185
EuropeanIP Backbone,p. 119
Exterior Gateway Protocol, p. 128
end of optionlist, p. 93
frame check sequence, p. 22
Fiber Distributed Data Interface, p. 4
first in, first out, p. 259
finish flag, TCP header, p. 227
fully qualified domain name,p. 189
File Transfer Protocol, p. 419
high-level data link control, p. 26
routing protocol, p. 128
Internet Architecture Board, p. 14
Internet Assigned Number Authority, p. 13
Internet Control Message Protocol, p. 69
Interdomain Routing Protocol, p. 141
Institute of Electrical and Electronics Engineers, p. 21
Internet Experiment Notes, p. 172
Internet Engineering Steering Group,p. 14
Internet Engineering Task Force, p. 14
Internet Group ManagementProtocol, p. 179
interior gateway protocol, p. 128
Internet Protocol, p. 33
Internet Research Task Force, p. 14
Intermediate System to Intermediate System Protocol, p. 141
initial sequence number,p. 226 ;
International Organization for Standardization, p. 26
Internet Society, p. 14
local area network, p. 3
low bandwidth X,p. 490
link control protocol, p. 26
long fat network, p. 344
lastin,first out, p. 259
logical link control, p. 22

IPR2022-01227

EXHIBIT 1019 - PAGE 0065

IPR2022-01227
EXHIBIT 1019 - PAGE 0066

LSRR
MBONE
MIB
MILNET
MIME
MSL
MSS
MTA
MTU
NCP
NFS
NIC
NIT

NOAO
NOP
NSFNET
NSI
NTP

OSF
OSI
OSPF
PAWS
PDU
POSIX
PPP
PSH

RARP
RFC

RPC

RST
RTO
RTT

SACK
SLIP
SMI
SMTP
SNMP
SSAP
SSRR
SWS
SYN
TCP

TLE

TOS
TEL,
TUBA
Telnet
UDP
URG
UTE
UUCRP
WAN

XDR
XID

ACRONYMS

loose source and record route, p. 104
multicast backbone,p. 186
managementinformation base, p. 365
Military Network, p. 483
multipurpose Internet mail extensions, p. 456
maximum segmentlifetime, p. 242
maximum segmentsize, p. 236

, message transfer agent, p. 442
maximum transmission unit, p. 29
Network Control Protocol, p. 15
NetworkFile System, p. 461
Network Information Center, p. 8
networkinterface tap, p. 493
Network NewsTransfer Protocol, p. 35
National Optical Astronomy Observatories, p. 18
no operation, p. 93
National Science Foundation network, p. 103
NASAScienceInternet, p. 103
Network Time Protocol, p. 77
networkvirtual terminal, p. 401
Open Software Foundation,p. 462
open systems interconnection, p. 26
open shortest pathfirst, p. 137
protection against wrapped sequence numbers,p. 351
protocol data unit, p. 362
Portable Operating System Interface, p. 479
Point-to-Point Protocol, p. 26
pushflag, TCP header, p. 227
Reverse Address Resolution Protocol, p. 65
Request for Comment, p. 14
Routing Information Protocol, p. 129
remote procedurecall, p. 461
resource record, p. 201
reset flag, TCP header,p. 246
retransmission time out, p. 299
round-trip time, p. 299
selective acknowledgment, p. 345
Serial Line Internet Protocol, p. 24
structure of managementinformation, p. 363
Simple Mail Transfer Protocol, p. 441
Simple Network ManagementProtocol, p. 359
source service access point, p. 22
strict source and record route, p. 104
silly window syndrome,p. 325
synchronize sequence numbersflag, TCP header, p. 231
Transmission Control Protocol, p. 223
Trivial File Transfer Protocol, p. 209
Transport Layer Interface, p. 17
type-of-service, p. 34
time-to-live, p. 36
TCP and UDP with bigger addresses, p. 50
remote terminal protocol, p. 401
User Datagram Protocol, p. 143
urgent pointer flag, TCP header, p. 292
Coordinated Universal Time, p. 74
Unix-to-Unix Copy, p. 201
wide area network, p. 1
World Wide Web,p. 486
external data representation, p. 465
transaction ID, p. 463
X/Open Transport LayerInterface, p. 17

IPR2022-01227

EXHIBIT 1019 - PAGE 0066

IPR2022-01227
EXHIBIT 1019 - PAGE 0067

IPR2022-01227

EXHIBIT 1019 - PAGE 0067

IPR2022-01227
EXHIBIT 1019 - PAGE 0068

TCP/1P Ulustrated, Volume
d distinguishes this book from its mam

Laboratories tcpdumppr
ts in promiscuous mode under a variety of OS andee kets Ths!

aL mentations, Stucyis 2 tcpdumpoutput he ee nderstand how the

ircmn etmsitio

uses the Lawrence Berkeley

various protocols work

Stan Kelly-Bootle, Unix Re

CPAP Illustrated is a complete and detailed guide to the ent
protocol suite—with an important difference from other boc

what the RFCs say the prsubject Rather than just describing
SL uld lee this unique bookuses ular diagnostic tool so you
actually watch the protocols in acti

By forcing various condi such as « tion establishment

timeout and retransmission, at Tulane i then displaying the
; reater ; Th " » 'Tek 1 PAP Ulustrated ive

concepts than words alone could provide. Whether you are new to TCP/II’

read other books on the sul ect, you wil '
ased understanding ot how and why TCP/AP work:

mG

las enhancedski at devel i MiPeiemiie.

this unique approach, TCP/IPillustrated pr
1 TCP/IP trom the link layer up through the

THBP eeMe me Chame)

rs v they operate

8 network"
application lavers.

yay
LLwAlPiltih ae tl

+ BSD/386™. AIX

vs Pe

TemiUn most

) 6 enti Teen bc . / yi Tipehetuentavailable

features, including multi: TUM teem eel caa!

W.Richard Stevens is the highly-respected author of three othe:
books, [CPAP Iilustrated, ume 2——with Gary ght Addison-Wesley,

UNIX Environment (Addison-Wesley

1992), and UNIX Network Programming (Prentice-Hall, 1990). He is also a

popular tutorials instructor and consultant.

: 90000

Shane Svkes |
9 201"°63346ec pape

Publishing Group ISBN 0-201-b334b-9
TOs a Geni

i ™ | - —
ee) Advanced | Oorramming im he

IPR2022-01227

EXHIBIT 1019 - PAGE 0068

