CA 02247588 2003-04-24

77575-7

means for evaluating the headers to determine the

formats of the corresponding packets, and

means for causing the packets to arrive at the

module corresponding to their formats.

IPR2022-01227
EXHIBIT 1003 - PAGE 00401

CA 02247588 1998-12-15

31. The system according to claim 29 further including

a time-division-multiplexed bus connecting the voice data processing modules and the
router.
32. The system of claim 29 wherein the first means includes

means for receiving the first data stream,

means for processing the first data stream to extract information according to the
format corresponding to that module, and

means for formatting the extracted information in the intermediate format.
33, The system of claim 32 wherein the first means also includes

buffering means for rate adaption.
34. The system of claim 32 wherein the first means also includes

means for performing cell delay variation compensation.
35. The system according to claim 32 further including

a time-division-multiplexed bus connecting the voice data processing modules and the
router.
36. The system of claim 35 wherein the means for formatting the extracted information
into the intermediate format includes

means for placing the extracted information into appropriate slots in the time-division-
multiplexed bus.
37. The system of claim 32 wherein the second means includes

means for assembling needed information from the intermediate format,

means for organizing the assembled information according to the format
corresponding to this module, and

means for placing the organized information into the second data stream.

17

IPR2022-01227
EXHIBIT 1003 - PAGE 00402

CA 02247588 1998-12-15

38. The system according to claim 37 further including
a time-division-multiplexed bus connecting the voice data processing modules and the
router.
39. The system of claim 38 wherein the means for assembling includes
means for selecting the information from appropriate slots of the time-division-
multiplexed bus.
40. The system of claim 29 further comprising
a time slot interchanger coupled to the voice data processing modules.
41. The system of claim 29 wherein the switch includes
an egress control circuit for arbitrating among the voice data processing modules.
42. The system of claim 29 wherein the router includes
ATM ingress circuitry coupled to the voice data processing modules.
43. The system of claim 42 wherein the ATM ingress circuitry includes
header extraction circuitry for extracting a VPI/VCI header from the first data stream.
44. The system of claim 43 wherein the ATM ingress circuitry includes
means for forming module identification signals from the extracted header.
45. The system of claim 43 wherein the ATM ingress circuitry includes

means for forming data type signals from the extracted header.

18

IPR2022-01227
EXHIBIT 1003 - PAGE 00403

10

CA 02247588 2003-04-24

77575-7

46. An interworking device receiving a first data

stream in a plurality of formats, the device comprising:

a plurality of data processing modules capable of

operating in parallel, each cf the modules including

first means for converting the first data steam
from one of the plurality of formats to a data stream in an

intermediate format, and

gecond means for converting data streams in the

intermediate format to a second data stream;

a router for sending to the appropriate one of the
modules portions of the first data stream with the

corresponding formats; and

a switch for switching the data stream in the

intermediate format between different ones of the modules.
SMART & BIGGAR
OTTAWA, CANAGA

PATENT AGENTS

19

IPR2022-01227

EXHIBIT 1003 - PAGE 00404

CA 02247588 1998-12-15

HDR

N

)

FORTY EIGHT OCTETS FROM ONE DSO

HDR DSO 1

DSO 2

DSO 6

SIX DSOs WITH 8 OCTETS FROM

)

Ne—TN

m

ACH

HDR |DSO 1|DSO 2\DSO 3|DSO 4

DSO 11{DSO 12

N
N——TN

TWELVE DSO’s WITH 4 OCTETS FROM EACH

I

HDR

))

FORTY EIGHT DSO’s WITH 1 OCTTEJT FROM EACH

DELAY AND BANDWIDTH REQUIRED FOR DIFFERENT SIZE “TRUNKS”
IN THE VOICE OVER ATM MULTIPLEX FORMATS

NUMBER OF DSO’s | NUMBER OF BYTES | ATM BANDWITH

PER CELL FROM EACH DSO PER VC DELAY IN mSec
1 48 70,667 6

2 24 141,333 3

3 16 212,000 2

4 12 282,667 1.5

6 8 424,000 1

8 6 565,333 0.75

12 4 848,000 0.5

16 3 1,130,667 0.375

24 2 1,696,000 0.25

48 1 3,392,000 0.125

FiG. 1

IPR2022-01227

EXHIBIT 1003 - PAGE 00405

02247588 1998-12-15

CA

¢ Old

662 /022
AHLINDYID § .,
NOILNILNOD _ = _
SEEIBE mwm SSIHOI WLV
\ ety
GeZ
(XNW3Aa B
AHL1INOYHIO TOHLNOD SSIHONI

aNV NdD 7 Wiy [

262

\ogz oz
N# L #
ONISSID0Hd HNISSIDOHd
VOA N\ VOA
0ee
ocz”
\ 4
HIONVHOHILNI 09¢ sng WAl
107S ANIL .
0.2 SNg WAL

\ ove

IPR2022-01227

EXHIBIT 1003 - PAGE 00406

02247588 1998-12-15

CA

IPR2022-01227

EXHIBIT 1003 - PAGE 00407

G2e
: ZHWN by'61
Y ¥ H1OXY
v v \ OLE
v1va W1V
-] D < < D D .
oz’ 008
& 00S 2| “wee v, “eee 9| “@ee v |
HOLVT
ove .
28¢e
@—. Omm// \ 4
SS3yaav avay JOmwzoo —
S/€ . “ 98¢ 08¢
> oLXApg 2 Hol |
. O4NI XNW3a NVHS) V1va JLIHM oy
SS3IHAAY ILIHM

0L€

02247588 1998-12-15

CA

v "OId

A A
Viva | O4NI | ONINIL

vivad | O4NI | ONINIL

091

0S5t

O

WLV | LNOD | % 00S WLV | XNW3a | 8 00S
\4 \ ﬁ 4 \
NOILN10S3Y (xd) 4/l W1V B §
NOILNILNOD % (x1) 4/ 1wl | (ONiLsnrav 3ivy) odi4 [~ [T 0¥
HNISSIO0Hd HNISSIOOHd _
WLV/ VY OL WAL NAL OL TYY/NLY Ocy
(xd) sna WAL (x1) sna wal /
OL 30V44H3 NI OL 30V44ILNI el
A A, A
viva Nal O4N|
| ONIWIL

IPR2022-01227

EXHIBIT 1003 - PAGE 00408

02247588 1998-12-15

CA

g Old

0GS —

Y

3snd
JNvy
WaL
ZHIN v0'61,
NGL AHLINOYIO
JOV4HILNI
- WNal
nal
)
0€S

Ad1INOYIO
NOILN3INOD NWOHA
TVYNDIS dv3d
ZHN 2L'S B
ANVHS LY O ZHN Y¥'61
. N NLY
¥ 0¢s
120-OVM 04l
dIHO "HVS ,
1YYV S.10] N . ZHN ¥¥'61
ZHIN CL'S NLY
W1V N
0LS

ovs

IPR2022-01227

EXHIBIT 1003 - PAGE 00409

CA 02247588 1998-12-15

ATM 830 TDM
19.44 MHz TDM

MXT3010 |« MXT3020 = BUS | Tpm

Y

\/F
ATM J / /
~19.44 MHz | FIFO 640 620 TDM
< < FRAME
610 PULSE
READ SIGNAL
FROM CONTENTION
CIRCUITRY
READ SIGNAL READ SIGNAL
FOR VoA MODULE #1 FOR VoA MODULE #N
TDM FRAME PULSE

ATM BUS CLk .
+~ EGRESS CONTENTION [
CIRCUITRY

255

FIG. 7

IPR2022-01227
EXHIBIT 1003 - PAGE 00410

240
TOM Bus 270 KL
TOM Bus 260 Time Siot
> interchanger
Tf 230 230 - ‘ l]
VoA Vol
Proc::is ing Processing
210 il N
0
A \\
ATM 232
= ——91 Ingress -\] > GPU ana
& Bemux | 235~ Cankol Circultry
237 255
=] ATM Egress = 'L \ * Al
239 Sgress
-+ 2 Gonteention
Circuliry
220 j

IPR2022-01227
EXHIBIT 1003 - PAGE 00411

Europiisches Patentamt ||||‘||||”|||”|
0’ European Patent Office

Office européen des brevets (11 Publication number : 0 614 317 A2
@ EUROPEAN PATENT APPLICATION
@1) Application number : 94301252.6 @) Int. c1.5: HO4N 7/13

@2) Date of filing : 22.02.94

Priority : 05.03.93 JP 45112/93 @ Inventor : Koyanagi, Hideki, c/o Intellectual
Property Div.
Date of publication of application : Sony Corporation,
07.09.94 Bulletin 94/36 6-7-35 Kitashinagawa
Shinagawa-ku, Tokyo 141 (JP)
Designated Contracting States : Inventor : Sumihiro, Hiroshi, c/o Intellectual
DE FR GB IT NL Property Div.
Sony Corporation,
@ Applicant : SONY CORPORATION 6-7-35 Kitashinagawa
7-35 Kitashinagawa 6-chome Shinagawa-ku, Tokyo 141 (JP)
Shinagawa-ku Inventor : Emoto, Seiichi, c/o Intellectual
Tokyo 141 (JP) Property Div.

Sony Corporation,

6-7-35 Kitashinagawa

Shinagawa-ku, Tokyo 141 (JP)
Inventor : Wada, Tohru, c/o Intellectual
Property Div.

Sony Corporation,

6-7-35 Kitashinagawa

Shinagawa-ku, Tokyo 141 (JP)

Representative : Robinson, Nigel Alexander
Julian et al
D. Young & Co.,
21 New Fetter Lane
London EC4A 1DA (GB)

EP 0 614 317 A2

Video signal decoding.

@ A digital video signal that has been encoded

using motion- compensated prediction, trans- [5 @

form encoding, and variable-length coding, is 5 2

decoded using parallel processing. Frames of [5 —D—

the video signal are divided into slices (1, 2, 3, 4) L1

made up of a sequence of macroblocks (MB). 2 8y MRILIE:
The signal to be decoded is slice-wise divided 8] |s D PR
for parallel variable-length decoding. Each vari- i e NI E| B g|E
able-length-decoded macroblock is divided into | IE||E A EIEE
its constituent blocks for parallel inverse trans- FIREI R

form processing. Resulting blocks of difference B T T

data are added in parallel to corresponding N =

blocks of reference data. The blocks of refer- ”

ence data corresponding to each macroblock
are read out in parallel from reference data
memories (44, 45, 46, 47) on the basis of a 5
motion vector (83) associated with the macrob-
lock. Reference data corresponding to each
macroblock is distributed for storage among a
number of reference data memories.

MC2
MC3
mMcq

FIG.1

P
L
|
[l
L
1
i

|

CODE-BUFF1
CODE-BUFF2
CODE-BUFF3

CODE-BUFF4

26.

DRAM4

5 197

0

N
=
S
=
Z|

Jouve, 18, rue Saint-Denis, 75001 PARIS

IPR2022-01227
EXHIBIT 1003 - PAGE 00412

1 EP 0 614 317 A2 2

This invention relates to decoding of prediction-
coded video signals, and more particularly is directed
to the application of parallel processing to such de-
coding.

It is known to perform compression coding on vid-
eo data which represents a moving picture in order to
reduce the quantity of data to be recorded and/or
transmitted. Such data compression may be useful,
for example, in recording/reproducing systems using
recording media such as magnetic tape or optical
disks, and is also useful in transmission systems such
as those used for video teleconferencing, video tele-
phones, television broadcasting (including direct sat-
ellite broadcast), and the like. For example, it has
been proposed by the Moving Picture Experts Group
(MPEG) to compression-code moving picture video
data utilizing motion-compensated prediction, trans-
form processing using an orthogonal transformation
such as the discrete cosine transform (DCT), and va-
riable-length coding. A system for decoding and re-
producing such compression-coded video data is illu-
strated in block diagram form in Figure 14 of the ac-
companying drawings.

As shown in Figure 14, a sequence of compres-
sion-coded video data is provided at an input terminal
101 for processing, in turn, by an inverse VLC (vari-
able-length coding) circuit 102, an inverse quantiza-
tion circuit 103, and an inverse DCT circuit 104. An
adding circuit 105 forms a reconstructed frame of vid-
eo data on the basis of a difference signal provided
from the inverse DCT circuit 104 and predictive pic-
ture data (reference data) provided from a motion
compensation circuit 106. The resulting reconstruct-
ed video data is stored in a frame memory 107.

The motion compensation circuit 106 forms the
predictive picture data from reconstructed data pre-
viously stored in frame 107 on the basis of motion
compensation information (including, for example,
motion vectors) extracted from the input signal and
supplied to the motion compensation circuit 106 by
the inverse VLC circuit 102. Alternatively, with re-
spect to frames for which predictive coding was not
performed, such as "intra-frame" coded data, the mo-
tion compensation circuit 106 simply provides the val-
ue "0" to the adder 105. Reconstructed frames of vid-
eo data are output from the frame memory 107 via a
digital-to-analog converter 108 for display by a dis-
play device 109.

As the number of pixels in each frame of the video
signal has increased from, for example, the 352 x 240
frame used for video telephones to the 720 x 480
frame used in the NTSC format or the 1920 x 1024
frame in a HDTV (high definition television) system,
it was found to be difficult to perform the necessary
processing using only one processor and one pro-
gram execution sequence. For this reason, it has
been proposed to divide each frame of the video data
into a plurality of subframes, as illustrated in Figure

10

15

20

25

30

35

40

45

50

55

16 of the accompanying drawings, and then to provide
arespective processor for each of the plurality of sub-
frames, so that coding and decoding are performed
with parallel processing by the plurality of processors.
For example, Figure 15 of the accompanying draw-
ings is a block diagram of a decoding system provided
in accordance with this proposal.

In the system of Figure 15, input sequences of en-
coded video data, each representing a respective
subframe, are respectively provided via input termi-
nals 110-113 to processors (decoder blocks) 114-117.
The processors 114-117 decode the respective data
sequences based upon data supplied from frame
memories 119-122, which store respective sub-
frames and are assigned to respective ones of the
processors 114-117. For example, processor 114
stores a subframe of decoded data in the memory
119. In order to provide motion compensation, a
switching logic circuit 118 provided between the proc-
essors 114-177 and the frame memories 119-122,
permits the processor 114 to read out data from an
adjacent portion of the frame memory 120 as well as
from all of frame memory 119. The switching logic cir-
cuit 118 also provides frames of output video data
from the memories 119-120, via a digital-to-analog
converter 123 for display on a display device 124.

The four data sequences respectively provided to
the processors 114-117 can, for practical purposes,
be combined into a single data sequence by providing
headers for controlling multiplexing of the data se-
quence. For this purpose, a separation block (not
shown) is provided upstream from the decoder for
separating the combined data sequence into the four
sequences to be provided to the respective proces-
sors. Examples of parallel processing techniques
which use division of a video frame into subframes
are disclosed in U.S. Patent No. 5,138,447 and Jap-
anese Patent Application Laid Open No.
139986/1992 (Tokkaihei 4-139986).

As just described, according to the conventional
approach, the video frame was generally divided into
subframes which were processed in parallel by re-
spective processors. However, when a frame is div-
ided in this manner, there are restrictions on the ex-
tent to which the processors can access data that is
outside of the processor’s respective subframe. Al-
though, as indicated above, a processor can access
aregion that adjoins its respective subframe, the ex-
tent of such access is limited in order to keep the scale
of the switching logic circuit 118 from becoming undu-
ly large. As a result, the degree of compression effi-
ciency is reduced, and there are variations in the qual-
ity of the reproduced picture at the boundary between
the subframes, which may result in visible artifacts at
the subframe boundary.

In addition, the processing for compression-cod-
ing is carried out completely separately for each of the
subframes, which makes it impossible to provide

IPR2022-01227
EXHIBIT 1003 - PAGE 00413

3 EP 0 614 317 A2 4

compression-coding on the basis of data blocks in
other subframes, a limitation that is not present when
the frame is not divided into subframes. Accordingly,
the compression coding method must be changed to
accommodate the division into subframes, resulting
in a lack of compatibility and a loss in compression ef-
ficiency.

Furthermore, if header data is added to the data
sequence to be recorded or transmitted in order to
provide for multiplexing the data sequence into the re-
spective sequences provided to the parallel proces-
sors, the additional header data increases the over-
head in the recorded data with a corresponding loss
of efficiency, and it may also be necessary to change
the coding procedure, and so forth.

In accordance with a first aspect of the present in-
vention, there is provided an apparatus for decoding
a coded video signal that represents an image frame,
said coded video signal having been divided into a
plurality of slices each of said slices being a sequence
of macroblocks, each of said macroblocks being a
two-dimensional array of picture elements of said im-
age frame, said coded video signal being a bit stream
that represents a sequence of said slices which to-
gether represent said image frame, said bit stream in-
cluding a plurality of synchronizing code signals, each
of which is associated with a respective one of said
slices for indicating a beginning of the respective
slice, the apparatus comprising:

a plurality of decoding means each for decod-
ing a respective portion of said coded video signal
that represents said image frame; and

distributing means responsive to said syn-
chronizing code signals for distributing said slices
among said plurality of decoding means.

According to a second aspect of the invention,
there is provided an apparatus for decoding input sig-
nal blocks that were formed by transform encoding
and then variable-length encoding blocks of video
data, the apparatus comprising:

decoding means for variable-length decoding
a series of said input signal blocks;

parallel data means for forming plural parallel
data streams, each of which includes respective ones
of said series of input signal blocks which were vari-
able-length decoded by said decoding means; and

a plurality of inverse transform means each for
receiving a respective one of said parallel data
streams and for performing inverse transform proc-
essing on the variable-length decoded signal blocks
in the respective data stream.

In preferred embodiments of the apparatus just
described, the decoding circuit is one of a plurality of
decoding circuits for variable-length decoding re-
spective series of input signal blocks, and the appa-
ratus further includes a distributing circuit for forming
the respective series of input signal blocks to be de-
coded by the plural decoding circuits from a bit

10

15

20

25

30

35

40

45

50

55

stream representing an image frame, and the respec-
tive series of input signal blocks are formed in re-
sponse to synchronizing signals provided at predeter-
mined intervals in the bit stream representing the im-
age frame.

According to a third aspect of the invention, there
is provided an an apparatus for decoding an input dig-
ital video signal which includes groups of blocks of
prediction-coded difference data, each of said groups
consisting of a predetermined plurality of said blocks
and having a respective motion vector associated
therewith, each of said blocks of prediction-coded dif-
ference data having been formed on the basis of the
respective motion vector associated with the respec-
tive group which includes said block, the apparatus
comprising:

output means for supplying in parallel blocks of
prediction-coded difference data contained in one of
said groups of blocks;

reference data means for supplying in parallel
plural blocks of reference data, each of said blocks of
reference data being formed on the basis of the mo-
tion vector associated with said one of said groups of
blocks and corresponding to one of said blocks of pre-
diction-coded difference data supplied by said output
means; and

a plurality of adding means each connected to
said output means and said reference data means for
adding a respective one of said blocks of prediction-
coded difference data and the corresponding block of
reference data.

In preferred embodiments of the invention, the
reference data circuit includes a plurality of reference
data memories from which reference data is read out
in parallel on the basis of the motion vector associat-
ed with that group of blocks, a plurality of buffer mem-
ories for temporarily storing reference data read out
from the plurality of reference data memories and a
distribution circuit. According to one alternative em-
bodiment of this aspect of the invention, each of the
buffer memories is associated with a respective one
of the reference data memories and is controlled on
the basis of the motion vector for reading out the ref-
erence data temporarily stored therein, and the dis-
tributing circuit is connected between the buffer
memories and the adding circuits and distributes the
reference data stored in the buffer memories among
the adding circuits on the basis of the motion vector.
According to another alternative embodiment of this
aspect of the invention, each of the buffer memories
is associated with one of the adding circuits and the
distributing circuit is connected between the refer-
ence data memories and the buffer memories for dis-
tributing among the buffer memories, on the basis of
the motion vector associated with that group of
blocks, the reference data read out from the reference
data memories.

According to a fourth aspect of the invention,

IPR2022-01227
EXHIBIT 1003 - PAGE 00414

5 EP 0 614 317 A2 6

there is provided a method of decoding a coded video
signal that represents an image frame, said coded
video signal having been divided into a plurality of
slices each of said slices being a sequence of macro-
blocks, each of said macroblocks being a two-dimen-
sional array of picture elements of said image frame,
said coded video signal being a bit stream that repre-
sents a sequence of said slices which together repre-
sent said image frame, said bit stream including a
plurality of synchronizing code signals, each of which
is associated with a respective one of said slices for
indicating a beginning of the respective slice, the
method comprising the steps of:

providing a plurality of decoding means each
for decoding a respective portion of said coded signal
that represents said video frame; and

distributing said slices among said plurality of
decoding means in response to said synchronizing
code signals.

The data representing each macroblock may be
distributed block-by-block among the plurality of
memories or line-by-line in a cyclical fashion among
the plurality of memories.

A video signal decoding apparatus may be pro-
vided in which the input coded signal is distributed for
parallel processing among several decoding circuits
on the basis of synchronizing code signals that are
provided in the signal in accordance with a conven-
tional coding standard. In this way, parallel decoding
can be precisely carried out on the basis of synchron-
izing signals provided in accordance with a conven-
tional coding method and during time periods avail-
able between the synchronizing signals. In this way,
restrictions on the conventional coding method can
be reduced.

In addition, the data may be sequenced on the
basis of "slices" which are a standard subdivision of
a video frame constituting a plurality of macroblocks
and the slices of data are distributed among decoding
circuits so that high speed parallel decoding may be
carried out.

Further, each of the blocks making up a macro-
block may be distributed to a respective inverse
transformation circuit so that inverse transform proc-
essing can be carried out simultaneously in parallel
for all of the blocks of a macroblock, and the inverse
transform blocks are then combined, in parallel, with
reference data to recover the video signal which had
been predictive-coded. The reference data, in turn,
may be provided from parallel memories at the same
time on the basis of the motion compensation vector
for the particular macroblock, and in such a way that
there is no need to place restrictions on the motion-
compensation carried out during the predictive cod-
ing. For example, there is no need to limit the range
of the motion vector.

Embodiments of the invention will now be descri-
bed, by way of example only, with reference to the ac-

10

15

20

25

30

35

40

45

50

55

companying drawings, in which:
Figure 1 is a block diagram of an embodiment of
an apparatus for decoding a moving picture video
data signal;
Figure 2 is a schematic illustration of a manner in
which video data corresponding to an image
frame is distributed for decoding;
Figure 3 is a timing diagram which illustrates op-
eration of a buffer memory provided in the appa-
ratus of Figure 1;
Figure 4 is a block diagram which illustrates a
code buffering arrangement provided upstream
from variable-length decoder circuits provided in
the apparatus of Figure 1;
Figure 5 is a timing diagram which illustrates op-
eration of the code buffering arrangement shown
in Figure 4;
Figure 6 is a block diagram which shows an alter-
native code buffering arrangement provided up-
stream from variable-length decoder circuits pro-
vided in the apparatus of Figure 1;
Figure 7 is a timing diagram which illustrates op-
eration of the code buffering arrangement shown
in Figure 6;
Figures 8(A), 8(B) and 8(C) together schematical-
ly illustrate a manner in which reference data is
provided on the basis of a motion vector to adders
that are part of the apparatus of Figure 1;
Figure 9 is a timing diagram which illustrates an
operation for providing reference data to the ad-
ders which are part of the apparatus of Figure 1;
Figure 10 is a block diagram of another embodi-
ment of an apparatus for decoding a moving pic-
ture video data signal;
Figure 11(A), 11(B) and 11(C) together schemat-
ically illustrate a manner in which reference data
is provided on the basis of a motion vector to ad-
ders that are part of the apparatus of Figure 10;
Figures 12(A) and 12(B) together schematically
illustrate an alternative manner in which refer-
ence data is provided on the basis of a motion
vector to the adders which are part of the appa-
ratus of Figure 10;
Figure 13 is timing diagram which illustrates an
operation for providing reference data according
to the example shown in Figure 12;
Figure 14 is a block diagram of a conventional ap-
paratus for decoding and reproducing a moving
picture video data signal;
Figure 15 is a block diagram of a portion of a con-
ventional apparatus for decoding and reproduc-
ing a moving picture video data signal by means
of parallel processing; and
Figure 16 schematically illustrates operation of
the conventional decoding apparatus of Figure
15.
A preferred embodiment of the invention will now
be described, initially with reference to Figure 1.

IPR2022-01227
EXHIBIT 1003 - PAGE 00415

7 EP 0 614 317 A2 8

Figure 1 illustrates in block diagram form an ap-
paratus for decoding a moving picture video data sig-
nal that has been coded according to a proposed
MPEG standard system.

An input bit stream representing the coded video
data signal is provided to a demultiplexer 25, by
means of which the input signal is distributed, slice-
by-slice, to code buffers 26-29.

Figure 2 illustrates the slice-by-slice distribution
of the input data. As is well known to those who are
skilled in the art, each slice is a sequence of macro-
blocks transmitted in raster scanning order. The start-
ing point of each slice is indicated by a synchronizing
code signal, and the slices are provided so that trans-
mission errors and the like can be confined to a single
slice, because after an error occurs, proper coding
can resume at the synchronizing code signal provided
at the beginning of the subsequent slice. Accordingly,
the demultiplexer 25 is provided with a circuit which
detects the synchronizing code signals, and distribu-
tion of the input signal among the code buffers 26-29
is carried out in response to the detected synchroniz-
ing code signals.

As is also well known, the motion vectors provid-
ed with respect to each macroblock, and the DC coef-
ficients for each block, are differentially encoded. In
other words, only the difference between respective
motion vectors for the current macroblock and the
preceding macroblock is encoded and transmitted,
and also, only the difference between the respective
DC coefficient for the present block and that of the
preceding block are coded and transmitted.

As indicated in Figure 2, the first, fifth, ninth, etc.
slices of each image frame are stored in the first code
buffer 26, and these slices are provided for variable-
length decoding by a variable-length decoder circuit
30. Similarly, the second, sixth, tenth, etc. slices of
the image frame are stored in the second code buffer
27 for variable-length decoding by variable-length de-
coder circuit 31; the third, seventh, eleventh, etc. slic-
es are stored in the third code buffer 28 for variable-
length decoding by the variable-length decoder circuit
32; and the fourth, eighth, twelfth, etc. slices are stor-
ed in the fourth code buffer 29 for variable-length de-
coding by the variable-length decoder circuit 33.

According to the example shown in Figure 2, the
number of macroblocks in each slice is fixed, so that
it will not be necessary for any of the variable-length
decoders to wait. As result, decoding carried on by the
variable-length decoders is synchronized and is car-
ried out efficiently.

It will be understood that, although the number of
macroblocks per slice is fixed, the number of bits per
slice in the input signal will vary because of variable-
length encoding. Nevertheless, the number of macro-
blocks per slice output by each variable-length decod-
ing circuit is the same according to this example.

In the example shown in Figure 2, each slice is

10

15

20

25

30

35

40

45

50

55

shown as being one macroblock high and extending
horizontally entirely across the image frame, so that
each slice consists of one row of macroblocks. How-
ever, it is also within the contemplation of this inven-
tion to provide for slices having a fixed length in terms
of macroblocks that is longer or shorter than one row
of macroblocks. It is further contemplated that the
number of macroblocks per slice may be variable
within each frame and/or from frame to frame and
that the positions of slices within a frame may vary.
In case variable-length slices are provided within a
frame, it will be appreciated that the number of mac-
roblocks distributed to each of the variable-length de-
coders may be unbalanced, in which case some of the
variable-length decoders may be required to output
filler macroblocks (all zeros for example) until other
decoders have "caught up". Furthermore, it is provid-
ed that variable-length decoding of slices from the
next image frame will not proceed until all of the slic-
es of the current frame have been variable-length de-
coded.

It will be recognized that any loss of decoding ef-
ficiency that results from the occasional need to in-
terrupt the processing by some of the variable length
decoders is compensated for by the fact that the cod-
ing can be performed with slices that have a variable
length in terms of macroblocks.

Details of the variable-length decoding process-
ing will now be described.

Data which has been decoded by the respective
variable length decoders are transferred to buffer
memories 35-38 by way of switcher 34. Figure 3 illus-
trates the manner in which data is distributed to, and
output from, the buffer memories 35-38. It will be not-
ed that, upstream from the buffers 35-38, processing
had been performed in a slice-wise parallel manner,
but downstream from the buffers 35-38 processing is
performed in a block-wise parallel manner. In partic-
ular, the four blocks of luminance data making up a
macroblock are output in parallel from respective
ones of the buffer memories 35-38. (It will be under-
stood that a macroblock also includes chrominance
blocks. For example, in the 4:2:2 format, each mac-
roblock includes four blocks of chrominance data in
addition to the four blocks of luminance data. The dis-
cussion from this point forward will deal only with the
luminance data blocks, it being understood that the
corresponding four chrominance data blocks can be
processed in a similar manner.)

Referring again to Figure 3, it will be seen that the
variable length decoders 30-33 respectively output
simultaneously the respective first block of the first
through fourth slices. The respective first blocks are
distributed among the buffer memories 35-38 so that
the first block of the first slice (i.e., the first block of
the first macroblock of the first slice) is stored in the
first buffer memory 35, the second block of the first
slice is stored in the second buffer memory 36. the

IPR2022-01227
EXHIBIT 1003 - PAGE 00416

9 EP 0 614 317 A2 10

third block of the first slice is distributed to the third
buffer memory 37, and the fourth block of the first
slice is distributed to the fourth buffer memory 38. As
a result, all four blocks of a single macroblock can be
read out in parallel by the respective buffer memories
35-38, so that block-wise parallel processing can be
accomplished downstream. Such processing in-
cludes conventional inverse transform processing in
accordance with zig-zag scanning.

In the example just discussed, each buffer mem-
ory preferably has two banks which each have the ca-
pacity of storing four data blocks.

The block-wise parallel data provided from the
buffer memories 35-38 is subjected to inverse quan-
tization and inverse discrete cosine transform proc-
essing in parallel at processing blocks 39-42. There-
after, motion compensation processing for the four
blocks of the macroblock is also carried out in parallel.
Reference picture data for each macroblock is ex-
tracted from previously reproduced (i.e., previously
reconstructed) image data stored in a frame memory
43. The reference picture data is formed on the basis
of the motion vector which corresponds to the macro-
block being processed and is used to form decoded
data in combination with difference data output from
the processing blocks 39-42. In this example, since
motion compensation processing is carried outin par-
allel for each macroblock (four blocks) of luminance
data, the motion vectors provided to motion compen-
sation processing blocks 53-56 from the variable
length decoders 30-33 always correspond to each
other at any given time. For this reason, an MC (mo-
tion compensation) switcher 52 is used to switch a
data bus, so that it is possible to provide motion com-
pensation processing of the reference data transfer-
red to MC buffer memories 48-51 in such a manner
that memory accessing by the motion compensation
processing blocks 53-56 does not overlap. As a re-
sult, the motion compensation search range, and ac-
cordingly the permissible range of the motion vector,
is not limited. Details of motion compensation proc-
essing will be provided below.

Reproduced decoded image data formed in par-
allel at adders 57-60 is stored via four parallel proc-
essing paths in the frame memory 43 by way of stor-
age buffers 61-64. Moreover, sequences of images
for which the reproduced (reconstructed) data is stor-
ed in memory 43 are output to a digital-to-analog con-
verter 99 through display buffer memories 94-97, and
a display switcher 98 which is switched according to
appropriate display timing. The D/A converted signal
is then displayed on a display device 100.

There will now be described, with reference to
Figure 4, details of a buffering arrangement provided
upstream from the variable length coders of the ap-
paratus of Figure 1.

As shown in Figure 4, an input signal bit stream
is received at an input terminal 65 and provided there-

10

15

20

25

30

35

40

45

50

55

from to a demultiplexer 66 which divides the bit
stream at the beginning of each slice and distributes
the slices among code buffer memories 67-70. The
slices of data are output respectively from the code
buffer memories 67-70 to variable-length decoders
71-74, and variable-length decoded data is respec-
tively output from each of the variable-length decod-
ers 71-74 via output terminals 75-78.

The buffering and decoding operations carried
out by the circuitry shown in Figure 4 will now be de-
scribed with reference to the timing diagram shown in
Figure 5.

In particular, the input bit stream received at the
terminal 65 is divided at the beginning of each slice
by the demultiplexer 66. Because synchronizing code
signals indicative of the beginning of each slice are in-
cluded at intervals corresponding to a plural number
of macroblocks (such intervals each being referred to
as a slice), the synchronizing code signals are detect-
ed at the demultiplexer 65 for the purpose of perform-
ing the division of the bit stream into slices.

As shown in Figure 5, a sequence of the resulting
slices are written in a cyclical fashion into the code
buffer memories 67-70. In particular, slice 1, slice 5,
slice 9, etc. are written into the code buffer memory
67; slice 2, slice 6, slice 10, etc. are written into the
code buffer memory 68; slice 3, slice 7, slice 11, etc.
are written into the code buffer memory 69; and slice
4, slice 8, slice 12, etc. are written into the code buffer
memory 70.

At a point when slice 4 has been written into the
code buffer memory 70, the slices 1-4 are respective-
ly read out in parallel from the code buffer memories
67-70 to the four variable-length decoders 71-74 and
variable-length decoding begins.

The variable-length decoders 71-74 each com-
plete decoding processing of a macroblock from a re-
spective slice within the same time. Decoded data
produced by variable-length decoder 71 is output via
terminal 75; decoded data produced by variable-
length decoder 72 is output via terminal 76; decoded
data produced by variable-length decoder 73 is out-
put via terminal 77; and decoded data produced by
variable-length decoder 74 is output via terminal 78.
All of the decoded data is supplied to the switcher 34
(Figure 1). In addition, decoded motion vector data is
provided from the variable-length decoders to the MC
switcher 52 and motion compensation processing
blocks 53-56.

It should be understood that, in Figure 5, the sym-
bol "1-1" shown in the output of IVLC1 (variable-
length decoder 71) is indicative of the first block of
slice 1. Similarly, for example, "4-1" shown in the out-
put of IVLC4 (variable-length decoder 74) is indicative
of the first block of slice 4.

An alternative code buffering arrangement pro-
vided upstream from the variable-length decoders is
shown in Figure 6.

IPR2022-01227
EXHIBIT 1003 - PAGE 00417

11 EP 0 614 317 A2 12

In Figure 6, the input bit stream is again received
at an input terminal 65 and provided therefrom to a
demultiplexer 79, at which the bit stream is divided at
the beginning of each slice. Inmediately downstream
from the demultiplexer 79 is a code buffer memory 80
which has respective regions in each of which a slice
of data can be stored. Additional buffer memories 90-
93 are provided downstream from the buffer memory
80. In a similar manner to the arrangement of Figure
4, the buffered data output from each of the buffer
memories 90-93 is provided to a respective one of the
variable-length decoders 71-74, and the decoded
data output from the variable-length decoders 71-74
is provided at respective output terminals 75-78.

Operation of the code buffering arrangement
shown in Figure 6 will now be described with refer-
ence to the timing diagram of Figure 7.

As before, the input bit stream provided from the
terminal 65 is divided at the beginning of each slice
by the demultiplexer 79 on the basis of synchronizing
code signals provided at intervals corresponding to a
number of macroblocks.

As shown in Fig. 7, respective slices are written
in a cyclical fashion into the regions 1-4 of the buffer
memory 80. In particular, slice 1, slice 5, slice 9, etc.
are written into region 1; slice 2, slice 6, slice 10, etc.
are written into region 2; slice 3, slice 7, slice 11, etc.
are written into region 3; and slice 4, slice 8, slice 12,
etc. are written into the region 4.

At a point when slice 4 has been written into re-
gion 4, the data stored in the four regions are sequen-
tially read out from the code buffer memory 80. As a
result, slices 1, 5, 9, etc. are read out from region 1
and written into buffer memory 90; slices 2, 6, 10, etc.,
are read out from region 2 and written into buffer
memory 91; slices 3, 7, 11, etc. are read out from re-
gion 3 and written into buffer memory 92, and slices
4, 8, 12, etc. are read out from region 4 and written
into buffer memory 93.

At a time when the contents of region 4 have
been written into the buffer memory 93, the data re-
spectively stored in the buffer memories 90-93 is read
out in parallel to the variable-length decoders 71-74,
and decoding processing starts at that time.

The variable-length decoders 71-74 each com-
plete the decoding processing of a respective macro-
block within the same time. Decoded data produced
by variable length decoder 71 is output via terminal
75; decoded data produced by variable-length decod-
er 72 is output via terminal 76; decoded data pro-
duced by variable-length decoder 73 is output via ter-
minal 77; and decoded data produced by variable-
length decoder 74 is output via terminal 78. This de-
coded data is supplied to the switcher 34, and in ad-
dition, decoded motion vector data is supplied from
the variable-length decoders to MC switcher 52 and
to motion compensation processing blocks 53-56.

As was the case with Figure 5, in Figure 7 the

10

15

20

25

30

35

40

45

50

55

symbol "1-1" is indicative of the first block in slice 1,
which is decoded by variable-length decoder 71,
while "4-1" is indicative of the first block of slice 4,
which is decoded by the variable-length decoder 74.

With respect to the buffering arrangement shown
in Figure 4, it is possible to use certain distribution
methods with respect to input data streams which
have a processing unit which is shorter than a slice
and are included in a layer (known as an "upper lay-
er") which has processing units which are longer than
a slice. With respect to an input data stream which
has such a format, it is possible to simultaneously
write the upper layer into the code buffer memories
67-70 in order to provide parallel data to the variable-
length decoders 71-74. Alternatively, the bit stream
for the upper layer can be written into one of the four
code buffer memories so that the upper layer is de-
coded by only one of the four variable-length decod-
ers, with parameters being set at the other variable-
length decoders. According to another possible meth-
od, an additional processor is provided to decode the
upper layer bit stream so as to set parameters at the
four variable-length decoders.

On the other hand, using the arrangement shown
in Figure 6, the upper layer bit stream can be written
into one of the four regions of the buffer memory 80
and the contents of that region can be simultaneously
written into the buffer memories 90-93 for parallel
processing by the variable-length decoders 71-74.
According to an alternative method, the upper layer
bit stream is written into one of the four regions of the
buffer memory 80 so that the data is written into one
of the four buffer memories 90-93 and is then decod-
ed by one of the four variable-length decoders in or-
der to set parameters at the other variable-length de-
coders.

According to another alternative method, a sep-
arate processor is provided to decode the upper layer
bit stream in order to set parameters at the four vari-
able-length decoders. As a further method, the de-
multiplexer 79 repeatedly writes the upper layer bit
stream into the four regions of the buffer memory 80
so that the data is simultaneously written from each
region into the buffer memories 90-93 for parallel
processing in the variable-length decoders 71-74.

In these ways, distribution of the data stream,
and parallel processing thereof, can be carried out on
the basis of parameters included in the data stream.

Details of decoding processing with respect to
motion-compensated predictive-coded data will now
be described.

Figure 8(A) illustrates a manner in which refer-
ence image data is distributed among and stored in
DRAMSs 44-47 making up the frame memory 43. Each
image frame is, as indicated above, divided into mac-
roblocks, and each macroblock is formed of four
blocks. Each of the four blocks is, in this particular ex-
ample, an 8 x 8 array of pixel elements, and each of

IPR2022-01227
EXHIBIT 1003 - PAGE 00418

13 EP 0 614 317 A2 14

the blocks constitutes one of four quadrants of its re-
spective macroblock. The data with respect to each
macroblock is divided among the four DRAMs 44-47.
In particular, all of the first blocks (upper left blocks)
of all of the macroblocks are stored in DRAM 44, all
of the second blocks (upper right blocks) of all of the
macroblocks are stored in DRAM 45, all of the third
blocks (lower left blocks) of all of the macroblocks are
stored in DRAM 46, and all of the fourth blocks (lower
right blocks) of all of the macroblocks are stored in
DRAM 47. Accordingly, it will be seen that the refer-
ence data is distributed among DRAMs 44-47 in a
checkered pattern.

Continuing to refer to Figure 8(A), the square lab-
elled 81 represents the geometric area of the image
frame which corresponds to the macroblock which is
currently being decoded (reconstructed), and refer-
ence numeral 82 represents the motion vector asso-
ciated with that macroblock, according to the example
shown in Figure 8(A). In addition, the reference nu-
meral 83 represents the reference data stored in the
DRAMSs 44-47 and indicated by the motion vector 82
as corresponding to the current macroblock 81. The
data represented by the shaded square 83 is read out
from the DRAMs 44-47 under control of motion com-
pensation processing blocks 53-56 on the basis of the
motion vector 82. In particular, the data correspond-
ing to the "DRAM1" portion of the square 83 (i.e., a
central portion of the square 83) is read out from
DRAM 44 to motion compensation buffer 48 under
the control of motion compensation processing block
53. Similarly, the portions of the shaded square 83
which overlap with squares labelled "DRAM2" (i.e.,
central portions of the left and right sides of the
square 83) are read out from DRAM 45 to motion
compensation buffer 49 under control of motion com-
pensation processing block 54. Also, the portions of
the shaded square 83 which overlap the squares lab-
elled "DRAMS3" (i.e., the central portions of the upper
and lower edges of the square 83) are read out from
DRAM 46 to motion compensation buffer 50 under
control of motion compensation processing block 55.
Finally, the portion of the shaded square 83 which
overlaps with squares labelled "DRAM4" (i.e., corner
regions of the square 83) are read out from the DRAM
47 to motion compensation buffer 51 under control of
motion compensation processing block 56.

Figure 8(B) is a schematic illustration of the ref-
erence data read out from the respective DRAMs 44-
47 and stored in respective motion compensation buf-
fers 48-51. This data stored in the four motion com-
pensation buffers 48-51 represents the reference
data for the macroblock which is currently to be recon-
structed. However, the data as stored in the individual
motion compensation buffers does not correspond to
the data required for each of the adders 57-60. There-
fore, the MC switcher 52 is provided between the mo-
tion compensation buffers 48-51 and the adders 57-

10

15

20

25

30

35

40

45

50

55

60 so that the correct reference data is distributed
from the motion compensation buffers to the adders.
The reference data which is supplied to each of the
adders 57-60 is schematically illustrated in Figure
8(C).

Figure 9 illustrates the timing, according to the
example shown in Figure. 8(A), at which data read out
from the motion compensation buffers 48-51 is rout-
ed among the adders 57-60.

The processing of the four blocks making up the
macroblock proceeds, as indicated before, in parallel,
with the respective first lines of each of the blocks be-
ing processed simultaneously, then the second lines,
and so forth. With respect to the first lines of the
blocks, initially, at a starting time tl (Figure 9), data
from motion compensation buffer 51 is routed to ad-
der 57, data from motion compensation buffer 50 is
routed to adder 58, data from motion compensation
buffer 49 is routed to adder 59, and data from motion
compensation buffer 48 is routed to adder 60. At a
changeover point in the processing of the first lines,
indicated by time t2 in Figure 9, the routing is changed
so that data from motion compensation buffer 50 is
routed to adder 57, data from motion compensation
buffer 51 is routed to adder 58, data from motion com-
pensation buffer 48 is routed to adder 59, and data
from motion compensation buffer 49 is routed to ad-
der 60. This routing state continues until the end of
the first line (indicated by time t3) and then the pro-
cedure that was followed for the first lines is carried
out again with respect to the second lines. The same
procedure is then continued through the nth lines, but
upon completion of the nth lines of the block, as indi-
cated at time t4, a different routing pattern is estab-
lished for the beginning of the (n + 1)th lines. Accord-
ing to this pattern, data from motion compensation
buffer 49 is provided to adder 57, data from motion
compensation buffer 48 is provided to adder 58, data
from motion compensation buffer 51 is provided to
adder 59, and data from motion compensation buffer
50 is provided to adder 60. This routing arrangement
continues until a changeover point in the (n + 1)th
lines, indicated by time t5, at which the routing ar-
rangement is changed so that data from motion com-
pensation buffer 48 is routed to adder 57, data from
motion compensation buffer 49 is routed to adder 58,
data from motion compensation buffer 50 is routed to
adder 59, and data from motion compensation buffer
51 is routed to adder 60. On the completion of the
process for the (n + 1)th line (indicated by time t6), the
procedure carried out for the (n + 1)th lines is repeat-
ed with respect to each of the remaining lines of the
blocks until the last (eighth) lines have been process-
ed, at which point (indicated by time t7) processing for
the macroblock is complete. Processing for the next
macroblock then begins, on the basis of the motion
vector associated with the next macroblock.

It will be appreciated that the reference data sup-

IPR2022-01227
EXHIBIT 1003 - PAGE 00419

15 EP 0 614 317 A2 16

plied to the adders 50-60 is added by the adders to
the current difference data supplied thereto from the
processing circuits 39-42 so that macroblocks of re-
constructed image data are produced. It will also be
recognized that the storage of the reference data ac-
cording to the above-described checkered pattern in
the frame memory 43, and the above-described
method of reading out, buffering, and switching the
reference data makes it possible to provide motion-
compensation decoding processing without any re-
striction on the range of the motion vector, and in such
a manner that memory accesses do not overlap.

In the embodiment illustrated in Figure 1, the MC
switcher 52 is provided between the motion compen-
sation buffers 48-51 and the adders 57-60. However,
according to an alternative embodiment, shown in
Figure 10, the MC switcher 52 can be provided be-
tween the DRAMs 44-47 and the motion compensa-
tion buffers 48-51, with each of the buffers 48-51 con-
nected directly to, and providing data exclusively to,
a respective one of the adders 57-60.

A method of operating the embodiment illustrat-
ed in Figure 10 will be described with reference to Fig-
ures 11(A)-(C).

Figure 11(A) is similar to Figure 8(A), and shows
a square 84 which represents the geometric area cor-
responding to the macroblock currently being proc-
essed, motion vector 85 associated with the current
macroblock, and a shaded square 86 which repre-
sents the appropriate reference data for the current
macroblock as indicated by the motion vector 85. It
will also be noted that the reference data is distributed
for storage among the DRAMs 44-47 in a block-wise
manner according to the same checkered pattern
shown in Figure 8(A).

Under control of the motion compensation proc-
essing blocks 53-56, and on the basis of the motion
vector for the current macroblock, data is read out
from the DRAMSs 44-47 and routed to the motion com-
pensation buffers 48-51 by the MC switcher 52 so that
all of the reference data to be provided to the adder
57 is stored in the motion compensation buffer 48, all
of the reference data to be provided to the adder 58
is stored in the motion compensation buffer 49, all of
the reference data to be provided to the adder 59 is
stored in the motion compensation buffer 50, and all
of reference data to be provided to the adder 60 is
stored in the motion compensation buffer 51. Refer-
ring to Figures 11(A) and (B), it will be noted that the
data represented by the upper left quadrant of the
shaded square 86 is stored in the motion compensa-
tion buffer 48, the data represented by the upper right
quadrant of the shaded square 86 is stored in the mo-
tion compensation buffer 49, the data represented by
the lower left quadrant of the shaded square 86 is
stored in the motion compensation buffer 50, and the
data represented by the lower right quadrant of the
shaded square 86 is stored in the motion compensa-

10

15

20

25

30

35

40

45

50

55

tion buffer 51. More specifically, during an initial read
out period, data is simultaneously read out from all
four of the DRAMs 44-47 and routed such that data
from a portion of the DRAM 47 is stored in motion
compensation buffer 48, while data from a portion of
DRAM 46 is stored in motion compensation buffer 49,
data from a portion of DRAM 45 is stored in motion
compensation buffer 50, and data from a portion of
DRAM 44 is stored in motion compensation buffer 51.
During a second read out period there is again simul-
taneous reading out of data from the four DRAMSs, but
now the routing is such that data from a portion of
DRAM 46 is stored in motion compensation buffer 48,
data from a portion of DRAM 47 is stored in motion
compensation buffer 49, data from a portion of DRAM
44 is stored in motion compensation buffer 50, and
data from a portion of DRAM 45 is stored in motion
compensation buffer 51. Moreover, during a third
read out period, again there is simultaneous read out
from all of the DRAMSs, but routing is performed so
that data from a portion of DRAM 45 is stored in mo-
tion compensation buffer 48, data from a portion of
DRAM 44 is stored in motion compensation buffer 49,
data from a portion of DRAM 47 is stored in motion
compensation buffer 50, and data from a portion of
DRAM 46 is stored in motion compensation buffer 51.
Then, during a final read out period, data is simulta-
neously read out from four DRAMs and routed such
that data from a portion of DRAM 44 is stored in mo-
tion compensation buffer 48, data from a portion of
DRAM 45 is stored in motion compensation buffer 49,
data from a portion of DRAM 46 is stored in motion
compensation buffer 50, and data from a portion of
DRAM 47 is stored in motion compensation buffer 51.

It will be observed that datafrom every one ofthe
four DRAMS is thus stored in each of the motion com-
pensation buffers. Moreover, with reading of the data
from the DRAMs and control of the MC switcher 52
on the basis of the motion vector for the current mac-
roblock, memory access can be performed without
overlap.

Also, because each of the motion compensation
buffers are associated exclusively with a respective
adder, and the reference data has been stored appro-
priately therein, as shown in Figure 11(C), there is
also no difficulty in accessing the motion compensa-
tion buffers.

There will now be described, with reference to
Figures 12 and 13, in addition to Figure 10, an alter-
native method of operating the embodiment of Figure
10 so that the appropriate reference data is stored in
each of the motion compensation buffers 48-51.

As indicated in Figure 12(A), according to this al-
ternative method of operation, the reference data is
distributed line-by-line among the DRAMS 44-47,
rather than block-by-block, as in the technique shown
in Figure 11(A). For example, referring again to Figure
12(A), the data for the first line of each macroblock

IPR2022-01227
EXHIBIT 1003 - PAGE 00420

17 EP 0 614 317 A2 18

(i.e., the first line of the first and second blocks of the
macroblock), is stored in DRAM 44, the second line of
data of each macroblock is stored in DRAM 45, the
third line of data for each macroblock is stored in
DRAM 486, the fourth line of each macroblock is stored
in DRAM 47, the fifth line of each macroblock is stor-
ed in DRAM 44, and so forth, continuing in a cyclical
fashion, line-by-line. It should be understood that the
data for the ninth line of each macroblock (i.e., the
first line of data in the third and fourth blocks of each
macroblock) is stored in DRAM 44, whereas the data
for the last line of each macroblock (i.e., the last line
of the last two blocks of the macroblock) is stored in
DRAM 47. Accordingly, the reference data is distrib-
uted among the DRAM 44-47 according to a striped
pattern, rather than the checkered pattern of Figure
11(A).

In Figure 12(A), the square labelled 87 repre-
sents the geometric area which corresponds to the
macroblock which is currently to be decoded, the mo-
tion vector 88 is the motion vector associated with the
current macroblock, and the square 89 represents the
appropriate reference data for the current macro-
block, as indicated by the motion vector 88.

Figures 12(B) and Figure 13 indicate the sources
of data and the timing according to which the appro-
priate reference data is stored in the motion compen-
sation buffers 48-51. As before, data is read out from
the DRAMS 44-47 and routed by MC switcher 52 un-
der the control of the motion compensation process-
ing blocks 43-56 and on the basis of the motion vector
for the current macroblock.

In particular, during a first time slot, the reference
data corresponding to the first line of the first block is
read out from DRAM 47 and stored in motion compen-
sation buffer 48. During the same time slot, reference
data corresponding to the eighth line of the second
block is read out from DRAM 46 and stored in motion
compensation buffer 49. reference data for the sev-
enth line of the third block is read out from DRAM 45
and stored in motion compensation buffer 50. and ref-
erence data for the sixth line of the fourth block is read
out from DRAM 44 and stored in motion compensa-
tion buffer 51.

In the next (second) time slot, a one line shift in
routing occurs, so that reference data for the second
line of the first block is read out from DRAM 44 and
stored in motion compensation buffer 48, reference
data for the first line of the second block is read out
from DRAM 47 and stored in motion compensation
buffer 49, reference data for the eighth line of the third
block is read out from DRAM 46 and stored in motion
compensation buffer 50, and reference data for the
seventh line of the fourth block is read out from DRAM
45 and stored in motion compensation buffer 51.

The one-line shifts are continued in each of the
succeeding six time slots so that the data is read out,
routed and stored in the motion compensation buffers

10

15

20

25

30

35

40

45

50

55

10

according to the pattern shown in Figures 12(D) and
13. It will be observed that memory access occurs, as
before, without overlapping.

As aresult, the reference data which is to be sup-
plied to adder 57 is stored in motion compensation
buffer 48, reference data which is to be supplied to ad-
der 58 is stored in motion compensation buffer 49, ref-
erence data which is to be supplied to adder 59 is stor-
ed in motion compensation buffer 50, and reference
data which is to be supplied to adder 60 is stored in
motion compensation buffer 51. Again, there is no
problem with overlapping memory accesses with re-
spect to the motion compensation buffers.

Although the above embodiments of the present
invention have been described with respect to a de-
coding apparatus, it should be understood that the
same could also be applied to a local decoder provid-
ed in a data encoding apparatus.

The moving picture video data decoding appara-
tus provided in accordance with this invention distrib-
utes an input data stream for parallel decoding proc-
essing on the basis of synchronizing code signals
present in the data stream, and the decoding proc-
essing is continuously carried out within a time period
between synchronizing codes. Accordingly, there is
no limitation placed on the coding method with re-
spect to time periods between synchronizing codes.
Thus, parallel decoding processing can be carried out
with respect to data that has been encoded by a con-
ventional method, which difference-codes motion
vectors, DC coefficients and the like on the basis of
differences between a current block and a previous
block.

In addition, in the decoding apparatus provided in
accordance with this invention, the blocks making up
a macroblock are simultaneously processed in paral-
lel so that video data that has been encoded by a con-
ventional encoding method, without modification,
can be reproduced at high speed.

Furthermore, decoding of motion-compensation
coded video data can be carried out with parallel read-
out of reference data from a plurality of memory
banks based on the same motion vector, so that a
plurality of reference data memory banks and motion
compensation circuits can be operated in parallel to
carry out high speed processing on the basis of a con-
ventional encoding method that is not modified by
limiting the range of motion vectors, or by placing
other limitations on motion prediction.

As used in the specification and the following
claims, the term "image frame" should be understood
to mean a signal representing a picture upon which
motion-compensated predictive coding is performed.
As will be understood by those skilled in the art, such
a picture may be formed, for example, of a progres-
sive-scanned video frame, one field of an interlace-
scanned video frame, or two fields which together
make up an interlace-scanned video frame.

IPR2022-01227
EXHIBIT 1003 - PAGE 00421

19 EP 0 614 317 A2

In at least preferred embodiments there is provid-
ed a method and apparatus for decoding a video sig-
nal in which a plurality of memory units and motion
compensation devices are operated in parallel to
process video data encoded according to a known
standard, and without limiting the range of motion
vectors used for predictive coding or requiring similar
restrictions on motion predictive compression-cod-
ing.

Having described specific preferred embodi-
ments of the present invention with reference to the
accompanying drawings, it is to be understood that
the invention is not limited to those precise embodi-
ments, and that various changes and modifications
may be effected by one skilled in the art without de-
parting from the scope of the invention as defined in
the appended claims.

Claims

1. An apparatus for decoding a coded video signal
that represents an image frame, said coded vid-
eo signal having been divided into a plurality of
slices (1, 2, 3, 4), each of said slices being a se-
quence of macroblocks (MB), each of said mac-
roblocks being a two-dimensional array of picture
elements of said image frame, said coded video
signal being a bit stream that represents a se-
quence of said slices which together represent
said image frame, said bit stream including a
plurality of synchronizing code signals, each of
which is associated with a respective one of said
slices for indicating a beginning of the respective
slice, the apparatus comprising:

a plurality of decoding means (30, 31, 32,
33), each for decoding a respective portion of
said coded video signal that represents said im-
age frame; and

distributing means (25) responsive to said
synchronizing code signals for distributing said
slices among said plurality of decoding means.

2. An apparatus according to claim 1, wherein said
plurality of decoding means is fewer in number
than said plurality of slices into which said coded
video signal which represents said image frame
was divided, and said distributing means distrib-
utes said slices in cyclical fashion among said de-
coding means.

3. An apparatus according to any one of claims 1
and 2, wherein each of said slices represents a
portion of said image frame which is one macro-
block high and extends horizontally entirely
across said image frame.

4. An apparatus according to claim 3, wherein each

10

15

20

25

30

35

40

45

50

55

1

20

of said macroblocks is a 16 x 16 array of said pic-
ture elements.

An apparatus for decoding input signal blocks
that were formed by transform encoding and then
variable-length encoding blocks of video data,
the apparatus comprising:

decoding means (30, 31, 32. 33) for vari-
able-length decoding a series of said input signal
blocks;

parallel data means (34) for forming plural
parallel data streams, each of which includes re-
spective ones of said series of input signal blocks
which were variable-length decoded by said de-
coding means; and

a plurality of inverse transform means (39,
40, 41, 42) each for receiving a respective one of
said parallel data streams and for performing in-
verse transform processing on the variable-
length decoded signal blocks in the respective
data stream.

An apparatus according to claim 5, wherein said
decoding means is one of a plurality of decoding
means for variable-length decoding respective
series of input signal blocks; and further compris-
ing distributing means (25) for forming said re-
spective series of input signal blocks to be decod-
ed by said plural decoding means from a bit
stream representing an image frame and in re-
sponse to synchronizing signals provided at pre-
determined intervals in said bit stream represent-
ing said image frame.

An apparatus for decoding an input digital video
signal which includes groups of blocks (83) of pre-
diction-coded difference data, each of said
groups consisting of a predetermined plurality of
said blocks (MB) and having a respective motion
vector (82) associated therewith, each of said
blocks of prediction-coded difference data hav-
ing been formed on the basis of the respective
motion vector associated with the respective
group which includes said block, the apparatus
comprising:

output means (39, 40, 41, 42) for supplying
in parallel blocks of prediction-coded difference
data contained in one of said groups of blocks;

reference data means (43, 53, 54, 55, 56,
48, 49, 50, 51) for supplying in parallel plural
blocks of reference data, each of said blocks of
reference data being formed on the basis of the
motion vector associated with said one of said
groups of blocks and corresponding to one of said
blocks of prediction-coded difference data sup-
plied by said output means; and

a plurality of adding means (57, 58, 59, 60)
each connected to said output means and said

IPR2022-01227
EXHIBIT 1003 - PAGE 00422

10.

1.

21 EP 0 614 317 A2

reference data means for adding a respective one
of said blocks of prediction-coded difference data
and the corresponding block of reference data.

An apparatus according to claim 7, wherein each
of said groups of blocks is a macroblock which in-
cludes four blocks of prediction-coded data and
said plurality of adding means consists of four ad-
ders (57, 58, 59, 60) operating in parallel.

An apparatus according to any one of claims 7
and 8, wherein said reference data means com-
prises:

a plurality of reference data memories (44,
45, 46, 47) from which reference data is read out
in parallel on the basis of said motion vector as-
sociated with said one of said groups of blocks;

a plurality of buffer memories (48, 49, 50,
51), each for temporarily storing the reference
data read out from a respective one of said plur-
ality of reference data memories and for reading
out the temporarily stored data on the basis of
said motion vector associated with said one of
said group of blocks; and

distributing means (52) connected be-
tween said buffer memories and said adding
means for distributing among said plurality of
adding means, on the basis of said motion vector
associated with said one of said groups of blocks,
the reference data read out from said plurality of
buffer memories.

An apparatus according to any one of claims 7
and 8, wherein said reference data means com-
prises:

a plurality of reference data memories (44,
45, 46, 47) from which reference data is read out
in parallel on the basis of said motion vector as-
sociated with said one of said groups of blocks;

a plurality of buffer memories (48, 40, 50,
51), each connected to a respective one of said
adding means, for temporarily storing reference
data read out from said plurality of reference data
memories and for supplying the temporarily stor-
ed reference data to its respective adding means;
and

distributing means (52) connected be-
tween said reference data memories and said
buffer memories for distributing among the plur-
ality of buffer memories, on the basis of said mo-
tion vector associated with said one of said
groups of blocks, the reference data read out
from the plurality of reference data memories.

An apparatus according to claim 10, wherein
each of said buffer memories temporarily stores
reference data read out from every one of said
reference data memories.

10

15

20

25

30

35

40

45

50

55

12

12.

13.

14.

15.

22

An apparatus according to any one of claims 7 to
11, wherein said input digital video signal includes
input signal blocks that were formed by transform
encoding and then variable-length encoding
blocks of prediction-coded difference data, and
said output means comprises:

decoding means (30, 31, 32, 33) for vari-
able-length decoding a series of said input signal
blocks;

parallel data means (34) for forming plural
parallel data streams, each of which includes re-
spective ones of said series of input signal blocks
which were variable-length decoded by said de-
coding means; and

a plurality of inverse transform means (39,
40, 41, 42) each for receiving a respective one of
said parallel data streams and for performing in-
verse transform processing on the variable-
length decoded signal blocks in the respective
data stream to form blocks of prediction-coded
difference data that are supplied to said adding
means.

An apparatus according to claim 12, wherein said
decoding means is one of a plurality of decoding
means (30, 31, 32, 33) for variable-length decod-
ing respective series of input signal blocks; and
further comprising distributing means (25) for
forming said respective series of input signal
blocks to be decoded by said plural decoding
means from a bit stream representing an image
frame and in response to synchronizing signals
provided at predetermined intervals in said bit
stream representing said image frame.

A method of decoding a coded video signal that
represents an image frame, said coded video sig-
nal having been divided into a plurality of slices
(1, 2, 3, 4), each of said slices being a sequence
of macroblocks (MB), each of said macroblocks
being a two-dimensional array of picture ele-
ments of said image frame, said coded video sig-
nal being a bit stream that represents a sequence
of said slices which together represent said im-
age frame, said bit stream including a plurality of
synchronizing code signals, each of which is as-
sociated with a respective one of said slices for
indicating a beginning of the respective slice, the
method comprising the steps of:

providing a plurality of decoding means
(30, 31, 32, 33), each for decoding a respective
portion of said coded signal that represents said
video frame; and

distributing said slices among said plural-
ity of decoding means in response to said syn-
chronizing code signals.

A method according to claim 14, wherein said

IPR2022-01227
EXHIBIT 1003 - PAGE 00423

16.

17.

18.

19.

20.

21.

23 EP 0 614 317 A2

plurality of decoding means is fewer in nhumber
than said plurality of slices into which said coded
video signal which represents said image frame
was divided, and said distributing step includes
distributing said slices in cyclical fashion among
said decoding means.

A method according to claim 14, wherein each of
said slices represents a portion of said image
frame which is one macroblock high and extends
entirely across said image frame.

A method according to claim 16, wherein each of
said macroblocks is a 16 x 16 array of said picture
elements.

A method of decoding input signal blocks that
were formed by transform encoding and then va-
riable-length encoding blocks of video data, the
method comprising the steps of:

variable-length decoding a series of said
input signal blocks;

forming plural parallel data streams, each
of which includes respective ones of said vari-
able-length decoded series of input signal blocks;
and

performing, in parallel, inverse transform
processing on the variable-length decoded signal
blocks in the respective data streams.

A method according to claim 18, further compris-
ing the steps of:

forming in parallel plural series of input sig-
nal blocks from a bit stream representing an im-
age frame of input video signals and in response
to synchronizing signals provided at predeter-
mined intervals in said bit stream representing
said frame of input signals; and

variable-length decoding, in parallel, the
plural series of input signal blocks.

A method according to claim 19, further compris-
ing the step of distributing variable-length decod-
ed input signal blocks from every one of said plu-
ral series of input signal blocks to each of said plu-
ral parallel data streams.

A method of decoding an input digital video signal
which includes groups of blocks of prediction-
coded difference data, each of said groups con-
sisting of a predetermined plurality of said blocks
and having a respective motion vector associated
therewith, each of said blocks of prediction-cod-
ed difference data having been formed on the ba-
sis of the respective motion vector associated
with the respective group which includes said
block, the method comprising the steps of:
outputting in parallel blocks of prediction-

10

15

20

25

30

35

40

45

50

55

13

22,

23.

24.

25.

24

coded difference data contained in one of said
groups of blocks;

reading out in parallel from memory, on
the basis of the motion vector associated with
said one of said groups of blocks, plural blocks of
reference data, each of said blocks of reference
data corresponding to one of said blocks of pre-
diction-coded difference data; and

respectively adding, in parallel, the blocks
of prediction-coded difference data contained in
said one of said groups of blocks and the corre-
sponding blocks of reference data.

A method according to claim 21, wherein said
reading out step comprises the sub-steps of:

reading out the reference data from a plur-
ality of memories on the basis of the motion vec-
tor associated with said one of said groups of
blocks;

distributing, on the basis of the motion
vector associated with said one of said groups of
blocks, the reference data read out from the plur-
ality of memories;

temporarily storing the distributed refer-
ence data; and

reading out the temporarily stored data.

A method according to any one of claims 21 and
22, wherein said input digital video signal in-
cludes input signal blocks that were formed by
transform-encoding and then variable-length en-
coding blocks of prediction-coded difference
data, said outputting step comprising the sub-
steps of:

variable length decoding a series of said
input signal blocks;

forming plural parallel data streams, each
of which includes respective ones of said vari-
able-length decoded series of input signal blocks;
and

performing, in parallel, inverse transform
processing on the variable-length decoded signal
blocks in the respective data streams.

A method according to claim 23, further compris-
ing the steps of:

forming in parallel plural series of input sig-
nal blocks from a bit stream representing an im-
age frame of input video signals and in response
to synchronizing signals provided at predeter-
mined intervals in said bit stream representing
said frame of input signals; and

variable-length decoding, in parallel, the
plural series of input signal blocks.

A method of decoding a prediction-coded video
signal that represents an image frame, said pre-
diction-coded video signal having been divided

IPR2022-01227
EXHIBIT 1003 - PAGE 00424

25 EP 0 614 317 A2 26

into a plurality of macroblocks, each of said mac- said macroblocks is composed of sixteen lines,
roblocks being a two-dimensional array of picture and said number of memories is four.
elements of said image frame, the method com-
prising the steps of:
providing a plurality of memories each for 5
storing reference data which corresponds to a re-
spective portion of said image frame, said plural-
ity of memories together storing reference data
which represents a complete image frame; and
distributing data representing a recon- 10
structed image frame for storage in said plurality
of memories such that a portion of each macro-
block of the reconstructed image frame is stored
in each of said plurality of memories.
15
26. A method according to claim 25, wherein said
macroblocks are each composed of a predeter-
mined number of two-dimensional blocks and
each of said plurality of memories stores corre-
sponding blocks from all of the macroblocks of an 20
image frame.

27. A method according to claim 26, wherein said

plurality of memories consists of first, second,
third and fourth memories, said macroblocks are 25
each composed of four blocks which respectively
represent upper left, upper right, lower left and
lower right quadrants of the respective macro-
block, and said distributing step comprises:

storing in the first memory the blocks rep- 30
resenting the upper left quadrants of all of the
macroblocks;

storing in the second memory the blocks
representing the upper right quadrants of all of
the macroblocks; 35

storing in the third memory the blocks rep-
resenting the lower left quadrants of all of the
macroblocks; and

storing in the fourth memory the blocks
representing the lower right quadrants of allofthe 40
macroblocks.

28. A method according to any one of claims 25, 26
and 27, wherein said distributing step comprises
storing a first line of each of said macroblocks in 45
a first one of said plurality of memories and stor-
ing a second line of each of said macroblocks in
a second one of said plurality of memories.

29. A method according to claim 28, wherein each of 50
said macroblocks is composed of a number of
lines that is an integral multiple of a number of
memories that forms said plurality of memories,
and said distributing step comprises distributing
said lines of each macroblock in cyclical fashion 55
among said memories.

30. Amethod according to claim 29, wherein each of

14

IPR2022-01227
EXHIBIT 1003 - PAGE 00425

EP 0 614 317 A2

9
£9

I E

26

el e aE
- o
19~ | HW_.V = =] v/d || Av1dsia
—] 14dng-1s ~{z3a4ng-dsia}>| 3
rolg| ||
—[EEsse-? 65 oo
' v44n8-0N —— -~ nvaa |ﬂ 86
1 kG ey
09| (P~ 2 £44ng-OW S ﬂ ["ewvua va“
7 ol 05 L &N | -
ec| (B I ~—| zadna-on] zuvaa k1 &P
, 3| sp -Tzom 7 _ sl
8S mVAI 133N8-OW = -vwvea ||
b] st -fon] .)
28 pu
| v1oaiol f=— ddng Tl —{voAi 44n8-3009 |<
A7 o] = —eg 6
{ eLoavol T|_ ddng Tl £ [~—1 €07l |=—{ €44n8-3000 T|
i velg| = CE XNW3A ~—"Tagni ©
ﬁoo_B_r)o - &:mﬂmm m m iy EEA sy EZETES mooo(\ ;
ol I P e ~-gz
110001 }=—{ 24na 197A1 |=—] 144ng-3a09
es 68 Tpe el ~92

15

IPR2022-01227

EXHIBIT 1003 - PAGE 00426

EP 0 614 317 A2

£44n8-3000 0} ~—

T
v44Ng-3000 0} =

€44N8-3Q00 0] =—
¢44N4g-34090 0} =——

}44N9-300D 0} ~—

¢ Old

~

* *

an

giN

21|

g

KX | K| K| ¥

¥ | ¥ | %% |*

KIHK | % | % | %

K | ¥ | K| XK

an

§30I7S

¥32171S

€30I7S

¢30I7S

13011S

16

IPR2022-01227

EXHIBIT 1003 - PAGE 00427

EP 0 614 317 A2

€Ol

X X XX

v-quh?m X _TNVA bl

méX €-¢€ X £-2 X €

N-le z-¢ x z-2 X z-1

e X)G X

200718 3A211S

/

V
v-v X m.vx c-v X/P-w\

v-€ Xm-ﬂx ¢-¢ vhr-m

301S ¥

V-2 Xm.w %N-N X L-2

v-1 X g-1 N-FXP-F

(awz/L) ¥ooa v

HOLO3A
NOILOW

YOW/10d

€OW/10a

¢OW/10a

FOW/10d

vYOTAI

€0TAI

¢OTAI

LOT1AI

17

IPR2022-01227

EXHIBIT 1003 - PAGE 00428

66

INPUT

o\———> DEMUX

65

WRITE-IN

EP 0 614 317 A2

FIG.4

18

READ-OUT OUTPUT
CODE-BUFF1 IVLC1
) ~ ;
67 71 75
CODE-BUFF2 IVLC2
7 7 ;
68 -72 76
CODE-BUFF3 > IVLC3
7) ;
69 7’3 77
CODE-BUFF4 IvLC4 —?
) / 78
70 74

IPR2022-01227

EXHIBIT 1003 - PAGE 00429

EP 0 614 317 A2

Y

_\< 1\ -2\ WC\K e\

SL FSLICEZ SLICE3 sLI
INPUT) ICE1 /~ASLICE4 SLICES A\ SLICE6 /L CE7
CODE-BUFF1

CODE-BUFF2

WHITEIN (sLices)
CODE-BUFF3 '

WRITE-IN (SLICE? |
CODE-BUFF4 -

WRITE-IN

READOLT A SLICE1 @Llcss
“READ-OUT (sLice2 (stices
CRERESEe | SLICE3 <E_ICE7
CREAD UL SLICE4 <§LICE7

IVLC1
S B

IVLC2
OUTPUT

EE O
QUTPUT

IVLC4 \
OUTPUT

FIG.5

19

IPR2022-01227
EXHIBIT 1003 - PAGE 00430

EP 0 614 317 A2

9'0Old

84 124 £6
AMJ . (
Bzt "3d4ng
YA £l c6
m { 4
| €Al "3d4ng
9/ p2 16
Vl ¢OTAl =—{H3d44ng
G/ 14 06
LOTAI H3ddng
Lndino 1no-avay

08
vNomay |
ENOIDIH
ZNOIDIY
INOIDIY

H344n8-3009
NI-ILIHM

Xnw3aa

1l

G9

NdNI

20

IPR2022-01227

EXHIBIT 1003 - PAGE 00431

EP 0 614 317 A2

1Ndino
YOTAI

lnd.Lno
€J7AI

ind.ino
C¢OTAI

indino

5L Xr XE- K2 XL 1) LOTAI

\ LNo-avay
b3JNS) [EEE]:]

1n0-avad
gd3d4ng

1N0-avay
[4-EEETpE:]

\\.\\\\\\I\\\\\.\L LH344ng

NI-3LIHM
vH3d4ng

(eNOIDTH) (eNoID3H) NIFILIHM

td3addng

(enoro3s) (o) NET LI

cH3d4ng

CEEED E NI-3LIHM

td3d44ng

((X) % /— 1no-avay
YNOIDIH X ENOIDIH X ZNOID3H X INOIDTH on_wmQﬁmzo_um&@zo_wmQ@o_wmmvf 44n8-30409

ENOIOIH X ZNOIOTH X LNOIDIH X ¥NOIOIH X ENOIDIH YeNooadY iNooad X \FILlm
£3011s X 93011s X s3oris X vaons X £3ons X eaons X 13ors LNdNI

L'Old

N N N 7

~

mmo_._wv

N

Nmo_._mJ\

N AN

PNOID3YH

N

21

IPR2022-01227

EXHIBIT 1003 - PAGE 00432

EP 0 614 317 A2

(9)8'vId

09 H3AAV 6S Y3q

Ol

I
7

Q‘:

85 H3aagy
ol

AR Elelq

o)

(g)8O1d

v
L

-

(V) 8Dl

HI\NU\R
PINVHA WOY4
| y44n8-ON
ay SN TE EWVHA | YN G ol vHa | eWvya
ol ﬂ/mum gl NN\
_m_w_ _v mmlu.xm” R
i o Nl
z EAYHA WOUH LNVHA | Ha) MV E @En LNYHa
i £44n8-ON

L\ /.

¢NVHAa Woyu4d
¢4:1N9-O

LS}

HAYHAO WOoYA
F44N8-OW

==X
N FHEF e HEHEAY A | EWYHa
%/@@ AI\ EWvHQ |y 7 d

=/

&\30 ZWYHa _s_ﬁ@mszmo HAYHa

(M0071804HOY \ . \ g

JON3H343H) £8

(X20790HOYIN LNIHHND)/ 8
(HoLo3A NOILOW) 28

22

IPR2022-01227

EXHIBIT 1003 - PAGE 00433

EP 0 614 317 A2

6'Old

L3) i1 . 2

T

1

3E vA L
aNI Yi-(p+u)

L

T

INIT Y-8 INIT Ul-u

(4] 1

nxq £

INI1 pu-g
aNITIS-L
/ 4
65
oguaaav oL | 45y
v oiele v
L ___ - —
2 JL|L |z
1 1
I RE
——— -]
v lele iv

gsuIAAY G HIAAY

ol

Ol

B
z xm
DD

0943aav oL

6S H3aav Ol

85430av ol

—

1% X LS H3AAvV OL

23

IPR2022-01227

EXHIBIT 1003 - PAGE 00434

bs | 0Ll
s ——— T s

IPR2022-01227

EXHIBIT 1003 - PAGE 00435

EP 0 614 317 A2

=~ £44na-1s . o
29 96 @
19 . = v/a
~iana1s ~[z3dna-asia)~{ 3 Aviesd
_ b6 |m f , w
, —[mmeasa-*| 66 ool
1G~ [— ———————
4
v44N8-OW _ o0 Tﬁﬂﬂnv_ 86
~ ! _
= s EEIT ~ |
€44n8-0N O p— | _EWvda |
@ e | e
06 W ={ EON _ _l
l._ <~
z44ng-OW Q™ ! N_>_<mo N v
T | mv_
- Sl | T ! [zow _mvm “
xﬁu l44n8-on =< = _\EVF
. mw FOW L
8t | “gg
—{ vLoalol &:mlTl ~—1— Y97AI |<—] vaang- moooT
2t “g¢e L “-¢¢
rﬁoo_\oI"_:mT[2 { £97A1 j=—] €d1na- m_aooT
I veld| e S| XNWIQ =750
2LOaI/O! f=— 4408 |<— T t=—1Tz57) 244N9-3000 |=—
—0t —9g| @ . ~IE x4
—| tLoavol |=— dd4na |=— (~—]197a1 <] 133na-3q05 -6

6€ Ge pe o 92

24

EP 0 614 317 A2

(@)Dl (@D (V)LD
3 ,

q%//mu
LHBRN
Q

A

IPR2022-01227

EXHIBIT 1003 - PAGE 00436

25

N
NAN
¥OW HOA
p44n8-ON
ommmomm 65 430QY T RN
elliilty ENVHA | vinvHeEReHamrNvYa | EWvHa
Y en ~ N
/,E.;z, il N\
NIl €O HO4 AN {14
y//// Al ! FHNYHQA | ZnvHa LWYHGY CWvHa | LAYHQ
7 - €44n9-oW =
=5 \\\ = :
==ty \w\ =EIE Al\ms_<m0 vE<¢n.,.\ Ha | elwvya
8 mmomm LS y3aaav Sreors]
oL SEE
ZOW HO4 .
AN LNVHA | 2WVHA | LAYHA Ns_éo HAWHG
4
e (X00190H2V AlélL
w\f\ 2 3ONIH3JTW) I8
7 k (MO0THOHOVIN INIJHUND) 8
%% .

LOW HOA (HOLD3A NOILOW) 68

t44ng-On

EP 0 614 317 A2

(d)2L oI

(b44na-2W)PON

(e44ng-on)eom

ENvHa ¢ ENVHA ¢
CNYHa ¢ CWvHa |
LAVHG 1 IWvHa 8
PAVYHaQ g VNVHA Z
EWNVHa ¢ ENYHA g9
CWvHa o9 CNVHa ¢
HAVHa s INVHA ¢
YNvHa ¢ \ﬂx<mc £
ENVHO ENvda 8
CAvHg 8 cNvda 2
INVHa £ HAVHA 9
PNVHA 9 pPNVHa S
ENVYHA ¢ EWYHa ¢
CWYHG ¢+ ZWVHa ¢
INvHa ¢ IWvda ¢
PANVYHa ¢ PNVYHA |

(V)2Lold

10IS ML

PInvHd

ENvHA

e e o o S T W G Ny N % O

¢NVHA

HNVHG ———

)

!

1
1
1}

(r._%m-os_w\os

Z

(144ng-oW)1om

YINVHa
ms_éo/
ZNVHA /

\
\
\

\

\

:>_<mo%

\

(¥D0T180HIV m,m
CRTSERENED

(X007190HOVIN INJHHND) L8

(HoL93A NolLOW) 88

26

IPR2022-01227

EXHIBIT 1003 - PAGE 00437

EP 0 614 317 A2

€1'OId

YWvHa

>

>

PINYHA X [ENVYHA X [2WvHa IHNYHAa SNVHQ A [CAYHA X | HNYHAa
HAVHA X (VIWNVYHQA X elwvda X | SWvHa X [twvda X | vinvda X |[EWvHa N_>_<mnX
zwvaa Y| invaa Y| vvaaY| envaaY] envuaY] iwvea Y| snvaaY] envua
ENVYHAa Y |ZinvHa IHANVYHQa vE(mQ ENVYHA X {znvHa —E<ID VAVYHA

L

E><i

LO1S-IN -
IwiL

(b44na-oW)vON

(e44ng-ON)EDN

(z44ng-2W)ZoW

(144ng-oW) 1O

27

IPR2022-01227

EXHIBIT 1003 - PAGE 00438

EP 0 614 317 A2

pL'OId

T o018 |
" ¥300923q |
_
_r;ozaammmmroo = |
_ NOILVINHOANI |
| | Ve Noilow NOILVSNIdWOD |
| NOILOW |
_ _

| “ 10/

B 3 _ B LINDHID nguio | 1§

AV1dsIa v/a AHOWIN = NOILVZILNVND 2 3ok "
_ 3SHIANI ASHAANI | |
} { { _ |
60! 80! 201 _ |
I £0ol cOl _
lllllllllllllllllllllllllllllll |

IPR2022-01227

EXHIBIT 1003 - PAGE 00439

28

EP 0 614 317 A2

G1L'OId

Al

A B 121 ozl 611
/ /) /
VAHOWIW CAHOWIIN ZAHOWIW FAHOWAW
INVHS JNVHA INVHS INVHS
mA: \ A
. LIN2HI0 21907
ONIHOLIMS
A
, \
ez | Y@ 00719 X008 2N007g INO078
¥3aQ023a H300923a ¥300o3a y3doo3a
, C S N
vm\ T 911 il Hr/ t/
Avdsia £l AR 111 Oll

29

IPR2022-01227

EXHIBIT 1003 - PAGE 00440

EP 0 614 317 A2

\

DECODER
BLOCK4

AA .S’

——

FRAME
MEMORY4

~

AMHHIITTTTTs

DECODER
BLOCK3

AAAT_..

s e

FRAME
MEMORY3

<

AT

DECODER
BLOCK2

Y

—— e

FRAME
MEMORY2

>

AHIITHTIH T i

DECODER
BLOCK1

)

FRAME _ | _
MEMORY1

i

FIG.16

30

IPR2022-01227

EXHIBIT 1003 - PAGE 00441

Europidisches Patentamt

0’ European Patent Office

Office européen des brevets

(11 Publication number : 0 614 317 A3

2 EUROPEAN PATENT APPLICATION

@ Application number : 94301252.6
@2) Date of filing : 22.02.94

@D Int. c1.*: HO4N 7/13, HO4N 7/137

Priority : 05.03.93 JP 45112/93
Date of publication of application :

Representative : Robinson, Nigel Alexander
Julian et al
D. Young & Co.,

07.09.94 Bulletin 94/36

Designated Contracting States :

DE FR GB IT NL

Date of deferred publication of search report :

25.01.95 Bulletin 95/04

Applicant : SONY CORPORATION
7-35 Kitashinagawa 6-chome
Shinagawa-ku

Tokyo 141 (JP)

Inventor : Koyanagi, Hideki, c/o Intellectual
Property Div.

Sony Corporation,

6-7-35 Kitashinagawa

Shinagawa-ku, Tokyo 141 (JP)

Inventor : Sumihiro, Hiroshi, c/o Intellectual
Property Div.

Sony Corporation,

6-7-35 Kitashinagawa

Shinagawa-ku, Tokyo 141 (JP)

Inventor : Emoto, Seiichi, c/o Intellectual
Property Div.

Sony Corporation,

6-7-35 Kitashinagawa

Shinagawa-ku, Tokyo 141 (JP)

Inventor : Wada, Tohru, c/o Intellectual
Property Div.

Sony Corporation,

6-7-35 Kitashinagawa

Shinagawa-ku, Tokyo 141 (JP)

21 New Fetter Lane
London EC4A 1DA (GB)

EP 0 614 317 A3

Video signal decoding.

@ A digital video signal that has been encoded

using motion- compensated prediction, trans-
form encoding, and variable-length coding, is
decoded using parallel processing. Frames of
the video signal are divided into slices (1, 2, 3, 4)
made up of a sequence of macroblocks (MB).
The signal to be decoded is slice-wise divided
for parallel variable-length decoding. Each vari-
able-length-decoded macroblock is divided into
its constituent blocks for parallel inverse trans-
form processing. Resulting blocks of difference
data are added in parallel to corresponding
blocks of reference data. The blocks of refer-
ence data corresponding to each macroblock
are read out in parallel from reference data
memories (44, 45, 46, 47) on the basis of a

motion vector (83) associated with the macro-
block. Reference data corresponding to each
macroblock is distributed for storage among a
number of reference data memories.

Jouve, 18, rue Saint-Denis, 75001 PARIS

IPR2022-01227
EXHIBIT 1003 - PAGE 00442

EP 0 614 317 A3

174
£9

L

16

v44ng-dsia

~9¢

=)
s — s}
19 , =1 v/a Av1dsia
M ianes) — (eS| 5| L
welgl b
— a3 65 oo
2 B T avaa L ._Amm
v = 9¢] NV_
oW
r/ O G] |
%u 2 |~—{ eddna-on = | emvua va.
= i !
=1 0¢ .v._ EON W _ -
scl () m ~—] 244n8-oW c [ewvaa k1 CEP
ool @ | |57 con “ 7
e N |
P~ 134na-ow L-[tnvya Tvv"
¢S 8t LOW L g
5 . “ec T TTTTTr
{L0aIOI |=—] ddng f=— t<—]{v01Al =] v44na3000 =
~ ~ — -
2t 8 ___ “ee ~62
{ eLoairol : m ~——{ £91AI j=—] €44n8-3000 |=—
It vg] 2 oE 92| xnwaa Inani©
2LOQNDI [=<—] 44n8" [=— 7 [=—— 291Nl |=—] 2448300 |~—
~0t “-9¢ L ~ig 2
—r1oavor j=—{ 4dna | |=— o7 }=—{ 12ana3a00 e
T 0§

IPR2022-01227

EXHIBIT 1003 - PAGE 00443

EP 0 614 317 A3

@) Eumu e EUROPEAN SEARCH REPORT

Application Number
EP 94 30 1252

DOCUMENTS CONSIDERED TO BE RELEVANT
Category Citation of do:\fn::;: ::li:t;’i::i:;:on, where agpropriate, tl:m w&%go(}:&%{ﬂ THE
X EBU TECHNICAL REVIEW, 1-4, HO4N7/13
no.251, 1 April 1992, BRUSSEL, BE 14-20 HO4N7 /137
pages 22 - 33, XP275388
M. BARBERO ET AL. 'DCT source coding and
current implementations for HDTV'
Y * paragraph 3.2-3.3; figures 3-5 * 5,6
A 7-13,
21-30
Y EP-A-0 442 548 (LABORATOIRES 5,6
D'ELECTRONIQUE PHILIPS ET AL.)
A * the whole document * 1-4,7-30
A PROCEEDINGS OF THE INTERNATIONAL 1-30
CONFERENCE ON APPLICATION SPECIFIC ARRAY
PROCESSORS, 5 September 1990, PRINCETON,
NEW JERSEY, US
pages 226 - 234, XP245104
T. NISHITANI ET AL. 'A Real-Time Software
Programmable ?rocessor for HDTV and Stereo
Scope Signals TECHNICAL FIELDS
* paragraph 3; figure 3 * eas
- HO4N
X E; A)O 479 511 (VICTOR COMPANY OF JAPAN, |25,26
LTD
A * the whole document * 1-24,
27-30
X IEEE MICRO, 1-4,
vol1.12, no.5, 1 October 1992, LOS 14—20
ALAMITOS, CA, US
pages 22 ~ 27, XP330853
0. DUARDO ET AL. 'Architecture and
Implementation of ICs for a DSC-HOTV Video
Decoder System'
A * paragraph 1 -paragraph 2;_ figure 4 * 5-13,
21-30
-/--
The present search report has been drawn up for all claims
_ Place of search Duate of complation of the sesrch Exanior
g THE HAGUE 16 December 1994 Foglia, P
g CATEGORY OF CITED DOCUMENTS T: theory or principls underlying the invention
X : particularly relevant if taken alone B lﬁa‘ o Tiln d:::’:‘ st bk pokiched oo, oo
§ Y ; particularly relevant if combined with another D ¢ document d‘l‘d in the application
= A: ;l::hu’l.:gl; of the same category L : document cited for other reasons
=TS R iy

IPR2022-01227
EXHIBIT 1003 - PAGE 00444

EP 0 614 317 A3

@) ﬁ“;‘:"“ Patent EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Numbe:
EP 94 30 1252

Category

Citation of document with indication, where appropriate,
of relcvant passages

Relevant
to olaim

- APPLICATION (nt.CL5}

CLASSIFICATION OF THE

P,A

P,A

US-A=5 212 742 (NORMILE ET AL.)
* column 9, line 22 - column 14, line 11;
figures 4-6 *

RTM RUNDFUNKTECHNISCHE MITTEILUNGEN,
vol.36, no.5, 1 September 1992,
NORDERSTEDT, DE

pages 196 ~ 205, XP321766

H. HOFMANN ET AL. 'Ein Codec fur die
digitale Ubertragung von HDTV-Signalen'
* paragraph 5; figures 6A-8 *

EP-A-0 535 746 (PHILIPS ELECTRONICS UK
LTD. ET AL.)

TRANSPUTER/OCCAM JAPAN 3, 17 May 1990,
TOKYO,JpP

pages 91 - 160

M. ICHIKAWA ET AL, 'Design and
implementation of software based real=time
video codec using multi-transputer
architecture'

* paragraph 3.1 -paragraph 4.3.5 *

US-A-5 130 797 (MURAKAMI ET AL.)

The present seerch report has heen drawn up for all claims

1-30

1,14

1-30

TECHNICAL FIELDS
SEARCHED (Int.CLS)

Place of search Date of completion of the semeh

THE HAGUE 16 December 1994

Foglia, P

Y:

EPO FORM 1500 00.82 (PO4COL)

0 nn-wmun disclosiure
P : internvediate document document

CATEGORY OF CITED DOCUMENTS T ; theory or prlndple underl;
X : particularly relevant if taken alone

E : earlier patent
articularly relevant if combined with another

g the invention
document, but published
sfter the filing date
D 1 document dul in the application
oulllm of the same category L : documant cited for other reasons

o, Or

& : memaber of the sume patant family, corresponding

IPR2022-01227
EXHIBIT 1003 - PAGE 00445

EP 0 680 185 A2

Europdisches Patentamt

0» European Patent Office

Office européen des brevets

® EUROPEAN PATE

&) Application number: 95105803.1

@) Date of filing: 19.04.95

@ Publication number: 0 680 185 AZ

NT APPLICATION

@ Int. c1.5: HO4L 29/06

Priority: 28.04.94 US 233908

Date of publication of application:
02.11.95 Bulletin 95/44

Designated Contracting States:
DEESFRGBIT

@) Applicant: THOMSON CONSUMER
ELECTRONICS, INC.
10330 North Meridian St.
Indianapolis, IN 46206 (US)

@) Inventor: Joseph, Kuriacose
818 Ravens Crest Drive
Plainsboro,

New Jersey 08543 (US)
Inventor: Dureau, Vincent
219 Sherman Canal

Venice,

California 90291 (US)

Inventor: Jessup, Ansley Wayne, Jr.
22 Eimwood Lane

Willingboro,

New Jersey 08046 (US)

Inventor: Delpuch, Alain

2221 Parnell Avenue

Los Angeles,

California 90064 (US)

Representative: Wordemann, Hermes,
Dipl.-Ing.
Deutsche Thomson-Brandt GmbH,
Patent Dept.,
Gottinger Chaussee 76
D-30453 Hannover (DE)

@ A distributed computer system.

@ A distributed computer system is disclosed
which comprises a source (30) of a continuous data
stream repetitively including data representing a dis-
tributed computing application and a client computer

200~

(22), receiving the data stream, for extracting (207)
the distributed computing application representative
data from the data stream, and executing (224) the
extracted distributed computing application.

A

UX
TRANSPORT 502 - - - - DATA
WECHANGw [2= &AUX_ | PROCESSOR
% STREAM DATA 0
SELECTOR BT T |EXTRACT
PaGET | = | LOCAL
| EXTRACT] PROCOR
erb_::._—,:L::_—, F_ "
208~ %\ =
STREAM o
| 110 T |
218
l I~ A iy i l
PROCESSOR RAM ROM USER [MODEM
| == — 77 —— |
2
PROCE 560
FIG 4 80
USER
—— m

Rank Xerox (UK) Business Services
(3.10/3.09/3.3.4)

IPR2022-01227
EXHIBIT 1003 - PAGE 00446

1 EP 0 680 185 A2 2

The present invention relates to a client-server
distributed computer system. Such a computer
system has application in broadcast multimedia
applications.

Early computer systems were standalone sys-
tems, consisting generally of mainframe comput-
ers. Later, several mainframe computer systems
were closely connected, or clustered, to handle
larger computing jobs, such as a large number of
time sharing users. With the advent of personal
computers, large numbers of relatively low power
standalone computer systems were controlled di-
rectly by their users. Soon these large numbers of
personal computers were coupled together into
networks of computers, providing shared resources
and communications capabilities to the users of the
individual personal computers and between those
users and the preexisting mainframe computers.

One form of such a network includes a central
computer, called a server, which generally includes
a large amount of mass storage. Programs used by
the network users are centrally stored in the mass
storage on the server. When a user desires to run
a program, the user's computer requests that a
copy of that program be sent to it from the server.
In response to that request, the server transfers a
copy of the program from its mass storage to the
main memory of the personal computer of that
user, and the program executes on that personal
computer. Data also may be centrally stored in the
server and shared by all the users on the network.
The data is stored on the mass storage of the
server, and is accessible by all the network users
in response to a request. The server also serves as
a hub for communications of messages (electronic
mail) between network users The server in such a
system handles the storage and distribution of the
programs, data and messages, but does not contri-
bute any processing power to the actual computing
tasks of any of the users. l.e. a user cannot expect
the server computer to perform any of the process-
ing tasks of the program executing on the personal
computer. While such networks perform a valuable
function, they are not distributed computing sys-
tems, in which interconnected computers cooperate
to perform a single computing task.

In an improvement to such networks, the net-
work may be configured in such a manner that a
user on the network may request that the server, or
other personal computer connected to the network,
execute a program. This is termed remote execu-
tion because a computer (server or other personal
computer) remote from the requester is executing a
program in response o a request from the re-
quester. In such a system, the program of which
remote execution is requested is either sent from
the requester to the remote computer, or retrieved
from the server in response to a request by the

70

15

20

25

30

35

40

45

50

55

remote computer. When the program is received, it
is executed. In this manner several computers may
be enlisted to cooperate in performing a computing
function.

Recently, there have been programs which dis-
tribute the actual computing tasks necessary for
performing a single computing function. For exam-
ple, in such a data base program, where the data
base is stored in the mass storage of the server, if
a user desires 1o make a query of the data base,
the portion of the data base management program
on that user's personal computer will generate a
query request, which is forwarded to the server.
The portion of the data base management program
on the server performs the query processing, e.g.
parsing the query request, locating where the data
specified in the query request resides on its mass
storage device, accessing that data, and sending
the results back to the requesting personal com-
puter over the network. The portion of the data
base management program on the personal com-
puter then processes the data received from the
server, e.g. formatting it, and displaying it on the
screen or printing it on a printer. While the server
is processing the query request, the personal com-
puter is free to perform other processing, and while
the personal computer is generating the query re-
quest, and processing the resulting data received
from the server, the server is free to process query
requests from other personal computers.

Other types of programs are also amenable to
this type of distributed computing, termed client-
server computing. The sharing of the processing
tasks between the personal computer and the serv-
er improves the overall efficiency of computing
across the network. Such client-server computer
systems, and remote execution networks, may be
termed distributed computing systems because
several computers (the server and/or the respective
peripheral computers) cooperate to perform the
computing function, e.g. data base management.

Recently, broadcast multimedia programs,
more specifically, interactive television (TV) pro-
grams, have been proposed. Interactive TV pro-
grams will allow a viewer of a television program to
interact with that program. In an interactive TV
system, the central broadcast location (TV network,
local TV studio, cable system, etc.) will have a
central computer, corresponding to the server com-
puter, which will produce signals related to the
interactive TV program to be broadcast simulta-
neously with the TV (video and audio) signals.
These signals carry data representing the inter-
active TV program and may include commands,
executable program code and/or data for control-
ling the viewer interaction. Each viewer location will
have a computer, corresponding to the client com-
puter, which will receive the commands, executable

IPR2022-01227
EXHIBIT 1003 - PAGE 00447

3 EP 0 680 185 A2 4

code and/or data from the central computer, ex-
ecute the executable code, process the received
data, accept input from the user and provide data
to the user by means of the TV screen. The input
from the user may be sent back to the computer at
the broadcast location, allowing the user fo interact
with the interactive TV program.

U.S. Patent 4,965,825, SIGNAL PROCESSING
APPARATUS AND METHODS, issued Oct. 23,
1990 to Harvey et al., describes an interactive TV
system in which a central broadcast location in-
cludes signals carrying commands, executable
code and data in, for example, the vertical blanking
interval of the television signal for receipt by the
computer systems at the viewer locations. A com-
puter at the viewer location extracts the commands,
executable code and data and executes the code
to process the data and interact with the user. Such
a system is comparable to the remote execution
function of distributed computer systems, de-
scribed above, in that the viewer computer is en-
listed into the interactive TV program, and is con-
trolled by the central location.

In all of the above systems, a central computer
controls or responds to requests from peripheral
computers attached to it through a network. l.e. the
peripheral computer (personal computer) requests
remote execution of a program, requests a file or
message from, or sends a query request to, an-
other computer. Only in response to a request
does the other computer provide a response, e.g.
remote execution, the requested file, message or
retrieved data. In addition, in general, the peripheral
computer is required to have all the resources
necessary to completely, or almost completely, ex-
ecute the desired program, with the server acting
only as another storage mechanism. or at most
sharing a portion of the computing tasks.

The inventors herein propose a distributed
computing system in which a server computer con-
tinuously produces a data stream. This data stream
acts a mass storage device for the client comput-
ers receiving it. This data stream repetitively in-
cludes data representing a distributed computing
application in which the client computer may par-
ticipate, including executable code and data. A
transport mechanism, including a high speed, one-
way, communication path, carries the data stream
from the server to the client. The client receives
the data stream, extracts the distributed computing
representative data and executes the distributed
computing application.

In accordance with principles of the present
invention, a distributed computer system comprises
a source of a continuous data stream repetitively
including data representing a distributed computing
application and a client computer, receiving the
data stream, for extracting the distributed comput-

10

15

20

25

30

35

40

45

50

55

ing application representative data from the data
stream, and executing the extracted distributed
computing application.

In a distributed computing system according fo
the invention, the client computer system need not
include all the resources, in particular, main mem-
ory and mass storage, necessary to perform the
entire program. Instead, no mass storage is re-
quired because the data stream provides the func-
tion of the mass storage device, and the main
memory requirement is modest because only the
currently executing portion of the program need be
stored in memory. When the currently executing
portion has completed, its memory space is freed
up, and the next executing portion is extracted
from the data stream, stored in the freed memory
space, and that portion begins execution.

In addition, a distributed computing system ac-
cording to the present invention allows the user of
the client computer to have the option of participat-
ing in the distributed computing task. If it is desired
to participate, the client computer extracts the data
representing the distributed computing application
and executes the distributed computing application,
as described above. If it is desired not to partici-
pate, the data stream is merely ignored, and the
processing desired by the user, or none at all, is
performed. Such a distributed computing system
also allows each participating client computer to
join the distributed computing function at any time
and to proceed at its own pace in performing its
own computing function.

A distributed computing system according to
the present invention is particularly amenable to
interactive TV applications because it allows a
viewer to tune into an interactive TV channel at any
time, join in the interactivity whenever desired (or
not at all), and allows all the viewers to proceed at
their different paces. This is especially advanta-
geous in an environment when an interactive com-
mercial, with its own executable code and data,
may be presented within an interactive program, or
when the viewer wishes to change channels.

BRIEF DESCRIPTION OF THE DRAWING

In the drawing:

FIGURE 1 is a block diagram of a distributed
computing system according to the present in-
vention;

FIGURE 2 is a block diagram of a server com-
puter as illustrated in FIGURE 1;

FIGURE 3 is a timing diagram illustrating the
data streams produced by a server computer in
a distributed computing system as illustrated in
FIGURE 1;

FIGURE 4 is a block diagram of a client com-
puter as illustrated in FIGURE 1.

IPR2022-01227
EXHIBIT 1003 - PAGE 00448

5 EP 0 680 185 A2 6

FIGURE 1 is a block diagram of a distributed
computing system according to the present inven-
tion. In FIGURE 1, a server computer 10, which
may include a large computer system, is coupled
fo a plurality of client computers 20 through a
transport mechanism 30. The server computer 10
may be coupled to more than the three client
computers 20 illustrated in FIGURE 1, and the
client computers 20 may be geographically widely
dispersed. Client computer 22 is bidirectionally
coupled to a local computer 40, to an auxiliary data
processing system 50 and to a central processing
facility 60. The central processing facility 60 is
bidirectionally coupled to the server computer 10.
The central processing facility 60 may also be
connected to facilities other than the server com-
puter 10 illustrated in FIGURE 1. The local com-
puter 40 is further bidirectionally coupled to a mass
storage device 70. The client computer 22 interacts
with a user 80 by providing information to the user
via a display screen or other output device (not
shown) and by accepting information from the user
via a keyboard or other input device (also not
shown).

Client computers 24 and 26 also interact with
their users, (not shown in order to simplify the
drawing). In addition, client computers 24 and 26
are bidirectionally coupled to the central process-
ing facility 60. Such links are optional, however.
The only requirements for any client computer 20
is a way to interact with a user, and a connection to
the transport mechanism 30. Links to local comput-
ers, auxiliary data processing systems, and the
central processing facility 60 are all optional, and
need not be present in every one of the client
computers 20.

The transport mechanism 30 includes a un-
idirectional high speed digital data link, such as a
direct fiber optic or digital satellite link from the
server 10 to the client computers 20. The data may
be transported over the transport system 30 by a
packet data system. In such a system, a stream of
data packets, each including identification informa-
tion indicating, among other things, the type of data
contained in that packet and the actual data, is
transmitted through the data link. Such a packet
data system allows several independent streams of
data, each identified by identification information in
their packets, to be time multiplexed within a single
stream of packets.

In addition, it is possible to multiplex a plurality
of such packet data streams over respective chan-
nels on the same physical medium (fiber optic or
satellite radio link) making up the transport mecha-
nism 30. For example, different data streams may
be modulated on carrier signals having different
frequencies. These modulated carriers may be
transmitted via respective transponders on a sat-

70

15

20

25

30

35

40

45

50

55

ellite link, for example. Further, if a particular tran-
sponder has sufficient capacity, it is possible to
time multiplex several data streams on a single
modulated carrier.

The client computers 20 each contain a data
receiver for selecting one of the streams of packets
being transported over the fransport mechanism
30, receiving the selected stream of packets and
extracting the data contained in them. Continuing
the above example, the data receiver may include
a tunable demodulator for receiving one of the
respective modulated carriers from the satellite link.
In addition, the data receiver may include circuitry
for time demultiplexing the respective data streams
being carried by that modulated carrier.

In operation, the server 10 produces a continu-
ous data stream in the form of a stream of packets
for the client computers 20. The server 10 repet-
itively inserts a packet, or successive packets, con-
taining data representing the distributed computing
application, including at least one executable code
module, into the data stream. This code module
contains executable code for the client computers
20. The data receiver in, for example, client com-
puter 22, continuously monitors the packets in the
data stream on transport mechanism 30. When a
packet including identification information indicating
that it contains the code module (or a portion of the
code module) required by the client computer 22 is
present in the data stream, the client computer 22
detects its presence, extracts the code module (or
the portion of the code module) from that packet
and stores it in the main memory. When the code
module is completely received, the client computer
22 begins to execute it.

There may be more than one code module
placed in the continuous data stream, each contain-
ing a different portion of the distributed computing
application. For example, it is possible to divide the
distributed computing application into small por-
tions in such a manner that only one portion at a
time need be executed at a time. The portion of
the distributed computing application currently
needed to execute is loaded into the memory of
the client computer 22. When that portion has
completed its execution, then a code module con-
taining the executable code for the next portion of
the distributed computing application is extracted
from the data stream, stored in memory and ex-
ecuted. Each portion is extracted from the data
stream as needed. If there is sufficient memory in
the client computer 22, it is possible to load several
code modules into the memory and switch be-
tween them, without extracting them from the data
flow, but this is not necessary. By structuring a
distributed computing application in this manner,
the required memory size of the client computer 22
may be minimized

IPR2022-01227
EXHIBIT 1003 - PAGE 00449

7 EP 0 680 185 A2 8

The server 10 may also repetitively include a
packet or packets containing one or more data
modules in the data stream. The data modules
contain data to be processed by the executable
code in the code module. Prior to, or during the
execution of the code from a previously extracted
code module, the client computer 22 may require
access fo the data in the data module or modules.
If so, the client computer 22 monitors the data
stream for the required data module or modules.
When packets containing the data module or mod-
ules (or portions of the data module or modules)
are present in the data stream, they are extracted,
and the contents stored in the main memory of the
client computer 22. When all the required data
modules have been completely received, the client
computer 22 begins or continues execution of the
code from the code module to process the data
from the received data module or modules. As is
the case for code modules, it is possible for more
than one data module to be stored in memory, if
there is sufficient memory in client computer 22.

The server 10 may further repetitively include
in the data stream a packet or packets containing a
directory of the code and data modules currently
being included in the data stream. The directory
includes a list of all the code and data modules
which are present in the data stream, along with
information about those modules. If a directory is
present in the data stream, then, prior to extraction
of any code or data modules from the data stream,
the client computer 22 monitors the data stream for
the directory. When packets containing the direc-
tory (or portions of the directory) are present in the
data stream, they are extracted, and their data
stored in the main memory of the client computer
22. When the directory has been completely re-
ceived, the client computer 22 evaluates the entries
in the directory, then requests the first code and/or
data module from the data stream and execution
proceeds as described above.

Any of the client computers 20 may join the
distributed computing function represented by the
packet stream at any time, and each of the client
computers 20 may operate at its own speed, gen-
erally in response to the user 80. In order to allow
for this, the server 10 repetitively places the direc-
tory and all the code and data modules which the
client computers 20 may require to perform their
portion of the distributed computing function into
the data stream on the transport mechanism 30.
Whenever one of the client computers 20 joins the
distributed computing function, it monitors the new-
ly selected packet stream on the transport mecha-
nism 30 for the directory module, extracts it, and
processes it as described above. During execution,
whenever one of the client computers 20 requires
the a new code and/or data module, it monitors the

10

20

25

30

35

40

45

50

55

data stream on the transport mechanism 30 for the
newly required code and/or data module, extracts it
and either executes it, if it is a code module, or
processes it if it is a data module, as described
above.

The packet data stream may also include pack-
ets of auxiliary data. This data is not required by
the client computer 22 for execution of the code,
although it may be related to the execution be-
cause the user 80 may interact with the executing
program on the client computer 22 based on re-
ceived auxiliary data. The data stream receiver in
the client computer 22 recognizes the auxiliary
data packets in the data stream on the transport
mechanism 30 and passes them directly to the
auxiliary data processor 50. The auxiliary data pro-
cessor 50 processes its packets independently of
the client computer 22. If the auxiliary data must be
presented to the user 80, the auxiliary data proces-
sor 50 may provide its own display device (not
shown) which may be shared with the client com-
puter 22, or the display device (not shown) asso-
ciated with the client computer 22 may be shared
with the auxiliary data processor 50, to provide a
single information display to the user 80. The auxil-
iary data processor 50 may have links to other
illustrated elements (not shown), but that is depen-
dent upon the type of data.

In an interactive TV system, for example, the
auxiliary data includes the video and audio portions
of the underlying television signal. For example, the
auxiliary data would include video packets contain-
ing MPEG, or MPEG-like, encoded data represent-
ing the television image and audio packets contain-
ing digitally encoded audio. Further, there may
possibly be several different audio packet streams
carrying respective audio channels for stereo, sec-
ond audio program (SAP) or multilanguage capabil-
ity. In an auxiliary data processor 50 in such a
system, the video packets would be supplied to a
known MPEG (or similar) decoder (not shown)
which would generate standard video signals,
which would be supplied to a television receiver or
video monitor (not shown). The audio packets
would be supplied to a known audio decoder (not
shown) which would generate standard audio sig-
nals for the television receiver or speakers (not
shown).

In such an interactive TV system, the client
computer 22 may, in response to execution of the
executable code module, generate graphic displays
to supply information to the user 80. These graphic
displays may be combined with the standard video
signal from the MPEG decoder in a known manner,
and the combined image displayed on the televi-
sion receiver or video monitor. The client computer
22 may also generate sounds to provide other
information to the viewer. The generated sounds

IPR2022-01227
EXHIBIT 1003 - PAGE 00450

9 EP 0 680 185 A2 10

may be combined, in known manner, with the stan-
dard audio signals from the audio decoder, and the
combined sound played through the television re-
ceiver or speakers.

Furthermore, time code data may be included
in either or both of the television auxiliary packet
data stream and the packet data stream represent-
ing the interactive TV application. This permits
synchronization of any graphic images or sounds
generated by the client computer 22 with the televi-
sion signal from the auxiliary data. In this case, the
client computer 22 would have access to the time
code data, and would control the generation of the
graphic image and/or sound to occur at the desired
time, as supplied by the time code data.

In such an interactive TV system, both the
client computer 22 and the auxiliary data processor
50 may be contained in a single enclosure, such as
a television receiver, or television set-top decoder
box. A television receiver, or decoder box would
include connectors for attaching to a local com-
puter or other equipment.

The user 80 provides input to the program
running on the client computer 22 during its execu-
tion. This data may be required by the server 10 in
order to effect the distributed computing function.
In an interactive TV system, for example, user 80
may provide input to the client computer through a
handheld remote control unit.

The user data is transferred to the server com-
puter 10 via the central processing facility 60. In
one embodiment, data is sent from the client com-
puters 20 to the server computer 10 via modems
through the telephone system acting as the central
processing facility 60. The server computer 10
receives and processes the data received from the
client computers 20 during execution of its portion
of the distributed computing function.

Server computer 10 may generate new, or
modify existing, code and/or data modules in the
data stream on the transport mechanism 30, in a
manner described below, based on that received
data. Alternatively, the server computer 10 may
immediately return information to the client com-
puters 20 in the other direction through the central
processing facility 60. The information in newly
generated code and/or data modules is processed
by all client computers 20 participating in the dis-
tributed computing function, while information
passed from the server computer 10 to the client
computers 20 through the central processing fa-
cility 60 is specifically related to the client com-
puter (22, 24, 26) to which that information was
sent.

In another embodiment, the central processing
facility 60 may include its own computer system,
separately connected by modem to both the client
computers 20 and the server computer 10 through

70

15

20

25

30

35

40

45

55

the telephone system. In either of the above em-
bodiments, the central computing facility 60 pro-
vides access to other computers or processing
facilities (not shown) via the telephone system.
Thus, if information from other computer systems
is needed to perform the distributed computing
function, those computer systems may be acces-
sed via modem through the telephone system by
either the client computers 20 or the server com-
puter 10.

An input/output (I/0) port on the client com-
puter 22 is coupled to a corresponding port on the
local computer 40. Local computer 40 is collocated
with the client computer 22. Local computer 40
may be a personal computer used by the user 80
of the client computer 22, or may be a larger
computer, or computer network located at the
same site as the client computer 22. This allows
the client computer 22 to access data on the at-
tached mass storage 70 of the personal computer
or a computer on the network located at the client
computer 22 site. In addition, the client computer
22 may use the mass storage 70 of the local
computer 40 for storage of data to be retrieved
later. It is likely that the local computer 40 will
include both an output device (not shown) such as
a computer monitor and an input device (also not
shown) such as a computer keyboard. Both of
these may be shared with the client computer 22
and/or the auxiliary data processor 50, as de-
scribed above.

For example, the distributed computing system
illustrated in Figure 1 may be part of a widespread
corporate computing system, and the server 10
may be located at a central location of that cor-
poration. The client computer 22 may be located at
a remote location, and the local computer 40 may
be coupled to the personal computer network at
that location. Workers at that location may store
shared data (e.g. financial information) on the serv-
er connected to that network. The distributed com-
puting function may include gathering local finan-
cial data from the client computers at the remote
locations, processing that financial data and return-
ing overall financial results to the client computers.
In such an application, the executable code ex-
ecuted on the client computer 22 accesses the
data from the local computer 40 (either from its
attached mass storage 70 or through the network)
through the I/0 port, and sends it to the server
computer 10 through the central processing facility
60. The server computer 10 continues its process-
ing based on the information received from client
computer 22 (and other client computers 20), and
returns the results of that processing to the client
computers 20 either through the central processing
facility 60 or via the data stream on the transport
mechanism 30.

IPR2022-01227
EXHIBIT 1003 - PAGE 00451

11 EP 0 680 185 A2 12

In another example, the distributed computing
system may be an interactive television system,
broadcasting a home shopping show as the distrib-
uted computing application. In such a case, the
auxiliary data carries the video and audio portion of
the television signal, which may show and describe
the items being offered for sale, and may include
both live actors and overlaid graphics generated at
the central studio. Code and data modules making
up the interactive television application may include
data about the products which will be offered for
sale during this show, or portion of the show, and
executable code to interact with the user in the
manner described below.

When a viewer wishes to order an item, a
button is pressed on the TV remote control. This
button signals the client computer 22 to display a
series of instructions and menus necessary o so-
licit the information necessary to place the order,
e.g. the item number, name and address of the
viewer, the method of payment, the credit card
number (if needed), etc. These instructions are
generated in the client computer as graphics which
are overlaid on the television video image. It is also
possible for a computer generated voice to be
generated and combined with the television audio
either by voice-over, or by replacing the television
audio. The viewer responds to the instruction by
providing the requested information via the TV re-
mote control. When the information requested by
the on-screen display and/or voice instructions has
been entered by the viewer, it is sent to a central
computer via the modem in the client computer. An
order confirmation may be sent in the other direc-
tion from the central computer.

It is also possible that permanent information
about the viewer (i.e. the name, address, method of
payment and credit card number) may be preen-
tered once by the viewer, so it is not necessary to
solicit that information each time an order is
placed. The information is stored in permanent
memory in the client computer. In such a case,
when an order is placed, that information is re-
trieved from the permanent memory, appended to
the item number and transmitted to the central
computer. It is further possible that, by means of
time codes, or other commands, inserted into the
data stream, the client computer will know which
item is currently being offered for sale. In such a
case, the viewer will be able to order it by simply
pressing one button on the TV remote control. In
response, the client computer can combine the
previously received information related to the item
currently being offered for sale with the previously
stored personal information related to the viewer,
and transmit the order to the central computer and
receive the confirmation in return.

10

15

20

25

30

35

40

45

50

55

Because the code and data modules related to
the home shopping program are repetitively in-
serted into the data stream, a viewer may tune into
the program at any time and be able to participate
interactively. Similarly, it is not necessary for the
viewer to participate interactively, but may simply
ignore the interactive portion of the show.

It is also possible for the client computer 22 to
receive control information from the local computer
40. For example, the user 80, using the local com-
puter 40, could control the client computer 22 via
the /0 port to select a desired one of the data
streams on transport mechanism 30, and process
the program currently being broadcast on that data
stream, with interaction with the user 80 through
the input and output devices (not shown) con-
nected to the local computer 40.

It is further possible for the user 80 to cause
the client computer 22 to access the server com-
puter 10 through the central processing facility 60,
instead of via the data stream on transport mecha-
nism 30, and receive code and data modules via
this bidirectional link.

FIGURE 2 is a block diagram illustrating a
server computer 10 as illustrated in FIGURE 1. In
FIGURE 2, a source of distributed computing ap-
plication code and data 101 includes an application
compiler, and software management module (not
shown) and has an output terminal coupled to an
input terminal of a flow builder 102. An output
terminal of flow builder 102 is coupled to an input
terminal of a transport packetizer 104. An output
terminal of transport packetizer 104 is coupled to a
first input terminal of a packet multiplexer 106. An
output terminal of packet multiplexer 106 is coup-
led to an input terminal of a transport multiplexer
110. An output terminal of transport multiplexer 110
is coupled to the physical medium making up the
transport mechanism 30 (of FIGURE 1). A second
input terminal of packet multiplexer 106 is coupled
to a source of auxiliary data packets 107. A clock
109 has respective output terminals coupled to
corresponding input terminals of the transport pac-
ketizer 104 and auxiliary data source 107. A data
transceiver 103 has an first bidirectional terminal
coupled to the central processing facility 60 (of
FIGURE 1) and a second bidirectional data coupled
to the application code and data source 101.

Application code and data source 101, flow
builder 102, transport packetizer 104, auxiliary data
source 107, clock 109 and packet multiplexer 106,
in combination, form a channel source 108 for the
transport mechanism, illustrated by a dashed box
in . Other channel sources, including similar com-
ponents as those illustrated in channel source 108
but not shown in FIGURE 1, are represented by
another dashed box 108a. The other channel sour-
ces (108a) have output terminals coupled to other

IPR2022-01227
EXHIBIT 1003 - PAGE 00452

13 EP 0 680 185 A2 14

input terminals of the transport multiplexer 110, and
may have input terminals coupled to central pro-
cessing facilities through data transceivers.

In operation, data representing the distributed
computing application program, and data related to
the transmission of the program over the transport
mechanism 30 are supplied to the flow builder 102
from the application source 101. This data may be
supplied either in the form of files containing data
representing the code and data modules, or by
scripts providing information on how to construct
the code and data modules, or other such informa-
tion. The code and data modules may be constant
or may change dynamically, based on inputs re-
ceived from the client computers 20 via the central
computing facility 60 and/or other sources. The
executable code and data module files may be
generated by a compiler, interpreter or assembler
in a known manner in response to source language
programming by an application programmer. The
data file related to the transmission of the modules
includes such information as: the desired repetition
rates for the directory and the code and data
modules to be included in the data stream; the size
of main memory in the client computers 20 re-
quired to store each module, and to completely
execute the application program; a priority level for
the module, if it is a code module, etc.

Flow builder 102 processes the data from the
application source 101. In response, flow builder
102 constructs a directory module, giving an over-
all picture of the application program. The informa-
tion in the directory module includes e.g. the iden-
tification of all the code and data modules being
repetitively transmitted in the data stream, their
size and possibly other information related to those
modules. Then the application program representa-
tive data is processed to generate the code and
data modules. The directory, code and data mod-
ules thus constructed are formatted by adding
module headers and error detection and/or correc-
tion codes to each module. A transmission sched-
ule is also generated. After this processing is com-
plete, the data representing the directory module
and the code and data modules are repetitively
presented to the transport packetizer 104 according
to the schedule previously generated.

The transport packetizer 104 generates a
stream of packets representing the directory mod-
ule and the code and data modules as they are
emitted from the flow builder 102. Each packet has
a constant predetermined length, and is generated
by dividing the data stream from the flow builder
into groups of bits, and adding a packet header
with information identifying the information con-
tained in the packet, and an error detection and/or
correction code, etc., to each group, such that each
packet is the same predetermined length. (If there

70

15

20

25

30

35

40

45

50

55

is insufficient data from the flow builder 102 to
completely fill a packet, the packet is padded with
null data.) These packets are time multiplexed with
the auxiliary data packets, in a known manner, to
form a single packet stream in the packet mul-
tiplexer 106. It is also possible for the generated
packets to have varying lengths. In this case, the
packet header for each packet will contain the
length of that packet. In addition, time code data
packets are placed in the data stream packets
and/or the auxiliary data packets based on data
received from the clock 109.

Packet streams from all of the channel sources
(108,108a) are multiplexed into a single transport
channel, which is transmitted through transport
mechanism 30. As described above, the packet
streams may be frequency multiplexed by having
each packet stream modulate a carrier signal at a
different frequency, with all of the carriers being
carried by a satellite link to the client computers
20, in a known manner. In addition, if there is
sufficient capacity within one carrier channel, sev-
eral packet streams may be statistically time mul-
tiplexed, and used to modulate a single carrier,
also in a known manner. For example, it has been
proposed to time multiples up to eight interactive
television data streams through a single satellite
link.

Data from the client computers 20 via the cen-
tral processing facility 60 (of FIGURE 1) is received
at the server computer 10 by the data transceiver
103, which may include its own processor (not
shown). If an immediate response is generated, the
transceiver 103 processor returns that response via
the central processing facility 60 to a specific client
computer (22-26), a specific set of the client com-
puters 20 or to all client computers 20 in their turn.
If, however, a common response to all client com-
puters 20 is desired, the application programmer
may amend the code and data files in the applica-
tion code and data source 101 using the applica-
tion compiler. These amended files are then pro-
cessed by the flow builder again to generate an-
other flow. It is further possible that the code and
data files in the application source 101 may be
amended automatically and dynamically (i.e. in real
time) in response to data received from the tran-
sceiver 103, and the flow updated as the data is
being received from the client computers 20.

FIGURE 3 is a timing diagram illustrating the
data streams produced by the server computer 10
in a distributed computing system as illustrated in
FIGURE 1. In FIGURE 3 server computer 10 is
shown as simultaneously producing a plurality of
packet streams 32-38. Each packet stream (32-38)
is shown as a horizontal band divided into packets
having the same duration and number of bits. As
described above, it is possible that the size of the

IPR2022-01227
EXHIBIT 1003 - PAGE 00453

15 EP 0 680 185 A2 16

packets within any packet stream vary with the
amount of data to be carried. In FIGURE 3 it can
be seen that the starting times of the packets are
not synchronized. It is possible to synchronize the
packets, but it in not necessary. In FIGURE 3,
packets carrying data representing directories are
designated DIR, packets carrying data representing
code modules are designated CM, packets carrying
data representing data modules are designated
DM, and packets carrying auxiliary data are des-
ignated AUX.

In the top series of packets 32, the leftmost
packet contains data representing a code module,
CM. This is followed by three packets containing
auxiliary data, AUX, followed by another packet
containing data representing the code module, CM.
From the series of packets 32 it can be seen that
the code module is repetitively produced. There
may be more or fewer packets in between succes-
sive repetitions of the code module packets CM.
The rate of repetition may be specified by the
programmer when the application is programmed,
and may be varied during the execution of the
application.

In the next series of packets 34, the leftmost
packet contains auxiliary data, AUX. The next two
packets contain respective portions of a code mod-
ule (CM1,CM2). The last packet contains auxiliary
data, AUX. From the series of packets 34 it can be
seen that if a code module is too large to be
contained in a single packet, it may be carried by
more than one, with each packet containing a por-
tion of the code module. Although two packets are
illustrated in the series of packets 34 as containing
the code module (CM1,CM2), any number of pack-
ets may be used to carry the code module, de-
pending upon its size. The two packets carrying
the code module, (CM1,CM2) are repstitively trans-
mitted (not shown) in the series of packets 34, as
described above.

In the series of packets 36, the leftmost packet
contains data representing a code module (CM).
The next packet (DM1) is a first packet containing
data representing a data module. The next packet
contains auxiliary data, AUX. The next packet
(DM2) is a second packet containing the remaining
data representing the data module. From the series
of packets 36 it may be seen that a data module
(DM1,DM2), associated with the code module
(CM), may also be included in the packet stream.
Both the code module (CM) and the data module
(DM1,DM2) are repetitively transmitted (not shown)
in the series of packets 36. The rate of repetition of
the code module (CM) may be different from that
of the data module (DM1,DM2), and both rates may
be specified by the application programmer and
varied during the execution of the application.

10

20

25

30

35

40

45

50

55

It may further be seen that if the data module
is too large to be contained in a single packet, it
may be carried by more than one packet, with
each packet containing a portion of the data mod-
ule. Although two packets are illustrated in the
series of packets 36 as containing the data module
(DM1,DM2), any number of packets may be used
to carry the data module, depending upon its size.
It may be further seen that the packets carrying the
data module need not be transmitted sequentially,
but may have intervening packets in the packet
stream. The same is true for multiple packets car-
rying a code module or directory module (not
shown).

In the bottommost series of packets 38, the
leftmost packet contains data representing the di-
rectory (DIR). The next packet contains data repre-
senting a code module (CM), followed by a packet
containing auxiliary data (AUX) and a packet con-
taining data representing a data module (DM). In
the series of packet 38 all of a directory module
(DIR), a code module (CM) and a data module
(DM) in a single packet stream may be seen. The
respective repetition rates of these three modules
may be different, as specified by the programmer
of the application, and may be varied during the
execution of the application.

FIGURE 4 is a block diagram of a client com-
puter 22 as illustrated in FIGURE 1. In FIGURE 4,
transport mechanism 30 (of FIGURE 1) is coupled
to an input terminal of a stream selector 202. An
output terminal of stream selector 202 is coupled to
respective input terminals of an auxiliary data ex-
tractor 204 and a packet data extractor 206. An
output terminal of auxiliary data extractor 204 is
coupled to the auxiliary data processor 50 (of FIG-
URE 1). A bidirectional terminal of packet data
extractor 206 is coupled to a corresponding termi-
nal of a stream I/O adapter 208. A control output
terminal of stream I/O adapter 208 is coupled to a
corresponding control input terminal of stream se-
lector 202. The combination of stream selector 202,
auxiliary data extractor 204 and packet data extrac-
tor 206 form a data stream receiver 207 for client
computer 22, illustrated by a dashed line in FIG-
URE 4.

Stream /O adapter 208 forms a part of a
processing unit 224 in client computer 22, illus-
trated by a dashed line in FIGURE 4. In addition to
the stream /O adapter 208, processing unit 224
includes a processor 210, read/write memory
(RAM) 212 and read-only memory (ROM) 214
coupled together in a known manner via a system
bus 216. Further input and output facilities are
provided by an I/O port 218, coupled to the local
processor 40 (of FIGURE 1); user 1/0 adapter 220,
for communicating with user 80; and modem 222,
coupled to the central processing facility 60 (of

IPR2022-01227
EXHIBIT 1003 - PAGE 00454

17 EP 0 680 185 A2 18

FIGURE 1); all also coupled to the system bus 216
in a known manner. Other adapters (not shown)
may be coupled to system bus 216 to provide
other capabilities to the processing unit 224.

As described above, auxiliary data extractor
204, 1/0 port 218 and modem 222 are not required
in a client computer 20 according to the present
invention. They are illustrated in FIGURE 1 and
FIGURE 4 to show optional additional functionality.

In operation, processor 210 of processing unit
224 retrieves program instructions permanently
stored in ROM 214, or temporarily stored in RAM
212, and executes the retrieved instructions to read
data from ROM 212 and/or RAM 214, write data to
RAM 212 and/or receive data from or supply data
to outside sources via the I/O port 218, user I/O
adapter 220 and/or modem 222, in a known man-
ner. Under program control, processor 210 may
also request a code and/or data module from the
data stream supplied to the client computer 22 via
the transport mechanism 30 (of FIGURE 1). To
retrieve this data, processor 210 first instructs
stream /0 adapter 208 to send a selection control
signal to the stream selector 202, possibly in re-
sponse to user input from user /0 adapter 220.
Then processor 210 issues a request for a specific
code or data module to the stream I/0O adapter 208.
Stream /0O adapter 208 relays this request fo the
packet data extractor 204.

Transport mechanism 30 (of FIGURE 1) sup-
plies all of the plurality of packet streams (32-38 of
Figure 3) it carries to the stream selector 202,
which passes only the selected packet stream.
Auxiliary data extractor 204 monitors the selected
packet stream, extracts the auxiliary data packets
from it and supplies them directly to the auxiliary
data processor 50 (of FIGURE 1). Packet data
extractor 206 similarly monitors the selected packet
stream, extracts the directory, code and/or data
module packets requested by the stream I/O adapt-
er 208 and supplies them to the stream 1/0 adapter
208. The data in the packets returned to the stream
/0 adapter 208 is supplied to the RAM 212. When
the entire module has been retrieved from the
packet stream (which may require several packets,
as described above), processor 210 is notified of
its receipt by the stream /O adapter 208. Proces-
sor 210 may then continue execution of its pro-
gram.

The data stream in a distributed computing
system illustrated in FIGURE 1 is similar to a mass
storage system in prior art systems. An application
program executing on the processor 210 makes a
request for a module listed in the directory in the
same manner that such a program would make a
request for a file containing a code or data module
previously stored on a mass storage device in a
prior art system. The data stream receiver 207 is

70

15

20

25

30

35

40

45

50

55

10

similar to a mass storage device, and stream I/O
208 acts in a similar manner to a mass storage
adapter on a prior art system by locating the de-
sired data, transferring it o a predetermined loca-
tion (/O buffer) in the system memory and inform-
ing the processor of the completion of the retrieval.
However, the stream /O adapter 208 can only
retrieve code and data from the data stream; data
cannot be written to the data stream.

As described above, the distributed computing
application may be divided into more than one
code module, each containing executable code for
a different portion of the distributed computing ap-
plication. When a particular code module is de-
sired, processor 210 requests that code module
from stream 1/0 adapter 208. When execution of
that module has completed, processor 210 re-
quests the next module from stream /0 208. Be-
cause code and data modules are repetitively car-
ried on the data stream, a module may be deleted
from RAM 212 when it is not currently needed
without the necessity of temporarily being stored,
because if it is required later, it may again be
retrieved from the data stream when needed. How-
ever, if RAM 212 has sufficient capacity, processor
210 may request stream I/0O adapter to simulta-
neously load several code modules into RAM 212.
If this can be done, then processor 210 may switch
between code modules without waiting for stream
/O adapter 208 to extract them from the data
stream.

As described above, other /0 adapters may be
coupled to the system bus 216 in a known manner.
For example, in an interactive TV system, a graph-
ics adapter may be coupled to system bus 216.
The graphics adapter generates signals represent-
ing graphical images, in a known manner, in re-
sponse to instructions from the processor 210. Fur-
ther, these signals may be combined with the stan-
dard video signal produced by the video decoder
(described above) in the auxiliary data processor
50 of an interactive TV system. When the graphical
image representative signal and the standard video
signal are combined, the resulting signal represents
an image in which the image generated by the
graphics adapter is superimposed on the image
represented by the broadcast video signal. It is
also possible to selectively combine these two im-
age representative signals under the control of the
processor 210.

An interactive TV system, may also include a
sound adapter coupled to the system bus 216. The
sound adapter generates a signal representing a
computer generated sound (such as music, syn-
thesized voice or other sound), in a known manner,
in response to instructions from the processor 210.
Further, these signals may be combined with the
standard audio signal produced by the audio de-

IPR2022-01227
EXHIBIT 1003 - PAGE 00455

19 EP 0 680 185 A2 20

coder (described above) in the auxiliary data pro-
cessor 50 of an interactive TV system. When the
sound representative signal and the standard audio
signal are combined, the resulting signal represents
the combination of the sound generated by the
sound adapter and the broadcast audio signal. It is
also possible to selectively combine these two
sound representative signals under the control of
the processor 210.

The timing of the generation and display of the
graphical image and sound representative signals,
may be controlled by receipt of the time code data
from the data stream. This enables an executable
code module to synchronize the display of proces-
sor generated image and presentation of processor
generated sound to the broadcast video and audio.
It is further possible to synchronize the operation of
the interactive TV application by the insertion of
specialized packets into the data stream which
cause an interrupt of the code currently executing
in processor 210. Stream /0O 208 monitors the data
stream for such specialized packets, and generates
an interrupt, in a known manner, for the processor
210. Processor 210 responds to that interrupt, also
in known manner, by executing an interrupt service
routine (ISR). This ISR may be used for synchro-
nization of the interactive TV application, or other
purposes.

A client computer 22 in a distributed computing
system as illustrated in FIGURE 1 does not need a
mass storage device, nor a large amount of RAM
212. Such a system decreases the cost of a client
computer, and increases the functionality of the
lower cost client computers. In addition, such a
client computer has the option of participating in a
distributed computing function, may join in the dis-
tributed computing function at any time (or may
drop out and return later), and may participate at
its own pace.

Claims

1. A distributed computer system characterized
by:

a source (10) of a continuous data stream
repetitively including data representing a dis-
tributed computing application; and

a client computer (20), receiving (207) the
data stream, extracting (206) the distributed
computing application representative data from
the data stream, and executing (224) the ex-
tracted distributed computing application.

2. The computer system of claim 1, further char-
acterized by an auxiliary data processor;
wherein:

the data stream source produces the data
stream further including auxiliary data; and

10

15

20

25

30

35

40

45

50

55

11

the client computer extracts the auxiliary
data from the data stream and supplies it to
the auxiliary data processor.

The computer system of claim 2, characterized
in that:

the data stream source produces the data
stream in the form of a series of packets;

a first one of the series of packets contains
data representing the distributed computing
application and includes identification informa-
tion indicating that the first one of the series of
packets contains data representing the distrib-
uted computing application; and

a second one of the series of packets
contains auxiliary data and includes identifica-
tion information indicating that the second one
of the series of packets contains auxiliary data.

The computer system of claim 1, characterized
in that:

the data stream source simultaneously
produces a plurality of continuous data
streams, each repetitively including data repre-
senting a respective distributed computing ap-
plication; and

the client computer further includes a data
receiver for selectively receiving one of the
plurality of data streams, and exiracting the
distributed computing application representa-
tive data included in the selected one of the
data streams.

The computer system of claim 4, further char-
acterized by an auxiliary data processor;
wherein:

the data stream source produces the data
stream further including auxiliary data; and

the client computer exiracts the auxiliary
data from the data stream and supplies it to
the auxiliary data processor.

The computer system of claim 4, characterized
in that:

the data stream source produces the data
stream in the form of a series of packets;

a first one of the series of packets contains
data representing the executable code module
and includes identification information indicat-
ing that the first one of the series of packets
contains data representing the executable code
module;

a second one of the series of packets
contains data representing the data module
and includes identification information indicat-
ing that the second one of the series of pack-
ets contains data representing the data mod-
ule; and

IPR2022-01227
EXHIBIT 1003 - PAGE 00456

21 EP 0 680 185 A2 22

a third one of the series of packets con-
tains auxiliary data and includes identification
information indicating that the third one of the
series of packets contains auxiliary data.

The computer system of claim 6, characterized
in that:

the data stream source produces the data
stream further including a directory module
containing information related to the code
module; and

the client computer first extracts the direc-
tory module from the data stream, then ex-
tracts the code module in response to the
information related to the code module in the
extracted directory module, and executes the
extracted code module.

The computer system of claim 1, characterized
in that:

the data stream source produces the data
stream in the form of a series of packets;

a first one of the series of packets contains
data representing the executable code module
and includes identification information indicat-
ing that the first one of the series of packets
contains data representing the executable code
module;

a second one of the series of packets
contains data representing the data module
and includes identification information indicat-
ing that the second one of the series of pack-
ets contains data representing the data mod-
ule;

a third one of the series of packets con-
tains data representing the directory module
and includes identification information indicat-
ing that the second one of the series of pack-
ets contains data representing the directory
module; and

a fourth one of the series of packets con-
tains auxiliary data and includes identification
information indicating that the third one of the
series of packets contains auxiliary data.

The computer system of claim 8, characterized
in that:

the data stream source produces the data
stream further including a data module and a
directory module further contains information
related to the data module; and

the client computer further extracts the
data module from the data stream in response
to the information related to the data module in
the extracted directory module and executes
the extracted code module to process the ex-
tracted data module.

70

15

20

25

30

35

40

45

50

55

12

10.

11.

12,

13.

14.

In a distributed computer system, a client com-
puter (22), characterized by:

an input terminal (30), for receiving a con-
tinuous data stream repetitively including data
representing a distributed computing applica-
tion

a data stream receiver (207), coupled to
the input terminal, for receiving the data
stream and extracting (206) the distributed
computing application representative data; and

a processing unit (224), coupled to the
data stream receiver, for receiving and execut-
ing (210) the distributed computing application.

The client computer of claim 10, characterized
in that the processing unit comprises:

a system bus;

read/write memory, coupled to the system
bus;

a data stream input/output adapter, coup-
led between the data stream receiver and the
system bus, for receiving the extracted distrib-
uted computing application representative data
from the data stream receiver, and storing it in
the read/write memory; and

a processor, coupled to the system bus for
executing the distributed computing application
stored in the read/write memory.

The client computer of claim 10, characterized
in that:

the input terminal receives the data stream
as a series of packets containing packets car-
rying the distributed computing application re-
presentative data; and

the data stream receiver comprises a
packet data extractor, coupled to the input
terminal, for extracting the packets carrying the
distributed computing application representa-
tive data.

The client computer of claim 12, characterized
in that:

the series of packets in the data stream
further include packets carrying auxiliary data;

the client computer further includes an
auxiliary data processor; and

the data stream receiver comprises an
auxiliary data packet extractor, coupled to the
auxiliary data processor, for extracting the
packets carrying the auxiliary data from the
data stream and supplying them to the auxil-
iary data processor.

The client computer of claim 13, characterized
in that the distributed computing system is an
interactive television system, and the auxiliary
data is television video and audio.

IPR2022-01227
EXHIBIT 1003 - PAGE 00457

15.

16.

17.

18.

23 EP 0 680 185 A2 24

The client computer of claim 10, characterized
in that:

the input terminal receives a plurality of
data streams, each including data representing
a respective distributed computing application;
and

the data stream receiver comprises:

a data stream selector, coupled to the in-
put terminal, for producing a selected one of
the plurality of data streams in response to
control signals from the processing unit; and

a distributed computing representative
data extractor, coupled between the data
stream selector and the processing unit, for
extracting the distributed computing application
representative data from the selected one of
the plurality of data streams.

The client computer of claim 15, characterized
in that:

the data stream selector comprises a se-
lection control input terminal, and produces the
selected one of the plurality of data streams in
response to a control signal at the selection
control input terminal;

the processing unit comprises:

a system bus;

read/write memory, coupled to the system
bus;

a data stream input/output adapter, coup-
led between the data stream receiver and the
system bus, for receiving the extracted distrib-
uted computing application representative data
from the data stream receiver, and storing it in
the read/write memory, and having a control
output terminal coupled to the selection control
input terminal of the data stream selector, for
producing the selection control signal; and

a processor, coupled to the system bus,
for controlling the data stream input/output de-
vice to generate a selection control signal se-
lecting a specified one of the plurality of data
streams, and for executing the distributed
computing application stored in the read/write
memory.

The client computer of claim 10, characterized
in that:

the input terminal receives the distributed
computing application representative data in-
cluding an executable code module;

the data stream receiver extracts the ex-
ecutable code module; and

the processing unit executes the extracted
code module.

The client computer of claim 17, characterized
in that:

10

15

20

25

30

35

40

45

50

55

13

19.

20.

the input terminal receives the distributed
computing application representative data fur-
ther includes a directory module containing
information related to the executable code
module; and

the data stream receiver first extracts the
directory module from the data stream;

the processing unit then processes the in-
formation related to the executable code mod-
ule in the directory module;

the data stream receiver then extracts the
executable code module from the data stream
based on the information related to the execut-
able code module in the extracted directory
module; and

the processing unit then executes the ex-
tracted executable code module.

The client computer of claim 18, characterized
in that:

the distributed computing application re-
presentative data further includes a data mod-
ule and the directory module further contains
information related to the data module;

the processing unit further processes the
information related to the data module in the
directory module;

the data stream receiver further extracts
the data module from the data stream based
on the information related to the data module
in the extracted directory module; and

the processing unit executes the extracted
code module to process the extracted data.

The client computer of claim 10 characterized
in that the distributed computing application is
divided into a plurality of modules, represent-
ing portions of the application, and the pro-
cessing unit stores only modules of said plural-
ity of modules, necessary to execute the cur-
rent portion of the application.

IPR2022-01227
EXHIBIT 1003 - PAGE 00458

EP 0 680 185 A2

10~

SERVER

FIG. 1

IPR2022-01227
14 EXHIBIT 1003 - PAGE 00459

EP 0 680 185 A2

108~
T T 1R T e T T
" APPLUCATION FLOW |, TRANSPORT 10
| SOURCE | BULDER 'PACKETIZER -
| 108~ AUX
cL . DATA
| SOURCE
e e = 07—
_____l___/103 110
DATA TRANSPORT
TRANSCEIVER . MECHANISM
__I___ 30
CENTRAL
mocasoson
|— — o loes~ . . . _
] l FIG. 2
»
;iu T AUX | AOX | AUX | M)
[
1 e [A | o 1T o 1T AX T]
7 .
SERVER l .
NG .
B~
\!\ | cdM | DM T AUX T DM2)
i
1 DR | oM | AUX T OM {]
+—t
FIG 3

IPR2022-01227

15 EXHIBIT 1003 - PAGE 00460

EP 0 680 185 A2

207~ AUX
TRANSPORT -5 = — — — —_ A
WECHANSM | 2N T m-;ux | PROCESSOR
SELECTOR <8 EXTRACT o
— PACKET l LOCAL
| | EXTRACT PROCE SN
24N | = = _ = = . -
— 206~ F- N
STREAM o)
| 10 PORT |
218~ H 3 .
| AL N 2y T — -1 =3 |
| PROCESSOR RAM ROM USER MODEM
2 |
BT,
FIG. 4 60
} USER
.| &

16

IPR2022-01227
EXHIBIT 1003 - PAGE 00461

EP 0 680 185 A3

Europdéisches Patentamt
European Patent Office

(19) g)

Office européen des brevets

(1) EP 0680 185 A3

(12) EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
02.05.2002 Bulletin 2002/18

(43) Date of publication A2:
02.11.1995 Bulletin 1995/44

(21) Application number: 95105803.1

(22) Date of filing: 19.04.1995

(51) IntclL7: HO4L 29/06, HO4N 7/24,
GO6F 9/445

(84) Designated Contracting States:
DEESFRGBIT

(30) Priority: 28.04.1994 US 233908

(71) Applicant: OpenTV, Inc.
Mountain View, CA 94043 (US)

(72) Inventors:
« Joseph, Kuriacose
Plainsboro, New Jersey 08543 (US)

« Dureau, Vincent
Venice, California 90291 (US)
- Jessup, Ansley Wayne, Jr.
Willingboro, New Jersey 08046 (US)
< Delpuch, Alain
Los Angeles, California 90064 (US)

(74) Representative: Freeman, Jacqueline Carol et al
W.P. THOMPSON & CO.
Celcon House
289-293 High Holborn
London WC1V 7HU (GB)

(54) A distributed computer system

(57) A distributed computer system is disclosed
which comprises a source (30) of a continuous data
stream repetitively including data representing a distrib-
uted computing application and a client computer (22),

TRANSPCRT

r o #— — — & —

receiving the data stream, for extracting (207) the dis-
tributed computing application representative data from
the data stream, and executing (224) the extracted dis-
tributed computing application.

MEMW
SELECTOR 208
PACKET
XTRACT

........]_."':'

224
r_,,'\

LOCAL

AUX
l DATA
AUX R
DATA P
extracT [|

FIG 4

Printed by Jouve, 75001 PARIS (FR)

IPR2022-01227
EXHIBIT 1003 - PAGE 00462

EP 0 680 185 A3

‘) European Patent EUROPEAN SEARCH REPORT Application Number
Office EP 95 10 5803
DOCUMENTS CONSIDERED TO BE RELEVANT
i Category Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
of relevant passages 1o claim APPLICATION (Int.C1.6)
X US 5 251 301 A (COOK GARY M) 1-6, H04L29/06
5 October 1993 (1993~10-05) 10-17,20] HO4N7/24
* abstract * GO6F9/445

* column 1, line 62 - column 2, line 54 *
« cotumn 3, line 5 - line 48 *

A * column 4, line 57 — column 8, line 11; 7-9,18,
figure 3 * 19

* claims 1,6-10 *

X EP 0 306 208 A (OLIVETTL & €O SPA ;RAI 1,2,4,5,

| RADIOTELEVISIONE ITALIANA (IT)) 10-13,
8 March 1989 (1989-03-08) 156-20
* abstract #
* page 2, column 1, Tine 53 - column 2,
line 26 *
* page 4, column 5, line 45 - column 6,
line 45 *
* page 5, column 8, line 30 - page 6,
column 9, line 28 =*
* page 7, column 11, line 3 - column 12,
'} ine 4 *® TECHNICAL FIELDS
* page 9, column 15, line 5 - 1ine 16 * SEARCHED (mcie)
* page 11, column 19, Yine 55 - column 12, HOAL
Tine 22; figure 51 x HOAN
* figure 3 * GO6F
X US 5 299 197 A (SCHLAFLY ROGER) 1-6,
29 March 1994 (1994-03-29) 10~-13,
15-17,20
* column 2, line 34 - line b7 *
* column 3, line 34 - line 42 *
* column 4, Tine 11 — line 47 *
The present search reporl has been drawn up for all daims
. Piave of search Date of compietion of the seerch Examiner
g THE HAGUE 6 March 2002 Karavassitis, N
§ CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
8 X : particularly relevant if taken alone E ﬁﬁ?ﬂﬂﬁ? g?nc: ment, bul published on, or
§ 2 grﬂculaﬂy relevant f combined with another D : document c:iged in the application
= docurmnent of the same category L : document cited for other reasons
S| O monrnion ciaciomra & Timamiber oFtha same paiert amily, sorresponding
E P intermediate documenrt docurment
2 IPR2022-01227

EXHIBIT 1003 - PAGE 00463

ERQ FORM PO453

ANNEX TO THE EUROPEAN SEARCH REPORT

EP 0 680 185 A3

ON EUROPEAN PATENT APPLICATION NO.

EP 95 10 5803

This annex lists the patent family membars relating 1o the patent documents clied in the above-mentioned European search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office Is in no way liable for these particulars which are mersly given for the purpese of information.

06—-03-2002
Patent document Publication Patent family Publication
cited in search report date member(s) date
Us 5251301 A 05-10-1993 US 4920503 A 24-04-1990
EP 0306208 A 08-03-1989 IT 1211278 B 12-10-1989
EP 0306208 A2 08-03-1989
Us 5299197 A 29-03-1994 NONE

For more details about this annex :see Officlal Jounal of the European Patent Office, No. 12/82

IPR2022-01227
EXHIBIT 1003 - PAGE 00464

EP 0 720 374 A1

Europdisches Patentamt

(19) 0’ European Patent Office

Office européen des brevets

(12)

(43) Date of publication:
03.07.1996 Bulletin 1996/27

(21) Application number: 94120967.8

(22) Date of filing: 30.12.1994

(11) EP 0 720 374 A1

EUROPEAN PATENT APPLICATION

(51) Int. c1.5: HO4N 7/26, HO4N 7/50

(84) Designated Contracting States:
DE FR GB NL

(71) Applicant: DAEWOO ELECTRONICS CO., LTD
Jung-Gu, Seoul 100-095 (KR)

(72) Inventor: Kwon, Oh-Sang

(74) Representative: von Samson-Himmelstjerna,
Friedrich R., Dipl.-Phys. et al
SAMSON & PARTNER
Widenmayerstrasse 5
D-80538 Miinchen (DE)

Seoul (KR)
(54) Apparatus for parallel decoding of digit
(57) Anovel apparatus for decoding an encoded dig-

ital video signal is able to carry out a parallel processing,
without using a shared memory system. This apparatus
comprises detector for detecting slice start codes from
the encoded digital video signal and generating a slice
start detection signal, control unit for counting the
number of the slice start codes of the encoded bit stream,
and for generating a control signal in response to the
counted number of the slice start codes, switching block
for dividing video frame data into two subframes, two
first-infirst-out(FIFO) buffers for storing the divided video
frame data, a image processing device for decompress-
ing the encoded digital video signal and reproducing the
original video image signal, and frame formatter for cou-
pling the reproduced original video image signal.

al video signals

FIG.3
;)O

50 IIMAGE DATA PARTITIONING CIRCUIﬂ

601
501 51 61

——{ VLD I VLEI/—h
. 63
TNVERGSE TNVERSE

ZIGZAG [~ ZIGZAG
SCANNE] 503 603 SCANNER

N 4
602 1Q |
IDCT 52

55 65
62 IDCT
6 z ra 66
MOTION MOTION
+ COMPENSATOR] 1 | |COMPENSATOR +

70
£.

73 74
mux MUX f
71 | 72

g MEMORY
MODULE

Id 7
703 704

MEMORY
MODULE

TO FRAME 706
FORMATTER 80 [’ 75

MEMORY MODULE
SELECTION CONTROLLER v,

705

~_707

Printed by Rank Xerox (UK) Business Services

IPR2022-01227
EXHIBIT 1003 - PAGE 00465

2.12.4/3.4

1 EP 0 720 374 A1 2

Description

Field of the Invention

The presentinvention relates to a video imaging sys-
tem; and, more particularly, to an improved video image
decoding apparatus having two decoding modules for
decompressing incoming compressed video image data
in parallel.

Description of the Prior Art

In various electronic/electrical applications such as
high definition television and video telephone systems,
an image signal may need be transmitted in a digitized
form. When the image signal is expressed in a digitized
form, there is bound to occur a substantial amount of dig-
ital data. Since, however, the available frequency band-
width of a conventional transmission channel is limited,
in order to transmit the image signal therethrough, the
use of an image signal encoding apparatus becomes
necessary to compress the substantial amounts of digital
data.

Accordingly, most image signal encoding apparatus
employ various compression techniques (or coding
methods) built on the idea of utilizing or reducing spatial
and/or temporal redundancies inherent in the input
image signal.

Among the various video compression techniques,
the so-called hybrid coding technique, which combines
temporal and spatial compression techniques together
with a statistical coding technique, is known to be most
effective.

Most hybrid coding techniques employ a motion
compensated DPCM(differential pulse code modula-
tion), two-dimensional DCT(discrete cosine transform),
quantization of DCT coefficients, and VLC(variable
length coding). The motion compensated DPCM is a
process of determining the movement of an object
between a current frame and its previous frame, and pre-
dicting the current frame according to the motion flow of
the object to produce a differential signal representing
the difference between the current frame and its predic-
tion. This method is described, for example, in Staffan
Ericsson, "Fixed and Adaptive Predictors for Hybrid Pre-
dictive/Transform Coding", IEEE Transactions on Com-
munications, COM-33, No. 12(December 1985); and in
Ninomiya and Ohtsuka, "A Motion Compensated Inter-
frame Coding Scheme for Television Pictures”, |IEEE
Transactions on Communications, COM-30, No. 1(Jan-
uary 1982).

The two-dimensional DCT, which reduces or
removes spatial redundancies between image data such
as motion compensated DPCM data, converts a block of
digital image data, for example, a block of 8x8 pixels, into
a set of transform coefficient data. This technique is
described in Chen and Pratt, "Scene Adaptive Coder",
IEEE Transactions on Communications, COM-32, No.
3(March 1984). By processing such transform coefficient

15

20

25

30

35

40

45

50

55

data with a quantizer, zigzag scanner and VLC circuit,
the amount of data to be transmitted can be effectively
compressed.

Specifically, in the motion compensated DPCM, cur-
rent frame data is predicted from previous frame data
based on an estimation of the motion between the cur-
rent and the previous frames. Such estimated motion
may be described in terms of two dimensional motion
vectors representing the displacement of pixels between
the previous and the current frames.

In order to compress the image signals with the
above mentioned technique, the use of a processor
capable of carrying out a high speed processing
becomes necessary, and this is usually achieved by
employing a parallel processing technique. Generally, in
the image signal decoding apparatus having the parallel
processing capability, one video image frame area is
divided into a plurality of subframes, and image data
within the video image frame area is processed on a sub-
frame-by-subframe basis.

On the other hand, to determine a motion vector for
a search block in the current frame, a similarity calcula-
tion is performed between the search block of the current
frame and each of a plurality of equal-sized candidate
blocks included in a generally larger search region within
a previous frame, wherein the size of the search block
typically ranges between 8x8 and 32x32 pixels. Conse-
quently, the search region containing a boundary portion
of any subframe also includes a boundary portion of a
neighboring subframe. Accordingly, the motion estima-
tion carried out by each processor requires a shared
memory system with a multiple random access capabil-
ity.

Summary of the Invention

ltis, therefore, a primary object of the present inven-
tion to provide an improved video image decoding appa-
ratus capable of carrying out a parallel processing,
without having to use a shared memory system with a
multiple random access capability.

In accordance with the present invention, there is
provided an apparatus for decoding an encoded digital
video signal in an encoded bit stream for the reproduc-
tion of an original video image signal, wherein the
encoded digital video signal includes a plurality of video
frame data, each video frame data having a number of
slice start codes representing a start of each slice
therein, said apparatus comprising: means for detecting
the slice start codes from the encoded digital video signal
and generating a slice start detection signal; control
means for counting the number of the slice start codes
of the encoded bit stream in response to the slice start
detection signal, and for generating a control signal in
response to the counted number of the slice start codes;
means, responsive to the control signal, for dividing
video frame data into two subframes; two first-in first-
out(FIFO) buffers for storing the divided video frame
data; image processing means for decompressing the

IPR2022-01227
EXHIBIT 1003 - PAGE 00466

3 EP 0 720 374 A1 4

encoded input data and reproducing the original video
image signal; and means for coupling the reproduced
original video image signal. The image processing
means includes two decoder modules and a frame mem-
ory part for reproducing the original video image signal,
wherein each decoder module reproduces each of the
two subframes, and the memory part includes two mem-
ory modules for storing the divided video frame data, a
memory module selection controller for generating first
and second selection signals, and first and second
address data, and selecting means for producing pixel
data stored in the corresponding memory modules in
response to the first and second selection signals.

Brief Description of the Drawings

The above and other objects and features of the
present invention will become apparent from the follow-
ing description of preferred embodiments given in con-
junction with the accompanying drawings, in which:

Fig. 1 is a schematic representation of a videoimage
frame area divided into two subframes;

Fig. 2 represents a block diagram of the inventive
decoding apparatus comprising an image data par-
titioning circuit and an image processing device;
Fig. 3 presents a more detailed block diagram of the
image processing device coupled to the image data
partitioning circuit shown in Fig. 2; and

Fig. 4A and 4B describe a timing diagram represent-
ing the order of processing for each subframe.

Detailed Description of the Preferred Embodiments

The present invention provides for the communica-
tion of high definition television(HDTV) signals from a
transmitter location to a population of receivers. At the
transmitter of an encoder” end of the communication link,
digital video signals for successive frames of a television
picture are broken down into subframes for processing
by multiple processors. The inventive decoding appara-
tus includes two decoder modules, each of which is ded-
icated to the decoding of video data from a particular
subframe.

Referring to Fig. 1, there is shown a video image
frame area 10 divided into two subframes. The total
frame area encompasses M horizontal picture lines,
each picture line containing N pixels. For example, a sin-
gle HDTV frame comprises 960 picture lines, each pic-
ture line including 1408 pixels. In other words, a single
HDTV frame comprises 60 slices, each slice including
16 horizontal picture lines.

In accordance with the present invention, a video
image frame area is divided into two subframes, e.g.,
subframes 13, 16 as illustrated in Fig. 1.

In order to process the two subframes, a processor
is assigned to each subframe for decompressing com-
pressed digital data bounded by the subframe in a video
frame. In an encoding apparatus, data redundancies

10

15

20

25

30

35

40

45

50

55

between a current video frame and one or more of its
prior video frames is reduced using a motion estima-
tion/compensation technique.

Referring to Fig. 2, there is illustrated a block dia-
gram of the inventive parallel image decoding apparatus,
which comprises an image data partitioning circuit 30
and an image processing device 40.

The image data partitioning circuit 30 which includes
a slice start code(SSC) detector 31, a control unit 32, a
switching block 33, and two first-in first-out(FIFO) buffers
34, 35is coupled to the image processing device 40; and
serves to divide the encoded digital data into two sub-
frames for the processing thereof on a subframe-by-sub-
frame basis. The image processing device 40 includes
two decoder modules 50, 60, each of the decoder mod-
ules having variable length decoding(VLD) circuits 51,
61, motion compensators 52, 62, inverse zigzag scan-
ners 53, 63, inverse quantizers(IQs) 54, 64, inverse dis-
crete cosine transform(IDCT) circuits 55, 65 and adders
56, 66 decompresses compressed input digital data in
connection with a frame memory part 70, respectively.

As shown in Fig. 2, a variable length encoded digital
video signal received from an encoding apparatus(not
shown) is inputted via terminal 20 to the SSCs detector
31. The encoded digital video signal includes a plurality
of video frame data, each of said video frame data occu-
pying a video image frame area has variable length
coded transform coefficients, motion vectors and a
number of SSCs, wherein each SSC represents a start
of a slice included in the encoded bit stream. The SSC
detector 31 detects slice start codes from the encoded
digital video signal and generates a slice start detection
signal to the control unit 32 which serves to control the
switching block 33. The control unit 32 counts the
number of SSCs in response to the slice start detection
signal provided from the SSC detector 31. Whenever the
counted number of the SSCs reaches a predetermined
value, e.g., 30, a control signal for alternately switching
the encoded digital video signal supplied from the SSC
detector 31 between S1 and S2 is generated by the con-
trol unit 32, thereby dividing each frame of the incoming
encoded image signal into two subframes and storing
them in two FIFO buffers 34, 35. The FIFO buffers output
the subframe data to corresponding decoder modules
50, 60, incorporated in the image processing device 40,
each of said decoder modules is dedicated to the
processing of video image data bounded by a particular
subframe and substantially identical each other. The
image processing device 40 reconstructs a discrete
cosine transform(DCT) coefficients, performs a motion
compensation based on a motion vector, and constitutes
representative image data of a given block in the current
frame. The decoded subframe data from the image
processing device 40 is sent to a frame formatter 80 and
combined therein to form a single data stream represent-
ing the original video image signal to be, e.g., displayed
on a display unit(not shown).

Referring now to Fig. 3, there is shown a more
detailed block diagram of the image processing device

IPR2022-01227
EXHIBIT 1003 - PAGE 00467

5 EP 0 720 374 A1 6

40 coupled to the image data partitioning circuit 30
shown in Fig. 2. The decoder modules 50 and 60 con-
tained in the image processing device 40 are made of
identical elements, each element serving a same func-
tion.

As shown in Fig. 3, video image data bounded by a
particular subframe is provided from the image data par-
titioning circuit 30 to variable length decoding(VLD) cir-
cuits 51, 61 through lines 501, 601, respectively. Each
VLD circuit processes the video image data bounded by
a corresponding subframe. That is, each VLD circuit
decodes the variable length coded transform coefficients
and the motion vectors to send the transform coefficient
data to respective inverse zigzag scanners 53, 63 and
the motion vector data to each of the motion compensa-
tors 52, 62, incorporated in the decoder modules. The
VLD circuits are basically a look-up table: that is, in the
VLD circuits, a plurality of code sets is provided to define
respective relationships between variable length codes
and their run-length codes or motion vectors. The output
from each VLD circuit is then distributed to a correspond-
ing processor. Each processor processes video image
data bounded by a corresponding subframe.

Video image data bounded by the first subframe 13
shown in Fig. 1 is provided from the VLD circuit 51 to the
inverse zigzag scanner 53 through a line 503. In the
inverse zigzag scanner 53, the quantized DCT coeffi-
cients are reconstructed to provide an original block of
quantized DCT coefficients. A block of quantized DCT
coefficients is converted into DCT coefficients in the
inverse quantizer(IQ) 54 and fed to the inverse discrete
cosine transform(IDCT) circuit 55 which transforms the
DCT coefficients into difference data between a block of
the current subframe and its corresponding block of the
previous subframe. The difference data from the IDCT
circuit 55 is then sent to the adder 56.

In the meanwhile, the variable length decoded
motion vector from the VLD circuit 51 is fed to the motion
compensator 52 and a memory module selection con-
troller 75 within the frame memory part 70 via lines 502
and 701. The motion compensator 52 exiracts corre-
sponding pixel data from the previous subframe stored
in the frame memory part 70 based on the motion vector
and sends the corresponding pixel data to the adder 56.
The corresponding pixel data derived from the motion
compensator 52 and the pixel difference data from the
IDCT circuit 55 are summed up at the adder 56 to con-
stitute representative image data of a given block of the
current subframe and written onto the first memory mod-
ule 71 and transmitted to the frame formatter 80 as
shown in Fig. 2.

Also, the decoder module 60 is similar to the
decoder module 50 in structure and operation. In other
words, video image data bounded by the second sub-
frame 16 shown in Fig. 1 is provided from the VLD circuit
61 to the inverse zigzag scanner 63 via a line 603, and
the quantized DCT coefficients are reconstructed
therein. The quantized DCT coefficients are converted
into DCT coefficients in the 1Q 64 and fed to the IDCT

15

20

25

30

35

40

45

50

55

circuit 65, thereby transforming the DCT coefficients into
difference data between a block of the current subframe
and its corresponding block of the previous subframe.
The difference data from the IDCT circuit 65 is then sent
to the adder 66.

In the meanwhile, the motion vector from the VLD
circuit 61 is fed to the motion compensator 62 and the
memory module selection controller 75 via lines 602 and
702. The motion compensator 62 extracts corresponding
pixel data from the previous subframe stored in the frame
memory part 70 based on the motion vector and provides
the corresponding pixel data to the adder 66. The corre-
sponding pixel data derived from the motion compensa-
tor 62 and the pixel difference data from the IDCT circuit
65 are summed up at the adder 66 to constitute repre-
sentative image data of a given block in the current sub-
frame and written onto the second memory module 72
and transmitted to the frame formatter 80 as shown in
Fig. 2.

In accordance with the present invention, one video
image frame area is divided into two subframes, each of
the subframe data being processed through the use of
a corresponding decoder module. In this case, when the
boundary portion between the two subframes, e.g., slice
30 or slice 31 shown in Fig. 1, is processed, the motion
compensator 52 or 62 may access one of the memory
modules 71, 72. Thatis, if the first motion vector provided
fromthe VLD circuit 51 is found in the subframe 16 during
the processing of the slice 30 within the subframe 13, the
motion compensator 52 should access the memory
module 72. Similarly, if the second motion vector applied
from the VLD circuit 61 is in the subframe 13 during the
processing of the slice 31, the motion compensator 62
should access the memory module 71. At this time, the
motion compensation process performed by each of the
two decoder modules is controlled to prevent the two
motion compensators from concurrently attempting to
access a same memory module. In other words, the two
memory modules are made to have an appropriate dead-
lock so that the two motion compensators do not access
a same memory module, simultaneously. A more
detailed description of the above mentioned operation
will be provided with reference to Fig. 4.

As shown in Fig. 3, for this mutually exclusive mem-
ory module access, the frame memory part 70 includes
two memory modules 71, 72, the two multiplexer circuits
73, 74 and the memory module selection controller 75.
At the memory module selection controller 75, it is
checked whether the motion vectors are in an adjacent
subframe.

The memory module selection controller 75 receives
first and second motion vectors from the VLD circuits 51,
61 via lines 701, 702 and generates first and second
selection signals through lines 703, 704 to the multi-
plexer circuits 73, 74. Also, the memory module selection
controller 75 simultaneously produces first and second
address data via lines 705, 706 to the memory modules
71, 72.

IPR2022-01227
EXHIBIT 1003 - PAGE 00468

7 EP 0 720 374 A1 8

When each of the motion vectors provided from the
VLD circuits to the memory module selection controller
75 is in each of the corresponding subframes, the mem-
ory module selection controller 75 generates the first and
second selection signals, e.g., logic "low", to multiplexer
circuits 73, 74. Each multiplexer circuit outputs corre-
sponding pixel data from the previous subframe stored
in the corresponding memory module based on the
motion vectors, in response to the first and second selec-
tion signals with a said logic "low". That is, when the first
selection signal is a logic "low", the multiplexer circuit 73
furnishes the pixel data supplied from the memory mod-
ule 71 to the motion compensator 52. Similarly, when the
second selector signal is a logic "low", the multiplexer
circuit 74 offers the pixel data supplied from the memory
module 72 to the motion compensator 62.

When each of the motion vectors is in another adja-
cent subframe, the first and second selection signals pro-
duced by the memory module selection controller 75 are
logic "high". In this case, the multiplexer circuits 73 and
74 output the pixel data from the memory modules 72
and 71, respectively. As noted above, the mutually exclu-
sive memory accessing operation between the two
memory modules 71, 72 is performed under the control
of the memory module selection controller 75.

Referring now to Figs. 4A and 4B, there is shown a
timing diagram representing the order of processing for
each subframe.

As indicated in Fig. 4, the decoder module 50 starts
the processing of the video image data occupying the
subframe 13. After processing all of the slices contained
in the subframe 13, the processing of the subframe 16
is commenced by the decoder module 60. At this time,
the decoder module 50 has a deadlock until the decoder
module 60 completes the processing of the slice 31 in
the subframe 16 in order to prevent the two motion com-
pensators 52, 62 shown in Fig. 3 from accessing a same
memory module. When the slice 31 is processed by the
decoder module 60, the decoder module 50 begins the
processing of next subframe data, e.g., slice 1, in a next
video image frame area. The decoder module 60 has a
deadlock until the decoder module 50 completes the
processing of the slice 30’ in said next video image frame
area. In this manner, each of the decoder modules 50,
60 repeats the decoding operation until all of the incom-
ing video image data is processed.

While the present invention has been described with
respect to certain preferred embodiments only, other
modifications and variations may be made without
departing from the spirit and scope of the present inven-
tion as set forth in the following claims.

Claims

1. An apparatus for decoding an encoded digital video
signal in an encoded bit stream for the reproduction
of an original video image signal, wherein the
encoded digital video signal includes a plurality of
video frame data, each video frame data having a

10

20

25

30

35

40

45

50

55

number of slice start codes representing a start of
each slice therein, which comprises:

means for detecting the slice start codes from
the encoded digital video signal and generating a
slice start detection signal;

control means for counting the number of the
slice start codes in the encoded bit stream in
response to the slice start detection signal, and for
generating a control signal in response to the
counted number of the slice start codes;

means, responsive to the control signal, for
dividing video frame data into two subframes;

two first-in first-out(FIFO) buffers for storing
the divided video frame data;

image processing means for decompressing
the encoded digital video signal and reproducing the
original video image signal; and

means for coupling the reproduced original
video image signal.

The apparatus of claim 1, wherein the image
processing means includes two decoder modules
and a frame memory part for reproducing the origi-
nal video image signal, wherein each of the decoder
modules generates the decompressed digital video
signal, and the frame memory part includes two
memory modules for storing the decompressed dig-
ital video signal, a memory module selection con-
troller for generating first and second selection
signals and first and second address data, and
selecting means for producing pixel data stored in
the corresponding memory modules in response to
the first and second selection signals.

IPR2022-01227
EXHIBIT 1003 - PAGE 00469

EP 0 720 374 A1

G 10

/

slice 1

slice 2

13

slice 30

slice 31

slice 32 -

16

slice 60

IPR2022-01227
EXHIBIT 1003 - PAGE 00470

EP 0 720 374 A1

T VT T ;
| | m
m B T04INOD “
| I |
|] 7 |
| o A4S |
“ . |
m ~—~{¥300030 [~ 03l |
| ¢ oL |
AV1dSIA_[HALLYA | ! o s |
dsia_| | B |
0L~ HO3| 1y G a |
N S
| | T [vowoama | L%
“ ~[3300030 [0414 |—ols o 3O L Lo
4 7 7 e _r) |
0¢ 0/ 0 BE% VA 7 |
A I o e |
O&N Om\

IPR2022-01227

EXHIBIT 1003 - PAGE 00471

EP 0 720 374 A1

1G5

IMAGE DATA PARTITIONING CIRCUIT

63
Z

ZIGZAG
SCANNER

INVERSE V

INVERSE

ZIGZAG
SCANNER

503 603

54
¥

64
65 '
N Y

62
] /

MOTION
COMPENSATOR

IQ

[} 55
/

IDCT 59

\ /
MOTION
COMPENSATOR

-
|
|
|
1
|
|
i
{
|
|
|
|
|
|
|
l
I |
|
|
|
|
|
I
{
|
|
|
|
|
|
|
[
|
| .

S S A N VU U U L

71

MEMORY MEMORY
MODULE MODULE

! !

TO FRAME
FORMATTER 80

706
%

705

MEMORY MODULE
SELECTION CONTROLLER 7

| A

8 IPR2022-01227
EXHIBIT 1003 - PAGE 00472

EP 0 720 374 A1

F——3NVd4 INJHJIN0——r-

|
|
!
!
|
J

|

!

|

|

m.@oo__m R R IS4 (IS
|
|
| (9)
_
|
|
|
|
|

!
!
!
!
!
|
!
]
|
!
!
!
]
!

007 MO0
-Qv3Q | ~av3d

]
]
|
|
NS__WA. . .VANS_@ATS_@ ”
| |
|

JNVY4 LX3N —

0s01sy - - X zeRlsl 221
!
|
|
!

——— dAVY4 INJJHNO —

IPR2022-01227

EXHIBIT 1003 - PAGE 00473

EPO FORM 1503 03.82 (PO4CO1)

EP 0 720 374 A1

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 94 12 0967

DOCUMENTS CONSIDERED TO BE RELEVANT
Category Citation of docon;r:;:: :':ttl: indic:tion, where appropriate, :,e::?:lt w&g&g%r:‘%fgﬂli
X EP-A-0 479 511 (VICTOR COMPANY OF JAPAN, 1,2 HO4N7/26
LTD.) HO4N7/50
* the whole document *
A W0-A-91 11074 (BRITISH BROADCASTING CORP.)|1
* the whole document *
X EP-A-0 577 310 (CANON K.K.) 1,2
* the whole document *
X EP-A-0 614 317 (SONY CORP.) 1,2
* the whole document *
A US-A-5 212 742 (NORMILE ET AL.)
A 6TH MEDITERRANEAN ELECTROTECHNICAL 1,2
CONFERENCE,
vol. I, 22 May 1991 LJUBLJANA, SLOVENIA,
pages 428-431, XP 000289486
E.J. LALOYA-MONZON ET AL. 'DSP Parallel
. : 1
Architecture for Image Compression TecHNICAL “l%ll;l‘).sq_‘)
* paragraph 3 *
----- HO4N
The present scarch report has been drawn up for all claims
Place of search Date of completion of the search Exasniner
THE HAGUE 8 June 1995 Foglia, P
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
E : earlier patent document, but published on, or
X : particularly relevant if taken alone after the filing date
Y : particularly relevant if combined with another D : document cited in the application
document of the same category L : document cited for other reasons
A : technological background
O : non-written disclosure & : member of the same patent family, corresponding
P : intermediate document document
10 IPR2022-01227

EXHIBIT 1003 - PAGE 00474

EP 0 762 300 A2

) Furopaisones Patotam W
(19) 0 European Patent Office

Office européen des brevets (11) EP 0 762 300 A2

(12) EUROPEAN PATENT APPLICATION
(43) Date of publication: (51) Int. c1.5: GO6F 17/30, HO4N 7/173,
12.03.1997 Bulletin 1997/11 GO6F 3/06

(21) Application number: 96114630.5

(22) Date of filing: 12.09.1996

(84) Designated Contracting States: « Kanai, Tatsunori
DE FR GB Yokohama-shi, Kanagawa-ken (JP)
+» Kizu, Toshiki
(30) Priority: 12.09.1995 JP 234404/95 Yokohama-shi, Kanagawa-ken (JP)
. » Maeda, Seiji
(71) Applicant: KABUSHIKI KAISHA TOSHIBA Fuchu-shi, Tokyo (JP)

Kawasaki-shi, Kanagawa-ken 210 (JP)
(74) Representative: Zangs, Rainer E., Dipl.-Ing. et al

(72) Invento_rs: _ Hoffmann, Eitle & Partner
» Yao, Hiroshi, Arabellastrasse 4/VIll
338 Toshiba-Shinkoyasu-Daiichi-ryo 81925 Miinchen (DE)

Yokohama-shi, Kanagawa-ken (JP)

(54) Real time stream server for handling a plurality of real time stream data with different data

rates

(57) A real time stream server capable of realizing a used. The blocks of each unit stream data are sequen-
supply of a plurality of real time stream data with differ- tially stored into a plurality of disk devices. In response
ent data rates by a scheduling scheme using constant to a request for each real time stream data from a client,
time-slot interval and transfer start timing period. A the blocks constituting each real time stream data are
number of unit streams to be used and a block transfer read out from disk devices to a buffer memory, and each
time for each real time stream data are determined real time stream data is read out from a buffer memory
according to a data rate of each real time stream data. and transferred to the client through a network, accord-
Each real time stream data is divided into a plurality of ing to an appropriately scheduled transfer start timing
blocks, each block being in a size to be transferred for each unit stream.

within the block transfer time, and the blocks are
sequentially distributed among the unit streams to be

@ OPTICAL DISK REAL TIME STREAM SERVER 1
81 DATA CONTROL DEVICE 2 FIG.3
RECEPTION UNIT :
;) [
ANALYSIS UNIT [IMANAGEMENT[—~ CONNECTION
; UNIT|
%3 e _UNIT PROCESSING
DIVISION UNIT 23 21 2(2
$0S1 Sm SCHEDULING UNIT
s UNIT UNIT STREAM STRUCTURES
DATA @ NETWORK
1 1 6
i 7
o
e
314 \ 7
| >
\1 7
| LOGICAL DISK DEVICES 32 S DATA TRANSFER UNIT 5 CLIENT
DATA STORAGE UNIT 3 BUFFER MEMORY 4

Printed by Rank Xze.r10é<b1(LéJ/Pé).fusiness Services |PR2022-0 1 227
EXHIBIT 1003 - PAGE 00475

10

15

20

25

30

35

40

45

50

55

EP 0 762 300 A2

Description

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a real time stream server for supplying a plurality of real time stream data in differ-
ent data rates simultaneously to clients, and a method for operating the real time stream server.

Description of the Background Art

Data to be sequentially transferred in real time such as video data and audio data are generally called "real time
stream data". For a real time stream server for handling such real time stream data, a necessary condition is that it
should be able to transfer the real time stream data stored in disk devices to each client while guaranteeing a continuity
in real time.

In order to satisfy this condition, in the prior art, the real time stream data are stored in disks by being divided into
blocks of a size to be transferred in a prescribed period of time, and the server makes accesses to disks periodically for
each stream. The read out blocks are stored in a buffer memory once, and periodically transferred to corresponding cli-
ents through a communication network.

A stream scheduling device is a device which realizes a management of timings for issuing disk access commands
and data transfer commands in this operation.

In addition, the scheduling device establishes a new stream channel upon receiving a connection request from a
user. In order to manage disk accesses and data transfer timings, the scheduling device provides time-slots as shown
in Fig. 1 which are partitioned at constant time interval. One disk access is allocated to one time-slot, and one disk
access reads out one block of the real time stream data. A period of disk access in one stream is constant, so that by
allocating disk accesses of different streams to different time-slots, it becomes possible to share the same stored data
among a plurality of streams.

In an example shown in Fig. 1, four time-slots are provided in one period. That is, three disk devices with a read
multiplexing level 4 are provided, and blocks are striped over these three disk devices. Consequently, an access period
for one disk device is 4 x 3 = 12 time-slots, and a maximum number of simultaneously connectable streams is 12.

As shown in Fig. 1, time-slots by which one stream makes accesses to the disk devices are distanced each other
by the access period of four time-slots. For example, after a read block A1 (a block-1 of the real time stream data A) is
read out, it is transferred to a client-0 and processed (e.g., reproduced) in real time, and then a block A2 is read out and
transferred before the processing of a block A1 is finished. In this manner, the scheduling is made so that each stream
does not influence the continuity of the other streams.

Fig. 1 shows an exemplary case of a scheme in which the disk access allocated to the time-slot is fixed, but there
is also a scheme in which an allocation position of a disk access is made variable among time-slots within a tolerable
jitter range, by noting the fact that a time-slot to which a disk access is to be allocated can be changed during a period
since a buffer memory becomes available until a transfer start timing (see, Japanese Patent Application No. 7-57384
(1995). Here, a range of time-slots to which a disk access of one stream can be allocated is called tolerable jitter range
of that stream.

Fig. 2 shows an exemplary tolerable jitter range. In a case where all the real time stream data to be handled have
the same data rate, the scheduling becomes easier by a scheme utilizing the tolerable jitter range.

Now, in a case of handling real time stream data with a higher data rate, a block size becomes larger, and there can
be a case in which a reading from a disk cannot be completed within one time-slot.

In order to avoid such a situation, if a time-slot interval and a block size are fixedly set in accordance with the real
time stream data with the maximum data rate, there arises a problem in a case where real time stream data with a low
data rate are to be supplied at the same time because it would become impossible to take a full advantage of a transfer
capacity of the disk devices. This is due to the fact that, for the same period, the block size changes in proportion to the
data rate.

On the other hand, when a time-slot interval is varied according to a block size, it becomes difficult to realize a flex-
ible disk access scheduling in which orders of disk accesses can be interchanged. In addition, the buffer memory man-
agement becomes complicated in such a case, because there is a need to secure a continuous region in a size of each
block size as the buffer memory.

Moreover, when a block size is fixed regardless of a data rate, a period of access to one disk device is going to be
different for different streams, and for this reason, it becomes difficult to judge whether it is possible to connect a new
stream while guaranteeing the continuity of the already connected streams.

Thus, in a case of supplying a plurality of real time stream data with different data rates, it has conventionally been
difficult to realize both a scheme for making the disk access scheduling easier by fixing a period of access to one disk

2 IPR2022-01227
EXHIBIT 1003 - PAGE 00476

10

15

20

25

30

35

40

45

50

55

EP 0 762 300 A2

device and a time-slot interval, and a scheme for taking a full advantage of a transfer capacity of disk devices by chang-
ing a number of data supply streams according to a data rate.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide a real time stream server and a method for operating a
real time stream server, capable of realizing a supply of a plurality of real time stream data with different data rates by
a scheduling scheme using constant time-slot interval and transfer start timing period, without wasting a transfer capac-
ity of disk devices.

According to one aspect of the present invention there is provided a real time stream server, comprising: entering
means for entering real time stream data to be stored in the real time stream server; determining means for determining
a number of unit streams to be used and a block transfer time for the real time stream data, according to a data rate of
the real time stream data; dividing means for dividing the real time stream data into a plurality of blocks, each block
being in a size to be transferred within the block transfer time, and sequentially distributing the blocks among as many
unit streams as the number of unit streams to be used; a plurality of disk devices for sequentially storing the blocks of
each unit stream data; a buffer memory for temporarily storing the blocks read out from said plurality of disk devices;
control means for reading out the blocks constituting the real time stream data from said plurality of disk devices to the
buffer memory, and reading out the real time stream data from the buffer memory, according to a request for the real
time stream data from a client; and transfer means for transferring the real time stream data read out from the buffer
memory to the client through a network.

According to another aspect of the present invention there is provided a method for operating a real time stream
server having a plurality of disk devices and a buffer memory, comprising the steps of: entering real time stream data
into the real time stream server; determining a number of unit streams to be used and a block transfer time for the real
time stream data, according to a data rate of the real time stream data; dividing the real time stream data into a plurality
of blocks, each block being in a size to be transferred within the block transfer time, and sequentially distributing the
blocks among as many unit streams as the number of unit streams to be used; sequentially storing the blocks of each
unit stream data into said plurality of disk devices; controlling the real time stream server to read the blocks constituting
the real time stream data from said plurality of disk devices to the buffer memory, and read out the real time stream data
from the buffer memory, according to a request for the real time stream data from a client; and transferring the real time
stream data read out from the buffer memory to the client through a network.

Other features and advantages of the present invention will become apparent from the following description taken
in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a timing chart showing one conventional scheme for managing disk accesses and data transfer timings in
a stream scheduling device.

Fig. 2 is a timing chart showing another conventional scheme for managing disk accesses and data transfer timings
in a stream scheduling device.

Fig. 3 is a block diagram of one embodiment of a real time stream server according to the present invention.

Fig. 4 is a flow chart of an operation for storing real time stream data into memory devices from external in the real
time stream server of Fig. 3.

Fig. 5 is a flow chart of an operation for supplying real time stream data according to a request from external in the
real time stream server of Fig. 3.

Fig. 6 is a diagram showing exemplary transfer start timings for blocks read out from logical disk devices in a con-
crete example of the real time stream server of Fig. 3, in a case of using one unit stream.

Fig. 7 is a diagram showing one exemplary transfer start timings for blocks read out from logical disk devices in a
concrete example of the real time stream server of Fig. 3, in a case of using two unit streams.

Fig. 8 is a diagram showing another exemplary transfer start timings for blocks read out from logical disk devices in
a concrete example of the real time stream server of Fig. 3, in a case of using two unit streams.

Fig. 9 is a diagram showing exemplary transfer start timings for blocks read out from logical disk devices in a con-
crete example of the real time stream server of Fig. 3, in a case of using three unit stream.

Fig. 10 is a diagram showing exemplary transfer start timings for blocks read out from logical disk devices in a con-
crete example of the real time stream server of Fig. 3, in a case of using four unit stream.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

First, the main features of a real time stream server according to the present invention will be summarized briefly.
In the present invention, a unit stream having a reference data rate is defined. Then, in a case of supplying real time

3 IPR2022-01227
EXHIBIT 1003 - PAGE 00477

10

15

20

25

30

35

40

45

50

55

EP 0 762 300 A2

stream data in excess of the data rate of the unit stream, as many unit streams as necessary for the required data rate
are used to supply this real time stream data.

At first, the real time stream data is divided into unit streams, and stored into a plurality of disk devices. Namely,
according to a data rate of entered real time stream data, a number of unit streams to be used and a block transfer time
are determined. Then, the real time stream data is divided into a plurality of blocks, each in a size to be transferred with
the block transfer time, and these blocks are sequentially allocated to unit stream data. Then, for each unit stream data,
allocated blocks are stored by distributing them over a plurality of disk devices sequentially from a top block. Also, for
each real time stream data, a number of unit streams to be used, an ID number of a disk device which stores the top
block of each unit stream, and a recording position of each block on a disk device which stores that block are recorded.

When a request for this real time stream data so stored in the disk devices is received from a client, stream
recourses for as many unit streams as a recorded number of unit streams to be used for the requested real time stream
data are secured (reserved), and a transfer start timing of each unit stream is scheduled so that the blocks are trans-
ferred continuously in an order as in the original real time stream data. At this point, the transfer start timings of the unit
streams are scheduled to be displaced one another by a block transfer time part.

In transferring each block, a corresponding block on the buffer memory is transferred within the block transfer time
starting from the transfer start timing scheduled for each unit stream. Here, the transfer start timings of the unit streams
are displaced one another by a block transfer time part, so that when the block transfer of a preceding unit stream is
finished, the block transfer of a subsequent unit stream is started immediately, and the blocks of the original real time
stream data are transferred while guaranteeing the continuity.

In this manner, according to the present invention, the real time stream data with various data rates can be handled
by using an appropriate number of independent unit streams according to a data rate of each real time stream data,
and therefore it becomes possible to realize the disk access scheduling based on a single scheme regarding a time-slot
interval, a block size, a block transfer period, and a buffer memory management, without distinguishing different data
rates.

Also, according to the present invention, the stream resources are divided into amounts corresponding to the unit
streams, and allocated as much as necessary according to a data rate of each real time stream data to be supplied, so
that it becomes possible to utilize the stream resources efficiently without wasting any resource.

Also, in a case of the real time stream server which has a capacity to supply Cmax sets of real time stream data
with data rates not greater than R, where R is a reference data rate of a unit stream, a number of supplies Cm (m =1,
2, «++ e+« .) {0 be allocated to each real time stream data with a data rate in a data rate range greater than
(m-1)xR and not greater than mxR can be set arbitrarily within a range of:

> (m x Cm) = Cmax

m

where m is a number of unit streams to be used for each real time stream data.

Referring now to Fig. 3 to Fig.10, one embodiment of a real time stream server according to the present invention
will be described in detail.

Fig. 3 shows a configuration of a real time stream server in this embodiment, Fig. 4 shows a flow chart of an oper-
ation for storing real time stream data into memory devices from external, and Fig. 5 shows a flow chart of an operation
for supplying real time stream data according to a request from external.

As shown in Fig. 3, the real time stream server 1 of this embodiment comprises a control device 2, a data storage
unit 3 connected with the control device 2, a buffer memory 4 connected with the data storage unit 3, a data transfer
unit 5 connected with the control device 2 and the buffer memory 4 and connected to an external network 6, a data
reception unit 81 for receiving externally entered real time stream data, a data analysis unit 82 connected with the data
reception unit 81 and the control device 2, and a data division unit 83 connected with the control device 2 and the data
storage unit 3.

The control device 2 has a request connection processing unit 21, a scheduling unit 22, and a directory manage-
ment unit 23. The data storage unit 3 has a plurality of disk devices 31 for storing real time stream data in units of blocks.

First, with references to Fig. 3 and Fig. 4, one aspect of this real time stream server 1 regarding a phase for storing
real time stream data acquired at the data reception unit 81 into the data storage unit 3 will be described.

Here, the "unit stream” in the real time stream server is defined as a stream which is scheduled by using a block
transfer period T, a block size L, and a time-slot interval | which serve as references for the operation of the real time
stream server.

The "unit data rate R" is defined as a maximum data rate that can be scheduled as a unit stream. Consequently,
the following relationship holds among the block transfer period T, the block size L, and the unit data rate R.

4 IPR2022-01227
EXHIBIT 1003 - PAGE 00478

10

15

20

25

30

35

40

45

50

55

EP 0 762 300 A2

L=RxT

A value of this unit data rate R is to be determined appropriately in view of optimizing the disk reading efficiency
and the data transter/storing efficiency.

Now, at a time of storing real time stream data in the real time stream server, the real time stream data to be stored
is entered from the data reception unit 81 (step S11). Here, the data reception unit 81 may be in a form of reading data
from an external memory device such as optical disk, floppy disk, CD-ROM, etc., or in a form of receiving data trans-
ferred through a network.

At the data analysis unit 82, a maximum data rate of the entered real time stream data is checked (step S12). To
realize this checking, the maximum data rate may be obtained by analyzing a header of the real time stream data, or
the maximum data rate known in advance may be entered by a human operator through an input device such as key-
board.

When the maximum data rate is obtained, a number of unit streams to be used for that real time stream data is
determined (step S13). Here, a number of unit streams to be used is a numerical value indicating a capacity and
resources of the real time stream server required for supplying that real time stream data, which is expressed in terms
of a required number of the unit streams. Actually, a number of unit streams to be used can be determined as a mini-
mum integer m which satisfies the following relationship.

(Maximum data rate) = m x (Unit data rate R)

When the number of unit streams to be user is determined, the block transfer time which serves as a reference size
for dividing the real time stream data into blocks is obtained according to the following formula (step S14).

(Block transfer time) = (Block transfer period T)/m

An amount of data to be transferred within this block transfer time obtained according to this formula never exceed
the block size L of the unit stream.

The number of unit streams to be used and the block transfer time calculated at the data analysis unit 82 are then
sent to the data division unit 83 along with the real time stream data.

At the data division unit 83, the real time stream data is divided into blocks, each in a size to be transferred within
the block transfer time T/m (step S15). Then, these blocks are distributed among as many unit stream data as the
number of unit streams to be used (step S16). Here, the distribution should preferably be done by using a fixed rule so
that the schedules will not interfere among the unit stream data.

More specifically, for example, a set of blocks as a whole can be divided into m pieces of non-dense subsets Bj
given by:

Bj = {b(mxk+) [k=0,1, « = e s eeee}(j=0 csccveee m1)

and each such non-dense subset Bj can be identified as a unit stream data. For instance, in a case where m = 4 and
there are sixteen blocks b0 to b15, the blocks are distributed among four unit stream data as follows.

BO = {00, b4, b8, b12}
B1 = {b1, b5, b9, b13}
B2 = {b2, b6, b10, b14}
B3 = {b3, b7, b11, b15}

These m pieces of unit stream data (B0 to Bm-1) are then sent to the data storage unit 3, and each unit stream data
is stored into N sets of disk devices, in a similar manner as used for a unit stream data in a case of m = 1. More specif-
ically, a top block bj of the unit stream data BO is stored into a disk device of a disk device ID number Hj, while each
block b(mxk+j) is stored into a disk device of a disk device ID number [(k+Hj) modulo N1].

At this point, the disk device ID number Hj of the disk device which stores the top block of each unit stream, and a
recording position of each block on a disk device which stores each block are recorded as a directory information in the
directory management unit 23 within the control device 2 (step S18).

Here, a recording position on a disk may be specified by physical cylinder number, track number, and sector
number, or by a logical number that can identify a specific position.

Also, a manner of sending m pieces of unit stream data obtained at the data division unit 83 to the data storage unit

5 IPR2022-01227
EXHIBIT 1003 - PAGE 00479

10

15

20

25

30

35

40

45

50

55

EP 0 762 300 A2

3 can be in a form of once storing all the unit stream data on another memory device provided separately from the data
storage unit 3 of the real time stream server and then sending each unit stream to the data storage unit 3 one by one,
or in a form of sending all m pieces of unit stream data to the data storage unit 3 in parallel.

Next, with references to Fig. 3 and Fig. 5, another aspect of this real time stream server 1 regarding a phase for
transferring the real time stream data to a client 7 upon receiving a request for supply of the real time stream data will
be described.

Note that, generally speaking, there are two types of a scheduling scheme for allocating a time-slot to a disk
access, including a fixed allocation type and a variable allocation type, and the present invention is applicable to either
type of the scheduling scheme. In the following, it is only assumed that the scheduling is to be made in such a manner
that the continuity of streams is guaranteed, without limiting the scheduling scheme to either one of these two types.

When a request for supply of the real time stream data is received from a client 7 through the network 6 (step S21),
the request connection processing unit 21 first obtains a directory information for the requested real time stream data
from the directory management unit 23 (step S22).

Then, the number m of unit streams to be used is obtained from the directory information (step S23), and as many
stream structures in the scheduling unit 22 as necessary for holding information required in managing m pieces of unit
streams are secured (reserved), while a necessary amount of regions in the buffer memory 4 are secured (reserved)
(step S24).

Next, the scheduling unit 22 carries out the scheduling including a selection of transfer start timings for the unit
streams SO to Sm-1 to be used (step S25). Here, by the real time stream data storing procedure described above, m
pieces of blocks b(mxk+j) (j=0, ¢+« +++ m-1) which are continuous in the original real time stream data are
sequentially distributed among the unit streams S0 to Sm-1. Consequently, in order to carry out the transfer of these
blocks continuously, the transfer start timings of the unit streams S0 to Sm-1 are displaced one another by the block
transfer time T/m part.

Here however it is necessary for each one of the unit streams S0 to Sm-1 to select a time-slot for carrying out the
disk access, so that it becomes possible to read out the respective top block from the disk device 31 which stores that
top block, before the selected transfer start timing, without affecting the continuity of the other already connected unit
streams. Note that the ID number of the disk device 31 which stores the top block of each unit stream can be obtained
from the directory information obtained at the step S22. This time-slot selection operation will be described in detail
below. When this condition is not satisfied, it is necessary to select different transfer start timings anew.

Each one of the unit streams S0 to Sm-1 so connected is then scheduled as an independent unit stream for which
the block transfer time for one block is T/m, that is, scheduled according to the block transfer period T, the block size L,
the time-slot interval |, and the block transfer time T/m. Then, according to this scheduling, each block is read out from
the buffer memory 4 from the recording position of each block on a disk device which is indicated by the directory infor-
mation, and supplied to the client 7 from the data transfer unit 5 (step S26).

According to this embodiment of the present invention, the real time stream data with a data rate not greater than
mxR are handled as m pieces of independent unit streams, so that it becomes possible to realize the disk access
scheduling based on a single scheme regarding a time-slot interval, a block size, a block transfer period, and a buffer
memory management.

Also, according to this embodiment of the present invention, in a case of the real time stream server which has a
capacity to supply Cmax sets of real time stream data with data rates not greater than R, a number of supplies Cm (m
=1,2, «+ ..)tobe allocated to each real time stream data with a data rate in a data rate range greater than
(m-1)xR and not greater than mxR can be set arbitrarily within a range of:

> (m x Cm) = Cmax

m

where m is a number of unit streams to be used for each real time stream data, as should be apparent from the above
description.

Now, with references to Fig. 6 to Fig. 10, concrete examples of the real time stream server of the present invention
will be described.

First, an exemplary case of the real time stream server which stores and supplies the real time stream data by
using a unit stream with a unit data rate R = 1.6 (Mbps) will be described.

When the block transfer time for one block is selected to be 2400 (ms), the maximum size of one block is 500 (kB).
Assuming the the transfer rate of the disk device to be used is 20 (Mbps), there is a need to set the time-slot interval to
be not less than 200 (ms) in order to read out one block by one time-slot.

In order to raise the transfer rate higher, one block can be divided and stored over a plurality of disk devices 31. For
example, considering four disk devices 31 as one set, one block can be divided into four and stored into four disk

6 IPR2022-01227
EXHIBIT 1003 - PAGE 00480

10

15

20

25

30

35

40

45

50

55

EP 0 762 300 A2

devices 31 respectively, and at a time of reading, all of these four disk devices 31 of the same set can be accessed
simultaneously. In this manner, the effective maximum block size on a disk becomes 125 (kB), and the time-slot interval
of not less than 50 (ms) becomes necessary. In the following, a set of these four disk devices 31 is regarded as one
logical disk device 32.

When the time-slot interval is set to be 50 (ms) by regarding a set of four disk devices as one logical disk device as
described above, a number of unit streams that can be supplied by one logical disk device is 2400/50 = 48 pieces. In
addition, when eight of such logical disk devices are provided, it becomes possible to supply 48 x 8 = 384 pieces of the
unit streams.

In a case of handling the unit streams in such a real time stream server, the block bk is to be stored in the logical
disk device with a logical disk device ID number [(k+H) modulo 8], where H is a logical disk device ID number of the
logical disk device which stores the top block bO0.

In order to supply these unit streams in accordance with the request from the client 7, the disk devices storing the
block to be transferred next are accessed at a period of 2400 (ms), and the block of not greater than 500 (kB) in total is
read out to the buffer memory 4, 125 (kB) from each one of four disk devices corresponding to one logical disk device,
within the time-slot interval 50 (ms). This block is then transferred to the client 7 at the period of 2400 (ms). in the trans-
fer time of 2400 (ms).

Fig. 6 shows exemplary transfer start timings for blocks read out from the logical disk devices storing blocks of one
unit stream in this case. In Fig. 6, the top block is stored in the logical disk device-0 (disk-0). Note however that there is
no need for a disk device to store the top block to be the logical disk device-0, and it is also possible to store the top
block of different real time stream data in different logical disk devices.

Next, in the real time stream server of the concrete example described above, a case of handling the real time
stream data with a data rate of 3 (Mbps) will be considered. Here, the minimum integer m which satisfies
3=mx R=m x 1.6 (Mbps) is 2, so that it is possible to store and supply the real time stream data with a date rate of
3 (Mbps) by using 2 pieces of unit streams with the block transfer time for one block equal to 1200 (ms). In order to store
the real time stream data with a date rate of 3 (Mbps), this data is divided into blocks, each in a size to be transferred
in 1200 (ms), and a set of these blocks are divided into m = 2 subsets:

BO:{b(Zk)|k=0,1, o o o 0 --..}
B1={b(kt1) [K=0,1, » == vev=}

Then, the block b(2k+j) is stored into the logical disk device with a logical disk device ID number [(k+Hj) modulo 8]. In
other words, for B0, the top block b0 is stored into the logical disk device with a logical disk device ID number HO, the
next block b2 is stored into the logical disk device with a logical disk device ID number [(HO+1) modulo 8], the next
block b4 is stored into the logical disk device with a logical disk device ID number [(H0+2) modulo 8], and so on.

In order to supply this stream in response to the request from the client 7, two unit streams S0 and S1 for supplying
B0 and B1 respectively are prepared.

Then, the reference time-slots for the unit stream S0 and the unit stream S1 are selected such that the transfer start
timings of the block b0 and the block b1 are displaced by 2400/2 = 1200 (ms). Then, the disk access is allocated to the
time-slot in a similar manner as used for a unit stream in a case of m = 1, but here it must be possible 1o realize the disk
access allocation for the unit stream S0 and the disk access allocation for the unit stream S1 simultaneously. If the
simultaneous disk access allocations are impossible, the reference time-slots of the unit streams S0 and S1 are to be
selected anew.

When the reference time-slots of the unit streams S0 and S1 are determined in this manner, it suffices to schedule
the unit streams SO and S1 as independent unit streams. In other words, for each one of the unit stream S0 and S1, a
block to be transferred next by using the time-slot to which the disk access is allocated is read out from the logical disk
device which stores this block to the buffer memory 4, and then this block is transferred to the client 7 at the period of
2400 (ms), in the transfer time of 1200 (ms). Here, only the transfer time differs from a case of a usual unit stream. A
size of one block is approximately 460 (kB), which is less than the maximum block size of 500 (kB) for a usual unit
stream, so that the time-slot interval and the buffer memory management can be exactly the same as in a case of a
usual unit stream.

Fig. 7 shows exemplary transfer start timings for blocks read out from the logical disk devices storing blocks of the
unit streams S0 and S1 in this case. In Fig. 7, the top blocks of the unit streams S0 and S1 are stored in the logical disk
devices with the logical disk device ID numbers HO = 0 and H1 = 4. Note however that any other combination of the
logical disk devices to store the top blocks may be used. Fig. 8 shows another exemplary transfer start timings in this
case, where HO = H1 = 0, so that the block b0 and the block b1 are stored in the same logical disk device in this case.

Next, in the real time stream server of the concrete example described above, a case of handling the real time
stream data with a data rate of 4.5 (Mbps) will be considered. Here, the minimum integer m which satisfies
45=mx R=m x 1.6 (Mbps) is 3, so that it is possible to store and supply the real time stream data with a date rate

7 IPR2022-01227
EXHIBIT 1003 - PAGE 00481

10

15

20

25

30

35

40

45

50

55

EP 0 762 300 A2

of 4.5 (Mbps) by using 3 pieces of unit streams with the block transfer time for one block equal to 800 (ms).

In order to store the real time stream data with a date rate of 4.5 (Mbps), this data is divided into blocks, each in a
size to be transferred in 800 (ms), and a set of these blocks are divided into m = 3 subsets:

BO={b(3k) [k=0,1, « e+ eees}
B1 = {b(3k+1) [K=0,1, ==+ o v oo}
B2 = {b(3k+2) [k=0,1, = ===+ }

Then, the block b(3k+j) is stored into the logical disk device with a logical disk device ID number [(k+Hj) modulo 8].

In order to supply this stream in response to the request from the client 7, three unit streams S0, S1 and S2 for sup-
plying BO, B1 and B2 respectively are prepared.

Then, the reference time-slots for the unit streams S0, S1 and S2 are selected such that the transfer start timings
of the respective blocks are displaced by 2400/3 = 800 (ms).

Fig. 9 shows exemplary transfer start timings for blocks read out from the logical disk devices storing blocks of the
unit streams S0, S1 and S2, for an exemplary case of setting HO =0, H1 = 3, and H2 = 6.

Similarly, in a case of handling the real time stream data with a data rate of 6 (Mbps), the minimum integer m which
satisfies 6 = m x R=m x 1.6 (Mbps) is 4, so that it is possible to store and supply the real time stream data with a
date rate of 6 (Mbps) by using 4 pieces of unit streams with the block transfer time for one block equal to 600 (ms).

Fig. 10 shows exemplary transfer start timings for blocks read out from the logical disk devices storing blocks of the
unit streams S0, S1, S2 and S3, for an exemplary case of setting HO =0, H1 =2, H2 = 4, and H3 = 6.

Note that, in the real time stream server of the concrete example described above, a number of unit streams that
can be supplied is set as 384, but it is possible to change a number of unit streams to be used arbitrarily according to
the request from the client 7 as long as a total number of unit streams to be used is within 384. For example, it is pos-
sible to supply 96 sets of streams with a data rate of 6 (Mbps) (corresponding to a total number of unit streams equal
to 384) alone, or 48 sets of streams with a data rate of 6 (Mbps) (corresponding to a number of unit streams equal to
192) and 192 sets of streams with a data rate of 1.5 (Mbps) (corresponding to a number of unit streams equal to 192)
together.

Next, a manner of selecting the time-slots at the connection request processing unit 21 in the real time stream
server 1 of Fig. 3 will be described.

In order to supply the real time stream server with a data rate of mxR, it is necessary to allocate m pieces of disk
accesses to the time-slots so that the m pieces of unit streams can be supplied continuously as described above.

Now, as already mentioned above, generally speaking, there are two types of a scheduling scheme for actually allo-
cating a time-slot to a disk access, including a fixed allocation type and a variable allocation type.

The former is the scheduling scheme in which the disk access is fixed to the time-slot which is positioned a certain
period of time away relatively from the reference time-slot as shown in Fig. 1. In other words, it is the scheduling scheme
which fixes a positional relationship between the transfer timing and the disk access timing on the time-slots.

The latter is the scheduling scheme in which the allocation position of the disk access is made variable among the
time-slots within the tolerable jitter range as shown in Fig. 2, by noting the fact that a time-slot to which a disk access is
to be allocated can be changed during a period since a buffer memory becomes available until a transfer start timing.

Note here that, in Fig. 2, J indicates the maximum jitter number which is determined according to the following for-
mula.

J=BM-D-T-1

where B is a ratio of a size of a buffer memory that can be used by one stream and a size of one block of the real time
stream data, M is a time (a number of slots) for reproducing one block at a client, T is a time (a number of slots) for trans-
ferring one block to a client, and D is an estimated maximum delay time (a number of slots) in a case where the disk
access end timing extends beyond the end timing of the allocated time-slot. In an example shown in Fig. 2, a time
required for transferring one block to the client side and a time required for reproducing one block at the client side are
assumed to be equal to each other, as a time equivalent to 4 time-slots.

Now, in the scheduling scheme in which the disk access is fixed to the time-slot which is positioned a certain period
of time away relatively from the reference time-slot, depending on a combination of the reference time-slots for already
connected unit streams. there can be a case in which the reference time-slots for m pieces of new unit streams overlap
with the reference time-slots for the already connected unit streams, no matter how these reference time-slots for m
pieces of new unit streams are selected. In such a case, it is impossible to allocate the disk access to the time-slot, and
it is impossible to connect a new stream.

In contrast, in the scheduling scheme in which the allocation position of the disk access is made variable among

8 IPR2022-01227
EXHIBIT 1003 - PAGE 00482

10

15

20

25

30

35

40

45

50

55

EP 0 762 300 A2

the time-slots within the tolerable jitter range, as long as there is a vacant time-slot within the tolerable jitter range as in
a case shown in Fig. 2, it suffices to allocate the disk access of a new unit stream to that vacant time-slot. Also, even
when there is no vacant time-slot within the tolerable jitter range, by moving the disk access of the already connected
unit stream to another time-slot within its tolerable jitter range, it is possible to create a vacant time-slot and allocate the
disk access of a new unit stream to that vacated time-slot.

Even in this case, however, a new stream cannot be connected when it is impossible to create a vacant time-slot
no matter how the disk accesses are moved. In order to lower a probability for such a situation to arise, it is preferable
to select the reference time-slots such that the reference time-slots of the unit streams are not concentrated in a short
period of time as much as possible, that is, the vacant time-slots are as widely spread as possible over all the time-slots.

As described, according to the present invention, the real time stream data with various data rates can be handled
by using an appropriate number of independent unit streams according to a data rate of each real time stream data,
and therefore it becomes possible to realize the disk access scheduling based on a single scheme regarding a time-slot
interval, a block size, a block transfer period, and a buffer memory management, without distinguishing different data
rates.

Also, according to the present invention, the stream resources are divided into amounts corresponding to the unit
streams, and allocated as much as necessary according to a data rate of each real time stream data to be supplied, so
that it becomes possible to utilize the stream resources efficiently without wasting any resource.

It is to be noted that, besides those already mentioned above, many modifications and variations of the above
embodiments may be made without departing from the novel and advantageous features of the present invention.
Accordingly, all such modifications and variations are intended to be included within the scope of the appended claims.

Claims
1. Areal time stream server, comprising:

entering means for entering real time stream data to be stored in the real time stream server;

determining means for determining a number of unit streams to be used and a block transfer time for the real
time stream data, according to a data rate of the real time stream data;

dividing means for dividing the real time stream data into a plurality of blocks, each block being in a size to be
transferred within the block transfer time, and sequentially distributing the blocks among as many unit streams
as the number of unit streams to be used;

a plurality of disk devices for sequentially storing the blocks of each unit stream data;

a buffer memory for temporarily storing the blocks read out from said plurality of disk devices;

control means for reading out the blocks constituting the real time stream data from said plurality of disk
devices to the buffer memory, and reading out the real time stream data from the buffer memory, according to
a request for the real time stream data from a client; and

transfer means for transferring the real time stream data read out from the buffer memory to the client through
a network.

2. The real time stream server of claim 1, wherein the control means includes:

management means for managing a directory information for each real time stream data stored in said plurality
of disk devices, the directory information indicating the number of unit streams to be used, a disk device ID
number of a disk device which stores a top block of each unit stream, and a recording position of each block
on a disk device which stores each block, for said each real time stream data.

3. The real time stream server of claim 1, wherein the control means carries out operations with respect to each real
time stream data according to the directory information for each real time stream data managed in the management
means.

4. The real time stream server of claim 1, wherein the control means includes:

scheduling means for securing stream resources for as many unit streams as the number of unit streams to be
used, scheduling a transfer start timing for each unit stream in order to transfer the blocks continuously in a
sequential order to form the real time stream data, and controlling the transfer means to read out each block of
each unit stream on the buffer memory within the block transfer time since the transfer start timing for each unit
stream.

5. The real time stream server of claim 4, wherein the scheduling means schedules the transfer start timing for each

9 IPR2022-01227
EXHIBIT 1003 - PAGE 00483

10

15

20

25

30

35

40

45

50

55

10.

11.

12.

13.

EP 0 762 300 A2

unit stream such that scheduled transfer start timings of the unit streams are displaced one another by the block
transfer time.

The real time stream server of claim 1, wherein the unit stream is defined as a stream which is scheduled by using
a prescribed block transfer period T, a prescribed block size L, and a prescribed time-slot interval .

The real time stream server of claim 1, wherein the determining means detects a maximum data rate of the real
time stream data, and determines the number m of unit streams to be used as a minimum integer which satisfies:

the maximum data rate = m x R
where R is a prescribed maximum data rate of each unit stream.
The real time stream server of claim 7, wherein the determining means determines the block transfer time as:
the block transfer time = T/m
where T is a prescribed block transfer period, and m is the number of unit streams to be used.

The real time stream server of claim 1, wherein the real time stream server has a capacity to supply Cmax sets of
real time stream data with data rates not greater than R, where R is a prescribed maximum data rate of each unit
stream, and the control means sets a number of supplies Cm(m=1,2, « « « « « « « «) to be allocated to each real
time stream data with a data rate in a data rate range greater than (m-1)xR and not greater than mxR, arbitrarily
within a range of:

> (m x Cm) = Cmax

m

where m is the number of unit streams to be used for said each real time stream data.

A method for operating a real time stream server having a plurality of disk devices and a buffer memory, comprising
the steps of:

entering real time stream data into the real time stream server;

determining a number of unit streams to be used and a block transfer time for the real time stream data,
according to a data rate of the real time stream data;

dividing the real time stream data into a plurality of blocks, each block being in a size to be transferred within
the block transfer time, and sequentially distributing the blocks among as many unit streams as the number of
unit streams to be used;

sequentially storing the blocks of each unit stream data into said plurality of disk devices;

controlling the real time stream server to read the blocks constituting the real time stream data from said plu-
rality of disk devices to the buffer memory, and read out the real time stream data from the buffer memory,
according to a request for the real time stream data from a client; and

transferring the real time stream data read out from the buffer memory to the client through a network.

The method of claim 10, wherein the controlling step includes the step of:
managing a directory information for each real time stream data stored in said plurality of disk devices, the
directory information indicating the number of unit streams to be used, a disk device ID number of a disk device
which stores a top block of each unit stream, and a recording position of each block on a disk device which
stores each block, for said each real time stream data.

The method of claim 11, wherein the controlling step carries out operations with respect to each real time stream
data according to the directory information for each real time stream data managed by the management step.

The method of claim 10, wherein the controlling step includes steps of:

10 IPR2022-01227
EXHIBIT 1003 - PAGE 00484

10

15

20

25

30

35

40

45

50

55

14.

15.

16.

17.

18.

EP 0 762 300 A2

securing stream resources for as many unit streams as the number of unit streams to be used;

scheduling a transfer start timing for each unit stream in order to transfer the blocks continuously in a sequen-
tial order to form the real time stream data; and

controlling the real time stream server to read out each block of each unit stream on the buffer memory within
the block transfer time since the transfer start timing for each unit stream.

The method of claim 13, wherein the scheduling step schedules the transfer start timing for each unit stream such
that scheduled transfer start timings of the unit streams are displaced one another by the block transfer time.

The method of claim 10, wherein the unit stream is defined as a stream which is scheduled by using a prescribed
block transfer period T, a prescribed block size L, and a prescribed time-slot interval 1.

The method of claim 10, wherein the determining step detects a maximum data rate of the real time stream data,
and determines the number m of unit streams to be used as a minimum integer which satisfies:

the maximum data rate = m x R
where R is a prescribed maximum data rate of each unit stream.
The method of claim 16, wherein the determining step determines the block transfer time as:

the block transfer time = T/m

where T is a prescribed block transfer period, and m is the number of unit streams to be used.
The method of claim 10, wherein the real time stream server has a capacity to supply Cmax sets of real time stream
data with data rates not greater than R, where R is a prescribed maximum data rate of each unit stream, and the
controlling step sets a number of supplies Cm(m=1,2, « « « ++«+) tobe allocated to each real time stream

data with a data rate in a data rate range greater than (m-1)xR and not greater than mxR, arbitrarily within a range
of:

> (m x Cm) = Cmax

m

where m is the number of unit streams to be used for said each real time stream data.

" IPR2022-01227
EXHIBIT 1003 - PAGE 00485

EP 0 762 300 A2

CI-INAI'IO

[-LNAI'TO
O-LNAI'TO

¢AS1d
[-3S1d

0-3S1d

LOTS-HNIL

LOTS FALL INVOVA 4 VLVA ¥0d
N N e e . .
AN ANRRNERNRN 404 ONLLIVA LsANOAY |
7V _ £V v _ v w
_ \ i
01V 6V 8V LV i
v v oV .
_ \ ! o
L6 87 7997 7
: L A Do
£V (A v 0v i
i INVOVA INVOVA] i |
Vd N

v YEANEEE /

/ BN
1 v |01V v L] 1v v | LV

I\ N\
V /7 NN 7
€V 7607 €V od €V | 6V 0 |0V 7907 OV
elz|trfolele|t1]o]¢ tlofe|c]t]o
0 z 1 0
LAV dOdd

['DIH

IPR2022-01227

EXHIBIT 1003 - PAGE 00486

12

EP 0 762 300 A2

g2IAdd ASId

YHASNVIL

AFASNVIL 40 Av1dd 40 V.Lvd TLLNN
ONILIVM

v.Lvd NOILLJIOSdV

(

SSHOOV

ASId
{

e - - —d

LOTS-HNLL
YHISNVIL

[

|-

LOTS-HIIL
HONTIHIHA

LIV d0Idd

¢ DI

IPR2022-01227

EXHIBIT 1003 - PAGE 00487

13

EP 0 762 300 A2

| p AMOWAW ¥AddNd ¢ LINN gDVYOLS V.LVA

LNEITD | 6 LINN ¥84SNVAL VILvd \ 7€ sEdIAFa MsIa TvOIDOT |

L w)
w w] 5
m < L e
! - IS =
i 0S

L !] _ A

9 _
MYOMLAN | @) (s) (s vivd
m WVILS
" STINLONYLS WVHILS LINN LINA
M LINN DNITNAFHOS ws [S0S
“ AN A A
;)
m o I € 1INN NOISIAIQ
w LINN ONISSEO0dd LINN \\ ﬁwd £8
|| NOLLDANNOD |=—|LNGWIOYNVIN[]| [TINn SISATVNY
1Sanoay AdOLOTAId VLVd ~T8
" I
m : LINN NOLLdHOTY
€' OL] M ¢ 4DIAEA TOYINOD viva 18

[JHA¥HS WVAILS HNIL 4<m_m ASIA "TVOILLdO

IPR2022-01227

EXHIBIT 1003 - PAGE 00488

14

EP 0 762 300 A2

FIG.4

(START)
i

INPUT REAL TIME STREAM DATA [~SI1

i

CHECK MAXIMUM DATA RATE ~S12

DETERMINE NUMBER OF UNIT ~S13
STREAMS TO BE USED

Y

OBTAIN BLOCK TRANSFER TIME [~S14

i

DIVIDE REAL TIME STREAM DATA ~S15
INTO BLOCKS

/

DISTRIBUTE BLOCKS AMONG ~S16
UNIT STREAMS

|

STORE UNIT STREAM DATA INTO [~S17
DISK DEVICES

]

CREATE DIRECTORY INFORMATION [~S18

CfEN5)

15 IPR2022-01227
EXHIBIT 1003 - PAGE 00489

EP 0 762 300 A2

FIG.5

(START)
Y

RECEIVE REQUEST FOR SUPPLY ~S21
OF REAL TIME STREAM DATA

OBTAIN DIRECTORY INFORMATION S22
FOR REQUESTED REAL TIME
STREAM DATA

\

OBTAIN NUMBER m OF UNIT ~S23
. STREAMS TO BE USED FROM
DIRECTORY INFORMATION

Y

SECURE STREAM STRUCTURES & 3524
BUFFER MEMORY ACCORDING
TO OBTAINED NUMBER m

Y

CARRY OUT SCHEDULING ~S25
OF EACH UNIT STREAM

i

SUPPLY EACH UNIT STREAM TO ~S26
CLIENT ACCORDING TO SCHEDULE

(EI:ID)

16 IPR2022-01227
EXHIBIT 1003 - PAGE 00490

EP 0 762 300 A2

R L r [piiy Sy Ay pEp—

Lo-1__J

9D

H

———f-—t-—-

1

!

|

|

1

t

!

1

1

!

!
JRPR W R |

(SwooyT=)L

———p——r———

o LY
i 9-)SIp
i G-{SIp

| pIsip
L €SI
L TSP
[-3SIp
........ 0-YSIp
WVHILS LINN

IPR2022-01227

EXHIBIT 1003 - PAGE 00491

17

EP 0 762 300 A2

LD

H

IPR2022-01227

EXHIBIT 1003 - PAGE 00492

18

EP 0 762 300 A2

B R e e it T S S o

St abebel Sl et |
]
]
1
1
'
'
)
t
1
!
]
FRQNIS (RPN I S . |

1

L-3SIp
9-3stp
G-3s1p
y-ASIp
£-3s1p
st
[-4STp
0-3stp

IPR2022-01227

EXHIBIT 1003 - PAGE 00493

19

EP 0 762 300 A2

cmmde A4 ——

IPR2022-01227

EXHIBIT 1003 - PAGE 00494

20

EP 0 762 300 A2

1 9sIp
L GSIp
C pAsIp
¢-XsIp
ZAsIp
[-3s1p
0-3s1p

[N g SRR NI RGPS |

IPR2022-01227

EXHIBIT 1003 - PAGE 00495

21

EP 0817017 A2

Europdisches Patentamt

(19) 0’ European Patent Office

Office européen des brevets

(12)

(43) Date of publication:
07.01.1998 Bulletin 1998/02

(21) Application number: 97110675.2

(22) Date of filing: 30.06.1997

(1) EP 0817 017 A2

EUROPEAN PATENT APPLICATION

(51) Int. CL.5: GO6F 9/46

(84) Designated Contracting States:
ATBECHDEDKESFIFRGB GRIEITLILUMC
NL PT SE

(30) Priority: 03.07.1996 US 676859
(71) Applicant:

SIEMENS AKTIENGESELLSCHAFT
80333 Miinchen (DE)

(72) Inventors:

« Dorn, Karlheinz, Dipl.-Inf.
90562 Kalchreuth (DE)

» Becker, Detlef, Dipl.-ing.
91096 Mdhrendorf (DE)

« Quehl, Dietrich, Dipl.-Ing.
91052 Erlangen (DE)

+ Reinfelder, Hans-Erich, Dr.
91054 Erlangen (DE)

(54) Application program interface system
(57) An object oriented communication system sup-
porting external data representation without an interface
definition language, propagating events in both push
and pull communication modes, fully distributing events,
client/server-RPC-like mode and server processing pat-
tern management. An applications program interface for
the communication system having two macro routines
for building classes which make the classes transferra-
ble by the communication system.

51\

MESSENGER

Al (A&

> OBJECT | — 52
- MANAGEMENT

TABLE

METHOD 55
:_>| B

METHOD 54
A

LOADED /' 53
- CLASSES
TABLE

FIG 1

Printed by Xerox (UK) Business Services
2.15.7/3.4

IPR2022-01227
EXHIBIT 1003 - PAGE 00496

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

Description

BACKGROUND OF THE INVENTION

The present application is directed to application programmers interfaces (API) for programmer applications for
communications systems.

As set forth in U.S. Patent No. 5,499,365, full incorporated herein by reference, object oriented programming sys-
tems and processes, also referred to as "object oriented computing environments,” have been the subject of much
investigation and interest. As is well known to those having skill in the art, object oriented programming systems are
composed of a large number of "objects.” An object is a data structure, also referred to as a "frame,"” and a set of oper-
ations or functions, also referred to as "methods,” that can access that data structure. The frame may have "slots,” each
of which contains an "attribute” of the data in the slot. The attribute may be a primitive (such as an integer or string) or
an object reference which is a pointer to another object. Objects having identical data structures and common behavior
can be grouped together into, and collectively identified as a "class.”

Each defined class of objects will usually be manifested in a number of "instances”. Each instance contains the par-
ticular data structure for a particular example of the object. In an object oriented computing environment, the data is
processed by requesting an object to perform one of its methods by sending the object a "message”. The receiving
object responds to the message by choosing the method that implements the message name, executing this method
on the named instance, and returning control to the calling high level routine along with the results of the method. The
relationships between classes, objects and instances traditionally have been established during "build time" or genera-
tion of the object oriented computing environment, i.e., prior to "run time" or execution of the object oriented computing
environment.

In addition to the relationships between classes, objects and instances identified above, inheritance relationships
also exist between two or more classes such that a first class may be considered a "parent” of a second class and the
second class may be considered a "child" of the first class. In other words, the first class is an ancestor of the second
class and the second class is a descendant of the first class, such that the second class (i.e., the descendant) is said
to inherit from the first class (i.e., the ancestor) The data structure of the child class includes all of the attributes of the
parent class.

Object oriented systems have heretofore recognized "versions" of objects. A version of an object is the same data
as the object at a different point in time. For example, an object which relates to a "work in progress”, is a separate ver-
sion of the same object data which relates to a completed and approved work. Many applications also require historical
records of data as it existed at various points in time. Thus, different versions of an object are required.

Two articles providing further general background are E.W. Dijkstra, The Structure of "THE" Multi programming
System, Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 341-346, and C.A.R. Hoare, Monitors: Operating
Systems Structuring Concepts, Communications of the ACM, Vol. 17, No. 10, October, 1974, pp. 549-557, both of which
are incorporated herein by reference. The earlier article describes methods for synchronizing using primitives and
explains the use of semaphores while the latter article develops Brinch-Hansen's concept of a monitor as a method of
structuring an operating system. In particular, the Hoare article introduces a form of synchronization for processes and
describes a possible method of implementation in terms of semaphores and gives a proof rule as well as illustrative
examples.

As set forth in the Hoare article, a primary aim of an operating system is to share a computer installation among
many programs making unpredictable demands upon its resources. A primary task of the designer is, therefore, to
design a resource allocation with scheduling algorithms for resources of various kinds (for example, main store, drum
store, magnetic tape handlers, consoles). In order to simplify this task, the programmer tries to construct separate
schedulers for each class of resources. Each scheduler then consists of a certain amount of local administrative data,
together with some procedures and functions which are called by programs wishing to acquire and release resources.
Such a collection of associated data and procedures is known as a monitor.

The adaptive communication environment (ACE) is an object-oriented type of network programming system devel-
oped by Douglas C. Schmidt, an Assistant Professor with the Department of Computer Science, School of Engineering
and Applied Science, Washington University. ACE encapsulates user level units and WIN32 (Windows NT and Win-
dows 95) OS mechanisms via type-secured, efficient and object-oriented interfaces:

+ IPC mechanisms - Internet-domain and UNIX-domain sockets, TLI, Named pipes (for UNIX and Win 32) and
STREAM pipes;

« Event multiplexing - via select() and poll() on UNIX and WaitForMultipleObjects on Win 32;

« Solaris threads, POSIX Pthreads, and Win 32 threads;

« Explicit dynamic linking facilities - e.g., dlopen/disym/diclose on UNIX and LoadLibrary/GetProc on Win 32;

* Memory-mapped files;

2 IPR2022-01227
EXHIBIT 1003 - PAGE 00497

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

+ System VIPC - shared memory, semaphores, message queues; and
* Sun RPC (GNU rpc++).

In addition, ACE contains a number of higher-level class categories and network programming frameworks to inte-
grate and enhance the lower-level C++ wrappers. The higher-level components in ACE support the dynamic configura-
tion of concurrent network daemons composed of application services. ACE is currently being used in a number of
commercial products including ATM signaling software products, PBX monitoring applications, network management
and general gateway communication for mobile communications systems and enterprise-wide distributed medical sys-
tems. A wealth of information and documentation regarding ACE is available on the worldwide web at the following uni-
versal resource locator: http:/Amww.cs.wustl.edu/...schmidt/ACE-overview.html.

The following abbreviations are or may be utilized in this application:

« Thread - a parallel execution unit within a process. A monitor synchronizes, by forced sequentialization, the parallel
access of several simultaneously running Threads, which all call up functions of one object that are protected
through a monitor.

« Synchronizations-Primitive - a means of the operating system for reciprocal justification of parallel activities.

+ Semaphore - a Synchronizations-Primitive for parallel activities.

« Mutex - a special Synchronizations-Primitive for parallel activities, for mutual exclusion purposes, it includes a crit-
ical code range.

« Condition Queue - an event waiting queue for parallel activities referring to a certain condition.

+ QGate Lock - a mutex of the monitor for each entry-function, for protection of an object, for allowing only one parallel
activity at a time to use an Entry-Routine of the object.

« Long Term Scheduling - longtime delay of one parallel activity within a condition queue or event waiting queue for
parallel activities.

« Broker - a distributor.

In addition, the following acronyms are or may be used herein:

AFM Asynchronous Function Manager

SESAM Service & Event Synchronous Asynchronous Manager
PAL Programmable Area Logic

API Application Programmers Interface

IDL Interface Definition Language

ATOMIC Asynchron Transport Optimizing observer-pattern-like system supporting several Modes (client/server -
push/pull) for an IDL-less Communication subsystem, described herein
XDR External Data Representation

110 Input/Output

IPC Inter Process Communication

CSA Common Software Architecture (a Siemens AG computing system convention)
SW Software

SUMMARY OF THE INVENTION

The present invention provides a location and protocol transparent object oriented communication system that
implicitly encodes and decodes transferred data, if connected peers reside on host with different internal data represen-
tation. In that regard, the invention provides an Asynchronous Transport Optimizing Observer- Pattern-Like system
Supporting Several Modes for an Interface Definition Language- less Communication Subsystem (ATOMIC) as well as
an application programming interface therefor. However, the data structure must be identical to that expected by the
supplier.

In an embodiment, the invention provides an object oriented communication system on a computer platform, com-
prising:

means for supporting external data representation without an interface definition language; means for propagating
events in both push and pull communication modes and selecting which mode is used for a given connection;
means for distributing events; and means for server processing pattern management.

In an embodiment, the means for supporting external data representation without an interface definition language
comprises means for implicitly coding and decoding transferred data.

3 IPR2022-01227
EXHIBIT 1003 - PAGE 00498

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

In an embodiment, all communication end points that use the same address are logically connected.

In an embodiment, there is provided a hook routine which called at the supplier side before data is sent and a hook
routine which is called before data is stored in a target object, both hook routines called with an environment string as
an argument, both hook routines influencing data transfer.

In an embodiment, the invention further provides means for performing XDR encoding and decoding.

In an embodiment, the invention further provides a macro routine which makes a class accessible to a communi-
cation end-point.

In an embodiment, the macro routine makes the class accessible via the communication end point by declaring
inserter and extractor operators of the communication systems internal encoder/decoder class as friends, and imple-
menting short member functions and one member function pointer into the class.

In an embodiment, the invention further provide a macro routine which defines a subset of data members that are
to be transferred and informs the underlying system as to how to deal with pointers and vectors.

In an embodiment, the macro routine has two arguments, a class name and a list of white space separated macro
routines, one such macro routine for each transferrable data member.

In an embodiment, the invention provides a supplier class associated with a pattern string in order to transfer com-
ponent classes to consumers associated with the same pattern string residing on a host.

In an embodiment, the supplier class is a template class and can only exist in conjunction with a concrete compo-
nent class.

In an embodiment, the invention further provides a consumer class associated with a pattern string in order to
receive component classes in PUSH mode or PULL mode from suppliers associated with the same pattern string resid-
ing on hosts.

In an embodiment, the consumer class is a template class and can only exist in conjunction with a concrete com-
ponent class.

In an embodiment, the invention provides an object oriented communication system on a computer platform, com-
prising:

means for supporting external data representation without any interface definition language said means for sup-
porting external data representation without an interface definition language comprises means for implicitly encod-
ing and decoding transfer data; means for propagating events in both push and pull communication modes and
selecting which mode is used for a given connection, including a hook routine called at the supplier side before data
is sent and a hook routine called before data is stored in a target object, both hook routines called within an envi-
ronment string as an argument; means for distributing events; and means for server processing pattern manage-
ment, wherein all communication endpoints that use the same address are logically connected.

In an embodiment, the invention provides an object oriented communication system programmer interface on a
computer platform, comprising: a first macro routine which makes a class accessible to a communication endpoint by
declaring inserter and extractor operators of a communication systems internal encoder/decoder class as friends and
implementing short member functions and one member function pointer into the class; and a second macro routine
which defines a subset of data members that are to be transferred and informs the underlying system as to how to deal
with pointers and vectors, a second macro routine having two arguments, a class name and a list of white space sepa-
rated macro routines, one such white space separate macro routine for each transferrable data member.

In an embodiment, the invention provides a supplier class associated with a pattern string in order to transfer com-
ponent classes to consumers associated with the same pattern string residing on a host.

In an embodiment, the supplier class is a template class and can only exist in conjunction with a concrete compo-
nent class.

In an embodiment, the invention further provides a consumer class associated with a pattern string in order to
receive component classes in PUSH mode or PULL mode from suppliers associated with the same pattern string resid-
ing on hosts.

In an embodiment, the consumer class is a template class and can only exist in conjunction with a concrete com-
ponent class.

These and other features of the invention are discussed in greater detail below in the following detailed description
of the presently preferred embodiments with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a hardware and software environment.
Figure 2 illustrates the main components of an object-oriented program from Figure 5 of U.S. Patent No.
4 IPR2022-01227

EXHIBIT 1003 - PAGE 00499

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

5,313,629.
Figure 3 illustrates an example of an inheritance hierarchy to an object oriented platform.
Figure 4 illustrates use of a setValue() using event propogation or client/server communication without reply.
Figure 5 illustrates blocking of a setValue() using client/server communication with reply.
Figure 6 illustrates a nonblocking setValue() using client/server communication with reply - waitFor...().
Figure 7 illustrates a nonblocking setValue() using client/server communication with reply - callback.
Figure 8 illustrates blocking getValue() without dataChanged() enabled.
Figure 9 illustrates sending no reply with dataChanged() enabled.

Figure 10 illustrates sending reply without dataChanged() enabled.

Figure 11 illustrates sending reply with dataChanged() enabled.

Figure 12 illustrates a nonblocking getValue() using waitForMultipleObjects.
Figure 13 illustrates a nonblocking getValue() using call-back function.
Figure 14 illustrates dispatching dataChanged() to handle incoming data.
Figure 15 illustrates blocking a PULL mode getValue() using NOWAIT flag.
Figure 16 illustrates dispatching dataChanged() to handle pulled data.

COPENDING APPLICATIONS

The following commonly assigned copending applications are fully incorporated herein by reference:

Title Application NUMBER | Filing Date | Attorney Docket No.
MONITOR SYSTEM FOR SYNCHRONIZATION OF GR 96 P 3106 E
THREADS WITHIN A SINGLE PROCESS
SERVICE AND EVENT SYNCHRONOUS/ASYN- GR 96 P 3107 E
CHRONOUS MANAGER
SOFTWARE ICS FOR HIGH LEVEL APPLICATION GR 96 P 3109 E
FRAMEWORKS

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

As stated above, the present invention (ATOMIC) provides a communication system application programmers inter-
face (API) as well as basic mechanisms of the system itself.

Again referring to U.S. Patent No. 5,499365, in an object oriented computing environment, work is accomplished
by sending action request messages to an object which contains data. The object will perform a requested action on
the data according to its predefined methods. Objects may be grouped into object classes which define the types and
meanings of the data, and the action requests (messages) that the object will honor. The individual objects containing
data are called instances of the class.

Object classes can be defined to be subclasses of other classes. Subclasses inherit all of the data characteristics
and methods of the parent class. They can add additional data and methods and they can override or redefine any data
elements or methods of the parent class. An object may be represented schematically, and generally is represented
herein by a rectangle. The upper rectangle contains the data structure represented by a frame having slots, each of

5 IPR2022-01227
EXHIBIT 1003 - PAGE 00500

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

which contains an attribute of the data in the slot. The lower rectangle indicates the object's methods which encapsulate
the frame and which are used to perform actions on the data encapsulated in the frame of the upper rectangle.

Figures 1,2 and 3 are reproduced herein from U.S. Patent No. 5,499,365. The following description relating thereto
is derived from that patent.

Referring now to Figure 1, a hardware and software environment in which the present invention operates will now
be described. As shown in Figure 1, the present invention is a method and system within an object oriented computing
environment 11 operating on one or more computer platforms 12. It will be understood by those having skill in the art
that computer platform 12 typically includes computer hardware units 13 such as a central processing unit (CPU) 14, a
main memory 15 and an input/output (I/O) interface 16, and may include peripheral components such as a display ter-
minal 21, an input device 22 such as a keyboard or a mouse, nonvolatile data storage devices 23 such as magnetic or
optical disks, printers 24 and other peripheral devices. Computer platform 12 also typically includes microinstruction
codes 26 and an operating system 28.

As shown in Figure 1, object oriented computing environment 11 operates on computer platform 12. It will be
understood by those having skill in the art that object oriented computing environment may operate across multiple
computer platforms. Object oriented computing environment 11 is preferably written in the C++ computer programming
language. The design and operation of computer platforms and object oriented computing environments including that
of an object manager, are well known to those having skill in the art and are described, for example, in U.S. Patent No.
5,265,206 issued November 23, 1993 to Abraham, et al., entitled "A Messenger and Object Manager to Implement an
Object Oriented Environment”; and U.S. Patent No. 5,161,225 to Abraham, et al., entitled "Persistent Stream for
Processing Time Consuming and Reusable Queries in an Object Oriented Database Management System; U.S. Patent
No. 5,151,987 to Abraham, et al., entitled "Recovery Objects in an Object Oriented Computing Environment”; and U.S.
Patent No. 5,161,223 to Abraham, entitled "Resumeable Batch Query for Processing Time Consuming Queries in an
Object Oriented Database Management System", the disclosures of which are hereby incorporated herein by refer-
ence, and in numerous textbooks such as Object Oriented Software Construction by Bertrand Meyer, published by
Prentice Hall in 1988, the disclosure of which is incorporated herein by reference and the publication referred to above
in the Background section.

Referring now to Figure 2, which is a reproduction of Figure 5 of U.S. Patent No. 5,313,629, the main components
of an object oriented program (11, Figure 1) will be described. A detailed description of the design and operation of an
object oriented program is provided in "Object Oriented Software Construction”, by Bertrand Meyer, published by Pren-
tice Hall in 1988, the disclosure of which is incorporated herein by reference.

Referring to Figure 2, a typical object oriented computing environment 11 includes three primary components: a
Messenger 51, and Object Management Table 52 and a Loaded Classes Table 53. The Messenger 51 controls com-
munication between calling and called messages, Object Management Table 52 and Loaded Classes Table 53. Object
Management Table 52 contains a list of pointers to all active object instances. The Loaded Classes Table 53 contains
a list of pointers to all methods of active object classes.

Operation of the Object Oriented Program 11 will now be described for the example illustrated in Figure 2, in which
Methods A (block 54) of an object sends a message to method B (block 55) of an object. Method A sends a message
to Method B by calling Messenger 51. The message contains (1) an object reference of the instance to receive the mes-
sage, (2) the method the object instance is requested to perform on the data it encapsulates, and (3) any parameters
needed by the receiving method. Messenger 51 obtains a pointer to the data frame 56 of the instance object specified
by Method A, by searching Object Management Table 52 for the instance object. If the specified instance object cannot
be found, Object Management Table 52 adds the instance object to the table and calls the instance to materialize its
data from the database.

Once in the instance table, Object Management Table 52 returns the pointer to the materialized instance object.

Messenger 51 then obtains the address of Method B from the Loaded Classes Table 53. If the instance’s class is
not loaded, the Loaded Classes Table 53 will load it at this time to materialize its data. The Loaded Classes Table 53
searches for the specified method (Method B) and returns the address of the method to Messenger 51.

The Messenger 51 then calls Method B, passing it a system data area and the Parameters from the call made by
Method A including the pointer. Method B accesses the data frame 56 using the pointer. Method B then returns control
to the Messenger 51 which returns control to Method A.

Figure 3 illustrates an example of an inheritance hierarchy to an object oriented computing platiorm. As shown,
three object classes are illustrated for "salesperson”, "employee” and "person”, where a salesperson is a "kind of"
employee, which is a "kind of" person. In other words, salesperson is a subclass of employee and employee is the
superclass of salesperson. Similarly, employee is the subclass of person and person is the superclass of employee.
Each class shown includes three instances. B. Soutter, W. Tipp and B.G. Blue are salespersons. B. Abraham, K. Yates
and R. Moore are employees. J. McEnroe, R. Nader and R. Reagan are persons. In other words, an instance is related
to its class by an "is a" relation.

Each subclass "inherits" the frames and methods of its superclass. Thus, for example, a salesperson frame inherits

6 IPR2022-01227
EXHIBIT 1003 - PAGE 00501

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

age and hire date objects from the employee's superclass as well as promote methods from the employee superclass.
Salesperson also includes a unique quota attribute and a pay commission method. Each instance can access all meth-
ods and frames of its superclass, so that, for example, B.G Blue can be promoted.

The ATOMIC communication system is a location and protocol transparent object oriented communication system
that implicitly encodes and decodes transferred data, if the connected peers reside on hosts with different internal data
representation.

To that end, all communication endpoints (a/k/a peers) that use the same address - a character string (pattern) -
are logically connected . The patterns are valid with the network segment the host is connected to. Different name
spaces may be realized by using a name service for the pattern strings (e.g., by adding the host name and/or the proc-
ess name to the pattern string).

The communication system provides one way communication between supplier and consumer peers.

COMMUNICATION MODES

The ATOMIC communication system supports two communication modes: an event propogation mode, which is
preferred; and a classic client/server communication mode, which is known from RPC based communication toolkits.
Table 1 below summarizes a comparison of the event propogation and classic client/server communication modes

Event Propagation Modes PUSH Mode Consumer

m (suppliers) to n (consumers) Callback
Connections PULL Mode Supplier
Selection

Single Push without reply

Client/Server Communication |Supplier with Callback and/or

Modes waitFor... ()
n (suppliers) to 1(consumer) |(... [REPLY [,Callback]
[, SynchHandle]])
Connections Consumer with Callback and/or
waitFor... () '
(... [WAIT [,Callback]

[, SynchHandle]])

Table 1: Event Propogation and Client/Server Modes

Event Propogation Mode

In the event propogation mode one or more suppliers make events known to zero (0) or more consumers, which
may be interested in this event by using the same pattern string as the supplier(s). Neither acknowledgments nor replies
are supported in this mode because of the arbitrary number of consumers. This mode supports two transfer modes
described next, the PUSH mode and the PULL mode.

The PUSH Mode

The PUSH mode - the most common event propogation mode - is a supplier triggered communication. The supplier
of an event propagates an event that causes the delivery of a dataChanged() method (which is a callback function,
action routine) - if enabled by the consumer - in the consumer context. It is up to the consumers whether to allow PUSH
mode events to be queued (such that no event is lost) or not to be queued.

7 IPR2022-01227
EXHIBIT 1003 - PAGE 00502

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

The Pull Mode

The PULL mode is a consumer triggered communication. The consumer fetches incoming events independently of
the supplier's timing in propagating them. There is no queuing at the consumer's side because every consumer read
request causes the communication system to get a copy of the latest version of the supplier's data. The internal han-
dling depends on the queuing flag set (or not set) in the consumer's CsaRemote object. In case of queuing, a "get-
Value()" call blocks until the next data structure is provided by the supplier; if queuing is switched off, the "getValue()"
call returns the contents of the last data structure that were sent by the selected supplier (if any, otherwise an error is
reported).

To avoid multiple queries into the same receiver object as the result of a consumer read request, one supplier must
be selected to get a unique object read.

Client/Server Communication Mode

The classic supplier triggered client/sever communication allows one or more clients (suppliers) to connect to one
(and only one) server (consumer). This n-to-one relationship allows the server to send a reply back to the client on an
incoming event (message), if this reply was requested by the client (supplier).

A significant add-on to the standard client/server communication, as known from, RPC is the consumer triggered
client/server communication. Every event received at the consumer side is queued into the consumer's input queue and
can be retrieved by calling the getValue() method (see description below) without getting any callback() routines dis-
patched. This feature allows the consumer to process a new event when appropriate without taking care of the restric-
tions that go along with asynchronous dispatching.

Location Transparency

The location of the communication partner (supplier as well as consumer) is fully transparent (i.e. as to whether it
is located within the same process, on the same host, or on a remote host).

The ATOMIC communication system decides which protocol provides the best performance for the particular con-
nection.

The user can specify a shared memory flag as an attribute to the constructors of the CsaConnectable (supplier)
and CsaRemote (consumer) objects, and it is treated as a hint to the communication system.

ENVIRONMENT AND HOOKS

The Environment String

The ATOMIC communication system (Msc) transfers data together with additional header information containing
the sender's peer address, the addressee’s peer information, and an optional user specified environment string. The
data type of the environment is defined in the header file CsaMscOptions.hh as follows:

const int theCsaMscEnvSize = 32;
typedef char CsaMscEnvType[theCsaMscEnvSize];

The environment string can be passed to sender/receiver methods (see CsaConnectable's setValue()/getValue()
and CsaRemote's getValue()/dataChanged() descriptions below).

The semantics of the environment string are application specific and defined. The ATOMIC communication system
passes the environment data without interpretation.

Adding and Removing Hook Routines

The ATOMIC communication system provides an interface to implement two hook routines, one at the supplier side
that is called before the data are sent and one at the consumer side, that is called before the received data are stored
in the target object. The hook routines are of type bool (i.e., boolean) and are called with one argument, the environ-
ment string. The hook routines are implemented once per process and are intended to be used by applications that
modify/interpret implicitly the environment string (e.g. copy thread specific data into the environment string or store the
environment string as thread specific data).

The value ("true” or "false") returned by the hook routines influences the data transfer. In that regard, the value
"true” doesn't change the behavior while value "false":

« at the supplier side, aborts a setValue() call without sending the data to the consumer(s)

8 IPR2022-01227
EXHIBIT 1003 - PAGE 00503

5

10

15

20

25

30

35

45

50

55

EP 0 817 017 A2

« atthe consumer side, aborts a getValue() call without copying the data to the consumer(s) target object(s) and with-

out dispatching/notifying the consumer.

These hook routines may be used for event filtering depending on (implicitly or explicitly specified) environment

string contents.

The following sample code shows how the hook routines can be inserted, removed or changed. This sample code

shows setting supplier and consumer hook routines :

/ / include options header file

#include <CsaMscOptions.hh>

/ / the input (consumer) hook routine

static bool inHook (CsaMscEnvType & theEnv)
return (true);

}

/ / an alternate input (consumer) hook routine

static book inHook2 (CsaMscEnvType & theEnv) {
return (true);
}
/ / the output (supplier) hook routine
static bool outHook (CsaMscEnvType & theEnv) {
return (true);
}
CsaMscOptions theHooks = {inHook, outHook};
/ / set the hook routines
CsaOsOptDb: :setOptions (CsaMscOptionName, (void
theHook) ;
/ / read the hook routines
CsaOsptDb: :getOptions(CsaMscOptionName, (void
theHooks) ;
/ / modify and update the consumer hook routine
theHooks.theInputHook = inHook2;
CsaOsOptDb: :setOptions(CsaMscOptionName, (void
theHooks) ;

Building Classes and Structures

Some goals for the design of a communication are:

« the communication should be protocol transparent,

*)&

*) &

*) &

IPR2022-01227

EXHIBIT 1003 - PAGE 00504

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

¢ the communication should be location transparent,

« the communication should be able to transfer all generic data types supported by the compiler,

« the application programmer should not have to deal with data representation details such as XDR routines
« the communication systems restrictions to the class design should be as few as possible.

To achieve these goals, two macros, discussed below, are provided to the class designer, which macros make the
class transferrable by the communication system. These macros are referred to herein as the IMPLEMENT_MSC and
DECLARE_MSC macros. The class definition must be identical for both the supplier and the consumer. Therefore, the
same header file is included by both communication endpoints; changes of the header file do not cause inconsistencies
because they are not done in different files.

The XDR encoding/decoding is performed internally by a communication subsystem (the IMPLEMENT_MSC
macro must be present and specify all data members to be transferred), if the corresponding communication endpoint
is located on a host with different internal data representation (different processor architecture).

The short component class example below shows how to use these macros in nested classes (structures are han-
dled identically to classes; the DECLARE_MSC macro is inserted in the public (default) section of the structure):

const int theFloatDimension = 333;
/ / user class example 1
class XyzSimpleClass {
public:
XyzSiimpleClass () {}
-XyzSimpleClass () {}
DECLARE _MSC (XyzSimpleClass)

protected:
int alIntvar;
float aFloatArray[theFloaDimension] ;

}i
IMPLEMENT MSC (SyzSimpleClass, V{(aIntVar) V(aFloatArray))
/ /user class example 2)
class AbcWithPointers ({
public:
AchithPointers(XyzSimpleCiass *thePointer=0) :
myPointer (thePointer)
{ dsblDataChanged () ; }
-AbcWithPointers () {}
bool dataChanged (CsaMscRcvdFrom from in,
CsaMscEnvType &theEnv)
{ return (true) ; }

10 IPR2022-01227
EXHIBIT 1003 - PAGE 00505

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

DECLARE_MSC (AbcWithPointers)

protected:
double myDoubleVar;
XyzSimpleClass mySimpleClass;
XyzSimpleClass *myPointer;

}i
IMPLEMENT_ MSC (AbcWithPointers, V(myDoubleVar)
V{(mySimpleClass) P (myPointer)

There is no restriction in the number or size of the data members that are to be transferred. Some compilers-pre-
processors, however, limit the size of macro expansions.

The DECLARE_MSC macro

The DECLARE_MSC macro makes the class accessible by a communication endpoint (CsaConnectable = supplier
or CsaRemote = consumer) by declaring the inserter/extractor operators of the communication system's internal
encoder/decoder class as friends, and implementing a few very short member functions (the enable/disable dataCh-
anged() method), and one member function pointer (the dataChanged() method itself) into the class.

The DECLARE_MSC macro must be added to the public section of the class as it inserts the member function
pointer into the protected section of the class and the member functions into the public section of the class.

The IMPLEMENT_MSC Macro

The IMPLEMENT_MSC macro defines the subset of data members that are to be transferred and tells the under-
lying system how to deal with pointers/vectors.

The IMPLEMENT_MSC macro must be placed after the class definition (it implements the inserter/extractor oper-
ators of the communication system'’s internal encoder/decoder class.

The IMPLEMENT_MSC macro has two arguments - the class name and a list of white space separated macros;
one macro for each transferrable data member. The V(datamember) macro tells the communication system to treat the
variable in the argument as a scalar or vector that is to be transferred.

The P(datamember) macro tells the communication system to dereference the pointer specified in the argument
and transfer the contents of the class/structure/variable the pointer points to.

It should be noted that:

« All variable specification macros (e.g., V() and P() ...) build a white space separated list.

« The user classes may be derived from other classes. The data members of the base class must be specified in the
IMPLEMENT_MSC macro of the derived class.

« Classes may be nested (container classes).

« The transfer is restricted to data members (no VMT's ...).

CsaConnectable (the supplier)

A CsaConnectable is the supplier class associated with a pattern string in order to transfer component classes
(specified as templates) to consumer(s) associated with the same pattern string residing on local or remote hosts.

The class CsaConnectable is a template class and therefore can only exist in conjunction with a concrete compo-
nent class.

A more detailed interface description is provided below and sample code is provided under the heading "Exam-
ples.”

" IPR2022-01227
EXHIBIT 1003 - PAGE 00506

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

The Constructor

The constructor takes two arguments:

« apattern string which specifies the name of the communication endpoint,
« an attribute mask (local/shared memory has to be used for message buffering)

The CsaConnectable establishes the connection to the underlying basic communication system and allocates a
generic SESAM (reference should be made to Application Attorney Docket No. GR 96 P 3107, incorporated herein by
reference) slot for event notification.

Data Transfer

Data transfer is initialized by a call to member function setValue(). The user object specified in the argument list
contains the data to be transferred.

In most cases, the event propagation mode will be used. In this mode, only one argument must be supplied - a ref-
erence to the user class object that contains the data to be transferred.

Both, the PUSH mode and the PULL mode interface do not differ from the suppliers point of view. Reference should
be made to Figure 4 wherein setValue() using event propogation or client/server communication without reply is illus-
trated.

In case of client/server communication, some more information must be passed to setValue(). Because only one
server can be connected to the supplier, one of the existing consumers must be selected as the server. This can be per-
formed by calling getConsumers(), selecting the appropriate consumer and passing the consumer informations (class
CsaMscPeerInfo) as an argument to setValue.

In the client/server mode, a reply from the server (consumer) might be expected. If the reply argument is specified,
the call to setValue() blocks until the reply is received. Reference should be made to Figure 5 wherein blocking of set-
Value() using client/server communication with reply is illustrated.

The last data set transferred through the CsaConnectable can be reread via getValue(). The getValue(), unlike the
getValue() method of CsaRemote, never blocks because the requested data are already present (or not; in this case an
error status will be returned). Therefore, not asynchrony is provided in the CsaConnectable's getValue() interface.

If blocking calls (client/server mode only) to setValue() are not acceptable, the setValue() method can be performed
in a separate thread. This is done by implicitly using the SESAM's dynamic slot mechanism. The synchronisation
(again, reference should be made to Application Attorney Docket No. GR 96 P 3107 E for a more detailed description
of these aspects of SESAM) can be realized in two different ways - waiting for a SynchHandle (returned by setValue())
(see Figure 6 illustrating nonblocking setValue() using client/server communication with reply - waitFor...() and/or get-
ting a callback method (must be passed to setValue()) dispatched after completion of setValue() (see Figure 7 illustrat-
ing nonblocking setValue() using client/server communication with reply -callback.

It should be noted that asynchronous setValue() calls are only supported if a reply was requested.

In the constructor of CsaConnectable, a generic SESAM slot is allocated, and the SynchHandle associated with
this slot is stored as a CsaConnectable's private data. This SynchHandle - in this context called notification handle - can
be obtained by calling the method getNotificationHandle(). This handle can be used for example in watchdog threads
that keep track of replies that are initiated by setValue() calls of other threads without knowledge of the setValue()'s
arguments.

Data Processing

The data members of the user class object are copied by an i/o stream-like encoder/decoder into a message buffer,
which is passed to the underlying communication system. The CsaConnectable holds always the latest message buffer
for subsequent getValue() calls and to grant requests from a PULL mode consumer. There is no 1 to 1 relationship
between this message buffer in the output queue and a specific user class object, if more than one object has been
transferred through this CsaConnectable by one or more threads.

Design Restrictions

CsaConnectables (suppliers) may be located on a stack, allocated from a heap or stored in a global address space.
CsaConnectables in shared memory are not supported.

There must not be classes derived from class CsaConnectable. Containment can be used instead.

There are no restrictions on the lifetime of the CsaConnectable.

12 IPR2022-01227
EXHIBIT 1003 - PAGE 00507

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

CsaRemote (Consumer)

CsaRemote is the consumer class associated with a pattern string in order to receive component classes (specified
as templates) in PUSH mode or PULL mode from supplier(s) associated with the same pattern string residing on local
or remote hosts.

The class CsaRemote is a template class and therefore can only exist in conjunction with a concrete component
class.

The Constructor

The constructor takes two arguments: a pattern string which specifies the name of the communication endpoint;
and an attribute mask specifying:

a) whether a shared/local memory has to be used for message buffering,
b) whether or not an incoming message must be queued, and
¢) the CsaRemote (consumer) to select the PUSH/PULL mode.

The CsaRemote establishes the connection to the underlying basic communication system and allocates a generic
SESAM (see SESAM API description, copending Application Attorney Docket No. GR 96 P 3107 E) slot for event noti-
fication.

Data Transfer

For the consumer side there are two modes of operation, the event propagation containing the PUSH and PULL
modes as well as the client/server communication (supplier and consumer triggered).

The supplier triggered modes - event propagation PUSH mode and the client/server mode - are very similar from
the consumer's point of view; the only difference is the reply that will be returned to the supplier (if requested) in cli-
ent/server mode. Common to both modes is the dispatching scheme and the blocking/nonblocking getValue() (receive)
calls.

Consumer triggered mode - event propagation PULL mode - is different from the supplier triggered mode in copying
the last data set (that will always be kept by the supplier) by every call to getValue() - regardless whether the supplier's
data changed or didn't change between two calls to getValue().

Data Filter Method dataChanged

The DECLARE_MSC macro adds a data filtering and event dispatching mechanism to the user's component class.

The designer of the user component class can add a method (in this document always named dataChanged()) to
his class, that can be enabled or disabled at runtime. This method is - if enabled - implicitly called after copying the
received data into the target object - regardless whether the data are received by a synchronous/asynchronous call to
getValue() or by enabling the dispatching with setCallbackObject(). In the latter case, the action routine that will get dis-
patched is the dataChanged() member function. There are two arguments passed to the dataChanged() method, a
mask of type CsaMscRcvdFrom which specifies the location of the sender (same thread, same process but different
thread, other process on same host or process on a remote host) (see SESAM API description) and the environment
string.

In client/server mode, the return value of dataChanged() is returned to the supplier (client) together with the thread
specific error object, if a reply was requested.

The great advantage of dispatching a member function of the user class is the accessibility of all data members by
the dispatched function.

The dataChanged() method is enabled by invoking the user class method:

13 IPR2022-01227
EXHIBIT 1003 - PAGE 00508

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

void enblDataChanged (
bool (userclass::*f) (CsaMscRcvdFrom,
CsaMscEnvType &

)i

The dataChanged() method is disabled by invoking the user class method void dsbiDataChanged(void).

Both methods are implemented by the macro DECLARE_MSC.

It should be noted that the dataChanged() method always should explicitly disabled or enabled in the constructor
of the user class to avoid uninitialized member function pointer. Toggling between enabled and disabled state is possi-
ble at runtime.

Supplier Triggered Event Processing

The most simple case is just calling getValue() with one argument, the reference to a user object as the receiver
buffer without enabling the dataChanged() method.

The object getValue() blocks until data are available for reading. Reference should be made to Figure 8 which illus-
trates blocking getValue without dataChanged enabled.

If the dataChanged() method is implemented and enabled, it is invoked after reading the incoming data and before
returning to the caller of getValue(). Reference should be made to Figure 9 which illustrates blocking getValue with
dataChanged enabled.

In client/server mode, the supplier may request a reply. If no dataChanged() method is implemented and enabled,
the reply will be delivered with and have the status of "success" after copying the incoming data into the target object.
In that regard, reference should be made to Figure 10 which illustrates sending a reply without dataChanged() enabled.
If the dataChanged() method is implemented and enabled, the reply will be delivered after return from dataChanged()
passing the return status and, if dataChanged() returned 'false’, the thread specific error object back to the supplier. In
that regard, reference should be made to Figure 11 which illustrates sending a reply with dataChanged() enabled.

As described for CsaConnectable, the blocking invocation can be performed in a separate thread implicitly using
SESAM's dynamic slot mechanism. The synchronization (see detailed description in commonly assigned and copend-
ing application Attorney Docket No. GR 96 P 3107 E) can be realized in two different ways - waiting for a SynchHandle
(returned by getValue()) (see Figure 12 which illustrates nonblocking getValue() using waitForMultipleObjects) and/or
getting a call-back method (must also be passed to setValue ()) dispatched after completion of setValue() (see Figure
13 which illustrates nonblocking getValue() using a callback function).

Many applications are event driven or have more than one input event to wait for. These applications cannot block
in a single getValue(); they need to get dispatched after arrival of data in one or more CsaRemote objects. This appli-
cations can declare an object as the receiver object for the specified CsaRemote object using the dataChanged()
method as the callback method. The dataChanged() method is dispatched from the main dispatcher as long as the
input queue contains unread data, similar to the RPC action routine (see Figure 14 which illustrates dispatching
dataChanged() to handle incoming data). At invocation time of dataChanged() the data are already stored in the spec-
ified object. Reply handling is similar as described for getValue() calls with dataChanged() enabled.

It should be noted that the dataChanged() method must be enabled before invoking setCallbackObject().

After enabling the dataChanged() method as the dispatcher for incoming events, no further getValue() calls are
possible for this CsaRemote object.

In some cases it may be of interest to be notified every time data on one or more CsaRemote objects arrive. The
application process then would call the method waitForMultipleObjects() on the notification handle(s) of the CsaRemote
object(s) of interest and invoke for every signaled CsaRemote object the getValue() method with the flag "NOWAIT", as
long as data are available.

Consumer Triggered Event Processing
In event propagation PULL mode, the consumer triggers the receiving of messages from supplier(s). To get only

one data set for the pull request, one specific supplier must be selected. The selection is done by calling the method
getSuppliers(), selecting one of the suppliers and calling the method getValue() for the selected supplier.

14 IPR2022-01227
EXHIBIT 1003 - PAGE 00509

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

The CsaRemote class provides two different ways of pulling data from the consumer - request a data set regardless
if it was yet read by a previous call to getValue() (by calling getValue() with the flag "NOWAIT") or request a new version
of the data set (by calling getValue() with the flag "WAIT" which means wait for a new update by the supplier) (see Fig-
ure 15 which illustrates blocking PULL mode getValue() using the NOWAIT flag).

In the latter case the request for a new update is queued at the supplier's CsaConnectable until the next setValue().
This set Value() causes all queued requests to be granted, regardless if they are queued by one or more CsaRemotes
(i.e. if more than one request from one CsaRemote is pending at the same CsaConnectable, the setValue() method
grants all requests!).

The asynchronous functionality - passing the getValue() invocation to SESAM's dynamic slots and waiting for com-
pletion and/or forcing a callback function to be dispatched, respectively - is similar to that of the PUSH mode1.

The dispatching of the dataChanged() method enabled by a previous call to setCallbackObject() is slightly different
by means of initiator of the callback. In PULL mode the dataChanged is dispatched due to the supplier's response on
a consumer's getvalue() call (see Figure 13 which illustrates dispatching datachanged() to handle pulled data).

Replies in Client/Server mode

As described above, replies are possible in client/server mode only. For the processing of replies, see Table 2
below. In Table 2, the entry of an "X" means "not of concern.”

PULL mode |QUEUED |setCallback |Reply - Behavior
-Object ()

NO NO NO Implicit reply after the mes-
sage is stored in the input
message queue. The input queue
has the length of 1 message.

NO NO YES see above
NO YES® No Get_value() calls the
dataChanged () method, wich re-

turns an error status passed as
a reply status to the supplier.
Each message can trigger one
reply.

3) 2)

The return status of the
dataChanged () method is passed
to the supplier of the message

NO YES YES

as a reply status (implicitly)

YES X X No reply possible

Notes: (1) Consumer triggered event event processing.
(2) Supplier triggered event event processing.
(3) If the queue is full, the supplier will block un-
til the consumer dequeues at least one event.
Table 2: Reply Behavior

15 IPR2022-01227
EXHIBIT 1003 - PAGE 00510

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

Data Processing

All incoming data are queued into the input queue of the consumer. In the case of PUSH mode consumers that
specify the attribute "NOTQUEUED" to the constructor, the input queue has a maximum length of 1 message buffer,
which will be overwritten by a new incoming event.

The data members of the user class object are copied by an i/o stream-like encoder/decoder from a message
buffer, which is queued to the input queue of the CsaRemote, to the user class object.

There is no 1 to 1 relationship between this message buffer in the output queue and a user class object, if more
than one object has been transferred through this CsaRemote.

Design Restrictions

CsaRemote objects (consumers) may be located on a stack, allocated from a heap or stored in a global address
space. CsaRemotes in shared memory are not supported.

There must be no classes derived from class CsaRemote. Instead, one must use containment.

There are no restrictions on the lifetime of a CsaRemote object.

The user class object's lifetime must not be less than the lifetime of the CsaRemote.

In summary, the principal new approach of the invention is the novel and inventive combination of all the following
features within a single homogenous package:

object oriented

supports external data representation without the need of an Interface Definition Language

Event-Propagation for Push&Pull-Modes

Client-Server Communication with reply

full asynchronous Support

multithreaded and multithreadsafe

Layering between Application-View and Implementation-View

transparency of locations and protocols and according optimizations

use of a server process for pattern-management only in the registration phase, but never in the Transport phase
a fully distributed (with local optimizations) event propagation mechanism, so no further event propagation mecha-
nism is necessary throughout a software system.

Examples

The following examples illustrate typical usages of CsaConnectable (supplier) and CsaRemote (consumer) objects.
Both, the supplier and the consumer, use the same header file with class definitions.

16 IPR2022-01227
EXHIBIT 1003 - PAGE 00511

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

The Header File
const int theFloatDimension = 333;
// user class example 1
class XyzSimpleClass
public:
XyzSimpleClass () {}
~XyzSimpleClass () {}
DECLARE_MSC (XyzSimpleClass)

protected:
int alntVar;
float aFloatArray|[theFloatDimension] ;

}i
IMPLEMENT MSC (XyzSimpleClass, V(aIntVar) V(aFloatArray))
//user class example 2
class AbcWithPointers {
public:
AbcWithPointers (XyzSimpleClass *thePointer=0) :
myPointer (thePointer)
{ dsblbataChanged(); } ~AbcWithPointers() {}
bool dataChanged (CsaMscRcvdFrom from_ in,
CsaMscEnvType &theEnv)
{ return(true); } DECLARE MSC(AbcWithPointers)
protected:
double myDoubleVar;
XyzSimpleClass mySimpleClass; XyzSimpleClass *myPointer;
}i
IMPLEMENT MSC (AbcWithPointers, V(myDoubleVar)
V(mySimpleClass)
P (myPointer))

17 IPR2022-01227
EXHIBIT 1003 - PAGE 00512

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

The Supplier Program

#include <«CsaConnectable.hh> // communication classes
#include <user.hh> // user class(es)

// Callback function that notifies the completion of a
// blocking call to setValue() with reply
void * callbackFunc (void *) {

return ((void *) 0);

}

/*

* The main program

*/
main(int argc, char **argv)

{

XyzSimpleClass scl; // a simple user class
AbcWithPointers wpl(&scl); // a
container user class CsaMscPeerInfo peers; // information

about consumers

bool status; // return status for method calls

CsaSesam: : SynchHandleType Synch; // SESAM's synchronization
// handle

// Event Propagation (PUSH mode)
CsaConnectable <AbcWithPointers> conl ("push mode_conn") ;
status = conl.setValue(wpl) ;
// Event Propagation (PULL mode)
CsaConnectable <AbcWithPointers> con2 ("pull_mode_conn") ;
status = con2.setValue (wpl) ;
// Client/Server mode (no reply, synchronous completion) Csa-
Connectable
<AbcWithPointerss> con3 ("clsv_mode_conn"); status =

con3 .getConsumers (&peers) ;

for (peers.reset(); peers++ ;) {
// ... select appropriate consumer
break;

}

status = con3.setValue (wpl, &peers);
// Client/Server mode (reply, synchronous completion)

18 IPR2022-01227
EXHIBIT 1003 - PAGE 00513

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

status = con3.setValue(wpl, &peers, CsaMscPeer::Reply);

// Client/Server mode (reply, callback function)

status = con3.setValue(wpl, &peers, CsaMscPeer::Reply,
callbackFunc) ;

// Client/Server mode (reply, wait for completion)

status = con3.setValue(wpl, &peers, CsaMscPeer: :Reply,
0, &Synch);

// some code

// AFM's WaitForMultipleObjects (1, &Synch, LOG_AND, 60000) ;

return 0;

}

The Consumer Program

#include <CsaRemote.hh> // communication classes
#include<user.hh>

// user class(es)

// A allback function that notifies the asynchronous comple-
tion
// of a call to getValue().
void * callbackFunc (void *) {
return ((void *) 0);
}
/*
* The main program
*/
main(int argc, char **argv)

{

CsaMscPeerInfo peers; // information about consumers
CsaSesam: : SynchHandleType Synch; // SESAM's synchronization

// handle
bool status; // return status of method calls
/*
* Event Propagation (PULL mode)
*/

19 IPR2022-01227

EXHIBIT 1003 - PAGE 00514

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

CsaRemote <AbcWithPointers> reml ("pull_mode_conn",
CsaMscPeer: : PullMode) ;
XyzSimpleClass scl; // a simple user class AbcWith-
Pointers wpl(&scl); // a
container class
// first select a supplier
status = reml.getSuppliers(&peers) ;
for (peers.reset(); peers++ ;) {
// ... select appropriate supplier
break;
}
// enable the dataChanged method
wpl.enblDataChanged (AbcWithPointers: :dataChanged) ;
// get data using synchronous getValue() call
while (1) {
status = reml.getValue(wpl, &peers);
// ... do something
}
// get data using asynchronous getValue() call
status = reml.getValue (wpl, &peers, CsaMscPeer::Wait,
callbackFunc) ;
while (1) ({
status = reml.getValue(wpl, &peers, CsaMscPeer::Wait,
0, &Synch);
// ... do something
// SESAM's WaitForMultipleOb-
jects (1, &Synch, LOG_AND, 60000) ;
}
/*
* Event propagation - PUSH model
*/
CsaRemote <AbcWithPointers> rem2 ("pull_mode_conn",
CsaMscPeer: : PushMode) ;
XyzSimpleClass sc2; // a simple user class AbcWithPointers
wp2 (&sc2); // a
container user class
// Enable the dataChanged method

20 IPR2022-01227
EXHIBIT 1003 - PAGE 00515

10

15

20

25

30

35

40

45

50

55

EP 0 817 017 A2

wp2 .enblDataChanged (AbcWithPointers: :dataChanged) ;
// First get some data using synchronous getValue() call
status = rem2.getValue (wp2) ;
// Now let dataChanged method be dispatched on every
// incoming event. From now on every getValue() call
// on this Remote will be rejected.
status = rem2.setCallbackObject (wp2) ;
// call an appropriate main loop
*/
* Client/server communication
*/
CsaRemote <AbcWithPointerss> rem3 ("clsv mode conn",
CsaMscPeer: : PushMode) ;
XyzSimpleClass sc3; // a simple user class
AbcWithPointers wp3 (&sc3); // a containef user class
// Enable the dataChanged method
wp3.enblDataChanged (AbcWithPointers: :dataChanged) ;
// First get some data using synchronous getValue() call
status = rem3.getValue (wp3);
// Now let dataChanged method be dispatched on every
// incoming event. From now on every getValue() call
// on this Remote will be rejected.
status = rem3.setCallbackObject (wp3) ;
// call an appropriate main loop

}

Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventors
to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within
the scope of their contribution to the art.

Claims
1. An object oriented communication system on a computer platform, comprising:

means for supporting external data representation without an interface definition language;

means for propagating events in both push and pull communication modes and selecting which mode is used
for a given connection;

means for distributing events; and

means for server processing pattern management.

2. The object oriented communication system according to claim 1, wherein the means for supporting external data
representation without an interface definition language comprises means for implicitly coding and decoding trans-

21 IPR2022-01227
EXHIBIT 1003 - PAGE 00516

10

15

20

25

30

35

40

45

50

55

10.

11.

12,

13.

14.

15.

16.

EP 0 817 017 A2

ferred data.

The object oriented communication system according to claim 1 or 2, wherein all communication end points that
use the same address are logically connected.

The object oriented communication system according to claim 1 to 3, wherein there is provided a hook routine
which called at the supplier side before data is sent and a hook routine which is called before data is stored in a
target object, both hook routines called with an environment string as an argument, both hook routines influencing
data transfer.

The object oriented computing system programmer interface according to claim 1 to 4, further comprising means
for performing XDR encoding and decoding.

The object oriented communication system according to claim 1 to 5, further comprising a macro routine which
makes a class accessible to a communication endpoint.

The object oriented communication system according to claim 6, wherein the macro routine makes the class acces-
sible via the communication end point by declaring inserter and extractor operators of the communication systems
internal encoder/decoder class as friends, and implementing short member functions and one member function
pointer into the class.

The object oriented communication system according to claim 1 to 7, further comprising a macro routine which
defines a subset of data members that are to be transferred and informs the underlying system as to how to deal
with pointers and vectors.

The object oriented communication system according to claim 8, wherein the macro routine has two arguments, a
class name and a list of white space separated macro routines, one such macro routine for each transferrable data
member.

The object oriented communication system according to claim 1 to 9, comprising a supplier class associated with
a pattern string in order to transfer component classes to consumers associated with the same pattern string resid-
ing on a host.

The object oriented communication system according to claim 10, wherein the supplier class is a template class
and can only exist in conjunction with a concrete component class.

The object oriented communication system according to claim 1 to 11, further comprising a consumer class asso-
ciated with a pattern string in order to receive component classes in PUSH mode or PULL mode from suppliers
associated with the same pattern string residing on hosts.

The object oriented communication system according to claim 12, wherein the consumer class is a template class
and can only exist in conjunction with a concrete component class.

An object oriented communication system programmer interface on a computer platform, comprising:

a first macro routine which makes a class accessible to a communication endpoint by declaring inserter and
extractor operators of a communication systems internal encoder/decoder class as friends and implementing
short member functions and one member function pointer into the class; and

a second macro routine which defines a subset of data members that are to be transferred and informs the
underlying system as to how to deal with pointers and vectors, a second macro routine having two arguments,
a class name and a list of white space separated macro routines, one such white space separate macro routine
for each transferrable data member.

The object oriented communication system programmer interface according to claim 14, comprising a supplier
class associated with a pattern string in order to transfer component classes to consumers associated with the
same pattern string residing on a host.

The object oriented communication system programmer interface according to claim 14 or 15, wherein the supplier

22 IPR2022-01227
EXHIBIT 1003 - PAGE 00517

10

15

20

25

30

35

40

45

50

55

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

EP 0 817 017 A2

class is a template class and can only exist in conjunction with a concrete component class.

The object oriented communication system programmer interface according to claim 14 to 16, further comprising a
consumer class associated with a pattern string in order to receive component classes in PUSH mode or PULL
mode from suppliers associated with the same pattern string residing on hosts.

The object oriented communication system programmer interface according to claim 14 to 17, wherein the con-
sumer class is a template class and can only exist in conjunction with a concrete component class.

A storage medium including object oriented code for an object oriented communication system on a computer plat-
form, comprising:

means for supporting external data representation without an interface definition language;

means for propagating events in both push and pull communication modes and selecting which mode is used
for a given connection;

means for distributing events; and

means for server processing pattern management.

The storage medium according to claim 19, wherein the means for supporting external data representation without
an interface definition language comprises means for implicitly coding and decoding transferred data.

The storage medium according to claim 19 or 20, wherein all communication end points that use the same address
are logically connected.

The storage medium according to claim 19 to 21, wherein there is provided a hook routine which called at the sup-
plier side before data is sent and a hook routine which is called before data is stored in a target object, both hook
routines called with an environment string as an argument, both hook routines influencing data transfer.

The storage medium according to claim 19 to 22, further comprising means for performing XDR encoding and
decoding.

The storage medium according to claim 19 to 23, further comprising a macro routine which makes a class acces-
sible to a communication endpoint.

The storage medium according to claim 24, wherein the macro routine makes the class accessible via the commu-
nication end point by declaring inserter and extractor operators of the communication systems internal
encoder/decoder class as friends, and implementing short member functions and one member function pointer into
the class.

The storage medium according to claim 19 to 25, further comprising a macro routine which defines a subset of data
members that are to be transferred and informs the underlying system as to how to deal with pointers and vectors.

The storage medium according to claim 26, wherein the macro routine has two arguments, a class name and a list
of white space separated macro routines, one such macro routine for each transferrable data member.

The storage medium according to claim 19 to 27, comprising a supplier class associated with a pattern string in
order to transfer component classes to consumers associated with the same pattern string residing on a host.

The storage medium according to claim 28, wherein the supplier class is a template class and can only exist in con-
junction with a concrete component class.

The storage medium according to claim 19 to 29, further comprising a consumer class associated with a pattern
string in order to receive component classes in PUSH mode or PULL mode from suppliers associated with the
same pattern string residing on hosts.

The storage medium according to claim 30, wherein the consumer class is a template class and can only exist in
conjunction with a concrete component class.

23 IPR2022-01227
EXHIBIT 1003 - PAGE 00518

10

15

20

25

30

35

40

45

50

55

32.

33.

34.

35.

36.

EP 0 817 017 A2

A storage medium including object oriented code for an object oriented communication system on a computer plat-
form, comprising:

a first macro routine which makes a class accessible to a communication endpoint by declaring inserter and
extractor operators of a communication systems internal encoder/decoder class as friends and implementing
short member functions and one member function pointer into the class; and

a second macro routine which defines a subset of data members that are to be transferred and informs the
underlying system as to how to deal with pointers and vectors, a second macro routine having two arguments,
a class name and a list of white space separated macro routines, one such white space separate macro routine
for each transferrable data member.

The object oriented communication system programmer interface according to claim 32, comprising a supplier
class associated with a pattern string in order to transfer component classes to consumers associated with the
same pattern string residing on a host.

The storage medium according to claim 33, wherein the supplier class is a template class and can only exist in con-
junction with a concrete component class.

The storage medium according to claim 33 or 34, further comprising a consumer class associated with a pattern
string in order to receive component classes in PUSH mode or PULL mode from suppliers associated with the
same pattern string residing on hosts.

The storage medium according to claim 33 to 35, wherein the consumer class is a template class and can only exist
in conjunction with a concrete component class.

24 IPR2022-01227
EXHIBIT 1003 - PAGE 00519

EP 0 817 017 A2

52

51
N
| - OBJECT
MESSENGER MANAGEMENT
- TABLE
Al (A A

METHOD |_— 9%
_____>
B

| — 54
> MET:OD

- CLASSES

J TABLE
1

FIG 1

25

LOADED |

IPR2022-01227
EXHIBIT 1003 - PAGE 00520

INSTANCE

CLASS

EP 0 817 017 A2

FIG 2

26

SALESPERSON EMPLOYEE PERSON
* QUOTA KIND HIRE_DT KIND AGE
A e e
OF OF
* PAYCOMM * PROMOTE * PRINT
" PRINT
IS-A 1S-A IS-A
B. SOUTTER B. ABRAHAM J. McENRO
W. TIPP K. YATES R. NADER
.G. BLUE . MOORE . REAGAN
* AGE " AGE - AGE
" HIRE_DT * HIRE_DT
* QUOTA |

IPR2022-01227

EXHIBIT 1003 - PAGE 00521

EP 0 817 017 A2

OBJECT ORIENTED COMPUTING ENVIRONMENT 11
OPERATING SYSTEM L 28
MICRO INSTRUCTION CODE —— 26
15 14— 16—

MAIN cPU 1o — 13

MEMORY INTERFACE

DISPLAY INPUT NONVOLATILE
TERMINAL DEVICE DATA PRINTER

STORAGE
DEVICE

FIG 3

27 IPR2022-01227

EXHIBIT 1003 - PAGE 00522

EP 0 817 017 A2

Thread A Thread B

send data

FIG 4

Thread A

setValue()
send data

receive reply

FIGS

28 IPR2022-01227
EXHIBIT 1003 - PAGE 00523

EP 0 817 017 A2

Thread A

+ waitForMultipleObjects

FIG 6

Thread A Thread B

et

o B .;rfe_ce_ivezx.'eply

o _-cﬂﬂback func

FIG 7

29 IPR2022-01227
EXHIBIT 1003 - PAGE 00524

EP 0 817 017 A2

Thread A Thread B

etValue()

data arriving

FIG 8

Thread A Thread B

getValue()

data arriving

dataChangé&O F

FIG9

30 IPR2022-01227
EXHIBIT 1003 - PAGE 00525

EP 0 817 017 A2

Thread A Thread B

etValue()

data arriving

sending reply

FIG 10

Thread A Thread B

getValue()

data arriving

dataChanged() |

h sending reply

FIG 11

31 IPR2022-01227
EXHIBIT 1003 - PAGE 00526

EP 0 817 017 A2

Thread A Thread B

l waitForMultipleObjects

FIG 12

Thread A Thread B

> sending reply

callback func

FIG 13

32 IPR2022-01227
EXHIBIT 1003 - PAGE 00527

EP 0 817 017 A2

Thread A Thread B

getValue()

data arriving

FIG 14

Thread A

etValue()

data request

data arriving

sending reply

FIG 15

33 IPR2022-01227
EXHIBIT 1003 - PAGE 00528

EP 0 817 017 A2

Thread A Thread B

getValue()

. data request

data arriving

FIG 16

34 IPR2022-01227
EXHIBIT 1003 - PAGE 00529

EP 0 827 336 A2

),

Europdisches Patentamt

19) European Patent Office

Office européen des brevets

(12)

(43) Date of publication:
04.03.1998 Bulletin 1998/10

(21) Application number: 97306679.8

(22) Date of filing: 29.08.1997

(11) EP 0827 336 A2

EUROPEAN PATENT APPLICATION

(51) Intcls: HO4N 5/44

(84) Designated Contracting States:
ATBECHDEDKESFIFRGBGRIEITLILUMC
NL PT SE

(80) Priority: 30.08.1996 JP 230015/96
11.03.1997 JP 56687/97

(71) Applicant: MATSUSHITA ELECTRIC INDUSTRIAL
CO.,, LTD.
Kadoma-shi, Osaka-fu, 571 (JP)

(72) Inventors:
¢ Shimoji, Tatsuya
Neyagawa-shi, Osaka-fu 572 (JP)
¢ Okamura, Kazuo
Hirakata-shi, Osaka-fu 573 (JP)
¢ Hirai, Junichi
Suita-shi, Osada-fu, 564 (JP)
¢ Oashi, Masahiro
Hirakata-shi, Osaka-fu 573-01 (JP)
¢ Kakiuchi, Takashi
Toyonaka-shi, Osaka-fu 561 (JP)

¢ Kusumi, Yuki

Kashiba-shi, Nara-ken 639-02 (JP)
* Miyabe, Yoshiyuki

Osaka-shi, Osaka-fu 532 (JP)
¢ Minakata, lkuo

Souraku-gun, Kyoto-fu 619-02 (JP)
* Kozuka, Masayuki

Neyagawa-shi, Osaka-fu 572 (JP)
¢ Mimura, Yoshihiro

Hirakata-shi, Osaka-fu 573 (JP)
¢ Inoue, Shinji

Neyagawa-shi, Osaka-fu 572 (JP)
¢ Mori, Toshiya

Settsu-shi, Osaka-fu 566 (JP)
¢ Takao, Naoya

Kadoma-shi, Osaka-fu 571 (JP)

(74) Representative: Crawford, Andrew Birkby et al
A.A. THORNTON & CO.
Northumberland House
303-306 High Holborn
London WC1V 7LE (GB)

(54)
therefor

(57) Abroadcasting system which includes a broad-
casting apparatus and a reception apparatus and which
achieves interactiveness using a broadcast wave. The
broadcasting apparatus includes a content storing unit
for storing the plurality of contents, each content includ-
ing a set of video data and a set of control information
that indicates another content that is a link destination
for a present content, and a transmitting unit for multi-
plexing a set of video data and a plurality of sets of the
same control information included in a same content as
the set of video data, and for transmitting the multiplexed

Digital broadcasting system, digital broadcasting apparatus, and associated receiver

sets of video data and control information. The reception
apparatus includes an extracting unit for extracting a set
of video data and a set of control information in a same
content as the set of video data, a storing unit for storing
the extracted set of control information, a reproducing
unit for reproducing the extracted set of video data and
outputting an image signal, an operation unit for receiv-
ing a user operation that indicates a content switching,
and a control unit for controlling the extracting unit to
extract another content indicated by the set of control
information stored in the storing unit, in accordance with
the user operation.

Printed by Jouve, 75001 PARIS (FR)

IPR2022-01227
EXHIBIT 1003 - PAGE 00530

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a digital broadcasting system.

2. Description of the Related Art

Since the development of digital satellite broadcasting in recent years, there has been a great increase in the
number of programs being provided on an ever greater number of channels. For digital satellite broadcasting, large
numbers of channels are possible by multiplexing the channels together into a single frequency band. This multiplexing
is performed using what is called a "transport stream" under MPEG2 (Moving Pictures Experts Group2) standard. This
technique is described in detail in the documentation for IS/IEC Standard 13818-1 (MPEG2 system standard).

Digital satellite broadcasting has a drawback in that image information is transmitted one-directionally from a trans-
mitter, so that no interaction between the receiver and the transmitter is possible. However, users would be able to
enjoy a greater variety of programs if they were able to make interactive selections of image information in accordance
with the content of the image information received by the receiver terminal.

SUMMARY OF THE INVENTION

It is a primary object of the present invention to provide a digital broadcasting apparatus that one-directionally
broadcasts a broadcast wave which, when received by a reception apparatus, gives the user the impression of inter-
action that is achieved through bidirectional communication. Here, it is the object of the present invention to further
provide a reception apparatus, a digital broadcasting system, and a recording medium for recording a program to be
used by a reception apparatus.

The above object can be achieved by a broadcasting apparatus for broadcasting an interactive program composed
of a plurality of contents that are linked to one another, the broadcasting apparatus including: a content storing unit for
storing the plurality of contents, each content including a set of video data and a set of control information that indicates
another content that is a link destination for a present content, and a transmitting unit for multiplexing a set of video
data and a plurality of sets of the same control information included in a same content as the set of video data, and
for transmitting the multiplexed sets of video data and control information.

Here, the content storing unit may include: a first storing unit for storing the sets of video data included in the
plurality of contents; a second storing unit for storing the sets of control information included in the plurality of contents;
and a construction table storing unit for storing a construction table showing correspondence between the sets of video
data stored in the first storing unit and the sets of control information stored in the second storing unit.

Here, the transmitting unit may include: a multiplexing unit for reading the plurality of sets of video data stored in
the first storing unit and the plurality of sets of control information stored in the second storing unit as respective digital
data streams, and multiplexing the digital data streams to generate a multiplexed stream; a multiplexing control unit
for referring to the construction table and controlling the multiplexing unit to multiplex the plurality of sets of video data
and to repeatedly multiplex a set of control information corresponding to a set of video data; and a broadcasting unit
for placing the multiplexed stream generated by the multiplexing unit onto a digital broadcast wave and broadcasting
the digital broadcast wave.

Here, the content storing unit may further include: a third storing unit for storing sets of audio data that correspond
to the sets of video data, wherein the construction table storing unit stores correspondence between a set of video
data, a set of audio data, and a set of control information included in each of the plurality of contents, and wherein the
multiplexing unit also multiplexes the sets of audio data stored in the third storing unit into the multiplexed stream.

With the above construction, control information is repeatedly multiplexed with the video data and is transmitted,
so that the reception apparatus can perform reproduction while interactively switching between contents in accordance
with user operations. This is to say, the present digital broadcasting apparatus can provide interactive programs using
a one-directional broadcast.

Here, each content may include a plurality of sets of control information, each set of control information including
a set of link information showing contents that are link destinations and a set of time information indicating a valid
period for the present control information within the reproduction period of the set of video data corresponding to the
present set of control information, and the multiplexing control unit may control the multiplexing unit to repeatedly
multiplex each set of control information with the corresponding set of video data during the valid period of the set of
control information.

2 IPR2022-01227
EXHIBIT 1003 - PAGE 00531

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

With the stated construction, the digital broadcasting apparatus can repeatedly and freely multiplex different sets
of control information for different periods within the reproduction time of sets of video data, so that the link destination
contents and number of potential links can be dynamically changed in accordance with the content of the video data.
As a result, each content can be linked to appropriate link destination contents for the content of each scene in the
video data.

Here, the multiplexing control unit may control the multiplexing unit to repeatedly multiplex each set of control
information with the corresponding video data starting from a predetermined time before the valid period of the set of
control information, the predetermined time being sufficiently long to enable a reception apparatus to process a set of
control information.

With the stated construction, control information is repeatedly multiplexed with the video data starting from a pre-
determined time before the valid period of the control information, so that when a content is being reproduced by the
reception apparatus, the reception apparatus will have enough time to process new control information which has a
different valid period.

Here, the multiplexing control unit may append a version number, reflecting the valid period of each set of control
information, to each set of control information in a given content.

With the stated construction, the reception apparatus can obtain new control information with a different valid
period for a same content using the version numbers.

Here, each set of control information stored by the second storing unit may include a set of link information showing
contents that are link destinations and supplementary images representing menu items for each link destination.

With the stated construction, menu items for assisting user operations in the reception apparatus can be freely set
in each set of control information.

Here, at least one set of control information may include: a plurality of sets of additional information representing
one of text and a graphic image that is to be displayed superimposed onto the corresponding video data; and a set of
script information that validates one of the sets of additional information within a reception apparatus, in accordance
with a user operation.

With the stated construction, sets of control information can be provided with script information and a plurality of
sets of additional information, with the reception apparatus being able to interactively switch between the sets of ad-
ditional information. As one example, when the video data expresses a weather forecast and the sets of additional
information provide a plurality of supplementary explanations (text or graphics) relating to the content of the video data,
switching of the display of supplementary explanations can be performed using the script information in accordance
with the user operations. By doing so, one pair of a set of video data and a set of control information can be used to
express what are effectively a plurality of contents.

Here, at least one set of control information may include: at least two groups of a set of link information and
supplementary images; a set of initial information showing a group of a set of link information and supplementary
images that is valid at a start of reproduction by a reception apparatus for a content including the present set of control
information; and a set of script information that changes a valid setting in the reception apparatus in accordance with
a user operation.

With the stated construction, sets of control information are provided with a plurality of groups which may be
switched according to the script information, so that an effective increase in the number of link destination contents
can be achieved.

Here, each group of a set of link information and supplementary image may further include a set of additional
information representing one of text and a graphic image that is to be displayed superimposed onto the corresponding
video data.

With the stated construction, the groups are provided with additional information, so that one pair of a set of video
data and a set of control information can be used to effectively express a plurality of contents that have different link
destination contents according to the additional information.

The object of the present invention can also be achieved by a broadcasting apparatus for broadcasting an inter-
active program composed of a plurality of contents that are linked to one another, the broadcasting apparatus including
an image storing unit storing a plurality of sets of video data and a plurality of sets of stillimage data; a control information
storing unit for storing sets of type 1 control information and sets of type 2 control information, the sets of type 1 control
information being elements of contents including video images, the sets of type 2 control information being elements
of contents including still images, and the sets of type 1 control information and sets of type 2 control information
including sets of link information that indicate contents which are link destinations for a present content; a construction
table storing unit storing a first construction table showing correspondence between sets of video data and sets of type
1 control information and a second construction table showing correspondence between sets of still image data and
sets of type 2 control information; a first multiplexing unit for generating a first multiplexed stream by multiplexing a set
of video data in the first construction table and repeatedly multiplexing a set of type 1 control information corresponding
to the set of video data; a second multiplexing unit for generating a second multiplexed stream by repeatedly multi-

3 IPR2022-01227
EXHIBIT 1003 - PAGE 00532

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

plexing a plurality of sets of still image data in the second construction table with a set of type 2 control information;
and a broadcasting unit for placing the multiplexed stream generated by the multiplexing unit onto a digital broadcast
wave and broadcasting the digital broadcast wave.

With the stated construction, interactive programs that are made up of two types of contents, which is to say video-
based contents and still-based contents, can be broadcasted. Type 1 and type 2 control information can have both
kinds of contents as link destination contents, so that a reception apparatus can perform reproduction switching be-
tween both kinds of content in accordance with user operations. In this way, very impressive interactive programs can
be realized.

The above object can also be achieved by a reception apparatus for receiving a broadcast wave including an
interactive program composed of a plurality of contents that are linked to one another, wherein the broadcast wave
includes a multiplexed stream into which different sets of video data have been multiplexed with a plurality of sets of
control information showing a link to another content, the sets of control information being repeatedly multiplexed, the
reception apparatus including: an extracting unit for extracting a set of video data and a set of control information in a
same content as the set of video data; a storing unit for storing the extracted set of control information; a reproducing
unit for reproducing the extracted set of video data and outputting an image signal; an operation unit for receiving a
user operation that indicates a content switching; and a control unit for controlling the extracting unit to extract another
content indicated by the set of control information stored in the storing unit, in accordance with the user operation.

With the stated construction, the reception apparatus can behave interactively as if two-way communication were
being performed, despite only using a one-directional broadcast of image information, meaning that users can enjoy
interactive programs. Since the control information is repeatedly transmitted, the storing unit only requires enough
storage capacity to store the control information for one content.

Here, first identification information may be appended to each set of video data and second identification informa-
tion is appended to each set of control information, and wherein the sets of control information include first identification
information and second identification information which express a content of a link destination, the extracting unit may
include: afirst judging unit for judging the first identification information appended to sets of video data in the broadcast
wave; a second judging unit for judging the second identification information appended to sets of control information
in the broadcast wave; an obtaining unit for obtaining a set of video data and when the first judging unit judges that
the first identification information coincides with specified identification information indicated by the control unit and
obtaining a set of control information when the second judging unit judges that the second identification information
coincides with specified identification information, the reproducing unit may reproduce the set of video data obtained
by the obtaining unit, and the storing unit may store the set of control information obtained by the obtaining unit.

With the stated construction, the reception apparatus judges the sets of video information and control information
and obtains the appropriate data, so that the only the data to be reproduced is obtained, thereby improving the reception
efficiency.

Here, a set of entry information giving first identification information and second identification information for the
content to be reproduced first may be multiplexed into the multiplexed stream, the control unit may send an indication
to the extracting unit to extract the set of entry information when the operation unit has received a selection operation
for a multiplexed stream from a user, the extracting unit may further include: an entry information extracting unit for
receiving the indication from the control unit and extracting the set of entry information from the multiplexed stream;
and an entry information storing unit for storing the set of entry information extracted by the entry information extracting
unit, wherein the control unit may give the obtaining unit an indication of the first identification information and second
identification information included in the entry information as the specified identification information.

With the stated construction, the reception apparatus can extract the content to be reproduced first in accordance
with the entry information, so that contents which contain important information, such as a main menu, can definitely
be reproduced.

Here, the link information may include an identifier of a set of video data and an identifier of a set of control infor-
mation which show a content of a link destination, the first identification information and second identification information
may be IDs (identifiers) of digital data streams which represent a set of video data and a set of control information in
the multiplexed stream, a correspondence table, showing correspondence between the identifiers for sets of video
data and the first identification information and correspondence between the identifiers for sets of control information
and the second identification information, may be multiplexed into the multiplexed stream and repeatedly transmitted,
and the extracting unit may extract the correspondence table and the control unit may refer to the correspondence
table, convert an identifier of the set of video data included in the link information into first identification information
and an identifier of the set of control information into second identification information and inform the extracting unit of
the converted first and second identification information.

With the stated construction, the interactive programs of the present invention are broadcast using a digital satellite
broadcast according to MPEG2 standard, so that the present invention can be achieved by modifying a conventional
digital satellite broadcast tuner.

4 IPR2022-01227
EXHIBIT 1003 - PAGE 00533

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

Here, at least one set of control information may include link information showing a content of a link destination
and supplementary images that include a menu item image for each link destination, the reproducing unit may include:
a video data reproducing unit for reproducing the set of video data obtained by the obtaining unit; and an image repro-
ducing unit for reproducing supplementary images stored by the storing unit superimposed onto the video data, wherein
the operation unit may receive a user selection of a menu item image, and wherein the control unit may determine the
first identification information and the second identification information of a link destination content in accordance with
the link information and the menu item image selected by the user.

With the stated construction, menu item images are displayed by the reception apparatus, assisting the interactive
operations of the user and enabling the achievement of impressive interactive programs.

Here, at least one set of control information may include additional information which expresses one of a text image
and a graphics image, and wherein the reproducing unit may additionally reproduce one of the text image and graphics
image stored in the storing unit superimposed onto the video data.

With the stated construction, additional images such as text or graphics are displayed in addition to the video data,
making the interactive programs even more impressive.

Here, each set of control information may include valid period information showing a valid period of the set of
control information, wherein each content may have a plurality of sets of control information which have different valid
periods, and wherein the reproducing unit may reproduce supplementary images stored in the storing unit only during
a valid period of the set of control information stored in the storing unit.

With the stated construction, sets of control information with different valid periods within the reproduction time of
video data are repeatedly multiplexed, so that the link destination contents and number of potential links can be dy-
namically changed in accordance with the content of the video data. As a result, each content can be linked to appro-
priate link destination contents for the content of each scene in the video data. As a result, the user of the reception
apparatus can gain greater enjoyment from the interactive programs which have link destinations that correspond to
the video scenes.

Here, each of the plurality of sets of control information for a same content has a version number that reflects the
valid period, and wherein the control unit controls the extracting unit to extract a set of control information which has
a next version number, when one set of control information has been extracted by the extracting unit.

With the above construction, the reception apparatus can use the version numbers for the content presently being
reproduced and so obtain following sets of control information with different valid periods.

Here, at least one set of control information may include a plurality of sets of additional information which each
express one of a text image and a graphics image to be displayed superimposed onto the video data, and a set of
script information that validates one of the sets of additional information within a reception apparatus, in accordance
with a user operation, wherein the control unit may determine a valid set of additional information by interpreting and
executing the script information stored in the storing unit, and wherein the reproducing unit may reproduce one of the
text image and the graphics image included in the valid set of additional information based on a result of interpreting
and executing by the control unit.

With the stated construction, the reception apparatus does not need to obtain new control information, and so can
perform content switching in accordance with the script information. Such content switching performed entirely by the
execution of script information is much more responsive to user operations.

Here, the multiplexed stream may include sets of audio data corresponding to the sets of video data, wherein the
extracting unit may extract a set of audio data corresponding to a set of video data from the broadcast wave, and
wherein the reproducing unit may additionally reproduce the extracted set of audio data.

With the stated construction, interactive programs composed of contents including video, stills, and audio can be
realized.

The stated object can also be achieved by a recording medium used by a reception apparatus that includes a
receiving unit for receiving a broadcast wave including an interactive program composed of a plurality of contents that
are linked to one another, an extracting unit for extracting one digital data stream from the broadcast wave, and a
reproducing unit for reproducing a set of video data and outputting an image signal, the recording medium storing a
program that includes the following steps: an extracting step for extracting a set of video data and a set of control
information in a same content as the set of video data from the broadcast wave, a storing step for storing the extracted
set of control information into a memory in the reception apparatus; a reproducing step for reproducing the extracted
set of video data and outputting an image signal; a judging step for judging whether a user operation indicating a
switching of content has been made; and a control step for controlling the extracting unit to extract another content
indicated by the set of control information stored in the memory, when the judging step judges that a user operation
indicating a switching of content has been made.

With the stated recording medium, the program can be installed into a conventional reception apparatus (satellite
broadcast tuner), so that the present invention can be easily realized.

5 IPR2022-01227
EXHIBIT 1003 - PAGE 00534

EP 0 827 336 A2
BRIEF DESCRIPTION OF THE INVENTION
These and other objects, advantages and features of the invention will become apparent from the following de-

scription thereof taken in conjunction with the accompanying drawings which illustrate a specific embodiment of the
invention. In the drawings:

10

15

20

25

30

35

40

45

50

55

Fig. 1 shows a plurality of examples of contents which are selectively reproduced by a reception apparatus;

Fig. 2 is an expansion of the left side of Fig. 1;

Fig. 3 is an expansion of the right side of Fig. 1;

Fig. 4 shows the construction of the digital broadcasting apparatus and reception apparatus in the digital broad-
casting system of the first embodiment of the present invention;

Fig. 5 shows a plurality of examples of contents which compose an interactive program;

Figs. 6A and 6B show example sets of image data which are stored by the presentation information storage unit
in the present embodiment;

Figs. 6C and 6D show example sets of audio data which are stored by the presentation information storage unit
in the present embodiment;

Fig. 7 shows an example of the navigation information which is stored by the navigation information storage unit
in the present embodiment;

Fig. 8 shows another example of the navigation information which is stored by the navigation information storage
unit in the present embodiment;

Fig. 9 shows another example of the navigation information which is stored by the navigation information storage
unit in the present embodiment;

Fig. 10 shows another example of the navigation information which is stored by the navigation information storage
unit in the present embodiment;

Fig. 11 shows another example of the navigation information which is stored by the navigation information storage
unit in the present embodiment;

Fig. 12 shows an example of the construction information table which is stored by the construction information
storage unit in the present embodiment;

Fig. 13 shows an example of the entry information which is stored by the construction information storage unit in
the present embodiment;

Fig. 14 shows an example of the multiplexing information table stored by the multiplexing information storage unit
in the present embodiment;

Fig. 15 shows an example of the content identifier assigning table generated by the multiplexing control unit in the
present embodiment;

Fig. 16 shows an example of the version number assigning table generated by the multiplexing control unit in the
present embodiment;

Fig. 17 shows an example of a navigation information table generated by the navigation information table gener-
ating unit in the present embodiment;

Fig. 18 shows another example of a navigation information table generated by the navigation information table
generating unit in the present embodiment;

Fig. 19 shows another example of a navigation information table generated by the navigation information table
generating unit in the present embodiment;

Fig. 20 shows another example of a navigation information table generated by the navigation information table
generating unit in the present embodiment;

Fig. 21 shows another example of a navigation information table generated by the navigation information table
generating unit in the present embodiment;

Fig. 22A shows an example of the NIT generated by the system information table generating unit in the present
embodiment;

Fig. 22B shows an example of the SDT generated by the system information table generating unit in the present
embodiment;

Fig. 22C shows an example of the EIT generated by the system information table generating unit in the present
embodiment;

Fig. 23 shows an example of the PAT generated by the system information table generating unit in the present
embodiment;

Fig. 24 shows an example of the PMT generated by the system information table generating unit in the present
embodiment;

Fig. 25 shows the detailed content of the Entry_Descriptor in the PMT generated by the system information table
generating unit in the present embodiment;

6 IPR2022-01227
EXHIBIT 1003 - PAGE 00535

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

Figs. 26A to 26D show the details of the NE_Component_Descriptor in the PMT generated by the system infor-
mation table generating unit in the present embodiment;

Figs. 27A and 27B show the details of the stream_identifier_descriptor in the PMT generated by the system infor-
mation table generating unit in the present embodiment;

Fig. 28 is a graphic representation of a transport stream multiplexed by the multiplexing unit in the present em-
bodiment;

Fig. 29 is a graphic representation of a transport stream multiplexed by the transmission unit in the present em-
bodiment;

Figs. 30 to 32 are flowcharts showing the operation of the data transmission apparatus in the present embodiment;
Figs. 33A and 33B are examples of filter conditions stored by the filter condition storage unit in the TS decoder
unit of the present embodiment;

Figs. 34A to 34D are examples of display images displayed by the display unit in the present embodiment;

Figs. 35A and 35B are examples of display images displayed by the display unit in the present embodiment;

Fig. 36 is a flowchart showing an overview of the reception processing for an interactive program;

Fig. 37 is a flowchart showing the details of the content switching process shown in Fig. 36;

Fig. 38 is a flowchart showing the details of the image data switching process shown in Fig. 37;

Fig. 39 is a flowchart showing the details of the audio data switching process shown in Fig. 37;

Fig. 40 is a flowchart showing the details of the navigation information switching process shown in Fig. 37;

Fig. 41 is a flowchart for the interactive control processing performed according to the navigation information;
Fig. 42 is a flowchart showing the user I/F processing performed according to the navigation information;

Fig. 43 shows examples of other interactive programs which are composed of the four contents 10 to 13;

Figs. 44 to 47 show four sets of navigation information which correspond to contents 10 to 13;

Fig. 48 shows a set of navigation information which corresponds to all contents 10 to 13;

Fig. 49 shows examples of contents which are each displayed as one frame on the display screen of the reception
apparatus;

Fig. 50 is a model representation of the transmission data transmitted by the transmission apparatus;

Fig. 51 a model representation of the transmission of the transmission data from the transmission apparatus;
Fig. 52 shows the construction of the data transmission apparatus and the data reception apparatus in the second
embodiment of the present invention;

Fig. 53A shows an example of the image data stored by the presentation information storage unit in the present
embodiment;

Fig. 53B shows another example of the image data stored by the presentation information storage unit in the
present embodiment;

Fig. 54 shows an example of the navigation information which is stored in the navigation information storage unit
of the present embodiment;

Fig. 55 shows another example of the navigation information which is stored in the navigation information storage
unit of the present embodiment;

Fig. 56 shows an example of the construction information table and the entry information which are stored in the
construction information storage unit of the present embodiment;

Fig. 57 shows an example of the multiplexing information table stored in the multiplexing information storage unit
of the present embodiment;

Fig. 58 shows an example of the content identifier assigning table generated by the multiplexing control unit of the
present embodiment;

Fig. 59 shows an example of the display image information identifier assigning table which is generated by the
multiplexing control unit of the present embodiment;

Fig. 60 shows the state when the identifier information appending unit of the present embodiment has appended
the identifier VE_id to the private area of the bitstream for the image data;

Fig. 61 shows an example of a navigation information table generated by the navigation information table gener-
ating unit of the present embodiment;

Fig. 62 shows another example of a navigation information table generated by the navigation information table
generating unit of the present embodiment;

Fig. 63A shows an example of the stream correspondence table generated by the stream correspondence infor-
mation table generating unit in the present embodiment;

Fig. 63B shows another example of the stream correspondence table generated by the stream correspondence
information table generating unit in the present embodiment;

Fig. 63C shows another example of the stream correspondence table generated by the stream correspondence
information table generating unit in the present embodiment;

Fig. 64 is a model representation of a transport stream which has been multiplexed by the multiplexing unit of the

7 IPR2022-01227
EXHIBIT 1003 - PAGE 00536

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

present embodiment;

Fig. 65 is a model representation of another transport stream which has been multiplexed by the multiplexing unit
of the present embodiment;

Fig. 66A shows an example of the NIT generated by the system information table generating unit of the present
embodiment;

Fig. 66B shows an example of the SDT generated by the system information table generating unit of the present
embodiment;

Fig. 66C shows an example of the EIT generated by the system information table generating unit of the present
embodiment;

Fig. 67 shows an example of the PAT generated by the system information table generating unit of the present
embodiment;

Fig. 68 shows an example of the PMT generated by the system information table generating unit of the present
embodiment;

Fig. 69A shows the details of the Entry_Descriptor in the PMT generated by the system information table generating
unit of the present embodiment;

Fig. 69B shows the details of the NE_Component_Descriptor in the PMT generated by the system information
table generating unit of the present embodiment;

Fig. 69C shows the details of the VE_Information Component_Descriptor in the PMT generated by the system
information table generating unit of the present embodiment;

Fig. 69D shows the details of the stream_identifier_descriptor in the PMT generated by the system information
table generating unit of the present embodiment;

Fig. 70 is a model representation of the transport stream multiplexed by the transmission unit of the present em-
bodiment;

Fig. 71 is a flowchart showing the operation of the data transmission apparatus of the present embodiment;

Fig. 72 is a flowchart showing the operation of the data transmission apparatus of the present embodiment;

Fig. 73 is a flowchart showing the operation of the data transmission apparatus of the present embodiment;

Fig. 74A shows examples of the filter conditions which are stored by the filter condition storage unit of the TS
decoder unit of the present embodiment;

Fig. 74B shows other examples of the filter conditions which are stored by the filter condition storage unit of the
TS decoder unit of the present embodiment;

Fig. 75A shows an example display screen which is displayed by the display unit in the present embodiment;
Fig. 75B shows another example display screen which is displayed by the display unit in the present embodiment;
Fig. 75C shows another example display screen which is displayed by the display unit in the present embodiment;
Fig. 76 is a flowchart showing the showing the entire operation of the data receiver apparatus of the present
embodiment;

Fig. 77 is a flowchart showing the details of the processing in S2410 of the present embodiment;

Fig. 78 is a flowchart showing the details of the processing in S2504 of the present embodiment;

Fig. 79 is a flowchart showing the details of the processing in S2506 of the present embodiment;

Fig. 80 is a flowchart showing the details of the processing in S2416 of the present embodiment;

Fig. 81 shows the construction of the digital broadcasting apparatus of the third embodiment of the present inven-
tion;

Figs. B2A and 82B show examples of the construction information tables stored in the construction information
storage unit of the third embodiment;

Fig. 83 shows an example of the navigation information in the third embodiment;

Figs. 84A to 84C are representations of sets of video data in the third embodiment;

Fig. 85 shows the relation between scenes in the video data and the sets of navigation information;

Fig. 86 also shows the relation between scenes in the video data and the sets of navigation information;

Fig. 87 shows a specific example of a set of navigation information;

Fig. 88 shows another specific example of a set of navigation information;

Fig. 89 shows another specific example of a set of navigation information;

Fig. 90 shows another specific example of a set of navigation information;,

Fig. 91 shows another specific example of a set of navigation information;

Fig. 92 shows another specific example of a set of navigation information;

Fig. 93 shows another specific example of a set of navigation information;

Fig. 94 shows another specific example of a set of navigation information;

Fig. 95 shows a specific example of a set of navigation information which corresponds to a plurality of contents;
Fig. 96 shows an example of a navigation information table;

Fig. 97 shows an example of a transport stream multiplexed by the transmission unit;

8 IPR2022-01227
EXHIBIT 1003 - PAGE 00537

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2
Fig. 98 is a block diagram showing the construction of the data reception apparatus in the present embodiment;
Fig. 99 shows an example of the filter condition table stored by the filter condition storage unit;
Fig. 100 is a flowchart for the control executed by the reception control unit; and
Fig. 101 is also a flowchart for the control executed by the reception control unit.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

0. Outline Description of the Present Invention

An outline description of the interactive programs achieved by digital broadcasting is given below, prior to the
description of the construction of the broadcasting apparatus and reception apparatus in the digital broadcasting system
of the present invention.

The broadcasting apparatus in the present digital broadcasting system broadcasts interactive programs composed
of contents that feature links to one another. The reception apparatus receives these interactive programs and repro-
duces them, interactively switching between contents as requested by a user.

The term "content" here refers to information which forms each compositional element of an interactive program
and so is the unit of information used when interactive switching operations are made by a user. In the present em-
bodiment, there are two types of contents which are namely stream-based contents and page-based contents. Here,
stream-based contents are contents which are mainly used for moving pictures (video), while page-based contents
are contents which are mainly used for displaying still images.

Fig. 1 shows a plurality of examples of contents which are selectively reproduced by a reception apparatus. Ex-
pansions of the left and right side of Fig. 1 are shown in Fig. 2 and Fig. 3, respectively. Here, the line "A-A" in Figs. 2
and 3 shows the boundary between the two halves of Fig. 1.

In the present figures, numerals 100S-105S, 105S', and 105S" denote stream-based contents, while numerals
100P-106P denote page-based contents.

Content 100S represents video and audio for a world travel guide which gives a succession of introductions of
various countries around the world, such as China, Japan, and Egypt, as well as menus composed of a plurality of
button images (hereinafter referred to as buttons) which are only displayed during the video display of the corresponding
destination. These buttons are used to make user selections of other contents which are linked to the present content.
Simplified representations of several scenes (or frames) out of the sets of video introducing different countries are also
shown in Figs. 1 to 3 in order of their reproduction times. As one example, scene 100S1 represents a travel guide for
China, while scene 100S2 represents a travel guide for Japan. When switching from scene 100S1 to scene 100S2,
the displayed menu also changes from the menu for China to the menu for Japan. The link destinations for the displayed
buttons also change from the contents for the travel guide for China to the contents for the travel guide for Japan.

Contents 101S, 102S, and 103S include the same video and audio for introductions of various countries around
the world as content 100S, but include different menus for the countries being introduced and text information which
may be supplementary information for the country being introduced.

Content 104S is composed of video and audio for a travel guide about Japan which successively introduces dif-
ferent areas of Japan, such as Osaka and Nara, with a menu composed of buttons which correspond to the region
currently being displayed.

Contents 105S, 105S', and 105" include the same video and audio as content 104S, but have different menus for
the various regions being introduced.

Content 100P represents a still image showing a world weather forecast, as well as buttons for different countries,
such as Japan, China, or Taiwan, which are link destination contents.

In the same way, contents 101P to 106P represent still images showing weather forecasts for different regions
and countries which are the link destinations, as well as buttons for the different link destinations.

The interactive program which contains the contents described above is reproduced by the reception apparatus
with interactive switching of contents being performed in accordance with user requests. The arrows in Figs. 110 3
show examples of switching between contents.

As one example, when the user makes an operation to select and activate the "Weather" button during the repro-
duction of scene 10081, the reproduction apparatus switches the reproduction to the link destination, content 100P,
as shown by the arrow in Fig. 2. As a result, the user is shown a still image for a main menu that informs the user of
the weather around the world. Here, if the user makes an operation to select and activate the "Return" button during
the reproduction of content 100P, the reproduction apparatus switches the reproduction to scene 100S2 at that point,
as shown by the arrow in Fig. 2. In this way, switching is performed between stream-based contents and page-based
contents.

As another example, if the user makes an operation to select and activate the "Transport" button during the repro-
duction of scene 10181 (a scene with a submenu including items such as transport to Japan and accommodation),

9 IPR2022-01227
EXHIBIT 1003 - PAGE 00538

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

the reproduction apparatus switches the reproduction 1o the link destination, scene 102S1, as shown by the arrow in
Fig. 2. As a result, the user is shown text information which gives a supplementary explanation about transport to
Japan. Here, if the user makes an operation to select and activate the "Return" button during the reproduction of scene
10181, the reproduction apparatus switches the reproduction to scene 10182, as shown by the arrow in Fig. 2. In this
way, switching is performed between different stream-based contents.

As another example, if the user makes an operation to select and activate the "Osaka" button during the repro-
duction of content 104P (a main menu showing the weather in Japan), the reproduction apparatus switches the repro-
duction to the link destination, content 106P, as shown by the arrow in Fig. 2. As a result, the user is shown a weather
forecast for Osaka, Japan. Here, if the user makes an operation to select and activate the "Return” button during the
reproduction of content 106P, the reproduction apparatus switches the reproduction to content 104P. In this way, switch-
ing is performed between different page-based contents.

This concludes the overview of the present invention. Below, the first embodiment will describe the construction
of a digital broadcasting system for realizing an interactive program composed of stream-based contents, while the
second embodiment will describe the construction of a digital broadcasting system for realizing an interactive program
composed of page-based contents and the third embodiment will describe the construction of a digital broadcasting
system for realizing an interactive program composed of both types of contents.

1. First Embodiment

The following explanation will first deal with the interactive programs composed of stream-based contents (in the
present embodiment, hereinafter abbreviated to "contents"), before describing the construction of the digital broad-
casting system.

The content S100 shown in Figs. 1 and 2 expresses video data and audio data for video and audio which give a
world travel guide, as well as a plurality of sets of navigation information which express supplementary explanations
and menus composed of a plurality of buttons corresponding to the countries being displayed.

The sets of navigation information referred to here can be provided so as to correspond to the reproduced content
of the video data during given time periods. As one example, one set of navigation information (set as "version 1") may
be provided for scene 100S1 which includes a travel guide for China, while another set of navigation information (set
as "version 2") may be provided for scene 100S2 which includes a travel guide for Japan and another set of navigation
information (set as "version N") may be provided for a scene which includes a travel guide for Egypt.

Contents 1018 to 1038 share the same video data and audio data for the world travel guide as content 100S, and
also include a plurality of sets of navigation information which correspond to the reproduced content of the video data
during given time periods.

The reproduction apparatus is able to switch from a content which is currently being displayed to a different stream-
based content because navigation information is transmitted by the broadcasting apparatus along with the video data
and audio data, according to the method described below.

Navigation information is repeatedly transmitted by the broadcasting apparatus during the reproduction time of
the image data. When doing so, the transmitted navigation information corresponds to the reproduced content of the
video data for the given time period, so that each set of navigation information is only repeatedly transmitted during
the time period to which it corresponds.

As one example, during the reproduction time of the travel guide for China included in scene S100S1, the navigation
information for version 1 is repeatedly transmitted. Similarly, during the reproduction time of the travel guide for Japan
included in scene S100S2, the navigation information for version 2 is repeatedly transmitted. Also, during the. repro-
duction time of the travel guide for Egypt, the navigation information for version N is repeatedly transmitted.

Here, the reason the same navigation information is repeatedly sent is to enable the reception apparatus to im-
mediately receive the navigation information of a switching destination when content switching is performed or when
reception is commenced midway through the broadcast of an interactive program. When the navigation information is
dynamically set for different sections of the video data, this means that the latest navigation information can be received
at the point where the content switching is made.

By doing so, the user of a reception apparatus in what is a one-directional broadcasting system can make what
appear to be interactive operations that switch between stream-based contents.

1-1 Digital Broadcasting System

Fig. 4 is a block diagram showing the construction of the digital broadcasting system of the first embodiment of
the present invention.

The present digital broadcasting system includes a digital broadcasting apparatus 5101 and a plurality of reception
apparatuses. In Fig. 4, this plurality of reception apparatuses is represented by only one reception apparatus 5121. In

10 IPR2022-01227
EXHIBIT 1003 - PAGE 00539

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

the present digital broadcasting system, interactive programs which are composed of stream-based contents (herein-
after, simply "contents") that are linked to one another are broadcast by the digital broadcasting apparatus 5101 and
are reproduced by the reception apparatus 5121 which interactively switches between the different contents.

To simplify the explanation of the present embodiment, an example of an interactive program which is composed
of the four contents numbered 0-3 in Fig. 5 will be used to describe the construction of the digital broadcasting apparatus
5101 and the reception apparatus 5121.

Content 0 is composed of scenes 01a to 01h, and expresses video and audio (not illustrated) which gives the
viewer of a weather forecast for the Kansai region of Japan.

Scene O1a is the opening scene.

Scene 01b has two buttons (button images) 02b and 03b superimposed over video image. These buttons 02b and
03b are respectively linked to content 1 and content 2 and are used by the reception apparatus 5121 when the user
performs a content switching operation. This is also the case for scenes 01c to O1h.

Content 1 is composed of scenes 11ato 11h and, in addition to the video and audio (not illustrated) for the weather
forecast used in content O, includes the text information 13b to 13h. These sets of text information 13b to 13h express
supplementary information such as the estimated maximum temperature, estimated minimum temperature, humidity,
and probability of rain.

Scene 11b has a button 12b which features a link to content 0 and a text information 13b displayed on top of the
video images. This is also the case for scenes 11c to 11h.

Content 2 and expresses video and audio (not illustrated) which gives the viewer of a weather forecast for the
Kanto region of Japan. Scene 21b has a button 22b linked to content 3 and a button 23b which is linked to content O.

Content 3 includes sets of text information, in addition to the video and audio (not illustrated) for the weather
forecast used in content 2. As one example, the button 32b in scene 31b is linked to content 2.

The interactive program composed of the four contents described above is reproduced by the reception apparatus
5121 while switching between contents as desired by the user, according to the method described below.

As one example, when the user makes a select and activate operation for the button 02b during the reproduction
by the reception apparatus 5121 of scene 01b in content O, the reception apparatus 5121 switches the reproduction
to content 1 which is the link destination of this button. When doing so, since every content is multiplexed with corre-
sponding reproduction times, content 1 is not reproduced from the start and is instead reproduced starting from a scene
whose reproduction time corresponds with the part of content O where the switching operation was made. Here, since
content 1 contains the same video and audio as content O, the user will not notice a change in the reproduced video
or audio and will merely obtain supplementary information for the weather forecast which is provided as text.

1-2 Digital Broadcasting Apparatus 5101

As shown in Fig. 4, the digital broadcasting apparatus 5101 is composed of a transmission data storage unit 5102,
a data multiplexing unit 51083, a multiplexing information storage unit 5104, a system information table generating unit
5105, and a transmission unit 5106. This digital broadcasting apparatus 5101 broadcasts the interactive program de-
scribed above on a digital broadcast wave.

The transmission data storage unit 5102 includes a recording medium such as a magnetic disc and is used to
store the data for each content which composes the interactive program. Here, the data for one content is composed
of presentation information, such as video data and audio data, and navigation information which expresses hyperlinks
to other contents, buttons, and text information. As one example, the video and audio for each content in Fig. 5 are
included in this presentation information, while the buttons and text information to be displayed on top of the video
images, and the hyperlinks given to each button are included in the navigation information.

The data multiplexing unit 5103 generates a multiplexed stream by multiplexing the content data stored in the
transmission data storage unit 5102. More specifically, the data multiplexing unit 5103 multiplexes the presentation
information for each content so that the reproduction times of the presentation information coincide, as well as repeat-
edly multiplexing the navigation information during the reproduction time of the presentation information in the same
content. Here, the navigation information is repeatedly multiplexed so that no matter when content switching is per-
formed by the reception apparatus, the reproduction apparatus will definitely be able to receive the navigation infor-
mation for the content which is the link destination.

The multiplexed stream described above is generated as a part of a transport stream in accordance with DVB-SI
(Digital Video Broadcasting) and MPEG system standards. This transport stream is a collection of a plurality of digital
data streams which are multiplexed into the bandwidth of one carrier wave on a digital satellite broadcast, and so has
a bandwidth which is equivalent to five or six broadcast channels.

The multiplexing information storage unit 5104 stores a variety of parameters that are needed by the data multi-
plexing unit 5103 to generate the multiplexed stream.

The system information table generating unit 5105 refers to the multiplexing information storage unit 5104 and

n IPR2022-01227
EXHIBIT 1003 - PAGE 00540

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

generates system information tables (made up of a variety of tables) which are required by the reception apparatus
5121 to select a multiplexed stream.

The transmission unit 5106 multiplexes the multiplexed stream generated by the data multiplexing unit 5103 and
the system information tables generated by the system information table generating unit 5105 into a transport stream
which it then transmits. The system information tables referred to here are composed of a variety of tables which store
information used to identify the multiplexed streams that express the interactive programs of the present invention in
the transport stream.

1-2-1 Transmission Data Storage Unit 5102

As shown in Fig. 4, the transmission data storage unit 5102 includes a presentation information storage unit 5107,
a navigation information storage unit 5108, and a construction information storage unit 5109. This transmission data
storage unit 5102 stores the data for a plurality of contents which compose one interactive program (application) clas-
sified into presentation information and navigation information. The transmission data storage unit 5102 also stores a
construction information table which shows the correspondence between sets of presentation information and sets of
navigation information.

1-2-1-1 Presentation Information Storaae Unit 5107

The presentation information storage unit 5107 stores the presentation information which is the video data and
audio data included in each content.

Figs. 6A and 6B show the scenes (frames) in the sets of video data used as the presentation information of the
contents shown in Fig. 5.

The video data 5201 shown in Fig. 6A has the filename "Video0.m2v" and expresses video which gives a weather
forecast for the Kansai region of Japan. This video data is presentation information which is used by both content O
and content 1 shown in Fig. 5.

The video data 5202 shown in Fig. 6B has the filename "Video1.m2v" and expresses video which gives a weather
forecast for the Kanto region of Japan. This video data is presentation information which is used by both content 2 and
content 3 shown in Fig. 5.

These sets of video data 5201 and 5202 are stored in the presentation information storage unit 5107 having been
compressed according to IS/IEC 13818-2 (MPEG2 Video) standard. However, other video data formats are also pos-
sible.

Figs. 6C and 6D show examples of sets of audio data which are used as presentation information.

Audio data 5203 shown in Fig. 6C has the filename "Audio0.m2a" and is the audio data that is to be reproduced
with the video data 5201 shown in Fig. 6A. This audio data is presentation information which is used by both content
0 and content 1 shown in Fig. 5.

Audio data 5204 shown in Fig. 6D has the filename "Audio1.m2a" and is the audio data that is to be reproduced
with the video data 5202 shown in Fig. 6B. This audio data is presentation information which is used by both content
2 and content 3 shown in Fig. 5.

These sets of audio data are stored in the presentation information storage unit 5107 having been compressed
according to IS/IEC 13818-3 (MPEG2 Audio) standard. However, other video data formats are also possible.

1-2-1-2 Navigation Information Storage Unit 5108

The navigation information storage unit 5108 stores the navigation information for each content. These sets of
navigation information include hyperlink information for links to other contents and valid time information for the valid
time of the present set of navigation information. The hyperlink information is given as objects to be used by the re-
ception apparatus to enable the user to make interactive operations. The valid time information, meanwhile, is added
to enable the content of the valid navigation information to be updated (expressed using the concept of a "version up")
in accordance with changes in the content of the video data or other presentation information.

Fig. 7 shows an example of the navigation information corresponding to the scene 01b (or, more correcitly, scenes
01b to 01d) shown in Fig. 5. This navigation information has the filename "NaviO-0.nif" and includes the navigation
information 5301, the object definition table 5302, the handler definition table 5303, the hyperlink table 5304, the bitmap
table 5305, and the time information table 5306.

The object definition table 5302 is a list of information which shows the types and attributes of the objects which
are to be displayed superimposed onto the video data included in the presentation information. More specifically, the
object definition table includes the following columns.

The "object index" column shows the numbers used to identify each of the objects.

12 IPR2022-01227
EXHIBIT 1003 - PAGE 00541

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

The "type" column shows the type of each object. As examples of types of objects, "button” denotes a button object
which used to display a button which has an attached hyperlink, while "picture" denotes a picture object which is used
to display a still image or text information. In the present example, the buttons 02b and 03b shown in Fig. 5 have been
recorded as button objects with the object index numbers "0" and "1". On the other hand, the text information 13b
shown in Fig. 5 has been recorded as a picture object.

The "X" column and "Y" column are used to record the X and Y coordinates of the standard display position of
each object, such as buttons or pictures, on the display screen. The values in these columns are used, for example,
to determine the display positions of the buttons 02b and 03b shown in Fig. 5.

The "handler" column is used to show the handler index which indicates the handler, out of the handlers stored in
the handler definition table 53083, that corresponds to each object. These handlers are scripts, which is to say programs
or instruction words which are written in a programming language that is executable by the reception apparatus 5121.
In particular, handlers for button objects include content switching instructions that are executed by the reception ap-
paratus 5121 when the corresponding button object is activated by a user operation.

The "normal bitmap" column is used to show the bitmap index number that is used to indicate the bitmap image
(button image or picture representing still image information), out of the bitmap images in the bitmap table 5305, which
is to be displayed at the standard display position given by the X and Y coordinates described above during the normal
(non-selected state) display state. Here, the non-selected state is the state of a given button when it has not been
selected by the reproduction apparatus.

The "focused bitmap" column is used to show the bitmap index number that is used to indicate the bitmap image
(button image or picture representing still image information), out of the bitmap images in the bitmap table 5305, which
is to be displayed at the standard display position given by the Xand Y coordinates described above during the selected
state. Here, the selected state is the state of a given button when it has been selected by the reproduction apparatus.

The handler definition table 5303 stores the handlers (scripts) which are indicated for each object in the object
definition table 5302. More specifically, the handler definition table 5303 includes the following columns. The "handler
index" column stores numbers (handler indexes) for identifying each handler. The "script" column shows the handler
(script) corresponding to each handler index. In particular, the handlers corresponding to button objects include content
switching instructions such as "goto_content (Hyperlink Index 0)" given in Fig. 7.

The hyperlink table 5304 stores the arguments for the content switching instructions in the handler definition table
5303. More specifically, the hyperlink table includes the following columns. The "hyperlink index" column stores values
(hyperlink indexes) for identifying each hyperlink. The "content number" column stores hyperlink information which is
the content number of the link destination used as the argument in a content switching instruction. As one example,
the content switching instruction "goto_content (Hyperlink Index 0)" is effectively the same as the instruction
"goto_content (content 1)", with this being the instruction which is executed by the reception apparatus 5121 when the
corresponding button object is activated.

The bitmap table 5305 stores bitmap data for bitmap images indicated in the "normal bitmap" and "focused bitmap"
columns of the object definition table 5302. More specifically, the bitmap table includes the following columns. The
"bitmap index" column is used to store the values ("bitmap numbers") which are used to identify the bitmaps. The
"bitmap data" column is used to store the bitmap data used to express buttons and text information which are displayed
superimposed onto the presentation information. As one example, the button 02b in scene 01b of Fig. 5 is displayed
using the "Details for Osaka" bitmap with the bitmap index 0 in the normal state and using the "Details for Osaka"
bitmap (which has a different color density to make it stand out) with the bitmap index 1 in the selected state. In the
same way, button 03b is displayed using the "See Kanto" bitmap with the bitmap index 2 in the normal state and using
the "See Kanto" bitmap with the bitmap index 3 in the selected state.

The time information table 5306 stores the start_time which denotes the time at which the present navigation
information becomes valid and the end_time which denotes the time at which the present navigation information ceases
to be valid. These times are expressed as relative times (in units of one second) where the broadcasting start time of
the interactive program is set at "0".

Fig. 8 shows an example of the navigation information which corresponds to scene 11b in Fig. 5. This navigation
information 5401 has the filename "Navi1-0.nif"* and includes the object definition table 5402, the handler definition
table 5403, the bitmap table 5404, and the time information table 5405.

On the line of the object definition table 5402 with the object index number "0", the type of the object is "button”,
and the display coordinates of the top-left corner of the display of the object on the display screen are X=20, Y=400.
When this button is activated, the handler with the handler index number "0" is activated. During the non-selected state,
this button is displayed using the bitmap with the bitmap index number "0", while during the selected state, the button
is display using the bitmap with the bitmap index number "1".

On the line of the object definition table 5402 with the object index number "1", the type of the object is "picture”,
and the display coordinates of the top-left corner of the display of the object on the display screen are X=300, Y=20.
This object is displayed using the bitmap with the bitmap index number "2".

13 IPR2022-01227
EXHIBIT 1003 - PAGE 00542

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

The handler definition table 5403 shows that when the handler with the handler index number "0" is activated, the
script "goto_entry" will be executed. This script is an instruction which indicates a switching to a default content for the
start of reproduction, which is to say the content which is to be reproduced first by the reproduction apparatus.

The bitmap table 5404 stores the bitmap data for the bitmaps with the bitmap index numbers "0", "1", and "2". Of
these, the bitmap with the bitmap index number "2" is the text information 13b shown in Fig. 5.

The time information table 5405 shows that the navigation information 5401 becomes valid five seconds after the
start of reproduction and ceases to be valid sixty-five seconds after the start of the reproduction. This is to say, navigation
information 5401 will stop being used sixty-five seconds after the start of reproduction.

Other examples of navigation information stored in the navigation information storage unit 5108 are shown in Fig.
9 (navigation information 5501), Fig. 10 (navigation information 5601), and Fig. 11 (navigation information 5701). These
sets of navigation information respectively correspond to scene O1e in content 0, to scene lle in content 1, and to scene
21b in content 2.

1-2-1-3 Construction Information Storage Unit 5109

The construction information storage unit 5109 stores a construction information table, which is a list of pairings
of presentation information and navigation information which compose each content, and entry information. This entry
information shows an entry content number of an entry content that is the content to be reproduced first when the
reproduction of the interactive program is commenced by the reception apparatus 5121.

Fig. 12 shows an example of the construction information table stored by the construction information storage unit
5109. This construction information table 5801 shows a combination of video data, audio data, and navigation infor-
mation for each content identified using content numbers. These content numbers are the numbers which are exclu-
sively assigned for identification purposes to each of the contents stored in the transmission data storage unit 5102.
Here, while content numbers are one-to-one assigned to contents, it is also possible in exceptional circumstances for
them to correspond to a plurality of contents.

The content number "0" line of the construction information table 5801 shows that the content with the content
number "0" is composed of the video data with the filename "VideoO.m2v" and the audio data with the filename
"Audio0.m2a" stored in the presentation information storage unit 5107, and the sets of navigation information identified
by the filenames "NaviO-0.nif", "NaviO-1.nif", "NaviO-2.nif", "NaviO-3.nif", and "NaviO-4.nif" stored in the navigation in-
formation storage unit 5108. Here, each set of navigation information stored in the "navigation information" column is
given in ascending order of valid start time. This is also the case for the other lines in the construction information table
5801.

Fig. 13 shows an example of the entry information stored in the construction information storage unit 5109. This
entry information 5901 shows that the content number of the entry content of the application stored in the transmission
data storage unit 5102 is "0".

1-2-2 Multiplexing Information Storage Unit 5104

The multiplexing information storage unit 5104 stores the multiplexing information table for the resource assigning
information for identifiers and areas used when multiplexing the interactive program into an MPEG2 transport stream
for broadcasting.

Fig. 14 shows an example of the multiplexing information table stored by the multiplexing information storage unit
5104. The multiplexing information table 6001 in this figure is a table which shows the various identifiers for the inter-
active program and its composite elements, as well as the various bit rates used in transmission.

In Fig. 14, the rows 6002 to 6005 for the "original_network_id", "transport_stream_id", "service_id", and "event_id"
show the values of the identifiers assigned to the interactive programs when multiplexing the program into the MPEG2
transport stream used for broadcasting the interactive program. In a standard satellite digital broadcasting system,
transmission of one or more MPEG2 transport streams is performed from a single satellite (network) using carrier
waves on separate frequency bands. Here, each broadcast program is multiplexed into the MPEG2 transport stream
having been assigned its own "original_network_id", "transport_stream_id", "service_id", and "event_id" in accordance
with ETS 300 468 Standard (hereinafter, referred to as "DVB-SI Standard").

The original_network_id is a unique identifier which identifies the network.

The transport_stream_ID is a unique identifier which identifies the transport stream in a network.

The event_|ID is a unique identifier which identifies one event on a transport stream. Here, an event is a collection
of a number of components, and is the equivalent of the concept of a "program" which is used in conventional analog
broadcasting.

A component is a stream (program element) identified by a PID (packet identifier) under IS/IEC 13818-1 Standard
(MPEG2 system standard), and represents one compositional element of a program, such as video or audio. As one

14 IPR2022-01227
EXHIBIT 1003 - PAGE 00543

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

example, each set of video data shown in Fig. 12, each set of audio data, and each collection of sets of navigation
information in each content is a separate component.

In the present embodiment, a service is a collection of sequences of events, which is the equivalent of one channel
in conventional analog broadcasting. The interactive program described above is one time segment on such a service.

A transport stream is a collection of a plurality of services. Here, bandwidth can be assigned to transport streams
and services in a variety of ways, with, for example, each transport stream being assigned around 30Mbps and each
service being assigned around 5Mbps. In such a case, each transport stream is the equivalent of six channels. The
transfer rates used for the interactive programs transmitted as events, meanwhile, will greatly differ since different
numbers of contents and differing amounts of video data are included.

Each program (event) transmitted using a digital broadcasting system in accordance with DVB-SI standard can
be uniquely specified in every digital broadcasting system using a combination of the "original_network_id",
"transport_stream_id", "service_id", and "event_id". The details of the "original_network_id", "transport_stream_id",
"service_id", and "event_id" are given in the documentation for DVB-SI standard.

The "PMT_PID" column 6006 and "PCR_PID" column 6007 express the values of the PID which are assigned to
the PMT (Program Map Table) and the PCR (Program Clock Reference). The PMT referred to here is one of the system
information tables multiplexed into the transport stream and is a table that shows the correspondence between the
various streams which express the video data and audio data (components) included in an event and the identifiers
(packet identifiers: PIDs) of the packets used to transfer these components. The PCR is also one of the system infor-
mation tables and is time information that is used as a standard in the digital broadcasting apparatus 5101 when data
for each content is multiplexed into the multiplexed stream, as well as being used as the standard time information
when each event is reproduced by the reception apparatus 5121.

The "NE_component(0)_Bitrate" column 6008 and the "NE_component(0)_pid" column 6009 show the values of
the transfer rate and PID which are assigned to each component for transferring navigation information tables which
are included in content 0. This is also the case for "NE_component(1)_Bitrate" onwards. Here, "NE" is an abbreviation
for "Navigation Element".

The "VE_component(0)_Bitrate" column 6010 and the "VE_component(0)_pid" column 6011 show the values of
the transfer rate and PID which are assigned to each component for transferring the video data corresponding to the
component_tag number "0x00". This is also the case for "VE_component(1)_Bitrate" onwards. Here, VE is an abbre-
viation for "Video Element".

The "AE_component(0)_Bitrate" column 6012 and the "AE_component(0)_pid" column 6013 show the values of
the transfer rate and PID which are assigned to each component for transferring the audio data corresponding to the
component_tag number "0x00". This is also the case for "AE_component(1)_Bitrate" onwards. Here, AE is an abbre-
viation for "Audio Element".

It should be noted that in the present embodiment, the number of PIDs for transferring navigation information is
kept equal to the number of contents so that the PIDs may be used to identify each set of navigation information,
although the number of PIDs for transferring navigation information may be less than the number of contents, and may
for example be "1". In such a case, a combination of a PID and another parameter (such as a "table_id_extension"
under MPEG2 standards) may be used as the information for identifying each set of navigation information. This is
also the case for the video data and audio data included in the presentation information which may each be identified
by a combination of a PID and another parameter, such as the stream_id under MPEG2 standard. By doing so, even
if the number of PIDs that may be used in each transport stream is limited to a given number, a number of contents
which exceeds this given number may still be transmitted.

1-2-3 Data Multiplexing Unit 5103

The data multiplexing unit 5103 shown in Fig. 4 first (a) assigns a variety of identifiers to each of the contents
stored in the transmission data storage unit 5102 (or in other words, generates a content identifier assigning table),
(b) assigns version numbers to each set of navigation information (or in other words, generates a version number
assigning table), (¢) instructs the navigation information table generating unit 5111 to generate a navigation information
table, (d) instructs the system information table generating unit 5105 to generate the system information tables, and
(e) multiplexes the presentation information in accordance with these tables so that the reproduction times of the
presentation information are aligned, as well as repeatedly multiplexing each set of navigation information correspond-
ing to the presentation information for the period that the navigation information is valid. To do so, the data multiplexing
unit 51083 includes a multiplexing control unit 5110, a navigation information table generating unit 5111, and a multi-
plexing unit 5112.

The process (c) described above is performed by the navigation information table generating unit 5111, while the
processes (a), (b), and (e) are performed by the multiplexing control unit 5110. Process (d) meanwhile, is performed
by the system information table generating unit 5105.

15 IPR2022-01227
EXHIBIT 1003 - PAGE 00544

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

1-2-3-1 Multiplexing Control Unit 5110

The multiplexing control unit 5110 can be composed of a CPU (Central Processing Unit), a ROM (Read Only
Memory) storing a program, and a RAM (Random Access Memory) used as a work area, and generates the content
identifier assigning table and the version number assigning table (processes (a) and (b) above), as well as generating
a multiplexing instruction for each set of presentation information and each set of navigation information in accordance
with these tables, and informing the multiplexing unit 5112 of these multiplexing instructions (process (e) above). These
multiplexing instructions include the various identifiers needed for multiplexing, the multiplexing start position in the
transport stream, and the transfer rate, for each set of video data and audio data in the presentation information and
for each set of navigation information.

In more detail, the process (e) involves the multiplexing control unit 5110 generating multiplexing instructions so
that the reproduction times of each set of video data and audio data in the presentation information overlap. As one
example, it may generate multiplexing instructions which set the multiplexing start positions of video data and audio
data at the same time. For sets of navigation information, the multiplexing control unit 5110 may generate multiplexing
instructions so that the sets of navigation information are repeatedly multiplexed during the reproduction period of the
presentation information in the same content. This is to say, a plurality of multiplexing start positions are set for each
set of navigation information, with multiplexing instructions being generated for each of these multiplexing start posi-
tions.

1-2-3-2 Multiplexing Control Unit 5110: (a) Generation of the Content Identifier Assigning Table

On being activated by the transmission unit 5106, the multiplexing control unit 5110 reads the construction infor-
mation table and multiplexing information table stored in the construction information storage unit 5109 and in the
multiplexing information storage unit 5104, and generates the content identifier assigning table.

Fig. 15 shows an example of a content identifier assigning table generated from the construction information table
5801 shown in Fig. 12 and the multiplexing information table 6001 shown in Fig. 14.

This content identifier assigning table 6101 is composed so that the values in the "original_network_id" column
6002, the "transport_stream_id" column 6003, the "service_id" column 6004, and the "event_id" column 6005 of the
multiplexing information table 6001 are written into the "orig_nw_id" column 6103, the "ts_id" column 6104, the
"VE_svc_id" column 6105, and the "VE_event_id" column 6106. In the same way, the values in the "service_id" column
6003 and the "event id" column 6005 are written into the "AE_svc_id" column 6108 and the "AE_event_id" column
6109. This is also the case for the "NE_svc_id" column 6111 and the "NE_event_id" column 6112.

Each set of video data is assigned a two-digit hexadecimal component tag in order starting from "0x00", with these
values being written into the "VE_comp_tag" column 6107. As examples, video data "VideoO.m2v" is assigned the
component tag "0x00" and video data "Video1.m2v" is assigned the component tag "0x01", with these values being
written into the "VE_comp_tag" column 6107.

These component tags are values which are freely one-to-one assigned to each PID, and are used to indirectly
refer to each PID. In the present embodiment, the component tags with the value "N" correspond to the PIDs given by
the "VE_component (N)_pid" in the multiplexing information storage unit 5104. This correspondence between PIDs
and component tags is given in the PMT which is described later in this specification. By doing so, the reception
apparatus 5121 is able to refer to the component tags written in the "descriptor" column of the PMT and so determine
the PID, before using this PID to obtain the desired video or other data. Here, even if different values for the PIDs are
written in the system information tables when the interactive program is multiplexed with other programs by the trans-
mission unit 51086, the reception apparatus 5121 will still definitely be able to obtain the desired video data.

It should be noted here that if a component tag is not used, the values of the PIDs may be directly written into the
"VE_comp_tag" and "AE_comp_tag" columns. When doing so, if the PIDs are rewritten using different values in the
system information tables during the multiplexing into the transport stream by the transmission unit 5106, the values
of the PIDs in these columns in the navigation information table may also be appropriately rewritten.

In the same way, each set of audio data is assigned a component tag which is written into the "AE_comp_tag"
column 6110. As examples, audio data "Audio0.m2a" is assigned the component tag "0Ox00" and audio data
"Audiol.m2a" is assigned the component tag "0x01", with these values being written into the "AE_comp_tag" column
6110.

A four-digit hexadecimal value is written into the "NE_id" (navigation information identifier) column 6113 of the
content identifier assigning table 6101, with this value being incremented by one for each content number 6102.

It should be noted that the "VE_id" and "AE_id" in Fig. 15 are information which is used to identify page-based
contents. In this first embodiment, the interactive program is assumed to be entirely composed of stream-based con-
tents, so that the "VE_id" and "AE_id" columns are not used. The details of these columns are given in the second and
following embodiments.

16 IPR2022-01227
EXHIBIT 1003 - PAGE 00545

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

1-2-3-3 Multiplexing Control Unit 5110: (b) Generation of the Version Number Assigning Table

On completing the generation of the content identifier assigning table 6101, the multiplexing control unit 5110
generates the version number assigning table.

More specifically, the multiplexing control unit 5110 refers to the construction information table 5801 and assigns
version numbers, which start at "0" and are incremented by one each time, to each set of navigation information with
the same content number, starting from the in order from the first set of navigation information. It should be noted here
that when the version number exceeds "31", the next assigned version number will be "0", with numbers incremented
by "1" being used thereafter.

Fig. 16 shows an example of the version number assigning table. In this example, the sets of navigation information
"Navi0-0.nif", "NaviO-1.nif", "NaviO-2.nif" ... are assigned the version numbers "0x00", "0x01", "0x02"... This is also the
case for the navigation information in contents 1-3.

On completing the generation of the version number assigning table 6201, the multiplexing control unit 5110 in-
structs the navigation information table generating unit 5111 to generate the navigation information table.

1-2-3-4 Navigation Information Table Generating Unit 5111: (c)

On being instructed by the multiplexing control unit 5110 to generate the navigation information table, the navigation
information table generating unit 5111 generates a navigation information table by replacing the content numbers of
the link destinations in the hyperlink table with various identifiers which express each component that includes the
contents which are the link destinations.

More specifically, the navigation information table generating unit 5111 reads the navigation information stored in
the navigation information storage unit 5108, and, when a hyperlink table is included in the navigation information,
refers to the content identifier assigning table generated by the multiplexing control unit 5110 using the information for
the link destination given as a content number, changes the content numbers into various identifiers, and by doing so
generates the navigation information table.

The navigation information table generating unit 5111 also stores the generated navigation information table in a
storage area (not illustrated) as the navigation information table with the flename NVT (content number, version
number). The navigation information table generating unit 5111 obtains this content number and version number by
referring to the construction information table in the construction information storage unit 5109 and the version number
assigning table in the multiplexing control unit 5110. When the read navigation information does not include a hyperlink
table, the navigation information table generating unit 5111 stores the navigation information as it is in the storage area,
changing only the filename.

Fig. 17 shows the generated navigation information table 6301 with the filename "NVT (0,0)". This navigation
information table 6301 has been generated from the navigation information 5301 with the filename "NaviO.nif" shown
in Fig. 7, and so corresponds to scene 01b shown in Fig. 5.

The navigation information table 6301 includes the object definition table 6302, the handler definition table 6303,
the hyperlink table 6304, the bitmap table 6305, and the time information table 6306. With the exception of the filenames
and the hyperlink table 6304, the content is the same as the navigation information 5301 shown in Fig. 7.

The hyperlink table 6304 is such that each content number in the hyperlink table 5304 of Fig. 7 has been converted
to the various identifiers given in the content identifier assigning table 6101 shown in Fig. 15. The columns such as
"orig_nw_id" in the hyperlink table 6304 are given as "-", with no identifiers having been entered. This shows that the
contents belonging to the navigation information table 6301 have the same identifiers as the contents given as the link
destinations, so that these do not need to be recorded in the table.

In the present example, the "Hyperlink Index 0" row shows that there is a link between scene 01b of content O
shown in Fig. 5 to scene 11b of content 1. With the exception of the "NE_id" column, all of the entries in the "Hyperlink
Index 0" row of the hyperlink table 6304 are "-", showing that the link destination, content 1, has the same images and
audio as content 0, with only the navigation information table (NE_id) being different.

In the present example, the "Hyperlink Index 1" row shows that there is a link between scene 01b of content O
shown in Fig. 5 to scene 21b of content 2. With the exception of the "VE_comp_tag", the "AE_comp_tag" and the
"NE_id" columns, all of the entries in the "Hyperlink Index 1" row of the hyperlink table 6304 are "-", showing that the
link destination, content 2, has different images (VE_comp_tag), audio (AE_comp_tag) and a different navigation in-
formation table (NE_id) to content O.

Supposing here that the content which is the link destination belongs to a different service, the appropriate iden-
tifiers will be given in the "VE_service_id", the "AE_service_id", and the "NE_service_id". However, by omitting these
identifiers when the values for the link destination are the same as those for the current content as in the example
above, a reduction in the size of the navigation information table can be achieved.

It should be noted that the "VE_id" and "AE_id" columns in the hyperlink table in Fig. 17 include information used

17 IPR2022-01227
EXHIBIT 1003 - PAGE 00546

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

for identifying page-based contents. For the navigation information table NVT (0,0), all of the link destinations are
stream-based contents, so that no entries are made into the "VE_id" and "AE_id" columns. The case where page-
based columns are included as link destinations is explained in the second and following embodiments.

Fig. 18 shows the navigation information table 6401 with the filename NVT (1,0). This navigation information table
6401 has been generated from the navigation information 5401 with the filename "navi1-0.nif" shown in Fig. 8, and so
corresponds to scene 11b in content 1 shown in Fig. 5.

Since navigation information 5401 does not include a hyperlink table, the content of navigation information table
6401 is the same as navigation information 5401. However, the link from scene 11b of content 1 to content O is expressed
by the handler definition table 6403 in Fig. 18 and the entry information shown in Fig. 13.

In the same way, the navigation information table 6501 with the filename NVT (0,1) is shown in Fig. 19, the navi-
gation information table 6601 with the filename NVT (1,1) is shown in Fig. 20, and the navigation information table
6701 with the filename NVT (2,0) is shown in Fig. 21. These have been respectively generated from the navigation
information 5501 with the filename "naviO-1.nif" shown in Fig. 9, from the navigation information 5601 with the filename
"navil1-1.nif" shown in Fig. 10, from the navigation information 5701 with the filename "navi2-0.nif" shown in Fig. 11.

On completing the generation of the navigation information table, the navigation information table generating unit
5111 informs the multiplexing control unit 5110. On receiving notification of the completion of the generation of the
navigation information table, the multiplexing control unit 5110 instructs the system information table generating unit
5105 to generate the system information tables. The generation of the system information tables (d) is described later
in this specification.

1-2-3-5 Multiplexing Control Unit 5110: Generation of Multiplexing Instructions

On receiving notification of the completion of the generation of the system information tables, the multiplexing
control unit 5110 first reads the value of "PCR_PID" from the multiplexing information storage unit 5104 and notifies
the multiplexing unit 5112. This action is performed so that the multiplexing unit 5112 can multiplex the time information
(PCR), which is set as a standard when multiplexing each set of content data into the multiplexed stream.

Next, the multiplexing control unit 5110 generates multiplexing instructions for the presentation information and
sends these instructions to the multiplexing unit 5112.

More specifically, the multiplexing control unit 5110 generates multiplexing instructions for the video data and the
audio data included in all of the contents with a multiplexing start position of "0", so that the presentation information
in all of the contents will be multiplexed with overlapping reproduction times. This reproduction start time is a relative
time with the transmission start time being set at "0".

Each multiplexing instruction for video data and audio data includes a multiplexing start position, a PID, and a bit
rate. As one example, for the video data "VideoO.m2v" of content O in the construction information table 5801, the
multiplexing control unit 5110 refers to the content identifier assigning table 6101 and reads the value "0x00" of the
"VE_comp_tag" 6107 of this video data. The multiplexing control unit 5110 then refers to the multiplexing information
table 6001 and reads the value "0x0096" of the "VE_component(0)_pid" 6011 to obtain the PID of this video data and
reads the value "4Mbps" as the "VE_component(0)_Bitrate" 6010. The multiplexing control unit 5110 then informs the
multiplexing unit 5112 of this PID and this bit rate in addition to the multiplexing start position.

The multiplexing control unit 5110 next generates multiplexing instructions for navigation information according to
the process described below, before notifying the multiplexing unit 5112 of these instructions.

The multiplexing control unit 5110 generates multiplexing instructions for each content so that the navigation in-
formation tables included in each content will be repeatedly multiplexed during their valid time periods. As one example,
the multiplexing control unit 5110 repeatedly generates multiplexing instructions for the navigation information table
6301 (NVT(0,0)) shown in Fig. 17 during its valid period which, as shown by the time information table 6306 is from
the start_time (5 seconds) to the end_time (65 seconds). In the present embodiment, however, the navigation infor-
mation tables are multiplexed at a predetermined time (such as one second) before their valid start_times. Navigation
information tables are multiplexed this predetermined time before their valid start_times to give the reception apparatus
5121 enough of a margin to process the navigation information tables.

The multiplexing instructions for navigation information tables each include a multiplexing start position, a PID, a
transfer amount (bit rate), a version number, and a table_id_extension.

As one example, when multiplexing the navigation information table with the filename "NVT(0,0)" shown in Fig.
17, the multiplexing control unit 5110 sets the multiplexing start position the predetermined time before the valid
start_time (resulting here in a time of four seconds), reads the value "0x0092" of the "NE_component(0)_pid" 6009
and the value "1Mbps" of the "NE_component(0)_Bitrate" 6008 from the multiplexing information table 6001, and in-
forms the multiplexing unit 5112 of these values as the PID and the bit rate. Also, the multiplexing control unit 5110
reads the value "0x0000" of the "NE_id" 6113 corresponding to content number 0 from the content identifier assigning
table 6101 and informs the multiplexing unit 5112 of this value as the table_id_extension.

18 IPR2022-01227
EXHIBIT 1003 - PAGE 00547

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

The multiplexing control unit 5110 then calculates the next multiplexing start position by dividing the transfer rate
(bit rate) used for transferring the present navigation information by the size of present navigation information table,
and generates the next multiplexing instruction as described above.

The multiplexing control unit 5110 repeats the above process, successively finding the next multiplexing start
positions, generating multiplexing instructions, and informing the multiplexing unit 5112 of the multiplexing instructions,
until the valid end_time is reached. By doing so, the navigation information table NVT (0,0) is repeatedly multiplexed
into the multiplexed stream between the four-second mark and the sixty-five-second mark.

By repeating the processing described above, the multiplexing control unit 5110 generates multiplexing instructions
for the other navigation information tables NVT (0,1), NVT(0,2) ... included in content O, the navigation information
tables NVT(1,0), NVT(1,1) ... included in content 1, and so on, and informs the multiplexing unit 5112 of these multi-
plexing instructions.

1-2-4 System Information Table Generating Unit 5105: (d)

On being instructed by the multiplexing control unit 5110, the system information table generating unit 5105 gen-
erates the system information tables. These system information tables are made up of a variety of tables which store
information that is used to identify multiplexed streams in the transport stream, which is to say various kinds of infor-
mation used by the reception apparatus 5121 to select events.

More specifically, the system information table generating unit 5105 refers to the multiplexing information storage
unit 5104 and generates the NIT (Network Information Table), the EIT (Event Information Table), the SDT (Service
Description Table), and the PAT (Program Association Table), in accordance with ETS 300 468 (DVB-SI) standard and
IS/IEC 13818-1 (MPEG2 system) standard.

The NIT referred to here is used to record physical information related to the transfer path for each transport stream
transferred on a specified network. Fig. 22A shows an example of an NIT, NIT 6801, which is generated by the system
information table generating unit 5105. In this example, the transport stream identified by the transport_stream_id
"0x0001" for the original_network_id "0x0001" is transmitted on the network identified by the network_id "0x0001", with
the "transfer preface" expressing the frequency and modulation method of the transmission.

The SDT stores information, such as service names, for each service included in a specified transport stream. An
example, SDT 6802, of the SDT generated by the system information table generating unit 5105 is shown in Fig. 22B.
In this example, the service identified by the service_id value "0x0002" is included in the transport stream with the
transport_stream_id "0x0001", with information such as the service names being written into the column headed "Serv-
ice name and other information".

The EIT stores information, such as event names, start times, and end times, for each of the events on a specified
service. An example, EIT 68083, of the EIT generated by the system information table generating unit 5105 is shown
in Fig. 22C. In this example, the event identified by the event_id "0x0002" on the service identified by the service_id
"0x0002" is included, with information such as the event name being written into the column headed "Event name and
other information"”.

The PAT includes information for the PIDs of the PMT (Program Map Table) for each program included in a specified
transport stream. An example, PAT 6901, of the PAT generated by the system information table generating unit 5105
is shown in Fig. 23. In this example, the program identified by the program_no "0x0002" is included in the transport
stream with the transport_stream_id "0x0001", with the PID of this PMT being given as "0x0090". Here, the program_no
matches the service_id, and a "program" is equivalent to an "event".

The system information table generating unit 5105 refers to the multiplexing information storage unit 5104, the
multiplexing control unit 5110, and the construction information storage unit 5109 and generates, in accordance with
MPEG2 system standards, the PMTs corresponding to the multiplexed programs which use the transmission data
stored in the transmission data storage unit 5102. An example of a PMT generated by the system information table
generating unit 5105 from the multiplexing information table 6001 shown in Fig. 14, the content identifier assigning
table 6101 shown in Fig. 15, and the entry information 5901 shown in Fig. 13, is shown in Fig. 24.

During the generation of PMT 7001, "program_number" is a value showing the program number of a program (or
in other words, event) in which transmission data is multiplexed, with the value "0x0002" of the "service_id" 6004 in
the multiplexing information table 6001 being extiracted and written in as this "program number".

The "PCR_PID" 20 is a value showing the PID of the packet which includes the clock information (PCR) which is
used as the standard for decoding the present program. In the present example, the value "0x0091" of the "PCR_PID"
in multiplexing information table 6001 is extracted and is written in as this "PCR_PID".

The "Entry_Descriptor" 7003 is the descriptor which includes information for the identifier of an entry content which
is the first content to be reproduced when the present program is selected. Fig. 25 shows the details of the "Entry
Descriptor" included in PMT 7001. Here, the descriptor_tag of "Entry_Descriptor" 7003 is an identifier showing the type
of descriptor and is set a value such as "0x98" that is predetermined for an entry_descriptor. The "entry_VE_comp_tag",

19 IPR2022-01227
EXHIBIT 1003 - PAGE 00548

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

the "entry_AE_comp_tag" and the "entry_NE_id" columns are used to show the values of the identifiers which are used
for the image data, audio data, and navigation information which compose the entry content.

In generating the PMT, the system information table generating unit 5105 refers to the construction information
storage unit 5109 and obtains the content number "0" of the entry content. The system information table generating
unit 5105 then obtains the value "0x00" of the "VE_comp_tag" 6107, the value "0x00" of the "AE_comp_tag" 6110, and
the value "0x0000" of the "NE_id" 6113 of the content whose content number is "0", and writes these values into the
"entry_VE_comp_tag", the "entry_AE_comp_tag", and the "entry_NE_id" columns.

The table 7004 in the PMT 7001 shows the "stream_type" 7006 indicating the type of data which is transmitted in
each component and a "descriptor" 7007 which expresses additional information, for each value of the "PID" 7005 of
the components which compose the present program. The first row of table 7004 is used to record the value "0x0092"
of the "NE_component(0)_pid" read from the multiplexing information table 6001, the value "Ox05" showing that the
data type of the transferred data is section data, and the "NE_Component_Descriptor(0)" 7201 shown in Fig. 26A. This
"NE_Component_Descriptor(0)" shows that navigation information which has a value of NE_id which is equal to or
above the "min_NE_id" and equal to or less than the "max_NE_id" is transferred using the component to which this
descriptor is attached. In the present embodiment, the component identified by the "NE_component(0)_pid" 6009 is
used to multiplex the navigation information for the content with the content number O, so that the value "0x0000" of
the "NE_id" 6113 read from the content identifier assigning table 6101 corresponding to the content number O is written
into the "min_NE_id" and into the "max_NE_id". A value showing the type of descriptor (in this case "0x99"), is written
into the "descriptor_tag".

On the second to fourth rows of table 7004, values of the "NE_component(1)_pid", "NE_component(2)_pid", and
"NE_component(3)_pid" read from the multiplexing information table 6001 are written into the "PID" column, with the
"stream_type" being set at "Ox05" and the NE_Component_Descriptor(1) 7202 shown in Fig. 26B, the
NE_Component_Descriptor(2) 7203 shown in Fig. 26C, and the NE_Component_Descriptor(3) 7204 shown in Fig.
26D being set in the "descriptor" column.

On the fifth row of table 7004, the value "0x0096" of the "VE_component(0)_pid" 6011 read from the multiplexing
information table 6001, the value "0x02" showing that the data type of the transferred data is image data, and the
"stream_identifier_descriptor(0)" 7301 shown in Fig. 27A are recorded. The "stream_identifier_descriptor(0)" 7301
shows that the component tag of the component for this PID is "Ox00". The value of the "descriptor_tag" is set a value,
such as "0x52", showing the type of descriptor.

On the sixth row of table 7004, the value of the "VE_component(1)_pid" read from the multiplexing information
table 6001, the value "0x02" for the "stream type", and the "stream_identifier_descriptor(1)" 7301 shown in Fig. 27B
are recorded.

On the seventh and eighth rows of table 7004, the values of the "AE_component(0)_pid" and the "AE_component
(1)_pid" read from the multiplexing information table 6001, the value "Ox03" for the "stream type" showing that the data
is audio data, and the "stream_identifier_descriptor(0)" and "stream_identifier_descriptor(1)" are recorded.

1-2-5 Multiplexing Unit 5112

Based on the multiplexing instructions sent from the multiplexing control unit 5110, the multiplexing unit 5112
multiplexes the content data into an MPEG2 transport stream according to a method which is standardized for MPEG2
system standard. The multiplexing unit 5112 then successively outputs the generated transport stream data to the
transmission unit 51086.

In more detail, on receiving a multiplexing instruction for image data from the multiplexing control unit 5110, the
multiplexing unit 5112 reads the image data from the presentation information storage unit 5107 and converts it into a
data stream, before multiplexing this data stream into the transport stream starting from the indicated start position
using the indicated PID and bit rate. Similarly, on receiving a multiplexing instruction for audio data from the multiplexing
control unit 5110, the multiplexing unit 5112 reads the audio data from the presentation information storage unit 5107
and converts it into a data stream, before multiplexing this data stream into the transport stream starting from the
indicated start position using the indicated PID and bit rate.

On receiving a multiplexing instruction for a navigation information table from the multiplexing control unit 5110,
the multiplexing unit 5112 reads the navigation information table from the navigation information table generating unit
5111 and converts it into a data stream, before multiplexing this data stream into the transport stream starting from the
indicated start position using the indicated PID, table_id_extension, version_no, and bit rate.

As for the PCR, the multiplexing unit 5112 sets the initial value at the start of the generated transport stream at
"0", and multiplexes the PCR using the PCR_PID sent from the multiplexing control unit 5110.

Fig. 28 shows an example of the multiplexed stream generated by the multiplexing unit 5112. The horizontal axis
in this figure represents elapsed time, while the vertical axis represents the content data and PCR which are multiplexed
at the same time.

20 IPR2022-01227
EXHIBIT 1003 - PAGE 00549

10

15

20

25

30

35

40

45

50

55

EP 0 827 336 A2

The element 7401 in Fig. 28 shows the video data stream that is the result of the conversion by the multiplexing
unit 5112 of the video data "Video0.m2v" which is common to both content O and content 1 into a data stream. This
video data stream has been given the PID "0x0096". This video data stream 7401 is shown as one consecutive data
stream in Fig. 28, although in reality this data stream is divided into packets of a predetermined length (these packets
being called 188-byte transport packets) by the multiplexing unit 5112 and being multiplexed with the allocated bit rate
of 4Mbps. In the same way, element 7402 is the video data stream which is shared by content 2 and content 3.

Element 7403 in Fig. 28 shows the audio data stream that is the result of the conversion of the audio data
"Audio0.m2a" which is shared by content 0 and content 1 into a data stream by the multiplexing unit 5112. This audio
data stream has been additionally assigned the PID "0x0098". This audio data stream is multiplexed using the assigned
bit rate (0.5Mbps). In the same way, element 7404 is the audio data stream which is commonly used by the content 2
and content 3.

Element 7405 is a data stream which is used for transmitting the navigation information tables included in content
0. This data has been multiplexed by the multiplexing unit 5112 using the assigned bit rate (1Mbps). Each navigation
information table in the data stream 7405 is assigned the PID "0x0092", the table_id_extension "0x0000", and a version
number from "0x00" to "0x04". These navigation information tables are multiplexed so that navigation information tables
with the same version number are multiplexed a plurality of times, with the version number being progressively incre-
mented as the reproduction time elapses. Here, the PID, table_id_extension, and version no are used by the reception
apparatus 5121 to identify each navigation information table in the data stream 7405. In the same way, elements 7406
to 7408 are data streams used to transfer the navigation information included in contents 1 to 3.

Element 7409 in Fig. 28 is the time information (PCR) used as the standard for setting the reproduction time, which
is also multiplexed into the transport stream.

It should be noted here that every time the multiplexing unit 5112 receives a multiplexing instruction from the
multiplexing control unit 5110, it may perform a multiplexing operation and generate a multiplexed stream in an inter-
mediate state which is then stored in a storage unit (not illustrated). After completing the processing of all of the mul-
tiplexing instructions, the multiplexing unit 5112 may output the completed multiplexed stream to the transmission unit
5106. Alternatively, instead of immediately processing the multiplexing instructions, the multiplexing unit 5112 may
store these instructions in a storage unit (not illustrated), before sorting the necessary multiplexing instructions and
performing multiplexing in order of reproduction time to generate a multiplexed stream, which it may then successively
output to the transmission unit 5106.

1-2-6 Transmission Unit 5106

The transmission unit 5106 includes a scheduler, and is activated by the multiplexing control unit 5110 at a pre-
determined time before the transmission start time of an event, such as five minutes before the start of the transmission.
When the transmission start time is reached, the transmission unit 5106 repeatedly multiplexes information such as
the NIT, PAT, PMT, SDT, and EIT generated by the system information table generating unit 5105 into the transport
stream outputted by the multiplexing unit 5112 at a predetermined interval using predetermined PIDs in accordance
with DVB-SI standard and MPEG2 system standard. The transmission unit 5106 then performs modulation and other
processes, before transmitting the data to a plurality of data reception apparatuses 5121.

Fig. 29 gives a model representation of a transport stream multiplexed by the transmission unit 5106. In this ex-
ample, the NIT, the PAT, the PMT, the SDT, and the EIT have been additionally multiplexed into the transport stream
multiplexed by the multiplexing unit 5112. In reality, a plurality of events have also been multiplexed into this transport
stream by the transmission unit 5106, although only the event (interactive program) shown in Fig. 5 has been shown
in Fig. 29.

1-2-7 Operation of the Data Broadcasting Apparatus 5101

The following is a description of the operation of the data transmission apparatus 5101 in the present embodiment,
which is constructed as described above.

Fig. 30 is a flowchart showing the entire operation of the digital broadcasting apparatus 5101.

The multiplexing control unit 5110 first generates the (a) content identifier assigning table (S7602) and then gen-
erates the (b) version number assigning table (S7604). After this, the multiplexing control unit 5110 gives an indication
for the generation of the (c) navigation information tables (S7606) and the generation of the (d) system information
tables (S7608). Once the system information tables have been generated by the system information table generating
unit 5105, the multiplexing control unit 5110 reads the value of the "PCR_PID" from the multiplexing information storage
unit 5104 and notifies the multiplexing unit 5112 of this value (S7610).

After this, the multiplexing control unit 5110 instructs the multiplexing unit 5112 to multiplex the presentation infor-
mation (S7611), and instructs the multiplexing unit 5112 to multiplex the navigation information (S77-0, S77-1, ... S77-n).

21 IPR2022-01227
EXHIBIT 1003 - PAGE 00550

