
[14:59 15/6/2009 Bioinformatics-btp324.tex] Page: 1754 1754–1760

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 14 2009, pages 1754–1760
doi:10.1093/bioinformatics/btp324

Sequence analysis

Fast and accurate short read alignment with Burrows–Wheeler
transform
Heng Li and Richard Durbin∗
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK

Received on February 20, 2009; revised on May 6, 2009; accepted on May 12, 2009

Advance Access publication May 18, 2009

Associate Editor: John Quackenbush

ABSTRACT

Motivation: The enormous amount of short reads generated by the
new DNA sequencing technologies call for the development of fast
and accurate read alignment programs. A first generation of hash
table-based methods has been developed, including MAQ, which
is accurate, feature rich and fast enough to align short reads from a
single individual. However, MAQ does not support gapped alignment
for single-end reads, which makes it unsuitable for alignment of
longer reads where indels may occur frequently. The speed of MAQ is
also a concern when the alignment is scaled up to the resequencing
of hundreds of individuals.
Results: We implemented Burrows-Wheeler Alignment tool (BWA),
a new read alignment package that is based on backward search
with Burrows–Wheeler Transform (BWT), to efficiently align short
sequencing reads against a large reference sequence such as the
human genome, allowing mismatches and gaps. BWA supports both
base space reads, e.g. from Illumina sequencing machines, and
color space reads from AB SOLiD machines. Evaluations on both
simulated and real data suggest that BWA is ∼10–20× faster than
MAQ, while achieving similar accuracy. In addition, BWA outputs
alignment in the new standard SAM (Sequence Alignment/Map)
format. Variant calling and other downstream analyses after the
alignment can be achieved with the open source SAMtools software
package.
Availability: http://maq.sourceforge.net
Contact: rd@sanger.ac.uk

1 INTRODUCTION
The Illumina/Solexa sequencing technology typically produces
50–200 million 32–100 bp reads on a single run of the machine.
Mapping this large volume of short reads to a genome as large
as human poses a great challenge to the existing sequence
alignment programs. To meet the requirement of efficient and
accurate short read mapping, many new alignment programs
have been developed. Some of these, such as Eland (Cox, 2007,
unpublished material), RMAP (Smith et al., 2008), MAQ (Li et al.,
2008a), ZOOM (Lin et al., 2008), SeqMap (Jiang and Wong,
2008), CloudBurst (Schatz, 2009) and SHRiMP (http://compbio.
cs.toronto.edu/shrimp), work by hashing the read sequences and
scan through the reference sequence. Programs in this category
usually have flexible memory footprint, but may have the overhead

∗To whom correspondence should be addressed.

of scanning the whole genome when few reads are aligned.
The second category of software, including SOAPv1 (Li et al.,
2008b), PASS (Campagna et al., 2009), MOM (Eaves and
Gao, 2009), ProbeMatch (Jung Kim et al., 2009), NovoAlign
(http://www.novocraft.com), ReSEQ (http://code.google.com/p/
re-seq), Mosaik (http://bioinformatics.bc.edu/marthlab/Mosaik) and
BFAST (http://genome.ucla.edu/bfast), hash the genome. These
programs can be easily parallelized with multi-threading, but they
usually require large memory to build an index for the human
genome. In addition, the iterative strategy frequently introduced by
these software may make their speed sensitive to the sequencing
error rate. The third category includes slider (Malhis et al., 2009)
which does alignment by merge-sorting the reference subsequences
and read sequences.

Recently, the theory on string matching using Burrows–Wheeler
Transform (BWT) (Burrows and Wheeler, 1994) has drawn the
attention of several groups, which has led to the development of
SOAPv2 (http://soap.genomics.org.cn/), Bowtie (Langmead et al.,
2009) and BWA, our new aligner described in this article.
Essentially, using backward search (Ferragina and Manzini, 2000;
Lippert, 2005) with BWT, we are able to effectively mimic the top-
down traversal on the prefix trie of the genome with relatively small
memory footprint (Lam et al., 2008) and to count the number of exact
hits of a string of length m in O(m) time independent of the size of
the genome. For inexact search, BWA samples from the implicit
prefix trie the distinct substrings that are less than k edit distance
away from the query read. Because exact repeats are collapsed on
one path on the prefix trie, we do not need to align the reads against
each copy of the repeat. This is the main reason why BWT-based
algorithms are efficient.

In this article, we will give a sufficient introduction to the
background of BWT and backward search for exact matching, and
present the algorithm for inexact matching which is implemented
in BWA. We evaluate the performance of BWA on simulated data
by comparing the BWA alignment with the true alignment from
the simulation, as well as on real paired-end data by checking
the fraction of reads mapped in consistent pairs and by counting
misaligned reads mapped against a hybrid genome.

2 METHODS

2.1 Prefix trie and string matching
The prefix trie for string X is a tree where each edge is labeled with a symbol
and the string concatenation of the edge symbols on the path from a leaf to

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

00001

EX1038

f

Find authenticated court documents without watermarks at docketalarm.com.

http://maq.sourceforge.net
http://maq.sourceforge.net
http://compbio
http://compbio
http://www.novocraft.com
http://www.novocraft.com
http://code.google.com/p/
http://code.google.com/p/
http://bioinformatics.bc.edu/marthlab/Mosaik
http://bioinformatics.bc.edu/marthlab/Mosaik
http://genome.ucla.edu/bfast
http://genome.ucla.edu/bfast
http://soap.genomics.org.cn/
http://soap.genomics.org.cn/
http://creativecommons.org/licenses/
http://creativecommons.org/licenses/
https://www.docketalarm.com/

[14:59 15/6/2009 Bioinformatics-btp324.tex] Page: 1755 1754–1760

Alignment with BWT

Fig. 1. Prefix trie of string ‘GOOGOL’. Symbol∧marks the start of the string.
The two numbers in a node give the SA interval of the string represented by
the node (see Section 2.3). The dashed line shows the route of the brute-force
search for a query string ‘LOL’, allowing at most one mismatch. Edge labels
in squares mark the mismatches to the query in searching. The only hit is the
bold node [1,1] which represents string ‘GOL’.

the root gives a unique prefix of X. On the prefix trie, the string concatenation
of the edge symbols from a node to the root gives a unique substring of X ,
called the string represented by the node. Note that the prefix trie of X is
identical to the suffix trie of reverse of X and therefore suffix trie theories
can also be applied to prefix trie.

With the prefix trie, testing whether a query W is an exact substring of
X is equivalent to finding the node that represents W , which can be done in
O(|W |) time by matching each symbol in W to an edge, starting from the
root. To allow mismatches, we can exhaustively traverse the trie and match
W to each possible path. We will later show how to accelerate this search by
using prefix information of W . Figure 1 gives an example of the prefix trie
for ‘GOOGOL’. The suffix array (SA) interval in each node is explained in
Section 2.3.

2.2 Burrows–Wheeler transform
Let � be an alphabet. Symbol $ is not present in � and is lexicographically
smaller than all the symbols in �. A string X=a0a1 ...an−1 is always ended
with symbol $ (i.e. an−1=$) and this symbol only appears at the end. Let
X[i]=ai, i=0,1,...,n−1, be the i-th symbol of X , X[i,j]=ai ...aj a substring
and Xi=X[i,n−1] a suffix of X. Suffix array S of X is a permutation of the
integers 0...n−1 such that S(i) is the start position of the i-th smallest suffix.
The BWT of X is defined as B[i]=$ when S(i)=0 and B[i]=X[S(i)−1]
otherwise. We also define the length of string X as |X| and therefore |X|=
|B|=n. Figure 2 gives an example on how to construct BWT and suffix array.

The algorithm shown in Figure 2 is quadratic in time and space. However,
this is not necessary. In practice, we usually construct the suffix array
first and then generate BWT. Most algorithms for constructing suffix array
require at least n�log2 n� bits of working space, which amounts to 12 GB for
human genome. Recently, Hon et al. (2007) gave a new algorithm that uses
n bits of working space and only requires <1 GB memory at peak time for
constructing the BWT of human genome . This algorithm is implemented in

Fig. 2. Constructing suffix array and BWT string for X=googol$. String
X is circulated to generate seven strings, which are then lexicographically
sorted. After sorting, the positions of the first symbols form the suffix array
(6,3,0,5,2,4,1) and the concatenation of the last symbols of the circulated
strings gives the BWT string lo$oogg.

BWT-SW (Lam et al., 2008). We adapted its source code to make it work
with BWA.

2.3 Suffix array interval and sequence alignment
If string W is a substring of X , the position of each occurrence of W in X will
occur in an interval in the suffix array. This is because all the suffixes that
have W as prefix are sorted together. Based on this observation, we define:

R(W) = min{k :W is the prefix of XS(k)} (1)

R(W) = max{k :W is the prefix of XS(k)} (2)

In particular, if W is an empty string, R(W)=1 and R(W)=n−1. The interval
[R(W),R(W)] is called the SA interval of W and the set of positions of all
occurrences of W in X is {S(k) :R(W)≤k≤R(W)}. For example in Figure 2,
the SA interval of string ‘go’ is [1,2]. The suffix array values in this interval
are 3 and 0 which give the positions of all the occurrences of ‘go’.

Knowing the intervals in suffix array we can get the positions. Therefore,
sequence alignment is equivalent to searching for the SA intervals of
substrings of X that match the query. For the exact matching problem, we
can find only one such interval; for the inexact matching problem, there may
be many.

2.4 Exact matching: backward search
Let C(a) be the number of symbols in X[0,n−2] that are lexicographically
smaller than a∈� and O(a,i) the number of occurrences of a in B[0,i].
Ferragina and Manzini (2000) proved that if W is a substring of X:

R(aW) = C(a)+O(a,R(W)−1)+1 (3)

R(aW) = C(a)+O(a,R(W)) (4)

and that R(aW)≤R(aW) if and only if aW is a substring of X. This result
makes it possible to test whether W is a substring of X and to count the
occurrences of W in O(|W |) time by iteratively calculating R and R from the
end of W . This procedure is called backward search.

It is important to note that Equations (3) and (4) actually realize the top-
down traversal on the prefix trie of X given that we can calculate the SA
interval of a child node in constant time if we know the interval of its parent.
In this sense, backward search is equivalent to exact string matching on the
prefix trie, but without explicitly putting the trie in the memory.

1755

00002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

[14:59 15/6/2009 Bioinformatics-btp324.tex] Page: 1756 1754–1760

H.Li and R.Durbin

Precalculation:
Calculate BWT string B for reference string X
Calculate array C(·) and O(·,·) from B
Calculate BWT string B′ for the reverse reference
Calculate array O′(·,·) from B′

Procedures:
InexactSearch(W ,z)

CalculateD(W)
return InexRecur(W ,|W |−1,z,1,|X|−1)

CalculateD(W)
k←1
l←|X|−1
z←0
for i=0 to |W |−1 do

k←C(W [i])+O′(W [i],k−1)+1
l←C(W [i])+O′(W [i],l)
if k > l then

k←1
l←|X|−1
z←z+1

D(i)←z

InexRecur(W ,i,z,k,l)
if z<D(i) then

return ∅
if i<0 then

return {[k,l]}
I←∅

* I← I ∪ InexRecur(W ,i−1,z−1,k,l)
for each b∈{A,C,G,T} do

k←C(b)+O(b,k−1)+1
l←C(b)+O(b,l)
if k≤ l then

* I← I ∪ InexRecur(W ,i,z−1,k,l)
if b=W [i] then

I← I ∪ InexRecur(W ,i−1,z,k,l)
else

I← I ∪ InexRecur(W ,i−1,z−1,k,l)
return I

Fig. 3. Algorithm for inexact search of SA intervals of substrings that
match W . Reference X is $ terminated, while W is A/C/G/T terminated.
Procedure InexactSearch(W ,z) returns the SA intervals of substrings
that match W with no more than z differences (mismatches or gaps);
InexRecur(W ,i,z,k,l) recursively calculates the SA intervals of substrings
that match W [0,i]with no more than z differences on the condition that suffix
Wi+1 matches interval [k,l]. Lines started with asterisk are for insertions to
and deletions from X, respectively. D(i) is the lower bound of the number of
differences in string W [0,i].

2.5 Inexact matching: bounded traversal/backtracking
Figure 3 gives a recursive algorithm to search for the SA intervals of
substrings of X that match the query string W with no more than z differences
(mismatches or gaps). Essentially, this algorithm uses backward search to
sample distinct substrings from the genome. This process is bounded by the
D(·) array where D(i) is the lower bound of the number of differences in
W [0,i]. The better the D is estimated, the smaller the search space and the
more efficient the algorithm is. A naive bound is achieved by setting D(i)=0

for all i, but the resulting algorithm is clearly exponential in the number of
differences and would be less efficient.

CalculateD(W)
z←0
j←0
for i=0 to |W |−1 do

if W [j,i] is not a substring of X then
z←z+1
j← i+1

D(i)←z

Fig. 4. Equivalent algorithm to calculate D(i).

The CalculateD procedure in Figure 3 gives a better, though not optimal,
bound. It is conceptually equivalent to the one described in Figure 4, which
is simpler to understand. We use the BWT of the reverse (not complemented)
reference sequence to test if a substring of W is also a substring of X. Note
that to do this test with BWT string B alone would make CalculateD an
O(|W |2) procedure, rather than O(|W |) as is described in Figure 3.

To understand the role of D, we come back to the example of searching
for W=LOL in X=GOOGOL$ (Fig. 1). If we set D(i)=0 for all i and
disallow gaps (removing the two star lines in the algorithm), the call graph
of InexRecur, which is a tree, effectively mimics the search route shown
as the dashed line in Figure 1. However, with CalculateD, we know that
D(0)=0 and D(1)=D(2)=1. We can then avoid descending into the ‘G’ and
‘O’ subtrees in the prefix trie to get a much smaller search space.

The algorithm in Figure 3 guarantees to find all the intervals allowing
maximum z differences. It is complete in theory, but in practice, we also
made various modifications. First, we pay different penalties for mismatches,
gap opens and gap extensions, which is more realistic to biological data.
Second, we use a heap-like data structure to keep partial hits rather than
using recursion. The heap-like structure is prioritized on the alignment score
of the partial hits to make BWA always find the best intervals first. The
reverse complemented read sequence is processed at the same time. Note that
the recursion described in Figure 3 effectively mimics a depth-first search
(DFS) on the prefix trie, while BWA implements a breadth-first search (BFS)
using this heap-like data structure. Third, we adopt an iterative strategy: if
the top interval is repetitive, we do not search for suboptimal intervals by
default; if the top interval is unique and has z difference, we only search
for hits with up to z+1 differences. This iterative strategy accelerates BWA
while retaining the ability to generate mapping quality. However, this also
makes BWA’s speed sensitive to the mismatch rate between the reads and
the reference because finding hits with more differences is usually slower.
Fourth, we allow to set a limit on the maximum allowed differences in the
first few tens of base pairs on a read, which we call the seed sequence. Given
70 bp simulated reads, alignment with maximum two differences in the 32 bp
seed is 2.5× faster than without seeding. The alignment error rate, which is
the fraction of wrong alignments out of confident mappings in simulation
(see also Section 3.2), only increases from 0.08% to 0.11%. Seeding is less
effective for shorter reads.

2.6 Reducing memory
The algorithm described above needs to load the occurrence array O and the
suffix array S in the memory. Holding the full O and S arrays requires huge
memory. Fortunately, we can reduce the memory by only storing a small
fraction of the O and S arrays, and calculating the rest on the fly. BWT-
SW (Lam et al., 2008) and Bowtie (Langmead et al., 2009) use a similar
strategy which was first introduced by Ferragina and Manzini (2000).

Given a genome of size n, the occurrence array O(·,·) requires 4n�log2 n�
bits as each integer takes �log2 n� bits and there are 4n of them in the array.
In practice, we store in memory O(·,k) for k that is a factor of 128 and
calculate the rest of elements using the BWT string B. When we use two bits
to represent a nucleotide, B takes 2n bits. The memory for backward search is

1756

00003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

[14:59 15/6/2009 Bioinformatics-btp324.tex] Page: 1757 1754–1760

Alignment with BWT

thus 2n+n�log2 n�/32 bits. As we also need to store the BWT of the reverse
genome to calculate the bound, the memory required for calculating intervals
is doubled, or about 2.3 GB for a 3 Gb genome.

Enumerating the position of each occurrence requires the suffix array S.
If we put the entire S in memory, it would use n�log2 n� bits. However, it is
also possible to reconstruct the entire S when knowing part of it. In fact, S
and inverse compressed suffix array (inverse CSA) �−1 (Grossi and Vitter,
2000) satisfy:

S(k)=S((�−1)(j)(k))+j (5)

where (�−1)(j) denotes repeatedly applying the transform �−1 for j times.
The inverse CSA �−1 can be calculated with the occurrence array O:

�−1(i)=C(B[i])+O(B[i],i) (6)

In BWA, we only store in memory S(k) for k that can be divided by 32.
For k that is not a factor of 32, we repeatedly apply �−1 until for some j,
(�−1)(j)(k) is a factor of 32 and then S((�−1)(j)(k)) can be looked up and
S(k) can be calculated with Equation (5).

In all, the alignment procedure uses 4n+n�log2 n�/8 bits, or n bytes
for genomes <4 Gb. This includes the memory for the BWT string, partial
occurrence array and partial suffix array for both original and the reversed
genome. Additionally, a few hundred megabyte of memory is required for
heap, cache and other data structures.

2.7 Other practical concerns for Illumina reads
2.7.1 Ambiguous bases Non-A/C/G/T bases on reads are simply treated
as mismatches, which is implicit in the algorithm (Fig. 3). Non-A/C/G/T
bases on the reference genome are converted to random nucleotides. Doing
so may lead to false hits to regions full of ambiguous bases. Fortunately,
the chance that this may happen is very small given relatively long reads.
We tried 2 million 32 bp reads and did not see any reads mapped to poly-N
regions by chance.

2.7.2 Paired-end mapping BWA supports paired-end mapping. It first
finds the positions of all the good hits, sorts them according to the
chromosomal coordinates and then does a linear scan through all the potential
hits to pair the two ends. Calculating all the chromosomal coordinates
requires to look up the suffix array frequently. This pairing process is time
consuming as generating the full suffix array on the fly with the method
described above is expensive. To accelerate pairing, we cache large intervals.
This strategy halves the time spent on pairing.

In pairing, BWA processes 256K read pairs in a batch. In each batch,
BWA loads the full BWA index into memory, generates the chromosomal
coordinate for each occurrence, estimates the insert size distribution from
read pairs with both ends mapped with mapping quality higher than 20, and
then pairs them. After that, BWA clears the BWT index from the memory,
loads the 2 bit encoded reference sequence and performs Smith–Waterman
alignment for unmapped reads whose mates can be reliably aligned. Smith–
Waterman alignment rescues some reads with excessive differences.

2.7.3 Determining the allowed maximum number of differences Given
a read of length m, BWA only tolerates a hit with at most k differences
(mismatches or gaps), where k is chosen such that <4% of m-long reads with
2% uniform base error rate may contain differences more than k. With this
configuration, for 15–37 bp reads, k equals 2; for 38–63 bp, k=3; for 64–92
bp, k=4; for 93–123 bp, k=5; and for 124–156 bp reads, k=6.

2.7.4 Generating mapping quality scores For each alignment, BWA
calculates a mapping quality score, which is the Phred-scaled probability
of the alignment being incorrect. The algorithm is similar to MAQ’s except
that in BWA we assume the true hit can always be found. We made this
modification because we are aware that MAQ’s formula overestimates the
probability of missing the true hit, which leads to underestimated mapping
quality. Simulation reveals that BWA may overestimate mapping quality due

to this modification, but the deviation is relatively small. For example, BWA
wrongly aligns 11 reads out of 1 569 108 simulated 70 bp reads mapped with
mapping quality 60. The error rate 7×10−6 (= 11/1 569 108) for these Q60
mappings is higher than the theoretical expectation 10−6.

2.8 Mapping SOLiD reads
For SOLiD reads, BWAconverts the reference genome to dinucleotide ‘color’
sequence and builds the BWT index for the color genome. Reads are mapped
in the color space where the reverse complement of a sequence is the same as
the reverse, because the complement of a color is itself. For SOLiD paired-
end mapping, a read pair is said to be in the correct orientation if either
of the two scenarios is true: (i) both ends mapped to the forward strand of
the genome with the R3 read having smaller coordinate; and (ii) both ends
mapped to the reverse strand of the genome with the F3 read having smaller
coordinate. Smith–Waterman alignment is also done in the color space.

After the alignment, BWA decodes the color read sequences to the
nucleotide sequences using dynamic programming. Given a nucleotide
reference subsequence b1b2 ...bl+1 and a color read sequence c1c2 ...cl

mapped to the subsequence, BWA infers a nucleotide sequence b̂1b̂2 ...b̂l+1

such that it minimizes the following objective function:

l+1∑
i=1

q′ ·(1−δb̂i,bi
)+

l∑
i=1

qi ·
[
1−δĉi,g(b̂i,b̂i+1)

]

where q′ is the Phred-scaled probability of a mutation, qi is the Phred quality
of color ci and function g(b,b′)=g(b′,b) gives the color corresponding to
the two adjacent nucleotides b and b′. Essentially, we pay a penalty q′ if
bi �= b̂i and a penalty qi if ci �=g(b̂i,b̂i+1).

This optimization can be done by dynamic programming because the best
decoding beyond position i only depends on the choice of b̂i. Let fi(b̂i) be
the best decoding score up to i. The iteration equations are

f1(b̂1)=q′ ·(1−δb̂1,b1
)

fi+1(b̂i+1)=min
b̂i

{
fi(b̂i)+q′ ·(1−δbi+1,b̂i+1

)+qi ·
[
1−δĉi,g(b̂i,b̂i+1)

]}

BWA approximates base qualities as follows. Let ĉi=g(b̂i,b̂i+1). The i-th
base quality q̂i, i=2...l, is calculated as:

q̂i=

⎧⎪⎪⎨
⎪⎪⎩

qi−1+qi if ci−1= ĉi−1 and ci= ĉi

qi−1−qi if ci−1= ĉi−1 but ci �= ĉi

qi−qi−1 if ci= ĉi but ci−1 �= ĉi−1

0 otherwise

BWA outputs the sequence b̂2 ...b̂l and the quality q̂2 ...q̂l as the final result
for SOLiD mapping.

3 RESULTS

3.1 Implementation
We implemented BWA to do short read alignment based on the BWT
of the reference genome. It performs gapped alignment for single-
end reads, supports paired-end mapping, generates mapping quality
and gives multiple hits if required. The default output alignment
format is SAM (Sequence Alignment/Map format). Users can use
SAMtools (http://samtools.sourceforge.net) to extract alignments in
a region, merge/sort alignments, get single nucleotide polymorphism
(SNP) and indel calls and visualize the alignment.

BWAis distributed under the GNU General Public License (GPL).
Documentations and source code are freely available at the MAQ
web site: http://maq.sourceforge.net.

1757

00004

f

Find authenticated court documents without watermarks at docketalarm.com.

http://samtools.sourceforge.net
http://maq.sourceforge.net
https://www.docketalarm.com/

[14:59 15/6/2009 Bioinformatics-btp324.tex] Page: 1758 1754–1760

H.Li and R.Durbin

3.2 Evaluated programs
To evaluate the performance of BWA, we tested additional
three alignment programs: MAQ (Li et al., 2008a), SOAPv2
(http://soap.genomics.org.cn) and Bowtie (Langmead et al., 2009).
MAQ indexes reads with a hash table and scans through the genome.
It is the software package we developed previously for large-scale
read mapping. SOAPv2 and Bowtie are the other two BWT-based
short read aligners that we are aware of. The latest SOAP-2.1.7 (Li
et al., unpublished data) uses 2way-BWT (Lam et al., unpublished
data) for alignment. It tolerates more mismatches beyond the 35
bp seed sequence and supports gapped alignment limited to one
gap open. Bowtie (version 0.9.9.2) deploys a similar algorithm to
BWA. Nonetheless, it does not reduce the search space by bounding
the search with D(i), but by cleverly doing the alignment for
both original and reverse read sequences to bypass unnecessary
searches towards the root of the prefix trie. By default, Bowtie
performs a DFS on the prefix trie and stops when the first qualified
hit is found. Thus, it may miss the best inexact hit even if its
seeding strategy is disabled. It is possible to make Bowtie perform
a BFS by applying ‘–best’ at the command line, but this makes
Bowtie slower. Bowtie does not support gapped alignment at the
moment.

All the four programs, including BWA, randomly place a
repetitive read across the multiple equally best positions. As we
are mainly interested in confident mappings in practice, we need
to rule out repetitive hits. SOAPv2 gives the number of equally
best hits of a read. Only unique mappings are retained. We also ask
SOAPv2 to limit the possible gap size to at most 3 bp. We run Bowtie
with the command-line option ‘–best -k 2’, which renders Bowtie
to output the top two hits of a read. We discard a read alignment
if the second best hit contains the same number of mismatches as
the best hit. MAQ and BWA generate mapping qualities. We use
mapping quality threshold 1 for MAQ and 10 for BWA to determine
confident mappings. We use different thresholds because we know
that MAQ’s mapping quality is underestimated, while BWA’s is
overestimated.

3.3 Evaluation on simulated data
We simulated reads from the human genome using the wgsim
program that is included in the SAMtools package and ran the
four programs to map the reads back to the human genome. As
we know the exact coordinate of each read, we are able to calculate
the alignment error rate.

Table 1 shows that BWA and MAQ achieve similar alignment
accuracy. BWA is more accurate than Bowtie and SOAPv2 in terms
of both the fraction of confidently mapped reads and the error rate
of confident mappings. Note that SOAP-2.1.7 is optimized for reads
longer than 35 bp. For the 32 bp reads, SOAP-2.0.1 outperforms the
latest version.

On speed, SOAPv2 is the fastest and actually it would be 30–80%
faster for paired-end mapping if gapped alignment was disabled.
Bowtie with the default option (data not shown) is several times
faster than the current setting ‘–best -k 2’ on single-end mapping.
However, the speed is gained at a great cost of accuracy. For
example, with the default option, Bowtie can map the two million
single-end 32 bp reads in 151 s, but 6.4% of confident mappings are
wrong. This high alignment error rate may complicate the detection
of structural variations and potentially affect SNP accuracy. Between

Table 1. Evaluation on simulated data

Single-end Paired-end

Program Time (s) Conf (%) Err (%) Time (s) Conf (%) Err (%)

Bowtie-32 1271 79.0 0.76 1391 85.7 0.57
BWA-32 823 80.6 0.30 1224 89.6 0.32
MAQ-32 19797 81.0 0.14 21589 87.2 0.07
SOAP2-32 256 78.6 1.16 1909 86.8 0.78

Bowtie-70 1726 86.3 0.20 1580 90.7 0.43
BWA-70 1599 90.7 0.12 1619 96.2 0.11
MAQ-70 17928 91.0 0.13 19046 94.6 0.05
SOAP2-70 317 90.3 0.39 708 94.5 0.34

bowtie-125 1966 88.0 0.07 1701 91.0 0.37
BWA-125 3021 93.0 0.05 3059 97.6 0.04
MAQ-125 17506 92.7 0.08 19388 96.3 0.02
SOAP2-125 555 91.5 0.17 1187 90.8 0.14

One million pairs of 32, 70 and 125 bp reads, respectively, were simulated from
the human genome with 0.09% SNP mutation rate, 0.01% indel mutation rate and
2% uniform sequencing base error rate. The insert size of 32 bp reads is drawn from
a normal distribution N(170,25), and of 70 and 125 bp reads from N(500,50). CPU
time in seconds on a single core of a 2.5 GHz Xeon E5420 processor (Time), percent
confidently mapped reads (Conf) and percent erroneous alignments out of confident
mappings (Err) are shown in the table.

BWAand MAQ, BWAis 6–18× faster, depending on the read length.
MAQ’s speed is not affected by read length because internally it
treats all reads as 128 bp. It is possible to accelerate BWA by not
checking suboptimal hits similar to what Bowtie and SOAPv2 are
doing. However, calculating mapping quality would be impossible in
this case and we believe generating proper mapping quality is useful
to various downstream analyses such as the detection of structural
variations.

On memory, SOAPv2 uses 5.4 GB. Both Bowtie and BWA uses
2.3 GB for single-end mapping and about 3 GB for paired-end, larger
than MAQ’s memory footprint 1 GB. However, the memory usage
of all the three BWT-based aligners is independent of the number of
reads to be aligned, while MAQ’s is linear in it. In addition, all BWT-
based aligners support multi-threading, which reduces the memory
per CPU core on a multi-core computer. On modern computer
servers, memory is not a practical concern with the BWT-based
aligners.

3.4 Evaluation on real data
To assess the performance on real data, we downloaded about
12.2 million pairs of 51 bp reads from European Read Archive
(AC:ERR000589). These reads were produced by Illumina for
NA12750, a male included in the 1000 Genomes Project
(http://www.1000genomes.org). Reads were mapped to the human
genome NCBI build 36. Table 2 shows that almost all confident
mappings from MAQ and BWA exist in consistent pairs although
MAQ gives fewer confident alignments. A slower mode of BWA (no
seeding; searching for suboptimal hits even if the top hit is a repeat)
did even better. In that mode, BWA confidently mapped 89.2% of all
reads in 6.3 hours with 99.2% of confident mappings in consistent
pairs.

In this experiment, SOAPv2 would be twice as fast with both
percent confident mapping (Conf) and percent paired (Paired)

1758

00005

f

Find authenticated court documents without watermarks at docketalarm.com.

http://soap.genomics.org.cn
http://www.1000genomes.org
https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

