
LETTER
doi:10.1038/nature12065

Non-invasive analysis of acquired resistance to
cancer therapy by sequencing of plasma DNA
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Cancers acquire resistance to systemic treatment as a result of clonal
evolution and selection1,2. Repeat biopsies to study genomic evolu-
tion as a result of therapy are difficult, invasive and may be con-
founded by intra-tumour heterogeneity3,4. Recent studies have
shown that genomic alterations in solid cancers can be characterized
by massively parallel sequencing of circulating cell-free tumour
DNA released from cancer cells into plasma, representing a non-
invasive liquid biopsy5–7. Here we report sequencing of cancer
exomes in serial plasma samples to track genomic evolution of meta-
static cancers in response to therapy. Six patients with advanced
breast, ovarian and lung cancers were followed over 1–2 years. For
each case, exome sequencing was performed on 2–5 plasma samples
(19 in total) spanning multiple courses of treatment, at selected time
points when the allele fraction of tumour mutations in plasma was
high, allowing improved sensitivity. For two cases, synchronous
biopsies were also analysed, confirming genome-wide represen-
tation of the tumour genome in plasma. Quantification of allele
fractions in plasma identified increased representation of mutant
alleles in association with emergence of therapy resistance. These
included an activating mutation in PIK3CA (phosphatidylinositol-4,5-
bisphosphate 3-kinase, catalytic subunit alpha) following treatment
with paclitaxel8; a truncating mutation in RB1 (retinoblastoma 1)
following treatment with cisplatin9; a truncating mutation in
MED1 (mediator complex subunit 1) following treatment with
tamoxifen and trastuzumab10,11, and following subsequent treat-
ment with lapatinib12,13, a splicing mutation in GAS6 (growth
arrest-specific 6) in the same patient; and a resistance-conferring
mutation in EGFR (epidermal growth factor receptor; T790M) follow-
ing treatment with gefitinib14. These results establish proof of prin-
ciple that exome-wide analysis of circulating tumour DNA could
complement current invasive biopsy approaches to identify muta-
tions associated with acquired drug resistance in advanced cancers.
Serial analysis of cancer genomes in plasma constitutes a new para-
digm for the study of clonal evolution in human cancers.

Serial sampling of the tumour genome is required to identify the
mutational mechanisms underlying drug resistance2. Serial tumour
biopsies are invasive and often unattainable. Tumours are heterogen-
eous and continuously evolve, and even if several biopsies are obtained,
these are limited both spatially and temporally. Analysis of isolated
circulating tumour cells (CTCs) has been proposed, but circulating
tumour DNA (ctDNA) is more accessible and easier to process15.
Previous studies of tumour mutations in plasma have analysed indi-
vidual loci, genes or structural variants to quantify tumour burden and
to detect previously-characterized resistance-conferring mutations1,6,16–18.
Genome-wide sequencing of plasma samples is used in prenatal dia-
gnostics, demonstrating comprehensive coverage of the genome19.
More recently, genome-wide sequencing of plasma DNA has been

demonstrated as a potential tool for detection of disease or analysis
of tumour burden in patients with advanced cancers5,7. These studies
established that plasma DNA contains representation of the entire
tumour genome7, mixing together variants originating from multiple
independent tumours5. This suggests that deeper sequencing of plasma
DNA, applied to selected samples with high tumour burden in blood,
may allow assessment of clonal heterogeneity and selection. In this
study, we applied exome sequencing of ctDNA as a platform for
non-invasive analysis of tumour evolution during systemic cancer
treatment (Fig. 1).
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Figure 1 | Identification of treatment-associated mutational changes from
exome sequencing of serial plasma samples. Overview of the study design:
plasma was collected before treatment and at multiple time-points during
treatment and follow-up of advanced cancer patients. Exome sequencing was
performed on circulating DNA from plasma at selected time-points, separated
by periods of treatment, and germline DNA. Mutations were identified across
the plasma samples, and their abundance (allele fraction) at different time-
points compared, generating lists of mutations that showed a significant
increase in abundance, which may indicate underlying selection pressures
associated with specific treatments. These lists contained mutations known to
promote tumour growth and drug resistance, but also mutations of unknown
significance. Accumulating such data across large cohorts could identify genes
or pathways with recurrent mutations.
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We performed whole exome sequencing of plasma DNA in six
patients with advanced cancers (Supplementary Table 1): two with
breast cancer (cases 1 and 2), three with ovarian cancer (cases 3–5),
and one with non-small-cell lung cancer (NSCLC, case 6). Exome
sequencing was performed on multiple plasma samples from each
patient separated by consecutive lines of therapy, spanning up to
665 days of clinical follow up (range 109–665 days, median 433 days).
The ability to detect genomic events using redundant sequencing is
dependent on the allele fraction (AF) of the mutant alleles in the
samples analysed (ratio of mutant reads to depth of coverage at that
locus), the sequencing depth, and the background noise rates of
sequencing. Levels of ctDNA were previously quantified in these
patients using digital PCR and tagged-amplicon deep sequencing6

(TAm-Seq; Fig. 2, upper subpanels), allowing us to focus on samples
with a high mutant AF in plasma, in which genomic changes related

to the tumour could be identified even at relatively modest depth of
sequencing. Comparison of AF measured using exome sequencing,
digital PCR and TAm-Seq showed a high degree of concordance
(correlation coefficient 0.8, P , 0.0001; Supplementary Fig. 1). Using
as little as 2.3 ng of DNA (4%–20% of the DNA extracted from
2.0–2.2 ml of plasma), and an average of 169 million reads of sequenc-
ing per sample, we analysed the coding exons of all protein-coding
genes at an average unique coverage depth ranging from 31-fold to
160-fold across 19 plasma samples (Supplementary Table 2). Con-
sistent with previous reports5,7, we observed copy number aberrations
(CNAs, both gains and losses) in plasma samples in all patients
across the whole genome (Supplementary Figs 2–7). These were
strongly modulated by the fraction of tumour DNA in plasma and
were particularly prominent in plasma samples in which mutant AF
exceeded 50%.
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Figure 2 | Mutations showing evidence of genomic tumour evolution. All
panels (a–f) are made up of an upper and a lower subpanel. Upper subpanels,
time courses for allele fractions (AF; data points) of ‘anchor’ mutations used for
initial quantification of ctDNA levels, and the fractional concentration of
tumour DNA (tumour burden; grey dashed lines). ‘Anchor’ mutations were
measured using digital PCR or TAm-Seq6 for all available plasma samples, and
using exome sequencing at selected time points indicated by E1, E2, E3 (and E4
and E5 for case 5). Tumour burden was estimated from exome data (an
adaptation of genome-wide aggregated allelic loss7). In a, AF was averaged over
six mutations measured in parallel using digital PCR. In b, a single mutation in

ATM (predicted amino acid change I2948F) was measured by TAm-Seq. In
c, d and e, a single mutation in TP53 was measured by digital PCR for each case
(R175H, K132N and R175H, respectively). In f, digital PCR was used to
measure abundance of a deletion in exon 19 of EGFR (not quantified in exome
sequencing data) and the EGFR T790M mutation. Lower subpanels, AF in
exome data for selected mutations (blue, green and orange datapoints, see key)
for each of the cases. Additional details are listed in Table 1, and a full list of
mutations that showed a significant increase in abundance is included in
Supplementary Tables 2–7. ECX, epirubicin, cisplatin and capecitabine; C-LD,
carboplatin and liposomal doxorubicin; LD, liposomal doxorubicin.
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For two cases, sequencing data were also available from metastatic
tumour biopsies, collected at the same time as plasma samples (case 1
sample E1, and case 4 sample E2), and from tumour samples collected
at the patients’ initial presentation, 9 and 4.5 years earlier. CNAs were
concordant between plasma and metastasis DNA in both patients
(Fig. 3a, b, and Supplementary Fig. 7). Mutations identified in sequencing
data20–23 from the plasma or metastatic biopsy were compared (Sup-
plementary Information). In case 1 with breast cancer, 151 mutations
were identified in either the plasma or the synchronous biopsy. Of
these, 93 mutations were found in both, and mutant AFs for these were
higher in the plasma sample compared to the metastatic biopsy. The
correlation coefficient of mutant AFs was positive (0.71) for mutations
that were also found in the primary tumour, but negative (20.22) for
other mutations (Fig. 3c). In case 4 with ovarian cancer, 895 mutations
were identified in either plasma or the tumour biopsy. For 172 muta-
tions found in both, AFs were positively correlated (0.72) and were
higher in the metastatic biopsy, which also contained 686 ‘private’
mutations with AF , 0.2 that were not found in either the plasma or
the earlier tumour sample (Fig. 3d).

To identify changes in the mutation profiles of the tumours, we
compared the abundance of somatic mutations found in plasma before
and after each course of systemic treatment. For each patient, we
examined a conservative list of mutations, including all mutations that
were called in any of the plasma samples with a Bonferroni-corrected
binomial probability of ,0.05 assuming a background sequencing
error rate of 0.1%. For each mutation and course of treatment
(spanned by a pair of plasma samples), a P-value for a possible change
in mutant AF was calculated as the binomial probability of obtaining
the observed number of mutant reads, given the sequencing depth and
the observed abundance in the paired time-point, normalized by the
fractional concentration of tumour-derived DNA in the plasma (based
on genome-wide aggregated allelic loss5, Supplementary Table 3).
Overall, 364 non-synonymous mutations passed with false discovery

rate of ,10% for significant changes in normalized abundance, rang-
ing from 15 to 121 for each case (median 49). These include mutations
in well-known cancer genes, genes linked to drug resistance and drug
metabolism, and genes not previously associated with carcinogenesis
or therapy resistance (Supplementary Tables 4–9). Selected examples
are shown in Table 1 and Fig. 2.

We highlight here five examples. In case 1 with breast cancer, a
strong increase was observed in the abundance of an activating muta-
tion in PIK3CA following treatment with paclitaxel (Fig. 2a and
Table 1). This mutation has been shown to promote resistance to
paclitaxel in mammary epithelial cells8. In case 2, a patient with an
oestrogen-receptor (ER)-positive, HER2-positive breast cancer, treat-
ment with tamoxifen in combination with trastuzumab led to an in-
crease in abundance of a nonsense mutation near the carboxy terminus
of MED1, an ER co-activator that has been shown to be involved in
tamoxifen resistance10,11. After further treatment of this patient with
lapatinib in combination with capecitabine, we observed an increase
in abundance of a splicing mutation in GAS6, the ligand for the tyro-
sine kinase receptor AXL (Fig. 2b, Table 1). Activation of the AXL
kinase pathway has been shown to cause resistance to tyrosine kinase
inhibitors in NSCLC13 and resistance to lapatinib in ER-positive,
HER2-positive breast cancer cell lines12. In case 4 with ovarian cancer,
following treatment with cisplatin, we observed increase in abundance
of a truncating mutation in the tumour-suppressor RB1 (Fig. 2d,
Table 1), predicted to inactivate the RB1 protein (Supplementary
Fig. 8). In the matched metastasis biopsy obtained after treatment,
the mutation was found in 95% of sequencing reads (59 of 62), with
apparent loss of heterozygosity at 13q containing the RB1 gene (Fig. 3a,
b). Loss of RB1 has been linked with chemotherapy response9. Case 6
was a NSCLC patient with an activating mutation in EGFR who was
treated with gefitinib but progressed on treatment. Analysis by digital
PCR detected the EGFR T790M mutation in plasma at progression,
but not at the start of treatment. This mutation inhibits binding of
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Figure 3 | Genome-wide concordance between plasma DNA and tumour
DNA. a, b, Sequencing data were used to assess CNAs in the plasma sample
(a) and in the synchronous metastatic tumour biopsy (b) from case 4. Panels
show log R ratio (LRR), calculated on the basis of exome data, between plasma
DNA and normal DNA (a) and between tumour and normal DNA (b). c, AF of

mutations identified in exome data from plasma or metastatic biopsy for case 1.
Grey dotted line shows equality. Blue dashed line has a slope of 1.93, indicating
the median of the AF ratio for mutations found in both samples. Key applies to
c and d. d, As c but for case 4, blue dashed line has a slope of 0.37.
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gefitinib to EGFR and has been established as the main driver of
acquired resistance to gefitinib14. Unbiased analysis of plasma DNA
by exome sequencing identified selection for this mutation amongst
genomic changes that occurred following therapy (Fig. 2f, Table 1).

In this proof of principle study, we demonstrate that exome analysis
of plasma ctDNA represents a novel paradigm for non-invasive charac-
terization of tumour evolution. Our data, together with recent reports5,7,
show that CNAs and somatic mutations identified in ctDNA are
widely representative of the tumour genome and provide an alternative
method of tumour sampling that can overcome limitations of repeated
biopsies. Cell-free DNA fragments from multiple lesions in the same
individual all mix together in the peripheral blood5, therefore ctDNA is
likely to contain a wider representation of the genomes from multiple
metastatic sites, whereas mutations present in a single biopsy or minor
sub-clone may be missed. This strengthens the case for the use of
ctDNA as a biomarker for monitoring tumour burden or for the ana-
lysis of hotspot mutation regions1,6,16,17, but also indicates that tracking
different mutations for assessment of tumour heterogeneity and clonal
evolution is now possible. Our data identified a subset of genes that were
positively selected following treatment, many of which have been prev-
iously associated with drug resistance. Other changes may represent
‘passenger’ mutations or false-positives, but some are likely to contri-
bute to resistance to therapy. Accumulating data across a large number of
cases could identify new genes or pathways that are frequently mutated
following specific treatment types, and help refine analysis algorithms.

The approach we describe here may be broadly applicable to a large
fraction of advanced cancers, where the median mutation burden in
plasma (before start of treatment) is 5%–10% (refs 6, 16, 24). Analysis of
acquired drug resistance is of particular utility in advanced or metastatic
cancers, which is the target population for nearly all early phase clinical
trials. Improvements in sequencing and associated technologies may
enable similar analysis in cases with a lower tumour burden in plasma.
At present, this non-invasive approach for characterizing cancer exomes
in plasma is readily applicable to patients with high systemic tumour

burden, enabling detailed and comprehensive evaluation of clonal
genomic evolution associated with treatment response and resistance.

METHODS SUMMARY
Patients and samples. Cases 1–5 were recruited as part of prospective clinical
studies at Addenbrooke’s Hospital, Cambridge, UK, approved by the local
research ethics committee (REC reference nos 07/Q0106/63, 08/H0306/61 and
07/Q0106/63). Case 6 was recruited as part of the ‘Hydroxychloroquine and
gefitinib to treat lung cancer’ study (NCT00809237) at the National University
Health System, Singapore, approved by the National Healthcare Group NHG
IRB—DSRB 2008/00196. Written informed consent was obtained from patients,
and serial blood samples were collected at intervals of $3 weeks.
Extraction and sequencing of plasma DNA. DNA was extracted from plasma
using the QIAamp circulating nucleic acid kit (Qiagen) according to the manu-
facturer’s instructions. Barcoded sequencing libraries were prepared using a com-
mercially available kit (ThruPLEX-FD, Rubicon Genomics). Pooled libraries were
enriched for the exome using hybridization (TruSeq Exome Enrichment Kit,
Illumina), quantified using quantitative PCR and pooled in 1:1 ratio for paired-
end sequencing on a HiSeq2500 (Illumina).
Variant calling and analysis. Sequencing data were demultiplexed and aligned
to the hg19 genome using BWA20. Pileup files for properly paired reads with
mapping quality $60 were generated using samtools22. AFs were calculated
for all Q30 bases. A mutation was called if $4 mutant reads were found in plasma
with $1 read on each strand, and no mutant reads were observed in germline DNA
or in a prior plasma sample with $10-fold coverage. For comparison between
consecutive plasma samples in a patient, we calculated the binomial probability of
obtaining the observed AF (or greater) if the abundance of the mutant allele,
normalized by tumour load in plasma (based on a modified genome-wide aggre-
gated allelic loss method5), had remained constant between the two samples.

Full Methods and any associated references are available in the online version of
the paper.
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Case 5 Ovarian CES4A P55S Carboxylesterase 4A. Hydrolysis or transesterification of
various xenobiotics.

Carboplatin/paclitaxel 0% 6%
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gefitinib resistance by inhibiting drug binding14.
Gefitinib 0% 13%

Case 6 Lung TP53 Y163C Tumour protein p5330. Gefitinib 0% 14%
Case 6 Lung NFKB1 G489V Nuclear factor kB30. Gefitinib 0% 17%

Potential biological role and associations with drug resistance described in literature are highlighted. The ‘‘Effect’’ column lists predicted change in amino acid sequence.
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