UNITED STATES	S PATENT AND TRAD	DEMARK OFFICE
BEFORE THE PA	ATENT TRIAL AND A	APPEAL BOARD

TWINSTRAND BIOSCIENCES, INC. Petitioner,

v.

GUARDANT HEALTH, INC. Patent Owner.

Case IPR2022- 01115 U.S. Patent No. 10,801,063

PETITION FOR *INTER PARTES* REVIEW OF U.S. PATENT NO. 10,801,063

Mail Stop "PATENT BOARD"

Patent Trial and Appeal Board U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

TABLE OF CONTENTS

I.	Introduction		1
II.	Statement of Precise Relief Requested and Reasons Therefor (37 C.F.R §42.22(A))		
III.	State	of the art before December 2013	2
	A.	Optimization techniques for DNA library preparation were well known.	2
	В.	Cell-free DNA isolated from blood was widely used in NGS platforms.	5
		The presence of cell-free tumor DNA in human blood was well known	
		2. Isolating cfDNA from blood was routine with off-the-shelf kits.	6
	C.	The prior art taught that Duplex Sequencing dramatically lowers NGS error rate.	
	D.	The prior art taught applying Duplex Sequencing to cfDNA	
IV.	The '	063 patent and prosecution history	14
V.	Perso	rson of ordinary skill in art18	
VI.	Claim	n construction	18
VII.	Identi	ification of the challenge (37 C.F.R. §42.104(b))	19
VIII.	The fa	acts and law weigh against discretionary denial of institution	21
	A. B.	This Petition satisfies 35 U.S.C. §325(d)	
IX.		nd 1: claims 1-7, 9-11, 15-18, and 22-28 would have been obvious yan, Schmitt, and Meyer	
	A.	Claim 1	26
		1. "A method for classifying consensus sequences generated from sequencing reads derived from double-stranded cell-free deoxyribonucleic acid (cfDNA) molecules from a sample of a human subject"	26
		2. "(a) non-uniquely tagging a population of double-stranded cfDNA molecules from the sample with more than a 10x molar excess of adapters comprising	20

	molecular barcodes, relative to the double-stranded	
	cfDNA molecules in the population, to generate non-	
	uniquely tagged parent polynucleotides"	27
3.	"wherein the double-stranded cfDNA molecules that	
	map to a mappable base position of a reference	
	sequence are tagged with a number of different	
	molecular barcodes ranging from at least 2 to fewer	
	than a number of double-stranded cfDNA molecules	
	that map to the mappable base position"	29
4.	"wherein at least 20% of the double-stranded cfDNA	
	molecules are non-uniquely tagged with the adapters	
	comprising the molecular barcodes at both ends of a	
	molecule of the double-stranded cfDNA molecules"	30
5.	"(b) amplifying a plurality of the non-uniquely tagged	
	parent polynucleotides to produce progeny	
	polynucleotides"	31
6.	"(c) enriching a plurality of the progeny	
	polynucleotides for target regions of interest to	
	generate enriched progeny polynucleotides"	31
7.	"(d) sequencing a plurality of the enriched progeny	
	polynucleotides to produce a set of sequencing	
	reads"	31
8.	"(e) mapping a plurality of sequencing reads from the	
	set of sequencing reads to the reference sequence"	32
9.	"(f) grouping a plurality of the mapped sequencing	
	reads into families of mapped sequencing reads based	
	at least on (i) sequence information from the	
	molecular barcodes and (ii) a beginning base position	
	and an ending base position of the mapped sequencing	
	1 40	32
10.	"(g) generating a consensus sequence for each family	
	from among one or more of the families to produce a	
	set of consensus sequences"	33
11.	"(h) classifying one or more consensus sequences	
	from among the set of consensus sequences as (1)	
	paired consensus sequences generated from	
	sequencing reads representing a Watson strand and a	
	Crick strand of a non-uniquely tagged parent	
	polynucleotide or (2) unpaired consensus sequences	

		one of either a Watson strand or a Crick strand of a	2.4
	12.	non-uniquely tagged parent polynucleotide."	34
	12.	Narayan, Schmitt, and Meyer	35
	13.	A POSA would have had a reasonable expectation of	
		success	41
B.	Clain	n 15	44
	1.	"A method for classifying unique sequencing reads	
		generated from sequencing reads derived from	
		double-stranded cell-free deoxyribonucleic acid	
		(cfDNA) molecules from a bodily fluid sample of a	44
	2.	human subject"	44
	۷.	molecules from the bodily fluid sample with more	
		than a 10x molar excess of adapters comprising	
		molecular barcodes, relative to the double-stranded	
		cfDNA molecules in the population, to generate	
		tagged parent polynucleotides, wherein at least 20%	
		of the cfDNA molecules are ligated with the adapters	
		comprising the molecular barcodes at both ends of a	
		molecule of the double-stranded cfDNA molecules"	45
	3.	"(b) amplifying a plurality of the tagged parent	
		polynucleotides to produce progeny	
		polynucleotides"	45
	4.	"(c) sequencing a plurality of the progeny	
		polynucleotides to produce a set of sequencing	1.0
	5	reads"	46
	5.	set of sequencing reads to a reference sequence"	16
	6.	"(e) determining unique sequencing reads from the set	40
	0.	of mapped sequencing reads based at least on the	
		molecular barcode sequences, wherein a unique	
		sequencing read from among the unique sequencing	
		reads is representative of a tagged parent	
		polynucleotide from among the tagged parent	
		polynucleotides"	46
	7.	"(f) classifying one or more of the unique sequencing	
		reads as either (1) paired sequences generated from	

	Crick strand of a tagged parent polynucleotide of unpaired sequences generated from sequencing	or (2)	
	representing only one of either a Watson strand		
	Crick strand of a tagged parent polynucleotide."		
	C. Claim 2		
	D. Claim 3	49	
	E. Claim 4	49	
	F. Claims 5 and 24	50	
	G. Claims 6 and 25	52	
	H. Claims 7 and 22		
	I. Claim 9		
	J. Claim 10		
	K. Claims 11 and 18		
	L. Claim 28		
	M. Claim 16		
	N. Claim 17		
	O. Claim 23		
	P. Claim 26		
	Q. Claim 27		
X.	Ground 2: claim 8 would have been obvious over Narayan, S and Craig	<u> </u>	
XI.	Ground 3: claims 12-14 and 19-21 would have been obvious	over Narayan,	
	Schmitt, Meyer, and Kivioja		
	A. Claims 12-13 and 19-20	67	
	B. Claims 14 and 21	71	
XII.	Objective indicia do not support patentability	72	
XIII.	Certification of standing and Patent IPR eligibility (37 C.F.R. §42.104(a)) 72		
XIV.	Mandatory Notices (37 C.F.R. §42.8(a)(1))		
	Conclusion.		

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

