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Abstract

GAMLSS is a general framework for fitting regression type models where the distribu-
tion of the response variable does not have to belong to the exponential family and includes
highly skew and kurtotic continuous and discrete distribution. GAMLSS allows all the
parameters of the distribution of the response variable to be modelled as linear/non-linear
or smooth functions of the explanatory variables. This paper starts by defining the sta-
tistical framework of GAMLSS, then describes the current implementation of GAMLSS
in R and finally gives four different data examples to demonstrate how GAMLSS can be
used for statistical modelling.
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1. What is GAMLSS?

1.1. Introduction

Generalized additive models for location, scale and shape (GAMLSS) are semi-parametric
regression type models. They are parametric, in that they require a parametric distribu-
tion assumption for the response variable, and “semi” in the sense that the modelling of
the parameters of the distribution, as functions of explanatory variables, may involve using
non-parametric smoothing functions. GAMLSS were introduced by Rigby and Stasinopoulos
(2001, 2005) and Akantziliotou, Rigby, and Stasinopoulos (2002) as a way of overcoming some
of the limitations associated with the popular generalized linear models, GLM, and general-
ized additive models, GAM (see Nelder and Wedderburn 1972; Hastie and Tibshirani 1990,
respectively).
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2 GAMLSS in R

In GAMLSS the exponential family distribution assumption for the response variable (y) is
relaxed and replaced by a general distribution family, including highly skew and/or kurtotic
continuous and discrete distributions. The systematic part of the model is expanded to
allow modelling not only of the mean (or location) but other parameters of the distribution
of y as, linear and/or non-linear, parametric and/or additive non-parametric functions of
explanatory variables and/or random effects. Hence GAMLSS is especially suited to modelling
a response variable which does not follow an exponential family distribution, (e.g., leptokurtic
or platykurtic and/or positive or negative skew response data, or overdispersed counts) or
which exhibit heterogeneity, (e.g., where the scale or shape of the distribution of the response
variable changes with explanatory variables(s)).

There are several R-packages that can be seen as related to the gamlss packages and to its R
implementation. The original gam package (Hastie 2006), the recommenced R package mgcv
(Wood 2001), the general smoothing splines package gss (Gu 2007) and the vector GAM
package, VGAM (Yee 2007). The first three deal mainly with models for the mean from an
exponential family distribution. The VGAM package allows the modelling from a variety
of different distributions (usually up to three parameter ones) and also allows multivariate
responses.

The remainder of Section 1 defines the GAMLSS model, available distributions, available
additive terms and model fitting. Section 2 describes the R gamlss package for fitting the
GAMLSS model. Section 3 gives four data examples to illustrate GAMLSS modelling.

1.2. The GAMLSS model

A GAMLSS model assumes independent observations yi for i = 1, 2, . . . , n with probability
(density) function f(yi|θi) conditional on θi = (θ1i, θ2i, θ3i, θ4i) = (µi, σi, νi, τi) a vector of four
distribution parameters, each of which can be a function to the explanatory variables. We
shall refer to (µi, σi, νi, τi) as the distribution parameters. The first two population distribution
parameters µi and σi are usually characterized as location and scale parameters, while the
remaining parameter(s), if any, are characterized as shape parameters, e.g., skewness and
kurtosis parameters, although the model may be applied more generally to the parameters of
any population distribution, and can be generalized to more than four distribution parameters.

Rigby and Stasinopoulos (2005) define the original formulation of a GAMLSS model as follows.
Let y> = (y1, y2, . . . , yn) be the n length vector of the response variable. Also for k =
1, 2, 3, 4, let gk(.) be known monotonic link functions relating the distribution parameters to
explanatory variables by

gk(θk) = ηk = Xkβk +
Jk∑
j=1

Zjkγjk, (1)

i.e.

g1(µ) = η1 = X1β1 +
J1∑
j=1

Zj1γj1

g2(σ) = η2 = X2β2 +
J2∑
j=1

Zj2γj2
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g3(ν) = η3 = X3β3 +
J3∑
j=1

Zj3γj3

g4(τ ) = η4 = X4β4 +
J4∑
j=1

Zj4γj4.

where µ, σ, ν τ and ηk are vectors of length n, β>k = (β1k, β2k, . . . , βJ ′
k
k) is a parameter

vector of length J ′k, Xk is a fixed known design matrix of order n× J ′k, Zjk is a fixed known
n × qjk design matrix and γjk is a qjk dimensional random variable which is assumed to
be distributed as γjk ∼ Nqjk(0,G−1

jk ), where G−1
jk is the (generalized) inverse of a qjk × qjk

symmetric matrix Gjk = Gjk(λjk) which may depend on a vector of hyperparameters λjk,
and where if Gjk is singular then γjk is understood to have an improper prior density function

proportional to exp
(
−1

2γ
>
jkGjkγjk

)
.

The model in (1) allows the user to model each distribution parameter as a linear function of
explanatory variables and/or as linear functions of stochastic variables (random effects). Note
that seldom will all distribution parameters need to be modelled using explanatory variables.

There are several important sub-models of GAMLSS. For example for readers familiar with
smoothing, the following GAMLSS sub-model formulation may be more familiar. Let Zjk =
In, where In is an n× n identity matrix, and γjk = hjk = hjk(xjk) for all combinations of j
and k in (1), then we have the semi-parametric additive formulation of GAMLSS given by

gk(θk) = ηk = Xkβk +
Jk∑
j=1

hjk(xjk) (2)

where to abbreviate the notation use θk for k = 1, 2, 3, 4 to represent the distribution param-
eter vectors µ, σ, ν and τ , and where xjk for j = 1, 2, . . . , Jk are also vectors of length n.
The function hjk is an unknown function of the explanatory variable Xjk and hjk = hjk(xjk)
is the vector which evaluates the function hjk at xjk. If there are no additive terms in any of
the distribution parameters we have the simple parametric linear GAMLSS model,

g1(θk) = ηk = Xkβk (3)

Model (2) can be extended to allow non-linear parametric terms to be included in the model
for µ, σ, ν and τ , as follows (see Rigby and Stasinopoulos 2006)

gk(θk) = ηk = hk(Xk,βk) +
Jk∑
j=1

hjk(xjk) (4)

where hk for k = 1, 2, 3, 4 are non-linear functions and Xk is a known design matrix of order
n×J ′′

k . We shall refer to the model in (4) as the non-linear semi-parametric additive GAMLSS
model. If, for k = 1, 2, 3, 4, Jk = 0, that is, if for all distribution parameters we do not have
additive terms, then model (4) is reduced to a non-linear parametric GAMLSS model.

gk(θk) = ηk = hk(Xk,βk). (5)

If, in addition, hk(Xk,βk) = X>k βk for i = 1, 2, . . . , n and k = 1, 2, 3, 4 then (5) reduces to the
linear parametric model (3). Note that some of the terms in each hk(Xk,βk) may be linear,
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4 GAMLSS in R

in which case the GAMLSS model is a combination of linear and non-linear parametric terms.
We shall refer to any combination of models (3) or (5) as a parametric GAMLSS model.

The parametric vectors βk and the random effects parameters γjk, for j = 1, 2, . . . , Jk and
k = 1, 2, 3, 4 are estimated within the GAMLSS framework (for fixed values of the smoothing
hyper-parameters λjk’s) by maximising a penalized likelihood function `p given by

`p = `− 1
2

p∑
k=1

Jk∑
j=1

λjkγ
′
jkGjkγjk (6)

where ` =
∑n
i=1 log f(yi|θi) is the log likelihood function. More details on how the penalized

log likelihood `p is maximized are given in Section 1.5. For parametric GAMLSS model
(3) or (5), `p reduces to `, and the βk for k = 1, 2, 3, 4 are estimated by maximizing the
likelihood function `. The available distributions and the different additive terms in the
current GAMLSS implementation in R are given in Sections 1.3 and 1.4 respectively. The R
function to fit a GAMLSS model is gamlss() in the package gamlss which will be described
in more detail in Section 2.

1.3. Available distributions in GAMLSS

The form of the distribution assumed for the response variable y, f(yi|µi, σi, νi, τi), can be very
general. The only restriction that the R implementation of GAMLSS has is that the function
log f(yi|µi, σi, νi, τi) and its first (and optionally expected second and cross) derivatives with
respect to each of the parameters of θ must be computable. Explicit derivatives are preferable
but numerical derivatives can be used.

Table 1 shows a variety of one, two, three and four parameter families of continuous distribu-
tions implemented in our current software version. Table 2 shows the discrete distributions.
We shall refer to the distributions in Tables 1 and 2 as the gamlss.family distributions,
a name to coincide with the R object created by the package gamlss. Johnson, Kotz, and
Balakrishnan (1994, 1995); Johnson, Kotz, and Kemp (2005) are the classical reference books
for most of the distributions in Tables 1 and 2. The BCCG distribution in Table 1 is the Box-
Cox transformation model used by Cole and Green (1992) (also known as the LMS method of
centile estimation). The BCPE and BCT distributions, described in Rigby and Stasinopou-
los (2004, 2006) respectively, generalize the BCCG distribution to allow modelling of both
skewness and kurtosis. For some of the distributions shown in Tables 1 and 2 more that one
parameterization has been implemented. For example, the two parameter Weibull distribu-
tion can be parameterized as f(y|µ, σ) =

(
σyσ−1/µσ

)
exp {−(y/µ)σ}, denoted as WEI, or as

f(y|µ, σ) = σµyσ−1e−µy
σ
, denoted as WEI2, or as f(y|µ, σ) = (σ/β) (y/β)σ−1 exp {− (y/β)σ}

denoted as WEI3, for β = µ/ [Γ(1/σ) + 1]. Note that the second parameterization WEI2 is
suited to proportional hazard (PH) models. In the WEI3 parameterization, parameter µ is
equal to the mean of y. The choice of parameterization depends upon the particular prob-
lem, but some parameterizations are computationally preferable to others in the sense that
maximization of the likelihood function is easier. This usually happens when the parameters
µ, σ, ν and τ are orthogonal or almost orthogonal. For interpretation purposes we favour pa-
rameterizations where the parameter µ is a location parameter (mean, median or mode). The
specific parameterizations used in the gamlss.family distributions are given in the appendix
of Stasinopoulos, Rigby, and Akantziliotou (2006).
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Distributions R Name µ σ ν τ

beta BE() logit logit - -
beta inflated (at 0) BEOI() logit log logit -
beta inflated (at 1) BEZI() logit log logit -
beta inflated (at 0 and 1 ) BEINF() logit logit log log
Box-Cox Cole and Green BCCG() identity log identity -
Box-Cox power exponential BCPE() identity log identity log
Box-Cox-t BCT() identity log identity log
exponential EXP() log - - -
exponential Gaussian exGAUS() identity log log -
exponential gen. beta type 2 EGB2() identity identity log log
gamma GA() log log - -
generalized beta type 1 GB1() logit logit log log
generalized beta type 2 GB2() log identity log log
generalized gamma GG() log log identity -
generalized inverse Gaussian GIG() log log identity -
generalized y GT() identity log log log
Gumbel GU() identity log - -
inverse Gaussian IG() log log - -
Johnson’s SU (µ the mean) JSU() identity log identity log
Johnson’s original SU JSUo() identity log identity log
logistic LO() identity log - -
log normal LOGNO() log log - -
log normal (Box-Cox) LNO() log log fixed -
NET NET() identity log fixed fixed
normal NO() identity log - -
normal family NOF() identity log identity -
power exponential PE() identity log log -
reverse Gumbel RG() identity log - -
skew power exponential type 1 SEP1() identity log identity log
skew power exponential type 2 SEP2() identity log identity log
skew power exponential type 3 SEP3() identity log log log
skew power exponential type 4 SEP4() identity log log log
shash SHASH() identity log log log
skew t type 1 ST1() identity log identity log
skew t type 2 ST2() identity log identity log
skew t type 3 ST3() identity log log log
skew t type 4 ST4() identity log log log
skew t type 5 ST5() identity log identity log
t Family TF() identity log log -
Weibull WEI() log log - -
Weibull (PH) WEI2() log log - -
Weibull (µ the mean) WEI3() log log - -
zero adjusted IG ZAIG() log log logit -

Table 1: Continuous distributions implemented within the gamlss packages (with default link
functions).
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