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Identification of genetic variants using bar-coded 
multiplexed sequencing 
David W Craig1•3, John V Pearson1•3, Szabolcs Szelinger1•3, Aswin Sekar1, Margot Redman 1, Jason J Corneveaux1

, 

Traci L Pawlowski1, Trisha Laub1, Gary Nunn2, Dietrich A Stephan1, Nils Homer1 & Matthew J Huentelman1 

We developed a generalized framework for multiplexed 
resequencing of targeted human genome regions on the Illumina 
Genome Analyzer using degenerate indexed DNA bar codes 
ligated to fragmented DNA before sequencing. Using this 
method, we simultaneously sequenced the DNA of multiple 
HapMap individuals at several Encyclopedia of DNA Elements 
(ENCODE) regions. We then evaluated the use of Bayes factors 
for discovering and genotyping polymorphisms. For 
polymorphisms that were either previously identified within the 
Single Nucleotide Polymorphism database (dbSNP) or visually 
evident upon re-inspection of archived ENCODE traces, we 
observed a false positive rate of 11.3% using strict thresholds 
for predicting variants and 69.6% for lax thresholds. Conversely, 
false negative rates were 10.8-90.8%, with false negatives at 
stricter cut-offs occurring at lower coverage ( < 10 aligned 
reads). These results suggest that > 90% of genetic variants are 
discoverable using multiplexed sequencing provided sufficient 
coverage at the polymorphic base. 

Genome-wide association, candidate gene and linkage studies have 
identified thousands of moderately sized genomic regions that are 
associated with human disease but for which comprehensive 
resequencing is needed to identify the genetic variant causing 
the association. In particular, genome-wide association studies 
have identified hundreds of disease-associated hap lo types, typically 
spanning 5-100 kb 1- 3. A logical next step is to identify and 
resequence all genetic variants within the associated haplotype to 
identify the functional variants among the many nonfunctional, 
evolutionarily linked neighboring polymorphisms. Next-genera
tion DNA sequencing technologies are in principle well-suited to 
this task owing to their capability for high-throughput low-cost 
sequencing. Although these technologies offer massive sequencing 
capacity, it is still difficult, time-consuming and/or expensive to 
resequence large numbers of samples across moderately sized 
genomic regions (5 kb-1 Mb). 

Sinmltaneous resequencing of a target region in large numbers of 
individuals is possible by bar-coding or indexing the reads from 
each individual with a short identifying oligonucleotide4-7. 

Although indexing has the obvious benefit of mult iplexing samples 

within a run, DNA indexing offers two key additional advantages: 
direct measure of base-by-base error rate and reduction of array
to-array or day-to-day variability. Previous pioneering efforts to 
develop DNA indexing have shown considerable promise, but their 
adoption is still in its infancy, and considerable challenges remain, 
including the development of practical and cost-effective 
approaches for short-read platforms. Beyond these experimental 
challenges, there are few analytical frameworks that are character
ized for discovering and genotyping genetic variants across a 
targeted interval using multiplexed short-read sequence data 
from multiple individuals. 

Here we report an experimental and analytical approach for 
simultaneous sequencing of multiple individuals using DNA bar 
codes, which we call indexes here, on the Illurnina Genome 
Analyzer (GA). We used a six-base index with built-in redundancy 
for error correction and assessed the performance of the method by 
resequencing Encyclopedia of DNA Elements (ENCODE) regions 
of HapMap individuals that have previously been capillary
sequenced. We developed a Bayesian analytical framework that 
leverages the inherent ability of indexing to measure error and to 
reflect variability in sequencing coverage. 

RESULTS 
Experimental design 
We amplified multiple 5-kb regions (Supplementary Tables 1 and 
2 online) by long-range PCR for 46 individuals genotyped by the 
ENCODE projects 1•8 (Fig. 1 and Supplementary Methods online). 
For each individual, we pooled the amplicons in equ imolar 
amounts, digested them, blunt end-repaired them, added to 
them an adenosine overhang and ligated these modified amplicons 
to one of the 46 indexed adapters (Supplementary Tables 3 and 4 
online). After ligation, we pooled samples from all individuals into 
a single sample (referred to as an indexed library), purified the 
samples, enriched them by PCR ampli fication and sequenced them 
on the Illumina GA on a single lane of an 8-lane flow-cell. We 
prepared two libraries: library A, consisting of ten 5-kb amplicons 
covering 50 kb and library B, consisting of fou rteen 5-kb amp Li cons 
covering 70 kb (Supplementary Table 2). Library A contained 
regions that were previously capillary-sequenced and regions that 
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PCR enrichment, gel purification, cluster generation and sequencing 

Figure 1 I Schematic describing the preparation of indexed libraries. 

were not sequenced as a part of the ENCODE project, whereas 
library B contained only regions previously sequenced as part of the 
ENCODE project. 

Index design 
We used a six-base design, which allowed us to control, tolerate and 
measure error during base calling of the index. We designed indexes 
so that one, and in some cases two, sequencing errors could be 
tolerated without an index being incorrectly identified as being a 
different val id index. We synthesized only 48 of the 4,096 possible 
nucleotide combinat ions (see Supplemen-

8-lane flow cell, though early sequencing runs exhibited greater 
variability in the number of sequenced reads. After filtering using 
Illumina analysis pipeline defaults, approximately 45-50% of the 
reads remained. We observed a large spread in the number of 
counts per index (Fig. 2). Although we did not identify a systematic 
reason for the initial spread in index performance, weaknesses in 
index design were obvious in some cases. For example, 'AAAAAT' 
was frequently read as 'AAAAAAT', perhaps because of an oligo
nucleotide synthesis bias. A few indexes that were not well
represented were complementary to other sections of the adaptor 
sequence, possibly hindering adaptor formation. Resequencing 
the same library gave nearly the identical distribution of reads 
regardless of run performance, indicating that the distribution is 
likely not due to a post-PCR emichment step. Furthermore, 
recreating libraries and sequencing DNA from different individuals 
in additional sequencing runs did not substantially alter perfor
mance for indexes that were substantially underrepresented or 
overrepresented. Of the 46 initial indexes, 19 indexes varied by 
less than a factor of 5 between the most and least common index, 
and 13 indexes varied by less than a factor of 2. Although some of 
the initial index variability was co nsistent between sequencing runs, 
retrospective analysis of the products by gel electrophoresis after 
ligation of adapters suggested that a portion of the index variance 
may have been due to subtle differences in DNAse digestion of 
pooled am pl icons, whereby the number of available ligation targets 
was higher for samples that were digested with higher efficiency. 
In rw1s after sequencing of these initial libraries ( data not shown ), 
we observed that quantification and normalization of the amount 
of ligated adaptor before pooling, usi ng gel electrophoresis of 
the PCR-enriched products or quantitative PCR, reduced index 
variabil ity such that the index with highest number of reads 
aligning to the reference sequence was observed fivefo ld more 
frequently than the index with the fewest number of aligned 
reads. By comparison, the same ratio was 11 fold without quanti
fication of the ligated primers before pooling. Although future 
studies may improve index variability still further, it may be 
effectively managed without substantially affecting workflow, by 

tary Table 4 fo r indexes). Perfect alignment 
of any index to a randomly generated 6-base 
sequence should occur at - 0.1 o/o by chance. 
The sixth base of the index was an obligate 
thymidine necessary for ligation of the 
adenosine overhan g. The first and fifth 
bases were identical to detect biases during 
normalization and calculation of the decon
volution matrix. In practice, we used 46 of 
the 48 indexes to allow for plate layouts that 
included positive and negative controls. 
Although we did not implement this in 
this study, the use of each of the fo ur 
nucleotides within an index may provide 
for higher-accuracy base calling as each base 
would have to be correctly called at least 
once within a sequenced read. 

II Perfect matches 
10 

Index performance 
We generated 3-10 million short-read (32-
or 42-base) sequences for each lane of an 

• One-error matches 19 <fivefold difference 

13 <twofold difference 5 

0 

Figure 2 I Comparison of index performance. Index variability in initial sequencing runs (library A) 
used for evaluating index performance are shown (top). Percentages of reads aligning to the reference 
sequence are listed by index, without introduction of normalization methods. A total of 30 indexes were 
present in > 0.05% of all aligned reads. There were 19 indexes with less than fivefo ld difference in index 
frequencies, which we used in subsequent studies. The bottom graph shows the location of errors by base 
for each index. 
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Figure 3 I Relationship between mean and local coverage. Exa mple coverage in 4 individuals sequenced within a single lane of an 8-lane flow-ce ll for 10 pooled 
amplicons as part of library A. Amplicons are shown consecutively for each individual. Index sequence and mean coverage for that individual are shown above 
each graph. The maximum and minimum coverage is shown for each amplicon at the top. Pie charts show the observed distribution of bases across all amplicons 
and the expected distribution determined from a Poi sson distri bution of the mean coverage, binned as indicated. 

requiring higher average coverage within a study, by sequencing in 
two lanes with different indexes or by sequestering samples with 
deficient coverage for later runs. 

Index-level coverage 
As shown for a subset of library A, coverage across individual 5-kb 
amplicons was even and generally free of large gaps (Fig. 3). 
We observed base-to-base variability in the coverage, as expected 
from alignment of short reads. We observed some deviation 
from the expected Poisson distribution both between amplicons 
and within an amplicon. Clearly, amplicon-to-amplicon varia
bility contributes to some extent to the departure from th e 
expected Poisson distribution. For a given index, we observed an 
approximately 1.5- to 2.0-fold difference between the amplicons 
with the most and fewest number of reads. Inspecting gel images 
for selected arnplicons confirmed that these observed differ
ences within regions were largely due to uneven pooling of 
amplicons. The observed amplicon-to-amplicon variability is likely 
due to the fact that we used median concentrations across the 
plate when pooling amplicons for an individual, rather than 
separately pipetting the reaction for each amplicon based on 
its concentration. 

Comparing a given amplicon across indexes (that is, across 
individuals), there was clearly some base-level correlation in cover
age based on the positions of spikes and valleys within the coverage 
plots (Fig. 3). Within a single amplicon, there was also departure 
from a Poisson distribution, evident from the fact that the same 
bases had little or no coverage across individuals. Indeed, there is 
consistency between individuals with regard to bases that were 
under o r over- represented. The rank correlatio n coefficient 
between indexes at a given base averaged 0.408, suggesting that 
local sequence ( or base order) accounts for slightly less than half of 
the base-to-base variability in coverage. 

Error reduction and alignment strategy 
Depending on alignment rules, aligning a short read to a reference 
sequence reduces the sequencing error rate at the cost of 
limiting discovery. We aligned 35-base-pair sequences, allowing 
fo r only a single error. We were thus essentially limited to 
identifying single-base substitutions in an aligned read, while 
limiting error to 1/35 o r 2.8%, as explained below. We also required 
that two stretches of 11 or more consecutive bases match 
the reference sequence or that the read have at least one 
stretch of 15 consecutive matches to the reference sequence. 
In both cases, our aligner required that the final 2 bases 
match the reference sequence to insure that we did not overalign 
an error at the final base. We chose the rules for alignment largely 
to control error, and a randomly generated sequence would 
falsely align in less than 0.1 % of alignments in a 100-kb region. 
Given our toleran ce for 1 error in alignment, we expected 
a maximum per-base error rate of 2-3% (1 error in 35 
bases = - 2.8%). 

One would expect that we would have greater difficulty detecting 
closely neighboring single- nucleotide polymorphi sms (SNPs) 
because we mostly limited our aligner to one nonconsecutive 
mismatch. However, the short-reads stochastically overlapped, 
and neighboring genetic variants were observed by alignment of 
multiple sequences not spanning both variants. 

Polymorphism discovery 
Polymorphism discovery is a primary goal for resequencing an 
association interval for a genome-wide association study, particu
larly under the common variant hypothesis. Indeed, in some cases 
one may only wish to know which bases are polymorphic for 
custom genotyping on a separate platform. 

We first provide an intuitive explanation of our analysis 
approach for polymorphism discovery (see Methods for 
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Figure 4 I Discovery of variant bases by 
simultaneous analysis of all individuals. (a) The 
Bayes factor for polymorphism discovery (Ks) is 
plotted for each of the 10 sequenced 5-kb 
amplicons from library A. Exact positions matching 
known polymorphisms are colored as red spheres, 
and the dbSNP identifier is provided for most SNPs 
with high Ks values. (b,c) Magnified views of 
amplicon 1 (b) and amplicon 6 (c) to compare 
variants predicted by indexed-multiplexed 
sequencing to previous deep capillary sequencing 
results for the same individuals as part of the 
ENCODE project. (d,e) Example traces of predicted 
SNPs in homologous regions with ambiguous trace 
data. (f-i) Examples of sequence traces validating 
the discovery of new SNPs not previously 
annotated in ENCODE capillary sequencing traces. 
The top row shows traces from HapMap individuals 
with the rare variant genotype and the bottom row 
shows reference traces. Similar analysis was 
conducted on library B (shown in Supplementary 
Fig. 1). Red arrows mark predicted SNPs in 
capillary-sequence data. 
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where K, is the Bayes factor for polymorph
ism discovery for the sth base as derived in 
equation 2 (see Methods). An example plot 
of K, across each base ( of 50 kb) is shown in 
Figure 4 for library A; we conducted a 
similar analysis for library B (Supplemen
tary Fig. 1 online) . 
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detailed equations). We used Bayes factors to compare the 
probability that the distribution of mismatched bases arises 
from sequencing error to the probability that the distribution 
of mismatches arises from diploid polymorphism. For example, 
if 20% of reads for a given base were nonconcordant 
with the reference sequence across all individuals, and the 
nonconcordant bases were due to the presence of a SNP, 
one would expect each individual to be homozygous (0% or 
100% concordance with reference) or heterozygous (concordance 
split 50:50). In contrast, if the 20% nonconcordant bases were due 
to sequencing error, then the number of nonconcordant bases for 
each individual would follow a binomial distribution around 20% 
(for example, person 1, -20.5%; person 2, -19.3%; person 3, 
-20.7%; and so forth). As described below, the error estimates 
required to calculate the probability of a genetic variant being a true 
variant are readily obtainable when samples from individuals are 
indexed and multiplex-sequenced. Additionally, indexed and mul
tiplexed sequencing removes run-to-run biases, which would con
found these estimates if all aspects of experimental design were not 
properly randomized. 
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! 
We next evaluated false positive and false 

negative rates to assess our experimental 
and analytical framework for variant dis
covery (Table 1 for library B and Fig. 5 for 
both library A and B). False positives are 
particularly difficult to quantify as not all 
polymorphic sites are known, even in pre-
viously resequenced regions. In our analy

sis, to be defined as a false positive, a variant must not exactly match 
the location of variants within the Single Nucleotide Polymorphism 
database (dbSNP) and must not have trace sequencing data indicat
ing a previously missed variant. In some cases, trace· sequence data 
were not available or were unreliable. Consequently, the false 
positive rate is expected to be an upper estimate as the exact 
position must be validated as polymorphic by an existing database. 
We determined false negative rates by calculating whether a base 
known to be polymorphic in our library of HapMap individuals 
reached previously specified Ks thresholds of 3, 10, 100 or 1,000. 
This calculation of false negative rates does have some bias, as it does 
not take into account coverage of the polymorphic base. 

As expected, setting a higher threshold for Ks gives fewer false 
positives. For library B, as Ks increased from 10 to 1,000, the false 
positive rate decreased from 69.6 to 11.3% (Table 1). Likewise, with 
fixed coverage, we observed the false negative rate increasing from 
I 0.8 to 90.8% as Ks increased from 10 to 1,000. A more detailed 
discussion of false-negative and false-positive rates is available in 
the Supplementary Methods. We found that false negatives 
occurred when the cumulative coverage of individuals with the 
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Table 1 I Polymorphism discovery and individual variant calling 

Polymorphism discovery by Ks threshold" 

Polymorphisms True 
Threshold (Ks) predicted positivesb 

3 932 112 

10 352 107 

100 131 99 

1,000 106 94 

Individual variant calling or genotyping (AA, AB, BB) by K; threshold 

Genotyped Genotyped 
Threshold (K;) correctly incorrectly 

3 3,376 115 

10 3,144 58 

100 2,677 8 

1,000 2,397 7 

False 
positivesc 

88.0% 

69.6% 

24.4% 

11.3% 

False 
negativesd 

9.2% 

10.8% 

32.3% 

90.8% 

ARTICLES 

individual given a certain number of reads 
(Fig. Sc). For example, when the coverage 
for a base was ~ 20 reads ( averaging from 
16 to 24), we detected > 80-90% of 
the bases at K; > 10, with a false-positive 
rate of 1.6%. In comparison to poly
morphism discovery, the low false positive 
rates of genotyping at a known poly
morphic base are due to the fact that we 
were no longer assessing thousands of bases 
for a rare event but rather assessing samples 
from a few dozen individuals for a more 
frequent event. 

DISCUSSION 
Our experience suggests that achieving ade
quate coverage is one of the most important 
factors in the design of a multiplexed tar-

aPredicted polymorphic bases at a given threshold for Ks were evaluated by comparison to known polymorphisms within dbSNP and to ENCODE 
capillary sequencing traces. False negatives rates reflect that greater base coverage is required to exceed larger K5 thresholds and that many 
polymorphisms become insufficiently covered for polymorphism discovery at these levels (see Fig. 5 for relation between coverage and Ks)
bValidated in dbSNP or NCBI trace archive. 'Not identified in dbSNP or NCBI trace archive. dRates of polymorphism discovery were evaluated 
irrespective of coverage. False negatives rates were calculated across Libraries A and B. False positive rates were calculated usi ng only library 
B since not all regions of library A were previously resequenced within the ENCO DE project. 

geted resequencing experiment. Depending 
on assumptions made in the experiment, 
the desired coverage (and as a consequence, 
the cost) can vary substantially. Key con
siderations include whether the objective is 

rarer variant was less than 10 reads (Fig. 5). Highlighting the 
dependence of false negatives on coverage, all polymorphisms that 
were covered by 20 or more reads (summed across individuals 
known to differ from the reference) had a Ks > 1,000. Overall, we 
observed that 90% of variants were detectable, though designing 
experiments for an average of greater than 20 reads will be essential 
for controlling false negatives. 

While analyzing bases with a K, > 100 for false positives using 
US National Center for Biotechnology Information (NCBI)
archived ENCODE traces, we discovered new SNPs that were 
evident in visual reinspection of capillary traces but that had not 
been annotated in dbSNP (Fig. 4f- h). These examples demonstrate 
that index-based resequencing can identify new variants even in 
heavily sequenced and heavily annotated regions. Notably, 
within library B, two variants with a Ks > 100 were not SNPs 
but actually insertions ( with dbSNP, rsl 1279266 is a 1-bp insertion 
and rsl0555419 is a 6-bp insertion). Thus, it is possible to identify 
genetic variants explicitly not allowed within the alignment scheme. 

Genotyping individuals at known polymorphisms 
As false negatives are clearly tied to coverage, we explored the 
influence of coverage further by analyzing sequenced regions in an 
individual-by-individual analysis. Derived in equation 3 (see 
below), Ki is the analogous Bayes factor for the ith individual 
having the rarer allele at a known polymorphic base. Conceptually, 
it can be thought of as a specific individual's contribution to Ks. 
We calculated the percentage of variants correctly identified in an 

Figure S I Relationship between base-level coverage and Bayes factor for 
polymorphism discovery and variant genotyping . (a) Total coverage across 
those individuals with a nonreference genotype at a known polymorphism. 
(b) Magnification of the graph in a. (c) The percent of the time the correct 
genotype was determined versus the coverage of the variant within the 
individual. Plots contain cumulative statistics using variant discovery and 
genotyping within both libraries A and B. 

(i) discovering genetic variants for genotyp
ing by a separate method such as custom SNP genotyping, (ii ) 
conducting polymorphism discovery and variant calling within one 
sequencing experiment, and/or (ii i) exhaustively resequencing for 
all common and rare variants. 

Exhaustive polymorphism discovery is the next major phase for 
genome-wide association studies. Indexing of short-reads was 
surprisingly robust at polymorphism identification. For example, 
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