
Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems

Antony Rowstron1 and Peter Druschel2�

1 Microsoft Research Ltd, St. George House,
Guildhall Street, Cambridge, CB2 3NH, UK.

antr@microsoft.com
2 Rice University MS-132, 6100 Main Street,

Houston, TX 77005-1892, USA.
druschel@cs.rice.edu

Abstract. This paper presents the design and evaluation of Pastry, a scalable, dis-
tributed object location and routing substrate for wide-area peer-to-peer applica-
tions. Pastry performs application-level routing and object location in a potentially
very large overlay network of nodes connected via the Internet. It can be used to
support a variety of peer-to-peer applications, including global data storage, data
sharing, group communication and naming.
Each node in the Pastry network has a unique identifier (nodeId). When presented
with a message and a key, a Pastry node efficiently routes the message to the
node with a nodeId that is numerically closest to the key, among all currently
live Pastry nodes. Each Pastry node keeps track of its immediate neighbors in
the nodeId space, and notifies applications of new node arrivals, node failures
and recoveries. Pastry takes into account network locality; it seeks to minimize
the distance messages travel, according to a to scalar proximity metric like the
number of IP routing hops.
Pastry is completely decentralized, scalable, and self-organizing; it automatically
adapts to the arrival, departure and failure of nodes. Experimental results obtained
with a prototype implementation on an emulated network of up to 100,000 nodes
confirm Pastry’s scalability and efficiency, its ability to self-organize and adapt to
node failures, and its good network locality properties.

1 Introduction

Peer-to-peer Internet applications have recently been popularized through file sharing
applications like Napster, Gnutella and FreeNet [1,2,8]. While much of the attention
has been focused on the copyright issues raised by these particular applications, peer-
to-peer systems have many interesting technical aspects like decentralized control, self-
organization, adaptation and scalability. Peer-to-peer systems can be characterized as
distributed systems in which all nodes have identical capabilities and responsibilities
and all communication is symmetric.

There are currently many projects aimed at constructing peer-to-peer applications
and understanding more of the issues and requirements of such applications and sys-
tems [1,2,5,8,10,15]. One of the key problems in large-scale peer-to-peer applications
� Work done in part while visiting Microsoft Research, Cambridge, UK.

R. Guerraoui (Ed.): Middleware 2001, LNCS 2218, pp. 329–350, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Code200, UAB v. Bright Data Ltd. 
Code 200's Exhibit 1044 

Page 1 of 22

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


330 A. Rowstron and P. Druschel

is to provide efficient algorithms for object location and routing within the network.
This paper presents Pastry, a generic peer-to-peer object location and routing scheme,
based on a self-organizing overlay network of nodes connected to the Internet. Pastry
is completely decentralized, fault-resilient, scalable, and reliable. Moreover, Pastry has
good route locality properties.

Pastry is intended as general substrate for the construction of a variety of peer-to-
peer Internet applications like global file sharing, file storage, group communication and
naming systems. Several application have been built on top of Pastry to date, including
a global, persistent storage utility called PAST [11,21] and a scalable publish/subscribe
system called SCRIBE [22]. Other applications are under development.

Pastry provides the following capability. Each node in the Pastry network has a
unique numeric identifier (nodeId). When presented with a message and a numeric key,
a Pastry node efficiently routes the message to the node with a nodeId that is numerically
closest to the key, among all currently live Pastry nodes. The expected number of routing
steps is O(log N), where N is the number of Pastry nodes in the network. At each Pastry
node along the route that a message takes, the application is notified and may perform
application-specific computations related to the message.

Pastry takes into account network locality; it seeks to minimize the distance messages
travel, according to a scalar proximity metric like the number of IP routing hops. Each
Pastry node keeps track of its immediate neighbors in the nodeId space, and notifies
applications of new node arrivals, node failures and recoveries. Because nodeIds are
randomly assigned, with high probability, the set of nodes with adjacent nodeId is diverse
in geography, ownership, jurisdiction, etc. Applications can leverage this, as Pastry can
route to one of k nodes that are numerically closest to the key. A heuristic ensures that
among a set of nodes with the k closest nodeIds to the key, the message is likely to
first reach a node “near” the node from which the message originates, in terms of the
proximity metric.

Applications use these capabilities in different ways. PAST, for instance, uses a fileId,
computed as the hash of the file’s name and owner, as a Pastry key for a file. Replicas of
the file are stored on the k Pastry nodes with nodeIds numerically closest to the fileId.
A file can be looked up by sending a message via Pastry, using the fileId as the key. By
definition, the lookup is guaranteed to reach a node that stores the file as long as one
of the k nodes is live. Moreover, it follows that the message is likely to first reach a
node near the client, among the k nodes; that node delivers the file and consumes the
message. Pastry’s notification mechanisms allow PAST to maintain replicas of a file on
the k nodes closest to the key, despite node failure and node arrivals, and using only
local coordination among nodes with adjacent nodeIds. Details on PAST’s use of Pastry
can be found in [11,21].

As another sample application, in the SCRIBE publish/subscribe System, a list of
subscribers is stored on the node with nodeId numerically closest to the topicId of a
topic, where the topicId is a hash of the topic name. That node forms a rendez-vous
point for publishers and subscribers. Subscribers send a message via Pastry using the
topicId as the key; the registration is recorded at each node along the path. A publisher
sends data to the rendez-vous point via Pastry, again using the topicId as the key. The
rendez-vous point forwards the data along the multicast tree formed by the reverse paths

Code200, UAB v. Bright Data Ltd. 
Code 200's Exhibit 1044 

Page 2 of 22

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Pastry: Scalable, Decentralized Object Location, and Routing 331

from the rendez-vous point to all subscribers. Full details of Scribe’s use of Pastry can
be found in [22].

These and other applications currently under development were all built with little
effort on top of the basic capability provided by Pastry. The rest of this paper is orga-
nized as follows. Section 2 presents the design of Pastry, including a description of the
API. Experimental results with a prototype implementation of Pastry are presented in
Section 3. Related work is discussed in Section 4 and Section 5 concludes.

2 Design of Pastry

A Pastry system is a self-organizing overlay network of nodes, where each node routes
client requests and interacts with local instances of one or more applications. Any com-
puter that is connected to the Internet and runs the Pastry node software can act as a
Pastry node, subject only to application-specific security policies.

Each node in the Pastry peer-to-peer overlay network is assigned a 128-bit node
identifier (nodeId). The nodeId is used to indicate a node’s position in a circular nodeId
space, which ranges from 0 to 2128 − 1. The nodeId is assigned randomly when a node
joins the system. It is assumed that nodeIds are generated such that the resulting set
of nodeIds is uniformly distributed in the 128-bit nodeId space. For instance, nodeIds
could be generated by computing a cryptographic hash of the node’s public key or its
IP address. As a result of this random assignment of nodeIds, with high probability,
nodes with adjacent nodeIds are diverse in geography, ownership, jurisdiction, network
attachment, etc.

Assuming a network consisting of N nodes, Pastry can route to the numerically
closest node to a given key in less than �log2bN� steps under normal operation (b is a
configuration parameter with typical value 4). Despite concurrent node failures, eventual
delivery is guaranteed unless �|L|/2� nodes with adjacent nodeIds fail simultaneously
(|L| is a configuration parameter with a typical value of 16 or 32). In the following, we
present the Pastry scheme.

For the purpose of routing, nodeIds and keys are thought of as a sequence of digits
with base 2b. Pastry routes messages to the node whose nodeId is numerically closest
to the given key. This is accomplished as follows. In each routing step, a node normally
forwards the message to a node whose nodeId shares with the key a prefix that is at least
one digit (or b bits) longer than the prefix that the key shares with the present node’s
id. If no such node is known, the message is forwarded to a node whose nodeId shares
a prefix with the key as long as the current node, but is numerically closer to the key
than the present node’s id. To support this routing procedure, each node maintains some
routing state, which we describe next.

2.1 Pastry Node State

Each Pastry node maintains a routing table, a neighborhood set and a leaf set. We begin
with a description of the routing table. A node’s routing table, R, is organized into
�log2bN� rows with 2b − 1 entries each. The 2b − 1 entries at row n of the routing table
each refer to a node whose nodeId shares the present node’s nodeId in the first n digits,

Code200, UAB v. Bright Data Ltd. 
Code 200's Exhibit 1044 

Page 3 of 22

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


332 A. Rowstron and P. Druschel

NodeId 10233102

-0-2212102 1 -2-2301203 -3-1203203
0 1-1-301233 1-2-230203 1-3-021022

Routing table

10-0-31203 10-1-32102 2 10-3-23302
102-0-0230 102-1-1302 102-2-2302 3
1023-0-322 1023-1-000 1023-2-121 3
10233-0-01 1 10233-2-32

0 102331-2-0
2

Neighborhood set
13021022 10200230 11301233 31301233
02212102 22301203 31203203 33213321

Leaf set
10233033 10233021 10233120 10233122
10233001 10233000 10233230 10233232

LARGERSMALLER

Fig. 1. State of a hypothetical Pastry node with nodeId 10233102, b = 2, and l = 8. All numbers
are in base 4. The top row of the routing table is row zero. The shaded cell in each row of the
routing table shows the corresponding digit of the present node’s nodeId. The nodeIds in each
entry have been split to show the common prefix with 10233102 - next digit - rest of nodeId. The
associated IP addresses are not shown.

but whose n+1th digit has one of the 2b −1 possible values other than the n+1th digit
in the present node’s id.

Each entry in the routing table contains the IP address of one of potentially many
nodes whose nodeId have the appropriate prefix; in practice, a node is chosen that is
close to the present node, according to the proximity metric. We will show in Section 2.5
that this choice provides good locality properties. If no node is known with a suitable
nodeId, then the routing table entry is left empty. The uniform distribution of nodeIds
ensures an even population of the nodeId space; thus, on average, only �log2bN� rows
are populated in the routing table.

The choice of b involves a trade-off between the size of the populated portion of the
routing table (approximately �log2bN� × (2b − 1) entries) and the maximum number
of hops required to route between any pair of nodes (�log2bN�). With a value of b = 4
and 106 nodes, a routing table contains on average 75 entries and the expected number
of routing hops is 5, whilst with 109 nodes, the routing table contains on average 105
entries, and the expected number of routing hops in 7.

The neighborhood set M contains the nodeIds and IP addresses of the |M | nodes
that are closest (according the proximity metric) to the local node. The neighborhood set
is not normally used in routing messages; it is useful in maintaining locality properties,
as discussed in Section 2.5. The leaf set L is the set of nodes with the |L|/2 numerically
closest larger nodeIds, and the |L|/2 nodes with numerically closest smaller nodeIds,
relative to the present node’s nodeId. The leaf set is used during the message routing, as
described below. Typical values for |L| and |M | are 2b or 2 × 2b.

Code200, UAB v. Bright Data Ltd. 
Code 200's Exhibit 1044 

Page 4 of 22

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Pastry: Scalable, Decentralized Object Location, and Routing 333

How the various tables of a Pastry node are initialized and maintained is the subject
of Section 2.4. Figure 1 depicts the state of a hypothetical Pastry node with the nodeId
10233102 (base 4), in a system that uses 16 bit nodeIds and a value of b = 2.

2.2 Routing

The Pastry routing procedure is shown in pseudo code form in Table 1. The procedure
is executed whenever a message with key D arrives at a node with nodeId A. We begin
by defining some notation.
Ri

l : the entry in the routing table R at column i, 0 ≤ i < 2b and row l, 0 ≤ l < �128/b�.
Li: the i-th closest nodeId in the leaf set L, −�|L|/2� ≤ i ≤ �|L|/2�, where neg-
ative/positive indices indicate nodeIds smaller/larger than the present nodeId, respec-
tively.
Dl: the value of the l’s digit in the key D.
shl(A, B): the length of the prefix shared among A and B, in digits.

Table 1. Pseudo code for Pastry core routing algorithm.

(1) if (L−�|L|/2� ≤ D ≤ L�|L|/2�) {
(2) // D is within range of our leaf set
(3) forward to Li, s.th. |D − Li| is minimal;
(4) } else {
(5) // use the routing table
(6) Let l = shl(D, A);
(7) if (RDl

l �= null) {
(8) forward to R

Dl
l ;

(9) }
(10) else {
(11) // rare case
(12) forward to T ∈ L ∪ R ∪ M , s.th.
(13) shl(T, D) ≥ l,
(14) |T − D| < |A − D|
(15) }
(16) }

Given a message, the node first checks to see if the key falls within the range of
nodeIds covered by its leaf set (line 1). If so, the message is forwarded directly to the
destination node, namely the node in the leaf set whose nodeId is closest to the key
(possibly the present node) (line 3).

If the key is not covered by the leaf set, then the routing table is used and the message
is forwarded to a node that shares a common prefix with the key by at least one more digit
(lines 6–8). In certain cases, it is possible that the appropriate entry in the routing table
is empty or the associated node is not reachable (line 11–14), in which case the message
is forwarded to a node that shares a prefix with the key at least as long as the local node,

Code200, UAB v. Bright Data Ltd. 
Code 200's Exhibit 1044 

Page 5 of 22

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


