RFC 2616 HTTP/1.1 June, 1999

read chunk-data and CRLF
append chunk-data to entity-body
length := length + chunk-size
read chunk-size and CRLF
}
read entity-header
while (entity-header not empty) {
append entity-header to existing header fields
read entity-header

}
Content-Length := length
Remove "chunked" from Transfer-Encoding

19.4.7 MHTML and Line Length Limitations

HTTP implementations which share code with MHTML [45] implementations need to be aware of MIME line length
limitations. Since HTTP does not have this limitation, HTTP does not fold long lines. MHTML messages being
transported by HT'TP follow all conventions of MHTML, including line length limitations and folding,
canonicalization, etc., since HTTP transports all message-bodies as payload (see section 3.7.2) and does not interpret
the content or any MIME header lines that might be contained therein.

19.5 Additional Features

RFC 1945 and RFC 2068 document protocol elements used by some existing HTTP implementations, but not
consistently and correctly across most HT'TP/1.1 applications. Implementors are advised to be aware of these
features, but cannot rely upon their presence in, or interoperability with, other HTTP/1.1 applications. Some of these
describe proposed experimental features, and some describe features that experimental deployment found lacking
that are now addressed in the base HTTP/1.1 specification.

A number of other headers, such as Content-Disposition and Title, from SMTP and MIME are also often
implemented (see RFC 2076 [37]).

19.5.1 Content-Disposition

The Content-Disposition response-header field has been proposed as a means for the origin server to suggest
a default filename if the user requests that the content is saved to a file. This usage is derived from the definition of
Content-Disposition in RFC 1806 [35].

content—-disposition = "Content-Disposition" ":"
disposition-type *(";" disposition-parm)

disposition-type = "attachment" | disp-extension-token

disposition-parm = filename-parm | disp-extension-parm

filename-parm = "filename" "=" quoted-string

disp-extension-token = token

disp-extension-parm = token "=" (token | quoted-string)

An example is

Content-Disposition: attachment; filename="fname.ext"
The receiving user agent SHOULD NOT respect any directory path information present in the £ilename-parm
parameter, which is the only parameter believed to apply to HTTP implementations at this time. The filename
SHOULD be treated as a terminal component only.

If this header is used in a response with the application/octet-stream content-type, the implied suggestion
is that the user agent should not display the response, but directly enter a ‘save response as...” dialog.

See section 15.5 for Content-Disposition security issues.

Fielding, et al Standards Track [Page 104]

Ex. 1002 - Page 413 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 1 of 194

RFC 2616 HTTP/1.1 June, 1999

19.6 Compatibility with Previous Versions

It is beyond the scope of a protocol specification to mandate compliance with previous versions. HTTP/1.1 was
deliberately designed, however, to make supporting previous versions easy. It is worth noting that, at the time of
composing this specification (1996), we would expect commercial HTTP/1.1 servers to:

e recognize the format of the Request-Line for HT'TP/0.9, 1.0, and 1.1 requests;
e understand any valid request in the format of HTTP/0.9, 1.0, or 1.1;

e respond appropriately with a message in the same major version used by the client.
And we would expect HTTP/1.1 clients to:

e recognize the format of the Status-Line for HTTP/1.0 and 1.1 responses;

¢ understand any valid response in the format of HTTP/0.9, 1.0, or 1.1.

For most implementations of HTTP/1.0, each connection is established by the client prior to the request and closed
by the server after sending the response. Some implementations implement the Keep—Alive version of persistent
connections described in section 19.7.1 of RFC 2068 [33].

19.6.1 Changes from HTTP/1.0

This section summarizes major differences between versions HT'TP/1.0 and HTTP/1.1.

19.6.1.1 Changes to Simplify Multi-homed Web Servers and Conserve IP Addresses

The requirements that clients and servers support the Host request-header, report an error if the Host request-
header (section 14.23) is missing from an HTTP/1.1 request, and accept absolute URIs (section 5.1.2) are among the
most important changes defined by this specification.

Older HTTP/1.0 clients assumed a one-to-one relationship of IP addresses and servers; there was no other
established mechanism for distinguishing the intended server of a request than the IP address to which that request
was directed. The changes outlined above will allow the Internet, once older HTTP clients are no longer common, to
support multiple Web sites from a single IP address, greatly simplifying large operational Web servers, where
allocation of many IP addresses to a single host has created serious problems. The Internet will also be able to
recover the IP addresses that have been allocated for the sole purpose of allowing special-purpose domain names to
be used in root-level HTTP URLs. Given the rate of growth of the Web, and the number of servers already deployed,
it is extremely important that all implementations of HTTP (including updates to existing HTTP/1.0 applications)
correctly implement these requirements:

e Both clients and servers MUST support the Host request-header.
e Aclient that sends an HTTP/1.1 request MUST send a Host header.

e Servers MUST report a 400 (Bad Request) error if an HTTP/1.1 request does not include a Host request-
header.

e Servers MUST accept absolute URIs.

19.6.2 Compatibility with HTTP/1.0 Persistent Connections

Some clients and servers might wish to be compatible with some previous implementations of persistent connections
in HTTP/1.0 clients and servers. Persistent connections in HTTP/1.0 are explicitly negotiated as they are not the
default behavior. HT'TP/1.0 experimental implementations of persistent connections are faulty, and the new facilities
in HTTP/1.1 are designed to rectify these problems. The problem was that some existing 1.0 clients may be sending
Keep—Alive to a proxy server that doesn’t understand Connect ion, which would then erroneously forward it to

Fielding, et al Standards Track [Page 105]

Ex. 1002 - Page 414 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 2 of 194

RFC 2616 HTTP/1.1 June, 1999

the next inbound server, which would establish the Keep-Alive connection and result in a hung HTTP/1.0 proxy
waiting for the close on the response. The result is that HT'TP/1.0 clients must be prevented from using Keep—
Alive when talking to proxies.

However, talking to proxies is the most important use of persistent connections, so that prohibition is clearly
unacceptable. Therefore, we need some other mechanism for indicating a persistent connection is desired, which is
safe to use even when talking to an old proxy that ignores Connect ion. Persistent connections are the default for
HTTP/1.1 messages; we introduce a new keyword (Connection: close) for declaring non-persistence. See
section 14.10.

The original HT'TP/1.0 form of persistent connections (the Connection: Keep-Alive and Keep-Alive
header) is documented in RFC 2068. [33]

19.6.3 Changes from RFC 2068

This specification has been carefully audited to correct and disambiguate key word usage; RFC 2068 had many
problems in respect to the conventions laid out in RFC 2119 [34].

Clarified which error code should be used for inbound server failures (e.g. DNS failures). (Section 10.5.5)
CREATE had a race that required an Etag be sent when a resource is first created. (Section 10.2.2)

Content—Base was deleted from the specification: it was not implemented widely, and there is no simple, safe
way to introduce it without a robust extension mechanism. In addition, it is used in a similar, but not identical fashion
in MHTML [45].

Transfer-coding and message lengths all interact in ways that required fixing exactly when chunked encoding is used
(to allow for transfer encoding that may not be self delimiting); it was important to straighten out exactly how
message lengths are computed. (Sections 3.6, 4.4, 7.2.2, 13.5.2, 14.13, 14.16)

A content-coding of “ident ity” was introduced, to solve problems discovered in caching. (Section 3.5)

Quality Values of zero should indicate that “I don’t want something” to allow clients to refuse a representation.
(Section 3.9)

The use and interpretation of HTTP version numbers has been clarified by RFC 2145. Require proxies to upgrade
requests to highest protocol version they support to deal with problems discovered in HTTP/1.0 implementations
(Section 3.1).

Charset wildcarding is introduced to avoid explosion of character set names in accept headers. (Section 14.2)

A case was missed in the Cache-Control model of HTTP/1.1; s-maxage was introduced to add this missing
case. (Sections 13.4, 14.8, 14.9, 14.9.3)

The Cache—Control: max-—age directive was not properly defined for responses. (Section 14.9.3)

There are situations where a server (especially a proxy) does not know the full length of a response but is capable of
serving a byterange request. We therefore need a mechanism to allow byteranges with a content-range not indicating
the full length of the message. (Section 14.16)

Range request responses would become very verbose if all meta-data were always returned; by allowing the server to
only send needed headers in a 206 response, this problem can be avoided. (Section 10.2.7, 13.5.3, and 14.27)

Fix problem with unsatisfiable range requests; there are two cases: syntactic problems, and range doesn’t exist in the
document. The 416 status code was needed to resolve this ambiguity needed to indicate an error for a byte range
request that falls outside of the actual contents of a document. (Section 10.4.17, 14.16)

Rewrite of message transmission requirements to make it much harder for implementors to get it wrong, as the
consequences of errors here can have significant impact on the Internet, and to deal with the following problems:

1. Changing “HTTP/1.1 or later” to “HTTP/1.1”, in contexts where this was incorrectly placing a requirement
on the behavior of an implementation of a future version of HTTP/1.x

Fielding, et al Standards Track [Page 106]

Ex. 1002 - Page 415 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 3 of 194

RFC 2616 HTTP/1.1 June, 1999

6.

7.

Made it clear that user-agents should retry requests, not “clients” in general.

Converted requirements for clients to ignore unexpected 100 (Continue) responses, and for proxies to
forward 100 responses, into a general requirement for 1xx responses.

Modified some TCP-specific language, to make it clearer that non-TCP transports are possible for HTTP.

Require that the origin server MUST NOT wait for the request body before it sends a required 100
(Continue) response.

Allow, rather than require, a server to omit 100 (Continue) if it has already seen some of the request body.

Allow servers to defend against denial-of-service attacks and broken clients.

This change adds the Expect header and 417 status code. The message transmission requirements fixes are in
sections 8.2, 10.4.18, 8.1.2.2, 13.11, and 14.20.

Proxies should be able to add Content—Length when appropriate. (Section 13.5.2)

Clean up confusion between 403 and 404 responses. (Section 10.4.4, 10.4.5, and 10.4.11)

Warnings could be cached incorrectly, or not updated appropriately. (Section 13.1.2, 13.2.4, 13.5.2, 13.5.3, 14.9.3,
and 14.46). Warning also needed to be a general header, as PUT or other methods may have need for it in requests.

Transfer-coding had significant problems, particularly with interactions with chunked encoding. The solution is that
transfer-codings become as full fledged as content-codings. This involves adding an IANA registry for transfer-
codings (separate from content codings), a new header field (TE) and enabling trailer headers in the future. Transfer
encoding is a major performance benefit, so it was worth fixing [39]. TE also solves another, obscure, downward
interoperability problem that could have occurred due to interactions between authentication trailers, chunked
encoding and HTTP/1.0 clients.(Section 3.6, 3.6.1, and 14.39)

The PATCH, LINK, UNLINK methods were defined but not commonly implemented in previous versions of this
specification. See RFC 2068 [33].

The Alternates, Content—Version, Derived-From, Link, URI, Public and Content—Base header
fields were defined in previous versions of this specification, but not commonly implemented. See RFC 2068 [33].

Fielding, et al Standards Track [Page 107]

Ex. 1002 - Page 416 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 4 of 194

RFC 2616 HTTP/1.1 June, 1999

20 Full Copyright Statement

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all
such copies and derivative works. However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed
for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE INTERNET
SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

20.1 Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.

Fielding, et al Standards Track [Page 108]

Ex. 1002 - Page 417 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 5 of 194

RFC 2616

21 Index

HTTP/1.1

June, 1999

While some care was taken producing this index, there is no guarantee that all occurrences of an index term have
been entered into the index. Bold face italic is used for the definition of a term.

"literal", 11

#rule, 12

(rulel rule2), 11

*rule, 11

; comment, 12

[rule], 11

<"> 12

100, 27, 32, 33, 37,62, 77,78

101, 27, 38, 77, 88

1xx Informational Status Codes, 37

200, 27, 34, 36, 37, 38, 39, 41, 57, 61,71, 76,77, 81,
82, 86

201, 27, 36, 38, 83

202,27, 37,38

203, 27, 39, 57

204, 22, 23, 27, 36, 37, 39

205, 27,39

206, 27, 39, 40, 57, 59, 61, 76, 82, 85, 86, 101, 106

2xX, 82

2xx Successful Status Codes, 38

300, 27,40, 47, 57

301, 27, 36, 40, 57, 89

302, 27,40, 41,42, 57, 89

303, 27, 36, 41, 89

304, 22, 23,27, 41, 48, 54, 56, 59, 60, 71, 80, 81, 82,
86

305, 27,41, 48, 89

306, 41

307, 27,41, 42, 57

3xx Redirection Status Codes, 40

400, 23, 25, 27, 28, 42, 80, 105

401, 27,42, 43, 66, 92

402, 27, 42

403, 27,42, 107

404,27, 42,43, 44, 107

405, 24, 27,43, 66

406, 27,43, 47, 63, 64

407, 27,43, 84

408, 27,43

409, 27,43

410, 27, 44, 57

411, 23,27, 44

412, 27,44, 80, 82, 83

413,27,44

414, 14,27, 44

415,27,44,73

416, 27,44, 76,77, 85, 106

417,27, 45,78, 107

Fielding, et al

Ex. 1002 - Page 418

Standards Track

4xx Client Error Status Codes, 42
500, 27, 45,77
501, 18, 24, 27, 36,45
502,27,45
503,27,45,77, 87
504,27,45,71
505, 27,45
5xx Server Error Status Codes, 45
abs_path, 14, 15, 24, 25
absoluteURI, 14, 24, 25, 74, 83, 86
Accept, 18, 26, 46, 49, 62, 63, 64, 65, 94
acceptable-ranges, 66
Accept-Charset, 26, 46, 64
Accept-Encoding, 16, 17, 26, 46, 47, 64, 65
accept-extension, 62
Accept-Language, 20, 26, 46, 47, 65, 91, 94
accept-params, 62, 87
Accept-Ranges, 28, 66
Access Authentication, 46

Basic and Digest. See [43]
Acknowledgements, 96
age, 9
Age, 28,51, 52, 66
age-value, 66
Allow, 24, 28, 34, 43, 66
ALPHA, 11, 12
Alternates. See RFC 2068
ANSI X3.4-1986, 12, 98
asctime-date, 15
attribute, 17
authority, 14, 24, 25
Authorization, 26, 42, 57, 66, 67, 68, 85
Backus-Naur Form, 11
Basic Authentication. See [43]
BCP 18, 99
BCP9, 99
byte-content-range-spec, 75, 76
byte-range, 85
byte-range-resp-spec, 75, 76
byte-range-set, 85
byte-range-spec, 44, 76, 85
byte-ranges-specifier, 85
bytes, 66
bytes-unit, 27
cachable, 9
cache, 9
Cache

cachability of responses, 57

[Page 109]

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 6 of 194

RFC 2616 HTTP/1.1

calculating the age of a response, 51
combining byte ranges, 59
combining headers, 59
combining negotiated responses, 60
constructing responses, 57
correctness, 48
disambiguating expiration values, 53
disambiguating multiple responses, 53
entity tags used as cache validators, 54
entry validation, 53
errors or incomplete responses, 61
expiration calculation, 52
explicit expiration time, 50
GET and HEAD cannot affect caching, 61
heuristic expiration, 51
history list behavior, 62
invalidation cannot be complete, 61
Last-Modified values used as validators, 54
mechanisms, 49
replacement of cached responses, 62
shared and non-shared, 60
Warnings, 49
weak and strong cache validators, 54
write-through mandatory, 61
Cache-Control, 23, 36, 39, 40, 41, 42, 49, 50, 51, 52,
53, 54,57, 58, 61, 67, 68, 69, 70, 73, 79, 84
cache-extension, 67
extensions, 72
max-age, 51, 52, 53, 57, 67, 68, 69, 70,71, 79, 106
max-stale, 49, 67, 70, 71
min-fresh, 67, 70
must-revalidate, 67, 70, 71
no-cache, 48, 53, 67, 68, 69, 70, 71, 84
no-store, 48, 67, 69
no-transform, 67, 72, 73
only-if-cached, 67, 71
private, 57, 67, 68, 69, 72
proxy-revalidate, 57, 67, 71
public, 49, 57, 67, 68, 69, 71
s-maxage, 53, 57, 67, 68, 69, 106
cache-directive, 67, 72, 84
cache-request-directive, 48, 67
Changes from HTTP/1.0. See RFC 1945 and RFC
2068
Host requirement, 105
CHAR, 12
charset, 16, 64
chunk, 18
chunk-data, 18
chunked, 87, 88
Chunked-Body, 18
chunk-extension, 18
chunk-ext-name, 18
chunk-ext-val, 18

Fielding, et al

Ex. 1002 - Page 419

Standards Track

June, 1999

chunk-size, 18
client, 8
codings, 64
comment, 13, 89, 90
Compatibility
missing charset, 16
multipart/x-byteranges, 102
Compatibility with previous HTTP versions, 105
CONNECT, 24, 25. See [44].
connection, 8
Connection, 23, 30, 31, 58, 72, 73, 87, 89, 105, 106
close, 30, 73, 106
Keep-Alive, 106. See RFC 2068
connection-token, 72, 73
Content Codings
compress, 17
deflate, 17
gzip, 17
identity, 17
content negotiation, §
Content Negotiation, 46
Content-Base, 106. See RFC 2068
content-cncoding, 73
content-coding, 16, 17, 18, 19, 46, 64, 65, 73, 88, 92,
107
identity, 106
new tokens SHOULD be registered with IANA, 17
qvalues used with, 65
content-disposition, 104
Content-Disposition, 95, 98, 104
Content-Encoding, 16, 17, 28, 29, 58, 73, 75, 92, 103
Content-Language, 20, 28, 73, 74, 91
Content-Length, 22, 23, 28, 32, 34, 35, 39, 44, 59,
61,74, 76, 88, 104, 107
Content-Location, 28, 39, 41, 58, 60, 61, 74, 83, 95
Content-MD35, 28, 35, 58, 75, 98
Content-Range, 39, 40, 57,75
content-range-spec, 75
Content-Transfer-Encoding, 17, 75, 103
Content-Type, 16, 18, 28, 29, 34, 37, 38, 39, 40, 43,
58,73,76,77,92,101, 103
Content-Version. See RFC 2068
CR, 12, 19, 24, 26,27, 102, 103
CRLF, 11,12,13, 18, 19, 21, 24, 26, 75, 102, 103
ctext, 13
CTL, 12
Date, 23, 39, 41, 51, 53, 55, 57, 60, 62, 69, 77, 79,
83,92, 103
datel, 15
date2, 15
date3, 15
DELETE, 24, 34, 36, 61
delta-seconds, 16, 87
Derived-From. See RFC 2068

[Page 110]

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 7 of 194

RFC 2616 HTTP/1.1

Differences between MIME and HTTP, 102
canonical form, 103
Content-Encoding, 103
Content-Transfer-Encoding, 103
date formats, 103
MIME-Version, 102
Transfer-Encoding, 103

Digest Authentication, 58. See [43]

DIGIT, 11,12, 13,15, 20, 84, 102

disp-extension-token, 104

disposition-parm, 104

disposition-type, 104

DNS, 94, 95, 106
HTTP applications MUST obey TTL information,

94

downstream, 10

End-to-end headers, 58

entity, 8

Entity, 28

Entity body, 29

Entity Tags, 20, 54

entity-body, 29

entity-header, 24, 26, 28

Entity-header fields, 28

entity-length, 29, 59

entity-tag, 21, 81, 82

Etag, 106

ETag, 20, 28, 35, 38, 39, 41, 54, 58, 59, 60, 78, 82

Expect, 26, 32, 33, 37, 45,78, 107

expectation, 78

expectation-extension, 78

expect-params, 78

Expires, 28, 36, 39, 40, 41, 42, 51, 52, 53, 57, 58, 69,
70,71,78, 79, 102

explicit expiration time, 9

extension-code, 27

extension-header, 28

extension-pragma, 84

field-content, 22

field-name, 22

field-value, 22

filename-parm, 104

first-byte-pos, 44, 76, 85

first-hand, 9

fresh, 9

freshness lifetime, 9

freshness_lifetime, 53

From, 26, 31, 79, 93

gateway, 9

General Header Fields, 23

general-header, 23, 24, 26

generic-message, 21

GET, 14, 24, 25, 34, 35, 38, 39, 40, 41, 42, 44, 54,
55, 56, 61, 66, 74,77, 80, 81, 82, 86, 93

Fielding, et al

Ex. 1002 - Page 420

Standards Track

June, 1999

HEAD, 22, 23, 24, 34, 35, 38, 40, 41, 42, 43, 45, 61,
66, 74,77, 82
Headers
end-to-end, 58, 59, 73, 78
hop-by-hop, 10, 58
non-modifiable headers, 58
Henrik Frystyk Nielsen, 100
heuristic expiration time, 9
HEX, 13, 15, 18
Hop-by-hop headers, 58
host, 14, 90, 91
Host, 25, 26, 33, 79, 80, 105
HT, 11, 12,13,22,102
http_URL, 14
HTTP-date, 15, 77, 79, 80, 82, 83, 87,91
HTTP-message, 21
HTTP-Version, 13, 24, 26
TIANA, 16, 17, 19, 20, 63, 100
identity, 17, 64, 65, 73, 106
If-Match, 20, 26, 35, 56, 80, 81, 82, 86
If-Modified-Since, 26, 35, 55, 56, 80, 81, 82, 83, 86
If-None-Match, 20, 26, 35, 56, 60, 80, 81, 82, 83, 86
If-Range, 20, 26, 35, 39, 44, 56, 76, 82, 86
If-Unmodified-Since, 26, 35, 55, 56, 81, 82, 83, 86
If-Unmodified-Since, 83
implied *LWS, 12
inbound, 70
instance-length, 76
1SO-10646, 99
1S0-2022, 16
1SO-3166, 20
ISO-639, 20
1SO-8859, 98
1SO-8859-1, 13, 16, 19, 64,91, 102
James Gettys, 99
Jeftrey C. Mogul, 99
Keep-Alive, 31, 58, 105, 106. See RFC 2068
Language Tags, 20
language-range, 65
language-tag, 20, 65
Larry Masinter, 100
last-byte-pos, 76, 85
last-chunk, 18
Last-Modified, 10, 28, 35, 39, 51, 53, 54, 55, 56, 57,
58,59, 78, 81, 82,83
LF, 12,19, 24, 26, 27, 102, 103
lifetime, 9, 51, 52, 53, 66, 70, 92
Link. See RFC 2068
LINK. See RFC 2068
LOALPHA, 12
Location, 28, 36, 38, 40, 41, 42, 61, 83, 95
Lws, 11,12,13,22
Max-Forwards, 26, 34, 37, 83, 84
MAY,7

[Page 111]

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 8 of 194

RFC 2616 HTTP/1.1

media type, 12, 16, 19, 23, 29, 38, 40, 43, 46, 63, 72,
73,74, 77, 100, 101, 102, 103
Media Types, 18
media-range, 62
media-type, 18, 19, 73, 75, 92
message, 8
Message Body, 22
Message Headers, 21
Message Length, 23
Message Transmission Requirements, 31
Message Types, 21
message-body, 21, 22, 24, 26, 29
message-header, 21, 22, 28
Method, 24, 66
Method Definitions, 33
Methods
Idempotent, 34
Safe and Idempotent, 33
MIME, 7, 10, 16, 17, 19, 74,75, 96, 97, 99, 102,
103, 104
multipart, 19
MIME-Version, 102
month, 15
multipart/byteranges, 19, 23, 39, 45, 76, 101
multipart/x-byteranges, 102
MUST, 7
MUST NOT, 7
N rule, 12
name, 11
non-shared cache, 60, 68, 72
non-transparent proxy. See proxy: non-transparent
OCTET, 12, 29
opaque-tag, 21
OPTIONAL, 7
OPTIONS, 24, 25, 34, 83, 84
origin server, 8
other-range-unit, 27
outbound, 10
parameter, 17
PATCH. See RFC 2068
Paul J. Leach, 100
Persistent Connections, 29
Overall Operation, 30
Purpose, 29
Use of Connection Header, 30
Pipelining, 30
port, 14, 90, 91
POST, 20, 21, 24, 32, 34, 35, 36, 38, 40, 41, 44, 61,
77,93
Pragma, 23, 67, 70, 84
no-cache, 48, 53, 67, 84
pragma-directive, 84
primary-tag, 20
product, 20, 89

Fielding, et al

Ex. 1002 - Page 421

Standards Track

June, 1999

Product tokens, 20

product-version, 20

protocol-name, 90

protocol-version, 90

proxy, 9
non-transparent, 9, 59, 72, 73
transparent, 9, 29, 58

Proxy-Authenticate, 28, 43, 58, 84, 85

Proxy-Authorization, 26, 43, 58, 85

pseudonym, 90, 91

Public. See RFC 2068

public cache, 46, 47

PUT, 24, 32, 34, 36, 43, 61, 66, 77, 80, 82

qdtext, 13

Quality Values, 20

query, 14

quoted-pair, 13

quoted-string, 12, 13, 18, 21, 22, 62, 68, 78, 84, 91,
104

gvalue, 20, 62, 64

Range, 21, 26, 28, 35, 36, 39, 40, 44, 45, 57, 58, 59,
76,77, 81, 82, 85, 86, 101

Range Units, 21

ranges-specifier, 76, 85, 86

range-unit, 21, 66

Reason-Phrase, 26, 27

received-by, 90

received-protocol, 90, 91

RECOMMENDED, 7

References, 97

Referer, 26, 86, 93

rel_path, 14, 61

relativeURI, 14, 74, 86

representation, 8

request, §

Request, 24

Request header fields, 26

request-header, 24, 26

Request-Line, 21, 24, 25, 35, 43, 102, 105

Request-URI, 14, 24, 25, 27, 28, 34, 35, 36, 37, 40,
42,43, 44, 60, 61, 66, 73, 74, 83, 84, 86, 92, 93,
94

REQUIRED, 7

Requirements
compliance, 7
key words, 7

resource, 8

response, 8

Response, 26

Response Header Fields, 28

response-header, 26, 28

Retry-After, 28, 44, 45, 87

Revalidation
end-to-end, 70

[Page 112]

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 9 of 194

RFC 2616 HTTP/1.1

end-to-end reload, 70
end-to-end specific revalidation, 70
end-to-end unspecific revalidation, 70

RFC 1036, 15, 97

RFC 1123, 15,77,79, 97

RFC 1305, 98

RFC 1436, 97

RFC 1590, 19, 97

RFC 1630, 97

RFC 1700, 97

RFC 1737, 98

RFC 1738, 14, 97

RFC 1766, 20, 97

RFC 1806, 95, 98, 104

RFC 1808, 14, 97

RFC 1864, 75, 98

RFC 1866, 97

RFC 1867, 20, 97

RFC 1900, 14, 98

RFC 1945, 7, 41, 97, 104

RFC 1950, 17, 98

RFC 1951, 17, 98

RFC 1952, 98

RFC 2026, 99

RFC 2045, 97, 102, 103

RFC 2046, 19, 99, 101, 103

RFC 2047, 13,91, 97

RFC 2049, 99, 103

RFC 2068, 1, 14, 29, 31, 32, 41, 97, 98, 104, 105,
106
changes from, 106

RFC 2069, 98

RFC 2076, 99, 104

RFC 2110, 99

RFC 2119, 7, 98, 106

RFC 2145, 13, 98, 106

RFC 2277, 99

RFC 2279, 99

RFC 2324, 99

RFC 2396, 14, 99

RFC 821, 97

RFC 822, 11, 15, 21, 77,79, 90, 96, 97, 102

RFC 850, 15

RFC 959, 97

RFC 977, 97

rfc1123-date, 15

RFC-850, 102

rfc850-date, 15

Roy T. Fielding, 99

rulel | rule2, 11

Safe and Idempotent Methods, 33

Security Considerations, 92
abuse of server logs, 93
Accept header, 94

Fielding, et al

Ex. 1002 - Page 422

Standards Track

June, 1999

Accept headers can reveal ethnic information, 94
attacks based on path names, 94
Authentication Credentials and Idle Clients, 95
be careful about personal information, 92
Content-Disposition Header, 95
Content-Location header, 95
encoding information in URI's, 93
From header, 93, 94
GET method, 93
Location header, 95
Location headers and spoofing, 95
Proxies and Caching, 95
Referer header, 93
sensitive headers, 93
Server header, 93
Transfer of Sensitive Information, 93
Via header, 93

selecting request-headers, 60

semantically transparent, 10

separators, 13

server, 8

Server, 20, 28, 87, 90, 93

SHALL, 7

SHALL NOT, 7

shared caches, 60, 69

SHOULD, 7

SHOULD NOT, 7

Sk, 11, 12,13, 15, 22, 24, 26,75, 91, 102

stale, 9

start-line, 21

Status Code Definitions, 37

Status-Code, 26, 27, 37

Status-Line, 21, 26, 28, 37, 102, 105

STD 1,1

strong entity tag, 21

strong validators, 55

subtag, 20

subtype, 18

suffix-byte-range-spec, 85

suffix-length, 85

T/TCP, 29

t-codings, 87

TE, 18, 26, 58, 87, 88, 107

TEXT, 13

Tim Berners-Lee, 100

time, 15

token, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 62, 68,
72,78, 84, 89, 90, 104

Tolerant Applications, 102
bad dates, 102
should tolerate whitespace in request and status

lines, 102

tolerate LF and ignore CR in line terminators, 102

[Page 113]

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 10 of 194

RFC 2616 HTTP/1.1

use lowest common denominator of character set,
102
TRACE, 24, 34, 37, 38, 83, 84
trailer, 18
Trailer, 18, 23, 88
trailers, 87
Trailers, 58
Transfer Encoding
chunked, 17
transfer-coding
chunked, 17
deflate, 17
gzip, 17
identity, 17
transfer-coding, 17, 18, 22, 23, 29, 75, 87, 88, 103,
106, 107
chunked, 17, 18, 23, 31, 87, 88, 103, 107
chunked REQUIRED, 23
compress, 17
identity, 23
trailers, 87
Transfer-Encoding, 17, 22, 23, 29, 34, 58, 88, 103,
104
transfer-extension, 17, 87
transfer-length, 29, 59
transparent
proxy, 58
transparent proxy. See proxy: transparent
tunnel, 9
type, 18
UNLINK. See RFC 2068
UPALPHA, 12
Upgrade, 24, 38, 58, 88, 89
upstream, 10
URI. See RFC 2396

Fielding, et al

Ex. 1002 - Page 423

Standards Track

June, 1999

URI-reference, 14
US-ASCII, 12, 16, 102
user agent, 8
User-Agent, 20, 26, 47, 89, 90, 93
validators, 10, 21, 49, 53, 54, 55, 56, 57, 59
rules on use of, 56
value, 17
variant, 8
Vary, 28, 39, 41, 47, 60, 80, 82, 89, 94
Via, 24, 37, 87, 90, 93
warn-agent, 91
warn-code, 59, 91
warn-codes, 49
warn-date, 91, 92
Warning, 24, 48, 49, 50, 53, 57, 59, 70, 91, 92, 107
Warnings
110 Response is stale, 91
111 Revalidation failed, 92
112 Disconnected operation, 92
113 Heuristic expiration, 92
199 Miscellaneous warning, 92
214 Transformation applied, 92
299 Miscellaneous persistent warning, 92
warning-value, 91, 92
warn-text, 91
weak, 21
weak entity tag, 21
weak validators, 55
weekday, 15
wkday, 15
WWW-Authenticate, 28, 42, 84, 92
x-compress, 65
X-gzip, 65

[Page 114]

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 11 of 194

Slice Embedding Solutions for Distributed Service Architectures

Flavio Esposito

Ibrahim Matta
flavio@cs.bu.edu matta@cs.bu.edu

Vatche Ishakian
visahak @cs.bu.edu

Computer Science Department
Boston University
Boston, MA

Technical Report BUCS-TR-2011-025

Abstract—Network virtualization provides a novel approach to
run multiple concurrent virtual networks over a common phys-
ical network infrastructure. From a research perspective, this
enables the networking community to concurrently experiment
with new Internet architectures and protocols. From a market
perspective, on the other hand, this paradigm is appealing as it
enables infrastructure service providers to experiment with new
business models that range from leasing virtual slices of their
infrastructure to host multiple concurrent network services.

In this paper, we present the slice embedding problem and
recent developments in the area. A slice is a set of virtual
instances spanning a set of physical resources. The embedding
problem consists of three main tasks: (1) resource discovery,
which involves monitoring the state of the physical resources,
(2) virtual network mapping, which invelves matching users’
requests with the available resources, and (3) allocation, which
involves assigning the resources that match the users’ query.

We also outline how these three tasks are tightly connected,
and how there exists a wide spectrum of solutions that either
solve a particular task, or jointly solve multiple tasks along with
the interactions among them. To dissect the space of solutions, we
introduce three main classification criteria, namely, (1) the type
of constraints imposed by the user, (2) the type of dynamics
considered in the embedding process, and (3) the allocation
strategy adopted. Finally, we conclude with a few interesting
research directions.

I. INTRODUCTION

We all became familiar with the layered reference model of
ISO OSI as well as the layered TCP/IP architecture [47]. In
these models, a layer is said to provide a service to the layer
immediately above it. For example, the transport layer pro-
vides services (logical end-to-end channels) to the application
layer, and the internetworking layer provides services (packet
delivery across individual networks) to the transport layer.

The notion of distributed service architecture extends this
service paradigm to many other (large scale) distributed sys-
tems.

Aside from the Internet itself, including its future archi-
tecture design, e.g., NetServ [73] or RINA [23], with the
term distributed service architecture we refer to a large scale
distributed system whose architecture is based on a service
paradigm.

Some examples are datacenter-based systems [39], Cloud
Computing [36] (including high performance computing sys-
tems such as cluster-on-demand services), where the rentable
resources can scale both up and down as needed, Grid Comput-
ing [45], overlay networks (e.g., content delivery networks [6],

Ex. 1002 - Page 424

[10]), large scale distributed testbed platforms (e.g., Plan-
etLab [65], Emulab/Netbed [77], VINI [7], GENI [31]), or
Service-oriented Architecture (SoA), where web applications
are the result of the composition of services that need to be
instantiated across a collection of distributed resources [80].

A common characteristic of all the above distributed sys-
tems is that they all provide a service to a set of users or,
recursively, to another service. In this survey, we restrict our
focus on a particular type of service: a slice. We define a
slice to be a set of virtual instances spanning a set of physical
resources.

The lifetime span of a slice ranges from few seconds (in
the case of cluster-on-demand services) to several years (in
case of a virtual network hosting a content distribution service
similar to Akamai, or even a GENI experiment hosting a
novel architecture looking for new adopters to opt-in [34]).
Therefore, the methods to acquire, configure, manipulate and
manage such slices could be different across different service
architectures. In particular, the problem of discovering, map-
ping and allocating physical resources (slice embedding) has
different time constraints in each service architecture.!

In some distributed service architecture applications, e.g.
virtual network testbed, the slice creation and embedding
time is negligible relative to the running time of the service
they are providing. In many other applications, e.g. financial
modeling, anomaly analysis, or heavy image processing, the
time to solution — instant between the user, application or
service requests a slice and the time of task completion — is
dominated by or highly dependent on the slice creation and
embedding time.

Therefore, to be profitable, most of those service architec-
tures require agility—the ability to allocate and deallocate any
physical resource (node or link) to any service at any time 2.
Those stringent requirements, combined with the imperfect
design of today’s data center networks [35] and with the lack
of an ideal virtualization technology [78], have recently re-
motivated research on resource allocation [13], [82], [51], [35],
(4], [701.

In this paper, we define the slice embedding problem— a

By resources we mean processes, storage capacity, and physical links, as
well as computational resources such as processors.

2We extend the definition of agility as “ability to assign any server to
any service” given by Greenberg et al. [35] by including links and, other
resources along with a deallocation phase.

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 12 of 194

subarea of the resource allocation for service architectures—
in Section II, we give a taxonomy (Section III), and we survey
some of the recent solutions for each of its tasks (Sections IV,
V and VI). Then, with the help of optimization theory, we
model the three phases of the slice embedding problem as
well as its tasks’ interactions (Section VIII). We point out how
all the proposed approaches —including the related facility
location problems (Section VII)— have considered either cases
where the time to solution is practically equivalent to the
running time of a slice, i.e. they did not consider the slice
creation and embedding time at all, or they did not model some
of the slice embedding tasks. In Section IX we discuss some
interesting open research directions and finally, in Section X
we conclude our discussion.

II. BACKGROUND AND AREA DEFINITION
A. Nerwork Virtualization

Network virtualization provides a novel approach to running
multiple concurrent virtual networks over a common physical
network infrastructure. A physical network supports virtualiza-
tion if it allows the coexistence of multiple virtual networks.
Each virtual network is a collection of virtual nodes and virtual
links that connect a subset of the underlying physical network
resources. The most important characteristic of such virtual
networks is that they are customizable (i.e., can concurrently
run different protocols or architectures, each tailored to a
particular service or application [75]).

The interest in this technology has recently grown sig-
nificantly because it will help the research community in
the testing of novel protocols and algorithms in pseudo-
real network environments [65], [77], [7], [28], as well as
experimenting with novel Internet architectures as envisioned
in [3]. This paradigm is particularly appealing to providers
as it enables new business models: operators may in fact
benefit from diversifying their infrastructure by leasing virtual
networks to a set of customers [30], or by sharing costs in
deploying a common infrastructure [11].

A recent survey on network virtualization can be found
in [18]. The authors compare with a broad perspective, ap-
proaches related to network virtualization, e.g. virtual private
networks and overlay networks. The paper also discusses
economic aspects of service providers, analyzes their design
goals (such as manageability or scalability), and overviews
recent projects that use this technology (e.g. Planetlab [65] and
GENI [31]). We narrow our focus on a more specific subarea
of network virtualization (i.e. slice embedding), introducing a
new taxonomy inspired by optimization theory for the three
phases of the slice embedding problem. We leave our utility
functions and model constraints as general as possible, so they
can be instantiated, refined or augmented based on policies that
would lead to efficient slice embedding solutions.

B. The Slice Embedding Problem

In this paper, we focus on a particular aspect of network
virtualization, namely, the slice embedding problem.

A slice is defined as a set of virtual instances spanning a
set of physical resources of the network infrastructure. The

Ex. 1002 - Page 425

slice embedding problem comprises the following three steps:
resource discovery, virtual network mapping, and allocation.

Resource discovery is the process of monitoring the state
of the substrate (physical) resources using sensors and other
measurement processes. The monitored states include proces-
sor loads, memory usage, network performance data, etc. We
discuss the resource discovery problem in Section IV.

Virtual network mapping is the step that matches users’
requests with the available resources, and selects some subset
of the resources that can potentially host the slice. Due to
the combination of node and link constraints, this is by far
the most complex step in the slice embedding problem. In
fact this problem is NP-hard [19]. These constraints include
intra-node (e.g., desired physical location, processor speed,
storage capacity, type of network connectivity), as well as
inter-node constraints (e.g., network topology). We define the
virtual network mapping problem in Section V.

Allocation involves assigning the resources that match the
user’s query to the appropriate slice. The allocation step can
be a single shot process, or it can be repeated periodically to
either reassign or to acquire additional resources for a slice
that has already been embedded.

C. Interactions in the Slice Embedding Problem

Before presenting existing solutions to the tasks encompass-
ing the slice embedding problem, it is important to highlight
the existence of interactions among these tasks, the nature of
these interactions, how they impact performance, as well as
the open issues in addressing these interactions.

In Figure 1, a user is requesting a set of resources. The arrow
(1) going from the “Requests” to the “Discovery” block, rep-
resents user queries that could potentially have multiple levels
of expressiveness and a variety of constraints. The resource
discoverer (2) returns a subset of the available resources (3) to
the principle in charge of running the virtual network mapping
algorithm (4). Subsequently, the slice embedding proceeds
with the allocation task. A list of candidate mappings (5)
are passed to the allocator (6), that decides which physical
resources are going to be assigned to each user. The allocator
then communicates the list of winners (7)—users that won
the allocation—to the discoverer, so that future discovery
operations can take into account resources that have already
been allocated. It is important to note that the slice embedding
problem is essentially a closed feedback system, where the
three tasks are solved repeatedly—the solution in any given
iteration affects the space of feasible solutions in the next
iteration.

D. Solutions to the Slice Embedding Problem

Solutions in the current literature either solve a specific
task of the slice embedding problem, or are hybrids of two
tasks. Some solutions jointly consider resource discovery and
network mapping [41], [1], others only focus on the mapping
phase [81], [54], [21], or on the interaction between virtual net-
work mapping and allocation [79], [52], while others consider
solely the allocation step [5], [9], [49], [33], [20]. Moreover,
there are solutions that assume the virtual network mapping

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 13 of 194

Requests

List of
Winners I

List of =
] Candidates

Fig. 1. Interactions and data exchanges in the slice embedding problem.

task is solved, and only consider the interaction between the
resource discovery and allocation [68]. We do not discuss
solutions that address the resource discovery task in isolation,
since it is not different from classical resource discovery in
the distributed system literature (see [60] for an excellent
survey on the topic). In addition to considering one [81], [5]
or more [62], [79] tasks, solutions also depend on whether
their objective is to maximize users’ or the providers’ utility.

E. The novelty of the slice embedding problem

The slice embedding problem, or more specifically its
constituent tasks, and network virtualization in general, may
seem identical to problems in classical distributed systems.
Network virtualization, howeyver, is different in several ways,
namely: (a) it enables novel business models, (b) it enables
novel coexisting network approaches, and (c) it creates new
embedding challenges that must be addressed.

Business models: network virtualization lays the foundations
for new business models [22]. Network resources are now
considered commodities to be leased on demand. The leaser
could be an infrastructure or service provider, and the lessee
could be another service provider, an enterprise, or a single
user (e.g. a researcher in the case of virtual network testbed
as in [31], [7], [38], [65], [28]). In those cases where
the infrastructure is a public virtualizable network testbed
(e.g. GENI [31]), the physical resources may not have any
significant market value, since they are made available at
almost no cost to research institutions.

Coexisting network approaches: the concept of multiple
coexisting logical networks appeared in the networking
literature several times in the past. The most closely related
attempts are virtual private networks and overlay networks.
A virtual private network (VPN) is a dedicated network
connecting multiple sites using private and secured tunnels
over a shared communication network. Most of the time,
VPNs are used to connect geographically distributed sites
of a single enterprise: each VPN site contains one or more
customer edge devices attached to one or more provider edge
routers [66].

Ex. 1002 - Page 426

An overlay network, on the other hand, is a logical network
built on top of one or more existing physical networks. One
substantial difference between overlays and network virtual-
ization is that overlays in the existing Internet are typically
implemented at the application layer, and therefore they may
have limited applicability.

For example, they falter as a deployment path for radical
architectural innovations in at least two ways: first, overlays
have largely been in use as means to deploy narrow fixes
to specific problems without any holistic view; second, most
overlays have been designed in the application layer on top
of the IP protocol, hence, they cannot go beyond the inherent
limitations of the existing Internet [3].

In the case of VPNs, the virtualization level is limited
to the physical network layer while in the case of
overlays, virtualization is limited to the end hosts. Network
virtualization introduces the ability to access, manage and
control each layer of the current Internet architecture in the
end hosts, as well as providing dedicated virtual networks.

Embedding challenges: although the research community
has explored the embedding of VPNs in a shared provider
topology, e.g., [26], usually VPNs have standard topologies,
such as a full mesh. A virtual network in the slice embedding
problem, however, may represent any topology. Moreover,
resource constraints in a VPN or overlays are limited to
either bandwidth requirements or node constraints, while in
network virtualization, both link and node constraints may
need to be present simultaneously. Thus, the slice embedding
problem differs from the standard VPN embedding because
it must deal with both node and link constraints for arbitrary
topologies.

III. TAXONOMY

To dissect the space of existing solutions spanning the slice
embedding tasks, as well as interactions among them, we
consider three dimensions as shown in Figure 2: the type of
constraint, the type of dynamics, and the resource allocation
approach.

A. Constraint type

Users need to express their queries efficiently. Some con-
straints are on the nodes and/or links (e.g., minimum CPU
requirement, average bandwidth, maximum allowed latency)
while others consider inter-group [1] or geo-location con-
straints [17].

Based on this dimension, research work in this area assumes
no constraints [81], considers constraints on nodes only [65],
links only [55], [67], [37], or on both nodes and links [5],
[79]. In addition, the order in which the constraints are
satisfied is important as pointed out in [52]: satisfy the node
constraints and then the link constraints [81], [79], or satisfy
both constraints simultaneously [54], [52].

B. Dynamics

Each task in the slice embedding problem may differ in
terms of its dynamics. In the resource discovery task, the

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 14 of 194

Virtual Network
Mapping

; Resource
Discovery

None None None
[79] (1] [791 [41][79] [55}
Nodes or Links | Nodes or Links Soft Reservation|
[37] [55] [65][67) [29] [40] [77] [33]
INodes and Links L_Nodes and Links Hard Guarantee
[5] [54] [17] [52] [5] [49] [77]

Fig. 2. Overview of the slice embedding taxonomy with classification of
representative references.

status updates of each physical resource may be collected
periodically [41], or on demand [1].

In the virtual network mapping task, virtual resources may
be statically mapped to each physical resource [81], or they
can move (e.g., using path migrations [79] or by re-running
the mapping algorithm [29]) to maximize some notion of
utility [37]. Also, the mapping can focus only on one single
phase at a time where each phase considers only nodes or
links [81], [40], or simultaneously both nodes and links [52],
[17].

Finally, the allocation task may be dynamic as well: users
may be swapped in or out to achieve some Quality of Ser-
vice (QoS) or Service Level Agreement (SLA) performance
guarantees, or they can statically remain assigned to the same
slice. An example of static assignment of a slice may be an
infrastructure hosting a content distribution service similar to
Akamai, whereas an example of dynamic reallocation could
be a researcher’s experiment being swapped out from/into the
Emulab testbed [77].

C. Admission Control

As the substrate—physical infrastructure—resources are
limited, some requests must be rejected or postponed to avoid
violating the resource guarantees for existing virtual networks,
or to maximize profit of the leased network resources. Some
research work, however, does not consider any resource allo-
cation [41], [54], [21], [81], [55], [52]. Others consider the
resource allocation task, with [33] or without [49], [5], [79]
guarantees to the user, i.e., the resource allocation mechanism
enforces admission to the users, or it only implements a
tentative admission, respectively. An example of tentative
admission is a system that issues tickets, without guarantee that
those tickets can be exchanged with a resource later in time.
The literature defines those tentative admission mechanisms
that do not provide hard guarantees as soft reservation [33].

IV. RESOURCE DISCOVERY

Although researchers have developed, and in some cases
deployed a number of resource discovery solutions for wide-

Ex. 1002 - Page 427

area distributed systems, the research in this area still has
many open problems. Some of the existing distributed systems
provide resource discovery through a centralized architecture,
see, e.g., Condor [53], Assign [67], or Network Sensitive
Service Discovery (NSSD) [41]; others use a hierarchical
architecture such as Ganglia [58], while XenoSearch [72],
SWORD [62] and iPlane Nano [57] employ a decentralized
architecture.

All of these systems allow users to find nodes that meet per-
node constraints, except iPlane Nano that considers path met-
rics, while NSSD, SWORD, and Assign also consider network
topologies. Unfortunately, none of these solutions analyze the
resource discovery problem when the queried resources belong
to multiple infrastructure or service providers. To obtain an
efficient slice embedding, such cases would in fact require
some level of cooperation (e.g., by sharing some state), and
such incentives to cooperate may be scarce.

As mentioned previously, we do not discuss solutions that
address the resource discovery task in isolation, since it is not
different from classical resource discovery in the distributed
systems literature. Instead, we consider the resource discovery
problem in combination with either the allocation or the
network mapping task.

A. Discovery + allocation

We first discuss the interaction between discovery and
allocation described in Network Sensitive Service Discovery
(NSSD) [41]. The goal is to discover a service that meets a
set of network properties specified by the user, and allocate it
to the user.

This work emphasizes the importance of the interaction
between discovery of network resources and their allocation
to the users. The resource discovery task infers the network’s
performance metrics during its search and returns the best
match with respect to some user criteria. In general, once
a user’s query is received, in existing systems either the
provider (pure provider-side allocation) or the users (pure user-
side allocation) execute the allocation task. If the allocation
is done by the provider, users do not have to worry about
anything after they submit a query, but may not know the
quality of service they are going to get (in systems like
PlanetLab for example, there are no service level agreements
that the provider needs to meet). On the other hand, when the
allocation is done by the user, each user needs to obtain a long
list of candidates, as well as collect the status information of
each candidate. Thus, the overhead of the discovery task is
higher if users need to have the ability to choose the best set
of resources. When the provider does the allocation instead,
there may be no need to look at the complete set of resources
as some heuristic (e.g. first fit) can be applied. Moreover,
by showing the most available physical resources they own,
providers could (indirectly) have to release information about
their states, e.g., information about which customer is hosted
on a physical machine could be inferred [69].

To the best of our knowledge, NSSD is the first system that
integrates the discovery and allocation tasks while enabling
users to query static and dynamic network properties. Com-
pared with pure provider-side allocation, NSSD allows users to

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 15 of 194

control the selection criteria by returning a list of candidates.
Compared with pure user-side allocation, NSSD has lower
overhead in the discovery task, as only a small number of
candidates are returned. In this work, the resources to allocate
are single servers, hence there is no virtual network mapping
phase.

B. Discovery + virtual network mapping

We present SWORD [1], a system that considers the inter-
action between the resource discovery and the virtual network
mapping tasks. SWORD is a resource discovery infrastructure
for shared wide-area platforms such as PlanetLab [65]. We
choose to describe SWORD as it is a well known network
discovery system whose source code is available [74]. The
system has been running on PlanetLab for several years.
Some of the functionalities described in the original paper,
however, are currently disabled. For example, the current
implementation of SWORD runs in centralized mode, and
inter-node and group requirements (i.e., constraints on links
and set of nodes, respectively), are not supported because no
latency or bandwidth estimates are available.

Users wishing to find nodes for their application submit
a resource request expressed as a topology of interconnected
groups. A group is an equivalence class of nodes with the
same per-node requirements (e.g., free physical memory) and
the same inter-node requirements (e.g., inter-node latency) that
is within each group. Supported topological constraints within
and among groups include the required bandwidth and latency.

In addition to specifying absolute requirements, users can
supply SWORD with per-attribute penalty functions, that map
the value of an attribute (feature of a resource, such as load
or delay) within the required range but outside an ideal range,
to an abstract penalty value. This capability allows SWORD
to rank the quality of the configurations that meet the ap-
plications’ requirements, according to the relative importance
of each attribute. Notice that these penalty values would be
passed to the allocation together with the list of candidates.

Architecturally, SWORD consists of a distributed query
processor and an optimizer which can be viewed as a virtual
network mapper. The distributed query processor uses multi-
attribute range search built on top of a peer-to-peer network
to retrieve the names and attribute values of the nodes that
meet the requirements specified in the user’s query. SWORD’s
optimizer then attempts to find the lowest-penalty assignment
of platform nodes (that were retrieved by the distributed
query processor) to groups in the user’s query—that is, the
lowest-penalty embedding of the requested topology in the
PlanetLab node topology, where the penalty of an embedding
is defined as the sum of the per-node, inter-node, and inter-
group penalties associated with that selection of nodes.

Due to the interaction between the distributed query proces-
sor (resource discovery task) and the optimizer (mapping task),
SWORD is more than a pure resource discoverer. SWORD
provides resource discovery, solves the network mapping task,
but does not provide resource allocation. In particular, since
PlanetLab does not currently support resource guarantees, a
set of resources that SWORD returns to a user may no longer

Ex. 1002 - Page 428

meet the resource request at some future point in time. In light
of this fact, SWORD suppotts a continuous query mechanism
where a user’s resource request is continually re-matched to
the characteristics of the available resources, and in turn a
new set of nodes are returned to the user. The user can then
choose to migrate one or more instances of their application.
This process is all part of the general feedback system outlined
in Figure 1.

V. VIRTUAL NETWORK MAPPING

The virtual network mapping is the central phase of the slice
embedding problem. In this section we define the problem of
virtual network mapping, then we survey solutions that focus
only on this phase, as well as solutions that cover interactions
with the other two tasks of the slice embedding problem.

A. Problem definition

The virtual network mapping problem is defined as
follows [52]:

Definition 1 (Network): A Network is defined as an
undirected graph G = (N,L,C) where N is a set
of nodes, L is a set of links, and each node or link
e € N U L is associated with a set of constraints
Ce) = {Ci(e),...,Cn(e)}. A physical network will
be denoted as G¥ = (NT,LF CT), while a virtual network
will be denoted as GV = (N, LV, CV).

Definition 2 (Virtual Network Mapping): Given a virtual
network GV = (NV LV, C") and a physical network G =
(NP, LF,C7), a virtual network mapping is a mapping of G
to a subset of G¥, such that each virtual node is mapped onto
exactly one physical node, and each virtual link is mapped
onto a loop-free path p in the physical network. The mapping
is called valid if all the constraints C'(e) of the virtual network
are satisfied and do not violate the constraints of the physical
network. More formally, the mapping is a function

M:GY — (NF,P))

where P denotes the set of all loop-free paths in GT.
M s called a valid mapping if all constraints® of GV are
satisfied, and for each I¥ = (sV,tV) € LY, 3 a path
p:(sP,...,t) € P where sV is mapped to s and tV is
mapped to ¢7.

Due to the combination of node and link constraints, the
virtual network mapping problem is NP-hard. For example,
assigning virtual nodes to the substrate (physical) network
without violating link bandwidth constraints can be reduced
to the multiway separator problem which is NP-hard [2].

To reduce the overall complexity, several heuristics were
introduced, including backtracking algorithms [54], [52], sim-
ulated annealing as in Emulab [67], as well as heuristics that
solve the node and link mapping independently.

3Examples of node constraints include CPU, memory, physical location,
whereas link constraints may be delay, jitter, or bandwidth.

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 16 of 194

TABLE OF NOTATIONS

Symbol Page Meaning

[€ 6 Undirected graph representing a general network

N 6 General set of nodes (or vertices) of a network

L General set of links (or edges) of a network

C General set of network constraints
cP (CV General set of physical (virtual) network constraints

C(e) = {Ci(e),...,Cm(e)} Set of m constraints on the element e (node or link) of the network

Gr (GV) Undirected graph representing a physical (virtual) network
NP (NV) Set of nodes or vertices of a physical (virtual) network
LP (LV) Set of links or edges of a physical (virtual) network

P Set of loop-free physical paths in a physical network G

Virtual link starting from virtual node sV, and ending in virtual node ¢V
Physical path starting from physical node s¥, and ending in physical node +*
Mapping function: GY — (NP, P)

Snmaz (Slmaz)
Sn(v) l(SL (m

v
u
L{v)
D(v,u)
(GY)
CPU, and bw,
CPU, and bwg

Next physical node assigned in node mapping algorithm [81]
Maximum node (link) stress in GF 81]
Current node (link) stress in GF [81]
Index of physical links [81]
Index of physical nodes to map [81]
index of mapped physical nodes in node mapping algorithm [81]
Set of links adjacent to physical node v [81]
Distance between physical node v and u [81]
Revenue for allocating virtual network GV [79]
CPU and bandwidth required by the virtual network [79]
CPU and bandwidth available on a physical network [79]

DO WWOWWW W WW W W HTTITTITTIITITITIITITIJYJooaIIIIDIIDD D

Q Price normalization factor [79]
H(nP) available resource on physical node n¥ [81]
Ry (Rp) Physical node (link) stress ratio [79]
U*() Convex objective function run by virtual network k [37]
ng Number of virtual networks to simultaneously map [37]
¢ = cl(;c) Binary matrix of capacity constraints for virtual network % using virtual path j on physical link { [37]
y(®) virtual link capacities for virtual network k [37]
2(k) Path rate vector for virtual network k& [37]
g(k) General convex constraint for virtual network k [37]
D Matrix of physical link capacity
w®) Weight assigned to virtual network & in the slice allocation phase
Wij Weight (or utilization) imposed on resource j by user ¢,
’ Price (in dollars) of the resource j [43]
U; Overall utilization of resource j [43]
R Physical CPU capacity of resource j in a Colocation Game [43]
K;(%) Colocation cost for user 7 when mapped to resource j
aij 10 binary variable representing element in the j°® set in a Set Packing Problem
w; 10 Weight assigned to user requesting the set of resources —or objects— j in any allocation (Set Packing Problem)
v 10 Binary allocation variable for object j in a Set Packing Problem
W(0O) 10 Set of users W (objects O) to be allocated in a Set Packing Problem
Q 10 Collection of subsets of objects in a Set Packing Problem
b; 10 Number of copies for each object ¢ in a Set Packing Problem
¢ 11 Cost of opening a facility at location ¢ in a Facility Location Problem
dij 11 Cost of serving a user j from facility ¢
2; 11 Binary variable showing whether or not the facility is selected at location ¢
Tij 11 Binary variable that associates user j served by facility ¢ in Facility Location Problem
z; 11 Decision variable for location 4, which is equal to one if the facility is selected
7). g(), h() 12 Utility functions for the discovery, virtual network mapping and allocation phase
¥ (v5) 12 Number of virtual nodes (requested by user j)
P (;) 12 Number of virtual links (requested by user j)
n‘; (nfj) 12 Decision variable on virtual (physical) node mappable (mapped) to user 7)
5 i) 12 Decision variable on virtual (physical loop-free path) link mappable (mapped) to user j)
O (Prj) 12 System’s revenue when user j gets assigned to virtual node ¢ (virtual link &.)
cr (C}C) 12 Max virtual nodes (links) that can be simultaneously hosted on the physical node ¢ (physical path k)

TABLE 1
NOTATIONS USED IN THE PAPER.

Ex. 1002 - Page 429 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 17 of 194

B. Network mapping without constraints

The problem of static assignments of resources to a virtual
network has been investigated in [81]. Since it is NP-hard,
the authors proposed a heuristic to select physical nodes with
lower stress (i.e., with the lower number of virtual nodes
already assigned to a given physical node), in an attempt
to balance the load. The algorithm consists of two separate
phases: node mapping and link mapping. The node map-
ping phase consists of an initialization step —cluster center
localization— and an iterative subroutine —substrate node
selection— that progressively selects the next physical node
u’ to which the next virtual node is mapped, i.e. the physical
node with the least stress.

In particular, the center cluster is selected as follows:

1 = arg max [Snmaz — SN (V)] Z [Stmaz — SL(1)]

leL(v)

where Sy maz and Spnqe are the maximum node and link stress
seen so far in the physical network, respectively. Sy (v) is the
stress on the physical node v, while Sy (l) is the stress on
the physical link {. [Spmaz — Sy (v)] captures the availability
of node v, while the availability on the links adjacent to v is
captured by ZzeL(u)[Slmaz — Sr()].

The substrate node selection subroutine maps the remaining
virtual nodes by minimizing a potential function proportional
to both node and link stress on the physical network, i.e.:

> D(v,u)
r_ . uEV 4)
A g e Sn(v) T e

where V4 is the set of already selected substrate nodes, v is
an index over all physical nodes (so v could be the same as
some u), € is a small constant to avoid division by zero, and
D is the distance between any two physical nodes v and u
and it is defined as:

. 1
D(U,u) N PGI‘B%B,U) e Slmaz - SL(l) +€
P
where p is an element of all loop-free paths P(u,v) on the
physical network that connects nodes u and v. The node
mapping phase successfully terminates when all the virtual
nodes are mapped.

The link mapping invokes a shortest path algorithm to find
a minimum hop (loop-free) physical path connecting any pair
of virtual nodes.

In the same paper, the authors modify this algorithm by
subdividing the complete topology of a virtual network into
smaller star topologies. These sub-topologies can more readily
fit into regions of low stress in the physical network.

C. Network mapping with constraints

Many of the solutions to the virtual network mapping
problem consider some constraints in the query specification.
Lu and Turner [55] for example, introduce flow constraints in
a mapping of a single virtual network. The NP-hard mapping
problem is solved by greedily finding a backbone-star topology
of physical nodes (if it exists, otherwise the slice cannot be

Ex. 1002 - Page 430

embedded), and the choice is refined iteratively by minimizing
a notion of cost associated with the candidate topologies. The
cost metric of a virtual link is proportional to the product
of its capacity and its physical length. No guarantees on the
convergence to an optimal topology mapping are provided,
and only bandwidth constraints are imposed.

A novel outlook on the virtual network mapping problem for
virtual network testbeds is considered in [21]. A topology and
a set of (upper and lower bound) constraints on the physical
resources are given, and a feasible mapping is sought. In
order to reduce the search space of the NP-hard problem, a
depth-first search with pruning as soon as a mapping becomes
infeasible is used.

Another solution that considers embedding with constraints
is presented in [52]. The authors propose a backtracking algo-
rithm based on a subgraph isomorphism search method [48],
that maps nodes and links simultaneously. The advantage of a
single step node-link approach is that link constraints are taken
into account at each step of the node mapping, therefore when
a bad decision is detected, it can be adjusted by backtracking
to the last valid mapping. With a two-stage approach instead,
the remapping would have to be done for all the nodes, which
is computationally expensive.

D. Network mapping + allocation

In all the solutions that focus only on the virtual network
mapping task, only a single virtual network is considered (with
or without constraints), abd no resource allocation mechanism
is provided. In case the mapping algorithm is designed for
virtual network testbeds such as Emulab [77] or Planetlab [65],
this may not be an issue except in rare cases, e.g., during
conference deadlines (see e.g., Figure 1 in [5]). The lack of
resource allocation is instead detrimental to an efficient slice
embedding when the system aims to embed virtual networks
(slices) that are profitable to the leasing infrastructure.

We discuss the case study of [79], that adds resource
allocation to the virtual network mapping task, and hence
introduces cooperation between the last two tasks of the slice
embedding problem. The solution proposed in [79] is targeted
specifically for infrastructure providers, as the physical re-
sources considered—bandwidth and CPU—are assumed to be
rentable. The authors define a revenue function R for each
requested virtual network GV = (NV, LV) as:

LGy = > bw()+Q > crUmY), @
VeLv nvVeENV
where bw,.(I"V) and CPU,.(n") are the bandwidth and the
CPU requirements for the virtual link /¥ and the virtual node
nV, respectively. LY and NV are the sets of requested virtual
links and nodes, and 2 captures the price difference that the
infrastructure provider may charge for CPU and bandwidth.
The algorithm is depicted in Figure 3: after collecting a
set of requests, a greedy node mapping algorithm with the
objective of maximizing the (long term) revenue R is run. In
particular, the algorithm consists of the following three steps:
1) First the requests are sorted by revenue II(GY) so
that the most profitable mapping is sought with highest
priority.

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 18 of 194

j Queued Requests
Requests
I |
~ |

Time

Greedy Node

Mapping

‘_—‘[Unsplittable Link Mapping (K-shortest path) }

“‘{ Splittable Link Mapping }
i
[Path Migration }

Fig. 3. Path splitting and migration mapping algorithm [79].

2) Then the physical nodes with insufficient available CPU
capacity are discarded to reduce the complexity of the
search.

3) Similarly to [81] (see Section V-B), a virtual node is
mapped on the physical node n (if it exists) that
maximizes the available resources H, where:

H(n®)=CPUL(n") > buw,(")
IPeL(nP)

CPU,(n") and bw,(IT) are the CPU and bandwidth
available on the physical node n” and link I”, respec-

tively, and L(n?) is the set of links adjacent to n”.

After the node mapping, different link mapping algorithms
are presented. First, the authors propose to use a k-shortest
path algorithm [27]. The originality of this paper though,
lies in the improvement of such a link assignment algorithm
through two techniques: path splitting and path migration.
In path splitting the virtual routers forward a fraction of the
traffic through different physical paths to avoid congestion of
critical physical links useful to host other virtual networks.
Path migration instead is adopted to further improve the
resource utilization as it consists of a periodic link mapping re-
computation with a larger set of pre-mapped virtual networks,
leaving unchanged both node mapping—virtual node cannot
migrate on another physical node— and the path splitting
ratios—fraction of the total virtual links requested to which
at least two physical loop-free paths are assigned. After the
link mapping algorithm, the slice requests that could not be
embedded are queued for a re-allocation attempt, and they are
definitively discarded if they fail a given number of attempts.

Inspired by [79] and by the PageRank algorithm [63], two
topology-aware virtual network mapping and allocation algo-
rithms (Random Walk MaxMatch and Random Walk Breath
First Search) have been recently proposed [15]. The novelty,
and common underlying idea of the two algorithms, is to use
the same Markov chain model used in PageRank [63] to sort
both physical and virtual nodes (instead of web pages), and
map the most important virtual nodes to the most important
physical nodes. A physical (virtual) node is highly ranked not
only if it has available (required) CPU, and its adjacent links

Ex. 1002 - Page 431

have available (required) bandwidth (as in [79]), but also if its
neighbors (recursively) have high rank.

After sorting both physical and virtual nodes, highly ranked
virtual nodes are mapped to highly ranked physical nodes.

E. Dynamic approaches to network mapping and allocation

As mentioned in Section III-B, in the virtual network
mapping task, virtual resources may be statically assigned to
each physical resource, or they can be reassigned to maximize
some notion of utility during the lifetime of a slice.

Many algorithms whose task is simply to discover feasible
mappings are considered static, whether they use simulated
annealing [67], genetic algorithms [77], or backtrack heuris-
tics [54], [52]. A static resource assignment for multiple virtual
networks though, especially when each virtual network needs
to be customized to a particular application, can lead to lower
performance and under utilization of the physical resources.
Being aware of such inefficiencies, adaptive mechanisms to re-
allocate physical resources, on demand or periodically, have
been proposed.

Zan and Ammar [81] have proposed a dynamic version of
their mapping algorithm, in which critical nodes and links in
the physical network are periodically identified. To evaluate
the current stress levels Sy and Sy, for nodes and links, two
metrics are defined: the node and link stress ratio (Ry and
Rp). The former is the ratio between the maximum node stress
and the average node stress across the whole physical network,
while the latter is the ratio between the maximum link stress
and the average link stress. Formally:

maX,ene SN(U)
[>vene Sn(@)/INF
max;err Sp(l)

T uerr SLOV/ILT]

where N¥ and L” are the set of physical nodes and edges
of the hosting infrastructure, respectively. Ry and Rp,
are periodically compared, and new requests are mapped
optimizing the node stress if Ry > Rp, or the link stress
if Ry < Rp. This process is iterated with the aim of
minimizing the stress across the entire physical network.

Ry =

Ry,

Dynamic mapping approaches also include the solutions
proposed in [55], since virtual links are iteratively reassigned,
and in [79], due to the migration operations. Although without
any considerations to the node constraints, also in [29] the
authors consider a dynamic topology mapping for virtual
networks.

A solution to the dynamic network mapping problem
that uses optimization theory was presented in the DaVinci
architecture—Dynamically Adaptive Virtual Networks for a
Customized Internet [37]. A physical network with ng vir-
tual mapped networks is considered. Each virtual network
k=1,...,ng runs a distributed protocol to maximize its own
performance objective function U*(-), assumed to be convex
with respect to network parameters, efficiently utilizing the
resources assigned to it. These objective functions, assumed
to be known to a centralized authority, may vary with the

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 19 of 194

traffic class (e.g., delay-sensitive traffic may wish to choose
paths with low propagation-delay and keep the queues small to
reduce queuing delay, while throughput-sensitive traffic may
wish to maximize aggregate user utility, as a function of
rate), and may depend on both virtual path rates z(*) and the
bandwidth share y*) of virtual network k over every physical
link {.

The traffic-management protocols running in each virtual
network are envisioned as the solution to the following opti-
mization problem:

maximize
subject to

U (209, k)
COL0) & (k)
g™ (") <0

28 >0

3

where z(%) are the variables (virtual path rates), gt*)(z(%))
are general convex constraints and C*) defines the mapping
of virtual paths over physical links. This means that there
could be many flows on a single virtual network, i.e., a virtual
network £ may host (allocate) multiple services. In particular,
cl(@ = 1 if virtual path j in virtual network k uses the physical
link ! and 0 otherwise. *

The dynamism of this approach lies in the periodic band-
width reassignment among the 1 hosted virtual networks. The
physical network in fact runs another (convex) optimization
problem, whose objective is to maximize the aggregate utility
of all the virtual networks, subject to some convex constraints:

maximize ., Ol NOIPORAON

subject to CRIz(k) < ¢(k) v
Sy <D)
g™ (k) <0 Vk @)
28 >0 Vk

variables 2% y(*) vk

where w'®) is a weight (or priority) that a centralized
authority in charge of embedding the slices assigns to each
virtual network, and D represents the physical capacities. Note
how there are two levels of resource allocation in this model:
each slice maximizes its utility by assigning capacity to each
service hosted, and the physical network maximizes its utility
by assigning resources to some slices.

As in [79], the DaVinci architecture allows (virtual) path
splitting, causing packet reordering problems, and assumes the
node mapping to be given. A more serious limitation is the
assumption that physical links are aware of the performance
objectives of all the virtual networks, which may not be
possible in real world settings.

F. Distributed Virtual Network Mapping Solutions

All the previously discussed solutions assumed a centralized
entity that would coordinate the mapping assignment. In
other words, their solutions are limited to the intra-domain
virtual network mapping. These solutions are well suited for

4As in [42], a system may in fact be hosted on a physical infrastructure by
leasing a slice, and then provide other services by hosting (even recursively)
other slices.

Ex. 1002 - Page 432

enterprises serving slices to their customers by using only
their private resources. However, when a service must be
provisioned using resources across multiple provider domains,
the assumption of a complete knowledge of the substrate net-
work becomes invalid, and another set of interesting research
challenges arises.

It is well known that providers are not happy to share traffic
matrices or topology information, useful for accomplishing an
efficient distributed virtual network mapping. As a result, ex-
isting embedding algorithms that assume complete knowledge
of the substrate network are not applicable in this scenario.

To the best of our knowledge, the first distributed virtual
network mapping problem was devised by Houidi et al. [40].
The protocol assumes that all the requests are hub-spoke
topologies, and runs concurrently three distributed algorithms
at each substrate node: a capacity-node-sorting algorithm, a
shortest path tree algorithm, and a main mapping algorithm.
The first two are periodically executed to provide up to date
information on node and link capacities to the main mapping.

For every element mapped, there has to be a trigger and
a synchronization phase across all the nodes. The algorithm
is composed of two phases: when all nodes are mapped,
a shortest path algorithm is run to map the virtual links.
The authors propose the use of an external signalling/control
network to alleviate the problem of the heavy overhead.

In [17], the authors proposed a simultaneous node and link
distributed class of mapping algorithms. In order to coordinate
the node and the link mapping phases, the distributed mapping
algorithm is run on the physical topology augmented with
some additional logical elements (meta node and meta links)
associated with the location of the physical resource.

In [16], the same authors describe a similar distributed
(policy-based) inter-domain mapping protocol, based on ge-
ographic location of the physical network: PolyVIiNE. Each
network provider keeps track of the location information of
their own substrate nodes employing a hierarchical addressing
scheme, and advertising availability and price information to
its neighbors via a Location Awareness Protocol (LAP) —
a hybrid gossiping - publish/subscribe protocol. Gossiping
is used to disseminate information in a neighborhood of a
network provider and pub/sub is employed so a provider could
subscribe to other providers which are not in its neighborhood.
Poly VINE also considers a reputation metric to cope with the
lack of truthfulness in disseminating the information with the
LAP protocol.

VI. ALLOCATION

Different strategies have been proposed when allocating
physical resources to independent parties. Some solutions pre-
fer practicality to efficiency, and adopt best effort approaches,
(see, e.g., PlanetLab [65]), while others let the (selfish) users
decide the allocation outcome with a game [43], [42]. When
instead it is the system that enforces the allocation, it can do it
with [33] or without [5] providing guarantees. In the remainder
of this section we focus first on the game theoretic solutions to
resource allocation, and then on the latter case, describing first
a set of solutions dealing with market-based mechanisms [5],

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 20 of 194

[49], [9], and then a reservation-based approach [33]. All those
solutions focus solely on the standalone allocation task of the
slice embedding problem.

A. Game-theory based allocation

Londoiio et al. [43] defined a general pure-strategies colo-
cation game which allows users to decide on the allocation of
their requests. In their setting, customer interactions is driven
by the rational behavior of users, who are free to relocate and
choose whatever is best for their own interests. Under their
model, a slice consists of a single node in a graph that needs
to be assigned to a single resource. They define a cost function
KC; (@) for user ¢ when mapped to resource j as

@@:a%-)
J

where w;; is the weight (or utilization) imposed on resource
J by user i, P; is the price (in dollars) of the resource j, U;
is the overall utilization of resource j, which must satisfy its
capacity constraint

Uj=> w;i <R, ©)
ieJ
where J is the set of users mapped on resource j, and R; is
the physical CPU capacity of resource j.

They define a rational “move” of user 7 from resource a
to resource b if Ry(i) < Rq(4). The game terminates when
no user has a move that minimizes her cost. Note how the
utility of a user (player) is higher if she can move to a more
“loaded” resource, as she will share the cost with the other
players hosted on the same resource.

The model has two interesting properties. First, the inter-
action among customers competing for resources leads to a
Nash Equilibrium (NE), i.e. a state where no customer in
the system has incentive to relocate. Second, it has been
shown that the Price of Anarchy—the ratio between the
overall cost of all customers under the worst-case NE and
that cost under a socially optimal solution— is bounded by
3/2 and by 2 for homogeneous and heterogeneous resources,
respectively. The authors also provide a generalized version of
this game (General Colocation Game), in which resources to
be allocated are graphs representing the set of virtual resources
and underlying relationships that are necessary to support a
specific user application or task. In this general case however,
the equilibrium results no longer hold as the existence of a
NE is not always guaranteed.

The work by Chen and Roughgarden [14] also introduces
a game theoretical approach to link allocation in the form of
source-destination flows on a shared network. Each flow has
a weight and the cost of the link is split in proportion to the
ratio between the weight of a flow and the total weights of all
the flows sharing the physical link.

As shown, even recently by Chowdhury [17], in a cen-
tralized solution, the virtual network mapping problem can
be thought of as a flow allocation problem where the virtual
network is a flow to be allocated on a physical network.

These two game theoretic approaches may serve as inspir-
ing example for new allocation strategies involving different

Ex. 1002 - Page 433

selfish principles for virtual service provisioning / competition.
A system may in fact let the users play a game in which the
set of strategies represent the set of different virtual networks
to collocate with, in order to share the infrastructure provider
costs.

B. Market-based allocation

When demand exceeds supply and not all needs can be
met, virtualization systems’ goals can no longer be related to
maximizing utilization, but different policies to guide resource
allocation decisions have to be designed. A natural policy is to
seek efficiency, namely, to allocate resources to the set of users
that bring to the system the highest utility. To such an extent,
the research community has frequently proposed market-based
mechanisms to allocate resources among competing interests
while maximizing the overall utility of the users. A subclass of
solutions dealing with this type of allocation is represented by
auction-based systems. An auction is the process of buying
and selling goods or services by offering them up for bid,
taking bids, and then selling them to the highest bidder.

Few examples where auctions have been adopted in
virtualization-oriented systems are Bellagio [5], Tycoon [49]
and Mirage [9]. They use a combinatorial auction mechanism
with the goal of maximizing a social utility (the sum of the
utilities for the users who get the resources allocated).

A Combinatorial Auction Problem (CAP) is equivalent to a
Set Packing Problem (SPP), a well studied integer program:
given a set O of elements and a collection () of subsets of
these elements, with non-negative weights, SPP is the problem
of finding the largest weight collection of subsets that are
pairwise disjoint. This problem can be formulated as an integer
program as follows: we let y; = 1 if the gt set in W with
weight w; is selected and y; = 0, otherwise. Then we let
a;; = 1 if the jt" set in W contains element i € O and zero
otherwise. If we assume also that there are b; copies of the
same element ¢, then we have:

maximize .oy WiY;
subject to >y aiy; S by Vi€ O (7)
y]:{oal}vjeQ

SPP is equivalent to a CAP if we think of the y ;s as the users
to be possibly allocated and requesting a subset of resources
in O, and w; as the values of their bids. Note that solving a
set packing problem is NP-Hard [25]. This means that optimal
algorithms to determine the winner in an auction are also NP-
Hard. To deal with this complexity, many heuristics have been
proposed. In [5] for example, the authors rely on a thresholding
auction mechanism called SHARE [20], which uses a first-fit
packing heuristic.

Another example of a system that handles the allocation for
multiple users with an auction is Tycoon [49]. In Tycoon, users
place bids on the different resources they need. The fraction of
resource allocated to one user is her proportional share of the
total bids in the system. For this reason, Tycoon’s allocation
mechanism can also be considered best-effort: there are no
guarantees that users will receive the desired fraction of the
resources. The bidding process is continuous in the sense that

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 21 of 194

User

Fig. 4. Architecture and allocation phases in SHARP [33].

any user may modify or withdraw their bid at any point in time,
and the allocation for all the users can be adjusted according
to the new bid-to-total ratio.

As pointed out in [4], although market-based allocation
systems can improve user satisfaction on large-scale federated
infrastructures, and may lead to a social optimal resource
allocation, there are few issues that should be taken into
account when designing such mechanisms. In fact, the system
may be exploited by users in many ways. Current auction-
based resource allocation systems often employ very simple
mechanisms, and there are known problems that may impact
efficiency or fairness (see [4], Section 6). We report three of
them here:

o underbidding: users know that the overall demand is low
and they can drive the prices down.

o iterative bidding: often one shot auctions are not enough
to reach optimal resource allocation but the iterations may
not end by the time the allocations are needed.

e auction sandwich attack: occurs when users bid for
resources in several time intervals. This attack gives the
opportunity to deprive other users of resources they need,
lowering the overall system utility.

C. Reservation-based allocation

As the last piece of this section on allocation approaches,
we discuss a reservation-based system, SHARP [33] whose
architecture is depicted in Figure 4. The system introduces
a level of indirection between the user and the centralized
authority responsible for authentication and for building the
slice: the broker or agent. The authority issues a number
of tickets to a number of brokers (usually many brokers
responsible for a subset of resources are connected). Users
then ask and eventually get tickets, and later in time, they
redeem their tickets to the authority that does the final slice
assignment (Figure 4).

This approach has many interesting properties but it may
lead to undesirable effects. For example, coexisting brokers
are allowed to split the resources: whoever has more requests
should be responsible for a bigger fraction of them. This

Ex. 1002 - Page 434

Ol
Hard
Guampices

\ Oversubscription
LO / 1 Degree (OD)

Fig. 5. Different values of Oversubscription Degree tune allocation guaran-
tees [33].

sharing of responsibilities may bring fragmentation problems
as resources become divided into many small pieces over time.
Fragmentation of the resources is a weakness, as the resources
become effectively unusable being divided into pieces that are
too small to satisfy the current demands.

One of the most relevant contributions of SHARP in the
context of the slice embedding problem, is the rule of the
Oversubscription Degree (OD). The OD is defined as the
ratio between the number of issued tickets and the number
of available resources. When OD is greater than one, i.e.,
there are more tickets than actual available resources, the user
has a probability less than one to be allocated even though
she owns a ticket. When instead OD is less or equal than
one, users with tickets have guaranteed allocation (Figure 5).

Note how the level of guarantees changes with OD. In
particular, when the number of tickets issued by the authority
increases, the level of guarantees decreases. The authors say
that the allocation policy tends to a first come first serve
for OD that tends to infinity. In other words, if there are
infinite tickets, there is no reservation at all, and simply the
first requests will be allocated. The oversubscription degree is
not only useful to control the level of guarantees (by issuing
less tickets than available resources the damage from resource
loss if an agent fails or becomes unreachable is limited), but
it can be used also to improve resource utilization by means
of statistical multiplexing the available resources.

VII. FACILITY LOCATION PROBLEMS

In this section we discuss a set of problems similar to slice
embedding: the facility location problems. Facility location
is a branch of operations research whose goal is to assign
a number of facilities to a set of users, while minimizing a
given cost function. An ample amount of literature exists on
centralized [61], [76] or distributed [32], [50] solutions for this
NP-hard problem [44].

The centralized facility location problem is defined as
follows: suppose we are given n potential facility locations
and a list of m users who need to be serviced from these
locations. There is an initial fixed cost ¢; of opening the facility
at location 4, while there is a cost d;; of serving a user j from
facility 7. The goal is to select (open) a set of facility locations
and to assign each user to one facility, while minimizing the
cost.

In order to model this problem, we define a binary decision
variable z; for each location ¢, which is equal to one if the
facility is selected, and 0 otherwise. In addition, we define a
binary variable x;; = 1 if user j is served by facility ¢, and O

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 22 of 194

Winners

9 P 9 .
{nij, prs} {“%ka}

Available Resources List of Candidates

Fig. 6. Interactions and data exchanges in the slice embedding problem.

otherwise. The facility location problem is then formulated as
follows:
minimize Z?:l ¢z + Z;nzl Z?:l d”'l‘l'j
subject to > w5 =1 Vj
CL‘ij,Zi < {O, 1} VZ,V_]

®)

The affine constraint Y ;. , z;; = 1 enforces a single facility
to a user, while the constraint x;; < z; ensures that if there
is no facility at location ¢, i.e. z; = 0, then user j cannot be
served there, and we must have z;; = 0.

The facility location and the slice embedding problems may
look similar since both have the high level goal of assigning
a set of resources to a set of users, and both solutions require
knowledge of the resource availability to work efficiently.
However, the two problems differ in many aspects: first,
the facility location assignment algorithms usually assume
no cooperation with the discovery protocol, while in the
slice embedding problem the resource discovery is directly
interacting with the other two phases, as we discuss in the
next section. More importantly, the slice embedding problem
assumes that resources are virtual instances of both nodes and
edges of the physical infrastructure, as opposed to standalone
facilities to be assigned to users. This detail leads to important
differences in the assignment algorithms as explained in [79]
and in [52]. Moreover, facility location problems assume
that each and every user has to be assigned to only one
physical resource (and the positive cost to the system of such
assignment is minimized), while this assumption disappears in
the slice embedding problem where, in general, there may not
be the guarantee that every user is allocated.

VIII. ON MODELING THE SLICE EMBEDDING PROBLEM

In this section we use optimization theory to model the
interactions between the three phases of the slice embedding
problem. We first model each standalone phase — resource
discovery, virtual network mapping, and allocation — and
subsequently model the slice embedding problem as a whole
by merging the three phases into a centralized optimization
problem. Consider the ellipsoid in Figure 6, augmented from
Figure 1 (we explain the rest of the notation throughout this
section): user j requests a virtual network composed of y; € N
virtual nodes, 1; € N virtual links and a vector of constraints
Cile) =< Cj(er),...,Cj(e.) > where e is a vector of

Ex. 1002 - Page 435

¢ = ; + 1; elements — nodes and links — of the network.
Discovery: To model the resource discovery we introduce two
binary variables, nf and p;, that are equal to 1 if the it"
physical node and the £** loop-free physical path, respectively,
are available, and zero otherwise. An element is available
if a discovery operation is able to find it, given a set of
protocol parameters, e.g., find all loop-free paths within a
given deadline, or find as many available physical nodes as
possible within a given number of hops.

If the system does not return at least v physical nodes and
1) available loop-free physical paths among all the possible
N nodes and P paths of the physical network G, then the
user’s request should be immediately discarded. Among all
possible resources, the system may choose to return a set
that maximizes a given notion of utility. Those utilities may
have the role of selecting the resources that are closer —
with respect to some notion of distance — to the given set
of constraints C(e). If we denote as u; € R and w;, € R
the utility of physical nodes and paths respectively, then
the discovery phase of the slice embedding problem can be
modeled as follows:

maximize f(n}",pr) = Yien Wiy + LgepWrPk

subject to >,y nf >

D opepPk =Y
nl’ i € {0,1} Vi Vk

After the discovery phase is completed, the vectors of available
physical resources (n”,p) are passed to the virtual network
mapper.

Virtual Network Mapping: This phase takes as input all
the available resources (subset of all the existing resources)
P’ C P and N' C N, maps virtual nodes to physical nodes,
virtual links to loop-free physical paths, and returns a list of
candidates — virtual nodes and virtual links — to the allocator.
To model this phase, we define two sets of binary variables
nx Vi € N', and ly; Vk € P’, ¥j € J, where J is the set of
users requesting a slice. n}g = 1 if a virtual instance of node ¢
could possibly be mapped to user j and zero otherwise, while
lr; = 1 if a virtual instance of the loop-free physical path
k could possibly be mapped to user j, and zero otherwise.
The virtual network mapping phase of the slice embedding
problem can hence be modeled by the following optimization
problem:

(&)

maximize g(n)}, lj) = 2 ien ©iinl; + Xpepr Prilis)

subject to Y, n}; = Vied
dpep by = Vjed
n};:ng Vie N VjelJ
lkj Spkj Vk e P’ VJGJ
nf;,nyj,pkj,lkj € {0,1} Vi Vj Yk,

10)
where ©;; is the revenue that the system would get if user
J gets assigned to virtual node i, and ®;; is the system’s
revenue if the user j gets the virtual link k. The first two
constraints enforce that all the virtual resources requested by
each user are mapped, the third constraint ensures that the one-
to-one mapping between virtual and physical nodes is satisfied,
and the fourth constraint ensures that at least one loop-free
physical path is going to be assigned to each virtual link of

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 23 of 194

the requested slice.

Allocation: As soon as the virtual mapping candidates have
been identified, a packing problem needs to be run, considering
both user priorities and physical constraints. Enhancing the
level of details from the standard set packing problem [71] to
virtual nodes and links, we model the allocation phase of the
slice embedding problem as follows:

maximize h(y;) = > ; wiY;
subject to 3. ; nxyj <Cr VieN' an
Yieslhjy; < Cp VE € P!

Ui € {071} v]

where C?* and C}. are the number of virtual nodes and links
respectively, that can be simultaneously hosted on the physical
node i and physical path k, respectively, and y; is a binary
variable equal to 1 if user j has been allocated and zero
otherwise. A weight w; is assigned to each user j, and it
depends on the allocation policy used (e.g. in first-come first-
serve, w; = w Y j, or in a priority based allocation
w; represents the importance of allocating user j’s request).
As multiple resources are typically required for an individual
slice, the slice embedding needs to invoke the appropriate
resource allocation methods on individual resources, and it
does so throughout this last phase. Each resource type may
in fact have its own allocation policy (e.g., either guaranteed
or best-effort resource allocation models), and this phase only
ensures that users will not be able to exceed physical limits
or their authorized resource usage. For example, the system
may assign a weight w; = 0 to a user that has not yet
been authorized, even though her virtual network could be
physically mapped.

Slice Embedding: In order to clarify how the three phases
of the slice embedding problem interact and how they may
impact efficiency in network virtualization, we formulate a
centralized optimization problem that considers the slice em-
bedding problem as a whole. In particular, we model the three
phases as follows:

maximize o - f(nf, ;) + 8- g(nf, lg) + 8 - h(y;)

subject to YienTs = Vi (12a)
Y okepPrj =05 Yy (12b)

Ying = Vi (12¢)

Soulig = v Vi (12d)

nY; =ni; Vi Vj (12e)

lk; <pr; Yk V) (12f)

Zjejnl‘-gyj <CP Vi (12g)

S es lejys < CL (12h)

y; <ny; Vi Vi (129)

Yy <lij Yk Y (12j)

Yis nf;vpkjwnx7 lk]a S {07 1} Vi v] (12k)

where the first nine constraints (from (12a) to (12h)) are
the same as in problems (9), (10) and (11), respectively, the
two coupling constraints (12¢) and (127) guarantee that a user

Ex. 1002 - Page 436

is not allocated unless all the resources she queried can be
mapped, and «, 3 and ¢ are normalization factors.

Note how constraints (12¢), (12f) and constraints (12¢) and
(127) bind the three phases of the slice embedding problem
together. However, all the above constraints have never been
simultaneously considered before in related literature. In [79]
for example, the first two as well as the last two constraints
are omitted (plus « = & = 0), and a global knowledge of
the resource availability is assumed. Other solutions that focus
only on the virtual network mapping phase (for example [81]),
omit even the capacity constraints (12g) and (12h).

From an optimization theory point of view, constraint omis-
sions in general may result in sub-optimal solutions while
constraint additions may lead to infeasible solutions. For
example, the resource discovery constraints impact the other
phases of the slice embedding, since a physical resource not
found certainly cannot be mapped or allocated. Moreover, it is
useless to run the virtual network mapping phase on resources
that can never be allocated because they will exceed the
physical capacity constraints. As a consequence, centralized
or distributed solutions for the slice embedding problem as
a whole seem to be a valuable research subarea of network
virtualization.

IX. OPEN PROBLEMS

In this section we present some research challenges that are
important to achieving efficient slice embedding. In general,
due to its complexity, an efficient and largely scalable solution
for the slice embedding problem that involves all the three
tasks is still elusive.

A. Devising new heuristics and approximation algorithms

As described in Section V, the virtual network mapping
is often split into node and link mappings to reduce the
complexity. Note, however, that such assignments are not inde-
pendent. In other words, solving them sequentially introduces
sub-optimalities. Researchers should therefore keep in mind
that node assignments affect link assignments and vice-versa
when devising heuristics for this particular task of the slice
embedding problem.

Another interesting research direction is to devise heuris-
tics for conflicting objectives. For example, it is not clear
whether load balancing is the only way to improve system
performance as done in [81]. One can think about optimizing
other objectives such as bin packing on the physical resources
to save power. Clearly these two optimization approaches are
different and over the lifetime of a slice, one may need to
optimize one more than the other. The load profiling technique
presented in [59], seems to be a more generalized approach
than bin packing and load balancing, where neither extreme
is the objective, and the system attempts to match some target
load distribution across the physical resources.

Although approximation algorithms have been discussed for
similar problems (see for example [46] or in [12]), to the best
of our knowledge, only in [16] they have been applied to the
virtual network mapping task, thus leaving the modeling o
the interaction with discovery and allocation open for further
research.

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 24 of 194

B. Addressing scalability and cooperation among the slice
embedding tasks

In all the solutions discussed, it is assumed that allocators
have ubiquitous and updated information on the physical
network. A resource allocator’s ability to make effective and
efficient use of the available resources, however, is governed
by how much information is available to it at the time it needs
to make a decision. Thus, its interaction with the resource
discovery is key. An important factor in this interaction is
how much data must be passed back and forth between
the two components. While passing node information—how
much resources are still available on each particular physical
node—should be manageable, path information is O(n?) in
the number of nodes, and hence will scale poorly.

Another open question is whether and how a system can
achieve efficient allocation with partial information: although
we are not the first to advocate that resource discovery and
allocation in virtualization oriented architectures should work
tightly together (Ricci et al. in [68] for example, claim that
the Emulab testbed is being improved by keeping this design
principle in mind), it is still not clear how much data should
pass between the discoverer and the allocator, how often the
two tasks need to communicate, and which subset of available
resources should be advertised to the allocator.

C. Modeling interactions between the slice embedding tasks

Generally, when designing solutions that involve different
tasks of the slice embedding problem, researchers may utilize
(distributed) optimization techniques. It is in fact possible
to view each phase of the slice embedding problem as a
standalone optimization problem, where different principles
try to optimize the different tasks of the slice embedding
problem, passing around a limited amount of information, to
obtain a globally optimal embedding solution. An efficiency-
overhead trade-off analysis of the mechanisms that involve
such message passing among the tasks encompassing the
slice embedding problem could be helpful in designing novel
virtualization-based systems. Such an analysis could also be
generalized to the cooperation among any coexisting infras-
tructure services [30], with the help of (centralized or dis-
tributed) optimization theory [8], [24], control or even game
theory, for those cases where the principles involved are selfish
or do not have incentives to cooperate.

D. Dissecting distributed decomposition alternatives

A systematic understanding of the decomposability struc-
tures of the slice embedding problem may help obtain the
most appropriate distributed algorithms, given the application.
Decomposition theory provides tools to build analytic founda-
tions for the design of modularized and distributed control of
both physical and virtual networks.

For a given problem representation, there are often many
choices of distributed algorithms, each leading to different
outcome of the global optimality versus message passing
tradeoff [56], [64]. Which alternative is the best depends on
the specifics of the slice embedding application.

Ex. 1002 - Page 437

We believe that qualitative or quantitative comparisons
across architectural decomposition alternatives of the slice
embedding problem is an interesting research area. When
designing novel (virtual) network architectures for specific
applications, to understand where to place functionalities and
how to interface them is an issue that could be more critical
than the design of how to execute and implement the func-
tionalities themselves.

E. Supporting multiple allocators

Since each allocator can only make scheduling decisions
based on the jobs submitted to it, it seems challenging to make
multiple allocators work together, and this opens an interesting
research direction. Allocation solutions consider only the
scheduling problem, but another interesting problem is what
to do after the resources are allocated. Since an infrastructure
should be able to host customized virtual networks, each with
different goals and constraints, we believe that there is not a
“right” type of resource allocator, but resource allocators of
modern distributed service architectures should rather support
different policies for different applications that they support;
for example, some users should be able to be allocated in a
first come first serve manner, others should have soft or hard
reservation guarantees. An architecture that would support a
range of allocation policies is still missing.

F. Protocol Design and Implementation

The recently proposed distributed service architectures (e.g.
NetServ [73] or RINA [23]) are a promising petri dish for
testing novel protocols and distributed applications. In the case
of RINA for example, (recursive) slice embedding protocols
could be designed and prototyped over virtualization-based
platforms. In particular, (inspired by [37]), we believe that
designing and implementing efficient protocols to guarantee a
given Service Level Agreement among slices managed by the
same, or by different providers, is an interesting research area.
In the case of the RINA architecture [23], where “Distributed
Inter-process communication Facilities (DIF)"—the building
blocks of the architecture — can be thought of as slices, this
would mean designing recursive protocols to enable service
provisioning across multiple tier-level providers. In fact, a DIF,
just as a slice, is a service building block that can be repeated
and composed in layers to build wider scoped services that
meet user requirements.

Moreover, as mentioned in Section VI-A, distributed pro-
tocols to capture competition and interactions among slice
embedding providers could be devised, assuming cooperation
among different principles providing the service, or by means
of a marketplace that allows selfish behavior.

X. CONCLUSIONS

Network virtualization has been proposed as the technology
that will allow growing and testing of novel Internet architec-
tures and protocols, overcoming the weaknesses of the current
Internet, as well as testing them in repeatable and reproducible
network conditions. Moreover, taking cue from current trends

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 25 of 194

in industry, it can be anticipated that virtualization will be
an essential part of future networks as it allows leasing and
sharing the physical (network) infrastructure. In this regard, an
important challenge is the allocation of substrate resources to
instantiate multiple virtual networks. In order to do so, three
main steps can be identified in the so called slice embedding
problem: resource discovery, virtual network mapping and
allocation.

We outlined how these three tasks are tightly coupled, and
how there exists a wide spectrum of solutions that either solve
a particular task, or jointly solve multiple tasks along with
the interactions between them. We then concluded with a few
interesting research directions in this area.

ACKNOWLEDGMENT

We thank Azer Bestavros, John Byers, Jonathan Appavoo
and Karim Mattar for their valuable feedback. This work was
supported in part by the National Science Foundation under
grants CNS-0963974, CCF-0820138, and CNS-0720604.

REFERENCES

[

[}

Jeannie Albrecht, David Oppenheimer, Amin Vahdat, and David A. Pat-
terson. Design and Implementation Trade-offs for Wide-Area Resource
Discovery. ACM Transaction Internet Technologies, 8(4):1-44, 2008.
David G. Andersen. Theoretical Approaches to Node Assignment.
Unpublished Manuscript, December 2002.

Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner.

Overcoming the Internet Impasse through Virtualization. Computer

Communication ACM, 38(4):34-41, 2005.

[4] Alvin AuYoung, Phil Buonadonna, Brent N. Chun, Chaki Ng, David C.

Parkes, Jeff Shneidman, Alex C. Snoeren, and Amin Vahdat. Two

Auction-Based Resource Allocation Environments: Design and Expe-

rience. Market Oriented Grid and Utility Computing, Rajmukar Buyya

and Kris Bubendorfer (eds.), Chapter 23, Wiley, 2009., 2009.

Alvin Auyoung, Brent N. Chun, Alex C. Snoeren, and Amin Vahdat.

Resource Allocation in Federated Distributed Computing Infrastructures.

In Proceedings of the 1st Workshop on Operating System and Architec-

tural Support for the Ondemand IT InfraStructure, October 2004.

[6] Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, and Aravind
Srinivasan. Resilient Multicast Using Overlays. SIGMETRICS Perform.
Eval. Rev., 31(1):102-113, 2003.

[7] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer
Rexford. In VINI Veritas: Realistic and Controlled Network Exper-
imentation. SIGCOMM ’'06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for computer
communications, pages 3—14, 2006.

[8] S. Boyd and L. Vandenberghe. Convex Optimization.
http://www.stanford.edu/people/boyd/cvxbook.html, 2004.

[9] Alvin AuYoung Chaki Ng David C. Parkes Jeffrey Shneidman Alex
C. Snoeren Brent N. Chun, Philip Buonadonna and Amin Vahdat.
Mirage: A Microeconomic Resource Allocation System for SensorNet
Testbeds. In Proceedings of the 2nd IEEE Workshop on Embedded
Networked Sensors, 2005.

[10] John W. Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav
Rost. Informed Content Delivery Across Adaptive Overlay Networks.
In In Proceedings of ACM SIGCOMM, pages 47-60, 2002.

[11] Jorge Carapinha and Javier Jimenez. Network Virtualization—a View
from the Bottom. VISA, ACM SIGCOMM Workshop on Virtualized
Infastructure Systems and Architectures, 17 August 2009.

[12] Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar.
Approximation Algorithms for the Unsplittable Flow Problem. APPROX
’02: Proceedings of the 5th International Workshop on Approximation
Algorithms for Combinatorial Optimization, pages 51-66, 2002.

[13] Kyle Chard, Kris Bubendorfer, and Peter Komisarczuk. High Occupancy

Resource Allocation for Grid and Cloud Systems, a Study with DRIVE.

In Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing, HPDC 10, pages 73-84, New

York, NY, USA, 2010. ACM.

[2

fl

3

=

[5

=

[14]

[15]

[16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

136
[37]

[38]

H.L. Chen and T. Roughgarden. Network Design with Weighted Players.
Theory of Computing Systems, 45(2):302-324, 2009.

Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang,
Yan Luo, and Jie Wang. Virtual Network Embedding Through Topology-
Aware Node Ranking. SIGCOMM Computer Communication Review,
41:38-47, April 2011.

Mosharaf Chowdhury, Fady Samuel, and Raouf Boutaba. PolyViNE:
Policy-Based Virtual Network Embedding across Multiple Domains. In
Proceedings of the second ACM SIGCOMM workshop on Virtualized
infrastructure systems and architectures, VISA 10, pages 49-56, New
York, NY, USA, 2010. ACM.

N. M. Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and Raouf
Boutaba. Virtual Network Embedding with Coordinated Node and Link
Mapping. In INFOCOM, pages 783-791, 2009.

N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A Survey of
Network Virtualization. Computer Networks, 54:862-876, April 2010.
B. Chun and A. Vahdat. Workload and Failure Characterization on a
Large-Scale Federated Testbed. Technical report, IRB-TR-03-040, Intel
Research Berkeley,, 2003.

Brent N. Chun, Chaki Ng, Jeannie Albrecht, David C. Parkes, and Amin
Vahdat. Computational Resource Exchanges for Distributed Resource
Allocation. 2004.

Jeffrey Considine, John W. Byers, and Ketan Meyer-Patel. A Constraint
Satisfaction Approach to Testbed Embedding Services. SIGCOMM
Computer Communication Review, 34(1):137-142, 2004.

Costas Courcoubetis and Richard R. Weber. Economic Issues in Shared
Infrastructures. VISA '09: Proceedings of the 1st ACM workshop on
Virtualized infrastructure systems and architectures, pages 89-96, 2009.
John Day, Ibrahim Matta, and Karim Mattar. Networking is IPC: A
Guiding Principle to a Better Internet. In Proceedings of the 2008 ACM
CoNEXT Conference, CONEXT ’08, pages 67:1-67:6, New York, NY,
USA, 2008. ACM.

D.Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization.
Ahena Scientific, 1997.

Sven de Vries and Rakesh V. Vohra. Combinatorial Auctions: A survey.
INFORMS Journal on Computing, (3):284-309, 2003.

N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K.
Ramakrishnan, and Jacobus E. van der Merwe. Resource management
with Hoses: Point-to-Cloud Services for Virtual Private Networks.
IEEE/ACM Transactions of Networking, 10(5):679-692, 2002.

David Eppstein. Finding the k Shortest Paths. SIAM J. Comput.,
28(2):652-673, 1999.

Flavio Esposito and Ibrahim Matta. PreDA: Predicate routing for DTN
architectures over MANET. In GLOBECOM 2009 - 2009 IEEE Global
Telecommunications Conference, pages 1-6. IEEE, November 2009.
Jinliang Fan and Mostafa H. Ammar. Dynamic Topology Configuration
in Service Overlay Networks: A Study of Reconfiguration Policies. In
Procedings of IEEE INFOCOM, 2006.

Nick Feamster, Lixin Gao, and Jennifer Rexford. How to Lease the
Internet in Your Spare Time. SIGCOMM Computer Communication
Review, 37(1):61-64, 2007.

Global Environment for Network Innovations. http://www.geni.net.
Christian Frank and Kay Roémer. Distributed Facility Location Algo-
rithms for Flexible Configuration of Wireless Sensor Networks. In
Proceedings of the 3rd IEEE International Conference on Distributed
Computing in Sensor Systems, DCOSS’07, pages 124-141, Berlin,
Heidelberg, 2007. Springer-Verlag.

Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vah-
dat. SHARP: an Architecture for Secure Resource Peering. SIGOPS
Operating System Review, 37(5):133-148, 2003.

GENI. End-user opt-in working group http://groups.geni.net/geni/wiki/
GeniOptln., 2009.

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. VL2: a Scalable and Flexible Data Center Network.
In Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, SIGCOMM ’09, pages 51-62, New York, NY, USA,
2009. ACM.

Brian Hayes. Cloud computing. Commun. ACM, 51(7):9-11, 2008.
Jiayue He, Rui Zhang-shen, Ying Li, Cheng yen Lee, Jennifer Rexford,
and Mung Chiang. DaVinci: Dynamically Adaptive Virtual Networks
for a Customized Internet. In Proc. CoNEXT, 2008.

Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi
Guruprasad, Tim Stack, Kirk Webb, and Jay Lepreau. Large-Scale
Virtualization in the Emulab Network Testbed. ATC’08: USENIX 2008
Annual Technical Conference on Annual Technical Conference, pages
113-128, 2008.

Ex. 1002 - Page 438 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 26 of 194

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

(60]

(61]
(62

Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 2009.

1. Houidi, W. Louati, and D. Zeghlache. A Distributed Virtual Net-
work Mapping Algorithm. In Communications, 2008. ICC '08. IEEE
International Conference on, pages 5634 —5640, May 2008.

An-Cheng Huang and Peter Steenkiste. Network-Sensitive Service
Discovery. USITS: USENIX Symposium on Internet Technologies and
Systems, 2003.

Vatche Ishakian, Raymond Sweha, Jorge Londofio, and Azer Bestavros.
Colocation as a Service: Strategic and Operational Services for Cloud
Colocation. In NCA, pages 76-83, 2010.

Azer Bestavros Jorge Londofio and Shanghua Teng. Collocation Games
And Their Application to Distributed Resource Management. In Pro-
ceedings of USENIX HotCloud’09: Workshop on Hot Topics in Cloud
Computing, San Diego, CA,, June 2009.

0. Kariv and S. Hakimi. An Algorithmic Approach to Network Location
Problems, Part II: P-Medians. SIAM Journal on Applied Mathematics,
37:539-560, 1979.

Morgan Kaufmann. The Grid. Blueprint for a New Computing Infras-
tructure. Elsevier Series in Grid Computing, 2 edition, December.
Stavros G. Kolliopoulos and Clifford Stein. Improved Approximation
Algorithms for Unsplittable Flow Problems. In Proceedings of the 38th
Annual Symposium on Foundations of Computer Science, pages 426—
435, 1997.

James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down
Approach. Addison Wesley, 2009.

C. Sansone L. P. Cordella, P. Foggia and M. Vento. An Improved
Algorithm for Matching Large Graphs. 3rd IAPR-TC15 Workshop on
Graph-based Representations in Pattern Recognition, pages 149-159,
2001.

Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A.
Huberman. Tycoon: An Implementation of a Distributed, Market-Based
Resource Allocation System. Multiagent Grid Syst., 1(3):169-182, 2005.
N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and
A. Bestavros. Distributed Placement of Service Facilities in Large-Scale
Networks. In INFOCOM, Anchorage, AK, May 2007.

Harold C. Lim, Shivnath Babu, Jeffrey S. Chase, and Sujay S. Parekh.
Automated Control in Cloud Computing: Challenges and Opportunities.
In Proceedings of the 1st Workshop on Automated Control for Datacen-
ters and Clouds, ACDC ’09, pages 13-18, New York, NY, USA, 2009.
ACM.

Jens Lischka and Holger Karl. A Virtual Network Mapping Algorithm
based on Subgraph Isomorphism Detection. VISA, ACM SIGCOMM
Workshop on Virtualized Infastructure Systems and Architectures, pages
81-88, 2009.

Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - A Hunter
of Idle Workstations. Proceedings of the 8th International Conference
of Distributed Computing Systems, June 1988.

Jorge Londono and Azer Bestavros. NETEMBED: A Network Resource
Mapping Service for Distributed Applications. Symposium on Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE International,
pages 1 -8, April 2008.

Jing Lu and Jonathan Turner. Efficient Mapping of Virtual Networks
onto a Shared Substrate. Technical report, Washington University in St.
Louis, 2006.

R.A. Calderbank M. Chiang, S.H. Low and J.C. Doyle. Layering
as Optimization Decomposition: A Mathematical Theory of Network
Architectures. Proc. of IEEE, 95(1):255-312, Jan 2007.

Harsha V. Madhyastha, Ethan Katz-bassett, Thomas Anderson, Arvind
Krishnamurthy, and Arun Venkataramani. iplane nano: Path prediction
for peer-to-peer applications. Proceedings of NSDI, 2009.

Matthew L. Massie, Brent N. Chun, and David E. Culler. The
Ganglia Distributed Monitoring System: Design, Implementation and
Experience. Parallel Computing, 30:2004, 2003.

Ibrahim Matta and Azer Bestavros. A Load Profiling Approach to
Routing Guaranteed Bandwidth Flows. INFOCOM ’98. Seventeenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, 3:1014 —1021 vol.3, mar-2 apr 1998.

A Survey on Resource Discovery Mechanisms, Peer-to-Peer and Service
Discovery Frameworks. Computer Networks, 52(11):2097-2128, 2008.
P. Mirchandani and R. Francis. Discrete Location Theory. Wiley, 1990.
Albrecht J. Patterson D. Vahdat A. Oppenheimer, D. Design and
Implementation Tradeoffs for Wide-Area Resource Discovery. High
Performance Distributed Computing, 2005. HPDC-14. Proceedings.
14th IEEE International Symposium on, pages 113 — 124, July 2005.

Ex. 1002 - Page 439

[63]

[64]

[65]

[66]
[67

[68

[69

[70

[71
[72]

[73

[74
[75

[76]

[77

[78

[79]

[80]

[81]

[82]

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The PageRank Citation Ranking: Bringing Order to the Web. Technical
Report 1999-66, Stanford InfoLab, November 1999.

D.P. Palomar and Mung Chiang. A Tutorial on Decomposition Methods
for Network Utility Maximization. Selected Areas in Communications,
IEEE Journal on, 24(8):1439 —1451, aug. 2006.

Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe.
A Blueprint for Introducing Disruptive Technology into the Internet.
SIGCOMM Computer Communincation Review, 33(1):59-64, 2003.
BGP/MPLS RFC2547. http://tools.ietf.org/html/rfc2547.

Robert Ricci, Chris Alfeld, and Jay Lepreau. A Solver for the Network
Testbed Mapping Problem. SIGCOMM Computer Communication
Review, 33(2):65-81, 2003.

Robert Ricci, David Oppenheimer, Jay Lepreau, and Amin Vahdat.
Lessons from Resource Allocators for Large-Scale Multiuser Testbeds.
ACM SIGOPS Operating Systems Review, 40(1), January 2006.
Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, Get Off of My Cloud: Exploring Information Leakage
in Third-party Compute Clouds. In Proceedings of the 16th ACM
conference on Computer and communications security, CCS °09, pages
199-212, New York, NY, USA, 2009. ACM.

Jeffrey Shneidman, Chaki Ng, David C. Parkes, Alvin AuYoung, Alex C.
Snoeren, Amin Vahdat, and Brent Chun. Why Markets Would (But
Don’t Currently) Solve Resource Allocation Problems in Systems. In
Proceedings of the 10th conference on Hot Topics in Operating Systems -
Volume 10, pages 7-7, Berkeley, CA, USA, 2005. USENIX Association.
Steven S. Skiena. Set Packing. The Algorithm Design Manual. 1997.
David Spence and Tim Harris. XenoSearch: Distributed Resource
Discovery in the XenoServer Open Platform. International Symposium
on High-Performance Distributed Computing (HPDC), page 216, 2003.
Eric Liu Mike Kester Henning Schulzrinne Volker Hilt Srini Seethara-
man Suman Srinivasan, Jae Woo Lee and Ashiq Khan. NetServ:
Dynamically Deploying In-network Services. In Proceedings of ReArch
’09 (CoNEXT workshop), 2009.

SWORD. Source code http://sword.cs.williams.edu/, 2005.

Jonathan Turner and David Taylor. Diversifying the Internet. GLOBE-
COM IEEE Global Communication conference, 2005.

J Vygen. Approximation Algorithms for Facility Location Problems.
Technical report, 05950-OR, Res. Ins. for Disc. Math., University of
Bonn, 2005.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An Integrated Experimental Environment for Distributed Systems and
Networks. SIGOPS Oper. Syst. Rev., 36(SI):255-270, 2002.

Jon Whiteaker, Fabian Schneider, and Renata Teixeira. Explaining
packet delays under virtualization. ACM SIGCOMM CCR, 41(1):38—
44, January 2011.

Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking
Virtual Network Embedding: Substrate Support for Path Splitting and
Migration. SIGCOMM Compututer Communication Review, 38(2):17—
29, 2008.

Tao Yu and Kwei-Jay Lin. A Broker-Based Framework for QoS-Aware
Web Service Composition. In IEEE '05: Proceedings of the 2005 IEEE
International Conference on e-Technology, e-Commerce and e-Service
(EEE’05) on e-Technology, e-Commerce and e-Service, pages 22-29,
Washington, DC, USA, 2005. IEEE Computer Society.

Ammar M. Zhu, Y. Algorithms for Assigning Substrate Network
Resources to Virtual Network Components. INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings,
pages 1 —12, April 2006.

Qian Zhu and Gagan Agrawal. Resource Provisioning with Budget
Constraints for Adaptive Applications in Cloud Environments. In
Proceedings of the 19th ACM International Symposium on High Perfor-
mance Distributed Computing, HPDC 10, pages 304-307, New York,
NY, USA, 2010. ACM.

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 27 of 194

wo 2010/090562 A1 NI 0RO AR AR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
12 August 2010 (12.08.2010)

I VA RO O O
(10) International Publication Number

WO 2010/090562 A1

(51)

(€3))

(22)

(25)
(26)
1)

(72)
(73

79

International Patent Classification:
HO4L 29/06 (2006.01) HO4L 12/24 (2006.01)

International Application Number:
PCT/SE2009/050124

International Filing Date:
6 February 2009 (06.02.2009)

Filing Language: English

Publication Language: English

Applicant (for all designated States except US): TELE-
FONAKTIEBOLAGET L M ERICSSON (PUBL) [SE/
SE]; S-164 83 Stockholm (SE).

Inventors; and

Inventors/Applicants (for US only): THYNI, Tomas
[SE/SE]; Nidarosslingan 58, S-175 66 Jarfdlla (SE).
WELIN, Annikki [SE/SE]; Wiboms Vig 10, S-171 60
Solna (SE). GOTARE, Christian [SE/SE]; Vistergatan
5, S-310 44 Getinge (SE). KOLHI, Johan [SE/SE]; Slan-
barsslingan 22, S-185 39 Vaxholm (SE).

Aggnt: SJOBERG, Mats; Ericsson AB, Box 1505, S-125
25 Alvsjo (SE).

81)

84

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: NETWORK AWARE PEER TO PEER

(57) Abstract: The present invention relates to a method for selecting
suitable peers in a peer to peer network for content downloading

whereby identities of peers possessing a specified content are received

to a coordinating node. The method comprises steps of fetching net-

work parameters associated with the received identities from a public

data base and steps of grouping the peers with respect to the network

’ b)

H oP1/ 100 , P2r

: AN / \ L i Clns |

i L v 4 4

\ ! \

X Cham | v/ opv /
/

N o

Internet

P21
A\ . Clems |
N —

Ex. 1002 - Page 440

parameters.

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 28 of 194

WO 2010/090562 PCT/SE2009/050124

NETWORK AWARE PEER TO PEER

TECHNICAL FIELD

The present invention relates to methods and arrangements
for selecting suitable peers for content downloading, in a

peer to peer network.

BACKGROUND

The increased bandwidth introduced by the penetration of
broadband and the availability of enhanced terminal
capabilities, content creation and publishing tools has
significantly increased in availability on the Internet of
user generated content, e.g. YouTube, Podcasting, etc.
Software distribution such as Microsoft update, Linux
distributions, and content aggregators such as Joost, BBC
iPlayer are also becoming established sources of 1legal

online content.

Peer-to-peer technology has shown itself as a viable
technology for distributing user generated content and
technology of choice of the content aggregators. For
example, the iPlayer utilizes an IMP P2P client. Peer-to-
peer P2P architecture is a type of network in which each
workstation has equivalent capabilities and
responsibilities. This differs from client/server
architectures where some computers are dedicated to serving
the others. The P2P network distributes the computing power
between connected peers in the network and utilizes the
aggregated resources, e.g. network available bandwidth, for
efficient content distribution. P2P is often used as a term

to describe one user linking with another user to transfer

Ex. 1002 - Page 441 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 29 of 194

10

15

20

25

30

WO 2010/090562 PCT/SE2009/050124

information and files through the use of a common P2P
client to download material, such as software upgrades or

media files.

When downloading content using P2P c¢lients, pieces or
chunks of the selected file are gathered from several nodes
simultaneously in order to decrease download time and to
increase robustness of the P2P network. The set of peers to
download data chunks from has been selected by a so called
Tracker which functions as a gateway between peers in the
P2P network. In P2P systems based on Tracker architecture
when a client requests content, it contacts the Tracker in
order to obtain addresses of peers having the desired data
chunks. The Tracker replies with a list of addresses to
peers having the data. For example, in the BitTorrent
protocol the list of peers in the tracker response is by
default 50, if the number of available peers is equal or
above 50. If there are more peers that have the desired
chunk of content, the tracker randomly selects peers to
include in the response, or the tracker may choose to
implement a more intelligent mechanism for peer selection
when responding to a request. This selection can for
example be made based on locality, network measurements and

similar. All based on the viewpoint of the Tracker.

The problem is that much locality information and other
operator specific information is not usually available to a
central Internet based Tracker. Further, the Tracker may
not always take the operator needs into account - such as

keeping traffic local to the operator at hand.

The limited knowledge of the network 1location of the
different peers causes the traffic flow to be non optimal
from a network point of wview. This will put unnecessary
locad on expensive peering connections between Internet

Service Providers ISPs, especially when transit peering is

Ex. 1002 - Page 442 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 30 of 194

WO 2010/090562 PCT/SE2009/050124

used. This also causes longer download times for the end-

users.

To overcome this problem there is an initiative called
Proactive network Provider Participation for P2P (P4P). The
P4P working group has participants from the Isp,
Movie/Content, and P2P industries. The working group is
focused on helping ISPs handle the demands of large media
files and enabling legal distribution using P2P technology,
they are building what they believe will be a more
effective model of transmitting movies and other large

files to customers.

P4P works by having an ISP use an "iTracker" which provides
information on how its network is configured. P2P software
can query the iTracker and identify preferred data routes
and network connections to avoid, or change depending on
the time of day. The P2P software can then co-operatively
connect to peers which are <closer or cheaper for the
specific Isp, selectively favoring peers instead of
choosing peers randomly, or based on access or sharing

speeds.

The drawback with the iTracker; are that the ISP must
install an iTracker into there network and the P2P
applications must be aware of the ISP specific iTracker and
be allowed to connect to it. The P4P iTracker concept is

also working against Net Neutrality regulations.

SUMMARY

An object of the invention to overcome above identified
limitations of the prior art. The invention focuses on
improving the way of managing P2P traffic in an optimal way

from network point of view.

Ex. 1002 - Page 443 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 31 of 194

WO 2010/090562 PCT/SE2009/050124

The problem of managing P2P traffic is solved by a method
for grouping peers by utilizing public information of the
distribution network. The invention describes mechanisms and
techniques for selecting peers that possess required content
and grouping the peers 1in a coordinating node, based on
network topology. Basically, the method involves grouping of
peers based on network information fetched from a public

database to the coordinating node.

According to a first exemplary embodiment a tracker receives
information of peers that possess requested content. The
tracker then collects information with regard to network
topology related to the content holding peers, from the
public database. The tracker groups the peers with respect
to received topology parameters such as for example relative
geographical position between peers. After having received a
content request from a requesting client, the tracker ranks
the grouped peers with respect to for example most
favourable 1location of grouped peers in relation to the

requesting client.

In another aspect of the invention, instead of using a
tracker as search mechanism, a distributed Hash Table has
been used and instead of sending the request from the
requesting client to the tracker, the request is forwarded
to the most appropriate peer 1in accordance to the DHT
implementation. So, instead of the tracker responding back
with the ranked 1list of IP addresses of peers with the
desired content, the found peer that possess the IP
addresses, will after having consulted the public database

respond back and deliver the ranked list.

An object of the invention is to optimize traffic flow from
network point of view without working against Net Neutrality
regulations. This object and others are achieved by methods,

arrangements, nodes, systems and articles of manufacture.

Ex. 1002 - Page 444 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 32 of 194

10

15

20

25

30

WO 2010/090562 PCT/SE2009/050124

The invention results in advantages such as it gives the P2P
application better knowledge of the network location of the
different peers, and by ranking and choosing the download
peers based on their peer-to-peer network location it will
result in a more optimal traffic flow from a network point
of view. This will reduce the P2P applications traffic load
on expensive peering and transit connections between ISPs,
and try to keep the P2P traffic local to the ISP’s network
if possible. This will also reduce download times for the

end-users.

The invention will now be described more in detail with the
aid of preferred embodiments in connection with the enclosed

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block schematic illustration disclosing a
plurality of clients connected via various access networks
to internet. A central P2P Tracker 1is located in the
internet. The Tracker is associated with a central public

database.

Figure 2 discloses a signal sequence diagram representing a
method for grouping and ranking suitable peers and
downloading a ranking list to a requesting client, according

to a first embodiment.

Figure 3 discloses the same block schematic illustration as
is shown in figure 1 disclosing a plurality of clients
connected via various access networks to internet. The
figure also discloses a grouping table showing content

holding peers grouped in relation to a requesting client.

Figure 4 discloses a signal sequence diagram that represents

a method for grouping peers.

Ex. 1002 - Page 445 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 33 of 194

WO 2010/090562 PCT/SE2009/050124

Figure 5 discloses a block schematic illustration of a

coordinating node.

Ex. 1002 - Page 446 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 34 of 194

WO 2010/090562 PCT/SE2009/050124

DETAILED DESCRIPTION

Figure 1 discloses according to an exemplary embodiment, a
peer to peer P2P network that includes plural clients 1-8
connected via various access networks AN1-AN5 to INTERNET.
The figure discloses a very simplified example and the
number of clients are in the reality much higher. The
clients 1-8 may be, for example, a mobile phone, a computer,
a set top box, or other devices that are capable of
exchanging information with the internet. The access
networks AN1-AN5 may be, for example, a communication
network, a phone network, an internet service provider, etc.
In this exemplified embodiment a first operator OPl is
accessible in the access networks AN1-AN2 and a second
operator OP2 is accessible in AN3-AN5. The client 1 is
attached to OPl/AN1l, the clients 5 and 6 are attached to
OP1/AN2, the clients 2-4 are attached OP2/AN4, client 7 is
attached to OP2/AN3 and client 8 is attached to OP2/ANS5. A
central tracker 9 is in this example 1located within the
Internet. The tracker functions as a directory service for
the clients, also called peers, in the P2P network. A P2P
tracker may be any P2P searching mechanism (e.g. the
BitTorrent tracker system). The tracker gathers information
on which peers have what data chunks and spread information
to any requesting peer. The central tracker is capable to
communicate and fetch information from a public database RIR
10 (see for example “Wikipedia” in general or
“http://en.wikipedia.org/wiki/Regional_Internet_ Registry”).

The public database is in this example a so called Regional
Internet Registrie RIR that manage, distribute, and register
public Internet Number Resources within their respective
regions. A regional Internet registry (RIR) is an
organization overseeing the allocation and registration of
Internet number resources within a particular region of the
world. Resources include IP addresses (both Ipv4 and Ipvé6)

and autonomous system numbers. RIRs work closely together,

Ex. 1002 - Page 447 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 35 of 194

WO 2010/090562 PCT/SE2009/050124

and with others, to develop consistent policies and promote
best current practice for the Internet. Internet Number
Resources (IP addresses and Autonomous System AS Numbers)
are distributed in a hierarchical way. RIRs allocate IP
address space and AS Numbers to Local Internet Registries
that assign these resources to end users. In this first
embodiment that will be explained more in detail together
with figure 2, a method for grouping and ranking suitable
peers for content downloading will be shown. According to
the first exemplary embodiment, a tracker receives
information of peers that possess requested content. The
tracker then, according to the invention, collects
information related to content holding peers, with regard to
network topology, from the public database RIR. Instead of a
RIR the Tracker might fetch public information £from an
Internet Routing Registry IRR (see for example “Wikipedia”
or “http://www.irr.net/docs/list.html”). The tracker groups
the peers with respect to network parameters such as for
example relative geographical position between the peers.
After having received a request for the content from a
requesting client, the tracker ranks the grouped peers with
respect to, for example, most favourable location of grouped

peers in relation to the requesting client.

The method according to the first embodiment will now be
explained together with figure 2. Figure 2 is a signal
sequence diagram wherein the signalling points RIR 10,
Tracker 9 and the clients 1-8 that were briefly explained
earlier together with figure 1 have been disclosed.
According to the well known P2P protocol, the Tracker
continuously receives torrent files from peers/clients. The
Torrent files comprise metadata pointing at peers where
pieces of data chunks, from now referred to as the content,
can be obtained from or be delivered to. The method

comprises the following steps:

Ex. 1002 - Page 448 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 36 of 194

WO 2010/090562 PCT/SE2009/050124

e A torrent file comprising an identity i.e. an IP address
pointing at client 1 is received 21 from client 1 to
the Tracker 9. Client 1 hereby informs the tracker that

it is willing to download the content.

e According to the invention, the Tracker searches a local
storage to see if the file pointing at the client 1
already has been cashed in the storage. The storage can

be located “within” or “outside” the Tracker.

e In this example the file was not cashed since before and
the Tracker sends 22 a network parameter requests
comprising the IP address pointing at client 1, to the
public database RIR. It 1is to be noted that the
Internet Service Provider ISP, Autonomous System AS and
routed IP subnet information is not changing that
often, and can then be cashed by the tracker. So next
time a client connects from the same IP subnet as a
previous peer/client, the cached information can be
used instead of queering the RIR or IRR database. The
mentioned query 22 uses a standard that is interface
with RIR specific command options. The gquery may point
out another RIR as the one responsible for managing
the information. E.g. a request towards the ARIN RIR
(see for example “Wikipedia” or
“http://www.arin.net/”) for an IP address in a network
in Europe, will point out RIPE as the RIR for handling
the information, and this will require a subsequent
query towards the RIPE database.

e The RIR replies 23 with network parameters associated
with the IP address of client 1, from the public
database to the Tracker. In case the file pointing at

client 1 was cashed in the local storage since before,

Ex. 1002 - Page 449 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 37 of 194

10

15

20

25

30

WO 2010/090562 PCT/SE2009/050124

10

the steps 22 and 23 of sending and replying would not

have been performed.

The tracker cashes 24 the response from the RIR in the
local storage and checks according to the invention if
an IP address pointing at a peer holding the same
content also is cashed in the storage. If that was the
case, grouping will start. The grouping will be further

explained later in the description.

In the same way as described above, after having
received 25 a torrent file comprising an IP address
pointing at client 2 that is willing to download
content, the Tracker searches a local storage to see if
the file pointing at the client 2 already has been
cashed in the storage. In this example the file was not
cashed and the Tracker sends 26 a network parameter
requests comprising the IP address pointing at client
2, to the public database RIR that replies 27 with
network parameters associated with the IP address of

client 2, from the public database to the Tracker.

The tracker cashes 28 the response from the RIR in the
local storage and checks according to the invention if
an IP address pointing at a peer holding the same
content already 1is cashed in the storage. The IP
address of client 1 is hereby found and grouping of the
two content holding peers 1 and 2 now takes place. The
grouping will be further clarified 1later in the

description together with figure 3A.

In the same way as described above, after having
received 29,33,37,41,45 torrent files comprising IP
addresses pointing at clients 4,5,6,7,8 (the clients
are all willing to download content), the Tracker

searches the local storage. In this example the files

Ex. 1002 - Page 450 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 38 of 194

10

15

20

25

30

WO 2010/090562 PCT/SE2009/050124

11

were not cashed and the Tracker sends 30,34,38,42,46
network parameter requests comprising IP addresses
pointing at clients 4,5,6,7,8 to the public database
RIR that replies 31,35,39,43,47 with network parameters

associated with the IP addresses of the clients.

e The tracker cashes 32,36,40,44,48 the responses from
the RIR in the 1local storage and checks if an 1IP
address pointing at a peer holding the same content
already was cashed in the storage. In this exemplified
embodiment the tracker has received and cashed
information from the clients 1,2,4-8, which clients all
possess pieces of data chunks that constitutes a subset
of the content. Grouping of the peers has continuously
been performed after network parameters associated with
the IP addresses of clients was cashed in the local
storage. The grouping has been performed according to
predefined rules. The rule that has been applied in

this embodiment can be seen later in the description.

The client 3, from now on referred to as the requesting
client, decides to send a request for the content to the
Tracker. A prerequisite is that the requesting client 3 by
some means know the address of a tracker which has
information about which peers that possess the desired
content for example by downloading a torrent file such as

BitTorrent.

e A torrent file comprising an IP address pointing at the
requesting client 3 is received 49 from client 3 to the
Tracker. Client 3 hereby informs the tracker of it’s
desire to obtain the content from the P2P network. Like
before, the Tracker searches the local storage to see
if the file pointing at the client 3 already was cashed

in the storage.

Ex. 1002 - Page 451 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 39 of 194

10

15

20

25

30

WO 2010/090562 PCT/SE2009/050124

12

e Since the file was not cashed in this example, the
Tracker sends 50 a network parameter requests
comprising the IP address pointing at client 3, to the
public database RIR. The RIR replies 51 with network
parameters associated with the IP address of client 3,

from the public database to the Tracker.

e The tracker cashes the response from the RIR in the
local storage and starts to group the cashed addresses
that belong to the clients 1,2,4-8 together with the
newly received address of the requesting client 3. This
final grouping of content holding clients together with
the requesting client is disclosed in figure 2 with a
block symbol and will now be further explained together
with figure 3.

Figure 3 discloses the same network configuration as was
disclosed in figure 1. The figure also discloses a table
showing the final grouping performed after having received
the request for content from the requesting client 3. The
grouping has been done according to the below shown ranking
scheme. To be noted is that the scheme in this example is
based on currently available operator preferences and is
just an example. Another parameter that can be considered
for the ranking is for example operator possession. The
network ranking can also be used together with common P2P
client information 1like access 1line bandwidth and maximum
up-load speed, to get the best peer-to-peer relationship
ranking etc.

Below is the mentioned ranking scheme following rules from a
geographical network location point of view that has been

applied in this embodiment:

A. Extremely Good, Within a /22 address range in the ISP
assigned IP-subnet

Ex. 1002 - Page 452 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 40 of 194

WO 2010/090562 PCT/SE2009/050124
13

B. Very Good, Within ISP assigned IP-subnet

C. Good, Different IP-subnet within the same ISP’s AS
number

D. Fairly Good, IP-subnet in an different AS, but within
the same ISP

E. Fair, Direct peering between different ISP’s AS
F. Very Bad, Transit Peering via multiple AS hops

As can be seen in the table in figure 3, peer 3 has been
ranked in relation with peer 2 as a group B relation, i.e.
“Very good, Within ISP assigned IP-subnet”. Peer 3 has been
ranked in relation with peer 4 as a group C relation, i.e.
“Good” and in relation with peers 1,5,6,8 as a group E
relation i.e. “Fair”, while in relation to peer 7, peer 3
has been ranked as a group F relation i.e. “Very bad”. The
tracker creates a ranking 1list regarding the requesting
client’s most favourable peers to download content from,
with the most favourable peer at the top of the list. The
created ranking list in this example looks like follows:

1. Client 2
2. Client 4
3. Clients 1,5,6,8
4. Client 7

When the ranking list is finalized in the Tracker, the
tracker sends 52 the ranking list to the regquesting client
3. This can be seen in figure 2. The requesting client now
decides which peers to download content from by using the
ranking list as reference, and contacts the chosen content
holding peers and starts to download the content according

to well known conventional P2P technique.

Ex. 1002 - Page 453 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 41 of 194

10

15

20

25

30

35

WO 2010/090562 PCT/SE2009/050124

14

If the client was unable to establish a connection to top
ranked peers from the list for example if the peer has left
the P2P network, or if the aggregated download speed from
the selected peers is too low, the requesting client could
either select lower ranked peers or request a further 1list

of ranked peers from the Tracker.

A second embodiment of the invention will now briefly be
discussed. Instead of using a tracker as search mechanism, a
Distributed Hash Table may be used. One of the central parts
of a P2P system 1is a directory service. Basically the
directory service is a database which contains IP addresses
of peers that have a specific content. In a centralized P2P
implementation this directory is called tracker (as
discussed above), in a distributed P2P implementation it is
called Distributed Hash Table DHT. In DHT a plurality of
distributed databases resides on many peers rather than in a
single node 1like in the tracker case; hence it 1is a
distributed database. The DHT algorithm is well known by
persons skilled in the art. In this second embodiment
instead of sending the request from the requesting client to
the tracker, the request is forwarded to the most
appropriate peer in accordance to the DHT implementation.
So, instead of the tracker responding back with the ranked
list of IP addresses of peers with the desired content, the
found peer - also called a coordinating node, that possess
the IP addresses, will after having consulted the public
database RIR respond back and deliver the ranked list (For
more information of “trackerless” torrent see e.g.
“http://www.bittorrent.org/beps/bep 0005.html”). As an
alternative a DHT based tracker can exist in carrier domain
that contains several servers, then the solution is more
stable.

The invention can also be used in server to <client
communication when the same content should be distributed to

many clients, with the option to use Unicast or Multicast

Ex. 1002 - Page 454 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 42 of 194

WO 2010/090562 PCT/SE2009/050124
15

distribution depending on multiple clients’ network

location.

Figure 4 discloses a flow chart illustrating some essential
method steps of the invention. The flow chart is to be read
together with the earlier shown figures. The flow chart

comprises the following steps:

> identities of peers willing to deliver/receive content
is received to the coordinating node. This step is

shown in the figure with a block 101.

» If not already cached, the coordinating node requests
network parameters related to the received identities,
from a public database. This step is shown in the
figure with a block 102.

» The coordinating node receives network parameters
related to the identities, from the public database.

This step is shown in the figure with a block 103.

» The coordinating node groups the peers from a network
peint of view. This step is shown in the figure with a
block 104.

Figure 5 discloses in some more detail an example of the
coordinating node 9 that has been discussed earlier in the
application together with the previous figures 1-3. In the
previous figures the coordinating node has been represented

by for example the tracker.

This section describes as an example some for the invention
important parts of the coordinating node. As can be seen in
figure 5, the coordinating node comprises two main blocks
i.e. a capturing block and a processing block. Data files

from content holding peers (or peers that desire to receive

Ex. 1002 - Page 455 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 43 of 194

10

15

20

25

30

WO 2010/090562 PCT/SE2009/050124

16

content) are received to a receiver REC and forwarded to the

capturing block.

The capturing block is responsible for extracting the
identities for peers from the data files and to query the
local data base LS to see if a peer already has been cashed
in the database.

The processing block is responsible for the requesting of
network parameters associated with IP addresses extracted
from the messages in the capturing block:; from a public
database PD. The processing block also receives the network
parameters from the public database. The processing block is
also responsible for the earlier discussed grouping and
ranking of peers by querying the local data base LS. A
created ranking list is forwarded from the coordinating node

to a requesting peer via a sender SEND.

A system that can be used to put the invention into practice
is schematically shown in the figure 1 and figure 5.
Enumerated items are shown in the figures as individual
elements. In actual implementations of the invention,
however, they may be inseparable components of other
electronic devices such as a digital computer. Thus, actions
described above may be implemented in software that may be
embodied in an article of manufacture that includes a
program storage medium. The program storage medium includes
data signal embodied in one or more of a carrier wave, a
computer disk (magnetic, or optical (e.g., CD or DVD, or
both), non-volatile memory, tape, a system memory, and a

computer hard drive.

The systems and methods of the present invention may be
implemented for example on any of the Third Generation
Partnership Project {3GPP), European Telecommunications
Standards Institute (ETSI), American National Standards

Institute (ANSI) or other standard telecommunication network

Ex. 1002 - Page 456 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 44 of 194

10

15

20

WO 2010/090562 PCT/SE2009/050124

17

architecture. Other examples are the Institute of Electrical
and Electronics Engineers (IEEE) or The Internet Engineering
Task Force (IETF).

The description, for purposes of explanation and not
limitation, sets forth specific details, such as particular
components, electronic circuitry, techniques, etc., in order
to provide an understanding of the present invention. But it
will be apparent to one skilled in the art that the present
invention may be practiced in other embodiments that depart
from these specific details. In other instances, detailed
descriptions of well-known methods, devices, and techniques,
etc., are omitted so as not to obscure the description with
unnecessary detail. Individual function blocks are shown in
one or more figures. Those skilled in the art will
appreciate that functions may be implemented using discrete
components or multi-function hardware. Processing functions
may be implemented using a programmed microprocessor or
general-purpose computer. The invention is not 1limited to
the above described and in the drawings shown embodiments

but can be modified within the scope of the enclosed claims.

Ex. 1002 - Page 457 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 45 of 194

WO 2010/090562 PCT/SE2009/050124
18

CLAIMS

1. Method for selecting peers (1,2,4-8) suitable for

5 content downloading in a peer to peer network, whereby
identities of peers possessing a specified content

are received to a coordinating node (9,
characterizedin steps of fetching network

parameters associated with the received identities and

10 steps of grouping the peers with respect to the

network parameters.

2. Method for selecting suitable peers according to claim

1, which steps of fetching information comprises:

15 - sending a network parameter request comprising an IP
address identity of a peer, from the coordinating node
(9) to a public database (10):;

- receiving network parameters associated with the IP
address, from the public database (10) to the

20 coordinating node (9).

3. Method for selecting suitable peers according to claim

1, which steps of fetching information comprises:

- checking if a network parameter related to an IP
25 address identity of a peer, is cashed in a storage
(LS) .

Ex. 1002 - Page 458 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 46 of 194

10

15

20

25

WO 2010/090562 PCT/SE2009/050124

19

Method for selecting suitable peers according to any
of claims 1-3, which steps of grouping the peers

comprises:
checking if a content corresponding peer is cashed;

grouping peer-to-peer relationship with regard to

network parameters.

Method for selecting suitable peers according to any
of the claims 1-2, wherein a requesting client (3)
requests the specified content and whereby grouped
peers are ranked with respect to network parameters of
the requesting client (3) versus parameters of the
grouped peers (1,2,4-8).

Method for selecting suitable peers according to
claims 5, whereby a list of ranked peers is sent from

the coordinating node to the requesting client (3).

Method for selecting suitable peers according to any
of the previous claims, which public database (10),
manage, distribute and/or register public internet

number resources within their respective regions.

Method for selecting suitable peers according to
according to any of the previous claims, wherein each
group contains peers related to each other by a

specific criterion.

Ex. 1002 - Page 459 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 47 of 194

WO 2010/090562 PCT/SE2009/050124
20

9. Method for selecting suitable peers according to
claims 8, which criterion is based on at least one of
the following rules:

- geographical network location:;
- operator possession;
- access line bandwidth;

- up-locad speed.

10. A node (9) for selecting peers (1,2,4-8) suitable for
content downloading in a peer to peer network, whereby
identities of peers possessing a specified content
are received to the node (9), which node is
characterizedby means of fetching network
parameters associated with the received identities and
means of grouping the peers with respect to the

network parameters.

11. A node (9) for selecting suitable peers according to

claim 10, which node further comprises:

- means for sending a network parameter request
comprising an IP address identity of a peer, from the
node (9) to a public database (10);

- means for receiving network parameters associated with
the IP address, from the public database (10) to the

coordinating node (9).

12. A node for selecting suitable peers according to claim

10, which node further comprises:

Ex. 1002 - Page 460 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 48 of 194

10

15

20

25

WO 2010/090562 PCT/SE2009/050124

13.

14.

15.

16.

21

means for checking if a network parameter related to
an IP address identity of a peer, is cashed in a

storage (LS).

A node for selecting suitable peers according to any
of claims 10-12, which node further comprises:

means for checking if a content corresponding peer is

cashed;

means for grouping peer-to-peer relationship with

regard to network parameters.

A node for selecting suitable peers according to any
of the claims 10-13, wherein a requesting client (3)
requests the specified content, which node further
comprise means for ranking grouped peers with respect
to network parameters of a requesting client (3)

versus parameters of the grouped peers (1,2,4-8).

A node for selecting suitable peers according to
claims 14, which node further comprises means for
sending a list of ranked peers from the node to the

requesting client (3).

A node for selecting suitable peers according to any
of the claims 11-15, wherein the node is a tracker
(9).

Ex. 1002 - Page 461 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 49 of 194

WO 2010/090562 PCT/SE2009/050124
22

17. A node for selecting suitable peers according to claim

16, which tracker (9) is decentralized.

18. Article of manufacture comprising a program storage

5 medium having a computer readable code embodied
therein to select suitable peers (1,2,4-8) in a peer

to peer network for content downloading, the program

code comprising:

10 - computer readable program code able to receive
identities of peers possessing a specified content;

characterized by

- computer readable program code able to fetch network

parameters associated with the received identities;

15 - computer readable program code able to group the peers

with respect to the network parameters.

19. A network operator system for content downloading from
suitable peers in a peer to peer network, the system

20 comprising:

- means for receiving identities of peers possessing a

specified content; c haracterizedby

- means for sending a network parameter request
comprising an IP address identity of a peer, from a
25 node (9) to a public database (10);

- means for receiving network parameters associated with
the IP address, from the public database (10) to the

coordinating node (9):;

Ex. 1002 - Page 462 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 50 of 194

WO 2010/090562 PCT/SE2009/050124
23

- means for grouping the peers with respect to the

network parameters.

Ex. 1002 - Page 463 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 51 of 194

WO 2010/090562 PCT/SE2009/050124

1/5

RIR
DB }
|
\ \»\ ,,,———-\\\ - _5\
L\ , ~ _- ~
N // \\ /// A
W : T \
! A s
R e BT T
v\ | . ,
- AN 1 Py . '
< \ \ , /
SN0 - o, ,
\ P2P | vy ’
N\ \ | Client 1 | I OP1/)/
\ S — A 6 AN2,
\ P P2) 7
; Clienté
| -
rd
-
/”
\\\
\\
AN
Internet AN
7 AR
L)
\
// T - = \
P P2P \‘
27" . | Client7 | \
A e N - \
J . p2p '\ Ny N |
- Client2 | \ SN /
,’ . | 2 \l } 8 "~_ ~.OP2/ v
R ! N -—
Voo pop } ! ;] S AN'3
N ! Client3 \ y; (’ T pp | N
VN .7 0OP2I 7 Client 8 \
\\ 3 P / l AY
\ ~—___ - AN4 " \
N T T T 4 /// AN \\
vo—
’ VA Pid N OoP2/ 1
/ P2P ‘ . N !
\ Client 4 " N AN 5 /
N ~
N e ' . \\ /I
Ex. 1002 - Page 464 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2

Page 52 of 194

WO 2010/090562 PCT/SE2009/050124

2/5

Requesting client
k\/——'—-/

| rRR | |recker | | 1] L5_| LGJ | 2 IT _4_| L7J _a_l

29 21
23
24
26 25
27
28
30 I 29 I
31 I
32
I, 34 f33
| 35 il
36
38 < 37
39 I
40
42 ||= a1
43
44
46 45
47
48
50 49
51
Grouping
&
Ranking
(Fig. 3)
52
Fig. 2
Ex. 1002 - Page 465 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 53 of 194

WO 2010/090562

3/5

PCT/SE2009/050124

Grouping list
Client 3 | Client 1 Group E
Client 3 | Client 2 Group B
Client 3 | Client 4 Group C
Client3 | Client 5 Group E
Client3 | Client6 Group E
Client3 | Client7 Group F
Client 3 | Client 8 Group E

Ex. 1002 - Page 466

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 54 of 194

WO 2010/090562 PCT/SE2009/050124

4/5

101

Identities of peers willing to deliver or receive a specified _/
content is received to the coordinating node

102

The coordinating node requests network parameters J
related to the identities, from a public database

103

Requested network parameters are received from the /
public database to the coordinating node

104

The coordinating node groups the peers with respect of _/
the network parameters

Fig. 4

Ex. 1002 - Page 467 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 55 of 194

WO 2010/090562 PCT/SE2009/050124

5/5

4Ll

REC
|
Capturing block
LS
|
I |
: |
Processing block
PD
SEND
Fig. 5
Ex. 1002 - Page 468 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 56 of 194

INTERNATIONAL SEARCH REPORT International application No.
PCT/SE2009/050124

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet . L
According 1o International Patent Classification (IPC) or 1o both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classiﬁcation system fn]]qweq l;y c!assiﬁcation symbols)

IPC: HO4W, HOAL e e

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ, INSPEC, COMPENDEX, INTERNET
C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X EP 1821487 Al (MICROSOFT CORPORATION), - 1-19
22 August 2007 (22.08.2007), figures 2-5,
abstract, paragraphs (0009),(0048)-(0064)

A Designs and Evaluation of a Tracker in P2P Networks, 1-19
September 2008 [retrieved 2009-10-06]. Retrieved
from the Internet:<http://www.p2p08.org/program/sess
ions/12-short-papers-2/1%20-%20P2P08JIA. pdf/at_
download/file>, page 13

A US 20070064702 A1 (BATES ET AL), 22 March 2007 1-19
{22.03.2007), abstract, paragraphs (0001)-(0008)

Further documents are listed in the continuation of Box C. m See patent family annex.

* Special categories of cited documents: “T* later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered ~ date and not in conflict with the application but cited 10 understand
to be of particular relevance the principle or theory underlying the invention
"B earlier application or patent but published on or after the international “X” document of particular relevance: the claimed invention cannot be
Ny, lingdate o o considered novel ar cannot be considered to involve an inventive
L document which may throw doubis on priorily claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other . : N :
special reason (as specified) "Y” document of particular relevance: the claimed invention cannot be
vy . . . considered to involve an inventive step when the document is
(¢} Xc]!:g.::enx referring to an oral disciosure, use, exhibition or other combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than

the priority date claimed “&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
12 October 2009 15 -10- 2009

Name and mailing address of the ISA/ Authorized officer

Swedish Patent Office

Box 5055, 8-102 42 STOCKHOLM Maikel Youssef / JA A

Facsimile No. +46 8 666 02 86 Telephone No. 446 8 782 25 G0

Form PCT/ISA/210 (second sheet) (July 2009)

Ex. 1002 - Page 469 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 57 of 194

INTERNATIONAL SEARCH REPORT International application No.

PCT/SE2009/050124
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 20080040420 Al (TWISS ET AL), 14 February 2008 « 1-19

.~ —-(14.02.2008), abstract, paragraphs (0001)-(0018)

Form PCT/iSA/210 (continuation of second shest) (July 2009)

Ex. 1002 - Page 470 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 58 of 194

INTERNATIONAL SEARCH REPORT International application No.
PCT/SE2009/050124

International patent classification (IPC)

HO4L 29/06 (2006.01)
HO4L 12/24 (2006.01)

Download your patent documents at www.prv.se

The cited patent documents can be downlocaded:

e From "Cited documents" found under our online services at
www.prv.se (English version)

e From "Anforda dokument" found under "e-tjanster" at
WWW.Prv.se (Swedish version)

Use the application number as username. The password is

DFLTXTTZQP.

Paper copies can be ordered at a cost of 50 SEK per copy from
PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.

Form PCT/ISA/210 (extra sheet) (July 2008)

Ex. 1002 - Page 471 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 59 of 194

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/SE2009/050124
EP 1821487 Al 22/08/2007 CN 101385280 A 11/03/2009
KR 20080103535 A 27/11/2008
WO 2007097877 A 30/08/2007
US 20070064702 Al 22/03/2007 NONE
) ' US 20080040420 Al 14/02/2008 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

Ex. 1002 - Page 472

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 60 of 194

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
9 June 2011 (09.06.2011)

0T 0 OO0t

(10) International Publication Number

WO 2011/068784 A1

(51)

(€3))

(22)

(25)
(26)
(30)

(Y

(72
(73

International Patent Classification:
GO6F 15/173 (2006.01)

International Application Number:
PCT/US2010/058306

International Filing Date:
30 November 2010 (30.11.2010)

Filing Language: English
Publication Language: English
Priority Data:

61/265,391 1 December 2009 (01.12.2009) us
PCT/US2010/027893 19 March 2010 (19.03.2010) US
61/387,785 29 September 2010 (29.09.2010) Us

Applicant (for all designated States except US): AZUKI
SYSTEMS, INC. [US/US]; 43 Nagog Park, Suite 105,
Acton, Massachusetts 01720 (US).

Inventors; and

Inventors/Applicants (for US only): MA, Kevin J. [US/
US]; 16 Bicentennial Drive, Nashua, New Hampshire
03062 (US). BARTOS, Radim [CZ/US]; 74 Bucks Hill
Road, Durham, New Hampshire 03824 (US). XU, Jian-
guo [CN/US]; 30 Grant Street, Newton, Massachusetts
02465 (US). NAIR, Raj [US/US]; 6 Burroughs Road,
Lexington, Massachusetts 02420 (US). HICKEY, Robert
[US/US]; 2 Fawn Circle, Bedford, Massachusetts 01730
(US). LIN, IChang [US/US]; 24 Walker Street, Westbor-
ough, Massachusetts 01581 (US).

a4

81)

84

Pub

Agent: THOMPSON, James F.; Bainwood, Huang &
Associates, LLC, Highpoint Center, 2 Connector Road,
Westborough, Massachusetts 01581 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

lished:
with international search report (Art. 21(3))

2011/068784 A1 |00 0 D0 O O

(54) Title: METHOD AND SYSTEM FOR SECURE AND RELIABLE VIDEO STREAMING WITH RATE ADAPTATION

100
104 lPtublict 106
nterne
Client-side 110 Y 5 HITP(S) Server-side
RTSP/HTTP ((} AN ~ " RTSP/HTTP
proxy ~— proxy
N ARNAAN
114 RTSP/ RTSP/ 112
v RTP/RTCP RTP/RTCP A
Client RTSP
Device Server
102 108
Fig. 1

(57) Abstract: A system for media delivery includes a server-side proxy for aggregating and encrypting stream data for efficient
HTTP-based distribution over an unsecured network. A client-side proxy decrypts and distributes the encapsulated stream data to
client devices. A multicast-based infrastructure may be used for increased scalability. The encoded rate of the media delivered

O over the persistent HTTP proxy connections may be dynamically adapted. The client-side proxy may be integrated within a mobile

W

device for maximum network security and reliability.

Ex. 1002 - Page 473

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 61 of 194

WO 2011/068784 PCT/US2010/058306

METHOD AND SYSTEM FOR SECURE AND RELIABLE VIDEO STREAMING
WITH RATE ADAPTATION

BACKGROUND

The invention relates in general to streaming media and more specifically to
implementing secure and reliable streaming media with dynamic bit rate adaptation.

Available bandwidth in the internet can vary widely. For mobile networks, the
limited bandwidth and limited coverage, as well as wireless interference can cause large
fluctuations in available bandwidth which exacerbate the naturally bursty nature of the
internet. When congestion occurs, bandwidth can degrade quickly. For streaming media,
which require long lived connections, being able to adapt to the changing bandwidth can be
advantageous. This is especially so for streaming which requires large amounts of
consistent bandwidth.

In general, interruptions in network availability where the usable bandwidth falls
below a certain level for any extended period of time can result in very noticeable display
artifacts or playback stoppages. Adapting to network conditions is especially important in
these cases. The issue with video is that video is typically compressed using predictive
differential encoding, where interdependencies between frames complicate bit rate changes.

Video file formats also typically contain header information which describe frame
encodings and indices; dynamically changing bit rates may cause conflicts with the existing
header information. This is further complicated in live streams where the complete video is
not available to generate headers from.

Frame-based solutions like RTSP/RTP solve the header problem by only sending
one frame at a time. In this case, there is no need for header information to describe the
surrounding frames. However RTSP/RTP solutions can result in poorer quality due to
UDP frame loss and require network support for UDP firewall fixups, which may be viewed
as network security risks. More recently segment-based solutions like HTTP Live
Streaming allow for the use of the ubiquitous HTTP protocol which does not have the frame
loss or firewall issues of RTSP/RTP, but does require that the client media player support
the specified m3u8 playlist polling. For many legacy mobile devices that support RTSP,

and not m3u8 playlists, a different solution is required.

Ex. 1002 - Page 474 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 62 of 194

WO 2011/068784 PCT/US2010/058306

Within the mobile carrier network, physical security and network access control
provide content providers with reasonable protection from unauthorized content extrusion,
at a network level. Similarly the closed platforms with proprictary interfaces used in many
mobile end-point devices prevent creation of rogue applications to spoof the native end-
point application for unauthorized content extrusion. However, content is no longer solely
distributed through the carrier network alone, and not all mobile end-point devices are
closed platforms anymore. Over the top (OTT) delivery has become a much more popular
distribution mechanism, bypassing mobile carrier integration, and recent advancements in
smart phone and smart pad platforms (e.g., Apple iPhone, Blackberry, and Android) have
made application development and phone hacking much more prevalent. The need to
secure content delivery paths is critical to the monetization of content and the protection of
content provider intellectual property.

In addition to security, high quality video delivery is paramount to successful
monctization of content. Traditional video streaming protocols, ¢.g., RTSP/RTP, are based
on unreliable transport protocols, i.e., UDP. The use of UDP allows for graceful
degradation of quality by dropping or ignoring late and lost packets, respectively. While
this helps prevent playback interruptions, it causes image distortion when rendering video
content. Within a well-provisioned private network where packet loss and lateness is
known to be minimal, UDP works well. UDP also allows for the use of IP multicast for
scalability. In the public Internet, however, there are few network throughput or packet
delivery guarantees. The lack of reliability causes RTSP/RTP-based video streaming
deployments to be undesirable given their poor quality.

Methods such as layered video encodings, multiple description video encodings
(MDC), and forward error correction (FEC) have been proposed to help combat the lack of
reliable transport in RTSP/RTP. These schemes distribute data over multiple paths and/or
send redundant data in order to increase the probability that at least partially renderable data
is received by the client. Though these schemes have been shown to improve quality, they
add complexity and overhead but are still not guaranteed to produce high quality video. A
different approach is required for integrating secure delivery of high quality video into the

RTSP/RTP delivery infrastructure.

Ex. 1002 - Page 475 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 63 of 194

WO 2011/068784 PCT/US2010/058306

SUMMARY

A method is provided for integrating and enhancing the reliability and security of
streaming video delivery protocols. The method can work transparently with standard
HTTP servers and use a file format compatible with legacy HTTP infrastructure. Media
may be delivered over a persistent connection from a single server or a plurality of servers.
The method can also include the ability for legacy client media players to dynamically
change the encoded rate of the media delivered over a persistent connection. The method
may require no client modification and can leverage standard media players embedded in
mobile devices for seamless media delivery over wireless networks with high bandwidth
fluctuations. The method may be used with optimized multicast distribution infrastructure.

Generally, the method for distributing live streaming data to clients includes a first
(server-side) proxy connecting to a streaming server, aggregating streaming data into file
segments and writing the file segments to one or more storage devices. The file segments
are transferred from the storage devices to a second (client-side) proxy, which decodes and
parses the file segments to generate native live stream data and serves the native live stream
data to clients for live media playback.

A system is also specified for implementing a client and server proxy infrastructure
in accordance with the provisions of the method. The system includes a server-side proxy
for aggregating and encrypting stream data for efficient HTTP-based distribution over an
unsecured network. The system further includes a client-side proxy for decrypting and
distributing the encapsulated stream data to the client devices. The distribution mechanism
includes support for multicast-based infrastructure for increased scalability. The method
further support for dynamically adapting the encoded rate of the media delivered over the
persistent HTTP proxy connections. An additional system is specified for integrating the

client-side proxy within a mobile device for maximum network security and an reliability.

BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, features and advantages will be apparent from the
following description of particular embodiments of the invention, as illustrated in the
accompanying drawings.
Figure 1 is a block diagram of a system which is capable of conducting procedures,

in accordance with various embodiments of the invention;

-3-

Ex. 1002 - Page 476 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 64 of 194

WO 2011/068784 PCT/US2010/058306

Figure 2 is another block diagram of a system which is capable of conducting
procedures, in accordance with various embodiments of the invention;

Figure 3 is another block diagram of a system which is capable of conducting
procedures, in accordance with various embodiments of the invention;

Figure 4 is a diagram of a segment file format used, in accordance with an
embodiment of the present invention;

Figure 5 is a flow chart showing a method for performing stream segmentation, in
accordance with various embodiments of the invention;

Figure 6 is a flow chart showing a method for performing stream segment retrieval
and decoding, in accordance with an embodiment of the present invention;

Figure 7 is a flow chart showing another method for performing stream segment
retrieval and decoding, in accordance with an embodiment of the present invention;

Figure 8 is a block diagram of a proxy capable of performing server-side
transcoding, encapsulation, and streaming services , in accordance with an embodiment of
the present invention;

Figure 9 is a block diagram of a proxy capable of performing RTSP client-side
decapsulation, parsing, and streaming services , in accordance with an embodiment of the
present invention;

Figure 10 is a block diagram of another proxy capable of performing HLS client-side
decapsulation, parsing, and streaming services , in accordance with an embodiment of the
present invention;

Figure 11 is another block diagram of a system which is capable of conducting
procedures in accordance with various embodiments of the invention; and

Figure 12 is a flow chart showing a method for performing segment retrieval

failover, in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION
Overview
In one embodiment, the present invention provides a method for delivering
streaming data over a network. In one embodiment, the invention is described as being
integrated into an existing Real-Time Streaming Protocol/ Real-Time Protocol (RTSP/RTP)

video delivery infrastructure, however, the invention is generally suitable for tunneling any

-4 -

Ex. 1002 - Page 477 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 65 of 194

WO 2011/068784 PCT/US2010/058306

real-time streaming protocol; RTSP/RTP just happens to be a predominant protocol and is
therefore of focus. In another embodiment, the invention is suitable for integration into an
HTTP Live Streaming (HLS) video delivery infrastructure. In another embodiment, the
invention is suitable for integration into Real-Time Messaging Protocol (RTMP) video
delivery infrastructure. In another embodiment, the invention is suitable for integration into
an Internet Information Services (IIS) Smooth Streaming video delivery infrastructure.

In one embodiment, the invention includes a server-side proxy and one or more
client-side proxies. The server-side proxy connects to one or more streaming servers and
records the data in batches. In one embodiment, the streaming server is an RTSP server and
the data is RTP/RTCP data. The RTP and RTCP data is written into segment files along
with control information used to decode the segments by the client-side proxies. In another
embodiment, the streaming server is an HLS server and the data is MPEG transport stream
(MPEG-TS) data, where MPEG stands for "Motion Picture Experts Group" as known in the
art. In another embodiment, the streaming server is an RTMP server and the data is RTMP
data. In another embodiment, the streaming server is an IIS Smooth Streaming server and
the data is MPEG-4 (MP4) fragment data. In one embodiment, the segment is then
encrypted by the server-side proxy. In one embodiment, encryption uses the AES128 block
cipher. In another embodiment, the encryption uses the RC4 stream cipher. In another
embodiment, the encryption uses the HC128 stream cipher. In another embodiment, the
encryption uses the AES128 counter mode (CTR) stream cipher. There are many encryption
methods, as should be familiar to those skilled in the art; any valid encryption method may
be used. The segment is then available for transmission to the client-side proxies.

In one embodiment, client-side proxies initiate persistent HT TP connections to the
server-side proxies, and the segments are streamed out as they become available. The
segments are sent using the HTTP chunked transfer encoding so that the segment sizes and
number of segments do not need to be known a priori. In another embodiment, the client-
side proxies may use non-persistent HTTP requests to poll the server-side proxy for new
segments at fixed intervals. In another embodiment, the client-side proxies initiate
persistent HTTP connections to a CDN to retrieve the segments. In another embodiment,
the client-side proxies initiate non-persistent HTTP connections to a CDN to retrieve the
segments at fixed intervals. In another embodiment, the client-side proxies may use FTP

requests to poll for new segments at fixed intervals. In one embodiment, HTTP connections

-5-

Ex. 1002 - Page 478 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 66 of 194

WO 2011/068784 PCT/US2010/058306

may be secured (i.e., HTTPS) using SSL/TLS to provide data privacy when retrieving
segments. In another embodiment, the FTP connections may be secure (i.c., SFTP/SCP) to
provide data privacy when retrieving segments. In one embodiment, the segment files
adhere to a file naming convention which specifies the bitrate and format in the name, to
simplify segment polling and retrieval.

In one embodiment, the server-side proxy connects to a single streaming server
retrieving a single video stream. In one embodiment, the streaming server is an RTSP
server. Each RTSP connection should be accompanied by at least one audio RTP channel,
one audio RTCP channel, one video RTP channel, and one video RTCP channel, as should
be known to those skilled in the art. Herein, this group of RTSP/RTP/RTCP connections is
considered a single atomic stream. In one embodiment, the stream contains a high
definition video stream. This source video is transcoded into a plurality of different
encodings. In one embodiment only the video bitrates differ between encodings. In another
embodiment, the video bitrates, frame rates, and/or resolution may differ. The different
encodings are written into separate file segments.

In another embodiment, the server-side proxy connects to a single streaming server
retrieving a plurality of streams. Each stream is for the same source video content, with
cach stream encoded differently. In another embodiment, the server-side proxy connects to
a single RTSP server to retrieve a plurality of streams. In one embodiment, cach stream in
the plurality of streams contains the same content encoded differently. In one embodiment
only the video bitrates differ. In another embodiment, the video bitrates, frame rates,
and/or resolution may differ. The client-side proxy may request that one or more bitrates be
sent to it over a persistent HTTP connection. The client-side proxy may choose a different
bitrate or set of bitrates by initiating a new persistent HTTP connection to the server-side
proxy. The client-side proxy may select any segments it wishes when using a polling-based
approach.

In another embodiment, the server-side proxy connects to a plurality of streaming
servers retrieving multiple streams which are to be spliced together. In one embodiment, an
advertisement may be retrieved from one server, while the main content is retrieved from
another server, and the advertisement is spliced in at designated intervals. In another
embodiment, one viewing angle for an event may be available on one server, while another

viewing angle may be available on the other server, and the different viewing angles are to

-6 -

Ex. 1002 - Page 479 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 67 of 194

WO 2011/068784 PCT/US2010/058306

be switched between. In one embodiment the splicing and switching is done based on a
fixed schedule that is known a priori. In another embodiment the splicing and switching is
done on demand based on user input.

In one embodiment, the segments are all of a fixed duration. In another
embodiment, the segments may all be of a fixed size. In one embodiment, video segments
are packed to integer time boundaries. In another embodiment compressed and/or encrypted
segments are padded out to round numbered byte boundaries. This can help simplify byte-
based offset calculations. It also can provide a level of size obfuscation, for security
purposes. In another embodiment the segments may be of variable duration or size. In one
embodiment, video segments are packed based on key frame or group of frame counts.

In one embodiment, the segments are served from standard HTTP servers. In
another embodiment, the segments may be served from an optimized caching infrastructure.

The segments are designed to be usable with existing infrastructure. They do not require
special servers for delivery and they do not require decoding for delivery. They also do not
require custom rendering engines for displaying the content.

In one embodiment, the client-side proxy acts as an RTSP server for individual
client devices. The client-side proxy decodes the segments retrieved from the server-side
proxy and replays the RTP/RTCP content contained within the segment. The RTP/RTCP
headers may be spoofed to produce valid sequence numbers and port numbers, etc., for cach
client device. The methods for header field rewrite for spoofing prior to transmission
should be known to those skilled in the art. In one embodiment, the client-side proxy is
embedded inside a client application, directly interacting with only the local device’s native
media player. In another embodiment, the client-side proxy acts as an HLS server for
individual client devices. The client-side proxy tracks segment availability and creates
m3u8 playlists for the client. In another embodiment, the client-side proxy acts as a
standalone device, serving multiple client endpoints. In one embodiment, the client-side
proxy accepts individual connections from each endpoint. In another embodiment, the
client-side proxy distributes the RTP/RTCP data via IP multicast. The client devices join an
IP multicast tree and receive the data from the network, rather than making direct
connections to the client-side proxy.

In one embodiment, the invention uses bandwidth measurements to determine when

a change in bitrate is required. If the estimated bandwidth falls below a given threshold for

-7 -

Ex. 1002 - Page 480 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 68 of 194

WO 2011/068784 PCT/US2010/058306

the current encoding, for a specified amount of time, then a lower bit rate encoding should
be selected. Likewise if the estimated bandwidth rises above a different threshold for the
current encoding, for a different specified amount of time, then a higher bit rate encoding
may be selected. The rate change takes place at the download of the next segment.

In one embodiment, the bandwidth is estimated based on the download time for each
segment (S / T), where S is the size of the segment and T is the time elapsed in retrieving
the segment. In one embodiment, the downloader keeps a trailing history of B bandwidth
estimates, calculating the average over the last B samples. When a new sample is taken, the

Bth oldest sample is dropped and the new sample is included in the average:

integer B_index // tail position in the circular history buffer

integer B_total // sum of all the entries in the history buffer

integer B_count // total number of entries in the history buffer

integer B new // newly sampled bandwidth measurement

integer B old // oldest bandwidth sample to be replaced

integer B_average // current average bandwidth

array B_history // circular history buffer

B _old = B history[B_index] // find the sample to be replaced

B_history[B_index] = B_new // replace the sample with the new
sample

B_total = B total - B_old // remove the old sample from the sum

B_total = B _total + B_new // add the new sample into the sum

B_average = B_total / B_count // update the average

B index = (B_index + 1) % B_count // update the buffer index

The history size should be selected so as not to tax the client device. A longer
history will be less sensitive to transient fluctuations, but will be less able to predict rapid
decreases in bandwidth. In another embodiment the downloader keeps only a single sample

and uses a dampening filter for statistical correlation.

integer B new // newly sampled bandwidth measurement
integer B_average // current average bandwidth

float B_weight // weight of new samples, between 0 and 1

B_average = (B_average * (1 - B _weight)) + (B_average * B weight) // update
the average

This method requires less memory and fewer calculations. It also allows for
exponential drop off in historical weighting. In one embodiment, download progress for a

given segment is monitored periodically so that the segment size S of the retrieved data does

-8 -

Ex. 1002 - Page 481 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 69 of 194

WO 2011/068784 PCT/US2010/058306

not impact the rate at which bandwidth measurements are taken. There are numerous
methods for estimating bandwidth, as should be known to those skilled in the art; the above
are representative of the types of schemes possible but do not encompass an exhaustive list
of schemes. Other bandwidth measurement techniques as applicable to the observed traffic
patterns are acceptable within the context of the present invention.

Live RTP data is typically sent just-in-time (JIT) by the RTSP server, so the data
received by the server-side proxy is naturally paced. The server-side proxy does not need to
inject additional delay into the distribution of segments, nor does the client-side proxy need
to inject additional pacing into the polling retrieval of segments. The data is received by the
server-side proxy and packed into segments. Once the segment is complete, the segment is
immediately distributed to the client-side proxies. The client-side proxies then immediately
distribute the data contained in the segment to the client devices. If the segment sizes are
large, then the client-side proxy paces the delivery of RTP data to the client devices. In one
embodiment, the client-side proxy inspects the RTP timestamps produced by the RTSP
server, and uses them as a guideline for pacing the RTP/RTCP data to the client devices. In
one embodiment, the segments are made available for video on demand (VoD) playback
once they have been created. If the segments already exist on the storage device, then they
could be downloaded as fast as the network allows. In one embodiment, the server-side
proxy paces the delivery of segments to the client-side proxy. In another embodiment, the
client-side proxy requests segments from the server-side proxy in a paced manner. In
another embodiment, the client-side proxy requests segments from the CDN in a paced
manner. The pacing rate is determined by the duration of the segments. The segments are
delivered by the server-side proxy or retrieved by the client-side proxy JIT to maximize
network efficiency.

In one embodiment, the invention uses bandwidth measurements to determine when
a change in bitrate is required. If the estimated bandwidth falls below a given threshold for
the current encoding, for a specified amount of time, then a lower bit rate encoding should
be selected. Likewise if the estimated bandwidth rises above a different threshold for the
current encoding, for a different specified amount of time, then a higher bit rate encoding
may be selected. In one embodiment, the rate change is initiated by the server-side proxy.
The server-side proxy uses TCP buffer occupancy rate to estimate the network bandwidth.

When the estimated available bandwidth crosses a rate change threshold, the next segment

-9-

Ex. 1002 - Page 482 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 70 of 194

WO 2011/068784 PCT/US2010/058306

delivered is chosen from a different bitrate. In another embodiment, the rate change is
initiated by the client-side proxy. The client-side proxy uses segment retrieval time to
estimate the network bandwidth. When the estimated available bandwidth crossed a rate
change threshold, the next segment requested is chosen from a different bitrate.

In the description that follows, a single reference number may refer to analogous
items in different embodiments described in the figures. It will be appreciated that this use
of a single reference number is for ease of reference only and does not signify that the item
referred to is necessarily identical in all pertinent details in the different embodiments.
Additionally, as noted below, items may be matched in ways other than the specific ways

shown in the Figures.

Description of Illustrative Embodiments

In FIG. 1 is a block diagram 100 for one embodiment of the present invention. It
shows a streaming server 108 (shown as an RTSP server 108), a server-side proxy 106, a
client-side proxy 104, and a client device 102. The streaming server 108, the server-side
proxy 106, the client-side proxy 104, and the client device 102 are all typically
computerized devices which include one or more processors, memory, storage (e.g.,
magnetic or flash memory storage), and input/output circuitry all coupled together by one or
more data buses, along with program instructions which are executed by the processor out
of the memory to perform certain functions which are described herein. Part or all of the
functions may be depicted by corresponding blocks in the drawings, and these should be
understood to cover a computerized device programmed to perform the identified function.

In the interest of specificity, the following description is directed primarily to an
embodiment employing RTSP. As described below, other types of streaming protocols,
servers, and connections may be employed. The references to RTSP in the drawings and
description are not to be taken as limiting the scope of any claims not specifically directed to
RTSP.

The server-side proxy 106 initiates a real-time streaming connection 112 (shown as
RTSP connection 112) to the RTSP server 108. The RTSP connection 112 shown contains
a bi-directional RTSP control channel, and four unidirectional RTP/RTCP data channels
(i.e., one audio RTP channel, one audio RTCP channel, one video RTP channel, and one

video RTCP channel), all of which constitutes a single stream. The server-side proxy 106

-10 -

Ex. 1002 - Page 483 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 71 of 194

WO 2011/068784 PCT/US2010/058306

captures the data from all four RTP/RTCP channels and orders them based on timestamps
within the packets. The packets are then written to a segment file. A header is added to
cach of the individual packets to make the different channels distinguishable when parsed
by the client-side proxy 104. Once the segment file has reached its capacity, the file is
closed and a new file is started. In one embodiment, the file capacity is based on the wall-
clock duration of the stream, ¢.g., 10 seconds of data. In another embodiment, the file
capacity is based on video key frame boundaries, ¢.g. 10 seconds of data plus any data until
the next key frame is detected. In another embodiment, then file capacity is based on file
size in bytes, e.g., 128KB plus any data until the next packet.

In one embodiment, the server-side proxy 106 takes the recorded stream and
transcodes it into a plurality of encodings. In one embodiment only the video bitrates differ
between encodings. In another embodiment, the video bitrates, frame rates, and/or
resolution may differ.

The client device 102 initiates a real-time streaming connection 114 (shown as
RTSP connection 114) to the client-side proxy 104. The RTSP connection 114 shown
contains a bi-directional RTSP control channel, and four unidirectional RTP/RTCP data
channels (i.e., one audio RTP channel, one audio RTCP channel, one video RTP channel,
and one video RTCP channel), all of which constitutes a single stream. The client-side
proxy 104 initiates a connection 110 to the server-side proxy 106. In one embodiment, the
connection 110 is a persistent HTTP connection. In another embodiment, the connection
110 is a persistent HTTPS connection. In another embodiment, the connection 110 is a
onetime use HTTP connection. In another embodiment, the connection 110 is a onetime use
HTTPS connection. In another embodiment, the connection 110 is a persistent FTP, SFTP,
or SCP connection. In another embodiment, the connection 110 is a onetime use FTP,
SFTP, or SCP connection.

In one embodiment, the client-side proxy 104 requests the first segment for the
stream from the server-side proxy 106. In another embodiment the client-side proxy 104
requests the current segment for the stream from the server-side proxy 106. If the stream is
a live stream, the current segment will provide the closest to live viewing experience. If the
client device 102 prefers to see the stream from the beginning, however, it may request the
first segment, whether the stream is live or not. In one embodiment, the server-side proxy

106 selects the latest completed segment and immediately sends it to the client-side proxy

-11 -

Ex. 1002 - Page 484 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 72 of 194

WO 2011/068784 PCT/US2010/058306

104. In another embodiment, the server-side proxy 106 selects the earliest completed
segment and immediately sends it to the client-side proxy 104. For some live events, the
entire history of the stream may not be saved, therefore, the first segment may be mapped to
the earliest available segment. For video on demand (VoD), the first segment should exist,
and will be the earliest available segment.

For persistent HTTP/HTTPS connections, segments are sent as a single HTTP
chunk, as defined by the HTTP chunk transfer encoding. Subsequent segments will be sent
as they become available as separate HTTP chunks, as should be familiar to those skilled in
the art. For onetime use HTTP/HTTPS and FTP/SFTP/SCP, the client-side proxy 104 polls
for the availability of the next segment using the appropriate mechanism for the specific
protocol, as should be familiar to those skilled in the art. Though only one client-side proxy
104 is shown, multiple client-side proxies 104 may connect to a single server-side proxy
106. A client-side proxy 104 may also connect to multiple server-side proxies 106.

The client-side proxy 104 decodes the segments and parses out the component
RTP/RTCP stream data and forwards the data to the client device 102. The RTP/RTCP data
is paced as per the RTP specification. The client-side proxy 104 uses the timestamp
information in the RTP/RTCP packet headers as relative measures of time. The timing
relationship between packets should be identical, as seen by the client device 102, to the
timing relationship when the stream was recorded by the server-side proxy 106. The
timestamps and sequence numbers are updated, however, to coincide with the specific client
device 102 connection. Manipulation of the RTP/RTCP header information to normalize
timestamps and sequence numbers should be familiar to those skilled in the art.

The client device 102 delivers the data to the a media player on client device 102
which renders the stream. The HTTP proxy infrastructure is transparent to the native media
player which receives RTSP/RTP data as requested.

In FIG. 2 is a block diagram 200 for another embodiment of the present invention.
As with FIG. 1, it shows an RTSP server 108, the server-side proxy 106, the client-side
proxy 104, and a client device 102. FIG. 2, however, shows a plurality of RTSP servers 108
and a plurality of client devices 102. The connections 112 between the server-side proxy
106 and the RTSP servers 108 are the same, there are just multiple of them. Each
connection 112 attaches to a different RTSP server 108, to retrieve different content which

is to be spliced together. In one embodiment, one RTSP server 108 may contain a live event

12 -

Ex. 1002 - Page 485 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 73 of 194

WO 2011/068784 PCT/US2010/058306

which pauses for commercial interruptions, while one or more other RTSP servers 108 may
contain advertisements which are to be inserted during the commercial breaks. In another
embodiment, multiple RTSP servers 108 may contain different camera angles for a given
live event, where a final video stream switches between the different camera angles. In one
embodiment, the splicing of streams (advertisements) and/or the switching of streams
(camera angles) is determined before the event and performed on a set schedule. In another
embodiment, the splicing of streams (advertisements) and/or the switching of streams
(camera angles) is determined live by user intervention. Though only one client-side proxy
104 is shown, multiple client-side proxies 104 may connect to a single server-side proxy
106. A client-side proxy 104 may also connect to multiple server-side proxies 106.

In one embodiment, the server-side proxy 106 takes each of the recorded streams
and transcodes them into a plurality of encodings. In one embodiment only the video
bitrates differ between encodings. In another embodiment, the video bitrates, frame rates,
and/or resolution may differ.

The connection 110 between the client-side proxy 104 and the server-side proxy 106
is the same as in the discussion of FIG. 1. The segment parsing and RTP/RTCP packet
normalization and pacing performed by the client-side proxy 104 is also the same as in the
discussion of FIG. 1. The connection 214 between the client devices 102 and the client-side
proxy 104 is via a multicast connection such as an IP multicast distribution tree. The client-
side proxy 104 and client devices 102 connect to the multicast distribution tree through a
multicast registration protocol, e.g., IGMP. A multicast router infrastructure is typically
required. The client-side proxy 104 then sends the RTP/RTCP data to a multicast address,
and does not communicate with client devices 102 directly. The client devices 102 receive
the live data from the multicast tree and deliver the data to the native media player which
renders the stream. The HTTP proxy infrastructure is transparent to the native media player
which receives RTSP/RTP data as requested.

FIG. 3 is a block diagram 300 for another embodiment of the present invention. As
with FIGs. 1 and 2, it shows an RTSP server 108, the server-side proxy 106, the client-side
proxy 104, and a client device 102. FIG. 3, however, shows a single server-side proxy 106
with multiple RTSP connections 112 to it. The server-side proxy 106 connects to a CDN
320 for remote storage of the generated segments. FIG. 3 also shows a more detailed view

of the client device 102, with an integrated client-side proxy 104. Each RTSP connection

-13 -

Ex. 1002 - Page 486 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 74 of 194

WO 2011/068784 PCT/US2010/058306

112 connects to the same RTSP server 108. In one embodiment, the each RTSP connection
112 retrieves the same content, each encoded at a different bitrate, frame rate, and/or
resolution. The server-side proxy 106 makes multiple simultancous RTSP connections 112
to the RTSP server 108 and records all of the different encodings so that it can service a
request for any of the different encodings at any time. In another embodiment, each RTSP
connection 112 retrieves different content and the server-side proxy 106 takes the recorded
streams and transcodes them into a plurality of encodings. In one embodiment only the
video bitrates differ between encodings. In another embodiment, the video bitrates, frame
rates, and/or resolution may differ. Though only one client-side proxy 104 is shown,
multiple client-side proxies 104 may connect to the CDN 320. A client-side proxy 104 may
also connect to multiple CDNs 320.

The client-side proxy 104 is integrated into the client device 102, by being
embedded into a client device application 318. The client device application 318 integrates
the client-side proxy 104 software to provide direct access to the native media player 316.
This integration provides the highest level of security as the HTTP proxy security is
extended all the way to the client device 102. Whether it is the transport security of HTTPS
or the content security of the segment encryption, extending the security later to the client
device 102 prevents the possibility of client-side man-in-the-middle attacks. In one
embodiment, the connection 110 between the client-side proxy 104 and the CDN 320 is a
persistent HTTP connection. In another embodiment, the connection 110 is a persistent
HTTPS connection. In another embodiment, the connection 110 is a onetime use HTTP
connection. In another embodiment, the connection 110 is a onctime use HTTPS
connection. In another embodiment, the connection 110 is a persistent FTP, SFTP, or SCP
connection. In another embodiment, the connection 110 is a onetime use FTP, SFTP, or
SCP connection.

In one embodiment, the client-side proxy 104 requests the first segment for the
stream from the CDN 320. In another embodiment the client-side proxy 104 requests the
current segment for the stream from the CDN 320. If the stream is a live stream, the current
segment will provide the closest to live viewing experience. If the client device 102 prefers
to sce the stream from the beginning, however, it may request the first segment, whether the
stream is live or not. For some live events, the entire history of the stream may not be

saved, therefore, if the first segment does not exist, the current segment should be retrieved.

-14 -

Ex. 1002 - Page 487 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 75 of 194

WO 2011/068784 PCT/US2010/058306

For video on demand (VoD), the first segment should exist.

The client-side proxy 104 polls for the availability of the next segment using the
appropriate mechanism for the specific protocol, as should be familiar to those skilled in the
art. The segment parsing and RTP/RTCP packet normalization and pacing performed by the
client-side proxy 104 is the same as in the discussion of FIG. 1. The connection 114
between the client devices 102 and the client-side proxy 104 is the same as in the discussion
of FIG. 1. The native media player 318 receives the data directly from the client-side proxy
104 and renders the stream. The HTTP proxy infrastructure is transparent to the native
media player which receives RTSP/RTP data as requested.

To support rate adaptation, the client-side proxy 104 measures the bandwidth and
latency of the segment retrieval from the server-side proxy 106 or CDN 320. In one
embodiment, the client-side proxy 104 calculates the available bandwidth based on
download time and size of each segment retrieved. In one embodiment, bitrate switching is
initiated when the average bandwidth falls below the current encoding’s bitrate or a higher

bitrate encoding’s bitrate:

int bandwidth_ avg // average available network bandwidth
int video bit_ rate // current video encoding bit rate
if bandwidth_avg < video_bit_rate
for each encoding sorted by bit rate in descending order
if encoding.bit rate < bandwidth avg && encoding.bit rate !=
video_bit_ rate
change encoding
break
end
end

end

In one embodiment, when an encoding change is desired, the client-side proxy 104
will terminate its existing persistent HTTP connection and initiate a new persistent HTTP
connection requesting the data for the new encoding. In another embodiment, polled
approaches just switch the segment type requested from the server-side proxy 106 or CDN
320 by the client-side proxy 104.

FIG. 4 is a diagram 400 of a segment format which may be used in accordance with
an embodiment of the present invention. The segment 402 contains a plurality of segment

frames 404. Each segment frame 404 consists of a frame header 406 and a frame payload

-15-

Ex. 1002 - Page 488 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 76 of 194

WO 2011/068784 PCT/US2010/058306

408. The frame header 406 contains frame type information 410 and frame payload length
information 412. In one embodiment, the frame type indicates the payload channel
information (audio RTP, audio RTCP, video RTP, and/or video RTCP) as well as any
additional information about the payload framing. The frame payload length 412 indicates
the length of the segment frame payload section 408. The frame payload length 412 may be
used to parse the segment sequentially, without the need for global index headers and
metadata to be packed at the beginning of the segment. In one embodiment, the frame
header 406 is aligned to 4 or 8 byte boundaries to optimize copying of the frame payload
408. In one embodiment, the frame payload 408 contains an RTP or RTCP packet 414. In
one embodiment, RTP protocol pads the frame payload 408 out to a 4 or 8 byte boundary, to
ensure that the frame header 406 is 4 or 8 byte aligned, respectively.

FIG. 5 is a flow chart 500 describing the process of retrieving content from an RTSP
server 108 and generating segments in the server-side proxy 106. In step 502, the server-
side proxy 106 initiates a connection to the RTSP server 108, setting up the necessary
RTP/RTCP channels (i.c., audio RTP, audio RTCP, video RTP, and/or video RTCP). In
step 504, it checks to see if a new segment file is needed. In the case of a new connection, a
new segment file is needed. In the case of an existing connection, the segment file contents
are checked against segment file capacity thresholds. In one embodiment, the file capacity
is based on the wall-clock duration of the stream, ¢.g., 10 seconds of data. In another
embodiment, the file capacity is based on video key frame boundaries, e.g. 10 seconds of
data plus any data until the next key frame is detected. In another embodiment, then file
capacity is based on file size in bytes, e.g., 128KB plus any data until the next packet. If the
threshold is not met, processing continues to step 506. If the threshold has been met, or the
connection is new, processing continues to step 508. The processing from step 508 for
existing connections is described below. For new connections, step 508 simply opens a new
segment which is used during the processing of steps 506 through 516/518 for the first
segment of a new connection.

In step 506, the server-side proxy 106 reads from the RTP/RTCP connections. The
reads are performed periodically. In one embodiment, a delay is inserted at the beginning of
step 506, ¢.g., 1 second, to allow RTP/RTCP data to accumulate in the sockets. The data
from all RTP/RTCP channels is read, and ordered. In one embodiment, packets are inserted

into a priority queue, based on their timestamps. Enforcing time-based ordering simplifies

-16 -

Ex. 1002 - Page 489 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 77 of 194

WO 2011/068784 PCT/US2010/058306

the parsing for the client-side proxy 104. The priority queue allows data to be written into
segments based on different segment sizing criteria. In one embodiment, packet data from
the priority queue is later read and written to the segment file. This allows the segment file
to write less than the amount of data that was read from the sockets. In another
embodiment, RTP/RTCP packets are written directly into the segment file.

Once a batch read is completed, the processing proceeds to step 516 to check and see
if any transcoding is required. If transcoding is required, processing proceeds to step 518
where the transcoding occurs. In one embodiment, a plurality of queues are maintained, one
for each transcoding. The RTP frame data is reassembled and transcoded using methods
which should be known to those skilled in the art. In one embodiment only the video
bitrates differ between encodings. In another embodiment, the video bitrates, frame rates,
and/or resolution may differ. The transcoded frames are re-encapsulated using the existing
RTP headers that were supplied with the original input. The encapsulated frames are
written to the corresponding queucs associated with each encoding.

Once transcoding is complete, or if no transcoding was required, processing
proceeds back to step 504 to check and see if the segment thresholds have been met with the
newly read data. The loop from 504 through 516/518 is repeated until the segment threshold
is reached in step 508.

In step 508, the data for the segment is flushed out to a file and the file is closed. In
one embodiment, the threshold checking performed in step 504 indicates how much data to
pull from the priority queue and write to the file. Once the file has been written, the buffers
are flushed and the file is closed. In another embodiment, the data has already been written
to the segment file in step 506 and only a buffer flush is required prior to closing the file.
Once the buffer has been flushed, two parallel paths are executed. In one execution path,
processing proceeds back to step 506 for normal channel operations. In another execution
path, starting in step 510, post processing is performed on the segment and the segment is
delivered to the client. In step 510, a check is done to see if segment encryption is required.

If no segment encryption is required processing proceeds to step 514. If segment
encryption is required, processing proceeds to step 512 where the segment encryption is
performed. The segment encryption generates a segment specific seed value for the
encryption cipher. In one embodiment, the encryption seed is based off of a hash (e.g.,

MDS5 or SHA1) of the shared secret and the segment number. Other seed generation

-17 -

Ex. 1002 - Page 490 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 78 of 194

WO 2011/068784 PCT/US2010/058306

techniques may also be used, as long as they are reproducible and known to the client-side
proxy 104. Once the segment has been encrypted, processing proceeds to step 514. In step
514, the segment is read for delivery to the client-side proxy 104. If the client-side proxy
104 has initiated a persistent HTTP connection to the server-side proxy 106, the segment is
sent out over the persistent HTTP connection. The segment name, which contains
meaningful information about the segment (e.g., segment number, encoding type, and
encryption method) is sent first, and then the segment itself is sent after. Each is sent as an
individual HTTP chunk.

FIG. 6 is a flow chart 600 describing the process of retrieving content from the
server-side proxy 106 or CDN 320 and redistributing that content over RTSP connections
114 or multicast trees 214 to client devices 102 from the client-side proxy 104. In step 602,
the client-side proxy 104 accepts an RTSP connection from the client device 102. In step
604, the client-side proxy 104 then initiates a persistent HTTP connection to the server-side
proxy 106 or CDN 320. In one embodiment, a persistent HTTPS connection using
SSL/TLS to secure the connection is initiated. The HTTP GET request indicates a segment
name. The segment name contains meaningful information about the segment (e.g.,
segment number, encoding type, encryption method, and the source content identifier). The
server-side proxy 106 associates the request with an existing backend process 500 (FIG. 5),
or creates a new backend process 500 to service the request. Processing then proceeds to
step 606 where the client-side proxy 104 waits for a segment to be sent by the server-side
proxy 106. When the segment is received by the client-side proxy 104, the client-side proxy
104 calculates the time it took to receive the segment, and uses that to compute a bandwidth
estimate. The bandwidth estimate is used at a later point to check and see if a rate switch
should be initiated.

The segment pre-processing starts in step 608. In step 608, the segment is checked
to see if it is encrypted. In one embodiment, encryption is denoted by the segment name. If
the segment is encrypted, then processing proceeds to step 610 where the segment is
decrypted. Once the segment is decrypted, or if the segment was not encrypted, processing
proceeds to step 612. In step 612, the segment is parsed and the RTP/RTCP contents are
retriecved. The RTP/RTCP headers are normalized so that port numbers, sequence numbers,
and timestamps provided by the RTSP server 108 to the server-side proxy 106, are

converted to match the connection parameters negotiated between the client-side proxy 104

-18 -

Ex. 1002 - Page 491 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 79 of 194

WO 2011/068784 PCT/US2010/058306

and the client device 102. The RTP/RTCP packets are then queued for transmission to the
client device 102. Relative time-based pacing is implemented so as not to overrun the client
device 102. In one embodiment, cach packet is paced exactly using the difference in
timestamps from the original RTP/RTCP packets to determine the delay between packet
transmissions. In another embodiment, packets are sent in bursts, using the difference in
timestamps from the original RTP/RTCP packets to determine the delay between packet
burst transmissions. Once all the packets from the current segment have been sent,
processing proceeds to step 614.

In step 614, a check is performed to see if a rate switch is desired. The bandwidth
estimate information gathered in step 606 is compared with the bitrate of the segment that
was just retrieved. If the available bandwidth is less than, or very near the current video
encoding’s bitrate, then a switch to a lower bitrate may be warranted. If the available
bandwidth is significantly higher than the current encoding’s bitrate and a higher bitrate
encoding’s bitrate, then a switch to a higher bitrate may be acceptable. If no rate switch is
desired, then processing proceeds back to step 606 to await the next segment. If a rate
switch is desired, processing proceeds to step 616 where the new bitrate and new segment
name are determined. The current persistent HTTP connection is then terminated, and
processing proceeds back to step 604 to initiate a new persistent HTTP connection. In one
embodiment, the check for a rate switch may be performed in parallel with segment
decryption and parsing to mask the latency of setting up the new persistent HTTP
connection.

FIG. 7 is a flow chart 700 describing another process for retrieving content from the
server-side proxy 106 or CDN 320 and redistributing that content over RTSP connections
114 or multicast trees 214 to client devices 102 from the client-side proxy 104. In step 702,
the client-side proxy 104 accepts an RTSP connection from the client device 102. In step
704, the client-side proxy 104 then issues an HTTP request to the server-side proxy 106 or
CDN 320. In one embodiment, an HTTPS connection using SSL/TLS secures the
connection. The HTTP GET request indicates a segment name. The segment name
contains meaningful information about the segment (e.g., segment number, encoding type,
encryption method, and the source content identifier). Processing then proceeds to step 706
where the client-side proxy 104 waits for a segment to be retrieved from the server-side

proxy 106 or CDN 320. When the segment is received by the client-side proxy 104, the

-19 -

Ex. 1002 - Page 492 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 80 of 194

WO 2011/068784 PCT/US2010/058306

client-side proxy 104 calculates the time it took to receive the segment, and uses that to
compute a bandwidth estimate.

The segment pre-processing starts in step 708. In step 708, the segment is checked
to see if it is encrypted. In one embodiment, encryption is denoted by the segment name. If
the segment is encrypted, then processing proceeds to step 710 where the segment is
decrypted. Once the segment is decrypted, or if the segment was not encrypted, processing
proceeds to step 712. In step 712, the segment is parsed and the RTP/RTCP contents are
retriecved. The RTP/RTCP headers are normalized so that port numbers, sequence numbers,
and timestamps provided by the RTSP server 108 to the server-side proxy 106, are
converted to match the connection parameters negotiated between the client-side proxy 104
and the client device 102. The RTP/RTCP packets are then queued for transmission to the
client device 102. Relative time-based pacing is implemented so as not to overrun the client
device 102. In one embodiment, each packet is paced exactly using the difference in
timestamps from the original RTP/RTCP packets to determine the delay between packet
transmissions. In another embodiment, packets are sent in bursts, using the different in
timestamps from the original RTP/RTCP packets to determine the delay between packet
burst transmissions. Once all the packets from the current segment have been sent,
processing proceeds to step 714.

In step 714, a check is performed to see if a rate switch is desired. The bandwidth
estimate information gathered in step 706 is compared with the bitrate of the segment that
was just retrieved. If the available bandwidth is less than, or very near the current video
encoding’s bitrate, then a switch to a lower bitrate may be warranted. If the available
bandwidth is significantly higher than the current encoding’s bitrate and a higher bitrate
encoding’s bitrate, then a switch to a higher bitrate may be acceptable. If a rate switch is
desired, processing proceeds to step 716 where the new bitrate and new segment name are
determined. Once the new next segment is determined, or if no rate change was necessary,
processing proceeds to step 718 where the pacing delay is calculated and enforced. The
client-side proxy 104 does not need to retrieve the next segment until the current segment
has played out; the pacing delay minimizes unnecessary network usage. In one
embodiment, a pacing delay of (D — S/B — E), where D is the duration of the current
segment, S is the size of the current segment (used as the estimated size of the next

segment), B is the estimated available bandwidth, and E is an error value > 0. The

-20 -

Ex. 1002 - Page 493 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 81 of 194

WO 2011/068784 PCT/US2010/058306

calculation takes the duration of the current segment, minus the retrieval time of the next
segment, minus some constant to prevent underrun as the pacing delay. In another
embodiment, no pacing delay is enforced, to provide maximum underrun protection.
Processing waits in step 718 for the pacing delay to expire, then proceeds back to step 704
to issue the next segment retrieval HTTP GET request.

FIG. 8 is a diagram 800 of the components of the server-side proxy 106. A video
stream 812 is recorded by the stream recorder 802. The stream recorder implements the
specific protocol required to connect to the video stream 812. In one embodiment the
protocol is RTMP. In another embodiment the protocol is RTSP/RTP. In another
embodiment, the protocol is HTTP Live Streaming. In another embodiment, the protocol is
Smooth Streaming. There are numerous live streaming protocols, as should be known to
those skilled in the art, of which any would be suitable for the stream recorder 802. The
stream recorder 802 passes recorded data to the stream transcoder 804, as it is received. The
stream transcoder 804 is responsible for decoding the input stream and re-encoding the
output video frames in the proper output bitrate, frame rate, and/or resolution. The stream
transcoder 804 passes the re-encoded frames to the output framer 806. The output framer
806 is responsible for packing the encoded frames into the proper container format. In one
embodiment, the stream transcoder 804 and output framer 806 support the H.264 , H263,
MPEG?2, MPEG4, and WVM, video codecs and the MP3, AAC, AMR, and WMA audio
codecs, along with the FLV, MOV, 3GP, MPEG2-TS and Advanced Systems Format (ASF)
container formats. In another embodiment, the stream transcoder 804 and output framer 806
may support other standard or proprietary codecs and container formats. In one
embodiment, the output framer supports RTP encapsulation as well as the custom segment
encapsulation described in FIG. 4. There are numerous video and audio codecs and
container formats, as should be known to those skilled in the art, of which any would be
suitable for the stream transcoder 804 and output framer 806. The output framer 806 writes
the formatted data into segment files in the local media storage 816. The output framer 806
is responsible for enforcing segment boundaries and durations. When the segments are
complete, the output framer 806 notifies the segment encryptor 808. If segment encryption
is required, the segment encryptor 808 reads the segment from the media storage 816,
encrypts the segment, and writes the encrypted segment back out to the media storage 816.

In one embodiment, the segment uploader 810 is notified that the segment is ready

-21 -

Ex. 1002 - Page 494 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 82 of 194

WO 2011/068784 PCT/US2010/058306

for upload to the CDN 320 and the segment uploader 810 uploads the finished segments to
the CDN 320 over connection 814. In one embodiment, the segment uploader 810 uses
persistent HTTP connections to upload segments. In another embodiment, the segment
uploader 810 uses persistent HTTPS connections to upload segments. In another
embodiment, the segment uploader 810 uses onetime use HTTP connections to upload
segments. In another embodiment, the segment uploader 810 uses onctime use HTTPS
connections to upload segments. In another embodiment, the segment uploader 810 uses
persistent FTP, SFTP, or SCP connections to upload segments. In another embodiment, the
segment uploader 810 uses onetime use FTP, SFTP, or SCP connections to upload
segments. In another embodiment, segment uploader 810 uses simple file copy to upload
segments. There are numerous methods, with varying levels of security, which may be used
to upload the files, as should be known to those skilled in the art, of which any would be
suitable for the segment uploader 810.

In another embodiment, the completed segments are made available to an HTTP
server 818. The HTTP server 818 accepts connections from the client-side proxy 104.
Segments are read from the media storage 816 and delivered to the client-side proxy 104.

FIG. 9 is a diagram 900 of a client device, wherein the client device native media
player 910 supports RTSP/RTP. In one embodiment, the client contains a downloader 902.
The downloader 902 is responsible for interacting with the server-side proxy 106 or CDN
320 to retrieve segments. In one embodiment, the downloader 902 keeps track of multiple
server-side proxies 106 or CDNs 320. Segments are retrieved from the primary server-side
proxy 106 or CDN 320. If the response to a segment request fails to arrive in an acceptable
amount of time, the downloader 902 issues a request to an alternate server-side proxy 106 or
CDN 320. In one embodiment, the retrieval timeout is set as a percentage of the duration of
the segment (e.g., 20%). The segments retrieved are written into the media buffer 920 and
the downloader 902 notifies the segment decryptor 904. If the segment does not require
decryption, the segment decryptor 904 notifies the segment parser 906 that the segment is
ready. If the segment does require decryption, the segment decryptor 904 reads the segment
from the media buffer 920, decrypts the segment, writes the decrypted segment back out to
the media buffer 920, and notifies the segment parser 906 that the segment is ready. RTSP
requires separate frame based delivery for audio and video tracks. The segments retrieved

use the format 400 detailed in FIG. 4. The segments are parsed by the segment parser 906

22

Ex. 1002 - Page 495 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 83 of 194

WO 2011/068784 PCT/US2010/058306

to extract the individual audio and video RTP/RTCP frames. The RTP/RTCP frames are
extracted and handed off to the RTSP server 908. In one embodiment, the segment parser
906 removes the segment from the media buffer 920 once it has been completely parsed. In
another embodiment, the segment parser 906 does not purge segments until the media buffer
920 is full. The RTSP server 908 handles requests from the media player 910 on the RTSP
control channel 914, and manages setting up the audio and video RTP channels 916 and
918, and the audio and video RTCP channels 917 and 919. The audio and video RTP/RTCP
frames are sent in a paced manner, by the RTSP server 908 on their respective RTP/RTCP
channels 916, 918, 917, and 919. In one embodiment, the relative inter-frame pacing
information is gleaned from the RTP header timestamps. In one embodiment, the RTP
headers are spoofed to produce valid sequence numbers and port numbers, etc., prior to
delivery to the native media player 910.

FIG. 10 is a diagram 1000 of a client device, wherein the client device native media
player 1010 supports HLS. In one embodiment, the client contains a downloader 1002. The
downloader 1002 is responsible for interacting with the server-side proxy 106 or CDN 320
to retrieve segments. In one embodiment, the downloader 1002 keeps track of multiple
server-side proxies 106 or CDNs 320. Segments are retrieved from the primary server-side
proxy 106 or CDN 320. If the response to a segment request fails to arrive in an acceptable
amount of time, the downloader 902 issues a request to an alternate server-side proxy 106 or
CDN 320. In one embodiment, the retrieval timeout is set as a percentage of the duration of
the segment (e.g., 20%). The segments retrieved are written into the media buffer 1020 and
the downloader 1002 notifies the segment decryptor 1004. If the segment does not require
decryption, the segment decryptor 1004 notifies the m3u8 playlist generator 1006 that the
segment is ready. If the segment does require decryption, the segment decryptor 1004 reads
the segment from the media buffer 1020, decrypts the segment, writes the decrypted
segment back out to the media buffer 1020, and notifies the m3u8 playlist generator 1006
that the segment is ready. The playlist generator 1006 is passed the segment file location, in
the media buffer, by the segment decryptor 1004. The playlist generator 1006 updates the
existing playlist adding the new segment and removing the oldest segment and passes the
updated playlist to the HTTP server 1008. The playlist generator 1006 is also responsible
for purging old segments from the media buffer 1020. In one embodiment, segments are

purged from the media buffer 1020 as segments are removed from the playlist. In another

-23 .

Ex. 1002 - Page 496 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 84 of 194

WO 2011/068784 PCT/US2010/058306

embodiment, segments are only purged once the media buffer 1020 is full, to support the
largest possible rewind buffer. The HTTP server 1008 responds to playlist polling requests
from the media player 1010 with the current playlist provided by the playlist generator 1006.
The HTTP server 1008 responds to segment requests from the media player 1010 by
retrieving the segment from the media buffer 1020 and delivering it to the media player
1010. The media player 1010 connects to the HTTP server 1008 though a local host HTTP
connection 1016.

FIG. 11 is a block diagram 1100 for another embodiment of the present invention.
As with FIGs. 1, 2, and 3, it shows an RTSP server 108, the server-side proxy 106, the
client-side proxy 104, and a client device 102. As with FIG. 3, it shows multiple RTSP
connections 112 to the server-side proxy 106. The server-side proxy 106 connects to a
plurality of CDNs 320 for redundancy in the remote storage of the generated segments,
allowing for redundancy in the retrieval of segments. The client-side proxy 104 is
integrated into the client device 102 application 318. The native HLS media player 316
connects to the client-side HLS proxy 104 via an HTTP connection 1122. The server-side
proxy 106 makes multiple simultaneous RTSP connections 112 to the RTSP server 108 and
retrieves the same content encoded at different bitrates, frame rates, and/or resolutions. In
onc embodiment only the video bitrates differ between encodings. In another embodiment,
the video bitrates, frame rates, and/or resolution may differ. Though only one client-side
proxy 104 is shown, multiple client-side proxies 104 may connect to the CDNs 320.

In one embodiment, the client-side proxy 104 connects to only a primary CDN 320
via connection 110. In one embodiment, the primary CDN is configured by the user or via
the application 318. In one embodiment, if the request for content from the primary CDN
320 does not produce a response in a set amount of time, the client-side proxy 104 will
initiate a second connection 110’ to an alternate CDN 320’ to retrieve the content. In one
embodiment, the alternate CDNs are configured by the user or via the application 318. This
provides resiliency to the system against CDN 320 network access failures for either the
client-side proxy 104 or the server-side proxy 106.

In another embodiment, the client-side proxy 104 connects to both a primary CDN
320 and an alternate CDN 320°, via connections 110 and 110’ respectively. In one
embodiment, the primary and alternate CDNs 320 are configured by the user or via the
application 318. The client-side proxy 104 issues requests for a segment to all CDNs 320.

-24 -

Ex. 1002 - Page 497 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 85 of 194

WO 2011/068784 PCT/US2010/058306

The connection 110 for the first response to begin to arrive is chosen and all other
connections 110 are aborted. This provides not only resiliency against CDN 320 network
access failures, but also optimizes retrieval latency based on initial response time.

In one embodiment, the connections 110 and 110’ between the client-side proxy 104
and the CDN 320 are persistent HTTP connections. In another embodiment, the
connections 110 and 110’ are persistent HTTPS connections. In another embodiment, the
connections 110 and 110’ are onetime use HTTP connections. In another embodiment, the
connections 110 and 110’ are onetime use HTTPS connections. In another embodiment, the
connections 110 and 110’ are persistent FTP, SFTP, or SCP connections. In another
embodiment, the connections 110 and 110’ are onetime use FTP, SFTP, or SCP
connections.

FIG. 12 is a flow chart 1200 describing the process of implementing segment
retrieval resiliency between client-side proxies 104 and server-side proxies 106 or CDNs
320. In step 1202, the client-side proxy 104 initiates a connection 110 to a primary server-
side proxy 106 or CDN 320 and proceeds to step 1204. In step 1204, the client-side proxy
104 issues a segment retrieval request to the primary server-side proxy 106 or CDN 320.
The client-side proxy 104 also sets a timer to detect when the segment response is taking too
long. The timer should be set for less than the segment duration (e.g., 1/5 the segment
duration) to allow enough time to request the segment from an alternate server-side proxy
106 or CDN 320. In one embodiment, the timer may be set for zero time in order to initiate
multiple simultaneous requests for segments from multiple server-side proxies 106 or CDNs
320. When the segment response is received, or if the timer expires, processing proceeds to
step 1206. In step 1206, the client-side proxy 104 checks to determine if the segment was
received or if the timer expired. If the segment was received processing proceeds to step
1208, otherwise processing proceeds to step 1210. In step 1208, the received segment is
processed. In one embodiment, segment retrieval is paced, so segment processing includes
delaying until the next segment retrieval time. Once segment processing is complete,
processing proceeds back to step 1204 where the next segment to be retrieved is requested.
In step 1210, the current segment retrieval request has been determined to be taking too
long. A new connection 110’ may be initiated to an alternate server-side proxy 106 or CDN
320. In one embodiment, the current request is immediately aborted. In another

embodiment, both the current connection 110 and the new connection 110’ are kept open

-25.

Ex. 1002 - Page 498 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 86 of 194

WO 2011/068784 PCT/US2010/058306

until a response is received and the connection 110 with the fastest response is used, and the
other connection 110 is closed. Once the alternate connection is opened, processing
proceeds back to step 1204 where the segment request to the alternate server-side proxy 106
or CDN 320 is issued.

For purposes of completeness, the following provides a non-exclusive listing of
numerous potential specific implementations and alternatives for various features, functions,
or components of the disclosed methods, system and apparatus.

The streaming server may be realized as an RTSP server, or it may be realized as an
HLS server, or it may be realized as an RTMP server, or it may be realized as a Microsoft
Media Server (MMS) server, or it may be realized as an Internet Information Services (1IS)
Smooth Streaming server.

Streaming data may be audio/video data. The audio/video may be encapsulated as
RTP/RTCP data, or as MPEG-TS data, or as RTMP data, or as ASF data, or as MP4
fragment data.

Audio RTP, audio RTCP, video RTP, and video RTCP data within the file segments
may be differentiated using custom frame headers. The custom frame headers may include
audio/video track information for the frame, and/or frame length information, and/or end-of-
stream delimiters.

Either fixed duration or variable duration segments may be used. Fixed duration
segments may be of an integral number of seconds.

File segments may be encrypted, and if so then per-session cipher algorithms may be
negotiated between proxies. Encryption algorithms that can be used include AES, RC4, and
HC128. Different file segments may use different seed values for the cipher. Per-session
seed modification algorithms may also be negotiated between proxies. A seed algorithm
may use a segment number as the seed, or it may use a hash of the segment number and a
shared secret.

Storage devices used for storing file segments may include local disks, and/or
remote disks accessible through a storage access network.

The storage devices may be hosted by one or more content delivery networks
(CDNs). A CDN may be accessed through one or more of HTTP POST, SCP/SFTP, and
FTP. The client-side proxy may retrieve segments from the CDN.

-26 -

Ex. 1002 - Page 499 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 87 of 194

WO 2011/068784 PCT/US2010/058306

Data may be transferred between proxies using HTTP, and if so persistent
connections between proxies may be used. Segments may be transferred securely using
HTTPS SSL/TLS.

The client-side proxy may be a standalone network device. Alternatively, it may be
embedded as part of an application in a client device (e.g., a mobile phone).

The client-side proxy may cache segments after they are retrieved. The segments
may be cached only until the content which they contain has been delivered to the client
media player, or they may be cached for a set period of time to support rewind requests from
the client media player.

The server-side proxy may initiate a plurality of connections to a single streaming
server for a single media, and may request a different bitrate for the same audio/video data
on cach connection. The client-side proxy may request a specific bitrate from the server-side
proxy.

The server-side proxy may initiate a plurality of connections to a plurality of
streaming servers for a single media. Alternatively, it may initiate a plurality of connections
to a plurality of streaming servers for a plurality of different media. Media data from
different connections may be spliced together into a single stream. For example,
advertisements may be spliced in, or the data from different connections may be for
different viewing angles for the same video event.

The client-side proxy may stream the segment data to the media player on the client
device, for example using appropriate RTP/RTCP ports to an RTSP media player.
Streaming may be done via IP multicast to client media players. The server-side proxy may
act as an MBMS BCMCS content provider, and the client-side proxy may act as an MBMS
BCMCS content server. Data may be made available to the client via HTTP for an HLS
media player.

The server-side proxy may connect to the streaming server to retrieve a high bitrate
media. The high bitrate media may be transcoded into a plurality of different encodings,
e.g., a plurality of different bitrates, a plurality of different frame rates, a plurality of
different resolutions. Independent file segments may be generated for each encoding. A
plurality of container formats may be supported, such as MPEG-TS format or a custom
RTP/RTCP format. All of the different encoding and format segment files may be made

available to the client-side proxy through the storage device.

-7 .-

Ex. 1002 - Page 500 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 88 of 194

WO 2011/068784 PCT/US2010/058306

The client-side proxy may request segments from a single server-side proxy. A
segment may be retrieved from an alternate first proxy if the primary first proxy does not
respond with an acceptable amount of time.

The client-side proxy may request segments from a plurality of server-side proxies,
and may accept the first response that is received. Requests whose responses were not
received first may be cancelled.

Though various implementations of both the client-side proxy and the server-side
proxy are described, the heterogenecous permutations of multiple client-side proxy
implementations and server-side proxy implementations are all valid. Any client-side proxy
implementations, be they embedded in a mobile device application, or as a stand-alone
appliance, using multicast or unicast delivery, may be paired with any of the server-side
implementations, be they delivering segments via a local HTTP server or through one or
more CDNs and connecting to one or multiple streaming servers. The abstraction of the
tunneling functionality provided by the client-side and server-side proxies allow for
transparent usage by the client device. The client device connects to the client-side proxy,
regardless of its specific implementation. The server-side proxy connects to the streaming
servers, regardless of its specific implementation. The client-side proxy and the server-side
proxy communicate with each other to transparently tunnel media content from the
streaming server to the client device. The tunneling may be through various physical
transport mechanisms, including using a CDN as an intermediate storage device. It should
be understood that the examples provided herein are to describe possible independent
implementations for the client-side and server-side proxies, but should not be taken as
limiting the possible pairing of any two client-side or server-side proxy implementations.

In the description herein for embodiments of the present invention, numerous
specific details are provided, such as examples of components and/or methods, to provide a
thorough understanding of embodiments of the present invention. One skilled in the relevant
art will recognize, however, that an embodiment of the invention can be practiced without
one or more of the specific details, or with other apparatus, systems, assemblies, methods,
components, materials, parts, and/or the like. In other instances, well-known structures,
materials, or operations are not specifically shown or described in detail to avoid obscuring

aspects of embodiments of the present invention.

-28 -

Ex. 1002 - Page 501 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 89 of 194

WO 2011/068784 PCT/US2010/058306

CLAIMS

What is claimed is:

1. A method of operating a server-side proxy in a streaming data delivery system,
comprising:

connecting to a streaming server to receive streaming data;

aggregating the streaming data into file segments and storing the file segments on
one or more storage devices; and

transferring the file segments from the storage devices to a client-side proxy for

delivery to a client device.

2. A method according to claim 1, wherein connecting to the streaming server comprises

creating one or more real-time streaming connections.

3. A method according to claim 2, wherein the real-time streaming connections include a
plurality of connections to the streaming server, the connections carrying the streaming data

at respective distinct bit rates.

4. A method according to claim 2, wherein the streaming server is realized as a selected one
of Real-Time Streaming Protocol (RTSP) server, an HTTP Live Streaming (HLS) server, a
Real-Time Messaging Protocol (RTMP) server, a Microsoft Media Server (MMS) server,

and an Internet Information Services (IIS) Smooth Streaming server.

5. A method according to claim 1, wherein the streaming data includes audio/video data
encapsulated as a selected one of Real-Time Protocol/Real-Time Control Protocol
(RTP/RTCP) data, MPEG Transport Stream (MPEG-TS) data, Real-Time Messaging
Protocol (RTMP) data, Advanced Systems Format (ASF) data, and MPEG-4 (MP4)

fragment data.

6. A method according to claim 1, wherein the streaming server is one of a plurality of
streaming servers, and connecting to the streaming server is part of establishing respective

connections to each of the plurality of streaming servers.

-29-

Ex. 1002 - Page 502 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 90 of 194

WO 2011/068784 PCT/US2010/058306

7. A method according to claim 6, wherein the connections to different streaming servers

carry respective distinct media.

8. A method according to claim 7, further including splicing media from distinct ones of the

connections to create a single output stream to be delivered to the client device.

9. A method according to claim 1, wherein transferring the file segments includes
encrypting the file segments from the storage devices to form encrypted file segments and

transferring the encrypted file segments to the client-side proxy.

10. A method according to claim 1, wherein aggregating the file segments includes
transcoding the file segments into transcoded file segments and aggregating the transcoded

file segments for storing on the storage devices and transferring to the client-side proxy.

11. A method according to claim 1, wherein the file segments contain data of distinct types
differentiated through use of custom frame headers cach including media information,

length information and an end-of-stream delimiter.

12. A method according to claim 1, wherein transferring includes use of a secure connection
between the server-side proxy and the client-side proxy to securely transfer the file segments

to the client-side proxy.

13. A server-side proxy for use in a streaming data delivery system, comprising:

memory;

a processor;

input/output circuitry for connecting the server-side proxy to a streaming server, one
or more storage devices, and a client-side proxy; and

one or more data buses by which the memory, processor and input/output circuitry
are coupled together,

the memory and processor being configured to store and execute program

instructions to enable the server-side proxy to perform the method of any of claims 1 to 12.

-30 -

Ex. 1002 - Page 503 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 91 of 194

WO 2011/068784 PCT/US2010/058306

14. A method of operating a client-side proxy in a streaming data delivery system,
comprising;:

connecting to a server-side proxy to receive file segments of a data stream originated
by a streaming server to which the server-side proxy is connected;

parsing the file segments to generate native live stream data; and

serving the native live stream data to one or more clients for live media playback.

15. A method according to claim 14, wherein serving the native live stream data to the
clients comprises creating a respective real-time streaming connection to the respective

client.

16. A method according to claim 15, wherein the real-time streaming connection is selected
from a Real-Time Streaming Protocol (RTSP) connection and an HTTP Live Streaming

(HLS) connection.

17. A method according to claim 14, wherein connecting to the server-side proxy includes
establishing a persistent hypertext transport protocol (HTTP) connection with the server-

side proxy.

18. A method according to claim 14, wherein the file segments are encrypted as received
from the server-side proxy and parsing the file segments includes decrypting the file
segments to form decrypted file segments, and serving the native live stream data includes

streaming data from the decrypted file segments to the clients.

19. A method according to claim 14, further including monitoring for a need for a rate
switch to change a rate at which the data of the file segments is received from the server-
side proxy, and upon detecting the need for a rate switch then closing an existing connection
to the server-side proxy and establishing a new connection to the server-side proxy for

receiving the file segments at a new rate.

20. A method according to claim 14, wherein connecting to the server-side proxy includes

-31 -

Ex. 1002 - Page 504 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 92 of 194

WO 2011/068784 PCT/US2010/058306

use of non-persistent hypertext transport protocol (HTTP) connections with the server-side
proxy, cach non-persistent HTTP connection used for receiving a respective one of the file

segments.

21. A method according to claim 14, further including establishing a multicast distribution
tree to which the clients can connect, and wherein serving the native live stream data
includes transmitting the native live stream data to the multicast distribution tree for

delivery to the clients.

22. A method according to claim 14, wherein each file segment is requested from a plurality
of content delivery networks coupled to the server-side proxy, and a requested file segment
is received from a first one of the content delivery networks to deliver the requested file

segment.

23. A method according to claim 22, further including:

monitoring for delivery of the requested file segment via one of the content delivery
networks, and receiving the requested file segment from the one content delivery network if
delivered thereby; and

in the event that the requested file segment is not delivered by the one content

delivery network, then requesting the file segment from another content delivery network.

24. A method according to claim 22, wherein:

multiple parallel requests for the requested file segment are submitted to different
ones of the content delivery networks;

the requested file segment is received from the content delivery network having the
fastest response; and

the requests to the other content delivery networks are.

25. A client-side proxy for use in a streaming data delivery system, comprising:
memory;
a processor;

input/output circuitry for connecting the client-side proxy to one or more client

-32-

Ex. 1002 - Page 505 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 93 of 194

WO 2011/068784 PCT/US2010/058306

media players and a server-side proxy; and

onc or more data buses by which the memory, processor and input/output circuitry
are coupled together,

the memory and processor being configured to store and execute program

instructions to enable the client-side proxy to perform the method of any of claims 14 to 24.

26. A method for distributing live streaming data to clients, comprising:
connecting to a streaming server from a first proxy;
aggregating streaming data into file segments at the first proxy;
writing the file segments to a plurality of storage devices;
transferring the file segments from the storage devices to a second proxy;
decoding and parsing the file segments at the second proxy to generate native live
stream data; and

serving the native live stream data to clients for live media playback.

27. A live streaming system for distributing live streaming data to clients, comprising:

a first proxy configured and operative to (1) connect to a streaming server, (2)
aggregate streaming data into file segments, (3) write the file segments to a plurality of
storage devices, and (4) transfer the file segments from the storage devices to a second
proxy; and

a second proxy configured and operative to (1) receive the file segments from the
first proxy, (2) decode and parse the file segments to generate native live stream data, and

(3) serve the native live stream data to clients for live media playback.

-33-

Ex. 1002 - Page 506 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 94 of 194

WO 2011/068784

PCT/US2010/058306
1/10
100
104 | Public 106
nternet
Client-side 110 HTTP(S) Server-side
RTSP/HTTP & > RTSP/HTTP
proxy proxy
114 RTSP/ RTSP/ 112
RTP/RTCP RTP/RTCP
Client RTSP
Device Server
102 108
Fig. 1
200
104 | PtUb"Ct 106
niermnme
Client-side 110 HITP(S) Server-side
RTSP/HTTP [RTSP/HTTP
proxy proxy
)14 S RTSP/ RTSP/
VL) RTP/RTCP Multicast RTP/RTCP
Client RTSP cen RTSP
Device Server Server
108
102

Fig. 2

Ex. 1002 - Page 507 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 95 of 194

WO 2011/068784

PCT/US2010/058306

2/10
300
104 Public 320
Internet
Client-side 110 HTTP(S) CDN
RTSP/HTTP >»{ Storage and
proxy Distribution
114| i RTSP/ 106 T
\ RTP/RTCP Server-side
Native RTSP/HTTP
Media proxy
Pl
aver RTSP/
316 RTP/RTCP oo 12
Application
318 RTSP Server
Client Device
102 108
Fig. 3
400
406~ a08
\ segment \
402
\ segmentframe \
\ frame header frame payload
oy
/ type length RTP/RTCP packet eve
] i |
404 7 7]
/ F 7
410 - 412 s 414 7/

Fig. 4

Ex. 1002 - Page 508

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 96 of 194

WO 2011/068784 PCT/US2010/058306

3/10

500
502

Initiate RTSP connection with server;
setup audio/video RTP/RTCP channels

508

504 new

segment?

Flush data, close old segment,
and open new segment

|
506 v

510
Read RTP/RTCP data, order packets, no
write packets to segment file queue
512 yes
S16

encrypt segment

514 \ 2
-
yes send segment to client proxies
Transcode RTP frame data and write over persistent HTTP connections
packets to segment file queue

Fig. 5

Ex. 1002 - Page 509 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 97 of 194

WO 2011/068784

4/10

PCT/US2010/058306

602

~

\

AcceptRTSP connection from
clientdevice/native player

.

604 v
)

Initiate persistent HTTP

connection with server-side proxy
o

606 v
;

~
Read segment data and calculate

available bandwidth

600

Decryptsegment

612 2

Parse RTP/RTCP data, normalize
sequence numbers/timestamps,
and stream data to client

Getnew encoding segment name,

close persistent HTTP connection

Fig. 6

Ex. 1002 - Page 510

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 98 of 194

WO 2011/068784 PCT/US2010/058306

5/10
702 700
r ™\
Accept RTSP connection from
client device/native player
J
704 v
4 ™
Issue HTTP GET request to the
server-side proxy for first segment
\ v
706 v
o ™
Read segment data and calculate
available bandwidth
\ S
710
708
encrypted? Decrypt segment
no]
712 72
Parse RTP/RTCP data, normalize
sequence numbers/timestamps,
and stream data to client
716
714 yes
Getnew encoding segment name
no N
718 \ 2
Calculate pacing delay and wait
o
Fig. 7
Ex. 1002 - Page 511 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 99 of 194

WO 2011/068784 PCT/US2010/058306

6/10

800

812
802

\ Stream Recorder
Stream Transcoder
806 \
Output Framer
\ 4
808 \ 816
Segment Encryptor Media
Storage
818
810 \ /-
SegmentUploader }€ >1 HTTP Server

814 \$ 820 _i

Fig. 8

Ex. 1002 - Page 512 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 100 of 194

WO 2011/068784

7/10

PCT/US2010/058306

912 \$

902
-~\-

HTTP Downloader/

Bandwidth Estimator

904 \

906 -\

Segment Decryptor Media
Buffer
Segment Parser
RTSP Server

914
910
RTSP Media Player

917 919
916 918

900

920

Fig. 9

Ex. 1002 - Page 513

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2

Page 101 of 194

WO 2011/068784 PCT/US2010/058306

8/10
1000
1012
1002
\ HTTP Downloader/
Bandwidth Estimator
\ 4
1004 \ 1020
Segment Decryptor &> ™M edia
. Buffer
1006 \ 1T
m3u8 Playlist Generator
1008 \ 7
HTTP Server
1016 \$
1010 \
HTTP Live Streaming Media Player
®
Fig. 10
Ex. 1002 - Page 514 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 102 of 194

WO 2011/068784 PCT/US2010/058306

9/10

1100

Public

104 320
Client-side 110 Internet HTTP(S) CON
HLS/HTTP a X 1 Storage and [
proxy ~3 :. Distribution
A B
1122 | HTTP oo
y 1107 320
Native \ CDN
Media > Storage and [eEmm——
Player Distribution
316
106
Application
318 . Server-side
ClientDevice RTSP/HTTP
102 proxy
RTSP/
RTP/RTCP
RTSP Server
108
*
Fig. 11
Ex. 1002 - Page 515 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 103 of 194

WO 2011/068784 PCT/US2010/058306

10/10

1200
1202
7 D
Initiate HTTP(S) connection with

primary server-side proxy or CON

\

1204 v

Request a segment and set timer

1206 .
timer
expired?

no
1208

1210

Initiate HTTP({S) connection with
alternate server-side proxy or CON

Process Segment

Fig. 12

Ex. 1002 - Page 516 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 104 of 194

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 10/58306

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 15/173 (2010.01)

USPC - 709/226
According to Intemational Patent Classification (1PC) or to both nationa!l classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 709/226

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 709/223-226, 231-233, 236, 238, 246; 710/52, 56; 370/400, 401, 486 (keyword limited - see terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWEST (PGPB, USPT, USOC, EPAB, JPAB), GoogleScholar

Search Terms: streaming data, streaming content, proxy, media, segment, client, server, connection, encrypt, transfer, transcoding,
frame, header

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2008/0140719 A1 (Chaney et al.) 12 June 2008 (12.06.2008), 1-27
entire document, especially; abstract, para. [0003]-[0005], {0007], [0023], [0029], [0030], [0033]

Y US 2003/0149792 A1 (Goldstein) 07 August 2003 (07.08.2003), 1-27
entire document, especially; abstract, para. [0009], {0028], [0033], [0036], [0038), [0048],
[0058), [(0060], [0065)

A US 2009/0180484 A1 (Igarashi) 16 July 2009 (16.07.2009), entire document 1-27
l:l Further documents are listed in the continuation of Box C. |:|
* Special categories of cited documents: “T” later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlierapplication or patent but published on or after the international «X* document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
L dpc:ixment wl‘;ilgshmﬂy thrglv_v d(‘)\lblj on pl;_iority hclzu'm(s),or whict;.is step when the document is taken alone
cited to estabh the Pll ication date of another citation or other “Y” document of : " : . H
: particular relevance; the claimed invention cannot be
) special reason (a§ specified)) L considered to involve an inventive step when the document is
“0” document referring 10 an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than «g,» i
the priority date claimed & document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
07 January 2011 (07.01.2011) 2 4 JAN 20"
Name and mailing address of the ISA/US Authorized officer: .
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. Box 1450, Alexandria, Virginia 22313-1450
.. PCT Helpdask: 571-272-4300
Facsimile No. 571-273-3201 PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

Ex. 1002 - Page 517 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 105 of 194

PCT/US2010/034072 01.07.2010

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT
(PCT Atrticle 18 and Rules 43 and 44)

Applicant’s or agent’s file reference FOR FURTHER see Form PCT/ISA/220

19459-8100 ACTION as well as, where applicable, item 5 below.
International application No. International filing date (day/month/year) (Earliest) Priority Date (day/month/year)
PCT/US 10/34072 07 May 2010 (07.05.2010) 18 May 2009 (18.05.2008)

Applicant

HOLA, INC.

This international search report has been prepared by this International Searching Authority and is transmitted to the applicant
according to Article 18. A copy is being transmitted to the International Bureau.

This international search report consists of a total of sheets.
D It is also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report
a. With regard to the language, the international search was carried out on the basis of:
the international application in the language in which it was filed.

I:l a translation of the international application into which is the language of
a translation furnished for the purposes of international search (Rules 12.3(a) and 23.1(b)).

b. D This international search report has been established taking into account the rectification of an obvious mistake
authorized by or notified to this Authority under Rule 91 (Rule 43.6bis(a)).

c. I:l With regard to any nucleotide and/or amino acid sequence disclosed in the international application, see Box No. L.
2. [:] Certain claims were found unsearchable (see Box No. II).
3. D Unity of invention is lacking (see Box No. III).

4. With regard to the title,
the text is approved as submitted by the applicant.
the text has been established by this Authority to read as follows:

5. With regard to the abstract,
IE the text is approved as submitted by the applicant.
D the text has been established, according to Rule 38.2, by this Authority a§ it appears in Box No. 1V. The applicant
may, within one month from the date of mailing of this international search report, submit comments to this Authority.
6. With regard to the drawings,
a. the figure of the drawings to be published with the abstract is Figure No. §
as suggested by the applicant.
as selected by this Authority, because the applicant failed to suggest a figure.
. as selected by this Authority, because this figure better characterizes the invention.
b. I:] none of the figures is to be published with the abstract.

Form PCT/ISA/210 (first sheet) (July 2009)

Ex. 1002 - Page 518 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 106 of 194

PCT/US2010/034072 01.07.2010

INTERNATIONAL SEARCH REPORT Intermational application No.

PCT/US 10/34072

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 13/00 (2010.01)
USPC - 711/170
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8): GO6F 13/00 (2010.01)
UsPC: 711/170

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 7111100, 111, 113, 170, 171, 172; 710/8, 10, 13, 72, 74; 700/1, 3, 5 (text search)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Electronic databases: PUbWEST (USPT, PGPB, EPAB, JPAB), Google Scholar; Google Patents.

Search Terms Used: data memory free used cache size application block segment tag metadata parsing device temporary storage
command virtual error fault non-deterministic semifree etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,577,243 A (Sherwood et al.) 19 November 1996 (19.11.1996), entire document, 1-5, 7, 9-14, and 16-18
- especially Abstract, Fig. 1; and col 2, In 37-53; col 2, In 48-53; col 3, In 14-20; co! 4, In 49-51; col | —-— e
Y 5, In 33-35; col 5, In 44-45; co! 6, In 14-18; col 6, In 46-51; col 7, In 27-29. 6, 8, and 15

Y US 2005/0228964 A1 (Sechrest et al.) 13 October 2005 (13.10.2005), entire document, 6 and 8

especially para [0051].

Y US 2008/0086730 A1 (Vertes) 10 April 2008 (10.04.2008), entire document, 15
especially para [0044).

D Further documents are listed in the continuation of Box C. D
* Special categories of cited documents: “T™ later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the apﬂhqatlon but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the international “X” document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited t|° estabh(zl; thec‘i’ggg)‘: ation date of another citation or other «y» document of particular relevance; the claimed invention cannot be
special reason (as spe R L considered to involve an inventive step when the document is
“O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than «g» document member of the same patent family
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
15 June 2010 (15.06.2010) 0 1 JUL 20]0
Name and mailing address of the ISA/US Authorized officer:
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. ’Boa_(1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 5712724300

Facsimile No. 571.273-3201 PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

Ex. 1002 - Page 519 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 107 of 194

Reference: Bunitu Trojan and VIP72 proxy service (“VIP72")
Title: nVpn.net | Double your Safety and use Socks5 + nVpn
Link: https://www.youtube.com/watch?v=L0Hct2kSnnd

1002 - Page 520 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 108 of 194

nVpn.net| Double your Safety and use Socks5 + n¥pn

§\%j\'\\\\\'\\\\\\'\\\\\'\\\\\\'\\\\\'\\\\\\'\\\\\'\\\\\'\\\\\\'\\\\\\N\\W\N\W\N\\\“\N\\\“\N\\\“\“

boo¥ o) ooniem Serolfor detals

‘ ¥

Ex. 1002 - Page 521 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 109 of 194

SR e o o)

1 uipd and pay far e,

Sownload Ot

A0pY ChanGEs T e Brokner,

Ex. 1002 - Page 522 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 110 of 194

¥
f} ‘§§‘§\3§ uf
‘ m*’ n

REEES

Ex. 1002 - Page 523 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 111 of 194

oVprnet | Double your

§ONMERAE YW

oA o

g oo rfocked it

W
iy eeed wERE 8 veor unblock nebgite

RN

y and use Sockss + nVpn

Ex. 1002 - Page 524

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 112 of 194

Code200, UAB v. Bright Data Ltd.

Ex. 1002 - Page 525

Code 200's Exhibit 1002 - Part 2

Page 113 of 194

proy 3

by

Ex. 1002 - Page 526 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 114 of 194

Bl
e

S

Wi

Ex. 1002 - Page 527 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 115 of 194

W

AN

Wit e o B andinies?

Ex. 1002 - Page 528

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 116 of 194

N
N
N

N

Ex. 1002 - Page 529 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 117 of 194

St N R “\

?
X
&

¥

s

IR

Ex. 1002 - Page 530 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 118 of 194

Ex. 1002 - Page 531 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 119 of 194

Ex. 1002 - Page 532 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 120 of 194

afety and use SocksS + nVpn

Ex. 1002 - Page 533 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 121 of 194

Ex. 1002 - Page 534 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 122 of 194

VORI
g

Ex. 1002 - Page 535 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 123 of 194

nVpn.net | Double your Safety and use SocksS + nVpr

Page 124 of 194

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2

Ex. 1002 - Page 536

Page 125 of 194

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2

N~
™
(o)
(0]
(o)}
©
o
1
N
o
o
-
X
Ll

58 SocksS + nVpn

b

yand

oL ;efyeur;sam

nVpn.net | Double your Safety and use Sacks5 + iVpn

:

Ex. 1002 - Page 538 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 126 of 194

nVpn.net | Double your Safety and use Socks5 + nVpn

Ex. 1002 - Page 539 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 127 of 194

nvpn.net | Double your Safety and use Socks3+nVpn

Ex. 1002 - Page 540 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 128 of 194

nVpn.net | Double your Safety and Use SocksS + nVpn

Ex. 1002 - Page 541 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 129 of 194

Nhanging the browser settings wn £1refox

ooty »oov gptons s Advanced sy
Network < Settings

', Chack anead provy configuration
War Tt says SOCKS Host pit

GRS Host 1TOLL Ports 89S

this 15 for the client you can mamaly
gater stcks 4 wob ugtny cHent the sae

ample;

SOCKS Host SR IBK 128 Port:

Ex. 1002 - Page 542

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 130 of 194

RARU

NG

Ex. 1002 - Page 543 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 131 of 194

Ex. 1002 - Page 544 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 132 of 194

N

ey

RN

PR
AR

st aUF sitrepst

T N

Ex. 1002 - Page 545 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 133 of 194

) \\\\\\k\\ N N
\\\, \

SR A

VRN R

v At
.\\“.\ R R‘\l\‘\l\\‘«

ey B O i e et R s

DR

Ex. 1002 - Page 546 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 134 of 194

.
. \\\B\i\\ N

Ex. 1002 - Page 547 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 135 of 194

N

Ex. 1002 - Page 548 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 136 of 194

SO : AN } B o A e gl

N

W

Wy

Ex. 1002 - Page 549 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 137 of 194

el

SRR Y SOV Y RURENHURE Y s

0 N DAt B et St e

Syt
RO

Sl
i

Ex. 1002 - Page 550 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 138 of 194

Ex. 1002 - Page 551 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 139 of 194

The vanmertion bas tned st

Ex. 1002 - Page 552 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 140 of 194

Ex. 1002 - Page 553 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 141 of 194

RN
A VRN i

A N

s B

§

BN

Ex. 1002 - Page 554

W

AT

AR

W S

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 142 of 194

R
DR

AR A

ST b

Ex. 1002 - Page 555 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 143 of 194

Tk itnection s imed oigt

Ex. 1002 - Page 556 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 144 of 194

=

Ex. 1002 - Page 557 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 145 of 194

SpyEye Manual

o Installation

¢ Cenfiguration

system. In this operating system there are already installed a webserver with
nesded.

Tha SpyEve main installation tool is a GNU/Linux Debian 5
ssh-client and other toois. To use the aperating system

virtuat

* Note. The type of hard disk controller must be strictly SATA:
8] satanan

* Note. Info to login into the system:

login: user
passviord: pw
root password: pw

workspaoe:

workspace

* Note. For file sharing with this 05, add 2 permanent folder in the virtual rmachine settings, named Input and rest

B frput foider

Installation : Server : Main CP

Admin home needad to take into account statistics for bets, as weil as to controi them. For it te work vou need a wehserver instalied with PHP support, as wali as a

file - gate.phis. The client part is in Sedeb.

B
w
a
nm

It i divided inte primary and client side, Attached to both instailers. Tha sarver par!

Instaliation. {fo install using a virtual OS, supplied with SpyEye)

n CP (gate.tgz).

In the permanent foider Input is necessary to put the distribution of server side Ma

1~5 ssh root@l

Go o the websarver folder of the host, where will lay the gate, and, create a folder for the admin panel, ravigate to the distribution acd unpack it:

Ex. 1002 - Page 558 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 146 of 194

vds:~# cd /tmp

vds

cropf mkdic /var/www/ _cp

waww/ o

vds

/var/wvivi/
o

p# tar -xf gate.tgz &4

vds op
777 ./

ho

Create a database for the admin and two users for this database (one for the server

' IOENTI®IED BY "¢

nysgl> CREZ
Juery OK,

UPDATE, CREATE, ALTER, DROP ON gate.* TO °

ysgl> GRAX
Query OK,

mysgl> CREATE USER 3 DENTIFIED BY

Query OK, © rows

DELETE ON gate.* TC

Now, in browser, run instalier (this foider is found in the root of the adroin panet distribution). ify the detaiis of the DB and user, created above. Set the password to log into the

admin ares. Finaily, you should have sermething like this:

gate instrailer

frar clicking the Install button you should get 5 log like

B gate i

traller log

of the DB and user, and, set a password for login to

The server side is set. Now we nead o put the dient side (found in Sedeb). Sirailarly to the previous instalier, specify the del

the admin panel:

stralier iog

ion complete. Now, regarding the admin panel settings:

maincp seftings

° Seitings

el_period_days - days count, after which the bat is ramoved fram DB, given that, at no time during this period was not oniice;

» geeoip_update_ check_interval_days - updste interval of gecip-information on bot (for example, in casc of changing bot IP or in case of upaditng gevip-base
on the server);

a stak_country_num - faximum nurmb

ar of countries, displayed in the construction of the circular diagrams (when viewing statistics);

b to update the bot exe will not be issued;
1, a iob to updste the bot config will not be issued;

_update - if 1, aj
~ skip_update_config — i

ics will avtoupdate every S saconds;
the Boks Monitoring tab will not be displayed;

<3
auto__reload_panels — if 1, then the panels with the clock and oniine-hots sta
= bots_monitoring_geoip_hide — if 1, then the gesip-information sbout the bots

gin from unlimited account service at
s password — password from unlimited account servi

= rdp_server_ip — ip, on which is started the RDP-daerron (displayed in the ROP tab);
e rdp_db - rmysqi DB;

a rdp_host — [P, where is the mysqi;
< rdp_password — mysq
= rdp_table — table with information about the bois (guid, pori, display cptions);

a rdp:user - ysgl use

» be_db — roy
= bo_host - [P, where is the mysgl;

» he _password — mysg) user password;

» @ table - tabla with information about the bats (guid, ip, port, gecip infa);
__user -~ mysql user;

C_servar_ip -- ip, on which is the BC-daeman;
be_show_gecip -~ if 1, then in the SOCKS, FTP Backconnact tabs will also display information about the bots geoip;
bo_show_bots_ip — if L, then in the SOCKS, FTP Backconnect tabs will be displayed hots IP;

ented in the

There is a singte interface for managing files in the adra t It is imple

8 maincp files uploan

There are three types of jobs crested:

o update bot exe

Ex. 1002 - Page 559 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 147 of 194

o update bot config
» lozd third-party exe

Raspectively, when loading a file, nead te specify what type of job it is. When you treate jobs in the Create Tashk tab, vou can specify additional options:

B maincp create task

o use huild-in pe loadar — in o run the axecutable file through kernei321CreateProcess(), w . {exe's, packed with UPX are ziso
supported);
» rapiace exe —in this case will replace the bot executable;

4 possible combinations of thase flags to update the bol exe. Update scenaries for 2ach of these casas differ from each other:

pe loader EOFF], FEL"K?L’E axe [OFF '(- b(‘

ere dm')pec in the Lemc—dir, and run the function kernel32!CreateProcess{);
¢ .

pe Ioade. [on]; .epsar_e exa [
o use build-in pz leader [ON]; repi

To spacify the Load axe type you also have the use build-in pe leader option, but keep in mind that the exe entry point using PE-lcader should be st a prototype:

typedef VOID (___stdcall ¥EMPTYENTRYPOINT)();

In the next phase of the job, you can select specific bots, for which this task is intended:

mainep oreate task (stepd)

in the Task Statistic tab you can see deta

| maincp creats task (stap3)

To work with the bots through the SOCKSS protocel, or FTP, there's a backconnect server for GNU/Linux.

using a virtual OS, supplied with SpyEye)

on Input you need to put the backconnact-serv

reot@163.

distrbe.tgz

Put the file where you want, unpack, set up rights:

iz, i
Iog ;

wome/_BCH mysql

sword: H

to the end with ; or \g. :
coian) :
> to clear the buffer. 3

P 9. mysqgl> CREF DATABASE ba;
{10, Query OK, 1 row affected {2.02 sec)
i1.

mysqls> CREATE USER ‘ix :
Query OK, O rows aife ;

7.
5. mysql> quit
9. Bye

iike naro 2dit the config:

/home/_BC# nano

cacodi.age

Ex. 1002 - Page 560 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 148 of 194

o4l >T602> i
5. »5> :
-3 »8>

P7. 0 >B00O> i

P8, >10000> H

Accerdingly, the config variabies:

v socks_port — port, on h the server listens for con
» fip_port - port, on which tha sarver
ping_timeout — times to wait for reply

-pluging

- the bot is removed from the current list of connacted clients. (by default 5 sec.);

° om 2 bot (zec.). If does
° threads_number — number of threads o process network server acti ;
» frp limit - maximum number of s 5, whic y be occugied by the fip
o socks_iimit & which may be cccupied by the
° Jogin — username for authentication (used oniy in the fip-pligin);
» password - password for the FTP-server authentication (used o in the ftp-plugind,
o geoip_path — path to the geoip DB file (GealPCily.dat by defauit);

o mysgl_host — host maching, on which is running the mysal daemon;

» mysqgl_user -— no comments;
.
o
B

mysgl_pass — no commenis;
mysgl__dl — DB, te write info about bats;
mysqgl_tabla - DB, to write info about bots;

Now run the server, There rust be sornething like this:

New discr

In futurs we will use configuration file absclute path:
home/ BT

a dasmont)

* Note. 1t rmakes sense to setup this daemor to astostart by analogy on how is described in the Collector's instalation.

We can only adi

Instailation : Server : Collector

The coliector i
compression
for its instaliaki

from bots. The protecel, used te send t
orri bots and puts thern

e jogs based on TCP and is cal
1 a mysgi-DB.

=d Sausages. It uses encryption and LZO-
e daemon eraby, to work, it has to be run under GNU/Linux and mysqgl. In addition,

is reguired &

Instaliation. (to instali using a virtual OS, thatl comes with SpyEye)

In the permanent folder Input is needed to be put the col

ctor distribution (distr.tgz).

We use the SSH-client (which is found in any Linux by default) to access the server, whera we will put the collector:

:~# <d /home
ael mkdi
5130: /homef cd _sec

foldar Input and enter the appropriate user's password from the server:

root@16%.165.19.177: /hone/_

distr.taz 31 00:0L EIA

Unpack the archive, iss b orm sorae file operations:

W e

ome/_sect
P

Ex. 1002 - Page 561 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 149 of 194

total 4783
. drwxrexr-z

=N

bR e
LS

(SN

o

create & DB for the collector and the mysgl-user with rights to this DB

i2. Enter passwocd:
3. Welcome to the My

3 Commands end with ; or
4. Your My

{5, Secver version: 5.0.5la-24+lennyd-log (Debian)
S
7. Type ° ©oc et cle

9. mysgl> CREATE DATABASE
30. Query oK, 1 row

ATE USER
o

nows aif

BR s e e

2. config todi fied

EHE R R R e

for logs

tions

enocugh for handle 17000 logs in one minute.

13. 50
14. # Each log allocate minimum

15, & i 100 ME

i1s. #
P17 #

= A

roach tlectos will stop

under unix

C~40%.

End of config.

art the col

rome/ sec# ./sec -d

B
Pozo 1
i3

We have next limit >r fi o scri or < s ;o omax = 1024

1o

Opensd i

Table nar
o
Opene

Table name(d)

Ex. 1002 - Page 562 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 150 of 194

rom file: table hostban
s/table _hostban.sql™;

Fication

s.sql

Lsglt; si

0

hosthan
exceplions

s

oW

T T T

stfrmep; port:

S
]

=

Now 1 become a

The provided rmanager, atlows you to view performance statistics of the daemon. Run it

. /sec-manager

Wty e

= (INADDR_ANY=;0.0.

t4l; CHLLD uptime

now connaections on selec

s

0d port:

@ o Oy s

to sel om bots and an

9. Time out sonds no ive)
10. T3 with some data
RN 5 Memcrized reports queue size
12. \ \ \ Initiaiization bot in new application/BC
13. \ \ A Reports inserted inko DatabBa
14. \ N \ Baned
i3S, \ \ \ A \ :
6. N\ N\ \ A\ \
fag. \ \ \ \ \ \ \ \ MiByte
Tla.

UnPkg Qryed
Sivg g

[
©

* Attention? Do not forget to add a line in the autostart (so, affer a reboot, the collector is up and again taking the fogs). Need to edit the file fete/ralocal. You should get
5.
5.
7.
il
9.
10,
11.
1z,
13.
14.
15, :
P16, exit © :

* Note. To restart the daamon, use the program

wait (5 minules), until it "closes” the

* Note. To determine - wet

ra port is busy or not on the server, use something like this:

Ex. 1002 - Page 563 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 151 of 194

Installation : Server : RDP Backconnech Server

The server is a staticaily compit

d binary for GNU/Linux OS. The daemon stores the info about

Instaliation. {fo install using a virtual OS, that comes with SpyEye)
In the permanent folder Xnput you must put the RDP-daarmon distribution (debian.x86.2arbz2).

the gistribution
es, conflicts car

top/Input/debian. x5

~xf debian.x86.tar.bzZ && rm :
. /init.d/d :
L /inie.d/das
.. /init.d/das

Create a mysal-usar (it will be used in the main admin panel zettings, for a list of bots included with RDP-plugi

Commands end with ; or ;
ge2

(Debian)

[NTES
o
|
i
st
¢
]
<
b
i
0
@

@
Qi
v
sl
@
a
-
»

[

[

mysgl®> CREATE USER ' rig
Query OK, O rows affecte

nysgl> GRANT
Query OK, ©

ECT,

ovis affe

UPLATE, DRCP, ALTER, CREATE ON

mysql> quit
Bye

GRU nanc 2.0.7

foptions

. wysgl_host =

mysql_port = 3
s

ss

raptk
Logsth

1og masxs

klist = /eltc/daz/blacklisi.log
= 0.0.C.0

= 30000
= 30410

Ex. 1002 - Page 564 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 152 of 194

You can change the foliowing parameters (marked with red are the ones that need to be changed):

mysgl__host — no

part - 710 Co: G

I — o commen

—no mmmentc

- N0 comments;

a')'e _rdp — no comments;

__table_logs -- 70 co~7:rrrer.t<,

ofg_file_log_snabled — flag write debugging inforrmation in cfg_file_lcg,

ofg_file_log — path to the file whera yvou want to dump debug information;

{ le_log_maxsize Taxirmem file size for cf rus_fug;

ie_| blackinst - DdH’l ') the file whe w.Il be wpad info on dient, wh
t S ens for connection from ¢

—o i conn
— srr.ng up o]S l‘a'?crers incdusive, nec

cted o lerr° (for d client ports are aliocated in order);

sts/debian. x864

ng irfo in the coliector ddbbd:,c. th
o, first of all, we go to

rst connect to the server, where is the collactor DB. To deo this use the gnome-terminal and the SSH-dient

ced to connact to the my:

s t0 use the coilector D&:

aysgl -u oot -p

word:

'E USER

oV

NTTFTED

7. mysqgli GRAD
Query OK,

DELETE ON frmcpl.®

er external IP:

sr/share/my

sl 1.gz

+ W) for string

5 more

Ifis not, than do it 1}, and restart tha mysgl-daemon

1. si

/etc/init.d/mysql restart

Now vou can open iceweasel {firefox name in Debian, ice wessel...) and proceed to the installer of the formgrabber panel, se

ting the infe shout the collector and
DB, created above

B formgrabher instraiter

After clicking Install, rust be something like this:

formgratber instralier logs

can go to the agmin panel and search for logs:

formngranber inferface

Instaliation : Client : Builder : serial.ixt

When you first run the builder this screen appears:

Ex. 1002 - Page 565 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 153 of 194

This is the Hardware [dentificator. Scroli box, press Crl 4+ € and send this text to the author to obtain the contents of the file serial.txt.

Configuration : Client : Builder

Buiider looks like this:

& buidter

Accordingly, builder settings:

» Encryption key -— key, with which is encrypted the config.binr. The vey is hardcoded in the bot. Be careful, if you want to update the bot config. If you specify the wrong
£k

key, which was used in the construction of the bot build, bots will not e able o update the conf

vill delete the cockies of IE and FF browsers
nokies. sqlite.

¢ Clear caockies evary startup — if enabled, the bot, avery time {whethar starting the OF or start r upgrade}
* Note. If the FF browser is already running, the cockies are not deieked, as FF has an open handie for the conkies database file

. you can
e, the user did
e can be sent

¢ DRelets non-~axporiable cartificates — in Windows crypte
use them, but they csnnot be exported, say a *.pfx, an
not stay very W o gl the cert: to cryoto] ” t
to the col |°t or. Le. on the one hand, use opticn °an'ﬁ-_anﬂv or\ the o'he- ha - effactively.

SpyEye can a
iready uncheck no:

]
nis

o Dont send hittp-raports -- it's a fack, that in the HTTP-records is a iot of rubbish. Thereby, it
with Basic-auth data). This is what this option does.

¢ send HYTPS-reparts anly (well, and, in plus, HTTP-regort:

o Compress build by UPX — if enabled, the builder compress the bot build with . If your crypter does not compress the original file, it nse to enatde this aption.

» Blake build without 2038 support - d ite the use of HTTP 1.0 protocol njections, and the absence of the Accept-Encodi
sed rcnr.nnv (for example: gzip, d fl'-ue) In this case, :vaye uses the zlib i br?r‘ /s vD extract the content and its injectad data

, with whom you do your webi ts, slways transmit {in most cases is exactly 3 s}, S
cﬁ the builder generates a bot build without 2lib support. save 15-18KB of build size {if we compare the difference between UPX compressad builds}.
However, in case of, if will come the compressed content in FF, the bot will not be abtle to inject.

» Make LETE-config - the op

es wnclr‘gr te include in config.bin such things as: webinjects, screenshots and plugins {except customconnector.dif). The fac
that when creating & bot build, 5 hardcodead in the bet's bady. In turn, this affects the size of the bot's exe. Le. if you use heavy webinjects or gl qrm it
rmakes sanse to build without he. , and place the config.bin in the main admin in this case, after infection the bot will lvad the con froen the panel with ail the
necassary teols. This approach can significantly reduce the size of the tot build.

o EXE name -- bot file name, used in the sysatem (after installation).

» Mutex name — mutex name, which is used to identify the bot in the system.

In particulsr, SpyEye kills Rapport threads and blocks it from writing debug
I y, if the bot has this mouu i@, any type of anti-rootl
eya.’?‘.rye, w.I' n:ﬁ be able tc rem @ the hooks while the bot ra the module Anti-Rapport.

+ Anti-Rappart — a bu
messages inte i
Rapport, and other tro;

i moduie, acr_ive!y counteractin
ris database. And generally speskir
5 like Leus wili not work, The same

» FF webinjects — this options specifies - that the FF injections will work.
¢ timestamp — builder date creation (number of seconds a5 1270.01.01), Wentical within the same builder version
The process of creating the build and its config is as foilows:

— you must enabile the checkbox Make LITE~config and dick Make config & get buildg.

htweight conl on the Get build.

- please ¢

o Creating a fuli-fladgad config.bin - you must uncheck the box Make LITE-config and click Makea config & get build.

Thus, inthe b r folder will appear config.bin, that can be uploaded into the bot admin panei, wk

Configuration © Client : Builder : plugins

pluging (*.dii} and configs (*.dii.cfg). The narne of the dli defines the piugin name, that will be dispiayed in the main
ng tha plugin's name and the postfix ".cfg.dil", Exarapie. socksS.dil and socks5.dil.cfg

In builder diractory there's a folder pluging, It may contai
control panel. This config file should be named, as a resuit of concsta

For reore informsation about piuging see SpyEye Plugin's SDK.

Configuration : Cllent : Builder : screenshols

In the builder d:rer tory th 2re foider screenshols. It may contain plain-text files with the rules of collacting screenshots. Screenshots are made when you click the mouse.
v /ar, | is the mouse cursor

@ variables, separated by spaces. Format is as follows:
FURL_MASK% %WIDTHY% SHETGHT% ZMINIMUM_CLICKS% %MINIMUM_SECONDS%

© URL_MASK

LRL rnask. If the applicaticn loads the URL resource that fails under the mask, then turns on the appropriate rule to send screenshots. Usually controliad by four vriz
described below.

* Attentiont Ir the mask is only supported sn ¥ (asterisk) . It means zere or mere characiers

WIDTH

The width of the screenshot.

HEIGHT

Tre height of the screenshat

MINIMUM _CLICKS

Minimurn nurnier of clicks, which will be done before the relevant rule turns off.

Ex. 1002 - Page 566 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 154 of 194

o MINIMUM SECONDS
Minimum number of seconds that pass before, than the corresponding rule is disshiad.

Rule off only when the last two eptions will work (MINIMUM_ _CLICKS AND MINIMUM _SECONMDS). Bothi

encugh difficulty to know what page was rleEu

The question arises - why the iast two variables are needed? Because there sre problerns connectad with screenshots. The bot has
iy wmber of clicks and time elapsed

=
(for example, because the browser can have rany tabs). Therefor bies - one way or another (based on the
the load of the HITP-resource, spedified in URE_MASK) turns off 5o

add i

* Attentiont Note the syntax. Do not add a hyphen line (Enfer) at the end of any rules file. When joinicg files, the buiider v autornatically.

So, once again, Mo need to add enter at the end of the screenshots rules file:

shots_nsie

Ccnfuguratmn Client : Builder : webinjects

tas with injections es for HTTR/HTTPS j-rasources. Injections format - Zeus-like. However, they don't
enough, to talk about & full compatibility with Zeus-native injections. About unsupported flags will be

thera's a folder webinjedts. It may contain plain
al' thef ,5 .f mask set_uri. Neverthaless, supported tlags,
ssed below.

c

aw

isc

Sa, a litte bit about the syntax.

The file contains the rules in blocks of four tags: set_url, data_before, data_inject, data_after (well, plus tag data_end indicating the end of the tag with the data_)

o sef_url

ally supperts such things as "*" and "#".

specifies the mask, which triggers a corresponding injection rule. As wi

This tag can cont

in various flags (By defauil the flag &)

y the GET mothod.
by the POST mothod.
usw . In this case, first part of graub 3 dats will be pasted from content o
sear:'h rrltena r‘ouke ." un "GRABBED DATA")
_aftar.

+ G — mesns that th
< P - means that the
ch—

il be made only for the resources that are requests
be made oniy for the resources that are reques
'a:i or qrabb(rq content between the tags data_before and data_after i
Ripped cortent can be f‘unu in the formgrabber panel, s,',‘
tag L excapt, that the rippad con is not included and the <
ata_inject, data_after

o data_before,
There are three situations whan dealing with these tags:

= If you find content on the mask data_before and the cente; of the tag data_after empty then ... — bot insert the contents of the tag data_inject AFTER

dasta_before.

< If you find content on the mask data_asfter and the contents of the tag data_before armpty then ... -~ bot insert the contents of the tag data_inject BEFORE
data_after.
- If you find content on the mask data _before snd data__asthter then ... — bot will replace the content batween the tags data__before and data_after incuding the

contents of tag data_injeck.
An exarmpie of a webinjects rules fila:

webinjects_example

on

ing HTTP 1.0 (this version of HTTP L
n the Content-Er

SpyEve to inject pages in the browser Mozilla Firafox).
ad that the conten compressed, Led it to the
servars, this can be fixed with the aid of SpyE

* Note. In practic
some resources (-,
b-uwrer can rec C'

s

was ff:und a quite amusing hehavior of BOA wehserver ¢
j t S compres; :,ed "hnterw wh

and must be precisely iike this, fcn Z&
e, is necessarily nesded to create

e of tags data_before, data_inject, data_after — is important for SpyEve
& starudard injects CB83 and JS content. However, to inject such content in S
css” or "js" (depending on the type of content for injecting,

SpvEve is incorrectly implamented the flag B — in Zeus he used te ramove tha HTML de of the
yEye the special aracter "#" is completely analogous to "*¥" (in fag set_wuri). Although in Zeu
character”

is not important
a rule, as the sef_url to contain a line

ned HTTR

ontent

ource

not s, and the special character "#" used as synonim to "zero or one

Configuration : Client : Builder : coliectors.ixt

In the butlder directary must be located the file collectors.txt. In the file you can register a list, each line has the following format (the lines are separated by Enter):
ip:port

I.e. that IP, where is setup SpyEye Collactar and PORT, on which the collector listens for logging

i narne, without the prefix "hitp://" or "hittps://", for protocol, used to communicate with the

wiead of IF you can specify & domain name (Attentioni That doro,
co ector - TCP, ard not HTTF)

* Note. Better bind coliector on any know omimon™ port (80 ar 443), because in some local area networks, routers can block the sending of traffic to the non-standard ports.

* Note. If you can not send data to the first coliector, the bot will attempt to send data us collactar listed below (the interval betweern atternpts is 0.1 sec). If the bot reaches
the end of the list 3nd sending the data did not succeed, it will save the report in a special storage and will try to send the data at the next logs sending

Configuration : Client : Builder : customconnactor

customeonnactor is a plugin for bot connection with the main admin ganel {gate.phn). its dil and configuration file is iocated in the builder plugins. Each line in this config has the

following format:

urljinterval in_sec

o url — path to gate (gate.php) gh HTTP or H > protocot.
» interval_in_sec - interval of a knock at a particular gate.

se less than the variable ENT_PERIOD in the rmain admin panei. Ot umber of online/oftline bots.

rwise, the admin panei will display an incorrec

nnector, then the builder, when building will producs 2 following config WARNING:

Ex. 1002 - Page 567 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 155 of 194

cusiomeonnector-waming

* Note. If the wabserver does not respond, the bot wili knock on the af-myn panel below in the list {pause between attempis will correspond to the intervals specified i the config
niuging. If the boat reachas the end of the fist, it goes < to the fir i and so on.

Configuration : Client : Builder : dns.txt

There were found some cases with domain o
sense to specify far DNS-server type
DNS-servers, that are listed in dns.txt.

The syntax is exactly the same as in colledors. txt

* Note. Be careful, choesing the DNS-ser
which return the [P even in the case the

rver could not return sny IP. There are DNS-servars,

/ers. The problera is that if the domain does not exist (or is biocked), that DNS
miain dees not exist {for example, DpenDNS). This is meant te redirect

B wiwith dns

t such should not be. Te test the operat: of & DNS server is provided the dnsclient.exe tool

Configuration : Client : Plugins : webfakes

Webfakes plugin can be usad to spoof the contents of HTTP and HTTPS resources without recourse to the criginal web server in 1E and FF. Config plugin in compatibie forrmat to Zeus
webfakes and locks as foliow:

entry "WebFakes"
%URL_MASK% %URI_REDIRECT% %FILAGS% %POST _BLACK _MASKY% %POST WHITE MASKY %RLOCK URLY% %WEBFAKE NAMEX %UNBLOCK URL%
end

.

BRL_MASK -- url mask, determining whather niead for a c fake HTTP/HTTPS resource.

URE_REDIRECT uri rescurce, content te be displayad mstr_ad (.-f the ariginal contant of the resource.

FLAGS — supported flags G, P and A. The latter flag raay be used for, bot o insert additional hesders BG (BoiGuid) and REF (Refferer. That
fake) in the HTTP header when acc
POST_BLACK MASK -
POST_WHITE_MASK — if K,
BLOCK _URL - fake block-macsk can be used to black the fake w
WEBFAKE NAME — wabfake name. I don't really understand wihy
UNBLOCK_URL — can te used to remove the block on a fake, when

.

iesoures, for which is

ula goes intc lm mm mede {i.e, stops wor r('
doesn't ge right undel
ified LIRL.

5s been resarved in Zeus for manua! fake. Not used.
URL.

-request ma

oo s o0

applied to a sp

* Note. There are some kind of uronu:
to the length of 4K8. That is, whan drw.
the HTTP-header).

- working fake:
ng up the fakes

uest datz, received for analysis in the fakes plugi
ude the first 4KB of HT request (including the size :,f

re:

S in FF browser. Due 1o the nature of nspré API
ule, be caraful - to use of such POST-request ve

o

* Note

2 plugin doesn't require to be started rmanuaily in the admin panei.

Configuraticn @ Client : Plugins @ ddos

0DaS plugin can be used to parform a flood on an target (ex: abuse.ch). Exarple plugin configuration is below
type target port time
tvpe target port time

» type — flood type, this can be either
o targat - target, DNS/IP of target you w
» port - port, port of target yeu wish
» fime — time, amount of time to perfo

hY
<] n (LD pcrf tc- u_se d i port). {ex: 443)
v fleod on target -{LiDr ses seconds || E.loulon‘s uses minutes). (ex: 1.00)

Y to perforiv f

#* Note, The plugin supperts mulitiple fiood tasks seperatad by new

onto next task after comple

#* Note. The slowloris doas not use porti.

#* Note. The plugin requires to be started manually in the admin panel

Configuration : Client : Plugins @ ccgrabber

3
5

ther all the POST-requast is sent

rcl-tcts CC, analyzing POST-raquests applications. For detecting tne x b 2rs 5 used the it bjiele] If found & valid CC numbe
r. Finding the ripped CC can be done through 3n appropriate sea i i forrmarabter panel:

* Note. The plugin doesn't require to be started manuaily in the admin panal

Configuration : Client : Plugins © ffcertgrabber

SoyEve has a basic agui that, there is a special

piugin for grabbing certifi

grabbing certificates from Windows crypto-3
tes ﬁom FF. It provides password guessing by dictionary, in

storage. Howaver, Firefox uses its own cert L
1 the case of the profile has 3 master password.

In the plugin confi 's only one @ - 0 wm time to wait before sending the certific to the coliecter (indicated in seconds).

Ripped certificates are prefixed with “FF ; . Search can be performed in the same place where are located the 1E certificates
B feengrabber

G

lngin does not reqguire to be started manually fom the admin panel.

Ex. 1002 - Page 568 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 156 of 194

* Note., Password for ripped certificate import check with the author.

Configuration : Client : Plugins : socksd backconnect

Properly, the plugin starts 3 SOCKSEH server on the bot and provides access to the server via tackconnect. Is available in the main admin panel, sliowing to display a list of socks:

& socksiist

They can be used through any software, that supports SQCKSS protocel. 1t is recornmended to use Proxifier (provided with keygen in the directory tools)
Piugin’s config has the foliowing structure:

ZBOTNAMEY ; %TP% ; %PORTY% ; XRECONNECT _ TNTERVAL _MSECK; %AUTORUN_FLAGY

%BOTNAMEY% — bol's name, displayed in the admin panei, Recommended to lzave it as is ("%BOTNAMEL"), In this case, the plugin wiil replace the text to a real bot GUID;
%3IP% — backconnect server's IP;
YPORT% - PORY, on which the server listans for bac nnect connaction from bots. In the section Backconiect Server (for S‘O KSE & FTP), itis called socks_port;

he server;

GeRECONMECT _INTERVAL M€FF°/r — 'ne, that the plugin waits, in case of connaction fal
% BUTORUMN_ i’LAG°/~ —if 1, the SOCKS ar started st once, without an admin pane!

ire, be
ramand;

re trying te recennect o

s e 0 3 e

* Note. The plugin requires to be started manually in the admin panel (if wasn't used the AUTORUN _FLAGY: fiag).

Configuration : Client : Plugins : fip backconnect
Actuaily, the plugin starts up an FTP server on the bot and gives you accass to it through backcennect server. It is available in the main admin interface, allowing to display 3 list of
FTPs:

] folist

Connect to the ot through sither FTP-manager. Recommended by Total Commander.

Piugin config is the same 3s for the socks piugin, excapt one difference - %PORTY% need to specify that, in the Backconnect Server (for SOCKSS & FTF) section is cslied fip_port.

* Note. The plugin requires to be startaed manuaily in the admin panel (if wasn't used the %AUTORUIN_FLAG% flag).

Configuration : Client : Plugins : rdp backconnect

This plugin s'.an; up RSP server and forwards :t to fhe Backconnect server. In addition, the plugin imglernents the cra n of a hidden user, which is needed to remctely use the PC
with RDP. Prov d°“ 'he rc ny management from any user logged into the systern you can create a process on behalf of the original users).
Marecver, n have a -, downlcadable from internet and runs dirrectly frorm mernory (without a dump to disk).

er rockst

* Note. T

* Note. The plugin doesn't need o restart the OS to work.

H

Sa. Plugin config has appraximately the following struchi

YIWINDOWS _LOGINY ; BWINDDWS PASSWORDY; %URL

%IP_OF _BC_SERVER%:%PORT_OF _BC_SERVERS; %MAGIC_CODE%;

o %IP_OF_ BC_SERVERY% — IP of the Backconnect server

° PORT_OF_8C_SERVER% -- port, on which the RDP-daarmion listens for connections from bots (in the server-side config it bears the name ofg_rdp port i)

» %MAGIC_CODE% -- string to authenticate the connected diients (irr the server side config it is calied magic _cods)

» UWINDOWS LOGIN — hidden user account name run in the bot's OS.
Attention The narme must be completely unique. Because the plugin can't werk with 2 duplicate %WINDOWS _LOGIN%. Besides, do not use account names with langth less
than 8 characters. Gtherwise, some OS {Window. ver »(1"3 for exampie) simply won't allow you to create an user.

o HWINDOWS PASSWORDY — %WINDOWS LOGING user password.

e passwords, containing letters in Jower and upper ¢

* Note. as weil as special characters. T

software plugin RunfsEx GUT

v %URL_TQ_PORTABLE_TOMD% — direct k to ptemd.exs. From there wili be downloaded TotalCMD, if you click on the bui

»

admin parel. List of bots can be seen in the corresponding menu itern (ROP). The connaction to the bok can be dene via standsrd Windews toc!
o

The piu is started manually in
msisc.exe Remote Deskiop Corin

@ rdp usage example

Disadvantages of the current version of the plugin:
+ No support for x64 systems;

» The plugin nesd adminisirator
o WinZ Starter not suppor

hts to work;
ad (namely

, in the following versions of the plugin, these problarms will be solved. But now (excluding the exceptions described above), tha plugin works fine on all x86 OS5 starting
with XP, including the OS5 Vista~, with the incuded UAC

Configuration : Client : Plugins © bugrepord

#* Attention! For the persens, who have axperience with the debugger, this plugin is contr:

If your mmachine happens to get something like 3 bot crash type:

crashexample

Then, the bot, with the help of this plugin can send technical in
The plugin hooks nidiiKiUserExceptionDispatcher{) and, if there is one of the following exceptions

e EXCEPTION _ACCESS VIOLATION

Ex. 1002 - Page 569 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 157 of 194

ACK_OVERFLOW
T uIVxD..

€0 s %03 o0

>3
2

. ther, the plugin can send detx
thv formgrabber panel, you can

ormation (inciuding disasm code, where the exception cccured ... registers, stack eic.) ard about the system to the coliector. In turmn,
isplay menu BUGS and look for different exceptions:

With this piugin you can identify problems occuring on the PC holder. That is partially substituted for full 1IT-debugger

The plugin config has scrae ogtions (can have in the config as keywords).

» autastart - in this case, the plugin is not required to be started in the main admin panel.
o silent — in this case, & “!’n thread that caused the exception, goes dormant
°

dont in this case, the piugin doas not y exceptions to tha colle

“tor.

siowly_uninstall — in this case, the pl emove the hooks when uninstalling bot (this mode can be used to caich crashbuas during bet's reraoval or install).
Configuration : Client : Plugins : jabbernotifier
Tha plugin can can be used for cation on holder antry te one or another link via jabber.

Open:oun‘e plugin, therefore, its functionziity can be extended. For exampie, to make sure that when entering a specific link, the holder iromediately starts the SOCKS or RDP plug-

entry abberNotifier”
GURL._MASKYE %FILAGS% %POST _MASK%
end

whether to send & message (URL, whi
FLAGS - suppor xrr:Spc.'. ing to a particular request mr_fhud
o POST_MASK — in the case o’ P fisg being used used, you ¢an use the mask for that POST-request data.

Prefarences as to how and where to send the messags, spacified in the settings of the rrain admin panel (Jabbar_notificr section)

* Note. The plugin deesn't require to be started in the sdmin panel

Configuration @ Client : Tools : uninstalier.exe

h neaded to uninstall the bot from systern (for example, If you're testin, r"w: bot and want to guickly update its configuration, just execute it and run the bot with the new
config ... or just want io heal the system from acc.‘dr:-ntar contamination of the DO F). Te work you need the file settings.ini {produced by the builder). The tooi resds out the bot
rutex name and the bot exe name. Based on the mutex name, the tool narates the mutex name, reguired for removal of the bot from the system, and, actually, creatas it. After
a while, the tocl deletes the bot . There are several messages, which this tool can deliver:

» "There are nothing to cean” - means, that the uninstalier can not detect the bot in ¢

“Your system is clean now" — means, that the um..,‘?lmr discoverad the bot snd Nc
"Cannat cure youv system” — h he uninstailer found the bot but didn't blew it {
settings.ini wx d = wrong ba' ﬂla narae,

era (probabiy, the bot is not running).
1 blaw it.
robably, was unatb

B

e to delete the bot file, and, probably, bacause, in the

Configuration : Client : Tools : configdecoder.exe

This tool needs, to sea the contents of config.bin (For example, in case of, if you want fo verify the presence or the absence of a plugin/webinjects/efc.
in mdpr te revesl the confi icn, you need the anc. key, recorded in the settings.ini (produced by the buiider). If the enc. key is correct, the tool wil
config.bin and will ents of the config.bin

Cnnfnguratmn Client : Tools : WebInjectesDev

WabInjecieshev is a set of tools for develaping

.

userDafinelang.xml — Syntax highlight
folder "% APPDATAY: \Notepad++\".
e‘ﬂwckdl! it — this dil can be adde
{to infect the ffhoobkdil.dif d:.‘n»‘"‘t/y
- :ehoakd i.dll — for the 1E browser, this di 1 ca.. ba .mp

To add syntax highlighting to Zeus-like i

iects, you must copy the userBefinet.ang.xmli to

1 addition, you can use th

space of the pro

your wabinject "Ci\webinjects.kxt”, snd inject the dii
5. If there are changes, then the injel
rite webinjecks, you don't need a bob

the appropriate browser. After that, the cede is embedded in the browser, that checks the webinject:
are lvaded into the browser. This apy saves tirme when making changes to a wabinjects file to dislay them in a browser
unning in the system, Simply use the dii's in the complete WebInjectesDavy.

To ensure proper operation of the injects-grabbers, you can use & Tre embedded cade in the browsar sends back the resuit of the grabbed iniects.

H.d1iy:

- injects file editor, left - FF with embedded ffrock:

Ex. 1002 - Page 570 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 158 of 194

Democratizing content publication with Coral

Michael J. Freedman, Eric Freudenthal, David Maziéres
New York University
http://www.scs.cs.nyu.edu/coral/

Abstract

CoralCDN is a peer-to-peer content distribution network
that allows a user to run a web site that offers high
performance and meets huge demand, all for the price of
a cheap broadband Internet connection. Volunteer sites
that run CoralCDN automatically replicate content as
a side effect of users accessing it. Publishing through
CoralCDN is as simple as making a small change to the
hostname in an object’s URL; a peer-to-peer DNS layer
transparently redirects browsers to nearby participating
cache nodes, which in turn cooperate to minimize load on
the origin web server. One of the system’s key goals is
to avoid creating hot spots that might dissuade volunteers
and hurt performance. It achieves this through Coral,
a latency-optimized hierarchical indexing infrastructure
based on a novel abstraction called a distributed sloppy
hash table, or DSHT.

1 Introduction

The availability of content on the Internet is to a large de-
gree a function of the cost shouldered by the publisher. A
well-funded web site can reach huge numbers of people
through some combination of load-balanced servers, fast
network connections, and commercial content distribu-
tion networks (CDNs). Publishers who cannot afford such
amenities are limited in the size of audience and type of
content they can serve. Moreover, their sites risk sudden
overload following publicity, a phenomenon nicknamed
the “Slashdot” effect, after a popular web site that period-
ically links to under-provisioned servers, driving unsus-
tainable levels of traffic to them. Thus, even struggling
content providers are often forced to expend significant
resources on content distribution.

Fortunately, at least with static content, there is an easy
way for popular data to reach many more people than
publishers can afford to serve themselves—volunteers can
mirror the data on their own servers and networks. In-
deed, the Internet has a long history of organizations with
good network connectivity mirroring data they consider to
be of value. More recently, peer-to-peer file sharing has
demonstrated the willingness of even individual broad-
band users to dedicate upstream bandwidth to redistribute
content the users themselves enjoy. Additionally, orga-
nizations that mirror popular content reduce their down-

stream bandwidth utilization and improve the latency for
local users accessing the mirror.

This paper describes CoralCDN, a decentralized, self-
organizing, peer-to-peer web-content distribution net-
work. CoralCDN leverages the aggregate bandwidth of
volunteers running the software to absorb and dissipate
most of the traffic for web sites using the system. In so do-
ing, CoralCDN replicates content in proportion to the con-
tent’s popularity, regardless of the publisher’s resources—
in effect democratizing content publication.

To use CoralCDN, a content publisher—or some-
one posting a link to a high-traffic portal—simply ap-
pends “.nyud.net :8090” to the hostname in a URL.
Through DNS redirection, oblivious clients with unmod-
ified web browsers are transparently redirected to nearby
Coral web caches. These caches cooperate to transfer data
from nearby peers whenever possible, minimizing both
the load on the origin web server and the end-to-end la-
tency experienced by browsers.

CoralCDN is built on top of a novel key/value indexing
infrastructure called Coral. Two properties make Coral
ideal for CDNs. First, Coral allows nodes to locate nearby
cached copies of web objects without querying more dis-
tant nodes. Second, Coral prevents hot spots in the in-
frastructure, even under degenerate loads. For instance,
if every node repeatedly stores the same key, the rate of
requests to the most heavily-loaded machine is still only
logarithmic in the total number of nodes.

Coral exploits overlay routing techniques recently pop-
ularized by a number of peer-to-peer distributed hash ta-
bles (DHTs). However, Coral differs from DHTs in sev-
eral ways. First, Coral’s locality and hot-spot prevention
properties are not possible for DHTs. Second, Coral’s
architecture is based on clusters of well-connected ma-
chines. Clusters are exposed in the interface to higher-
level software, and in fact form a crucial part of the DNS
redirection mechanism. Finally, to achieve its goals, Coral
provides weaker consistency than traditional DHTs. For
that reason, we call its indexing abstraction a distributed
sloppy hash table, or DSHT.

CoralCDN makes a number of contributions. It enables
people to publish content that they previously could not or
would not because of distribution costs. It is the first com-
pletely decentralized and self-organizing web-content dis-
tribution network. Coral, the indexing infrastructure, pro-

Ex. 1002 - Page 571 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 159 of 194

vides a new abstraction potentially of use to any applica-
tion that needs to locate nearby instances of resources on
the network. Coral also introduces an epidemic clustering
algorithm that exploits distributed network measurements.
Furthermore, Coral is the first peer-to-peer key/value in-
dex that can scale to many stores of the same key without
hot-spot congestion, thanks to a new rate-limiting tech-
nique. Finally, CoralCDN contains the first peer-to-peer
DNS redirection infrastructure, allowing the system to
inter-operate with unmodified web browsers.

Measurements of CoralCDN demonstrate that it al-
lows under-provisioned web sites to achieve dramatically
higher capacity, and its clustering provides quantitatively
better performance than locality-unaware systems.

The remainder of this paper is structured as follows.
Section 2 provides a high-level description of CoralCDN,
and Section 3 describes its DNS system and web caching
components. In Section 4, we describe the Coral index-
ing infrastructure, its underlying DSHT layers, and the
clustering algorithms. Section 5 includes an implementa-
tion overview and Section 6 presents experimental results.
Section 7 describes related work, Section 8 discusses fu-
ture work, and Section 9 concludes.

2 The Coral Content Distribution Network

The Coral Content Distribution Network (CoralCDN) is
composed of three main parts: (1) a network of coop-
erative HTTP proxies that handle users’ requests,' (2) a
network of DNS nameservers for nyucd. net that map
clients to nearby Coral HTTP proxies, and (3) the under-
lying Coral indexing infrastructure and clustering machin-
ery on which the first two applications are built.

2.1 Usage Models

To enable immediate and incremental deployment, Coral-
CDN is transparent to clients and requires no software or
plug-in installation. CoralCDN can be used in a variety of
ways, including:

e Publishers. A web site publisher for x.com can
change selected URLs in their web pages to “Cor-
alized” URLs, such as http://www.x.com.
nyud.net:8090/y. jpg.

e Third-parties. An interested third-party—e.g., a
poster to a web portal or a Usenet group—can Coral-
ize a URL before publishing it, causing all embedded
relative links to use CoralCDN as well.

e Users. Coral-aware users can manually construct
Coralized URLs when surfing slow or overloaded

I'While Coral’s HTTP proxy defi nitely provides proxy functionality,
it is not an HTTP proxy in the strict RFC2616 sense; it serves requests
that are syntactically formatted for an ordinary HTTP server.

Ndns S
B WK 2 N

* 1
WWW.KOOm v
Jayuidnet & 10

[Resolver]=- 8 [Browser]

Figure 1: Using CoralCDN, the steps involved in resolving a
Coralized URL and returning the corresponding file, per Sec-
tion 2.2. Rounded boxes represent CoralCDN nodes running
Coral, DNS, and HTTP servers. Solid arrows correspond to
Coral RPCs, dashed arrows to DNS traffi ¢, dotted-dashed arrows
to network probes, and dotted arrows to HTTP traffi c.

web sites. All relative links and HTTP redirects are
automatically Coralized.

2.2 System Overview

Figure 1 shows the steps that occur when a client accesses
a Coralized URL, such as http://www.x.com.
nyud.net:8090/, using a standard web browser. The
two main stages—DNS redirection and HTTP request
handling—both use the Coral indexing infrastructure.

1. A client sends a DNS request for www.x.com.
nyud. net to its local resolver.

2. The client’s resolver attempts to resolve the host-
name using some Coral DNS server(s), possibly
starting at one of the few registered under the . net
domain.

3. Upon receiving a query, a Coral DNS server probes
the client to determines its round-trip-time and last
few network hops.

4. Based on the probe results, the DNS server checks
Coral to see if there are any known nameservers
and/or HTTP proxies near the client’s resolver.

5. The DNS server replies, returning any servers found
through Coral in the previous step; if none were
found, it returns a random set of nameservers and
proxies. In either case, if the DNS server is close to
the client, it only returns nodes that are close to itself
(see Section 3.1).

. The client’s resolver returns the address of a Coral
HTTP proxy for www.x.com.nyud.net.

N

Ex. 1002 - Page 572 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 160 of 194

7. The client sends the HTTP request http://www.
x.com.nyud.net :8090/ to the specified proxy.
If the proxy is caching the file locally, it returns the
file and stops. Otherwise, this process continues.
8. The proxy looks up the web object’s URL in Coral.
9. If Coral returns the address of a node caching the
object, the proxy fetches the object from this node.
Otherwise, the proxy downloads the object from the
origin server, www . x . com (not shown).
10. The proxy stores the web object and returns it to the
client browser.
11. The proxy stores a reference to itself in Coral,
recording the fact that is now caching the URL.

2.3 The Coral Indexing Abstraction

This section introduces the Coral indexing infrastructure
as used by Coral CDN. Coral provides a distributed sloppy
hash table (DSHT) abstraction. DSHTs are designed for
applications storing soft-state key/value pairs, where mul-
tiple values may be stored under the same key. Coral-
CDN uses this mechanism to map a variety of types of
key onto addresses of CoralCDN nodes. In particular, it
uses DSHTS to find Coral nameservers topologically close
clients’ networks, to find HT'TP proxies caching particu-
lar web objects, and to locate nearby Coral nodes for the
purposes of minimizing internal request latency.

Instead of one global overlay as in [5, 14, 27], each
Coral node belongs to several distinct DSHTSs called clus-
ters. Each cluster is characterized by a maximum desired
network round-trip-time (RTT) we call the diameter. The
system is parameterized by a fixed hierarchy of diameters
known as levels. Every node is a member of one DSHT
at each level. A group of nodes can form a level-: cluster
if a high-enough fraction their pair-wise RTTs are below
the level-i diameter threshold. Although Coral’s imple-
mentation allows for an arbitrarily-deep DSHT hierarchy,
this paper describes a three-level hierarchy with thresh-
olds of oo, 60 msec, and 20 msec for level-0, -1, and -2
clusters respectively. Coral queries nodes in higher-level,
fast clusters before those in lower-level, slower clusters.
This both reduces the latency of lookups and increases
the chances of returning values stored by nearby nodes.

Coral provides the following interface to higher-level
applications:

o put(key, val, ttl, [levels]): Inserts a mapping from
the key to some arbitrary value, specifying the time-
to-live of the reference. The caller may optionally
specify a subset of the cluster hierarchy to restrict
the operation to certain levels.

o gel(key, [levels]): Retrieves some subset of the val-
ues stored under a key. Again, one can optionally
specify a subset of the cluster hierarchy.

e nodes(level, count, [target], [services]): Returns
count neighbors belonging to the node’s cluster as
specified by level. target, if supplied, specifies the
IP address of a machine to which the returned nodes
would ideally be near. Coral can probe target and
exploit network topology hints stored in the DSHT
to satisfy the request. If services is specified, Coral
will only return nodes running the particular service,
e.g., an HTTP proxy or DNS server.

e [evels(): Returns the number of levels in Coral’s hi-
erarchy and their corresponding RTT thresholds.

The next section describes the design of CoralCDN’s
DNS redirector and HTTP proxy—especially with regard
to their use of Coral’s DSHT abstraction and clustering
hierarchy—before returning to Coral in Section 4.

3 Application-Layer Components

The Coral DNS server directs browsers fetching Coralized
URLSs to Coral HTTP proxies, attempting to find ones near
the requesting client. These HTTP proxies exploit each
others’ caches in such a way as to minimize both transfer
latency and the load on origin web servers.

3.1 The Coral DNS server

The Coral DNS server, dnssrv, returns IP addresses of
Coral HTTP proxies when browsers look up the host-
names in Coralized URLs. To improve locality, it at-
tempts to return proxies near requesting clients. In partic-
ular, whenever a DNS resolver (client) contacts a nearby
dnssrv instance, dnssrv both returns proxies within an ap-
propriate cluster, and ensures that future DNS requests
from that client will not need to leave the cluster. Using
the nodes function, dnssrv also exploits Coral’s on-the-
fly network measurement capabilities and stored topology
hints to increase the chances of clients discovering nearby
DNS servers.

More specifically, every instance of dnssrv is an au-
thoritative nameserver for the domain nyucd.net. As-
suming a 3-level hierarchy, as Coral is generally config-
ured, dnssrv maps any domain name ending http.L2.
L1.L0.nyucd.net to one or more Coral HTTP prox-
ies. (For an (n+ 1)-level hierarchy, the domain name
is extended out to Ln in the obvious way.) Because
such names are somewhat unwieldy, we established a
DNS DNAME alias [4], nyud.net, with target http.
L2.L1.L0.nyucd.net. Any domain name ending
nyud. net is therefore equivalent to the same name with
suffix http.L2.L1.L0.nyucd.net, allowing Cor-
alized URLs to have the more concise form http://
www.x.com.nyud.net:8090/.

dnssrv assumes that web browsers are generally close
to their resolvers on the network, so that the source ad-

Ex. 1002 - Page 573 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 161 of 194

dress of a DNS query reflects the browser’s network lo-
cation. This assumption holds to varying degrees, but is
good enough that Akamai [12], Digital Island [6], and
Mirror Image [21] have all successfully deployed com-
mercial CDNs based on DNS redirection. The locality
problem therefore is reduced to returning proxies that are
near the source of a DNS request. In order to achieve lo-
cality, dnssrv measures its round-trip-time to the resolver
and categorizes it by level. For a 3-level hierarchy, the re-
solver will correspond to a level 2, level 1, or level O client,
depending on how its RTT compares to Coral’s cluster-
level thresholds.

When asked for the address of a hostname ending
http.L2.L1.L0.nyucd.net, dnssrv’s reply con-
tains two sections of interest: A set of addresses for the
name—answers to the query—and a set of nameservers
for that name’s domain—known as the authority section
of a DNS reply. dnssrv returns addresses of CoralProx-
ies in the cluster whose level corresponds to the client’s
level categorization. In other words, if the RTT between
the DNS client and dnssrv is below the level-i threshold
(for the best i), dnssrv will only return addresses of Coral
nodes in its level-: cluster. dnssrv obtains a list of such
nodes with the nodes function. Note that dnssrv always re-
turns CoralProxy addresses with short time-to-live fields
(30 seconds for levels 0 and 1, 60 for level 2).

To achieve better locality, dnssrv also specifies the
client’s IP address as a target argument to nodes. This
causes Coral to probe the addresses of the last five net-
work hops to the client and use the results to look for
clustering hints in the DSHTs. To avoid significantly de-
laying clients, Coral maps these network hops using a fast,
built-in traceroute-like mechanism that combines concur-
rent probes and aggressive time-outs to minimize latency.
The entire mapping process generally requires around 2
RTTs and 350 bytes of bandwidth. A Coral node caches
results to avoid repeatedly probing the same client.

The closer dnssrv is to a client, the better its selection of
CoralProxy addresses will likely be for the client. dnssrv
therefore exploits the authority section of DNS replies to
lock a DNS client into a good cluster whenever it happens
upon a nearby dnssrv. As with the answer section, dnssrv
selects the nameservers it returns from the appropriate
cluster level and uses the farget argument to exploit mea-
surement and network hints. Unlike addresses in the an-
swer section, however, it gives nameservers in the author-
ity section a long TTL (one hour). A nearby dnssrv must
therefore override any inferior nameservers a DNS client
may be caching from previous queries. dnssrv does so by
manipulating the domain for which returned nameservers
are servers. To clients more distant than the level-1 timing
threshold, dnssry claims to return nameservers for domain
LO0.nyucd.net. For clients closer than that thresh-

old, it returns nameservers for L1 . L0 .nyucd. net. For
clients closer than the level-2 threshold, it returns name-
servers for domain L2.L1.L0.nyucd.net. Because
DNS resolvers query the servers for the most specific
known domain, this scheme allows closer dnssrv instances
to override the results of more distant ones.

Unfortunately, although resolvers can tolerate a frac-
tion of unavailable DNS servers, browsers do not han-
dle bad HTTP servers gracefully. (This is one reason for
returning CoralProxy addresses with short TTL fields.)
As an added precaution, dnssrv only returns CoralProxy
addresses which it has recently verified first-hand. This
sometimes means synchronously checking a proxy’s sta-
tus (via a UDP RPC) prior replying to a DNS query. We
note further that people who wish to contribute only up-
stream bandwidth can flag their proxy as “non-recursive,”
in which case dnssrv will only return that proxy to clients
on local networks.

3.2 The Coral HTTP proxy

The Coral HTTP proxy, CoralProxy, satisfies HTTP re-
quests for Coralized URLSs. It seeks to provide reasonable
request latency and high system throughput, even while
serving data from origin servers behind comparatively
slow network links such as home broadband connections.
This design space requires particular care in minimiz-
ing load on origin servers compared to traditional CDNs,
for two reasons. First, many of Coral’s origin servers
are likely to have slower network connections than typ-
ical customers of commercial CDNs. Second, commer-
cial CDNs often collocate a number of machines at each
deployment site and then select proxies based in part on
the URL requested—effectively distributing URLS across
proxies. Coral, in contrast, selects proxies only based on
client locality. Thus, in CoralCDN, it is much easier for
every single proxy to end up fetching a particular URL.

To aggressively minimize load on origin servers, a
CoralProxy must fetch web pages from other proxies
whenever possible. Each proxy keeps a local cache from
which it can immediately fulfill requests. When a client
requests a non-resident URL, CoralProxy first attempts
to locate a cached copy of the referenced resource using
Coral (a get), with the resource indexed by a SHA-1 hash
of its URL [22]. If CoralProxy discovers that one or more
other proxies have the data, it attempts to fetch the data
from the proxy to which it first connects. If Coral provides
no referrals or if no referrals return the data, CoralProxy
must fetch the resource directly from the origin.

While CoralProxy is fetching a web object—either
from the origin or from another CoralProxy—it inserts a
reference to itself in its DSHTs with a time-to-live of 20
seconds. (It will renew this short-lived reference until it
completes the download.) Thus, if a flash crowd suddenly

Ex. 1002 - Page 574 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 162 of 194

fetches a web page, all CoralProxies, other than the first
simultaneous requests, will naturally form a kind of mul-
ticast tree for retrieving the web page. Once any Coral-
Proxy obtains the full file, it inserts a much longer-lived
reference to itself (e.g., 1 hour). Because the insertion al-
gorithm accounts for TTL, these longer-lived references
will overwrite shorter-lived ones, and they can be stored
on well-selected nodes even under high insertion load, as
later described in Section 4.2.

CoralProxies periodically renew referrals to resources
in their caches. A proxy should not evict a web object
from its cache while a reference to it may persist in the
DSHT. Ideally, proxies would adaptively set TTLs based
on cache capacity, though this is not yet implemented.

4 Coral: A Hierarchical Indexing System

This section describes the Coral indexing infrastructure,
which CoralCDN leverages to achieve scalability, self-
organization, and efficient data retrieval. We describe how
Coral implements the put and get operations that form
the basis of its distributed sloppy hash table (DSHT) ab-
straction: the underlying key-based routing layer (4.1),
the DSHT algorithms that balance load (4.2), and the
changes that enable latency and data-placement optimiza-
tions within a hierarchical set of DSHTs (4.3). Finally,
we describe the clustering mechanisms that manage this
hierarchical structure (4.4).

4.1 Coral’s Key-Based Routing Layer

Coral’s keys are opaque 160-bit ID values; nodes are as-
signed IDs in the same 160-bit identifier space. A node’s
ID is the SHA-1 hash of its IP address. Coral defines a
distance metric on IDs. Henceforth, we describe a node
as being close to a key if the distance between the key and
the node’s ID is small. A Coral put operation stores a
key/value pair at a node close to the key. A get operation
searches for stored key/value pairs at nodes successively
closer to the key. To support these operations, a node re-
quires some mechanism to discover other nodes close to
any arbitrary key.

Every DSHT contains a routing table. For any key &, a
node R’s routing table allows it to find a node closer to £,
unless R is already the closest node. These routing tables
are based on Kademlia [17], which defines the distance
between two values in the ID-space to be their bitwise
exclusive or (XOR), interpreted as an unsigned integer.
Using the XOR metric, IDs with longer matching prefixes
(of most significant bits) are numerically closer.

The size of a node’s routing table in a DSHT is logarith-
mic in the total number of nodes comprising the DSHT.
If a node R is not the closest node to some key k&, then
R’s routing table almost always contains either the clos-

nodeids
4 5 7

distance (nodeids xor 4)

Figure 2: Example of routing operations in a system contain-
ing eight nodes with IDs {4, 5,7,0,2, 3,13, 14}. In this illus-
tration, node R with ¢d = 14 is looking up the node closest to
key k = 4, and we have sorted the nodes by their distance to
k. The top boxed row illustrates XOR distances for the nodes
{0,2, 3,13, 14} that are initially known by R. R first contacts a
known peer whose distance to k is closest to half of R’s distance
(10/2 = 5); in this illustration, this peer is node zero, whose
distance to k is 0 & 4 =4. Data in RPC requests and responses
are shown in parentheses and braces, respectively: R asks node
zero for its peers that are half-way closer to &, i.e., those at dis-
tance % =2. R inserts these new references into its routing table
(middle row). R now repeats this process, contacting node fi ve,
whose distance 1 is closest to %. Finally, R contacts node four,
whose distance is 0, and completes its search (bottom row).

est node to k, or some node whose distance to k is at least
one bit shorter than R’s. This permits R to visit a se-
quence of nodes with monotonically decreasing distances
[d1,ds,...] to k, such that the encoding of d;1 as a bi-
nary number has one fewer bit than d;. As a result, the
expected number of iterations for R to discover the clos-
est node to £ is logarithmic in the number of nodes.

Figure 2 illustrates the Coral routing algorithm, which
successively visits nodes whose distances to the key are
approximately halved each iteration. Traditional key-
based routing layers attempt to route directly to the node
closest to the key whenever possible [25, 26, 31, 35], re-
sorting to several intermediate hops only when faced with
incomplete routing information. By caching additional
routing state—beyond the necessary log(n) references—
these systems in practice manage to achieve routing in a
constant number of hops. We observe that frequent refer-
ences to the same key can generate high levels of traffic in
nodes close to the key. This congestion, called free satu-
ration, was first identified in shared-memory interconnec-
tion networks [24].

Ex. 1002 - Page 575 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 163 of 194

To minimize tree saturation, each iteration of a Coral
search prefers to correct only b bits at a time.> More
specifically, let splice(k,r,4) designate the most signifi-
cant bi bits of k followed by the least significant 160 — bi
bits of r. If node R with ID r wishes to search for key
k, R first initializes a variable ¢ «<— r. At each iteration,
R updates ¢t « splice(k,t,), using the smallest value
of ¢ that yields a new value of . The next hop in the
lookup path is the closest node to ¢ that already exists in
R’s routing table. As described below, by limiting the use
of potentially closer known hops in this way, Coral can
avoid overloading any node, even in the presence of very
heavily accessed keys.

The potential downside of longer lookup paths is higher
lookup latency in the presence of slow or stale nodes. In
order to mitigate these effects, Coral keeps a window of
multiple outstanding RPCs during a lookup, possibly con-
tacting the closest few nodes to intermediary target £.

4.2 Sloppy Storage

Coral uses a sloppy storage technique that caches
key/value pairs at nodes whose IDs are close to the key
being referenced. These cached values reduce hot-spot
congestion and tree saturation throughout the indexing in-
frastructure: They frequently satisfy put and get requests
at nodes other than those closest to the key. This charac-
teristic differs from DHTs, whose put operations all pro-
ceed to nodes closest to the key.

The Insertion Algorithm. Coral performs a two-phase
operation to insert a key/value pair. In the first, or “for-
ward,” phase, Coral routes to nodes that are successively
closer to the key, as previously described. However, to
avoid tree saturation, an insertion operation may terminate
prior to locating the closest node to the key, in which case
the key/value pair will be stored at a more distant node.
More specifically, the forward phase terminates whenever
the storing node happens upon another node that is both
full and loaded for the key:

1. A node is full with respect to some key k£ when it
stores [values for £ whose TTLs are all at least one-
half of the new value.

2. A node is loaded with respect to k£ when it has re-
ceived more than the maximum leakage rate (3 re-
quests for £ within the past minute.

In our experiments, { =4 and 3 = 12, meaning that un-
der high load, a node claims to be loaded for all but one
store attempt every 5 seconds. This prevents excessive
numbers of requests from hitting the key’s closest nodes,
yet still allows enough requests to propagate to keep val-
ues at these nodes fresh.

2Experiments in this paper use b = 1.

In the forward phase, Coral’s routing layer makes re-
peated RPCs to contact nodes successively closer to the
key. Each of these remote nodes returns (1) whether the
key is loaded and (2) the number of values it stores under
the key, along with the minimum expiry time of any such
values. The client node uses this information to determine
if the remote node can accept the store, potentially evict-
ing a value with a shorter TTL. This forward phase ter-
minates when the client node finds either the node closest
to the key, or a node that is full and loaded with respect
to the key. The client node places all contacted nodes that
are not both full and loaded on a stack, ordered by XOR
distance from the key.

During the reverse phase, the client node attempts to
insert the value at the remote node referenced by the
top stack element, i.e., the node closest to the key. If
this operation does not succeed—perhaps due to others’
insertions—the client node pops the stack and tries to in-
sert on the new stack top. This process is repeated until a
store succeeds or the stack is empty.

This two-phase algorithm avoids tree saturation by stor-
ing values progressively further from the key. Still, evic-
tion and the leakage rate [ensure that nodes close to
the key retain long-lived values, so that live keys remain
reachable: 3 nodes per minute that contact an interme-
diate node (including itself) will go on to contact nodes
closer to the key. For a perfectly-balanced tree, the key’s
closest node receives only (3 - (2°—1) - [lc’%]) store
requests per minute, when fixing b bits per iteration.

Proof sketch. Each node in a system of n nodes can be
uniquely identified by a string S of logn bits. Consider
S to be a string of b-bit digits. A node will contact the
closest node to the key before it contacts any other node
if and only if its ID differs from the key in exactly one
digit. There are [(logn)/b] digits in S. Each digit can
take on 2% —1 values that differ from the key. Every node
that differs in one digit will throttle all but 3 requests per
minute. Therefore, the closest node receives a maximum
rate of (- (2°—1) - [°227) RPCs per minute.

Irregularities in the node ID distribution may increase
this rate slightly, but the overall rate of traffic is still loga-
rithmic, while in traditional DHTs it is linear. Section 6.4
provides supporting experimental evidence.

The Retrieval Algorithm. To retrieve the value associ-
ated with a key k, a node simply traverses the ID space
with RPCs. When it finds a peer storing £, the remote
peer returns k’s corresponding list of values. The node ter-
minates its search and get returns. The requesting client
application handles these redundant references in some
application-specific way, e.g., CoralProxy contacts mul-
tiple sources in parallel to download cached content.
Multiple stores of the same key will be spread over mul-
tiple nodes. The pointers retrieved by the application are

Ex. 1002 - Page 576 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 164 of 194

thus distributed among those stored, providing load bal-
ancing both within Coral and between servers using Coral.

4.3 Hierarchical Operations

For locality-optimized routing and data placement, Coral
uses several levels of DSHTs called clusters. Each level-
7 cluster is named by a randomly-chosen 160-bit cluster
identifier; the level-O cluster ID is predefined as 0'%°. Re-
call that a set of nodes should form a cluster if their aver-
age, pair-wise RTTs are below some threshold. As men-
tioned earlier, we describe a three-level hierarchy with
thresholds of oo, 60 msec, and 20 msec for level-0, -1, and
-2 clusters respectively. In Section 6, we present experi-
mental evidence to the client-side benefit of clustering.

Figure 3 illustrates Coral’s hierarchical routing opera-
tions. Each Coral node has the same node ID in all clus-
ters to which it belongs; we can view a node as projecting
its presence to the same location in each of its clusters.
This structure must be reflected in Coral’s basic routing
infrastructure, in particular to support switching between
a node’s distinct DSHTs midway through a lookup.?

The Hierarchical Retrieval Algorithm. A requesting
node R specifies the starting and stopping levels at which
Coral should search. By defaul, it initiates the get query
on its highest (level-2) cluster to try to take advantage of
network locality. If routing RPCs on this cluster hit some
node storing the key £ (RPC 1 in Fig. 3), the lookup halts
and returns the corresponding stored value(s)—a hit—
without ever searching lower-level clusters.

If a key is not found, the lookup will reach k£’s closest
node Cs in this cluster (RPC 2), signifying failure at this
level. So, node R continues the search in its level-1 clus-
ter. As these clusters are very often concentric, C5 likely
exists at the identical location in the identifier space in all
clusters, as shown. R begins searching onward from C
in its level-1 cluster (RPC 3), having already traversed the
ID-space up to C5’s prefix.

Even if the search eventually switches to the global
cluster (RPC 4), the total number of RPCs required is
about the same as a single-level lookup service, as a
lookup continues from the point at which it left off in
the identifier space of the previous cluster. Thus, (1)
all lookups at the beginning are fast, (2) the system can
tightly bound RPC timeouts, and (3) all pointers in higher-
level clusters reference data within that local cluster.

The Hierarchical Insertion Algorithm. A node starts
by performing a put onits level-2 cluster as in Section 4.2,
so that other nearby nodes can take advantage of locality.

3We initially built Coral using the Chord [31] routing layer as a
block-box; diffi culties in maintaining distinct clusters and the complex-
ity of the subsequent system caused us to scrap the implementation.

NN R NN N
. % o

Soaa T 160-bitid space” " sy 1111
A A

N
.
™
cavavrwvavavanwaNR

Figure 3: Coral’s hierarchical routing structure. Nodes use the
same IDs in each of their clusters; higher-level clusters are natu-
rally sparser. Note that a node can be identifi ed in a cluster by its
shortest unique ID prefix, e.g., “11” for R in its level-2 cluster;

nodes sharing ID prefi xes are located on common subtrees and
are closer in the XOR metric. While higher-level neighbors usu-
ally share lower-level clusters as shown, this is not necessarily
so. RPCs for a retrieval on key k are sequentially numbered.

However, this placement is only “correct” within the con-
text of the local level-2 cluster. Thus, provided that the
key is not already loaded, the node continues its insertion
in the level-1 cluster from the point at which the key was
inserted in level 2, much as in the retrieval case. Again,
Coral traverses the ID-space only once. As illustrated
in Figure 3, this practice results in a loose hierarchical
cache, whereby a lower-level cluster contains nearly all
data stored in the higher-level clusters to which its mem-
bers also belong.

To enable such cluster-aware behavior, the headers of
every Coral RPC include the sender’s cluster information:
the identifier, age, and a size estimate of each of its non-
global clusters. The recipient uses this information to de-
multiplex requests properly, i.e., a recipient should only
consider a put and get for those levels on which it shares
a cluster with the sender. Additionally, this information
drives routing table management: (1) nodes are added or
removed from the local cluster-specific routing tables ac-

Ex. 1002 - Page 577 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 165 of 194

cordingly; (2) cluster information is accumulated to drive
cluster management, as described next.

4.4 Joining and Managing Clusters

As in any peer-to-peer system, a peer contacts an existing
node to join the system. Next, a new node makes sev-
eral queries to seed its routing tables. However, for non-
global clusters, Coral adds one important requirement: A
node will only join an acceptable cluster, where accept-
ability requires that the latency to 80% of the nodes be
below the cluster’s threshold. A node can easily deter-
mine whether this condition holds by recording minimum
round-trip-times (RTTs) to some subset of nodes belong-
ing to the cluster.

While nodes learn about clusters as a side effect of nor-
mal lookups, Coral also exploits its DSHTs to store hints.
When Coral starts up, it uses its built-in fast traceroute
mechanism (described in Section 3.1) to determine the ad-
dresses of routers up to five hops out. Excluding any pri-
vate (“RFC1918”) IP addresses, Coral uses these router
addresses as keys under which to index clustering hints in
its DSHTs. More specifically, a node R stores mappings
from each router address to its own IP address and UDP
port number. When a new node S, sharing a gateway with
R, joins the network, it will find one or more of R’s hints
and quickly cluster with it, assuming R is, in fact, near S.

In addition, nodes store mappings to themselves using
as keys any IP subnets they directly connect to and the
24-bit prefixes of gateway router addresses. These prefix
hints are of use to Coral’s level function, which tracer-
outes clients in the other direction; addresses on forward
and reverse traceroute paths often share 24-bit prefixes.

Nodes continuously collect clustering information from
peers: All RPCs include round-trip-times, cluster mem-
bership, and estimates of cluster size. Every five min-
utes, each node considers changing its cluster member-
ship based on this collected data. If this collected data
indicates that an alternative candidate cluster is desirable,
the node first validates the collected data by contacting
several nodes within the candidate cluster by routing to
selected keys. A node can also form a new singleton clus-
ter when 50% of its accesses to members of its present
cluster do not meet the RTT constraints.

If probes indicate that 80% of a cluster’s nodes are
within acceptable TTLs and the cluster is larger, it re-
places a node’s current cluster. If multiple clusters are
acceptable, then Coral chooses the largest cluster.

Unfortunately, Coral has only rough approximations of
cluster size, based on its routing-table size. 1f nearby clus-
ters A and B are of similar sizes, inaccurate estimations
could lead to oscillation as nodes flow back-and-forth (al-
though we have not observed such behavior). To perturb
an oscillating system into a stable state, Coral employs a

preference function ¢ that shifts every hour. A node se-
lects the larger cluster only if the following holds:

log(sizes) — log(sizeg)| > & (min(age 4, ageg))
where age is the current time minus the cluster’s creation
time. Otherwise, a node simply selects the cluster with
the lower cluster ID.

We use a square wave function for § that takes a value
0 on an even number of hours and 2 on an odd number.
For clusters of disproportionate size, the selection func-
tion immediately favors the larger cluster. Otherwise, §’s
transition perturbs clusters to a steady state.*

In either case, a node that switches clusters still remains
in the routing tables of nodes in its old cluster. Thus,
old neighbors will still contact it and learn of its new,
potentially-better, cluster. This produces an avalanche ef-
fect as more and more nodes switch to the larger cluster.
This merging of clusters is very beneficial. While a small
cluster diameter provides fast lookup, a large cluster ca-
pacity increases the hit rate.

5 TImplementation

The Coral indexing system is composed of a client library
and stand-alone daemon. The simple client library allows
applications, such as our DNS server and HTTP proxy, to
connect to and interface with the Coral daemon. Coral is
14,000 lines of C++, the DNS server, dnssrv, is 2,000 lines
of C++, and the HTTP proxy is an additional 4,000 lines.
All three components use the asynchronous I/O library
provided by the SFS toolkit [19] and are structured by
asynchronous events and callbacks. Coral network com-
munication is via RPC over UDP. We have successfully
run Coral on Linux, OpenBSD, FreeBSD, and Mac OS X.

6 Evaluation

In this section, we provide experimental results that sup-
port our following hypotheses:

1. CoralCDN dramatically reduces load on servers,
solving the “flash crowd” problem.

2. Clustering provides performance gains for popular
data, resulting in good client performance.

3. Coral naturally forms suitable clusters.

4. Coral prevents hot spots within its indexing system.

#Should clusters of similar size continuously exchange members
when § is zero, as soon as § transitions, nodes will all fow to the cluster
with the lower cluster id. Should the clusters oscillate when § = 2 (as
the estimations *hit” with one around 2 2-times larger), the nodes will all
fbw to the larger one when § returns to zero.

Ex. 1002 - Page 578 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 166 of 194

To examine all claims, we present wide-area measure-
ments of a synthetic work-load on CoralCDN nodes run-
ning on PlanetLab, an internationally-deployed test bed.
We use such an experimental setup because traditional
tests for CDNs or web servers are not interesting in evalu-
ating Coral CDN: (1) Client-side traces generally measure
the cacheability of data and client latencies. However, we
are mainly interested in how well the system handles load
spikes. (2) Benchmark tests such as SPECweb99 mea-
sure the web server’s throughput on disk-bound access
patterns, while CoralCDN is designed to reduce load on
off-the-shelf web servers that are network-bound.

The basic structure of the experiments were is follows.
First, on 166 Planetlab machines geographically distri-
buted mainly over North America and Europe, we launch
a Coral daemon, as well as a dnssrv and CoralProxy.
For experiments referred to as multi-level, we configure a
three-level hierarchy by setting the clustering RTT thresh-
old of level 1 to 60 msec and level 2 to 20 msec. Ex-
periments referred to as single-level use only the level-0
global cluster. No objects are evicted from CoralProxy
caches during these experiments. For simplicity, all nodes
are seeded with the same well-known host. The network
is allowed to stabilize for 30 minutes.”

Second, we run an unmodified Apache web server
sitting behind a DSL line with 384 Kbit/sec upstream
bandwidth, serving 12 different 41KB files, representing
groups of three embedded images referenced by four web
pages.

Third, we launch client processes on each machine that,
after an additional random delay between 0 and 180 sec-
onds for asynchrony, begin making HTTP GET requests
to Coralized URLs. Each client generates requests for the
group of three files, corresponding to a randomly selected
web page, for a period of 30 minutes. While we recognize
that web traffic generally has a Zipf distribution, we are
attempting merely to simulate a flash crowd to a popular
web page with multiple, large, embedded images (i.e., the
Slashdot effect). With 166 clients, we are generating 99.6
requests/sec, resulting in a cumulative download rate of
approximately 32, 800 Kb/sec. This rate is almost two or-
ders of magnitude greater than the origin web server could
handle. Note that this rate was chosen synthetically and
in no way suggests a maximum system throughput.

For Experiment 4 (Section 6.4), we do not run any such
clients. Instead, Coral nodes generate requests at very
high rates, all for the same key, to examine how the DSHT
indexing infrastructure prevents nodes close to a target ID
from becoming overloaded.

5The stabilization time could be made shorter by reducing the clus-
tering period (5 minutes). Additionally, in real applications, clustering
is in fact a simpler task, as new nodes would immediately join nearby
large clusters as they join the pre-established system. In our setup, clus-
ters develop from an initial network comprised entirely of singletons.

' level 2
o 00 level 1 - 1
5 level O -
c o
= origin server
= 200 |]
§2}
[%2]
g AN
g 100 AN]
s“a"u..}‘é*“\
0 4 S T =
0 300 600 900 1200
Time (sec)

Figure 4: The number of client accesses to CoralProxies and the
origin HTTP server. CoralProxy accesses are reported relative to
the cluster level from which data was fetched, and do not include
requests handled through local caches.

6.1 Server Load

Figure 4 plots the number of requests per minute that
could not be handled by a CoralProxy’s local cache. Dur-
ing the initial minute, 15 requests hit the origin web server
(for 12 unique files). The 3 redundant lookups are due to
the simultaneity at which requests are generated; subse-
quently, requests are handled either through CoralCDN’s
wide-area cooperative cache or through a proxy’s local
cache, supporting our hypothesis that CoralCDN can mi-
grate load off of a web server.

During this first minute, equal numbers of requests
were handled by the level-1 and level-2 cluster caches.
However, as the files propagated into CoralProxy caches,
requests quickly were resolved within faster level-2 clus-
ters. Within 8-10 minutes, the files became replicated at
nearly every server, so few client requests went further
than the proxies’ local caches. Repeated runs of this ex-
periment yielded some variance in the relative magnitudes
of the initial spikes in requests to different levels, although
the number of origin server hits remained consistent.

6.2 Client Latency

Figure 5 shows the end-to-end latency for a client to fetch
a file from CoralCDN, following the steps given in Sec-
tion 2.2. The top graph shows the latency across all Plan-
etLab nodes used in the experiment, the bottom graph
only includes data from the clients located on 5 nodes
in Asia (Hong Kong (2), Taiwan, Japan, and the Philip-
pines). Because most nodes are located in the U.S. or Eu-
rope, the performance benefit of clustering is much more
pronounced on the graph of Asian nodes.

Recall that this end-to-end latency includes the time for
the client to make a DNS request and to connect to the

Ex. 1002 - Page 579 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 167 of 194

l single-lével '
6t multi-level
S multi-level, traceroute
841
>
2
& 3
Saot
1
0 '.'!r.'\'\“l’ﬂ 1 N
0 0.2 04 0.6 0.8 1
Fraction of Requests
7 — .
— Asia, single-level
6 Asia, multi-level
S Asia, multi-level, traceroute
(0]
2
AT £
g
83
Sat
1 §
0 S
0 0.2 0.4 0.6 0.8 1
Fraction of Requests
Request latency (sec) All nodes Asian nodes
50% | 96% | 50% | 96%
single-level || 0.79 | 9.54 | 2.52 | 8.01
multi-level || 0.31 | 4.17 | 0.04 | 4.16
multi-level, traceroute || 0.19 | 2.50 | 0.03 | 1.75

Figure 5: End-to-End client latency for requests for Coralized
URLs, comparing the effect of single-level vs. multi-level clus-
ters and of using traceroute during DNS redirection. The top
graph includes all nodes; the bottom only nodes in Asia.

discovered CoralProxy. The proxy attempts to fulfill the
client request first through its local cache, then through
Coral, and finally through the origin web server. We note
that CoralProxy implements cut-through routing by for-
warding data to the client prior to receiving the entire file.

These figures report three results: (1) the distribution of
latency of clients using only a single level-O cluster (the
solid line), (2) the distribution of latencies of clients using
multi-level clusters (dashed), and (3) the same hierarchi-
cal network, but using traceroute during DNS resolution
to map clients to nearby proxies (dotted).

All clients ran on the same subnet (and host, in fact) as a
CoralProxy in our experimental setup. This would not be
the case in the real deployment: We would expect a com-

10

10

single-level
- multi-level

0.2 0.4 0.6 0.8
Fraction of Requests

Figure 6: Latencies for proxy to get keys from Coral.

bination of hosts sharing networks with CoralProxies—
within the same IP prefix as registered with Coral—and
hosts without. Although the multi-level network using
traceroute provides the lowest latency at most percentiles,
the multi-level system without traceroute also performs
better than the single-level system. Clustering has a clear
performance benefit for clients, and this benefit is partic-
ularly apparent for poorly-connected hosts.

Figure 6 shows the latency of get operations, as seen by
CoralProxies when they lookup URLSs in Coral (Step 8 of
Section 2.2). We plot the get latency on the single level-0
system vs. the multi-level systems. The multi-level sys-
tem is 2-5 times faster up to the 80% percentile. After the
98% percentile, the single-level system is actually faster:
Under heavy packet loss, the multi-system requires a few
more timeouts as it traverses its hierarchy levels.

6.3 Clustering

Figure 7 illustrates a snapshot of the clusters from the pre-
vious experiments, at the time when clients began fetch-
ing URLs (30 minutes out). This map is meant to provide
a qualitative feel for the organic nature of cluster devel-
opment, as opposed to offering any quantitative measure-
ments. On both maps, each unique, non-singleton clus-
ter within the network is assigned a letter. We have plot-
ted the location of our nodes by latitude/longitude coor-
dinates. If two nodes belong to the same cluster, they are
represented by the same letter. As each PlanetLab site
usually collocates several servers, the size of the letter
expresses the number of nodes at that site that belong to
the same cluster. For example, the very large “H” (world
map) and “A” (U.S. map) correspond to nodes collocated
at U.C. Berkeley. We did not include singleton clusters on
the maps to improve readability; post-run analysis showed
that such nodes’ RTTs to others (surprisingly, sometimes
even at the same site) were above the Coral thresholds.

Ex. 1002 - Page 580 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 168 of 194

Figure 7: World view of level-1 clusters (60 msec threshold),
and United States view of level-2 clusters (20 msec threshold).
Each unique, non-singleton cluster is assigned a letter; the size
of the letter corresponds to collocated nodes in the same cluster.

The world map shows that Coral found natural divi-
sions between sets of nodes along geospatial lines at a 60
msec threshold. The map shows several distinct regions,
the most dramatic being the Eastern U.S. (70 nodes), the
Western U.S. (37 nodes), and Europe (19 nodes). The
close correlation between network and physical distance
suggests that speed-of-light delays dominate round-trip-
times. Note that, as we did not plot singleton clusters, the
map does not include three Asian nodes (in Japan, Taiwan,
and the Philippines, respectively).

The United States map shows level-2 clusters again
roughly separated by physical locality. The map shows
16 distinct clusters; obvious clusters include California
(22 nodes), the Pacific Northwest (9 nodes), the South, the
Midwest, etc. The Northeast Corridor cluster contains 29
nodes, stretching from North Carolina to Massachusetts.
One interesting aspect of this map is the three separate,
non-singleton clusters in the San Francisco Bay Area.
Close examination of individual RTTs between these sites
shows widely varying latencies; Coral clustered correctly
given the underlying network topology.

6.4 Load Balancing

Finally, Figure 8 shows the extent to which a DSHT bal-
ances requests to the same key ID. In this experiment,
we ran 3 nodes on each of the earlier hosts for a to-
tal of 494 nodes. We configured the system as a single

11

@® O

N W A O
A~ O

Requests / Minute

-
N

| I{AD

Distance to Hotspot

(@]

near far

Figure 8: The total number of put RPCs hitting each Coral node
per minute, sorted by distance from node ID to target key.

level-O cluster. At the same time, all PlanetLab nodes be-
gan to issue back-to-back put/get requests at their max-
imum (non-concurrent) rates. All operations referenced
the same key; the values stored during put requests were
randomized. On average, each node issued 400 put/get
operation pairs per second, for a total of approximately
12 million put/get requests per minute, although only a
fraction hit the network. Once a node is storing a key,
get requests are satisfied locally. Once it is loaded, each
node only allows the leakage rate 3 RPCs “through” it per
minute.

The graphs show the number of put RPCs that hit each
node in steady-state, sorted by the XOR distance of the
node’s ID to the key. During the first minute, the clos-
est node received 106 put RPCs. In the second minute,
as shown in Figure 8, the system reached steady-state
with the closest node receiving 83 put RPCs per minute.
Recall that our equation in Section 4.2 predicts that it
should receive (53 - log n) = 108 RPCs per minute. The
plot strongly emphasizes the efficacy of the leakage rate
3 =12, as the number of RPCs received by the majority
of nodes is a low multiple of 12.

No nodes on the far side of the graph received any
RPCs. Coral’s routing algorithm explains this condition:
these nodes begin routing by flipping their ID’s most-
significant bit to match the key’s, and they subsequently
contact a node on the near side. We have omitted the graph
of get RPCs: During the first minute, the most-loaded
node received 27 RPCs; subsequently, the key was widely
distributed and the system quiesced.

7 Related work

CoralCDN builds on previous work in peer-to-peer sys-
tems and web-based content delivery.

Ex. 1002 - Page 581 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 169 of 194

7.1 DHTSs and directory services

A distributed hash table (DHT) exposes two basic func-
tions to the application: put(key, value) stores a value
at the specified key ID; get(key) returns this stored value,
just as in a normal hash table. Most DHTs use a key-based
routing layer—such as CAN [25], Chord [31], Kadem-
lia [17], Pastry [26], or Tapestry [35]—and store keys on
the node whose 1D is closest to the key. Keys must be
well distributed to balance load among nodes. DHTs often
replicate multiply-fetched key/value pairs for scalability,
e.g., by having peers replicate the pair onto the second-to-
last peer they contacted as part of a get request.

DHTs can act either as actual data stores or merely
as directory services storing pointers. CEFS [5] and
PAST [27] take the former approach to build a distri-
buted file system: They require true read/write consis-
tency among operations, where writes should atomically
replace previously-stored values, not modify them.

Using the network as a directory service, Tapestry [35]
and Coral relax the consistency of operations in the net-
work. To put a key, Tapestry routes along fast hops be-
tween peers, placing at each peer a pointer back to the
sending node, until it reaches the node closest to the
key. Nearby nodes routing to the same key are likely
to follow similar paths and discover these cached point-
ers. Coral’s flexible clustering provides similar latency-
optimized lookup and data placement, and its algorithms
prevent multiple stores from forming hot spots. SkipNet
also builds a hierarchy of lookup groups, although it ex-
plicitly groups nodes by domain name to support organi-
zational disconnect [9].

7.2 'Web caching and content distribution

Web caching systems fit within a large class of CDNs that
handle high demand through diverse replication.

Prior to the recent interest in peer-to-peer systems, sev-
eral projects proposed cooperative Web caching [2, 7, 8,
16]. These systems either multicast queries or require
that caches know some or all other servers, which wors-
ens their scalability, fault-tolerance, and susceptibility to
hot spots. Although the cache hit rate of cooperative web
caching increases only to a certain level, corresponding to
a moderate population size [34], highly-scalable coopera-
tive systems can still increase the total system throughput
by reducing server-side load.

Several projects have considered peer-to-peer overlays
for web caching, although all such systems only benefit
participating clients and thus require widespread adoption
to reduce server load. Stading et al. use a DHT to cache
replicas [29], and PROOFS uses a randomized overlay to
distribute popular content [30]. Both systems focus solely
on mitigating flash crowds and suffer from high request

latency. Squirrel proposes web caching on a traditional
DHT, although only for organization-wide networks [10].
Squirrel reported poor load-balancing when the system
stored pointers in the DHT. We attribute this to the DHT’s
inability to handle too many values for the same key—
Squirrel only stored 4 pointers per object—while Coral-
CDN references many more proxies by storing different
sets of pointers on different nodes. SCAN examined repli-
cation policies for data disseminated through a multicast
tree from a DHT deployed at ISPs [3].

Akamai [1] and other commercial CDNs use DNS redi-
rection to reroute client requests to local clusters of ma-
chines, having built detailed maps of the Internet through
a combination of BGP feeds and their own measurements,
such as traceroutes from numerous vantage points [28].
Then, upon reaching a cluster of collocated machines,
hashing schemes [11, 32] map requests to specific ma-
chines to increase capacity. These systems require de-
ploying large numbers of highly provisioned servers, and
typically result in very good performance (both latency
and throughput) for customers.

Such centrally-managed CDNs appear to offer two ben-
efits over CoralCDN. (1) CoralCDN’s network measure-
ments, via traceroute-like probing of DNS clients, are
somewhat constrained in comparison. CoralCDN nodes
do not have BGP feeds and are under tight latency con-
straints to avoid delaying DNS replies while probing. Ad-
ditionally, Coral’s design assumes that no single node
even knows the identity of all other nodes in the system,
let alone their precise network location. Yet, if many peo-
ple adopt the system, it will build up a rich database of
neighboring networks. (2) CoralCDN offers less aggre-
gate storage capacity, as cache management is completely
localized. But, it is designed for a much larger number
of machines and vantage points: CoralCDN may provide
better performance for small organizations hosting nodes,
as it is not economically efficient for commercial CDNs
to deploy machines behind most bottleneck links.

More recently, CoDeeN has provided users with a set
of open web proxies [23]. Users can reconfigure their
browsers to use a CoDeeN proxy and subsequently en-
joy better performance. The system has been deployed,
and anecdotal evidence suggests it is very successful at
distributing content efficiently. Earlier simulation results
show that certain policies should achieve high system
throughput and low request latency [33]. (Specific details
of the deployed system have not yet been published, in-
cluding an Akamai-like service also in development.)

Although CoDeeN gives participating users better per-
formance to most web sites, CoralCDN’s goal is to
gives most users better performance to participating web
sites—namely those whose publishers have “Coralized”
the URLs. The two design points pose somewhat dif-

12

Ex. 1002 - Page 582 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 170 of 194

ferent challenges. For instance, CoralCDN takes pains
to greatly minimize the load on under-provisioned origin
servers, while CoDeeN has tighter latency requirements
as it is on the critical path for all web requests. Finally,
while CoDeeN has suffered a number of administrative
headaches, many of these problems do not apply to Coral-
CDN, as, e.g., Coral CDN does not allow POST operations
or SSL tunneling, and it can be barred from accessing par-
ticular sites without affecting users’ browsing experience.

8 Future Work

Security. This paper does not address CoralCDN’s se-
curity issues. Probably the most important issue is en-
suring the integrity of cached data. Given our experience
with spam on the Internet, we should expect that adver-
saries will attempt to replace cached data with advertise-
ments for pornography or prescription drugs. A solution
is future work, but breaks down into three components.

First, honest Coral nodes should not cache invalid
data. A possible solution might include embedding self-
certifying pathnames [20] in Coralized URLs, although
this solution requires server buy-in. Second, Coral nodes
should be able to trace the path that cached data has taken
and exclude data from known bad systems. Third, we
should try to prevent clients from using malicious proxies.
This requires client buy-in, but offers additional incentives
for organizations to run Coral: Recall that a client will ac-
cess a local proxy when one is available, or administrators
can configure a local DNS resolver to always return a spe-
cific Coral instance. Alternatively, “SSL splitting” [15]
provides end-to-end security between clients and servers,
albeit at a higher overhead for the origin servers.

CoralCDN may require some additional abuse-
prevention mechanisms, such as throttling bandwidth
hogs and restricting access to address-authenticated con-
tent [23]. To leverage our redundant resources, we are
considering efficient erasure coding for large-file trans-
fers [18]. For such, we have developed on-the-fly veri-
fication mechanisms to limit malicious proxies’ abilities
to waste a node’s downstream bandwidth [13].

Leveraging the Clustering Abstraction. This paper
presents clustering mainly as a performance optimization
for lookup operations and DNS redirection. However, the
clustering algorithms we use are driven by generic poli-
cies that could allow hierarchy creation based on a variety
of criteria. For example, one could provide a clustering
policy by IP routing block or by AS name, for a simple
mechanism that reflects administrative control and per-
forms well under network partition. Or, Coral’s clusters
could be used to explicitly encode a web-of-trust security
model in the system, especially useful given its standard
open-admissions policy. Then, clusters could easily repre-
sent trust relationships, allowing lookups to resolve at the

13

most trustworthy hosts. Clustering may prove to be a very
useful abstraction for building interesting applications.

Multi-cast Tree Formation. CoralCDN may transmit
multiple requests to an origin HTTP server at the begin-
ning of a flash crowd. This is caused by a race condition
at the key’s closest node, which we could eliminate by
extending store transactions to provide return status in-
formation (like test-and-set in shared-memory systems).
Similar extensions to store semantics may be useful for
balancing its dynamically-formed dissemination trees.

Handling Heterogeneous Proxies. We should consider
the heterogeneity of proxies when performing DNS redi-
rection and intra-Coral HTTP fetches. We might use some
type of feedback-based allocation policy, as proxies can
return their current load and bandwidth availability, given
that they are already probed to determine liveness.

Deployment and Scalability Studies. We are planning
an initial deployment of CoralCDN as a long-lived Planet-
Lab port 53 (DNS) service. In doing so, we hope to gather
measurements from a large, active client population, to
better quantify Coral CDN’s scalability and effectiveness:
Given our client-transparency, achieving wide-spread use
is much easier than with most peer-to-peer systems.

9 Conclusions

CoralCDN is a peer-to-peer web-content distribution net-
work that harnesses people’s willingness to redistribute
data they themselves find useful. It indexes cached web
content with a new distributed storage abstraction called a
DSHT. DSHTs map a key to multiple values and can scale
to many stores of the same key without hot-spot conges-
tion. Coral successfully clusters nodes by network diam-
eter, ensuring that nearby replicas of data can be located
and retrieved without querying more distant nodes. Fi-
nally, a peer-to-peer DNS layer redirects clients to nearby
CoralProxies, allowing unmodified web browsers to ben-
efit from CoralCDN, and more importantly, to avoid over-
loading origin servers.

Measurements of CoralCDN demonstrate that it al-
lows under-provisioned web sites to achieve dramatically
higher capacity. A web server behind a DSL line expe-
riences hardly any load when hit by a flash crowd with
a sustained aggregate transfer rate that is two orders of
magnitude greater than its bandwidth. Moreover, Coral’s
clustering mechanism forms qualitatively sensible geo-
graphic clusters and provides quantitatively better perfor-
mance than locality-unaware systems.

We have made CoralCDN freely available, so that even
people with slow connections can publish web sites whose
capacity grows automatically with popularity. Please visit
http://www.scs.cs.nyu.edu/coral/.

Ex. 1002 - Page 583 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 171 of 194

Acknowledgments. We are grateful to Vijay Karam-
cheti for early conversations that helped shape this work.
We thank David Andersen, Nick Feamster, Daniel Gif-
fin, Robert Grimm, and our shepherd, Marvin Theimer,
for their helpful feedback on drafts of this paper. Petar
Maymounkov and Max Krohn provided access to Kadem-
lia data structure and HTTP parsing code, respectively.
We thank the PlanetLab support team for allowing us
the use of UDP port 53 (DNS), despite the additional
hassle this caused them. Coral is part of project IRIS
(http://project-iris.net/), supported by the
NSF under Cooperative Agreement No. ANI-0225660.
David Maziéres is supported by an Alfred P. Sloan Re-
search Fellowship. Michael Freedman is supported by an
NDSEG Fellowship.

References
[
[2]

Akamai Technologies, Inc. http://www.akamai.com/, 2004.

A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and
K. Worrell. A hierarchical internet object cache. In USENIX, Jan
1996.

Y. Chen, R. Katz, and J. Kubiatowicz. SCAN: A dynamic, scal-
able, and effi cient content distribution network. In Proceedings
of the International Conference on Pervasive Computing, Zurich,
Switzerland, Aug 2002.

M. Crawford. RFC 2672: Non-terminal DNS name redirection,
Aug 1999.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In SOSP, Banff, Canada,
Oct 2001.

Digital Island, Inc. http://www.digitalisland.com/, 2004.

B3]

g

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web-cache sharing protocol. Technical Report
1361, CS Dept, U. Wisconson, Madison, Feb 1998.

S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squid. In
Workshop on Internet Server Perf., Madison, WI, Jun 1998.

N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality prop-
erties. In USITS, Seattle, WA, Mar 2003.

[10] S.Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized,

peer-to-peer web cache. In PODC, Monterey, CA, Jul 2002.

D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In STOC, May 1997.

D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching
with consistent hashing. WWWS8 / Computer Networks, 31(11-
16):1203-1213, 1999.

M. Krohn, M. J. Freedman, and D. Maziéres. On-the-fly verifi ca-
tion of rateless erasure codes for effi cient content distribution. In
IEEE Symp. on Security and Privacy, Oakland, CA, May 2004.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for global-
scale persistent storage. In ASPLOS, Cambridge, MA, Nov 2000.

[11]

[12]

[13]

[14]

14

Ex. 1002 - Page 584

[15]

[16]

(17

[18]

[24]

[25]

[26]

[27]

(28

(30

[31]

[33]

[34]

[35]

C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting: Securely
serving data from untrusted caches. In USENIX Security, Wash-
ington, D.C., Aug 2003.

R. Malpani, J. Lorch, and D. Berger. Making world wide web
caching servers cooperate. In WWW, Apr 1995.

P. Maymounkov and D. Maziéres. Kademlia: A peer-to-peer in-
formation system based on the xor metric. In /PTPS, Cambridge,
MA, Mar 2002.

P. Maymounkov and D. Maziéres. Rateless codes and big down-
loads. In IPTPS, Berkeley, CA, Feb 2003.

D. Mazieres. A toolkit for user-level file systems. In USENIX,
Boston, MA, Jun 2001.

D. Maziéres and M. F. Kaashoek. Escaping the evils of centralized
control with self-certifying pathnames. In ACM SIGOPS European
Workshop, Sep 1998.

Mirror Image Internet. http://www.mirror-image.com/, 2004.

FIPS Publication 180-1: Secure Hash Standard. National Institute
of Standards and Technology (NIST), Apr 1995.

V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side
of the web: An open proxy’s view. In HotNets, Cambridge, MA,
Nov 2003.

G. Pfi ster and V. A. Norton. ‘hot spot” contention and combining
in multistage interconnection networks. [EEE Trans. on Comput-
ers, 34(10), Oct 1985.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In ACM SIGCOMM, San
Diego, CA, Aug 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.
IFIP/ACM Middleware, Nov 2001.

A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
SOSP, Banff, Canada, Oct 2001.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topolo-
gies with Rocketfuel. In SIGCOMM, Pittsburgh, PA, Aug 2002.

T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching
schemes to address fhsh crowds. In IPTPS, Cambridge, MA, Mar
2002.

A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust p2p
system to handle fhsh crowds. In IEEE ICNP, Paris, France, Nov
2002.

1. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for internet applications. In IEEE/ACM Trans. on
Networking, 2002.

D. Thaler and C. Ravishankar. Using name-based mappings to
increase hit rates. IEEE/ACM Trans. on Networking, 6(1):1-14,
1998.

L. Wang, V. Pai, and L. Peterson. The effectiveness of request
redirection on cdn robustness. In OSDI, Boston, MA, Dec 2002.
A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. Levy. On the scale and performance of cooperative web proxy
caching. In SOSP, Kiawah Island, SC, Dec 1999.

B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Ku-
biatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE J. Selected Areas in Communications, 2003.

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 172 of 194

Reference: Easy Hide IP (“Easy Hide”)

Title: Change Your Country IP Address & Location with Easy
Hide IP Software

Link: https://www.youtube.com/watch?v=ulwkfLsOfdA

1002 - Page 585 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 173 of 194

=

‘

dL
r

Ex. 1002 - Page 586 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 174 of 194

TR

Ex. 1002 - Page 587 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 175 of 194

NN

SRR
SN
TG

AT

didves

B

Ex. 1002 - Page 588 Code200, UAB v. Bright Data Ltd.

Code 200's Exhibit 1002 - Part 2
Page 176 of 194

SRR
Shana
SRR RS
AR
e

REARIE R A

oAk Feio (e k)

kol it et
\‘\“‘W b, Mo (B Yo
‘“*W tabyr, St e N
MN S, PR o Yo

RN D S

Ex. 1002 - Page 589

Prisie el

e (ly
it
—
oty
e

M

T

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 177 of 194

AR R RN

UMD SR S i
| Tt Riy g
T

I
[N

A, At

s\\\\\\\\\\\\\\\\\\\\\\ 3 NN
N,] .

Ex. 1002 - Page 590 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 178 of 194

Ex. 1002 - Page 591 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 179 of 194

SRS

alend

FRRSLAID Voot oo, Mo (o

PLSISS ko, Bt o T
SRANORLIEY e e o (o i
ELADALILE et Mt e et
RHPSLI Vs, PRt B o) e

FRRAEIENE bR, ipont (Rt}

L \ BRI e, Berdy (i)

SRR

[N S

Ex. 1002 - Page 592 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 180 of 194

Ty

=
=

AR

S

<

o

Code200, UAB v. Bright Data Ltd.

Ex. 1002 - Page 593

Code 200's Exhibit 1002 - Part 2

Page 181 of 194

Reference: Andromeda
Title: [TUTO] Andromeda Botnet Configuration
Link: https://www.youtube.com/watchv=yRRYpFLOKNU

1002 - Page 594 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 182 of 194

Ex. 1002 - Page 595 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 183 of 194

Ex. 1002 - Page 596 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 184 of 194

Hovasan itk

Ex. 1002 - Page 597 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 185 of 194

)

RN

i By

Ex. 1002 - Page 598 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 186 of 194

BRI

St

e

it

e

TR

Ex. 1002 - Page 599

Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 187 of 194

b o e e

R \\\\\\&\‘\\i\‘\‘\\\k‘\\‘\\‘\\i\\\\\k\\'

Ex. 1002 - Page 600 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 188 of 194

N

W

\t\

.

Ex. 1002 - Page 601 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 189 of 194

\

o it g e

WA &
AR

Ao A ot

Ex. 1002 - Page 602 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 190 of 194

T,

RN

Ex. 1002 - Page 603 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 191 of 194

Dalenininame Renutrenamy ER.

H o AU . B N
i A Dantatien bt

St b

Ex. 1002 - Page 604 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 192 of 194

Pl AN Dot SORRR

iy

! ey . B SR AR S EA R oS p 4 w “' ; ; . ".."
A Daswnetety DO A RN T o

Ex. 1002 - Page 605 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 193 of 194

N ey, S
A Vooumes e SR

R

Ex. 1002 - Page 606 Code200, UAB v. Bright Data Ltd.
Code 200's Exhibit 1002 - Part 2
Page 194 of 194

