Getemmod as the actioty of a positive St control. Cys-Gy-Gh-Leu-Cys-Cys-Am-Pro-Ala-Cys-The-Cy-Cy-Tyr and set to 100%.

Example 3 . Anon Segetion in 8 a cells

The ablhy of agent to merease chinde anion secretion can be examined whag he T84 haman obon carchoma coll he (Amencan Type Cume Collection (Bethesd, Moy). Bricty, cels are

 were asol at between yasages 54 and 60 . Chbride fon secretion is measured in foe presence of

 wamber is modifod to allow mantenance of he intergity of the cell monolayers during the study. The modifed chamber is designed to moimice turbucnee created by he an hit system and to avold sdge damase to the monolayers. $10^{6} 784$ cells are phaten a pemeable whyort ($3.98 \mathrm{~cm}^{2}$ mone area) and mantaned for 56 day bebre ase. The suppons are suspended weer The betom of: 100 -mm colture dish to pemin "botom feeding" by layng them on top of a layer biglass beads as Gescribed bu Batret mad Bigby sura. Afer cell growth, he emtre ming asemby is foret into the Ussing chamber, No pressure is exerted diectyon the monolayers wnd honce oder danage is avoided. Mucosal and serosal reservoirs contwin identeal volumes of
 Ca, $12, \mathrm{Mg}, 12, \mathrm{C}, 119.8, \mathrm{HCO}, 25, \mathrm{H}_{2} \mathrm{PO}_{4}, 2,4, \mathrm{HPO}, 0.4$, and glacose, 16 , Potental
 montored with a potatiometer. Throughon he experment, except for $5-10$ seconds every 5 min whik the PD is beng rexorded, spontaneous tiasue PD is short chrontel and mallhed by an abtomatio voltage chamy (WPI, New Haven, CT) with $\mathrm{Ag} \mathrm{AgCl}_{2}$ electoodes. Txsue conduchane (G) is catombted from the PD and the inmosed coment acording to Ohms hax. The nagnitude

The effect of agents descnbed heren on hud and sodiwn secretion can be assessed by ingecting vehtele or a test agent (e, g., one or more agents descrbed herem) drecty into an folated hom. This is done by sugcally ligatog a hoop in the small intestine of a mowe. The methodology fer Tigated bop Ammatom is described in London ef al, $1997 \mathrm{Am} /$ Physiof $p .093$ - 105 . The loop is roughly centered and ss approximatcly $1-3 \mathrm{~cm}$. The loops are myected with a test agen or
 Fer eab loop befre amd ather removal of the thid contaned therem. The lengh of eabls hop is also ncomiex, A weght to lengh rato (Wh) for cuch loop is calculated to detmmene he checs of test agent is compared to vehole To detemme the effect of a test agent on sodum exembion, Thid from the iops is collected and profled for clectrelye levels. Similar assays can be petomen wing rat musen of mice.

Example Erma Modes of Aypersension

Varous minal models of hypertension ean be used to sereen the agents deserbed herem for anti-hypertensive activity. in general, hyporension can be induced in rats im an lean four ways.
 Boucol. A variey of rodent bypetension models are descrbed m Phato at. (co98 Caxdovasenar Researh 3977-88), Badyal ot al. (2003 mdan Jommal of Pbamacology 35: 34036) and he rebernces dred therem. One of the most widely used rodent models of bypertension is the Spontanemary Hypertensive Rat (SHR). Oher models molwde (t) the wowkiney macr chp, (2) trangeme ras overexpressing the murine Ren2 gene, (3) DOCA (beonyomticosterone wetate)-she mode and (4) the Dah salt sensitive rat. Thus, for example, agents descrbor)
 9) to detcmine effects on blood pressure, ume volume and minary sobimm excretom and hen ventricular wall michess (for example as described in examples 4 and 5 heren).

Bxertion and Yrine Volume.

Alf expermental subjets were female Spragne-Dawley yars whioh weighed berween $200-270$ \&
 bothm cages in groups or three, where bey had minnted aecess to food and water.

Temperabe wan mamaned at $21 \div 2^{\circ} \mathrm{C}$, and lights were on a 22.12 hr cyole (whin hghe on at 600 Am .

Following ar lass 3 days of acelmaton to the facily yntor to expermentahon, rats were doed

 exemed was reonded fom 0-3 hours, and $4-6$ hows pow dose hadatom, 0.5-1, bmL wine
 were malyed for sohim concentwation wing ISE crown-eher membrane mehodology ons an Olympas AU5400 chenisty immmo awayzer (Olymus America Inc\},

Fighes 3,2 , and 3 dmmonsmate the effects of Lubiprostone and ST peptide (SEQ WD NO : : CCRECCNPACTGCX on mine sodum and uine volume in this assay.
 regitantrais.

Salk-sensiwe and sali-resistant, $4-5$ week-old male Dah rats (Brookhaven Natonar Laboratory, Uphon, Now York, USA) are Red with Pana rat chow whth 0.4\% NaCl for he hrs 34 weeks. Thereater sal-sensitwe and sulbresistant cats are manomped into two popahatons receiving
 Whis, can popmabon is separated into two groups, one receiving test agent in wap wate and the
 cuf masmementis 6140 mmHg .

At the end of the study mats ane anasthetized with intraperioneal sontum pentobabital (ch mgkg), and systhe and dastotic blood preswures are measured drecty trough cathereneabon
 of plama momin awhty (Now England Nuclear Comoration, Bomton, Massachasets, USA) and aldowtrone comcentraton (Diagnostic Products Corporation, Los Angelos, MSA is obtaned by
 funhed oun whe cold salme. Supefticial water is removed by boting. The whole heart is weighel, thexemer the atria mithe night venticular free wall awe desence from the
interemtricalar septam. The renaming interyontricalar septam and the feh venviche represented
 Wr let ventricular mass or let ventricular hypertrophy,

Mehods of Teamen

A number of disoners aspolited with fard or sall tetenton may be prevented or treated with
 instestay). Uxemil agent inelude guaylate cyolase receptor Cagonsts, whble guaryate

 CFu (eythe fbroxis transmembrane conductance reguator) modulators, agent wheln aheet
 phosphodestenase fhbibors, remin mbibitors and abosterone andagniss, potassimm, polymer

 more agents wehi in the weatment of congestive heart tabum, andor one or more hivi howerng agen andor one or more anti-hypentensive agents.

The agento descrbed herem can be admimistered together with one or more agens usefu in the treatment of congestive hart fallue molnding, for example, nesminde, dobotamene beta receptor magonist, mintinone (phosphodiesterase inhibion, Levosmendan (Smdaxb),

 an adenowine A? receptor ngonsh, an ademone transpor inhibitor, or an adenosme dommaxe mbibites.

Lipid Lowerng Agents

Lipdi lowenge agente or dipidema agents are those agents that act drecty on mineetly to rednce serm cholesterol. Such agents molude, but are not hmited to, bhe acid sequestrans sweh as cholestymmine (a styene-divinybenzene copolymer contanna quatemay ammonium
canone groups emphble of binding bile acids, such as QUESTRANW or QUESTK AN WGWTO Whlestymanme whin are available fom Bristol-Myers Squibb), wlesevelam hydrochoride

 aporypropane such as CORESTDE twbls whoh are avalable fom Phamacha, diky hammonky denvatyes of a cross-linked dextran, LOCHOLESTE, DEAE Semadex
 (cyclonkybakyamines and poliglusam, insoluble cqaternized polywyrenes, sabonins and
 Ys3692805, and US5703188. Sutable morganic choleatcrol sequestrants haluse bimmuth

HMGCOA redschase innbions are dyshipidente agents that con bo used hin Gempertic
 CoA rednctase inhbitors for use in therapentic combination whth a wmpones described herein
 atorystath caldimn (disclosed in US5273995), dhyorocompacth, (diselosed in US4450171), bervasimin (divclosed in US 5082859 , carvastatm, cervastain (BAYCOLS, diselosed in U55006530, WS5502199, and US5177080), entvastatin, dalvastatin (discosed in EP738510A2),

 lovastann mevnohm, MEVACORQ (Mcrek and Co.) mid relatel wompomda dischosen m US423938), mevastain (and related componnd diselosed in US3983neo, compaetn (and

 Squbb) and related womponds disclosed in US434627), rivastatin (sodiwn 7(4-Rumpheny) -

 US4450171), smivastatim, C(-981, compomms disclosed in WOO3053485, US4231938,

US444484, U8464556, 144686237, US4499289, US4446227, U55753675, US4613610, BPO221025, and BP491226, and optical or geometric inomers thereos, and nontoxio
 hacrof. In HAC CoA reductase mibitors where an open-acid fom can exist, salt and sater Wmanay prefrebly be fomed from the open-ach, and all such fomm are kobwed wimm the meming of the serm "HMC-CoA reductase whibtor" as ssed herem. Phamacementy accepable sabs with respect to the KMC-CoA redwease inhbitor molwes non-toxic sats of the

 Gemyomine, piperano, and ths(hydroxymehyl) aninomethanc. Farther cxamples of salt

 hetobionate, hamate, malate, maleate, mandelate, mesylate, methyluhfor, mache, napsylde,

 trethondide, and valmate

Oher dyshigenic agents which can be used in therapente combination with a CC C recepor agonist desentbed herem include:

 US5064856, and US4847271;

कholesterol abserbon mbibitora such as plan werols, plant wanols andor faty acid estems at

 bayply-l-pheyvazedm-2-nes, and 4bphenyykactinones.

 hose diselosed in US5510399, WO9626948 and Wo9610S59;
 (CP-529,414 describer in US20030186952 and WOOO/077164, C3 $532,632, ~ B A Y 63-2749, ~ S C$

 WO992030, WO9914204, WO99/41237, WO95/04755, WO9645141, WOP60522\%: WOB38721, EPTO6846, EP818197, EP818448, DEM9704244, DR1974105, DR19741399, DR197042477, DE19709125, DE69627430, DE19832159, WE15744400, $3 P 11049743$, and 3 09059155:
 US487721, US4926024, US5712306 (α-phosphono-sulfonates), Biller et a (1988) J. Med,

(cychpropanes), Cum, Op, Ther. Fatents (1993) 863, and patent pubheotons EP0567026A,

antoxidants such as probucol (and related compounds disclosed in 05367483 , probucol dervatives such as AOM- 1067 (and other derivatives dselosed to US6121319 and US6.47250), toepherol, asembic acha, B-carotene, selenimm and vitamins whe as vitamin B6 or viamm B12 wh phamacemically acceptable sals and esters thereof:

 sueh as belohbrate, beranhrate, berohbrate (CA.S. Registry No, 41859-67.0, see US3761928, binmbate (CA.S. Registry No. $69047-39-8$, we Be 85472), epmonbrae (C A.S,
 US3716583), clofbrate (suet as ehyl 2 (b-chloropbenoxy) 2 -methy-propionate, e \& Aromid-
 [4-4-chlorobenzoyphenoxy)-2-nethyl-propanoic acid, 1-methylethyl ester, Abbot

 (Pake Davia), Hhbmo, GW 7647, BM 170744, LY518674 and hose fbrate abs fbrate acd
 WO03/053974, WO03/059864, and W003705875;

FXR recetor modnators sneh as OW 4004 , SR 103912 , and he lke;
 in US20070125357, WOOP645382, WO03053352, WO077059874, and inelke;
 EMM pathrog8624 weepor agoniste such as motmo acia (ninem) and dervathes thercof

 the at when bind to and agonze the HM74A or HM/4 reeptor for example nsing the asmys Gsclosed in Wise er al (2003) 3. Boi, Chem 2789869 (wicotme binsins and 358 GTP G binding asseys, Soga et al (2003) Biochem. Biophys Res. Comm. 303;364 (rabolabol binding

 wouk be ndapled to the FRMPAA receptor) und US6420183 (FLIPR assays are demerbed genernly y mad may be adapted to the HM74A or HM74 recepton,
reman angotensin sytem mbibitors;
 Wha84640, $58921, A Z D 7706$, and the like:

 WO02/429:, WO02/46154, WO02/46176, WO02076957, WO03/016291, WO63/033493, WO9p/2075 (gmomne pheryl compounds), WO99/3Ss45 (ayy compomad), WO00/6316: (1,4-diswsthuted phenyl compounds), WO01/00579 (aryl compomads), WOO1/2622 \&
 phenybuconie acd compound;
storol hosynusesis mhibitors swh as DMP-565:
ngelyende synuesis mbibitors;
 CB34608, AEGR 73 , mplitapide and the hke,

HMO-CoA renwedace gene expresion inhbitors (eg compomds that decrease HMQ Cod
 redsctase into protein or componds that may be botmasfomed into compom, that have the aformbntoned mtrbutes by one or more enoymes in the cholesterol bosynthene caseade os may lead to the acoumblation of an isoprene metabolite that has the affremontoned activiter (such meghation is redily determined by those skilled in the art acowding to mandard assays
 substhuted honomeroi derivatives) and E. 1, Merecr (1903) Prog. Lip. Bes. 32,357 (orygenates) sterbs hat suppres the biosymbesis of $\mathrm{HMO}-\mathrm{CoA}$ reduchase);
 $3 .[6,3-b$ hhophen- $5-y /$ methoxybenzene-methanamine hydroblomde);

Iow dmsity lpopmom (CDL) receptor jnducers such as HOE-402 (an midazohdiny-pymmbine
 Thromb. B.1005);
platem ageregaton inbinors;
$5-10$ or map mhminos

 US624878, US6166049, WOOO12491, WO002 18355 , WOOO23415, WO0023416, WणOO23425, WO0023442, WOO023445, WO0023451, WOOO23633, Wण00236332. WOOOR 38553 , WOODS0392, WO0053563, WO0063153, WO0063150, W00065396. WOOO63209, WO00/88312, WO00/78313, WOO1/043S, WO01/4349, WOOM14350,
 WoO1/25225, WO0140192, WO01/99150, WOO2081428, WOD2100403, Wण02710276, WOO270162, WO0361626s, WO036033453, WOO3/642194, WO03/643097, WO03066531, W99725042, WO9967357, wo99111255, W09912534, WO9915520, WO99/40232, and
 methylowyxict;
macin-bonad comomsum, as dieclosed in WO03/039535;

 W00364552, WO03047575;

 US5093365 (non- - oxiduable bry acid andogues), and WO99/04855.

Ambrupertensine asens:

 hypertensive agents, noludme but no lomited to.

 US 108097), buhanade (whioh may be prepared as disciosed in Britiky patem rios 861,367).

 O), and abdontron antagenims (c.8. spironolactone (CAS Number $52-01-7$ and achve

Cadrenege blockers shoh as Amodarone (Cordarone, Pacerone), bunoloh hydrehoride (cAs

 Ayems), apremobl hydrochonde (CAS RN $13707-885$ see Nehendaxds Patent Aphionton No.

 cetamolo bybrounonde (CAS RN $77590-95-5$, see also US 4059622), Gbetabl hytrochlonde

 Corgad, Myar), prowlol (CAS RN 6673.354 , see also US 3408377 , propranole hydrochoride (CAS RN 318-989), sotalof hydrochlonde (e.g. Bedgace AFm, Bemex), tmoloh

 U.S. Pat No. 4,654,362), cichoprolof hytrochlonde, mach 2 Propanol, 1 - $4-12$.

 mahyl-3-pheryhpogy faminolehyl , monohydrochloride, CAS RN 75659-084), exaprole!

 monohydrochonde CAS RN $7701-65-7)$, metoprolol 2 Propanol, $[44-2$.

 medybehyl)mmolpropoxylpheryly ethyl), mohyl ester, (4) sufate (sale) (2), Cas RN $5995401-7$), penbutolol suftete (2Propanol, 142-cychopentyphensy) 3- H, 1-dmethye-

 anmoethoxymethy) 4 - 2 -chownhenyl) 1,4 -dibydro- 6 -methyl 3 , 5 -gyrdmedicarboxylate

WO 2008/137318

 2,3 -dbydro 2 (4-mothoxypheny)-, monohydrochonide, (4 -cis, es, Tazace, Forest,

 SR, Knoll Labs), teludipme hydrochonde (3.5 Pyndinedicaboxybe acid, 2 .
 diydre-6-methyl- diothyl ester, monobydrochoride) CAS RN $108700-03-4$, befordi
 79-9), fostedi] (Phoshomic acid, [44-(2-benzothazoly)pheny]mehyb], dohyl ester CAS RN
 chondime, gallopamil, heidipine, lemidipme, lecandipine, monateyt makeate (i -

 mitrendinime, mamobpine prandipine, wo the like,

T-chame cabimm antagonists snch as mibefrad;
agiotensin wovering enzyme (ACE) inhbitors such as benademil, benazemil hydrochlonde

 and ohers disolosed in US4046889), ceranapril (and ohers discosed m US445790), cempm

pychonexy-1-[[2-mebyy-1-(1-oxopropoxy) propoxy](4-phenylbuty) phosphinylacevy), sodim sath, eg, Monopril, Bristh-Myers Squbb and others discosed in US 468267 ,

 beneazepine - thanohe awid, sec US4473575). Rn 44570 (Hoechat, wec Amemmitehorwhwng
 (Fhmmacologist $26243,266(1984)$), WY-4422! (Wyeh, see 5. Ned, Chem. 26399 (1983), and these disolosed m US2003006922 (paragraph 28), US437201, US4432971 (hhosphonamidates):

 gemopatsis: AVE7688, ER4030, and hose diselosed in US5362727, US536697, US5225401, US4722810, US5223516, US4749688, U55552397, US5504080, US5612359, U55525723. EPO599444, EP0483522, EPOS99444, EPO595610, EPOS34363, EPS34396, EPS34492, Ep0629627:

 Bydrochoride, eg, Dovera BES Extended-Release, Seanch, chromomar (whed may be prepared as disclosed in U53282938), chontate (Amalen 1870155 , drowenimmine (whelr may be prepared as dischosed in DE2521113), hoflazine (which nay be prepared as disclosed in US3267104), provinmine (whoh may be prepared as wisclosed in US3152173), propayy nitme (which may he prepared as diselosed in French Patent No. 1,303, 13), mioflame hybrochonte
 dichbowhenys), bhydrochonde CAS RN $83808-67-3$, mixidine (Benwencehamame, 3 , 4-

 dyydmimioltetakis CAS RN $58-32-2$), neorand (CASRN 6544 - $4603 \sim$)

 caboxyle amd, CAS RN 144701484 , US5591762), milusatan, whtesatux, valsartan

 methylmbidamic-5-carboxylic acid, US5138069, US5153197 and US5 28355 , 3-2'-(twroch-

 triflquinambine, 2 (2-chorobencoy)mino-5-chyl-3-2'-(ik-tetazole 5wybiphenyi-4-

 imideole-5-chboxyic acd iethoxy carbonyloxyethyl ester, bowe dixelosed in patent pubheathous EP475206, EP497150, EP539086, EP539713, EP535463, EPS35465, 2P542059, GP497/21, $\mathrm{EP} 535420, \mathrm{BP} 407342, \mathrm{EP} 45886, \mathrm{EP} 424317, \mathrm{EP} 435827, \mathrm{EP} 43983, \mathrm{EP} 475808$, EP490520, EPS28762, EP32437, EP323841, EP420237, EPS0O297, EP42602, EP480204, WP429257, EP430709, EP434249, EP446062, EP505954, EP524217, BP51419, EP51499, WYS4493, EPS14192, GP450666, EP468372, EP485929, EP503162, EP533058, WP457207

 EP4S1766, $\mathrm{EP} 409332, \mathrm{EP4} 42594, \mathrm{EP} 419048, \mathrm{EP} 480659, \mathrm{EP} 461614, \mathrm{EP} 900587, \mathrm{EP} 467715$
 EPS11767, WPS12675, WF512670, W5512870, WP517357, WP537937, EP534706, BP527534.

 EP430300, $\mathrm{EP} 434038, \mathrm{EP} 44247, \mathrm{EP} 44356, \mathrm{EP} 445811, \mathrm{BP} 459136, \mathrm{EP483683}, \mathrm{EP} 518033$,

 WO93/08171, WO9308560, W091/00277, WO91/00283, WO01/14367, W092/00067,
 WO92/09600, W092/16552, WO93/65025, WO9903038, WO91.97404, WO9202508, WO92/3853, WO91/19697, W091/1909, WO91/2001, WO91/1999, WO91/5209, W691/5479, W09220687, WO92/20662, WO92/20661, WO93/01177, W091/5679, WO91/3663. WO92/3564, WOS\&17748, WO9118888, WO9RM9715, WO9202257, WO9204335, Wप9205163, W09207852, WO92/5577, WO9303033, WO9\%/6313.

 WOण303040, W०92/19211, W092/22533, W092/06081, W092/05784, W09300343 WO92/64343, WO92/64054, US5104877, US5187168, US5149699, US5485340, , 34880804. US5138069, 454916129, US5153197, US5173494, USS137906, US5153126, US5140037s US5137902, US5157026, US5053320, US5132216, US505 $5522,155066586, ~ U 55089626, ~$ US5045565, U55U87702, US5324335, US5102880, US5128327, U55351435, V35202322. US5187159, ש55198436, US5182288, US5036048, US5140036, US5087634, U55106537\% US5153347, US5,91086, US5190942, U55177097, US5212177, $155208234, ~ U 55208235$,

G5522105, US5130439, US5045540, US5041152, ma US5210204, and phambecabealy acceptable samend asters therowf

 CASkn $24-643$)enn the hes

 hiexeet
 fimendine, gambenz, and the the;

 oxyphenoxymmpyl, dhyomehonde CAS RN $9565-56-6$) tosifen (Benzenemifonambe, 4-

 Giohoropheny) acetamide hydrochlonde, e.g., Tenext Tablets avalable fom Robins), mehylopa-hydrociorohiande (such as levo-3- 3,4 -dhyoboxypheny) - 2 -methyamine)

 1, riboxde and methyloga as described above, eg, Adochor\$, Merck), chondme bydrombride (sach as $2-2,6-6$ iohorophenylamino)-2-mmanohne hydrochonde and

 twse agents discosed in 152003006922 L .

Agent methin the meamem of oberty

The sgents desctbed hereh can be administered together whth one or more agent uetur m he treamene of oberty. Sutable am-obesity agens inchade but are not hmiter to:

 WOO3/63/439, and the her,

 US3914250, Wण0णन7010, Wण0236596, WO0248124, WOण2!6169, WOO166548, WOO244452, WOO251844, WO0240456, a0d WOO2/4045\%;
 the Bke:
 9202-9 (200)) amo Sapanese Patent Application No. IP 2000256100 ;
morectu bioycho compomds sweh an 426 (Aventis) and 1954 (Avenims, mathe compomber disclosed in WOW0/8749, Woon/32638, WOO1/62746, WOO/G274\%, and WOOP/6is769;

CB 1 (canaminoid-1 recptor) amagonstinverse agonists such as momabant (Acompla; Sawnh), SR- 47778 (Sanon), SR-14176 (Sanofi), BAY $65-2520$ (Bayer), ard SKY 319 (Solvay), and those diselosed mpatent publcatoms US4973587, US5013857, US5081122, US5112820, US5292756, US5532237, प55624941, U\$6028084, US6509967, U8650936\%, W09633159, W09729079, WO9gh1227, WO98/33765, WO9837061, WO9841519, WO9843635, wO9843636, WOO9/2490, WOOण/10967, WO00/10068, WOO1/6120,

W002676949, W003006007, W003/007887, W003/020217. W003026647, W003026688. W603/027060, WO03627076, WO03/027114, WOO3/037332, W003640107, W003/066943, WO03/084943 and EP6S8546;
 71378 , -71623 and $S R 146131$ (Sabon), and boge described in (5S5739106;

 patent publications, WOpy/38S01, WO99/46272, WO90/67279 (Probiodmes, WO9967278
 WO037000181, WO03/049250, WO037002530, WO03/00253, WO03/62553, WO03602543,
 WOOS637327 mat EPI258476;

 as hose disclosed in Wonz/5905, WO03/024928 and WO03/024929;
lepha denvatues, when as those dinclosed m US5552524, US5552523, U55552522, US5521283, Wण9623513, WO9623514, WO9623515, WO9623516, Wण9623517, Wण9623518, WOO623S1\%, and wovol3520,
 methony haman legha (Ameen);

 US440564, US4B89438, and US4242453:
 bethin, wh the the and componns disclosed in Wo03on 1267 ;
 and HS-13) (Melacme), and those disclosed in PCI pablication Now. WOO9/64002,

 WO03/009847, WO0/00日850, WO03/013509, and WOO3031410,

WO 2008/137318

Mo5 (melanocortm 5 receptor) modulators, such as those bisclosed in Woy/h19952. WOOO/5S26, WOOOM 5700 , US20030092041;
molanm-concentratug homnone I receptor (MCHR) antagonista, swh as T 226296 (Takeda), SB
 WOO1/82025, WO0187834, WO02051809, WO0206245, W002076929, WOO207694, WOO2/0433, WOO251809, WOO2083134, WOO2/094799, WOO3/004027, WOO3/3574, WO0315769, WO03/02864, WO03/035624, WOO3033476, WOO7637489, YP13226269, ad 31437059;
 WO037051315, W003051833, WO037057922, WO03/050904, and the bec;

 compormats dischosed in US4746680, US4806570, and US5496272, US2002006964. WOO127068, and WOO162?4:
 nominasme;
 264879 , and those disclosed in US6001836, WO96na307, WOD1/23867, WOOOFS1600, WOOn/8560, WOO/85098, WOO1/8517\%, and WOO1/89528;

F40022 and bose componds disclosed in patent publicatonc US6140354, US619160, US6218408, US6258837, US6313298, प5632675, U86229395, US633345, U863 37332. US6229395, US6340683, EP01010691, EP 1044970, WO9719682, WO9720820, WO9720821, WO9720822, WOY720823, WO9827063, WOOOH107409, WOOO185714,

 WO0222592, W०02/48152, WO0249648, WO02051806, WON2094789, WO05/009845,
 (2000),

 US6734188, US20050004 55 and WOOO2 1509;

 WO00690355, WO0302\%561, WO03032991, and WO03637847;

Nempeptide Y 2 NPY 2 agonists inolude but are not limied to pepide YY and tragnents and
 DASMEELNRY YASUREYYKL VTRQRY (SEQ ID NO:XXX) And PYY Ggonime sach as those dislosed in WO02/47712, W00302659, W003057235, and W003/627637:
 smernhe, ctalopram, and mimamine, and hose dischosed in US6 62805 , US636563. WO0360663, WOO1/27060, mus WOO1/62341:
wymd hommone β agonists, such as KB-261 (KaroBiobMS), and hose disclosel ba WOO2/5845, W0972 1993 , WO99/00353, GB98284425, U.S. Provisiomal Applikation No. 60183,223 , and Sapmese Patent Application No. 7 P 2000256190 ;

 and home discosed in WOM9\%0123;
 (Nerek), CP3 1648 (PRzer), CL-316243, SB 418790, BRL-37344, L-796568, BMS-196085.
 (Nishma Kyorin), LY-377604 (LIAy), SR 59119 A , and those dismosed in USS541204, US570665, US549134, US5776983, US488064, U55705515, 6S5451677, WOP418163, WO9529559, WO9746556, WO9804526 and WO9832753, WOOn/74782, WOO2/32897, WOO3014113, WO03016276, WO03016307, WO03024948, WO03024953 med WOOS/03788;
mosdrnergie agens noluding, but not hmited to, dethypropion (such as Tenweble -

Guy add oxidation wreghatombduces such as Famoxine (Genset);

 barmaphe, lacmbemide, miacemide, caroxazone and other certan compouds as dishosed by WOOY/2176; am

 hommon and vanams berof when ateot the islet cell secretom, sueh as the hommones of the

 Gmily and/or those of the sdrenomedulin/amyincalcitonin gene rehted perthe (GORP) gene

 when hase we thlowng generel fommas

R-NTHAEGTESSDVSYCEGQAAKEFAWLYK~CONH2

wheren $k=1$ or an organe compond having from 1 w 10 carbon atoms Preterably, R in the
 Tomyl, aceyl, propiony, isopropiony, methy, chyl, propyl, isopropy, n-buty, wechaty, tert-

 (such as Melanotan If or these described in WO $99 / 64002$ and WO 00/74079), nomane hebbs,

 the agents Greloeed in UX200301 19428 paragraphs $20-26$.

The agents desmbed heren can be administered together with one or more agents asefu in the

PPARYagonists such as ghtarones (0.g. WAY- 120,744 , AD 5075 , bakghtamone, cighamonce,

 and the the and compowad disclosed in U5468777, U85002953, US5741803, US5966584, U56150383, US6150384, प56166042, US6166043, प86172090, US624205, US6271243,

US6288095, U56303640, $156329464, ~ U 55994554$, W097/6813.
 W003/000085, W003/027132, W003/035602, W003/048130, W003/053867, and

biguandes such as metromin hydrochonde (N, N-dimethymidodicabomimidic damide
 gybuide, speis as Ofucosancer, Bristol-Myers Squbb); bufomin (midodicabommade

 parchbowhenoryisobuyrat, fomate, hacha, suconate, solphate, tartate,
 benencsuphonase, trmethoxybenoate, paratucnesuphomate, adanamanowaboxybie, ghooxyate, ghamate, prohthonecarboxylate, naphthaleneswhonate, Inglucsephosphate. nitwis, whimte, whionate and phosphate), and phenformim,

 WO99/58522, WOOY/5858, WO99/58522, WOO9/61435, WO03/622916, WOOS/032982.
 phamacemealy seeptable salts and esters thereof;

 Gheoth or Gucowo XL Rxtended Release, Pfzer), ghgaidone, ghwohmide,

 accepthbe shta and esters hereof,

 disclosed in U84904769), mightol (such as GLYSETM, Phamacia \& Upiohn disolosed in US521787, US5 109 and WOOf47528 (polyamines);
anamyse inmbitow moh as tendamstat, trestatin, and A $1-3688$, and the wompund dischosed in US4451455, US4623714, and US4273765;

an ap2 mbibur sum as disobsed is US6548529; US4639436, canightose (Methyl (weoxy-6[(2R,3R,4R,5S)-3,4,5-mhydroxy2-(hydroxymethy)piperdmol-alpha-D-glucopyranoside, Maron Memoly Dow), voghwose (Takeda), alposine, wnigitate pradimein-Q, sabostatm, C\&D-7M, MDL- 25,637, MDL73,945 , and MOR 14, and the ompomads disolosed in US4062950, US4174439, Y54254256, US4701559, US4639436, US5192772, US4634765, US5157116, US5504078, US5091418,
 iobutymehylambine (BBMX), and phamaceutealy acepabhe salk and esters thereof
 sats and ceters heroof

A 2 magoncts, whe as miaghobe, isaghole, derghble, dawan, whoxan, mathaparoxan, ma phamacemealy accepable salk mul esters thercot:

U54579730, 154849405, US8963526, U55642868, U55763396, US5424638, U55843860,

 sumable bwman mavinas);
 ghammacowicaly scceptable saits and esters thereof;

 W003/03348, W003033450, W003/033453, WO037043985, WO035053976, ש,
 (1098), and phamamenticaly aecepthble saita and esters thereof;
obter nevina semsumang drags;

YPAC2 neceytox sgonisis:

setmoid modubums sum as these disclosed in WO03000249:

 WO0363789, WOO7/06877, EP1295884, EP1295885, and the hke;
 compound diselosed is WOO1/94300, WOO220530, WO03/037864, and phamacentheally sceptable salts or exters bereof

ATP sonsmmpton promoros such as those dischosed in WO03/007990,

TRB3 mablats;

giveogen symase knase 3 mibithrs such as hose disolosed in WOO3/035603
agents such as those disclosed in WO99/51225, US20030Y34890, WOO1/24786, and WO03705870;

PrAR 0 agonita cum as GW 501516 , GW 590735 , and compond disclosed ha 1027049 and Wण0ู1429:

 4-ogmopyrohdides as discloced by Ashworthet al, Bhorg \& Med. Chem, Letw, Vol, 6, No. 22 . Pp 1163 - 166 and $2795-2748$ (1996), and the compound disclosed in US635767, US6572287.
 W099/3851, W009/46272, W099/67270, W099/67278, WO99/61431wO0360449\%, WO03/004406, EP1258476, WO02083128, WO02/062764, WO03/00050, WO03/002530,

 chled Exennide), and componds diselosed in US20030S782 and WZ 504256, mat phammecuicainy aceptable salts and enter thereof
pephde nobudng mmbinde and Symin (paminhde acetate), and
gyeoknase actyatons such as those disclosed in US2002103109 (fused heterommatic congonndsh and wooz 48106 (tsomdolin-l-one-substituted propionamide compounds).

Ammantration of asents

For therapente and preventive trament of disordex desmbed heren, be agens descrbed

 Gipprsing agents, havomig agents, and hmectants. Orally abminctered fomatabons such as ables may optonaly be wated or seored and may bo formbated so as to provide mataned,
 with other agents used to treat gastrontesthal disorders holwing but not hanted to the agenas deserbed heren. The agents can aloo be adminntered by welal suppostory, For the tremment
 hypertophy, agents are preferably administered parenterally or orally

The agent describob berent cm be administered alone or in combmation wits oher ngents. For cxample, the agents can be administere together with managesc agent. The anagesic agemt can be covaienty dechen to an agem described herein or it can be a separate agen that is Bimmentered together with or sequentably with an agen deserben heren in a combination berapy.

Combinmon therpy on be acheved by admimistering two or mone agents, eq. an agent descrbed herem and an analgesic agont or compond, each of which is fombutated ant adminstered sepataty, or by admmbterng two or more agents in a gingle fommanion. Oher combinations are abo enwompased by conbination therapy. For example, two agents can be Wmmatard togeher and ahministered in compnotion with a separate formulaton contamy thra agent, Whe the two or more agent in the combination therapy can be amminered कmblemenaly, they need not be. For example, whinveration of a fort agent (or combineton of agents) can preced abmintation of a second agen (or combination of agents) by minutes, hous, days, or weeks. Bus, he wo or more agents can be administeres whinm minues of ead oher or winh : $2,3,6,9,12,15,18$, or 24 hous of each oher or whin $1,2,3,4,5,6,7,8,9$, $10,12,14$ doss of eath oher or whin $2,3,4,5,6,7,8,9$ or 10 wecks of each ofter. fo some cases even tonger htervals are possble. While in many cases it is desirble that the two or thore agens used in a combintion therapy be present in whth the paneat a body at the same the, Hus nexinot beso.

Combination theragy can also inchde wo or mone daninistrathen of one or wore of he agents

 $X, X-X-Y, X-Y, X-X, X-X-X$,
 mates or locations. For oxampic, (a) one agent is abminterol bally and anoher agent is

doages for some of he combination theapy agenta deccribed herem are found in the "GNE Reconmexder Dose" whm of tables on pages $11-17$ of WOOH/ 662 (he date in the tables
 stmond fommanes and other drag preswbing directones. For some hrge, he eustomary presectbed dose for an indication will vay somewhat from comiry to conntry,

The agnas, arone or in combination, can be combined wibl any phamaceatically aceptable carner or medhan. Thus, hey cm be combined with natorials that to not produce an adverse,
 wed can nohbo solvents, dispersants, coatings, aborpion promotng agents, controlled roleaso

 disintegrange agems, and the like), etc. If desined, tahe dosages of the discloser comportions may be comen by stadard aqueons or nonaqueous technques.

Compwhons of the present disclosure may also optionally molude other therapentic ngyebienis,

 कathy agenk, arithe hke. Any swh optional ingredient nast be compathe wh the cmpomel desmbed herein to mane the stabity of the fomulaton.

The omposthon may contan oher aditives as neoded, molwing for cxaple botose ghacose,

 amine acds, tor cxample alanine, glycine and betane, and peptides and protens, for cxample abmenes.

Rxamples of excipions for ase as the phamacentichly acceptable camiers and the

 ugents awh as:

BNDDERS: कoms surch, gotato starch, other starches, gelatin, wamat and aymbeno gume such as

 (orporation, Mareas hook, ${ }^{\circ}$, USA), or mintmes thereof,

 powdered ochabse, dextraws, kohn, mammol, sincio acd, somioh, starch, pre-gehatinazed starch, Gextrose, fructose, boney, factose anhyorate, lactose monohydrate, bactose and aspanarne,

 shearyl hmanate, vegetable based haty acids hbricant, talc, hyorogenated yegenble of (eg.

 abd, styparakn, methyparaben, phenol, phenylethyl alohol, phenoxyethanol,

 thermet, am

 and camageenan or minture bereot

 mixed bio sels, faty achid micelles, chelators, faty acid, sathetants, medimm chan glycrides,

 deserbed in US6086918 and USS912014), creams and lotions (hxe matodextrm and carsugenans; matrials for chewble tablets dike dextrow, fructose, hetose momohytrate,

 for coathus ohe sugar pheres); sheromaion agents (he givceryl beherate and

 appartmer, aparkme and lactose, dextrose, fruotose, honey, mabodexthe, matome, mantol,

 cemb havor and chery havor, citrie add ahybrous, citre acid, confechoner's masa, D\&C

 monostearate, indigo camine, fecthin, maniol, mehyl and propy parabens, wome ammoman
 Polydexirose, polysorbate 20, polysorbate 80 , polyvidone, pregelainized won starch,
 choride, sodma chate, sodim yhosphate, strawbery havor, symhete bhak rom wide, sybhetio red iom oxide, itanman doxide, and whte wax.

 Ppadrys white (YS-5-7040), and black me (S-1-8106).

The agents ether in the free fom or as a salt cam be combined with a polymer such as

 saprolactone) and poly(allybene oxide) (U.S. 2003000838) to create a sustaned release Fommatom. Such fommations can be used to impints that rease a pephae or mother agemt over a geniod of a few day, a Few woek or several montis depending on the pwiymer, the partice size of the polymer, and the size of the implant (see, 0.g. U.S. $6,620,427$). Other sastaned reioase fommatoms and polymes for use in are deserbed in $6 P 0467389 \mathrm{~A} 2$, WO $9324150,4.5 .5,612,052$, WO 97/40085, WO 03/075887, WO $070196422, ~ \cup, 5.5,922,356$, WO 94155587, WO W2074247A2, WO 98/25642, US, $5968,895, ~ U S, 6,80,60, \cup 5$. 2009071296, US. 20020776841, US. $5,672,659$, U.S. $5.893,985$, U.S. 5, 134, 122, U.S.

$5,980,943, W 092958672$, W09726015, WO9704744, and. U520020019446, In such

 mdUS. 3.877224.

 and may be fommiated so as to provide sustancel, delayed on controlled whease of the abve

Wing the bydrogel parbiele fomblation described in U.S. 20020061336. Addronat pariche

 be fowd in WO 8964179 . WO 961705 provides fomanations matable for trasuermal adminstraton. The agente can be administered in the form a suppostory or by oher vaghal or
 WO OOD7023, The agent can be amminted non-mvaively via the dehydrated partiches desebbed in U. $8,6,485,706$. The agent can be administered in an entenc-coated drag

 describet in U, S. 20030266939 and WO 0006108 . The agent cam be aministered uming the parkenate fommations described in U.S. 2000034536.

The agent, slone or in combinakin with ofker sutable componema, can be adminixterex by

 and dry-powder inhaiors (DPIsy) can also be used in mumasal appheations. Sewos Tomblatons ase wable digersions or suspensions of sold matcrial and hquid dropleta in a gasems medimen and can be placed into pressurzed aceptable propelans, swh as
 dohbrewheoromelhane (or oher chowfwocabon propelants wheh as a mixture or Propelants (1, 12, andior 114 , mopme, mitwen, and the bie. Pomonary fommbatons may howde

 improve the furcton of the metcring valve and in some cases also improve the swhilhy of he Gispersbon. Pulmonary fomblations may also holbde surfactante which hohde but are not

 Camberad adaped for use in conmechon with a drypowder inhaler, Absompon entancers when can be addel to dry powder formulatons of the present dischosme inchude thone describex in US. $6,632,46$. WO 02080884 describes new mothods for he smace nodhtothon of

 $20010036481 \mathrm{~A}, 20030232019 \mathrm{~A}$, and US, 20040018243A1 as well as in WO 01/1389, WO
 micopartices ame decribed in Wo 03015750, U.S. 2003000801s, and W0 00/0076. Memonary tommohons contamngs stable glassy state powder ate daxerbed in U.S.

 $6,290,987$ desmbes a hpownmal based fomulation hat can be admantered wa newsol or oher

 The agens can be incorponech into mictomblions, wheh gexerally are themodynamicaliy stale, sotropicaly wear disperions of wo immíscble hquids, such as on and water, stablized

 (cmakher), co-gmbetan (co-mmelsiner), an ol phase and a water phase are noessayy Smable

 ennaber") is generaly selected from the group of polyglycerol dervatives, giycorol derivabives and haty alohols. Freferce emulshtherco-cmolsiher combinations are generaly whough not

mblyendes and oboyl macogolgyecrides. The water phase inchades not only water but abo,
 Weight polyethyione glycols (e.g, PbO 300 and peG 400 , andor gycern, and we the, while the oh phase will gexerally comprise, for example, faty acid ceters, modthed vegethbe oins,
 macragel gyearides), ete.

The agents described heren can be incorporated mo pharmaceuthelly aceptable nanopariche,

 Be designe wing polymers able to be degraded in vive (e.g. biodegradable polyatyi-

 No, 5, 145,684 .

 coated pelhet ommpising a mant pellet coated win a cual meohanism polymer maxkme

 ageta desobbe been may be fommated neording to the mehodology desmbed in any of WOO3105812 (cxtraded hyrdatable polymers); WOO243767 (enzyme teavable membrane

 properties apon mehtug), WO0,035029 and WO0303504) (erodible, gastre retentive dowase
 extended relexse compostions, WOO5027878, WOO2072033, and WOO2OLOP4 (delayd release compontions with nathal or symhetic gum), Wo0n030182 (controhed relcase
 Patent 5952,314 (bopolymer), US5108758 (glassy amylose manix dotvery), US 5840860

 ontmining polymer), (S 653152 (describes a drug delvery symem combinma a wata sobble were (Ca pectnate or oher water-nsolable polymers) and outer coat wheh bums (es
 aschn and hig methoxy pectin; WOOL 74175 (Mallaw teaction produch; WOO5063206

 Memon Phamaceninais. ChRES wmprises a conmiled release dosage tom isside am

 24 boum, wh the the whoning agents deserbed herem.

The agent desmbed herem can be fomulated in an onmote devise moludng the one disolosed in U8450303e, us 5609590 and US5358502. US4503030 disclosen an emmote device for dimpersing a drag to centan ph regions of the gastrontestinal tract. Mone partoblarly, the Sisolosate whas to as osmotic device compring a wail fommed of a semi-pemenable ply sassitue compowhon tha surounds a compamment contaming a drag with a passageway through the wall comecting the exterior of the device with the wmparment The device delvera

 having a pht greater than 3.5 , theroby proving total avahability for drug absombon. U. S. Fame Nos. 5609,590 and $5,358,502$ disclose an osnotio bursting device for depensing a benefcial aggat to an aqueous enviromment. The dovice ommprises a benehodal agent and

 subsambly hmpmombe to the benefola ageat and osmagent A thger moms is athcher to
 a pi of from 3 to 9 and thigers the eventual, bat suden, delvery of the bencherai agent. These devics mabie the ph-mgeger release of the beneficiat agent wre as a bolus by ommaio bursturg.

The agents descrben hewin may be fomanted based on the diselosura deanbed in U. S. Pame No. $5,316.774$ which discloses a conposition for the controlled release of an active substance wmpring a polymeric particle matrix, where each particle dehnes a nofwork of intmal pores. The achive subtance is entraped within the pore network together wha bockng agert having phywical mo chemben hameterstics selected to modify be release rate of the actve whstane fom the infemat pore newom. In one embodiment, drags may be selechvely delvered to bive

 samamed release fomonation employs a blockng agen, which remans stable under the expected condthons of the envimment to which the active substance is to be released The ase of per

 Gswounon or dagradaton of the pr-senstive matenals).
 and wanotio detwey systems. These bybrid devices provide dayed mitation of satanex-

omnote dovies that provide sustaned release of he benefrian agent see U. S. Patent Nos. $4,578,675,4,681,583$, and $4,851,231$. A scond device consists of semmembehbe coming

 Patch Nos. $4,006,238,4,503,030,4,522,625$, and $4,587,117$,

The agenta deswbed harem may be frmblated in temohmers acorong to U. S. Patent No. 5,484, 6,0 whin dischoses terpolymers which are senstive to phand tomperabue when are wefu camers for conducting bionctive agents through the gasmic juces of the stomach in a protected fom, The ferpolymers swell at the higher physologic ph of the mtestina? tract cansing
 351099 w $\%$ of a temperature senstive component, whoh impars to the herpoyncr LeST

 or deiompation of caboxylic acid groups to prevent ho bioactive agen from beng lost at low Hh buthows bionctive agen release at physiological ph of about 7.4 mal a hytrophobic wmponent which swbine the LCST bebw body tomperatures and compensates for boactuve
 smple procedre for dosage tom fabncation and we terpolymer functons as a mofective camer in the abdie crviromment of the stomach and also protect the bionctive agent fom digentre chymes unth the bionetwe agent is released in the interthal that.

The agent deserbed herem may be fommated in pl senstive polymers acoming to those described in U. S. Patent Vo, 6, 103, 865. U. S. Patent No. 6, 103, 865 dishoser ph-senctive
 swellabily and sombilty, dependng on ph and wheh can be aphed for a draguchivery systen, bo-materal, sensor, and he ike, and a preparation method thercore the pil-senmitye polymess ate prepated by motrobtion of sulfonamide groups, varions in pha, to bydrophitio group of polymens wher hrough couphng to the bydrophthe grous or polymers, molk as acylamide, N, N dimehyheryamide, acryie acid, N-isopropyaryiamade and the the or
copolymenzahon whin oher polynenhable monomers. These pl-sensitive polymes may bave a

The agents desmbech herem may be fomulated according U. S. Paten No, 5, 656, 292 whoh Biscoses a compostom for par dependent or ph regulated controlied release of ackive Itrgedents specially drags The composition consiss of a compactable mixtare of the active
 preterex dicarboxyme aen is succmate. The average substhtion degrec of he aceme residne is at hast and 0. 2-2 for the dicaboxylate revidue The staren molocoles can haye be acetate and dicabox ylate rectibuss atached to the same starh molecule backbone or atached to sepatate

 diexbox yindes wapentively.

The agens descrbed herein may be fomblated acomeng to the metrods desmbed in U. S. Fatent Now $5,554,147,5,788,687$, mud $6,306,422$ which disciose a method tor he controled mease of a bologidly active agen wherein the agen is meased from a hydophobic, pa senstive polymer matix. The polymer matix swell whem the environnent reaches ph 85 , reheang the adive agent A polynwer of hydrophobie and wedky acide comonomers is dwelosed br use in the conirollen release system. Also disclosed is a speche enbodment in which the controled release systen may be used. The pH-senstive polymer is coated onto a latex catheker asef in wreteral cathencriontion, A wretcral catheter coated with a pl-sensitive polymer having an antibione or uease hhibitor traped withm its matrix wh wease heactre agent when cxposer to high phame.

The agents ababber hemen may be fommated in/whthoadhesive polymers acomong to US Pack No. $6,365,187$. Bioadhesive polymers in the fom of, or as a coand on, merocapmies कmaning hrugs on bioactive substances which may serve for therapentic, or diagnostic praposes in disease br the gasrointestral tract, are deserbed m US6365187. The polymeme

 descobed This çantitsive method provides a means to cetabish a comelanon betwem the chemen nature, the sumbe mophology and the dimensions of draghoaded morospheres on: one hand and biondhesive fores on the other, allowing the screening of the most promising

 nebnizer. Simplo nobulizers oporate on Bemodh's prinople and employ a atram of an or
 pray parteles. Born types are wenk kown in the ant and are desembed in standar fextomens of
 Phamacy. Other deviees for generating aerosols employ compressed gases, wably Bydrohmoreabons and chorotuoweabons, when are nixed with the medicament and ary
 textoobia suchens Spowls and Kemington.

The agent can be a hee acid or base, or a phamacologicaly accopable sat therof. Soldo cas Be dissolved or dispmed mmediately prior to administathon or canher. In some crommances the preparaions Bobude a preservative to prevent the growh of microorganimns. The phamasentical omm swable for ingecton can molwde stende acueous or organe soluthens or dispersions which helude, eg, water, an abohol, an oganto solvent an of or ofer solvent or
 fommations may contan antoxidame, buffers, bacteriostak, and soinkea that render the
 Sembe suspensiona that can molude suspendig agents, solabilzers, thekening agents, phoblizers, and preseratives, Phamaceutical agents can be stenheed by thter semination or by
 of fragments thereot, or incomprated into a fiposome to ingrove hathelis. Thus the agens
 Hoker to albumin or an amag, frament, or dervative hereot. Genembly, the ahbmin probens

from any specis, moludng human, fuman sermm abmmin (HSA) consists of a single nomghyocylated peptide chain of 585 ammo acids with a bomala molecabar weigit of 66,500 , The

 whemee herem \} A variety of polynomphe vaniants whell as andogs and hagments of abumb

Controbled relegee fommations

fa gemarak, one cam provide for controlled release of the agents desuribed berem brough the ase ef a wida varsey of pobymanc camers and commoled whease systems meluding crobbie and
non-erodible matrices, ommotic control devices, vanous reservoir devices, minn wangs and mathyaticulace contwh deviees.

Manix devisse are a common device for controling the release of varions agens, In such desices, the agents described heren are generally presont as a dispersion within the polymer
 or melthy, The dosage wease properies of these devices nay be dependent upan the sohbilty of the agent in the polymer mank or, in the case of porour matrice, the solubily ta the sink sobkon withen the phe network, and the torthosity of the notwok. Th one inatanee, when whizing an crodible polymerio matre, the matrix tmbibes water and forns an aqueous-swollen gel that entrape the agen. The matrix then gradually erolea, swells, sisintegates or diswolves in the Gl trach, thereby whtmbing release of one or more of the agents desmbed herem, In nakErodble devices, be agent is celeased by difusion through minerimanx.

Agerts fesmbed herem can be incorporated ints an crodble or non-erodibe polymerbe matrix contohed release devie. By an erobble matix is meant apheonserohble wr waterswelahe or aqueonswobble in the sense of beng ether crodible or swelabie or disw wable m pure water on requing the presmes of an ach or base to ionize the polymerie matrix whementy to cause crobion or chsolution. When comacted with the aqueods enviomment of ase, he erodble
 agen described herem. The aqueous-swollen matix gradualy crodes, swells, diantagetes on dissolves in the envimmmen of use, thereby controlimg the release of a componed descrbed heven to he mymonment of use.

The erobbie polymem matrx ino whoh an agent described heren can be morported may gencraty be described as a set of exoments that are mixe with he agent folowing its fomment
 swblen gel or matrix that atreps the drag fom. Drug release way ocur by a vanery of mechamsms, for example, ibe matrix may disintegrate or diswhe from arown partoles or grandes whe them or the agent may diswolve in the mbbed agoons solmon and difuse fom the thblet, beads or ganmes of the deviee. One ingredicnt of the water-whothen matne is the
water-swelleble, crodible, or soluble polymer, whin may generaly be described as an osmopiymer, bycrogel or waher-wwellable polymer. Such polymers may be hnear, bramohed, or ersehmked. The polyners may be hompolymers or copolymers. In centor whbohments, bey may be symbete poymers derived fom vinyl, acylate, methacylate, whane, ester and oxide monomors. Tr obher embodments, they can be dervatwes of naturaly owoumg polymers such
 karay, bocas bean gum, gum traganth, camagenam, gum ghath, guar gem, xamban gum and sclemghem), stames (es dextin and matodoxtin), hydrophlic collods (eg pecin),
 Ahinate propylene glyw alginate, gehan, collagen, and celbosies, Celmosics are coluhose Wolyner that has bem moblfer by reaction of at least a potion of the hydroxy grops on the

 sacharide reper mik, whie the celmiosic cellulose accate has an ester foked aceate

 metbyenyl collaose (MBC), carboxymethyl cellabos (CMC, CMEC, hydroxyenyl celnose (HEC), Bydroxypapy cellulose (HPC), chlobse actate (CA), celubse prophonate (cp),

 comprises vamous gades of low viscosty (MW less than or mad to 50,000 dahons, for

 Esu Motolose 905 F serics.

The chote ofmatix material can have a large effect on the maximma drag concombaton ditaned hy the devise as wel as the mamenance of a high dug concentraton. The matrix

 polyacylamde, polyacrybe aci, copolyners of ethactylio acid or mothacyle acid
 swh as homopolymere mod copolymers of buthethacylate, methymehacylate, ethynaethacylac, whlacyate, (2 dimethymmochy) mehacyhas and (bimehylaminethy) mehacylate whonde.

The erodible matix polyner may contain a wide vane of of we same ypes of adobives and cxcipiens know in the phamaceatical arts, foludng ommopolymers omagens, sobblity.

Alematively, the agent ot he present dishosme may be administered by or incomprater into a
 mame The agent is released by whasion brongh the inert matrix. Examplea of materale
 opolymers, polyviny coloride, polyethyleno), hydrophne poymers (c.g ethyl colldose, whlubs notate, creshmed polyvinylpyrohdone (also known as cospovidone), and faty

 Matrix controliod welase devices may be prepared by bicnding an agen dexmbed hewen and other excipiens together, and then foming the blend into a tablei, caplet, pill, of whe device Tmmed by compressive torees. Such compressed deviecs may be fomed umy my ofa wiok

 amb Sec for example, Remingom: The Seince and Practice of Phamacy, 20th Edtion, 2000. The compresco device may be of any shape includng romd, oval, obong, chhohthen, or thangiar. The bpper and hover maftaces of the compressed deviee may be han, romed, concove, or convex.

In certun mbodmons, when formed by compression, he device has a wrengh of a leasts

WO 2008/137318

as the table hamesa regured to fractue a table fomer from the maternas, divided by be maximma coss-sectomal aren of the tablet nomal to that froce The frachre tore may be rasamed wing a Sohlewiger Tablet Hardness Testor Nodel 6 D . The omprespon foreo reghed to acheve this strught will depend on the she of the tablen, but generaly will be
 hbasion that neasure weight toss in percentage after subjectng the Gevice to a standardized aghthon procedure Friablity values of from 0.8 to 1.6% are regarded as consthating he mper Tmbt of aceptabity, Devices having a strength of greater han $5 \mathrm{KP}_{\mathrm{h}} \mathrm{sm}^{2}$ genemaly are very
 release devices are well kown in the phamacericol ants, See for example, Remighon The Science and Practoe on Phamaey, 20tis Fition, 2000.

As noted above, the agents described herein may abo be incorporated hato an ommethe contol device. Sah deviec generally inchude a core contanm one or more agent sa deserbed herem and a water pemeable, non-dissolving and nom-croding coating smmonoting the coce when
 release by extusion of some or all of the core to the enviromment of use. In centan embobment, the coating is polymenc, aqueom-permeable, and has at leas one delvery post. The core of the onnotic doviec optonally includes an omotic agent which acts to imbibe water

 be manogen, abo known as an omagent. Dresure is generater withon the deviee whioh frees the agen(s) wht of the device via an orifice for a size designed to minmime solute dfunion while proventing the buid-up of a hydrostatio pressure head.
 sore of the device Osmohe dgents molwde but are not hatited to water gwelabie hyorophis polynery, and ommogens (or osmagena). Thus, the core nay molude water-swelabie bydophtio polymers, boh honhe and mononic, often refexed to as osmopolymers and fyotrgels. The amom of waterwelwhe kydrophin polymers present in the core may raxge hom about so

polyethylenc oxide (PEO), polyehydene glycol (PEG), polyproplene gycol (FP), poly (2 bydrexychyl methacryate), poly (acryic) acid, poly (nethacylic) acid, polyymypymolidone

 methy colblose (HFMC), carboxymetbyl celmose (CMC) mad caboxychyl celwose (CEC), sodimm alginat, polycabophi, gelatin, xanthan gam, and sodim starch gyeolas. Oher materals inchade hydrogels comprising interenetrathe networs of polymers hat may be fomed by addhion or by condensation polymerization, the component of whels may comprase kydrophilic and hyirophobic monomers such as those just menthoned. Water-swellable

The core may aso molode an omogen (or ommagen). The amount of womegem perent in the cone may rage fom about 2 to aboun 70 wo (ineluding, for example, from 10 to 50 wo , Typich wases of sumble osmogens we water-sobble orgmbe abds, sats and sugars hat are caphle of mbibus water to thereby etfer an osmolic pressure gradient acrosa the basmer of the

The core may meble a whe vancty of additives and exchients that enhance the perbmance of
 Welade tablethg ndi, smectants, water sohbile polymers, ph modifers, hifers, binders, pignents, dinhegrants, antiokidats, fabricants and havorants. Nonbmithe examples of

 magneabm stearate, sodhm starate, zins stearate), pll contro agents (eg buhers, organe
achis, onganc acid salt, orgmie and inorganic basesh, Gaty acids, hydrocatoms and faty

 polyoxyethylene gycols, polyoxyethylene, polyoxypropylene ether, inchoing copolymers

 AC-Disor ${ }^{\text {te }}$, When the agent deseribed herem is a sold wnowhous dispersion formed by a solvent process, sub addtives may be added drecty to the spray-drymg solution when bmang am agem descrbed herem/concentwation-enhancing polymer dispersion such that the addive is dissoived or staspended in the solution as a shory, Alematively, swon whbliver may ba wded followng the apray drymy proces to ad in fomme the final controlled release device.

A nonhmikng cxample of an osmobic device consists of one or more irwg layers contaning an
 Gat comprises a water-swelable polymer, whth a coating survomding be drug hayer and swelle:
 wace-soluble polyners and water-swellable polymers.

Such ommote defvery devices may be fabricated in varioss geometries molwdng binyer (wheren the core conynises a dug layer and a sweller layer adjacen to wach oher), friayer (wherem be wre comprises a swefler hyer sandwined between wo drag hyery) and oncentax (wherch the core commises a cemal weller agent sumownter by the druy layer), The coatheg
 and exchments contaned within. The coathy contans one or more exit passagesay or poris in ommuncoum with the drug-containg layer(s) for delvering the drug agent The dug-

 with or whour adthonal oxnote agents.

 aganst the dug contanme agent, Forcing the agent omt of the ext passageway. The agent can
 welfery syaten ehter dissolved or dippered in the agent that is expelled fom the ext passageway.

 Hybrogel layer, mat the surace area of the device. Those skifled in the an will apperiate that Gucreasing the brickness of the coating will reduce the release rate, while amy of the following whincrease the reloase rate: increasing the permeabity of the coatng, increasing the Bydrophincty of he hybrgel hyer increasing the ormote pressme of the draz-contamme layer or incoesment the dewices surace area.

 Hyer mobde sobum CMC, beo (e, polymers having an average molecular weitut fom abot

 Bybrophthe matmak.

 the cuge of he thele so as to connect both the drug layer and the sweller layer whth the exterior of the device. The exit passageway(s) may be prodreed by mechanical means or by laser
 whe compresson or by ther means.

The osmothe device cma aso be made with a homogerwous core surounded by a senipamedble mentrane wotins, ss in US3845770. The agen descrbed herein can be incorporated into a tablet cone and a smiperncoble menbrane coating can be appled via conventional tablek-

 Alematrely, the pasageway nay be tomed by mptung a porton of the coating or by creane

 envomment smmonding the thble In cerain embodimens, the device ss shaped subt that he shbee are to whone rabo (of a waterwwolen table) is greater than of mm ${ }^{3}$ (meluding, for sxample greater thas ($0 \mathrm{~mm}^{-1}$), The pasageway connecting the core wh the had enviromment can be stmated abong the tablet bad area in certain cmbothmext, the whape is an oblong shape Where the ratio of the table tooling axes, s.e, the major and minor axes whet dethe the shape of the tablet, are betwem 13 and 3 Gnohding, for example, between 15 and 2.5 . ha we embodmen, the combination of the agent described herein and the osmagent have an average Guentity from about 100 to abou 200 Mpa , an average tensile strenght fom about 0.8 to abons

 necepable excypent, camer or dhuent.
 Gming opermion of emen ommotie device is desirable. For the partioles to be well emaned, the

the compresed core ints its pariculate compononts. Nonkming examples of standark

 the at Dependhag apon the paxicular fomulation, sone Wismagrants work better than ohers. Several dimegrans tend to tom gels as they swell with water, has hindenge drug delvery Fron he tevioe. Mon-geling, nonswelling dimategrants provide a more nam dispervion of the Grag partices whinin the core as water enters the core. In cothim embodments, non-geling, mok-

 dishtegran is prenon in amonts ranging fom about $50-74 \%$ of the core agent,

Water-sobble polymers are added to kecp particles of the agent suspended inside the device behre they can be dehverel though the passageway(s) (e.g, an onfee). High visoosty polymers are usefur haventne sething. However, the polymer in combinaton with he agen is extmaded thongh the pasageway(s) moder relatively low pressumes. At a given exmexion pressure, he extrason rate byically slows with moreased viscosity. Ceraim polymas in combanton with pathele of the agent described herem fom high visconty sothions whth water
 polymes having a fow weight-average, molecular weight ($<$ about 300 opo) do not fom
 wething. Sething of the parixtes is a problem when such devibes are prepared with no poiymer added, whoh teads to por drye delivery miness the tablet is constantly agitated to kegp the pribles from sething inside the cone. Sething is also groblemanc when the particen are harge andor of bign deasity sache bat the rate of setting inctoases.
 with the drag. frecrain embodments the water-soluble polymer is a non-ionc polymer. A monhming seample of a non-ionie polymer toming sokubns having ahigh viacosty yet sth
 avaluble fom Werches moorpomed, Agalon Division, Whmington, DE, MW equal to about

 a Brookfod $\operatorname{SVT}(30$ mme ac 250 C is between about 1,500 and about 2,500 cps.
m cerain embodments, hydroxyetylicellubse polymers for ase in these nomolayer asmote tabas have a weighaverge, molechar weight from about 300,001 to about 1.5 mulhow The Gydroxyenylewhisse polymer is typically prean in the core in an amoum from abous 2.0% to abous 35\% by weigh.

Another cxampe of an ombtio device fan oxnotic capsule. The capsule sholl or porton of he Gasube shel can be semperneable. The capsule can be flled ether by a powder m ham कnsistmg of ax agent descobed herem, excipiont that mobe water to provide ommotio
 कre cam abs be made such that it has a blayer or matidayer agent malogoas to be blayer, thayer or concentic geometries describel above.
 axample, as describet in EP378404. Conted swelable tablets comprise a thber cowe compring an agen descrbed hervim and a swelling material, preferably a bydrophio polymer, water whts
 bydrophnio polyner can wtrade and cary on the agen. Ahematively, the membane nay coman polymencon low molecular weight water-soluble porosigens. Porongens disobve in the afteous use envommont, proving pores through which the hytrophise polymer and agen may exmade. Examber of porsigens are waier-solmbe polymers ach as MPMC, PRG, and bw molecular weight componds such as glyerol, surose, gheose, and sodium ohforbe. In abdion, porss may be formed in the coating by drinng holes th the coatng asing a base or

 providng that the menhrane deposted on the tablet core is porous or contans water-whble prosigens or poseases a macoscopie hole for water ingress and dug release Embobment of
the clasa of sustamed release devees may also be multayered, as described, for example in EP378404.

When an agen descrbed heren is a liquid or on, swoh as a hid vehale homanamon, for

 Where the wall comprises a bamer hayer fomed over the extemal smface of the capsule, wh expandable layer fomed over the bamer layer, and a semipenneble layer fomed over the expandoble layer. A delvery port comects the liquid fommbation with the ackeons ase envmomment Such devices are descmbed, for example, \mathfrak{k} US6419952, US6342249, US5324280, US4672850, USA627850, US4203440, axd US3995631.
 wetain embohments, the osmotic controlled relcase dence coathg exhbita one or mone of the followng fexaras: is watememeable, has at least one por for the delvery of dug, and is non-

 procss or in situ dumg ase or by mpture dumg ase. ha ceran cmbodments, the conting is preacm ham amonat ranging fom abod 5 to 30 wt (inctadng, for example, 10 to 20 wt , relative to the core weight.

One fom of watng is a sminemeable polymeric menbrane hat has the ponts fonner therent
 20 and 800 man (mocheng for example, between abont 100 to 500 ma). The dametar of the delivery por (s) may generally range in size fron ol to 3000 pha or grater fachohng, for

 may be controlion by wembonaly homporang a relatively math weak porion hato the conthas Detvery pons may aso be formed in situ by erosion of a phag of watersoluble matenalor by mapture or a hinner pothon of the coating over an mdentation in the cote. Wh adtion, delvery
 dichlosed ha U 3662059 and US5698200. The delivery por may be fomed in sha by rapere of the coathe, for example, when collection of beads that may be of essentinly identical or of a varible agent we wed. Dras is primanly celeased from such beads following nayme of the cadnas and, folowing whture, such release may be gradul or rehatively suders. When the chliction of beads has a varable agent, the agent may be chosca such that the beads rupare at
 for a dexired durabos.

Combag may be dense microporons or asymmetric, having a denser region suppoted by a thex
 The conting can be composed of a wate-pemeable materal. When the coating is porys, in may be composed of ether a water-pemeabie or a water-impermeable material, When he coting is conmoseri of a poras water-mpemeable materal water perneater brouge the pores of he coning as ehmer a hend or a vapor. Nonlmithg examples of omotio dovices that wifee dense coange inchade US399563] and US3845770. Such dense coatings are pernebble to the extemal flud such as water and may be conposed of any of the materids mentioned in these patens as well as oher water-pemeable polymers known in the ath.
The membanes may ano be porous as disclosed, for example, in US 654005 mod US5458887 or even be fomed from weter-whant polymers. US5120S48 describes monker swable proces for fomme conthgs fom a mixthe of a water-insohble polyner and a leachable water-soluble aditive. The powas menbanes may also be fommed by the abhbon of promomers as dischosed in US46 2008 . In wdition, vapor-permeable coatings may even be fomed from extrany hydrophobic materials such as polyenylene or polywinyldene dhwme that, when Bense, we cssemaly watermpemeabe, as long as such coating are porous. Macmals asefu
 polyamides, pelyesters and cellolosio derivatives that are water-pemeable and water-msobuic at

sectate fatyrate (CAB), CA chyl cabanate, CAP, CA methy carbamate, CA succinate,
 choromedas, CA ehy oxabat, CA nehyl swlonate, CA buty sublonate, CA p-iolsene

 EC, PRG, PPC, PEGPPG कpolymers, PVP, HEC, HPC, CMC, CNES HBMS, HPMCP, HPMCAS, IPMCAT, poly (acryho) acids and esters and poly (methacryc) acds and esters and copolymers therwot, wam, dextran, dextin, chitosam, colfagen, gebth, polyakenes, polychers, polysulfores, polyehersolfones, polystyrenes, polywinyl halides, polynyy esters and

 colhosio derivatives having a mixture of ester and cher substuents the coating materials are made or derver fom poly (acylic) acids and esters, poly (methacrybe) arids md exters, and coplymas thereot, the coang agent conprises collobse acetate, the coange comprises a collwsio polymer mad PEC, the coang tomprises cellose acetate and PEG.

Conting is conducted in conventional fashon, typically by dissolving or suspending he coabing matrial in a solvent and then conting by diping, apray conting or by pan-coating In cetain

 chyl actate, isopropy acetak, x-buty acetate, methy isobuty ketone, medyl propyl keme, chybne glycol monocthy ether, ethylene glycol monoethyl acetate, methytene dichonde,

 (swh as water, gyecrol and chanol) or phasticizers (such as dehyl phanate) may abs be abded in any amomb as hong as the polymer romams solwhe at the spray temperatare fore-fomen and
 Ge hybrophoble mictoporous layers wheren the pores are substanthaly hled wha gas and are not weter by he aqwous medinm but aepermeable to water vapor, as dischaset, for cxamples in US 5708 ile. Such hydrophobie but water-vapor pemeable coathes are ypicaly composed onhyophoben phymers such as polyalkenes, polyacrys add deryathes, polyehers.
polysulfones, polyehershlfones, polystyrenes, polywinyl haides, polywint estes and ehers, naral waxes and synhenio waxes. Hydrophobe mictoporous coathg matorials melude bua ase not limited to polysyrene, whymifoncs, polychersulfones, polyehyme, polypropylene,
 wating can be wabe by kown phase inversion methods asing any of vapor-gemah, hama ghenth, themat proceses, leaching soloble material from the coating or by sinemeng coating
 Heuid phase separabon in a cowing step, When evapotation of the solven is not prevented, the menting mentrane whl typically be porons. Such coatimy proessea may be condmed by the processes disebsed, for example, ha US4247498, US4490431 and US474a906. Ommotic controled-whease devices nay be prepared wing procedures known in the phamanecution ants. See for example, Remmghn The Science and Practice of Phamacy, 20 En Ebtion, 2000 .

As hather woter dbove, the agents deserbed heren may be provided in the fom of
 example, fom abont 100 m io Imm in dameter). Such multuarbeblates may be packagel, for exampie, in a capahe such as a gehan capank or a capole formed from a aqueons-sobble polymer such as MPMCAS, HFAC or starchy dosed as a suspermion or sumy ma hquid or hey may be fomed into a tables, capke, or pill by compresson or other processes known in the ars Such mathpartichates may be made by any kown process, swh as wet and ory granmetion
 seed sones. For example, in we-and dry-granation processes, the agent deswbed heren mad optional excmends may be grambated to fom multiparticulates of the desired size. other

 matipanientate. See for example, Remingho : The Scimee and Practice of Phamacy, 20 Fdibn, 2000 , many ease, the resuthe paticles may themselves constitute the therapentio
 or wher-wehable or water-soluble polymers, or they may becombine with oher excmiens or veholes bo ado masmg to pakent.

Shitable whamacenteal compositons ha acoodance with the diseloske whe gencraly inehude an
 as $\$$ sterile agueons solmion, to give a tange of final concentrations, depending on the mbended We. The techniques of peparaton are generally well kown in the ant as exemphreb by Remington's Phammacutical Sciences (8th Edition, Mack Publishing Company, 1995).

Kits

The agenta described heren mat combmanon theapy agents can be packaged as a kit that inchodes smge on mubtule doses of two or more agents, each packaged or homblated individualy or smpe or maltiple doses of two or more agents packaged or formulated in combinamen. Thas one or more agents can be present in fret contaner, and the fit can optionaly include one or more agents in a second wontainer. The contaner or condaners are placed whinn a package, and the package can optionaly helude admbnatrabon or doxage
 admanteng the agens as well as dihents or oher means for fommaton.

Thms, the kis can comprise: a) aphamacentiol compostion comprising as agen deacrbed berein and a phamacentaly aceeptable camer, veniole or dinent, and b) a ontamer or packagher The kis may optonaly comprise instwetions describing amethod of using the phambectheal ompositions in one or more of the mothols described herem (e. g, disorders

 Gume moludng hear hare an any of stages I-fV accordug to Now York Hears Aswocanom (NYBA) Fanctonal Classifeation, hypertension, salt dependent foms of high bood pressure. hepatic edena, Hver cimhosis, kdney disease, polyeystio kidney disease) and gastwintestmal

 nonnicer dyspepsia, a modional gastrontectinal disorder, furchomal hearbum, gastroesophagea

constipation associated with ase of opiate pain killers, post-surgical conctipator, and कonctipation associater with nenopathic disoder as well as other conditions and dismrders dexmbed heremy). The hit may optionally comprise a scond phamadeubeal composibon comprishag one or mow addtonal agent including but not hwhed to hose inchding amigesie
 (Bumex), ebacryme acid (Edenm), torsemide (Demadex), amionde (Mikamon), spmonohabone

 Gigoxm, dohnatmine, dopamine Minnone), a phosphodiesterase imbibtor, an agent nsed to treas gastrontertinal and othor disorders (inchuding those descrbed herem), an agent used to treat

 disorlers, an ant-obesity agent, an antionabetic agents, an agem that actrates sobble gasayata
 compostion compasing the compond described herein and the seond phamacentical compostion contane in the kit may be optionaly combined the thene phamacenticat composition.

A Et mobues a conther or packagng for contanng the phamaceutical composinions and may also inchede divided condmers such as a divided bothe or s bvided fon paeket The condiner wan be, for example a paper or carboard box, a glas or phatho bohle or far, a w-sabable bag (fr cxample, to hold a "rehl" of toblets for placement ino a diferen contaner), or a blister pack with individnal doses for pressing ont of the pack acording to a themapeno shedwe In is fasble that mor than one contaner can be used together in a single package to marker a single
 abox.

An example of a kit is a sowalled bister pack. Bhisier preks are well kown in the packagme modutry and ane beng widy ased for the packagng of phamaceutical mit doxage fons (tabist, capuies, mat the hke, Blister pucks generaly sonsist of a shee of relatively wh

WO 2008/137318

natenal covered with a foll of a preferaby transparent piastic material. Dumas he packagise proces, recemses are fombed in the piastie foll. The recesos have the siee axd shape of indivdual thets of capenter to be packed or may have the size and shape to acommodate matuphe tablets andor capsues to he packed. Next, the tablets or capsules are phaced in the recesses accordingly
 whin is opposte from the bivection in which the recesseg were fomed. As a reswh, the tablets or

 can be renoved fom the blater pack by mannaly aphling pressure on the receases whereby an opening is fowned in the sheet at the place of the recess. The tablet or capund can then bo renoyed wa mad opernins.
 for the physidan, phamachst or subjeet reganding when the medicaton is to be taken. A "daly dose" com be a single taber or capmie or severai tablets or capsales to be takem on a given day. When the kit conthins separate compostions, a daily dose of one or mote composibons or he kis can consist of one hablet or capsuie while a duily dose of another one or more composhtons of the ht en consist of several tablets or capsules. A kit can take the fom of a diapenser denigned to dispense the daly doses one at a time in the order of their intended use. The Gispenser cas be equiped whth momory-nd, so as to further faciftute complance with the reginen. An
 doses tha haye ben dispensed. Another exmple of such a menory-ad is a batery-powered
 cxample reads ow the date that the last daly dowe has been taken ardor reminds one when the next dose is bo be taken.
 fond in U, S. $6,54,606$, U.S. $6,068,850$, U.S. $6,124,261$, U.S. $5,904,935$, and WO 001524 ,
 20030175230 A, U.S. 20030175239 Al, U.S. 20020045582 , U.S. 20010051726 , WO 0226248,

WO Ob/OR4904, WO 9800152A1, WO 9800157A1, WO 90/2029, WO bobas80, and WO 9764743, WO 9704706 am the refermees cited therein.
 U.S. $5,424289, ~ प \mathrm{~S} .20030198619$, WO 9001329, WOOL/49268, WOD012172, and WO Dh64166. Olycymhante con also be ased as an absoghon enhancer (see, e.g, 2y397447). WO $03 / 004062$ disusses Ulex curopaens (UEAD and UEA mmetics which may be med to target the agens desorbed herein to the Ot tract. The bioavailnbiny or the agents described

 man related oligopeptides produced by species in the genas Topyladiam; antumgas mokding bat not hmith w Xetwonazhe, wardwascular dag mohang bat not hmited to MS-209

 natiparastics hobung but not imited to wermectin; muth-dng resistance reversers ineluding

 limited to coramides; and agents active against endomhin receptors including but not frmed to
 be naloxone, nalterone and nalmefene).

The agents desmbed berem can be fased to a nodifer version of the blood semm proten tansfrmm, U.S. 2003022120, U.S. 20040023334, U.S 2003022655, WOO4020454, ams WO 04019872 disease the nambacture and use of transferm fusion protens. Thantemb
 mad alow reduced domage.

Twe GCC agonst peptides dexcribed herein can be recombinantly expessed in bacteria. Batera espressing the peppide or agonibs can be administered orally, rectally, mucosally or in wa some
 sutable he such adminstation include but are not hmized ho certain hactoberenta (es. Lacococos lacis, Lachobrilhes plantwm, Lact whonhosus wh Lact porncasei ssp.

 pephdes and agonists described heren can be administered using the Helboacter based preparahon sembets dexmbed in WOOOOIS445.

Dosage

The dose range for admula hemans for vanom drags is generally from 0.005 mag to 10 ghay ombly, Thbets or oher bmas of presentation provided in discreve mits may convensmery contain an amom of compomd described herein which is effective at such dosage or ax a multhe of has
 peone whom of wompomd adminshed to a paten will be the responsbithy of the atconant
 and sex of the pathen, the precise bisorder being treated, and its severty,

 He 200 w $500 \mu \mathrm{H}, 200$ to $1000 \mu \mathrm{~g}, 200$ to $1250 \mu \mathrm{~g}, 200$ to $1500 \mu \mathrm{~g}, 200$ to $1750 \mathrm{~kg}, 200102000$

$\mu \mathrm{g}, 300$ w $600 \mu \mathrm{~g}, 300$ to $700 \mu \mathrm{~g}, 300$ to $800 \mu \mathrm{~g}, 300$ to $900 \mu \mathrm{~g}, 300$ to $1000 \mu \mathrm{~g}, 300$ ko $1250 \mu \mathrm{~g}$,
 $\mu \mathrm{g}, 300$ to $3000 \mu \mathrm{~g}, 400$ to $500 \mu \mathrm{~g}, 400$ to $600 \mu \mathrm{~g}, 400$ to $700 \mu \mathrm{~m}, 400$ to $800 \mathrm{gg}, 400 \mathrm{ko}$, $900 \mu \mathrm{~g}$, 400 to $1000 \mathrm{gg}, 400$ to $1250 \mu \mathrm{~g}, 400$ to $1500 \mu \mathrm{\mu}, 400$ to $1750 \mu \mathrm{~g}, 400$ to $2000 \mu \mathrm{~g}, 400$ to 2250 Hg, 400 to $2500 \mu \mathrm{~g}, 400$ to $2750 \mu \mathrm{~g}, 400$ to $3000 \mu \mathrm{~g}, 500$ to $600 \mathrm{Hg}, 500$ to $700 \mathrm{\mu g}, 500$ te 300
 $\mathrm{kg}, 500$ to $2250 \mathrm{\mu s}, 500$ to $2500 \mu \mathrm{~g}, 500$ to $2750 \mu \mathrm{~g}, 500$ to $3000 \mu \mathrm{~g}, 600$ to $700 \mathrm{\mu s}, 60 \mathrm{to} 800$ Hg, 600 to $900 \mu \mathrm{E}, 600$ to $1000 \mu \mathrm{~g}$, 600 to $1250 \mu \mathrm{~g}$, 600 to $1500 \mu \mathrm{~g}, 600$ to $1750 \mathrm{\mu g}, 600$ to 2000 H8, 600 to 2250 ke 600 to $2500 \mu \mathrm{~g}, 600 \mathrm{t} 2750 \mu \mathrm{~g}, 600$ to $3000 \mu \mathrm{~g}, 700$ to $800 \mu \mathrm{~g}$, 700 to 506 Hgs 700 to $1000 \mu \mathrm{~g}, 700$ te $1250 \mu \mathrm{~g}, 700$ to $1500 \mu \mathrm{~g}, 700$ to $1750 \mu \mathrm{H}, 700$ to $2000 \mathrm{~kg}, 700$ to
 $1250 \mu \mathrm{~g}, 800$ to $1500 \mu \mathrm{~g}, 800$ to $1750 \mu \mathrm{~g}, 800 \mathrm{to} 2000 \mu \mathrm{~g}, 800$ to $2250 \mu \mathrm{~g}, 800 \mathrm{to} 2500 \mu \mathrm{~g}, 800$
 900 to $2000 \mu \mathrm{~g}, 900$ to $2250 \mathrm{\mu g}, 900$ to $2500 \mu \mathrm{~g}, 900$ to $2750 \mu \mathrm{~g}, 900$ to 3000 ke , 1000 to 1250 Hg. 1000 to $1500 \mu \mathrm{~g}$. 1000 to $1750 \mu \mathrm{~g}$, 1000 to $2000 \mu \mathrm{~g}$, , 1000 to $2250 \mathrm{\mu g}$. 1000 to 2500 Hg , 1000 to $2750 \mu \mathrm{~g}, 1000$ to $3000 \mu \mathrm{~g}, 2$ to $500 \mathrm{hg}, 50$ to $500 \mu \mathrm{~g}, 3$ to $100 \mu \mathrm{~g}, 5$ to $20 \mathrm{\mu g}$ 5 to $100 \mu \mathrm{~L}$, to
 $\mu \mathrm{g}, 30 \mathrm{\mu g}, 300 \mu \mathrm{~g}, 40 \mathrm{\mu g} \mathrm{~g}, 450 \mu \mathrm{~g}, 500 \mu \mathrm{~g}, 550 \mu \mathrm{~g}, 600 \mu \mathrm{~g}, 650 \mu \mathrm{~g}, 700 \mu \mathrm{~g}, 750 \mu \mathrm{~g}, 800 \mu \mathrm{~g}$, $850 \mu \mathrm{~g}, 900 \mu \mathrm{~g}, 550 \mu \mathrm{~g}, 1000 \mu \mathrm{~g}, 1050 \mu \mathrm{~g}, ~ 1100 \mu \mathrm{~g}, 7150 \mu \mathrm{~g}, 1200 \mu \mathrm{~g}, 1250 \mu \mathrm{~g}, 1300 \mu \mathrm{~g}, 1350$
 $\mu \mathrm{g}, 1900 \mu \mathrm{~g}, 1950 \mu \mathrm{~g}, 2000 \mu \mathrm{~g}, 2050 \mu \mathrm{~g}, 2100 \mu \mathrm{~g}, 2150 \mu \mathrm{~g}, 2200 \mu \mathrm{~g}, 2250 \mu \mathrm{~g}, 2300 \mu \mathrm{~g}, 2350$ $\mathrm{Hg}, 2400 \mu \mathrm{~g}, 2450 \mu \mathrm{~g}, 2500 \mu \mathrm{~g}, 2550 \mathrm{\mu g}, 2600 \mu \mathrm{~g}, 2650 \mu \mathrm{~g}, 2700 \mu \mathrm{~g}, 2750 \mu \mathrm{~g}, 2800 \mu \mathrm{~g}, 2850$ $\mu \mathrm{g}, 2000 \mu \mathrm{~g}, 2050 \mu \mathrm{~g}, 3000 \mu \mathrm{~g}, 3250 \mu \mathrm{~g}, 3500 \mu \mathrm{~g}, 3750 \mu \mathrm{~g}, 4000 \mu \mathrm{~g}, 4250 \mu \mathrm{~g}, 4500 \mu \mathrm{~m}, 4750$ H2. 5001 Hg of © ©C peptede or agonit deserbed heren. In varour cmbonmenta, the dosage whin is abminisered wht food an antme of the day, without food at anyme of the day, with Food anter an ovemigh fast (e.g. win breakfast), at bedime atter a fow fat mack. fo vartok cmbodmentw, the dosage wht is adminntered once a day, twice a day, hree thmes a day, fow
 agense.

WO 2008/137318

 $3000 \mu \mathrm{~g}, 200$ to $300 \mu \mathrm{~g}, 200$ to $400 \mu \mathrm{~g}, 200$ to $500 \mu \mathrm{~g}, 200$ to 600 सg , 200 to $700 \mathrm{pg}, 200$ to 800
 $\mu \mathrm{g}, 200102250 \mu \mathrm{~g}, 200$ to $2500 \mu \mathrm{~g}, 200$ to $2750 \mu \mathrm{~g}, 200$ to $3000 \mu \mathrm{~g}, 300$ to $400 \mu \mathrm{~g}, 300$ wo 500
 300 to $500 \mu \mathrm{ge}, 300$ to $1750 \mathrm{ge}, 300$ to $2000 \mu \mathrm{~g}, 300$ to $2250 \mu \mathrm{~g}, 300$ to $2500 \mathrm{Hg}, 300$ to 2750

 $\mu \mathrm{K}, 500 \mathrm{w}+500 \mu \mathrm{~g}, 500 \mathrm{w} 1000 \mu \mathrm{~g}, 500$ to $1250 \mu \mathrm{~g}, 500$ to $1500 \mu \mathrm{~g}, 500$ to 1750 gg , 500 to 2000 $\mu \mathrm{g}, 500$ to $2250 \mu \mathrm{~g}, 500 \mathrm{k} 2500 \mu \mathrm{~g}, 500$ to $2750 \mu \mathrm{~g}, 500$ to $3000 \mu \mathrm{\mu}$, 600 to $700 \mu \mathrm{~g}, 600$ to 800
 $\mu \mathrm{E}, 600$ to $2250 \mu \mathrm{~g}, 600$ to $2500 \mu \mathrm{~g}, 600 \mathrm{to} 2750 \mu \mathrm{~g}, 600$ to $3000 \mu \mathrm{~g}, 700$ to 800 kg , 700 to 900
 $2250 \mu \mathrm{~m}, 7 \mathrm{OH} \operatorname{to} 2500 \mu \mathrm{~g}, 700$ to $2750 \mu \mathrm{~g}, 700$ to $3000 \mu \mathrm{~g}, 800$ to $900 \mathrm{\mu g}, 800$ to $7000 \mathrm{ge}, 800$ to $1250 \mu \mathrm{~g}, 800$ to $5500 \mu \mathrm{~g}, 800$ to $1750 \mu \mathrm{~g}, 800$ to $2000 \mu \mathrm{~g}, 800$ to $2250 \mu \mathrm{~g}, 800$ to $2500 \mu \mathrm{~g}, 800$
 900 to $2000 \mu \mathrm{~g}, 900$ 10 $2250 \mu \mathrm{~g}, 900$ to $2500 \mu \mathrm{~g}, 900$ to $2750 \mu \mathrm{~g}, 900$ to $3000 \mu \mathrm{~g}$, 1000 to 1250
 to $2750 \mu \mathrm{~g}, 1000$ to $3000 \mu \mathrm{~g}, 2$ to $500 \mu \mathrm{~g}, 5010500 \mu \mathrm{~g}, 3$ to $100 \mu \mathrm{~g}, 5$ to $20 \mu \mathrm{~g}, 5$ to $100 \mu \mathrm{~g}, 10$

 $850 \mu \mathrm{~g}, 900 \mu \mathrm{~g}, 950 \mu \mathrm{~g}, 1000 \mu \mathrm{~g}, 1050 \mu \mathrm{~g}, 1100 \mu \mathrm{~g}, 1750 \mu \mathrm{~g}, 1200 \mu \mathrm{~g}, 1250 \mu \mathrm{~g}, 1300 \mu \mathrm{~g}, 1350$
 $\mu \mathrm{g}, 1900 \mu \mathrm{~g}, 1950 \mu \mathrm{~g}, 2000 \mu \mathrm{k}, 2050 \mu \mathrm{~g}, 2100 \mu \mathrm{~g}, 2150 \mu \mathrm{~g}, 2200 \mu \mathrm{~g}, 2250 \mu \mathrm{~g}, 2700 \mathrm{~kg}, 2350$
$\mu \mathrm{g}, 2400 \mu \mathrm{~g}, 2450 \mu \mathrm{~g}, 2500 \mu \mathrm{~g}, 2550 \mu \mathrm{~g}, 2600 \mu \mathrm{~g}, 2650 \mu \mathrm{~g}, 2700 \mu \mathrm{~g}, 2750 \mu \mathrm{~g}, 2800 \mu \mathrm{~m}, 2850$ $\mu \mathrm{g}, 2900 \mu \mathrm{~g}, 2950 \mathrm{\mu g}, 3000 \mu \mathrm{~g}, 3250 \mu \mathrm{~g}, 3500 \mu \mathrm{~g}, 3750 \mu \mathrm{~g}, 4000 \mu \mathrm{~g}, 4250 \mathrm{gg}, 4500 \mathrm{\mu g}, 4750$
 secretion.

The precse anomit of each of he two or more active ingrehents in a dosage whis whll depend on
 when admantored accombag to a partichlor dosage schembe (o, g, a dosage shedwe spectymg
 cab component as woble be adminmterd if the patient was being teated with only a mole
 a dosage of one or more components that is less than bat whoh woud be manmintered it the patent was being teater ony with a single component. Fondy is might be desmble to create a dosage whit that whl defver a dosage of one or more components that is greater than that whoh would be administerd it he patient was beng treated only with a sixple component. The phamacentical wmpositon can inchote aditional hugredents inculing but not hmited to the excipient described herem, in certam embothnents, one or more herapentio agema of the dosage mit may cxist in an extended or control release formblaton ma aditronal herateate agenta may not exist in cxtended relcase fomblation. For example, an agent deserbed herem
 whit wht anoher agent hat may or may not be the ether a controlled release or extended retease Fommanion. Thes, in certan embodments, it may be destable to provide for the immediate weane of one a more of the agems described herem, and the contwlied release of one or mone other agents.
 the bomage ant and the daily dose are not cquivalent ha varions enbobments, be docage umb is

 fask (e.s. wht breakas), at bedtme atter a low fat nack in varons mbodmems, he dosage
mit is adminstered once a day, whoe a day, free thes a day, fons mes a day, fre tmes a day, Fix Unes a day.

When two sr more actwo mgrediexts are combined in single dosage fom, chembal memacions
 react with edch other and adde active ingredionts can fachtate be degradtion of ach hbble substances. Thas, in cotam dozage foms, zedie and basic substances can be physiculy sepawated as two distnct of ixolated layers in a compressed hablen, or the the we and shell of a press-owted thene Addtional agents that are compable with achate as well as basic substances,
 me actres ingredient can be enteric-coated. In certan mbodments therwor an heast me active fngedient can be prescoted in a contwhed release fom, In cetam emborments where a combination of thee or more cetive substances are used, they con be presented as physically isohated segnems of a compresed mothayer tablet, which can be optionaly fin coated.

The therpewe combinabions descrbed herein can be formulated as a tablet or capsule

 क्ated wha a protective coat, an enterve coat, or a fim coat to avod he possbie chenver

 to mma tablecs.

The theapento combinations descrbed hereh can be fomblated as a capsale conyming minotablets or mindtablets of all active ingwodients. Microtablets of the molvomal agens can be prepared asing well known phamaceotical procedures of table making the drect compresson, dry gramblom or wer gandation, hodivhal microtablets can be flled mbo had gelatin
 कmponent The miswoblets may be fim coated or onteric coated.

The thempentic combnamons descrbed heren can be formulted as a capswhe comprining one os more morotabicts and powder, or one or more microtabless and grambes or beads. ha oder to avold interactions bewen dras, some acive ingredients of a said combination car be fommber an merobibes and the others filed into capoules as a powder grandes, or beade. The microtablets may be fim coated or enteric coated. A Least me achye ingrebent wan be presented in contwlice release fom.

The therapone combinations deacribed heren can be formuated whem the active ngredients wro distbuted in the inner and outer phase of tablets. In an attempt to divide chempaliy incompathle consponerte of proposed combination, few hterating components are convered in grames or beads wing well known phamacentical procelures in pror at, The prepared gannles or beads (bmer phase) are hen mixel with ontar phase comprsing the rmaming acive tharedients and at least one phamacenticaly acceptable excipent. Tho muxam thas comprising moner mother phase is compressed into tablets or molded moto thets. The gramiles or beads can be contwled release or momediate relcase beads or gramles, and can froher be coase asing an entere polyner in manneous or non-aqueous system, asing methods and materabs that are Wown in the as.

The thenpento combinatons descrbed herm can be fommatad as single dosage mit

 possible interacumas.

The agens deambed hewin, alone or in combination, can be combine with ay phamacemicaly accepable camer or nedims. Thas, they com be combined whematerat that do not protnee as adverse, allergie or oherwise unwanted reachon when administered to a patient. The carrers or wedime used can molude solvents, dispersants, coathes, abownon

 dinntegating agenk, and the like), ete. If desmet, tablet doages of the dishosed compontione may be conted by samard agnons or monaqueow techmigues.

Whar provided as a single dowage fom, the potential exist for a enenieal interachon between. the combiner active ingredients (for example, an hpid lowenng agent and a GC-C agonish For the reason, the prefred bosage foms of the combinatom producs of his diokowne are
 physical contac berwen the ative fagrediens is mamized (hat is, redwed).

In ender to minnime onkat, one ombodment of ths diselosure where the prober is oraly ammentern provide for combintion produe wheren one active ingredent is enteric coated. By entexic coathag one or more of the active ingredients, it is posshbie not only to minimize the
 one of these components in the gastrontestinat tract such that one of these components is not

 aditionaly ensmio coated sabis that the release of tha component ocums only in the intestane. Stin azoher approch wowl involve the formulation of a combination produch th wheh the one component is watch whth a sustaned andor enterie release polymer, and he oher component is Who conted wht a polymer such as a low-viscosity grade ohyyroxypropy mehylcehahose
 omponents. The polyner coakng serves fo fom an addtional bamer to interacton wht the other componens.
 Water can be in the fom of tabets suoh that the entere soated componem and the ober active ingredent ade blended togeher and then compressed into a table or such that the entere comed component is compressed nio one fablet layer and the other active ingrebemt is compreseed into an addional layer Optionally, moder to furher separate the wo layers, one or more placebo

adition, dowge foms of the presen disclosure can be in the fom of caysuks wheren one
 parteles, grandes or nonperils, when are then enteric coated. These entericooted microbileks, partioles, grambes or nom-perls are then placed nto a capsule or womeresed moto a capoble along with a granulation of the other active ingredient.

These as well ab other ways of minimiong contact between the conmonents of combination products of the present disciosure, whether adminitered in a single dosage form or administeres in separate toms bu at the same bme by the same manner, wit fe reably aparent to those skiled in the ary haght of he pesent disolosure.

©sims

1. A method of redseng the nek of or treathg a disorder associated whe had andor sal fethtion in a patem, the methob comprising administerig to the patem an agem selectes from:

 fncrases emon secretom in the mintine.

2. The method of chan wherem he agen increases anom secretion in the intestine.
 man merases anma secretion in the metestine.

 awagonist, n) polasstam, and of a polymer resin.
3. The method of eham 5 wheren the agen is a granylate cychase recptor agmist
4. The mehbo of cham 5 wheren the agent is a whble ganylate cyelsse modubto:
5. The nshod of ohm 5 whercin the agent is a prontanoid

9, The methed of cham 5 wheren he agent is a chonde chamel aw wator.
10. Whe mebod of ekam 9 whercin the chbride chame activaton is bubpobtome
N. Themenhox of okam sherem the agent is a $5 H 4$ agonist.
12. Themomod of elsme 5 whancin the agen is a cyehc muchontide.

Y. The mothed of emams whercin tue agent is a laxaive.
 reguatos (Cibr) mbowhator.
18. The nowhod of cham 5 whernn the agent is an asent that ahecta cAMp icvel

20. The metbod of wann 5 wheren the agent is a menn bhabion
2). The netmod of dam 5 wheren the agent is an alonterone amagonist.
22. The methon of clam 5 wherem the agen is potassium.
23. The method of elam 5 wheren the agen is a polymer resin.

25. The methor of cham 8 wheren the prostanoid is selected from the compomd repreante by CAS Registy No. $333963-40-9$, the compomd represented by CAS Regintry No.
 oxeoctaybocyelopenthypym-5-ylheptanoic acid; and the 13,14 dhydro-15-kete

 beresf:
26. The mether of elam 8 wheren the prostanoid is misoprostel.
27. The mohod of ohim 8 whecon the prostanoid is the fre acid ofthe componnd asomobed with CA. reginty NO. $59122-45-5$
 misompostol.
29. Fue method of cham or 26 wheren only a singie somer of a mostanok a abministered
 skmalank a buth-produang agent and a stool solener.
 busk, docasate sowhum, bisacodyk and phenolphthalein,
32. The mehod of chan 23 wheren the polymer resm is selected bom ysphmm, bphd

 Coleserebm, Sevalmer, or Cholestymame.
34. The method ol cham 32 wheren he nonabsorbed polynuer reshe is sclected fons:
 waftate.
35. The method of chan 32 wherein the sodiam-binding polymer is selected fombe grosp
 polymer why-x-acyic acid polymer, polya-fluroacylie wid polymer,

 opolymer, and vinymhosphonatederyllo acd copolymer.
36. Themehod ofedan 32 whem the sodma-binding polyme is abmistere as a coreghen emmoniton when hmer comprise a semi-pemedbe sholl.
37. The method of caim 36 wherein the sent-permeable shel compmses at leas whe of a

 polyallyamine/polysyene salonate polymer.
88. The memod of any of chams $5-37$ further comprising whinistering an math-dabetic asemt
39. The mehod of any of chins 5.37 frober comprising administerng an mmoberif agent.
 thareos.
4. The methoi of any of chams $5-37$ forther comprising administring a PDe mhbitor.

45. The method of ay or chams $5-37$ forther conynging ammintong polyner resm.
46. The methed of st wheren the polymer resin is psylimu.
47. The mehod of cam 45 wheren the polymer nexin is a nonsbrobed polymer rean.
48. The mothod of elam 47 wheren the nowabsobed polymer resin is selected from hybumbic acia, polycabophil caleim, polyvinyl aceate, and polyinyi pymohidne.

4 The nehom of dam 45 wheren the polymer resin is a hpid towemg polymer.
50. The methoi of clam 49 wheren the lipid lowering polyner is sedected tom: chelestymme, colssevelam and sevahner.
51. The mohoot of any of chms $5-37$ futher comprising administenng an antinypertenvive agent.
52. The metnod or chim 51 wherm the anthypermone agent is sheoted fom: a dinatio,

 am adosterme antagonist.
53. The menod of elam 51 whewin the method comprises admininerng two or more mbihypenensive agens wheren the two or more anthypertensive agents are independenty sedecten from: a कharetc, an inhbitor of angiotensin converng enayme, an agiotensin If receptor
 a whin mbibitor, ard an abosterone amagonist.
54. The mehod of cham 51 wherm the anthypertonsive agent is a durenc.

56. The menvo of dam 54 wherem the dimetic is a loop duretic.
57. The mehnod of chan 54 wherein the diuretio is frosenide, bumednide ehacynic or torsemide.
58. The mehod of clam 54 whercin the duretic is a matade,
59. The method of elam 58 wherem the biazide is bendrofumethazide, hydrochorothazide, tmasamide, chordaldone or metolarone.
60. The method of elan 54 wherein the diaretio is a potassibm sparing agena.
62. The mehbe of chan 60 wheren the potasmun spang agent is ambonde or thambenc.
62. The webod of dam 54 wherein the diaretic is an ommone duretic.
63. Whe mehod of com 62 wheren he omotic dheve is ghacse or mamith.

65. The nethod of cham wheren the angotensin comenting encyme mobitor is selected

 (Acespri), Rampris (Atuce), and Tramblapni (Mavik).
64. The method of dam 51 wheren the anthypertensive agent is an angionain H weephor motamest.
67. The wethod of dam 66 wheren the metrotnmin receptor andagonst is selected fom:

70. The mothod of chan 69 wherem the catcimy chane bienkers Amborpme.
T. The methon of ebim SI wherem the anthypertensve agent is a beta-adrenergio amagonizt.
72. The menno of clam 71 whenem the beta-adrenergio antagonis is selected font

 Cobrolob, Laberabl, But Butoxamine.
 axigegorist.

74, The method of cham 73 wheren the alpha-adrenergio anagonixt is sebeton Gom:

75. The method of cham Si wheren the anhypertensye agen is a renn bibibior.
 and Alskmen and Syebs.
7. The metwod of chan $5!$ whercin the anthypermsive agent is an adostorone andagonst.
78. The nehwo of ohan 77 wheren the aldosterme ankagonat is Spronolacone, Camenone, or Ephembne.

80. The method of wam 79 wherein the hpid aterng agem ia a whiesteroh howerng agent.
8. The mehod of ohan 80 wheren the agent lowers low densty whentor,
82. The mothod of cham 79 wheren the fipid alering apent is sefech from the goup
 absompen inhbitor, a squalena synthests inhbitor, and a bie sed sequestrant.
83. The mehod of olam 82 wherem the find alterng agent is a stann.
84. The method of cham 83 wherem the statin is chosen from monvartahn, rosavastann ame atoryastatim,
85. The mehod or ohan 79 wheren the liph aitemg agent is a oholesterol absombion mabitor.
86. The method of chm 85 wheren the cholesteron absomtion mhibior is exetmibe.
87. The mehod of oham 75 wheren the hivatherng agent is a bie acid sequestam.
88. The mehoo of unam 87 wheren the bie acid sequestran is chosen fom cholesymamme. colesevelam and oblestipol.

90. The method of cimm 89 wherem the Sbrate is fenowbrate.
95. Themohod of edma comprising adminstong misoprosiol and psyham.

93 The method ot clam in omprismg admmintering psylhum and a peptebe that actvate ho guanyate cychase (emeptor.

9s. The menod of chana 93 wheren the peptide is selected from:
Cys Cys Gut Tyx Gy Gya Asn Pro Ala Cys Th Gly Cys Tyr

Cys Cys Ote Try Cys Cys Asn Ero Aba Gys The Oy Cys Tyx

Gys Cy Grumbeys cys Am Gro Ab Cys Th Cly Cys;
Gys Cys Churpeys Cys Am Pro Ala Cys Th Qly Cys

d-Cys Cys Olu Tr Gy Cyann Pro Abags Thr Gly Cys Tyr

GKys Gyo Sha Lev Gys Gys Anm Pro Aa Cys Th Gly Cys;

BCys Cys GuTm Cys Cys Am Fro Ala Cys Thr Gly Cys:
Amn Asp Asp Cys Gh Lea Cys Val Ann Val Ala Cys Th Gly Cys Lea,
Asm Asp Ghe Gys Gu Lea Cys Val Asm Val Aba Cys Thr Gly Cys Lem;
 Cyelea;
 Gys Een

 Ala Lea Pro Gis Asp Lea Oha Pro Val Cys
 Vas Am Vad Aacys That Gy Cys ker

Probly The Cys Game Gys Am Ty Ala Ala Cys Tu Giy Cys;
 Charo Cm Gla Fw;

 Cys:
Mer Fre Ser Thr Chaty he Axg Arg Pro Ala Ser Ser Tyr Ala Sor Cyslle Try Cy Thr Thr Ala Ge Ala Ser Cys Gus Gly Ary Th Thr Lys Pro Ser Lew Ala Th:
Aakph Leacys Gume Cys Ala he An Aba Cys Thr Gly Cys Len;

 cyshos

Ghe Gto Gu Cya Gh Leu Gy lle Am Me Ala Cys The Gy Tyr:
 GuGm LeaAgg Gy:

Asp Lenchare Yat, wad
 Lea Cys lle Amm Me Ala Cys Th Gly Ty

96. The method of ohm I wherein the disonder is associated with salt retention.
97. The mebod of any of chans 1 . 94 wheren the disoder is a cardoyenenar disorder.
98. The mehoo of olan 97 wheren the cardiovasoular disorder is cardonyopathy.
99. The mehod of chan 98 wherein the wariomyopatiy is ussocintod whin chagas disease.
100. The method of ohm 9 wherem the cardiovascahar disorder is hypertension.
101. The nehom of chim 100 wherein the hypertension is sut-sexstive hypetenvion.

T03. The mehod of dam 97 wheren the cardiovasendar disonder ; cardac hymertrophy.
10. The mobod of clam 97 wheren the cardiovasenar disorder ss aheat atbek,
105. The mehod of chan 97 wheren the candovadhar morder is stohe.

3W. The method of any of dams $1-94$ wherem the patient ss sofferng hom sat-sensibye symeramsion.

Wh. The methon of any of chams 104 wherem the pationt is suffang trom congestre hear: filure.
 Gypersophy.

10. The bethod of any of bhams 94 wherem the patent has suffere a some.

In. The mekwot ony of ohnms $1-94$ whercin the pation is sab sensibye.

 or mout menal tabure.

 cimhosis.
121. The mohot of clam any of chams 1.94 wheren the dionder is Budi-chims symbme.

124. The phambenteat compontion of dam 123 wheren the second agent wedwes sodram absompton in the mestine.
25. The phamacuicel composition of cham 123 whewin the seond ngen mereases anon serethon in the mostine.
126. The phamacentical compostion of cham 223 wheren the scond agent both refuees

127. The phamncemical composition of obam 123 wherem the seond agent se weeke from: a) a gumybte oylase reeptor (agonst, b) a soluble guanylate cychase moduhtw, c) a

128. The phamacenicak composition of cham 123 whem the second agent is a gamyna oychase zeeptor Cagham.

T29. The phammacenthat composition of cam 123 wheren the second agent is a sobbhe gasnylate oymase modukhor.

 ตhanme actrvator.
 agmase.
133. The phamacentical composmon of cham 123 whereh be second agent is a cyolio mueleotide.
 mampor mbibior,

136. The phambacotion composition of chan 123 whoren the secomd agent as a oysub forosis manmmembrans condwamee regulator (cTFR) moñatator.
137. The whamachatea compominon of clam 123 wheren the seond agent is an asent that atres camp tove?
 leves.
 phomitultesterase inhbitor.
[4]. The phamaceatear composition of clam 123 wheren the second agen is a renin manbertor.
14. The phambentical composition of cham 123 wherem the seenn dgent is m aldoxteme axtagonis.
142. The ghamacentical composition of cham 123 wheren the seond agen is ponaswm.
43. The pham resin.

 absoption in he intertne and increases anton secretion in the mherbne.
145. The pharmacution composition of ciam 144 wherem the scond agen rednees sodum whombion in the atemane.
 sacretion in he smastine.
147. The phamachweal compositon of cham 144 wherem the seond agen both reduces sodimm absoption in the intestme and moreases anion secetion in the interthe
48. The phamacenical composition of clam 144 wheren the second agen as sebeter from: a) a ganylate eychase nceptor C agonist, b) a whable guambate eychase moduator, of a

 cyobuse receptor Cagonist.
 gisanylum oychase monwanor.

Sth. The phamamented compostrom of dam 148 wherem he seond agent is a prostanom.
19. The pharmacenical composibon of cham 48 wherefn the seomd agent is an chombe chantel activator
 gemain.
 wuchentio.
 fruspont mabutor.

 mansmembrame condacance regabator (CTRR) modulatw.
 ameets ondP leven.
159. The phammexaica composition of clam 158 wheren the seond agen morease camp level.
160. The phamaceatical composition of clan 148 whew the aecond agent is a phosphodesterase mibutor
161. The phamabenical composition of chamisg wheren the seond agen is a renim mbmber.
16. The phamaceatical composition of cham 148 wherein the second agent is an aboxtermae axagmazt.
163. The pixamacenical compostion of chim 148 wheren the second agent is ghtassum,
164. The phamacemical compostion of clam 148 whewe the second agent is a polymer rem.
165. A phamacextical composibon compring a hrst agent hat is an ambobeaty agent ad a second agen selected fons a) an agent that reduces sodum absorption in the intestrec; b) an
 abowphon th the memthe and increases anton secretion in the intestine.
166. The phamacenical compositon of chim 165 wherem the seond agent rednces sodimm absoption in the mtestine.
167. The phamacmat compostion of clam 165 whemen he secnd agen havease anton secreton m the mbentre.
168. The ghamacotica compostion of cham 165 wheren he seond agen boh rednees

B69. The phamacentical somposition of cham 165 wheren the second agen is sesecter fom:

170. The phammexntica composition of cham 169 whemen the seond agen is a ghanyiate cyclase receptor © agomint.
37. The phonmaceatica composinom of clam 169 wheren be second agent is a sshble sumylate oyclase mostoknor.

 chamel shrivion.
 agonis:
 mucleatide.
 Fansemt nhbinor.
177. The phamaceated composkbon of elam 169 wheren he seconk agem is a laxatue.

 atecten wix level.
 level.
 phosphoriestarse inswbitor.
 inhibtor.
 matamist.
184. The phammentica compositon of clam 169 wheren the seond agent y potascmm.
185. The phamaceurca conposithon of chan 169 wherem be sewor agent is a potymer rexin.

187. The phamaceuthed compostion of olam 186 wheren the soond agen refrees sodimm absomphen m the sntentine.
 secrenon in the mesther.
189. The phambacutical compositon of chan 186 wherein the second agent both reduces

100. The phmmacentical womposithon of cham 186 wherem he second sgent is seleten from: a) a gunyhate cyolase recoptor C agonst, b) a whble guanylave cyclase modulan, o) a

191. The phumacentical composition of cham 190 wheren the seond agent as a gamylate cyciase receptor Cagomist.

192 The phamaconton composition or elam 190 wheren the scond agent is a soinble granylate ychase modablor.
193. The phamacention composition of cham 190 wheren the seond agen is a promanom.
194. The phamacental composition of chan 190 whercin the seond agem is a whonde chamel actryator.
105. The phamacentica composition of ohm 190 wheren the seond agen is a STy agonist
106. The phamavented componiton of oham 190 wheren the acond ageat as ayche naclsolide.
197. The phamacentical conposition of clann 100 wherein the second agen is a sodum trassman inmbtors.
108. The phamaceniea composibon of cham tof wheren the second agent is a laxative.
199. The phamecoutcal composibon of lam 190 wherein the second agent se a cysic Hbrosis trammembane conductunce reguktor (CTER) motuator.
200. The phamacention ompration of clam 190 wheren the seond agent is an agent that GReve CAMP level.
205. The phambentical conaposition of clam 200 wherein the second agem herease onve level.
20. The phammectical composition of elam 190 wheren the scond agem is a phospusplesterase tankitor.
203. The phamboentical womposition of olam 190 wheren the seomd agent is a whin inhbiser.
 magronis.

206. The phamaceutical composition of cham 190 wheren be seond agen is a polymer wesin.
207. A phamacentical composibon comprising a fist agent hat ta PDE mhthtor and a

 abomphon in the intwhine and mercasce mion secrebion in the intestine.
208. The phamacencal compostion of clam 207 wherein fue seond agent reduces sodim absoption in the mestrac.
209. The phamachtical composition of ciam 207 wheren the scond agen hercases anion secretmy in the interthe
210. The phamacotical composion of elam 207 wheren the seond agen boh reduces

 a) a gumylate oychase recepor C agonist, b) a soluble ganylate oychase modubor, of a

 renm inhintor, m) as aidonterone antagonst, n) potassum, and of a polymer resm:
21. The phamacentical composition of dam 21 \} wheren the second agent is a gearybe cylase receptor © agmist.
23. The phamacentien composition of cham 21 wherein the seond agen is a sobble manylate oychase modulator.

 chambel ackvatos.
 agonist
217. The phamanewtel composinom of cham 211 wheren the second agem is a cyeho nseleotide.
218. The phamacertical composinom of elam 211 wheren the seond agent is a sodma trasspor inhbibitor.
219. The phambectical composition of cham 21] wheren the seond agen is a faxativ.

220, The phamacentid omposition of clam 21] wheren the secon agent a cy whe hbwosis tranmembrane wnductanee reguktor (CTFR) modnhatr.
221. The phamaentical composition of cam 21 whewn the seond agen is an agen that afecta camp level.
 level.
23. The phamacenticat ompostion of cham 211 wherein the seond agent is a phosphodrestersae nhbutor
224. The phamacsuncal composinon of cham 21 wheren the seond agent as a renk inhbstor.
225. The phamacenical composition of clam 211 wherem the second agent is ar adomerone amagonist.

227. The phamacerical compostion of clam 21 wheren the second agent is a polymer resin.
228. The merbo of any of chams 207227 wherein the PDE mbibitor is a PDES-8neche pDE nabletox.
 innber
 whabior.

 whorphon th the intembize and horeases anion semetion in the mosthe.
 absonghom in she macstane.
233. The phamaceubeal womposition of chan 231 whemein the seond agent meresses anom secrethon matne mastune.

236. The phamacentiol conepostion of clam 235 wherem the second agen is a grayhate oyckas neceptor C agonist.
27. The phamaceutical composition of olam 235 wheren the sccond agen is a solabio gramysta cyclase mothator.
238. The phammacotcal compostion of clam 235 wherem the scomd agen is a promamid.
299. The phamacuthel omposition of clam 235 wheren the scond agen is a chonde chmmel scervator.
249. The phamacemeal comprohion of cham 235 wherein the seond agen is a 5 aTh agynist.

24n. The phamacestcal composition of cham 235 wheren the zeworl agent is a cyelic nucleoride.
242. The phamabeutical composition of cham 235 wheren the second ageat as a sobiam ransport mhentor,
243. The phamseentical compogition of clam 235 wheren be secon agen is a bxative.
244. The phamacestical wompsition of cham 235 wherem the seond agent :s a cyato कhrosis tammembrne conductase reghator (CTFR) moduhtor.
245. The phamacotical compostion of eham 235 wheren the socond agen is an agest hat whects cher lequ.
246. The phamacention combosition of cham 235 wherem the seond agent a a sodima tramport nhebsor.
24. The phambeouthen compostion of clam 235 wheren the seoon agent is a phesshoodesterese mabitor.
248. The phamacentice womposition of cham 235 whercm the seond agent is a renm inhbitor.
249. The phamacentival compostion of clam 235 wherem the scond agen is an aboterone amagmist.

251. The phamacentcal composithon of any of clams $231-250$ wheren he polymer resin is py円ыни.
252. The phamaceatical wompoition of any of clams 255250 wheren the poymer resin is a monaborbed polymer resin.
253. The phamaswical composition of elaim 252 wheren the nonabsored polymer resin is seleced tom wyamonio add, polycabophi calcum, polywny acetate, and polywny? prolidme.
254. The phamacentical compostion of any of clams $231-250$ wheren the porymer resin is a hipe lowering polymer.
255. The phamacentical compostion of elan 254 wheren he limi howenne polymer is spected trom whestymame, ondevevelam or sevahner.
256. A phamacentical ompostion comprising a firt agent that is an ans-bypertenxive agemt. and a seond agen setwed from: al an agent that reduces sodums absoption th the thentme, b) as agent hat mereases wion sectetion in the interthe; or c) an agent that boh redicces sodum absorption in the frembe abd mercases axion scoretion in the intestme.
257. The phamacenicat compositon of chim 256 wheren the seond agent redewes sobium aborpton th the mevine.
 serction th the interne.
259. The phamaconical composition of cham 256 wherem the secon den bot reduecs

260. Thw phamacentical compostion of clam 256 wheron the seond agen is selexer frm:

 bamport mbibitor, h) a laxatve, i) a cyste hbosis tranmembrane conductance regulabr

26. The phamanenten compostion of blam 260 wherob he second agemt is a ganylate oychase recertor Cagonim.
262. The phamacenbean somposinom of cham 260 wherein the sewn agent is a whble gronylata yolase moduator.
263. The phamaceutcal composition of chim 260 wheren the second agent is a proxtanot.
264. The phamacention comporition of clam 260 wheren the seond agent is a chonde channe andenator.
265. The phamachbeal composition of cham 260 wherin the second agen is a 5 Itra agonst.
266. The phamacentical composition of elam 260 wheren the scond agent is a cycle macrobide.
267. The phamaceatical composition of clam 260 wherem the secons agent is a sochm traxpory inhobtor.
268. The phamacotical composition of dam 260 whexen the second agen is a laxatye.
269. The phmmacentical conamition of elam 260 wherem the seond agent is a cyste Throxis tasmambrane condwetance regalator (CTER) modnator.
270. The phemacented wmposition of cham 260 wheren the second agen s an agent that affect oAMP tevel.
271. The phamacentical composition of elam 270 wheren the seond agent nocresse cAMP isyek.
272. The phamacoutisal compostion of ciam 260 wherem the second agent is a phoshodeaterase whbler.
273. The phamacentical compostion of cham 260 wheren the seome agen is a wan Bhebitor.
274. The phamacemticat compostion of cam 260 wheren the scond agen is an aldosterone anagonist.
275. The phamaceatical compostion of cham 200 wherem the seond agen is potasman.
276. The phamacextcal whomation of camm 260 wherein the seond agen is a poymer masis.
277. The phambecmicat compostion of any of clams $256-276$ wheren the amthypentersive

 andagonist a raim habibtor, mo an aldosterone antagonist.
273. The phamacentical composition of my of clams 256276 wheren the composinon comprises two or more anthypertonsive agents wheren the two or more mbthypertassive agents ace independenty solected from: a duretic, an mbibior of angotonsin converting emyme, an angotensin fi recephor antagonist, a cabcimm chame booker, a beta-adrenerge antagonisk abpha-afrencrgic antagenst, a remin inhibitor, and an adosiemene antagenst.
279. The phamaceatical conposition of ciam 277 whemin the anth-hyertemave agent is a Gmete.
280. The phamacontich composthon of cham 279 wherem the duretic is sctected hom the
 dimetio.
285. The phamacenteal conyosthon of elam 279 wheren the duretio sis ioop tharetic.
282. The phamacesucal composition of cham 279 wherein he durete s fumsembe, bumatande, ehacynic or tomende.
283. The phamaceatica composition of chan 279 wheren the dareth is a thazide.
284. The phamacenical composition of cham 283 wheven the thande is

 agem.
286. The phamacentical composition of elam 285 wheren the potasmban sparng agents is amionde or tramterens.

288. The phamacemich composition of chan 287 wheren the ombotic duretio is ginose or mamabok.
285. The phamacemical ompostion of ofam 277 whern the mbiypertensive agent is m angolensiz onverting enzyme inhbitor.
290. The phamscenten composition of clam 289 wheren the angionsh convertisg exyme inhbitor is selected Fons: Benazepril (Lotensin), Captopni (Capoten),

 Tandolapm (Mavis).
29. The mohoof of cham 277 wheren the anthypertensive agen is an angotensin in recepts matagnakt.
292. The phamaseansal compontion of clam 291 wheren the angiotenmin receptor
 Temisamax, Vaisaram.
293. The phamacettioak composition of cam 277 wheren the mitrypertenswe agent is a calum chame blocker.
294. The phamacontical compostion of clam 293 wherem the calcham chamob blocker is selected hom: Ambodpine (Norvaso), Febodipine (Plondn), Nicardipine (Catione), Nhedphe (Procada, Adaay, Nmodipine (Nimotop), Nisoldmine (Sular), Nitrendpine (Cadif, Nitrepin),

 Ankodrume.
 ben-adronergis mackgonith.

 ©arpebiol, Cemmohot, Ebetarol, and Buboxamine.
298. The whamacenseal composimon of ciam 277 wherem he methypernexsive sgent is an abha-abrenersic matagonnst.

300. The phammachted wompostion of clam 277 whomen the anthypertenswe agent is a senin whbiter.

302. The phamacentioat onmpostion of cham 277 wheren the anthypervensive agen is an aboekwone anmagnest.
302. The phammacencou composithon of clam 302 wheren the adosterone antagonist is Spromolacone ©smemone or Epleranone

 absompen in the ntrestine.
 secretion in the smostine.

308. The phamacenthen eompasinon of cham 304 wheren the second agem is selenter from:

 renim inhbitur, m) an aldosterone antagonist, n) potassinm, and of a polymer resin.
 sychase receptor C agomist.
310. The phamenewha compostion of cham 308 wheren the seond agent ta a whble gwnylaw oyclaye moblobor.
311. The phamancemben compositmon of ohm 308 wherem the second agenats a prostanohd.
312. The pixamacemeal compostion of ehim 308 wheren the second agen is a dhonic chamer activalor.
313. The phamacotical componition of clam 308 wheren the second agent is a STY 4 sgonist.
34. The phamacenteal conposition of cham 308 wheren the seond agen is a oycic neclowne.
315. The phamacenthal composition of cham Yog whemen the seond agent is a sodmas tanspot mbibior.
316. The phammewheal composhon of cham 308 wherem he seond agen is a laxahy,

Sh. The phammontical composition of cham 308 wheren the second agent is a cymbe Throas tansmembrane conductance regulator (CTFR) moduhator.

31s. The phammeenteal compostion of ohm 308 wherem the second agen ts an agent trat whect CAME fevel.
319. The phamacentical composition of cham 318 whern the seond agen morease cANP leves.
320. The phambechical compoxition of elam 308 wheren he becond asens is a bhomhediemterase mbibitor.
321. Whe phamacentica composthon of ohm 308 wherin he scome agent a a rem mbibitor.
32. The phamacentical compostion of cham 308 whereis the second agent is an abostorme amagenist.
323. The phamacentical compostion of clam 308 wheron the second agent is phassimm,
324. The phamnacental combosition of cham 308 wheren the second agent as a poymer nesins.
 agen is a chtelentrol lowering sgent.
325. The phamacenta composion of dam 325 wheren the cholesterol laxerng agent fowers tow denciy chorestern.
327. The phamachated compomiton of any one of chams $304-324$ wherem he him atterng

 sequentrant.
328. The phamacetical compostion of cham 327 wherein the hipd ahering agent is a atam.
329. The phamacenaw composithon of chan 328 wheren the statin ts chosan from simvastabin, wasastatay mal abovastatin.
33. The phambechich whpostion of cam 327 wheren the lipid thenng agen is a whiesterel absorption mbibiter.
33. The mohol of ciam 30 wheren the chotesteroh absoption inhbitor is exatmbe.
32. The phamacenticai composition of cham 327 wherem be lipid aterng agen is abibe acie stonestrast.
33. The phamacenticar compostion of cham 332 wherem the bife acd sequentant is onsen Grom cholexyamine, colesevelam and colevipol.

336. The phamacember composition of any of dams $32,35,174,195,216,240,265$, and

 3T, Wherem the prostanoid is sefeeted fom the compoun represented by ©AS Registry No.

 Yhbeptamoic scis; anf the 13,14 -dinydro- 15 -keto prostaghandms E fochosed in 655284858

338. The phammacenical composition of any of chams $130,153,172,193,214,238,263$ ank SH wherin the prostanoid is the free acid of the compond associatod with CAs regust NO. 59122.49 .5
339. The phamacencal composition of any of chams $130,153,172,193,214,238,263$ and Bry wheren the prostandi comprises a mixtare of sherisonors.
340. The phamaceutical wompomion of any of chmens $130,157,172,193,214,238,263$ and I? $\}$ wheren only a singe isomer of a prostamid is present.
34. The phamacowical composition of any of chams $135,156,77,168,210,243,268$, wh 316 wheren the laxatre is select from: a stimblant, a buk-prohucing agent and a sook shtener.
342. The ghammacutical compositon of any of clams 135, $156,177,198,219,243,268$, and 316 wherem the laxave is seleted from dextoximmide, pyhum hask, docasate sodm, bisacodys, and phenolphthalon.
343. The phammaceniwal composition of any of chame $143,164,185,266,227,276$, and 324
 poymer semns, ano sodikm bindmepolymen.
344. The phamacenical ommposition of cham 343 wherenn he polymer resh basybum.
345. The pisamacmaxma composinon of clam 343 wheren he polymer ram is a livid lomernag polymer,
346. The phammaenticai composition of clam 343 wheren the polymer rewn is a womabsorbed polyner xesm.
347. The phannaceutha composithon of clam 343 wherch the polymer resin is a sobom binding peiymer.
 selated bom: Cosasmobme, Sevalmer, Cholestymmine.
349. Fhe phamncemata composition of clam 346 wherem nomaborbed polymer rexin is
 polysiymene sulate.

 conaymer, or vinylphoshomatiseryhe acid copolymes.
35. Twe phamacental compostion of clam 350 wheren the sodim-binding polymer is adminstered as a coreshell compostuon wheh furher conprises a sem-pemebbe shell.
352. The phamacctical composition of dam 351 wheren the sem-pemeable shell compries at fexat one of a poly~11 trmehymamonomodecymethacylate polyner, a styrene-
 polyalyhambegolysyrene suffonate polymer.
35. A phamacodical compositom compusing misoprostol and psybum.

35a, A phamacouteal compostion comprising psylum and a peptide hat achoates the

 adh sequence selioled from:

Cys Cys Olu Tyr Cys Cys Asa Mo Ala Cys Thr Gly Cya Tym Cys Cys Cha Les Cys Cys Asm Fro Ala Cys Thr Gly Cys Tyr, Cys Cys Chu Phe Cys Oys Am Pro Ala Cys Thr Gy Cys Tym Gys Cys Chatp Oy Gys Asm ProAn Cys The Gly Cys Tys Cys Cys Gu Tyr Oys Cys Am Pro Ala Cys The Gly Cys:
 Cys Cys Gn Phe Cys ya Amprodia Cys Thr Gly Cys Cys Cys Ohe Ty Cys Cys Asm Pro Ahe Cys Thr Gly Cys; \&- Cys Cys Glu Ty Cys Cys Asm Pro Ala Cys Th Oly Cys Tyr G-ys Cys Gu Lea Oys Cys Asm Fro Ala Cys Th Giy Cy Ty; d-Cys Cys Ohame Cy Cys Asm Pro Ala Cys Thr Gy Cys Ty d-Cys Cys Chw Tr Cys Oys Asm Pro Ala Cys Thr OHy Cys Tym, ECys Cys Gu Tys Cy Cys AmproAbCys Thr Oly Cys.

GCya Oy Gh Fhe Cys Cys Am Pro Aa Cys The Giy Cys

Asn Asy Asp Cya Om Lex Oya Val Am Val Ala Cys The Oly Oy Lex;

The Lys Thr Len Arg Gurle Ala Asn Asp Asp Cys Gu Len Cys VabAs Va Ab Cy Tu Giy Cyses;
 Cyeters

 Ala Lev Pro Gh Asp Len Gm Pro Val Cys;
 Varksn Val Ala Cys The Oly Cys Lew

Pro Gy Thr Cys Sla he Cys Ala Ty Ala Ala Cys Thr Gly Cys:
 Gla Pre Clb Charay

Arg Val Giy ky Lan Arg Ample Ala Prolle Pro Gly Gh Pro Val Val Prome Lea Cys Sar

 Cys,
 Oys Ala Ser Cys Tis Oly Arg The Thr Lys Pro Ser Leu Ala Thr
Ala Asp Lea Cys Chathe Cys Ala me An Ara Cys The Gy Cys Leu;

 Cyster

 Gha Chata Arg Cly;
 Asphea Gm Pro va; and
 Lea Cyo fle Asm Mef Ala Cys Thr Gly Tyr.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER			
A61K 3144706(2006.01)i, A61K 31/675(2006.01)i			
According to International Patent Classification (TPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) IPC 8: A61K			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) eKIPASS(KIPO internal), Delphion, Pubmed (sodium absorption, guanylate cyclase, salt retention, hypertension, psyllium)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	opriate, of the relevant passages	Relevant to claim No
X/A	Hypertension 37(2 Part 2): 467-471 February 2001 See introduction \& result		123-352/353-355
X/A	JP1 1240841A (NISSIN FOOD PROD CO LTD, See abstract	V KYOTO) 07 September 1999	353-355/123-352
A	CA 2522895 A1 (WARATAH PHARMACEUTIC See abstract	S, INC) 11 November 2004	123-355
A	Vallon V et al., The salt paradox and its possible im patients. Curr Hypertens Rep. 2005 Apr, 7(2):141-7. See abstract	ications in managing hypertensive diabetic	123-355
A	Sica DA. Sodium and water retention in heart failure mechanisms.Cleve Clin J Med. 2006 Jun; 73 Suppl Sec abstract	and diuretic therapy: basic S2-7; discussion S30-33.	$123-355$
A	Sahay M et al., Sodium transporters in kidney role J Assoc Physicians India. 2007 Feb;55:135-139. See abstract	health and disease.	123-355
\triangle Further documents are listed in the continuation of Box C. \triangle See patent family annex.			
* Special calegories of cited documents: document defining the general state of the art which is not considered "T"later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention to be of particular relevance			
Date of the actual completion of the international search 08 OCTOBER 2008 (08.10.2008)		Date of mailing of the international search report 08 OCTOBER 2008 (08.10.2008)	
		Authorized officer CHO, Kyung Joo Telephone No. 82-42-481-8287	

[^0]| INTERNATIONAL SEARCH REPORT | | International application No. PCT/US2008/061205 |
| :---: | :---: | :---: |
| C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT | | |
| Category* | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No |
| A | Fordtran JS et al. The mechanisms of sodium absorption in the human small intestine. J Clin Invest. 1968 Apr;47(4):884-900.
 See abstract | 123-355 |

[^1]
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. \triangle Claims Nos.: 1-122
because they relate to subject matter not required to be searched by this Authority, namely:
Claims 1 to 122 pertain to methods for treatment of the human or animal body by therapy, and thus relate to a subject matter which this International Searching Authority is not required, under Article 17(2)(a)(i) of the PCT and Rule 39.1 (iv) of the Regulations under the PCT, to search.
2. \searrow Claims Nos.: $42-44,46-50,52-78,80-90,98-105,114,119,120$ because they relate to parts of the intemational application that do not comply with the prescribed requirements to such an extent that no meaningful intemational seareh can be caricd out, specifically:
Said claims are unclear, since they refer to claim $38-41,45,51,79,97,106-113,115-118,121$, or 122 , which does not follow the third sentences of Rule 6.4(a).
3. \triangle Claims Nos:: $38-41,45,51,79,97,106-113,115-118,121,122$
because they are dependent claims and are not drafted in aceordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1.As all required addtional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. \square No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation No protest accompanied the payment of additional search fees.
Form PCT/ISA/2 10 (continuation of first sheet (2)) (July 2008)

INTERNATIONAL SEARCH REPORT
Information on patent family members

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP 11-240841 A	07.09.1999	JP 3345650 E2	18.11.2002
GA 2522895 A1	11.11.2004	All 2004-233911 A1 EP 1620464 A1 JP 2007-523840 T2 US 2005-0217671 A1 WO 2004-096853 A1	$\begin{aligned} & 11.11 .2004 \\ & 01.02 .2006 \\ & 23.08 .2007 \\ & 06.10 .2005 \\ & 11.11 .2004 \end{aligned}$

[^2](19) World Intellectual Property Organization International Bureau
(43) International Publication Date 11 December 2008 (11.12 .2008)

PCT

(10) International Publication Number

 WO 2008/151257 A2(51) International Patent Classification:

C07K 7/08 (2006.01) A61K $47 / 48$ (2006.01)
A61K 38/10 (2006.01) A61P $1 / 00$ (2006.01)
(21) International Application Number:

PCT/US2008/065824
(22) International Filing Date:
(25) Filing Language:

English
(26) Publication Language:

English
(30) Priority Data: 60/933,194

4 June 2007 (04.06.2007)
US
(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

60/933,194 (CIP)
Filed on
4 June 2007 (04.06.2007)
(71) Applicant (for all designated States except US): SYNERGY PHARMACEUTICALS INC. [US/US]; 420 Lexington Avenue, Suite 1609, New York, NY 10170 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): SHALLUBHAI, Kunwar [US/US]; 2707 Bald Eagle Circle, Audubon, PA 19403 (US). JACOB, Gary, S. [US/US]; 171 East 84th Street, \#16J, New York, NY 10028 (US).
(74) Agents: ELRIFI, Ivor, R. et al.; Mintz, Levin, Cohn, Ferris, Glovsky And Popeo, P.C., One Financial Center, Boston, MA 02111 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BII}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}, \mathrm{CA}$, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US (patent), UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
(54) Title: AGONISTS OF GUANYLATE CYCLASE USEFUL FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS, INFLAMMATION, CANCER AND OTHER DISORDERS
 including gastrointestinal disorders, inflammation or cancer (e.g., a gastrointestinal cancer). The peptides can be administered either alone or in combination with an inhibitor of cGMP-dependent phosphodiesterase. The gastrointestinal disorder may be classified as either irritable bowel syndrome, constipation, or excessive acidity etc. The gastrointestinal disease may be classified as either inflammatory bowel disease or other GI condition, including Crohn's disease and ulcerative colitis, and cancer.

AGONISTS OF GUANYLATE CYCLASE USEFUL FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS, INFLAMMATION, CANCER AND OTHER DISORDERS

RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. $60 / 933$, 194 filed on June 4, 2007, the contents of which is incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to the therapeutic use of guanylate cyclase C (GC-C) agonists as a means for enhancing the intracellular production of cGMP. The agonists may be used either alone or in combination with inhibitors of cGMP-specific phosphodiesterase to prevent or treat inflammation, cancer and other disorders, particularly of the gastrointestinal tract and the lung.

BACKGROUND OF THE INVENTION

Uroguanylin, guanylin and bacterial ST peptides are structurally related peptides that bind to a guanylate cyclase receptor and stimulate intracellular production of cyclic guanosine monophosphate (cGMP) (1-6). This results in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane channel for efflux of chloride from enterocytes lining the intestinal tract (1-6). Activation of CFTR and the subsequent enhancement of transepithelial secretion of chloride lead to stimulation of sodium and water secretion into the intestinal lumen. Therefore, by serving as paracrine regulators of CFTR activity, cGMP receptor agonists regulate fluid and electrolyte transport in the GI tract (1-6; US patent $5,489,670$). Thus, the cGMP-mediated activation of CFTR and the downstream signaling plays an important role in normal functioning of gut physiology. Therefore, any abnormality in this process could potentially lead to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, excessive acidity and cancer $(25,26)$.

The process of epithelial renewal involves the proliferation, migration, differentiation, senescence, and eventual loss of GI cells in the lumen $(7,8)$. The GI mucosa can be divided into three distinct zones based on the proliferation index of epithelial cells. One of these
zones, the proliferative zone, consists of undifferentiated stem cells responsible for providing a constant source of new cells. The stem cells migrate upward toward the lumen to which they are extruded. As they migrate, the cells lose their capacity to divide and become differentiated for carrying out specialized functions of the GI mucosa (9). Renewal of GI mucosa is very rapid with complete turnover occurring within a $24-48$ hour period (9). During this process mutated and unwanted cells are replenished with new cells. Hence, homeostasis of the GI mucosa is regulated by continual maintenance of the balance between proliferation and apoptotic rates (8).

The rates of cell proliferation and apoptosis in the gut epithelium can be increased or decreased in a wide variety of different circumstances, e.g., in response to physiological stimuli such as aging, inflammatory signals, hormones, peptides, growth factors, chemicals and dietary habits. In addition, an enhanced proliferation rate is frequently associated with a reduction in turnover time and an expansion of the proliferative zone (10). The proliferation index has been observed to be much higher in pathological cases of ulcerative colitis and other GI disorders (11). Thus, intestinal hyperplasia is the major promoter of gastrointestinal inflammation and carcinogenesis.

In addition to a role for uroguanylin and guanylin as modulators of intestinal fluid and ion secretion, these peptides may also be involved in the continual renewal of GI mucosa by maintaining the balance between proliferation and apoptosis in cells lining GI mucosa. Therefore, any disruption in this renewal process, due to reduced production of uroguanylin and/or guanylin can lead to GI inflammation and cancer $(25,26)$. This is consistent with previously published data in WO $01 / 25266$, which suggest a peptide with the active domain of uroguanylin may function as an inhibitor of polyp development in the colon and may constitute a treatment of colon cancer. However, recent data also suggest that uroguanylin also binds to a currently unknown receptor, which is distinct from GC-C receptor $(3,4)$. Knockout mice lacking this guanylate cyclase receptor show resistance to ST peptides in the intestine, but effects of uroguanylin and ST peptides are not disturbed in the kidney in vivo (3). These results were further supported by the fact that membrane depolarization induced by guanylin was blocked by genistein, a tyrosine kinase inhibitor, whereas hyperpolarization induced by uroguanylin was not effected (12, 13). Thus, it is not clear if the anti-colon cancer and anti-inflammatory activities of uroguanylin and its analogs are mediated through binding to one or both of these receptors.

Inflammatory bowel disease is a general name given to a group of disorders that cause intestines to become inflamed, characterized by red and swollen tissue. Gastrointestinal (GI) inflammation can be a chronic condition and often leads to GI cancer (14). Examples of such inflammatory bowel diseases (IBD) include Crohn's disease and ulcerative colitis (UC). It is estimated that as many as $1,000,000$ Americans are afflicted with IBD, with male and female patients appearing to be equally affected. Most cases are diagnosed before age 30, but the disease can occur in the sixth, seventh, and later decades of life.

Crohn's disease is a serious inflammatory disease that predominantly effects ileum and colon, but can also occur in other sections of the GI tract, whereas UC is exclusively an inflammatory disease of the colon, the large intestine (15). Unlike Crohn's disease, in which all layers of the intestine are involved, and in which there can be normal healthy bowel in between patches of diseased bowel, UC affects only the innermost lining (mucosa) of the colon in a continuous manner (16). Depending on which portion of the GI tract is involved, Crohn's disease may be referred to as ileitis, regional enteritis, colitis, etc. Crohn's disease and UC differ from spastic colon or irritable bowel syndrome, which are motility disorders of the GI tract.

While the precise cause of IBD is not known, it is believed that the disruption of the process of continual renewal of GI mucosa may be involved in disease $(17,18)$. The renewal process of the GI lining is an efficient and dynamic process involving the continual proliferation and replenishment of unwanted damaged cells. Proliferation rates of cells lining the GI mucosa are very high, second only to the hematopoietic system. Thus, the balance between proliferation and apoptosis is important to the maintenance of the homeostasis of the GI mucosa $(19,20)$.

GI homeostasis depends on both proliferation and programmed cellular death (apoptosis) of epithelial cells lining the gut mucosa. Hence, cells are continually lost from the villus into the lumen of the gut and are replenished at a substantially equal rate by the proliferation of cells in the crypts, followed by their upward movement to the villus. It has become increasingly apparent that the control of cell death is an equally, if not more, important regulator of cell number and proliferation index $(19,20)$. Reduced rates of apoptosis are often associated with abnormal growth, inflammation, and neoplastic transformation. Thus, both decreased proliferation and/or increased cell death may reduce cell number, whereas increased proliferation and/or reduced cell death may increase the
proliferation index of intestinal tissue (20), which may lead to GI inflammatory diseases and cancer.

Uroguanylin and guanylin peptides also appear to promote apoptosis by controlling cellular ion flux. Alterations in apoptosis have been associated with tumor progression to the metastatic phenotype. While a primary gastrointestinal (GI) cancer is limited to the small intestine, colon, and rectum, it may metastasize and spread to such localities as bone, lymph nodes, liver, lung, peritoneum, ovaries, and brain. By enhancing the efflux of $\mathrm{K}+$ and influx of $\mathrm{Ca}++$, uroguanylin and related peptides may promote the death of transformed cells and thereby inhibit metastasis

Irritable bowel syndrome (IBS) and chronic idiopathic constipation are pathological conditions that can cause a great deal of intestinal discomfort and distress but unlike the IBD diseases such as ulcerative colitis and Crohn's disease, IBS does not cause the serious inflammation or changes in bowel tissue and it is not thought to increase the risk of colorectal cancer. In the past, inflammatory bowel disease (IBD), celiac disease and irritable bowel syndrome (IBS) were regarded as completely separate disorders. Now, with the description of inflammation, albeit low-grade, in IBS, and of symptom overlap between IBS and celiac disease, this contention has come under question. Acute bacterial gastroenteritis is the strongest risk factor identified to date for the subsequent development of postinfective irritable bowel syndrome. Clinical risk factors include prolonged acute illness and the absence of vomiting. A genetically determined susceptibility to inflammatory stimuli may also be a risk factor for irritable bowel syndrome. The underlying pathophysiology indicates increased intestinal permeability and low-grade inflammation, as well as altered motility and visceral sensitivity (27). Serotonin (5-hydroxytryptamine [5-HT]) is a key modulator of gut function and is known to play a major role in pathophysiology of IBS. It has been shown that the activity of 5-HT is regulated by cGMP (28). Therefore, based on this observation as well as other effects of cGMP, we believe that GC-C agonists will be useful in the treatment of IBS.

Given the prevalence of inflammatory conditions in Western societies and the attendant risk of developing cancerous lesions from inflamed tissue, particularly intestinal tissue, a need exists to improve the treatment options for inflammatory conditions, particularly of the gastrointestinal tract.

SUMMARY OF THE INVENTION

The present invention is based upon the development of agonists of guanylate cyclase receptor. The agonists are analogs of uroguanylin and bacterial ST peptides and have superior properties such as for example high resistance to degradation at the N -terminus and C terminus from carboxypeptidases and/or by other proteolytic enzymes present in the stimulated human intestinal juices and human gastric juices.

The peptides of the invention may be used to treat any condition that responds to enhanced intracellular levels of cGMP. Intracellular levels of cGMP can be increased by enhancing intracellular production of cGMP and/or by inhibition of its degradation by cGMPspecific phosphodiesterases. Among the specific conditions that can be treated or prevented are gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity. Gastointestinal disorders include for example, irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudoobstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD), ileus inflammation (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs , osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema) . Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. In addition, GC-C agonist may also be useful to facilitate liver
regeneration in liver transplant patients. Eye disorders include for example increased intraocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

In one aspect, the present invention is directed to a peptide consisting essentially of the amino acid sequence of, SEQ ID NOs: 2-54 and 57-98 and to therapeutic compositions which contain these peptides. Prefered peptides include SEQ ID NO: 8, 9, 10, 58 and 59. The term "consisting essentially of" includes peptides that are identical to a recited sequence identification number and other sequences that do not differ substantially in terms of either structure or function. For the purpose of the present application, a peptide differs substantially if its structure varies by more than three amino acids from a peptide of SEQ ID NOs 2-54 and 57-98 or if its activation of cellular cGMP production is reduced by more than 50% compared to a control peptide such as SEQ ID NO:1, 55 or 56. Preferably, substantially similar peptides should differ by no more than two amino acids and not differ by more than about 25% with respect to activating cGMP production. The instant peptide sequences comprise at least 12 amino acid residues, preferably between 12 and 26 amino acids in length.

The peptides may be in a pharmaceutical composition in unit dose form, together with one or more pharmaceutically acceptable carrier, excipients or diluents. The term "unit dose form" refers to a single drug delivery entity, e.g., a tablet, capsule, solution or inhalation formulation. The amount of peptide present should be sufficient to have a positive therapeutic effect when administered to a patient (typically, between $100 \mu \mathrm{~g}$ and 3 g). What constitutes a "positive therapeutic effect" will depend upon the particular condition being treated and will include any significant improvement in a condition readily recognized by one of skill in the art. For example, it may constitute a reduction in inflammation, shrinkage of polyps or tumors, a reduction in metastatic lesions, etc.

In yet another aspect, an invention provides administering to said patient an effective dose of an inhibitor of cGMP-specific phosphodiesterase (cGMP-PDE) either concurrently or sequentially with said guanylate cyclase receptor agonist. The cGMP-PDE inhibitor include for example suldinac sulfone, zaprinast, and motapizone, vardenifil, and sildenafil. In
addition, GC-C agonist peptides may be used in combination with inhibitors of cyclic nucleotide transporters.

Optionally, anti-inflammatory agents are also administered. Anti-inflammatory agents include for example steroids and non-steroidal anti-inflammatory drugs (NSAIDS).

Other features and advantages of the invention will be apparent from and are encompassed by the following detailed description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 A is a bar chart showing the biological activity of SP-304 after incubation with simulated gastric fluid (SGF) for times as indicated. The biological activity of SP-304 was determined by measuring its ability to stimulate cGMP synthesis in T84 cells. Following the incubations, samples were used for their abilities to stimulate cGMP synthesis in T84 cells. The cGMP stimulation activity in sample at 0 min of incubation with SGF was taken as 100%. The activities in samples from other times of incubations with SGF were calculated as percentage of the activity in the sample at 0 min . The data is average of triplicates $\pm \mathrm{SD}$

Figure 1B is a schematic representation of the results of HPLC chromatographic analyses of SP-304 samples after incubation with SGF at indicated times. The major peak of SP-304 did not change following incubation with SGF, indicating that the peptide was resistant to SGF digestion. The arrows indicate the elution position of SP-304.

Figure 2A is a bar chart showing Cyclic GMP synthesis in T84 cells by SP304 samples after incubation with simulated intestinal fluid (SIF) for the indicated times. Following the incubations, samples were used for their abilities to stimulate cGMP synthesis in T84 cells. The cGMP stimulation activity in sample at 0 min of incubation with SIF was taken as 100%. The activities in samples from other times of incubations with SIF were calculated as percentage of the activity in the sample at 0 min . The data is average of triplicates $\pm \mathrm{SD}$

Figure 2B is a schematic representation of the results of HPLC chromatographic analyses of SP304 samples after incubation with (A) heat inactivated SIF for 300 min or with (B) SIF for 120 min . The incubation with SIF completely converted SP-304 into another peptide eluting at 9.4 min , as indicated by *. Arrows indicate the position of SP-304.

Figure 3 is a schematic representation of the possible degradation products of SP-304.

Figure 4 shows stimulation of cGMP synthesis in T84 cells by the truncated peptides of SP304. Thus, SP-338 has the same peptide sequence as SP-304 except that it lacks Leu at the Cterminus. Similarly, SP-327, SP-329 and SP-331 have Leu at their C-termini deleted relative to their corresponding parents, SP-326, SP-328 and SP-330. Peptides were evaluated for their abilities to stimulate cGMP synthesis in T84 cells. The results are expressed as an average of duplicates.

Figure 5 shows stimulation of cGMP synthesis in T84 cells by SP-304 and similar peptides. Cells were exposed to peptide analogs for 30 min and cell lysates were used to determine intracellular cGMP levels. Results are expressed as an average of triplicates \pm SD.

Figure 6 shows stimulation of cGMP synthesis in T84 cells by SP-339 and other peptides. T84 Cells were exposed to the indicated peptide for 30 min and cell lysates were used to determine intracellular cGMP levels. Results are expressed as an average of triplicates $\pm \mathrm{SD}$.

Figure 7A shows stability of SP-333 against digestion with simulated intestinal fluid (SIF) for indicated times. The control sample marked as C 120 was produced by incubating peptides with heat inactivated SIF. Samples from the incubations were removed and heated at $95^{\circ} \mathrm{C}$ for 5 min to inactivate digestive enzymes and then used to stimulate cyclic GMP synthesis in T84 cells. The cGMP stimulation activity at 0 min was taken as 100% in each set. The data is average of triplicates \pm SD.

Figure 7B shows stability of SP-332 against digestion with simulated intestinal fluid (SIF) for indicated times. The control sample marked as C120 was produced by incubating peptides with heat inactivated SIF. Samples from the digestions were removed and heated at $95^{\circ} \mathrm{C}$ for 5 min to inactivate digestive enzymes and then used to stimulate cyclic GMP synthesis in T84 cells. The cGMP stimulation activity at 0 min was taken as 100% in each set. The data is average of triplicates \pm SD.

Figure 7C shows stability of SP-304 against digestion with simulated intestinal fluid (SIF) for indicated times. The control samples marked as C0 and C60 were produced by incubating peptides with heat inactivated SIF. Samples from the digestions were removed and heated at $95^{\circ} \mathrm{C}$ for 5 min to inactivate digestive enzymes and then used to stimulate cyclic GMP synthesis in T84 cells. The cGMP stimulation activity at 0 min was taken as 100% in each set. The data is average of 3 determinations \pm SD.

Figure 7D shows HPLC analysis of samples of SP-304 at 0 and 60 minutes following incubation with SIF. Arrow indicates the elution position of SP-304 peptide. The data clearly shows that the SP-304 peak eluting at 14.3 min completely vanished and two new peaks emerged at 7.4 and 10.3 minutes. These new peptide peaks represent the possible degradation products of SP-304.

Figure 7E shows HPLC analysis of samples of SP-332 at 0 and 120 minutes following incubation with SIF. Arrow indicates the elution position of SP-332 peptide. The data shows that the peptide SP-332 eluting at 14.8 minutes was not changed following incubation with SIF, suggesting that SP-332 is not sensitive to proteolysis by proteases present in SIF.

Figure 7F shows HPLC analysis of samples of SP-333 at 0 and 120 minutes following incubation with SIF. Arrows indicate the elution position of SP-333. The data show that peptide SP-333, eluting at 14.8 minutes, was not changed following incubation with SIF, suggesting that SP-333 is not sensitive to proteolysis by proteases present in SIF during the 120 minute incubation period.

Figure 8 shows stimulation of cGMP synthesis in T84 cells by the peggylated analogs of SP333. T84 cells were exposed to the indicated peptides for 30 min and cell lysates were used to determine intracellular cGMP levels. Results are expressed as an average of triplicates \pm SD.

Figure 9 shows stimulation of cGMP synthesis in T84 cells by SP-304 ($0.1 \mu \mathrm{M}$) either alone or in combination with the phosphodiesterase (PDE) inhibitors Sulindac Sulfone ($100 \mu \mathrm{M}$) or Zaprinast ($100 \mu \mathrm{M}$). T84 cells were exposed to various treatments, as indicated, for 30 min and the cell lysates were used to determine the intracellular cGMP levels. Results are expressed as an average of duplicates.

Figure 10 shows stimulation of cGMP synthesis in T84 cells by SP-304 (0.1 or $1.0 \mu \mathrm{M}$) either alone or in combination with incremental concentrations of phosphodiesterase (PDE) inhibitors, as indicated. T84 cells were exposed to various treatments, as indicated, for 30 min and the cell lysates were used to determine the intracellular cGMP levels. Results are expressed as an average of duplicates.

Figure 11 shows stimulation of cGMP synthesis in T84 by SP-333 (0.1 or $1.0 \mu \mathrm{M})$ either alone or in combination with incremental concentrations Zaprinast, as indicated. T84 cells
were exposed to various treatments, as indicated, for 30 min and the cell lysates were used to determine the intracellular cGMP levels. Results are expressed as an average of duplicates.

Figure 12 shows stimulation of cGMP synthesis in T84 by SP-333 ($0.1 \mu \mathrm{M})$ either alone or in combination with incremental concentrations Sulindac Sulfone, as indicated. T84 cells were exposed to various treatments, as indicated, for 30 min and the cell lysates were used to determine the intracellular cGMP levels. Results are expressed as an average of duplicates.

Figure 13 shows a schematic of the mainatance of intracellular concentrations of cGMP levels. The intracellular levels of cGMP can be maintained by stimulating its synthesis via the activation of GC-C and by inhibiting its degradation by cGMP-PDE. Thus, a combination of a GC-C agonist with an inhibitor of PDE may produce a synergistic effect to enhance levels of cGMP in tissues and organs.

DETAILED DESCRIPTION

The present invention is based upon the development of agonists of guanylate cyclase-C (GC-C). The agonists are analogs of uroguanylin and bacterial ST peptides and have superior properties such as for example high resistance to degradation at the N -terminus and C-terminus from carboxypeptidases and/or by other proteolytic enzymes such as those present in the stimulated human intestinal juices and human gastric juices.

The GC-C is expressed on various cells including on gastrointestinal epithelial cells, and on extra-intestinal tissues including kidney, lung, pancreas, pituitary, adrenal, developing liver, heart and male and female reproductive tissues (reviewed in Vaandrager 2002 Mol Cell Biochem 230:73-83). The GC-C is a key regulator of fluid and electrolyte balance in the intestine and kidney. In the intestine, when stimulated, the GC-C causes an increase in intestinal epithelial cGMP. This increase in cGMP causes a decrease in water and sodium absorption and an increase in chloride and potassium ion secretion, leading to changes in intestinal fluid and electrolyte transport and increased intestinal motility.

The gualylate cyclase-C agonists according to the invention include SEQ ID NO:2-54, and SEQ ID NO: 57-98 and are summarized below in Table I and Table II. The gualylate cyclase-C agonists according to the invention are collectively refered to herein as "GCRA peptides".
Table I. GCRA peptides

Name	Position of Disulfid c bonds	Structure	$\begin{array}{\|l\|} \hline \text { SEQ } \\ \text { ID NO } \end{array}$
SP-304	$\begin{aligned} & \text { C4:C12, } \\ & \mathrm{C7}: \mathrm{Cl5} \end{aligned}$	$\mathrm{Asn}^{1}-\mathrm{Asp}^{2}-\mathrm{Clu}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Leu}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Cly}^{14}-\mathrm{Cys}^{15}-\mathrm{Leu}^{16}$	1
SP-326	$\begin{aligned} & \hline \mathrm{C} 3: \mathrm{C} 11, \\ & \mathrm{C6}: \mathrm{Cl4} \end{aligned}$	Asp ${ }^{1}-\mathrm{Glu}^{2}-\mathrm{Cys}^{3}-\mathrm{Glu}^{4}-\mathrm{Leu}^{5}-\mathrm{Cys}^{6}-\mathrm{Val}^{7}-\mathrm{Asn}^{8}-\mathrm{Val}^{9}-\mathrm{Ala}^{10}-\mathrm{Cys}^{11}-\mathrm{Thr}^{12}-\mathrm{Gly}^{13}-\mathrm{Cys}^{14}-\mathrm{Leu}^{15}$	2
SP-327	$\begin{aligned} & \mathrm{C} 2: \mathrm{C} 10, \\ & \mathrm{C} 5: \mathrm{C} 13 \end{aligned}$	Asp ${ }^{1} \mathrm{Clu}^{2}-\mathrm{Cys}^{3}-\mathrm{Glu}^{4}-\mathrm{Leu}^{3}-\mathrm{Cys}^{6}-\mathrm{Val}^{7}-\mathrm{Asn}^{8}-\mathrm{Val}^{9}-\mathrm{Ala}^{10}-\mathrm{Cys}^{11}-\mathrm{Thr}^{12}-\mathrm{Cly}^{13}-\mathrm{Cys}^{14}$	3
SP-328	$\begin{aligned} & \hline \mathrm{C} 2: \mathrm{C} 10, \\ & \mathrm{C} 5: \mathrm{Cl} \end{aligned}$	$\mathrm{Glu}^{1}-\mathrm{Cys}^{2}-\mathrm{Glu}^{3}-\mathrm{Leu}^{4}-\mathrm{Cys}^{3}-\mathrm{Val}{ }^{6}-\mathrm{Asn}^{7}-\mathrm{Val}{ }^{8}-\mathrm{Ala}^{9}-\mathrm{Cys}^{10}-\mathrm{Thr}^{11}-\mathrm{Gly}^{12}-\mathrm{Cys}^{13}-\mathrm{Leu}^{14}$	4
SP-329	$\begin{aligned} & \mathrm{C} 2: \mathrm{C} 10, \\ & \mathrm{C} 5: \mathrm{C} 13 \end{aligned}$	$\mathrm{Clu}^{1}-\mathrm{Cys}^{2}-\mathrm{Glu}^{3}-\mathrm{Leu}^{4}-\mathrm{Cys}^{3}-\mathrm{Val}^{6}-\mathrm{Asn}^{7}-\mathrm{Val}^{8}-\mathrm{Ala}^{9}-\mathrm{Cys}^{10}-\mathrm{Thr}^{11}-\mathrm{Gly}^{12}-\mathrm{Cys}^{13}$	5
SP-330	$\begin{aligned} & \mathrm{Cl}: \mathrm{C}, \\ & \mathrm{C4}: \mathrm{C} 12 \end{aligned}$	$\mathrm{Cys}^{1}-\mathrm{Glu}^{2}-\mathrm{Leu}^{3}-\mathrm{Cys}^{4}-\mathrm{Val}^{5}-\mathrm{Asn}^{6}-\mathrm{Val}^{7}-\mathrm{Ala}^{8}-\mathrm{Cys}^{9}-\mathrm{Thr}^{10}-\mathrm{Gly}^{11}-\mathrm{Cys}^{12}-\mathrm{Leul}^{13}$	6
SP-331	$\begin{aligned} & \mathrm{C} 1: \mathrm{C} 9, \\ & \mathrm{C}: \mathrm{C} 12 \end{aligned}$	$\mathrm{Cys}^{1}-\mathrm{Clu}^{2}-\mathrm{Leu}^{3}-\mathrm{Cys}^{4}-\mathrm{Val}^{3}-\mathrm{Asn}^{6}-\mathrm{Val}^{7}-\mathrm{Ala}^{8}-\mathrm{Cys}^{9}-\mathrm{Thr}^{10}-\mathrm{Gly}^{11}-\mathrm{Cys}^{12}$	7
SP332	$\begin{gathered} \text { C4:C12, } \\ \text { C7:C15 } \end{gathered}$	$\mathrm{Asn}^{1}-\mathrm{Asp}^{2}-\mathrm{Glu}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Lcu}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}-\mathrm{Cys}^{15}-\mathrm{dLcu}^{16}$	8
SP-333	$\begin{aligned} & \text { C4:C12, } \\ & \mathrm{C} 7: \mathrm{Cl} 15 \end{aligned}$	$\mathrm{dAsn}-\mathrm{Asp}^{2}-\mathrm{Glu}^{3}-\mathrm{Cys}^{4}-\mathrm{Gll}^{5}-\mathrm{Leul}^{6}-\mathrm{Cys}^{2}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}-\mathrm{Cys}^{15}-\mathrm{dLeu}^{16}$	9
SP-334	$\begin{aligned} & \text { C4:C12, } \\ & \mathrm{C} 7: \mathrm{Cl} 15 \end{aligned}$	dAsn - dAsp ${ }^{2}-\mathrm{Clu}^{3}-\mathrm{Cys}^{4}-\mathrm{Clu}^{5}-\mathrm{Leu}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}-\mathrm{Cys}^{15}-\mathrm{dLeu}^{16}$	10

SP-335	C4:C12, C7:C15		11
SP-336	$\begin{aligned} & \hline \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		12
SP-337	$\begin{aligned} & \mathrm{C4:Cl2,} \\ & \mathrm{C7:C15} \end{aligned}$		13
SP-338	$\begin{aligned} & \text { C4:C12, } \\ & \text { C7:C15 } \end{aligned}$	$\mathrm{Asn}^{1}-\mathrm{Asp}^{2}-\mathrm{Clu}^{3}-\mathrm{Cys}^{4}-\mathrm{Clu}^{5}-\mathrm{Cel}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Trr}^{13}-\mathrm{Cly}^{14}-\mathrm{Cys}^{15}$	14
SP-342	$\begin{aligned} & \hline \mathrm{C4:Cl2,} \\ & \mathrm{C7}: \mathrm{Cl}, \end{aligned}$		15
SP-343	$\begin{aligned} & \hline \mathrm{C4:Cl2,} \\ & \mathrm{C7:C15} \end{aligned}$		16
SP-344	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:Cl15} \end{aligned}$		17
SP-347	$\begin{aligned} & \text { C4:C12, } \\ & \text { C7:C15 } \end{aligned}$		18
SP-348	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:Cl15} \end{aligned}$		19
SP-350	$\begin{aligned} & \hline \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		20
SP-352	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		21
SP-358	$\begin{aligned} & \text { C4:C12, } \\ & \text { C7:C15 } \end{aligned}$		22
SP-359	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		23

SP.360	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		24
SP-361	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:Cl} \end{aligned}$		25
SP-362	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		26
SP-368	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		27
SP-369	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		28
SP-370	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:Cl15} \end{aligned}$		29
SP-371	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$	dAsn ${ }^{1}-\mathrm{As}^{2}-\mathrm{Cll}^{3}-\mathrm{Cys}^{4}-\mathrm{Cll}^{5}-\mathrm{Tyr}^{6}-\mathrm{Cys}^{7}-\mathrm{Va}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{111}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Cly}^{14} \mathrm{Cly}^{15}{ }^{15}-\mathrm{dLal}^{16}$	30
SP-372	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		31
Nl	$\begin{aligned} & \mathrm{C4:C12}, \\ & \mathrm{C7:C15} \end{aligned}$		32
N2	$\begin{aligned} & \mathrm{C4:Cl12,} \\ & \mathrm{C7:Cl15} \end{aligned}$	PEG3-dAsn $-\mathrm{Asp}^{2}-\mathrm{Clu}^{3}-\mathrm{Cy}^{4}-\mathrm{Cll}^{5}-\mathrm{Tyr}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{111}-\mathrm{Cys}^{12}-\mathrm{Thr}^{18}-\mathrm{Cly}^{14}-\mathrm{Cys}^{15}-\mathrm{Cleu}^{16}$	33
N3	$\begin{aligned} & \mathrm{C4:Cl12,} \\ & \mathrm{C7:Cl}, \end{aligned}$		34
N4	$\begin{aligned} & \text { C4:C12, } \\ & \text { C7:C15 } \end{aligned}$		35
N5	$\begin{aligned} & \mathrm{C4:Cl2,} \\ & \mathrm{C7:Cl5} \end{aligned}$		36
N6	C4:C12,		37

	C7:C15		
N7	$\begin{aligned} & \text { C4:C12, } \\ & \text { C7:C15 } \end{aligned}$		38
N8	$\begin{aligned} & \hline \text { C4:C12, } \\ & \text { C7:C15 } \end{aligned}$		39
N9	$\begin{aligned} & \hline \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		40
N10	$\begin{aligned} & \mathrm{C4:C12}, \\ & \mathrm{C7:Cl} 5 \end{aligned}$		41
N11	$\begin{aligned} & \hline \mathrm{C4:Cl2,} \\ & \mathrm{C7:C15} \end{aligned}$		42
N12	$\begin{aligned} & \hline \mathrm{C4:C12,} \\ & \mathrm{Cl:C15} \end{aligned}$		43
N13	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		44
Formula I	$\begin{aligned} & \hline \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		45
$\begin{array}{\|l} \text { Formula } \\ \text { II } \end{array}$	$\begin{aligned} & \mathrm{C4}: \mathrm{Cl2}, \\ & \mathrm{C7:C15} \end{aligned}$		46
Formula III	$\begin{array}{\|l\|} \hline \text { 4:12,7:1 } \\ 5 \end{array}$	Xaan - Ma ${ }^{4}-\mathrm{Cll}^{5}-\mathrm{Xaa}^{6}-\mathrm{Maa}^{7}-\mathrm{Val}^{8}-\mathrm{An}^{9}-\mathrm{Val}^{10} \mathrm{Ala}^{11}-\mathrm{Maa}^{12}-\mathrm{Thr}^{13}-\mathrm{Cly}^{14}-\mathrm{Maa}^{15}-\mathrm{Xaan}^{2}$	47
Formula IV	$\begin{aligned} & \hline \text { 4:1127:1 } \\ & 5 \end{aligned}$		48
Formula V)	$\begin{aligned} & \mathrm{C4:Cl2,} \\ & \mathrm{C7:C15} \end{aligned}$		49
Formula VI	$\begin{aligned} & \hline \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		50
Formula VII	$\begin{aligned} & \mathrm{C4:C12,} \\ & \mathrm{C7:C15} \end{aligned}$		51

	C7:15		
SP-354	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{aligned} & \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Phe}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}-\mathrm{Cys}^{15}- \\ & \mathrm{Tyr}^{15}- \end{aligned}$	59
SP-355	$\begin{aligned} & \text { C1:C6, } \\ & \text { C2:C10, } \\ & \text { C5:13 } \end{aligned}$	$\mathrm{Cys}^{1}-\mathrm{Cys}^{2}-\mathrm{Clu}^{3}-\mathrm{Tyr}^{4}-\mathrm{Cys}^{5}-\mathrm{Cys}^{6}-\mathrm{Asn}^{7}-\mathrm{Pro}^{8}-\mathrm{Ala}^{9}-\mathrm{Cys}^{10}-\mathrm{Thr}^{11}-\mathrm{Gly}^{12}-\mathrm{Cys}^{13}-\mathrm{dTyr}^{14}$	60
SP-357	$\begin{aligned} & \text { C1:C6, } \\ & \text { C2:C10, } \\ & \text { C5:13 } \end{aligned}$	PEG3-Cys ${ }^{1}-\mathrm{Cys}^{2}-\mathrm{Glu}^{3}-\mathrm{Tyr}^{4}-\mathrm{Cys}^{5}-\mathrm{Cys}^{6}-\mathrm{Asn}^{7}-\mathrm{Pro}^{8}-\mathrm{Ala}^{9}-\mathrm{Cys}^{10}-\mathrm{Thr}^{11}-\mathrm{Gly}^{12}-\mathrm{Cys}^{13}-\mathrm{Tyr}^{14}$	61
SP-374	$\begin{aligned} & \mathrm{C3:C8}, \\ & \mathrm{C4:C12,} \\ & \mathrm{C} 7: 15 \end{aligned}$	$\begin{aligned} & \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cyss}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Thr}^{6}-\mathrm{Cys}^{2}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cly}^{14}- \end{aligned}$	62
SP-375	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{aligned} & \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Clu}^{5}-\mathrm{Ser}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gyy}^{14}-\mathrm{Cys}^{15}- \\ & \mathrm{dTyr}^{16}- \end{aligned}$	63
SP-376	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { 77:15 } \end{aligned}$	$\begin{aligned} & \mathrm{dAsin}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Ser}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cys}^{15}-\mathrm{Tyr}^{16} \end{aligned}$	64
SP-377	$\begin{aligned} & \mathrm{C3}: \mathrm{C} 8, \\ & \mathrm{C}: \mathrm{C} 12, \\ & \mathrm{C} 7: 15 \end{aligned}$	$\begin{aligned} & \mathrm{dAsn}^{1}-\mathrm{Ph}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Clu}^{5}-\text { Ser }^{6}-\mathrm{Cys}^{9}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cys}^{15}-\mathrm{dTyr}^{16} \end{aligned}$	65
SP-378	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{aligned} & \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Thr}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \end{aligned}$	66
SP-379	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{aligned} & \mathrm{dAsn1}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Thr}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cys}^{15}-\mathrm{Tyr}^{16} \end{aligned}$	67

SP-380	$\begin{aligned} & \mathrm{C3}: \mathrm{C} 8, \\ & \mathrm{C4}: \mathrm{C} 12, \\ & \mathrm{C}: 15 \end{aligned}$	$\begin{aligned} & \mathrm{dAsn1}^{1}-\mathrm{Ph}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Thr}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cys}^{15}-\mathrm{dTyr}^{16}- \end{aligned}$	68
SP-381	$\begin{aligned} & \mathrm{C} 3: \mathrm{C} 8, \\ & \mathrm{C} 4: \mathrm{C} 12, \\ & \mathrm{C}: 15 \end{aligned}$	$\begin{array}{\|l} \mathrm{Asn}^{1}-\mathrm{Phc}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Phe}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Cly}^{14}-\mathrm{Clyr}^{14}- \end{array}$	69
SP-382	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{aligned} & \mathrm{dAsni}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Phe}^{6}-\mathrm{Cys}^{9}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cys}^{15}-\mathrm{Tyr}^{16} \end{aligned}$	70
SP-383	$\begin{aligned} & \mathrm{C} 3: \mathrm{C} 8, \\ & \mathrm{C} 4: \mathrm{C} 12, \\ & \mathrm{C}: 15 \end{aligned}$	$\begin{aligned} & \mathrm{dAsn1}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Phe}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cys}^{15}-\mathrm{dTyr}^{16} \end{aligned}$	71
SP384	$\begin{aligned} & \mathrm{C} 1: \mathrm{C} 6, \\ & \mathrm{C} 2: \mathrm{C} 10, \\ & \mathrm{C} 5: 13 \end{aligned}$	$\mathrm{Cys}^{1}-\mathrm{Cys}^{2}-\mathrm{Glu}^{3}-\mathrm{Tyr}^{4}-\mathrm{Cys}^{5}-\mathrm{Cys}^{6}-\mathrm{Asn}^{7}-\mathrm{Pro}^{8}-\mathrm{Ala}^{9}-\mathrm{Cys}^{10}-\mathrm{Thr}^{11}-\mathrm{Cly}^{12}-\mathrm{Cys}^{13}-\mathrm{Tys}^{14}-\mathrm{PEG} 3$	72
N14	$\begin{aligned} & \hline \mathrm{C} 1: \mathrm{C} 6, \\ & \mathrm{C} 2: \mathrm{C} 10, \\ & \mathrm{C} 5: 13 \end{aligned}$		73
N15	$\begin{aligned} & \text { C1:C6, } \\ & \text { C2:C10, } \\ & \text { C5:13 } \end{aligned}$	PEG3-Cys ${ }^{1}-\mathrm{Cys}^{2}-\mathrm{Clu}^{3}-\mathrm{Tyr}^{4}-\mathrm{Cys}^{5}-\mathrm{Cys}^{6}-\mathrm{Asn}^{2}-\mathrm{Pro}^{8}-\mathrm{Ala}^{2}-\mathrm{Cys}^{10}-\mathrm{Thr}^{11}-\mathrm{Cly}^{12}-\mathrm{Cys}^{13}$	74
N16	$\begin{aligned} & \text { C1:C6, } \\ & \text { C2:C10, } \\ & \text { C5:13 } \end{aligned}$	$\mathrm{Cys}^{1}-\mathrm{Cys}^{2}-\mathrm{Glu}^{3}-\mathrm{Tyr}^{4}-\mathrm{Cys}^{5}-\mathrm{Cys}^{6}-\mathrm{Asn}^{7}-\mathrm{Pro}^{8}-\mathrm{Ala}^{9}-\mathrm{Cys}^{10}-\mathrm{Thr}^{11}-\mathrm{Gly}^{12}-\mathrm{Cys}^{13}-\mathrm{PEG} 3$	75
N17	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{array}{\|l} \text { PEG3- } \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Gll}^{5}-\mathrm{Ser}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}- \\ \text { Gly }^{14}-\mathrm{Cys}^{15}-\mathrm{Tyr}^{16}-\mathrm{PECB}^{2} \end{array}$	76

N18	$\begin{aligned} & \mathrm{C} 3: \mathrm{CB}, \\ & \mathrm{C4:C12,} \\ & \mathrm{C7}: 15 \end{aligned}$	$\begin{aligned} & \text { PEG3- } \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Ser}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}- \\ & \text { Gly }^{14}-\mathrm{Cys}^{15}-\mathrm{Tyr}^{16} \end{aligned}$	77
N19	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{aligned} & \text { Asn }^{1}-\text { Phe }^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\text { Ser }^{6}-\mathrm{Cys}^{9}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \text { Cys }^{15}-\text { Tyr }^{16}-\text { PEG }^{2} \end{aligned}$	78
N20	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{aligned} & \text { PEG3- } \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Phe}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Al}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}- \\ & \text { Gly }^{14}-\mathrm{Cys}^{15}-\mathrm{Tyr}^{16}-\mathrm{PEG3}^{2} \end{aligned}$	79
N21	$\begin{aligned} & \mathrm{C} 3: \mathrm{C} 8, \\ & \mathrm{C}: \mathrm{C} 12, \\ & \mathrm{C} 7: 15 \end{aligned}$	$\begin{aligned} & \text { PEG3- } \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Phe}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}- \\ & \text { Gily }^{14}-\mathrm{Cys}^{15}-\mathrm{Tyr}^{16} \end{aligned}$	80
N22	$\begin{aligned} & \mathrm{C}: \mathrm{C} 8, \\ & \mathrm{C}: \mathrm{C} 12, \\ & \mathrm{C}: 15 \end{aligned}$	$\begin{aligned} & \mathrm{Asn}^{1}-\mathrm{Pe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Phe}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Al}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cys}^{15}-\mathrm{Tyr}^{16}-\mathrm{PEGS}^{2} \end{aligned}$	81
N23	$\begin{array}{\|l\|} \hline \mathrm{C}: \mathrm{C} 8, \\ \mathrm{C} 4: \mathrm{C} 12, \\ \mathrm{C} 7: 15 \end{array}$	$\begin{aligned} & \text { PEG3- } \text { Asn }^{1}-\mathrm{Phc}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Tyr}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}- \\ & \text { Gly }^{14}-\mathrm{Cys}^{15}-\mathrm{Tyr}^{16}-\mathrm{PEG}^{2} \end{aligned}$	82
N24	$\begin{aligned} & \mathrm{C} 3: \mathrm{C} 8, \\ & \mathrm{C} 4: \mathrm{C} 12, \\ & \mathrm{C} 7: 15 \end{aligned}$	$\begin{aligned} & \text { PEG3- } \mathrm{Asi}^{1} \mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Tyr}^{6}-\mathrm{Cys}^{7}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}- \\ & \mathrm{Gly}^{13}-\mathrm{Cys}^{15}-\mathrm{Tyr}^{16} \end{aligned}$	83
N25	$\begin{aligned} & \text { C3:C8, } \\ & \text { C4:C12, } \\ & \text { C7:15 } \end{aligned}$	$\begin{aligned} & \mathrm{Asn}^{1}-\mathrm{Phe}^{2}-\mathrm{Cys}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Tyr}^{6}-\mathrm{Cys}^{2}-\mathrm{Cys}^{8}-\mathrm{Asn}^{9}-\mathrm{Pro}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}- \\ & \mathrm{Cys}^{15}-\mathrm{Tyr}^{16}-\mathrm{PEG}^{2}- \\ & \text { and } \end{aligned}$	84
N26	C1:C6,	$\mathrm{Cys}^{1}-\mathrm{Cys}^{2}-\mathrm{Glu}^{3}-\mathrm{Ser}^{4}-\mathrm{Cys}^{5}-\mathrm{Cys}^{6}-\mathrm{Asn}^{7}-\mathrm{Pro}^{8}-\mathrm{Ala}^{9}-\mathrm{Cys}^{10}-\mathrm{Thr}^{11}-\mathrm{Gly}^{12}-\mathrm{Cys}^{13}-\mathrm{Tyr}^{14}$	85

19

	C7:15		
Formula XIII	$\begin{aligned} & 3: 8,4: 12, \\ & C: 15 \end{aligned}$	$\begin{aligned} & \text { Asn }^{1}-\text { Phe }^{2}-\text { Pen }^{3}-\text { Cys }^{4}-\mathrm{Xaa}^{5}-\mathrm{Phe}^{6}-\mathrm{Cys}^{7} \mathrm{Pen}^{8}-\mathrm{Xaa}^{9}-\mathrm{Xaa}^{10}-\mathrm{Xaa}^{11-} \mathrm{Cys} 12-\mathrm{Xaa}^{13}-\mathrm{Xa}^{14-}-\mathrm{Xa}^{16} \\ & \mathrm{Cl}^{16} \end{aligned}$	94
Formula XIV	$\begin{aligned} & 3: 8,4: 12, \\ & 7: 15 \end{aligned}$	$\begin{aligned} & \Lambda s{ }^{1}-\text { Phe }^{2}-\mathrm{Maa}^{3}-\mathrm{Maa}^{4}-\mathrm{Xaa}^{5}-\mathrm{Xaa}^{6}-\mathrm{Maa}^{7} \mathrm{Maa}^{8}-\mathrm{Xaa}^{9}-\mathrm{Xaa}^{10}-\mathrm{Xaa}^{11} \mathrm{Maa}{ }^{12}-\mathrm{Xaa}^{13}- \\ & \text { Xa }^{14} \mathrm{Maa}^{15}-\text { Xaa }^{16} \end{aligned}$	95
$\begin{array}{\|l\|} \hline \text { Formula } \\ \text { XV } \end{array}$	$\begin{aligned} & 1: 6,2: 10 \\ & 5: 13 \end{aligned}$	Maa ${ }^{1}-\mathrm{Maa}{ }^{2}$-Glu3-Xaa ${ }^{4}-\mathrm{Maa}^{5}-\mathrm{Maa}^{6}-\mathrm{Asn}^{7}-\mathrm{Pro}^{8}-\mathrm{Ala}^{9}-\mathrm{Maa}^{10}-\mathrm{Thr}^{11}-\mathrm{Cly}^{12}-\mathrm{Maa}^{13}-\mathrm{Tyr}^{14}$	96
Formula XVI	$\begin{aligned} & 1: 6,2: 10 \\ & 5: 13 \end{aligned}$	Maa ${ }^{1}$-Maa ${ }^{2}$-Glu3-Xaa ${ }^{4}-$ Maa 5-Maa ${ }^{6}-$ Asn $^{7}-\mathrm{Pro}^{8}-\mathrm{Ala}^{9}-\mathrm{Maa}^{10}-\mathrm{Thr}^{11}-\mathrm{Gly}^{12}-$ Maa $^{13}-$	97
$\begin{aligned} & \text { Formula } \\ & \text { XVII } \end{aligned}$	$\begin{aligned} & 1: 6,2: 10 \\ & 5: 13 \end{aligned}$	$\begin{aligned} & \text { Xaa }_{n 3}-\text { Maa }^{1}-\text { Maa }^{2}-\text { Xaa }^{3}-\text { Xaa }^{4}-\text { Maa }^{5}-\text { Maa }^{6}-\text { Xa }^{7}-\text { Xaa }^{8}-\text { Xaa }^{9}-\text { Maa }^{10}-\text { Xaa }^{11}-\text { Xa }^{12}-\text { Maa }^{13}- \\ & \text { Xaa } \end{aligned}$	98

The GCRA peptides described hercin bind the guanylate cyclase C (GC-C) and stimulate intracellular production of cyclic guanosine monophosphate (cGMP). Optionally, the GCRA peptides induce apoptosis. In some aspects, the GCRA peptides stimulate intracellular cGMP production at higher levels than naturally occurring GC-C agonists (e.g., uroguanylin, guanylin, and ST peptides) and/or SP-304. For example, the GCRA peptides of the invention stimulate $5 \%, 10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 75 \%, 90 \%$ or more intracellular cGMP compared to naturally occurring GC-C angonists and/or SP-304. The terms induced and stimulated are used interchangeably throughout the specification. The GCRA peptides described herein are more stable than naturally occurring GC-C agonists and/or SP-304. By more stable it is meant that the peptide degrade less and/or more slowly in simulated gastrointestinal fluid and/or simulatd intestinal fluid compared to naturally occurring GC-C angonists and/or SP-304. For example, the GCRA peptide of the invention degrade $2 \%, 3 \%, 5 \%, 10 \%, 15 \%, 20 \%, 30 \%, 40 \%, 50 \%$, $75 \%, 90 \%$ or less compared to naturally occurring GC-C angonists and/or SP-304.

The GCRA peptides described herein have therapeutic value in the treatment of a wide variety of disorders and conditions including for example gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity. Gastointestinal disorders include for example, irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal
cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., mclanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidncy cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

As used herein, the term "guanylate cyclase C (GC-C)" refers to the class of guanylate cyclase C receptor on any cell type to which the inventive agonist peptides or natural agonists described herein bind. As used herein, "intestinal guanylate cyclase receptor" is found exclusively on epithelial cells lining the GI mucosa. Uroguanylin, guanylin, and ST peptides are expected to bind to these receptors and may induce apoptosis. The possibility that there may be different receptors for each agonist peptide is not excluded. Hence, the term refers to the class of guanylate cyclase receptors on epithelial cells lining the GI mucosa.

As used herein, the term "GCR agonist" is meant to refer to peptides and/or other compounds that bind to an intestinal guanylate cyclase \mathbf{C} and stimulate fluid and electrolyte transport. This term also covers fragments and pro-peptides that bind to GC-C and stimulate fluid and water secretion.

As used herein, the term "substantially equivalent" is meant to refer to a peptide that has an amino acid sequence equivalent to that of the binding domain where certain residues may be deleted or replaced with other amino acids without impairing the peptide's ability to bind to an intestinal guanylate cyclase receptor and stimulate fluid and electrolyte transport.

Addition of carriers (e.g., phosphate-buffered saline or PBS) and other components to the composition of the present invention is well within the level of skill in this art. In addition to the compound, such compositions may contain pharmaceutically acceptable carriers and other ingredients known to facilitate administration and/or enhance uptake. Other formulations, such as microspheres, nanoparticles, liposomes, and immunologically-based systems may also be used
in accordance with the present invention. Other examples include formulations with polymers (e.g., $20 \% \mathrm{w} / \mathrm{v}$ polycthylenc glycol) or cellulose, or enteric formulations.

The present invention is based upon several concepts. The first is that there is a cGMPdependent mechanism which regulates the balance between cellular proliferation and apoptosis and that a reduction in cGMP levels, due to a deficiency of uroguanylin/guanylin and/or due to the activation of cGMP-specific phosphodiesterases, is an early and critical step in neoplastic transformation. A second concept is that the release of arachidonic acid from membrane phospholipids, which leads to the activation of cytoplasmic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2) and possibly 5-lipoxygenase (5-LO) during the process of inflammation, is down-regulated by a cGMP-dependent mechanism, leading to reduced levels of prostaglandins and leukotrienes, and that increasing intracellular levels of cGMP may therefore produce an anti-inflammatory response. In addition, a cGMP-dependent mechanism, is thought to be involved in the control of proinflammatory processes. Therefore, elevating intracellular levels of cGMP may be used as a means of treating and controlling gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity.Gastointestinal disorders include for example, irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). Lung Disorders include for example COPD and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or
leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

Without intending to be bound by any theory, it is envisioned that ion transport across the plasma membrane may prove to be an important regulator of the balance between cell proliferation and apoptosis that will be affected by agents altering cGMP concentrations. Uroguanylin has been shown to stimulate $\mathrm{K}+$ efflux, $\mathrm{Ca}++$ influx and water transport in the gastrointestinal tract (3). Moreover, atrial natriuretic peptide (ANP), a peptide that also binds to a specific guanylate cyclase receptor, has also been shown to induce apoptosis in rat mesangial cells, and to induce apoptosis in cardiac myocytes by a cGMP mechanism (21-24).

Binding of the present agonists to a guanylate cyclase receptor stimulates production of cGMP. This ligand-receptor interaction, via activation of a cascade of cGMP-dependent protein kinases and CFTR, induces apoptosis in target cells. Therefore, administration of the novel peptides defined by SEQ ID NO:2-54, and SEQ ID NO: 57-98, as shown in Tables I and II, or peptides similar to uroguanylin, or guanylin or E. coli ST peptide are useful in eliminating or, at least retarding, the onset of gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity.Gastointestinal disorders include for example, irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudoobstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD), ileus inflammation (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney
inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

Uroguanylin is a circulating peptide hormone with natriuretic activity and has been found to stimulate fluid and electrolyte transport in a manner similar to another family of heat stable enterotoxins (ST peptides) secreted by pathogenic strains of E. coli and other enteric bacteria that activate guanylate cyclase receptor and cause secretory diarrhea. Unlike bacterial ST peptides, the binding of uroguanylin to guanylate cyclase receptor is dependent on the physiological pH of the gut. Therefore, uroguanylin is expected to regulate fluid and electrolyte transport in a pH dependent manner and without causing severe diarrhea.

GCRA PEPTIDES

In one aspect, the invention provides a GCR A peptide. The GCRA peptides are analogues uroguanylin and bacterial ST peptide. No particular length is implied by the term "peptide". In some embodiments, the GCRA peptide is less than 25 amino acids in length, e.g., less than or equal to $20,15,14,13,12,11,10$, or 5 amino acid in length.

The GCRA peptides can be polymers of L-amino acids, D-amino acids, or a combination of both. For example, in various embodiments, the peptides are \mathbf{D} retro-inverso peptides. The
term "retro-inverso isomer" refers to an isomer of a linear peptide in which the direction of the sequence is reversed and the chirality of each amino acid residuc is inverted. See, e.g., Jameson et al., Nature, 368, 744-746 (1994); Brady et al., Nature, 368, 692-693 (1994). The net result of combining D-enantiomers and reverse synthesis is that the positions of carbonyl and amino groups in each amide bond are exchanged, while the position of the side-chain groups at each alpha carbon is preserved. Unless specifically stated otherwise, it is presumed that any given Lamino acid sequence of the invention may be made into an D retro-inverso peptide by synthesizing a reverse of the sequence for the corresponding native L-amino acid sequence. For example a GCRA peptide includes the sequence of SEQ ID NO: SEQ ID NO:2-54, and SEQ ID NO: 57-98. In various embodiments, the GCRA peptide includes the amino acid sequence of SEQ ID NO:45-54 and SEQ ID NO:87-98 where the peptide induces cGMP production by a cell. In various embodiments the GCRA peptide of the invention includes the amino acid sequence according to Formulas I-IX (e.g. SEQ ID NO:45-54) with the proviso that the GCRA peptide is not SEQ ID NO:1. In further embodiments the GCRA peptide of the invention include the amino acid sequence according to Formulas X- XVII (e.g. SEQ ID NO:87-98) with the proviso that the GCRA peptide is not SEQ ID NO:55 or SEQ ID NO:56. By inducing cGMP production is meant that the GCRA peptide induces the production of intracellular cGMP. Intracellular cGMP is measured by methods known in the art. For example, the GCRA peptide of the invention stimulate $5 \%, 10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 75 \%, 90 \%$ or more intracellular cGMP compared to naturally occurring GC-C angonists. Optionally, the GCRA peptides of the invention of the invention stimulate $5 \%, 10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 75 \%, 90 \%$ or more intracellular cGMP compared SP-304 (SEQ ID NO:1). In further embodiments, the GCRA peptide stimulates apoptosis, e.g., programmed cell death or activate the cystic fibrosis transmembrane conductance regulator (CFTR). In some embodimenst the GCRA peptides described herein are more stable than naturally occurring GC-C agonists and/or SP-304 (SEQ ID NO:1), SP-339 (SEQ ID NO: 55) or SP-340 (SEQ ID NO: 56). By more stable it is meant that the peptide degrade less and/or more slowly in simulated gastric fluid and/or simulated ntestinal fluid compared to naturally occurring GC-C angonists and/or SP-304. For example, the GCRA peptide of the invention degrade $2 \%, 3 \%, 5 \%, 10 \%, 15 \%, 20 \%, 30 \%, 40 \%, 50 \%, 75 \%, 90 \%$ or less compared to naturally occurring GC-C angonists and/or SP-304, SP-339 or SP-340.

As used herein PEG3, 3 PEG, is meant to denote polyethylene glycol such as include aminocthyloxy-cthyloxy-acctic acid (AccA). As uscd hercin, (e.g., in Formulas I- XVII, SEQ ID NO:45-54 and SEQ ID NO:87-98) X_{a} is any any natural, unnatural amino acid or amino acid analogue; M_{aa} is a Cysteine (Cys), Penicillamine (Pen) homocysteine, or 3-mercaptoproline; $X_{a a_{11}}$ is meant to denote an amino acid sequence of any any natural, unnatural amino acid or amino acid analogue that is one, two or three residues in length; $\mathrm{Xaa}_{\mathrm{n} 2}$ is meant to denote an amino acid sequence of any any natural, unnatural amino acid or amino acid analogue that is zero or one residue in length; and $\mathrm{Xaa}_{\mathrm{n}}$ is meant to denote an amino acid sequence of any any natural, unnatural amino acid or amino acid analogue that is zero, one, two, three, four, five or six residues in length. Additionally, any amino acid represented by Xaa, $X a a_{n 1}, X a a_{n 2}$ or $X a a_{n 3}$ may be an L-amino acid, a D-amino acid, a methylated amino acid or any combination of thereof. Optionally, any GCRA peptide represented by Formulas I-VII may contain on or more polyethylene glycol residues at the the N - terminus, C-terminus or both. An exemplary polyethylene glycol include aminoethyloxy-ethyloxy-acetic acid and polymers thereof.

In some embodiments, GCRA peptides include peptides containing the amino acid sequence of Formula I, wherein at at least one amino acid of Formula I is a D-amino acid or a methylated amino acid and/or the amino acid at position 16 is a serine. Preferably, the amino acid at position 16 of Formula I is a D-amino acid or a methylated amino acid. For example, the amino acid at position 16 of Formula I is a d-leucine or a d-serine. Optionally, one or more of the amino acids at position 1-3 of Formula I are D-amino acids or methylated amino acids or a combination of D-amino acids or methylated amino acids. For example, Asn1, Asp2 or Glu3 (or a combination thereof) of Formula I is a D -amino acids or a methylated amino acid. Preferably, the amino acid at position Xaa ${ }^{6}$ of Formula I is a leucine, serine or tyrosine.

In alternative embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula II, wherein at least one amino acid of Formula II is a D-amino acid or a methylated amino acid. Preferably, the amino acid denoted by Xaa ${ }_{\mathrm{n} 2}$ of Formula II is a D-amino acid or a methylated amino acid. In some embodimenst the amino acid denoted by $\mathrm{Xaa}_{\mathrm{n} 2}$ of Formula II is a leucine, d-leucine, serine or d-serine. Preferably, the one or more of the amino acids denoted by $\mathrm{Xaa}_{\mathrm{n} 1}$ of Formula II is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position Xaa ${ }^{6}$ of Formula II is a leucine, serine or tyrosine.

In some embodiments, GCRA peptides include peptides containing the amino acid sequence of Formula III, whercin 1) at at least one amino acid of Formula I is a D-amino acid or a methylated amino acid and/or 2) Maa is not a cysteine. Preferably, the amino acid denoted by $\mathrm{Xaa}_{\mathrm{n} 2}$ of Formula III is a D-amino acid or a methylated amino acid. In some embodiments the amino acid denoted by $\mathrm{Xaa}_{\mathrm{n} 2}$ of Formula III is a leucine, d-leucine, serine or d-serine. Preferably, the one or more of the amino acids denoted by $\mathrm{Xaa}_{\mathrm{n} 1}$ of Formula III is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position Xaa ${ }^{6}$ of Formula III is a leucine, serine or tyrosine.

In other embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula IV, wherein at least one amino acid of Formula IV is a D-amino acid or a methylated amino acid and/or 2) Maa is not a cysteine. Preferably, the $\mathrm{Xaa}_{\mathrm{n} 2}$ of Formula IV is a D-amino acid or a methylated amino acid. In some embodimenst the amino acid denoted by $\mathrm{Xaa}_{\mathrm{n} 2}$ of Formula IV is a leucine, d-leucine, serine or d-serine. Preferably, the one or more of the amino acids denoted by $\mathrm{Xaa}_{\mathrm{n} 1}$ of Formula IV is a D-amino acid or a methylated amino acid. Preferably, the amino acid denoted $X a a^{6}$ of Formula IV is a leucine, serine or tyrosine. In further embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula V, wherein at at least one amino acid of Formula V is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position 16 of Formula V is a D-amino acid or a methylated amino acid. For example, the amino acid at position 16 (i.e., Xaa ${ }^{16}$) of Formula V is a d-leucine or a d-serine. Optionally, one or more of the amino acids at position 13 of Formula V are D-amino acids or methylated amino acids or a combination of D-amino acids or methylated amino acids. For example, Asn1, Asp2 or Glu3 (or a combination thereof) of Formula V is a D-amino acids or a methylated amino acid. Preferably, the amino acid denoted at $X a a^{6}$ of Formula V is a leucine, serine or tyrosine.

In additional embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula VI, VII, VIII, IX. Preferably, the amino acid at position 6 of Formula VI, VII, VIII, IX. is a leucine, serine or tyrosine. In some aspects the amino acid at position 16 of Formula VI, VII, VIII, IX is a leucine or a serine. Preferably, the amino acid at position 16 of Formula V is a D-amino acid or a methylated amino acid.

In prefered embodiments, the GCRA peptide is SP-332 (SEQ ID NO:8), SP-333 (SEQ ID NO:9) or SP-334 (SEQ ID NO:10).

In additional embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula X, XI, XII, XIII, XIV, XV, XVI or XVII. Optionally, one or more amino acids of Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-amino acid or a methylated amino acid. Preferably, the amino acid at the carboxy terminus of the peptides according to Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-amino acid or a methylated amino acid. For example the the amino acid at the carboxy terminus of the peptides according to Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-tyrosine

Preferably, the amino acid denoted by Xaa ${ }^{6}$ of Formula XIV is a tyrosine, phenyalanine or a serine. Most preferably the amino acid denoted by Xaa ${ }^{6}$ of Formula XIV is a phenyalanine or a serine. Preferably, the amino acid denoted by Xaa ${ }^{4}$ of Formula XV, XVI or XVII is a tyrosine, phenyalanine or a serine. Most preferably, the amino acid position Xaa ${ }^{4}$ of Formula V, XVI or XVII is a phenyalanine or a serine.

In prefered embodiments, the GCRA peptide is SP-353 (SEQ ID NO:58) or SP-354 (SEQ ID NO:59).

In certain embodiments, one or more amino acids of the GCRA peptides can be replaced by a non-naturally occurring amino acid or a naturally or non-naturally occurring amino acid analog. There are many amino acids beyond the standard 20 (Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and VaI). Some are naturallyoccurring others are not. (See, for example, Hunt, The Non-Protein Amino Acids: In Chemistry and Biochemistry of the Amino Acids, Barrett, Chapman and Hall, 1985). For example, an aromatic amino acid can be replaced by 3,4-dihydroxy-L-phenylalanine, 3-iodo-L-tyrosine, triiodothyronine, L-thyroxine, phenylglycine (Phg) or nor-tyrosine (norTyr). Phg and norTyr and other amino acids including Phe and Tyr can be substituted by, e.g., a halogen, - $\mathrm{CH} 3,-\mathrm{OH},-$ $\mathrm{CH} 2 \mathrm{NH} 3,-\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{CH} 2 \mathrm{CH} 3,-\mathrm{CN},-\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{CH} 3,-\mathrm{SH}$, or another group. Any amino acid can be substituted by the D-form of the amino acid.

With regard to non-naturally occurring amino acids or naturally and non-naturally occurring amino acid analogs, a number of substitutions in the polypeptide and agonists described herein are possible alone or in combination.

For example, glutamine residues can be substituted with gamma-Hydroxy-Glu or gamma- Carboxy-Glu. Tyrosine residucs can be substituted with an alpha substituted amino acid such as L-alpha-methylphenylalanine or by analogues such as: 3-Amino-Tyr; $\mathrm{Tyr}(\mathrm{CH} 3)$; Tyr(PO3(CH3)2); $\operatorname{Tyr}(\mathrm{SO} 3 \mathrm{H})$; beta-Cyclohexyl-Ala; beta-(l-Cyclopentenyl)-Ala; beta- Cyclopentyl-Ala; beta-Cyclopropyl-Ala; beta-Quinolyl-Ala; beta-(2-Thiazolyl)-Ala; beta-(Triazole-l-yl)-Ala; beta-(2-Pyridyl)-Ala; beta-(3-Pyridyl)-Ala; Amino-Phe; Fluoro-Phe; Cyclohexyl-Gly; tBu-Gly; beta-(3-benzothienyl)-Ala; beta-(2-thienyl)-Ala; 5-Methyl-Trp; and A- Methyl-Trp. Proline residues can be substituted with homopro (L-pipecolic acid); hydroxyPro; 3,4-Dehydro-Pro; 4-fluoro-Pro; or alpha-methyl-Pro or an N(alpha)-C(alpha) cyclized amino acid analogues with the structure: $\mathrm{n}=0,1,2,3$ Alanine residues can be substituted with alpha-substitued or N-methylated amino acid such as alpha-amino isobutyric acid (aib), L/D-alpha-ethylalanine (L/D-isovaline), L/D-methylvaline, or L/D-alpha-methylleucine or a nonnatural amino acid such as beta-fluoro-Ala. Alanine can also be substituted with: $\mathrm{n}=0,1,2,3$ Glycine residues can be substituted with alpha-amino isobutyric acid (aib) or L/D-alphaethylalanine (L/D-isovaline).

Further examples of unnatural amino acids include: an unnatural analog of tyrosine; an unnatural analogue of glutamine; an unnatural analogue of phenylalanine; an unnatural analogue of serine; an unnatural analogue of threonine; an alkyl, aryl, acyl, azido, cyano, halo, hydrazine, hydrazide, hydroxyl, alkenyl, alkynl, ether, thiol, sulfonyl, seleno, ester, thioacid, borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, hydroxylamine, keto, or amino substituted amino acid, or any combination thereof; an amino acid with a photoactivatable cross-linker; a spin-labeled amino acid; a fluorescent amino acid; an amino acid with a novel functional group; an amino acid that covalently or noncovalently interacts with another molecule; a metal binding amino acid; an amino acid that is amidated at a site that is not naturally amidated, a metal-containing amino acid; a radioactive amino acid; a photocaged and/or photoisomerizable amino acid; a biotin or biotin-analogue containing amino acid; a glycosylated or carbohydrate modified amino acid; a keto containing amino acid; amino acids comprising polyethylene glycol or polyether; a heavy atom substituted amino acid (e.g., an amino acid containing deuterium, tritium, ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$, or ${ }^{18} \mathrm{O}$); a chemically cleavable or photocleavable amino acid; an amino acid with an elongated side chain; an amino acid containing a toxic group; a sugar substituted amino acid, e.g., a sugar substituted serine or the
like; a carbon-linked sugar-containing amino acid; a redox-active amino acid; an α-hydroxy containing acid; an amino thio acid containing amino acid; an α, α disubstitutcd amino acid; a β amino acid; a cyclic amino acid other than proline; an O-methyl-L-tyrosine; an L-3-(2naphthyl)alanine; a 3-methyl-phenylalanine; a ρ-acetyl-L-phenylalanine; an O-4-allyl-L-tyrosine; a 4-propyl-L-tyrosine; a tri-O-acetyl-GlcNAc β-serine; an L-Dopa; a fluorinated phenylalanine; an isopropyl-L-phenylalanine; a p-azido-L-phenylalanine; a p-acyl-L-phenylalanine; a p-benzoyl-L-phenylalanine; an L-phosphoserine; a phosphonoserine; a phosphonotyrosine; a p-iodo-phenylalanine; a 4-fluorophenylglycine; a p-bromophenylalanine; a p-amino-Lphenylalanine; an isopropyl-L-phenylalanine; L-3-(2-naphthyl)alanine; D-3-(2-naphthyl)alanine (dNal); an amino-, isopropyl-, or O-allyl-containing phenylalanine analogue; a dopa, 0-methyl-L-tyrosine; a glycosylated amino acid; a p-(propargyloxy)phenylalanine; dimethyl-Lysine; hydroxy-proline; mercaptopropionic acid; methyl-lysine; 3-nitro-tyrosine; norleucine; pyroglutamic acid; Z (Carbobenzoxyl); ε-Acetyl-Lysine; β-alanine; aminobenzoyl derivative; aminobutyric acid (Abu); citrulline; aminohexanoic acid; aminoisobutyric acid (AIB); cyclohexylalanine; d-cyclohexylalanine; hydroxyproline; nitro-arginine; nitro-phenylalanine; nitro-tyrosine; norvaline; octahydroindole carboxylate; ornithine (Orn); penicillamine (PEN); tetrahydroisoquinoline; acetamidomethyl protected amino acids and pegylated amino acids. Further examples of unnatural amino acids and amino acid analogs can be found in U.S. 20030108885 , U.S. 20030082575 , US20060019347 (paragraphs 410-418) and the references cited therein. The polypeptides of the invention can include further modifications including those described in US20060019347, paragraph 589. Exempary GCRA peptides which include a n0nnaturally occurring amino acid include for example SP-368 and SP-369.

In some embodiments, an amino acid can be replaced by a naturally-occurring, nonessential amino acid, e.g., taurine.

Alternatively, the GCRA peptides are cyclic peptides. GCRA cyclic peptide are prepared by methods known in the art. For example, macrocyclization is often accomplished by forming an amide bond between the peptide N - and C-termini, between a side chain and the N - or C-terminus [e.g., with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ at pH 8.5] (Samson et al., Endocrinology, 137: 5182-5185 (1996)), or between two amino acid side chains, such as cysteine. See, e.g., DeGrado, Adv Protein Chem, 39: 51-124 (1988). In various aspects the GCRA peptides are [4,12; 7,15] bicycles.

In some GCRA peptides one or both members of one or both pairs of Cys residues which normally form a disulfide bond can be replaced by homocystcinc, penicillaminc, 3mercaptoproline (Kolodziej et al. 1996 Int J Pept Protein Res 48:274); β, β dimethylcysteine (Hunt et al. 1993 Int JPept Protein Res 42:249) or diaminopropionic acid (Smith et al. 1978 J Med Chem 2 1:117) to form alternative internal cross-links at the positions of the normal disulfide bonds.

In addition, one or more disulfide bonds can be replaced by alternative covalent crosslinks, e.g., an amide linkage ($-\mathrm{CH} 2 \mathrm{CH}(\mathrm{O}) \mathrm{NHCH} 2-$ or $-\mathrm{CH} 2 \mathrm{NHCH}(\mathrm{O}) \mathrm{CH} 2-$), an ester linkage, a thioester linkage, a lactam bridge, a carbamoyl linkage, a urea linkage, a thiourea linkage, a phosphonate ester linkage, an alkyl linkage (-CH2CH2CH2CH2-), an alkenyl linkage(-CH $2 \mathrm{CH}=\mathrm{CHCH} 2-$), an ether linkage (-CH2CH2OCH2- or -CH2OCH2CH2-), a thioether linkage (-CH2CH2SCH2- or - CH2SCH2CH2-), an amine linkage (-CH2CH2NHCH2- or - CH2NHCH $2 \mathrm{CH} 2-$) or a thioamide linkage (-CH2CH(S)HNHCH 2- or -CH2NHCH(S)CH 2-). For example, Ledu et al. (Proc Nat'l Acad. Sci. 100:11263-78, 2003) describe methods for preparing lactam and amide cross-links. Exemplary GCRA peptides which include a lactam bridge include for example SP-370.

The GCRA peptides can have one or more conventional polypeptide bonds replaced by an alternative bond. Such replacements can increase the stability of the polypeptide. For example, replacement of the polypeptide bond between a residue amino terminal to an aromatic residue (e.g. Tyr, Phe, Trp) with an alternative bond can reduce cleavage by carboxy peptidases and may increase half-life in the digestive tract. Bonds that can replace polypeptide bonds include: a retro-inverso bond ($\mathrm{C}(\mathrm{O})-\mathrm{NH}$ instead of $\mathrm{NH}-\mathrm{C}(\mathrm{O})$; a reduced amide bond (NH-CH2); a thiomethylene bond (S-CH2 or CH2-S); an oxomethylene bond ($0-\mathrm{CH} 2$ or $\mathrm{CH} 2-\mathrm{O}$); an ethylene bond ($\mathrm{CH} 2-\mathrm{CH} 2$); a thioamide bond $(\mathrm{C}(\mathrm{S})-\mathrm{NH})$; a trans-olefine bond $(\mathrm{CH}=\mathrm{CH})$; a fiuoro substituted trans-olefme bond $(\mathrm{CF}=\mathrm{CH})$; a ketomethylene bond $(\mathrm{C}(\mathrm{O})$ - CHR or $\mathrm{CHR}-\mathrm{C}(\mathrm{O})$ wherein R is H or CH 3 ; and a fluoro-ketomethylene bond $(\mathrm{C}(\mathrm{O})$-CFR or $\mathrm{CFR}-\mathrm{C}(\mathrm{O})$ wherein R is H or F or CH3.

The GCRA peptides can be modified using standard modifications. Modifications may occur at the amino (N -), carboxy (C-) terminus, internally or a combination of any of the preceeding. In one aspect described herein, there may be more than one type of modification on
the polypeptide. Modifications include but are not limited to: acetylation, amidation, biotinylation, cinnamoylation, farncsylation, formylation, myristoylation, palmitoylation, phosphorylation (Ser, Tyr or Thr), stearoylation, succinylation, sulfurylation and cyclisation (via disulfide bridges or amide cyclisation), and modification by Cys3 or Cys5. The GCRA peptides described herein may also be modified by 2, 4-dinitrophenyl (DNP), DNP-lysine, modification by 7-Amino-4-methyl- coumarin (AMC), flourescein, NBD (7-Nitrobenz-2-Oxa-1,3-Diazole), p-nitro-anilide, rhodamine B, EDANS (5-((2-aminoethyl)amino)naphthalene-1- sulfonic acid), dabcyl, dabsyl, dansyl, texas red, FMOC, and Tamra (Tetramethylrhodamine). The GCRA peptides described herein may also be conjugated to, for example, polyethylene glycol (PEG); alkyl groups (e.g., C1-C20 straight or branched alkyl groups); fatty acid radicals; combinations of PEG, alkyl groups and fatty acid radicals (See, U.S. Patent 6,309,633; Soltero et al., 2001 Innovations in Pharmaceutical Technology 106-110); BSA and KLH (Keyhole Limpet Hemocyanin). The addition of PEG and other polymers which can be used to modify polypeptides of the invention is described in US20060 19347 section IX.

Also included in the invention are peptides that biologically or functional equivalent to the peptides described herein. The term "biologically equivalent" or functional equivalent" is intended to mean that the compositions of the present invention are capable of demonstrating some or all of the cGMP production modulatory effects.

GCRA peptides can also include derivatives of GCRA peptides which are intended to include hybrid and modified forms of GCRA peptides in which certain amino acids have been deleted or replaced and modifications such as where one or more amino acids have been changed to a modified amino acid or unusual amino acid and modifications such as glycosylation so long the modified form retains the biological activity of GCRA peptides. By retaining the biological activity, it is meant that cGMP and or apoptosis is induced by the GCRA peptide, although not necessarily at the same level of potency as that of a naturally-occurring GCRA peptide identified.

Preferred variants are those that have conservative amino acid substitutions made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.

These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar sidc chains (e.g., glycinc, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a GCRA polypeptide is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a GCRA coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened to identify mutants that retain activity.

Also included within the meaning of substantially homologous is any GCRA peptide which may be isolated by virtue of cross-reactivity with antibodies to the GCRA peptide.

Preparation of GCRA peptides

GCRA peptides are easily prepared using modern cloning techniques, or may be synthesized by solid state methods or by site-directed mutagenesis. A GCRA peptide may include dominant negative forms of a polypeptide.

Chemical synthesis may generally be performed using standard solution phase or solid phase peptide synthesis techniques, in which a peptide linkage occurs through the direct condensation of the amino group of one amino acid with the carboxy group of the other amino acid with the elimination of a water molecule. Peptide bond synthesis by direct condensation, as formulated above, requires suppression of the reactive character of the amino group of the first and of the carboxyl group of the second amino acid. The masking substituents must permit their ready removal, without inducing breakdown of the labile peptide molecule.

In solution phase synthesis, a wide variety of coupling methods and protecting groups may be uscd (See, Gross and Mcienhofcr, cds., "The Pcptides: Analysis, Synthcsis, Biology," Vol. 1-4 (Academic Press, 1979); Bodansky and Bodansky, "The Practice of Peptide Synthesis," 2d ed. (Springer Verlag, 1994)). In addition, intermediate purification and linear scale up are possible. Those of ordinary skill in the art will appreciate that solution synthesis requires consideration of main chain and side chain protecting groups and activation method. In addition, careful segment selection is necessary to minimize racemization during segment condensation.

Solubility considerations are also a factor. Solid phase peptide synthesis uses an insoluble polymer for support during organic synthesis. The polymer-supported peptide chain permits the use of simple washing and filtration steps instead of laborious purifications at intermediate steps. Solid-phase peptide synthesis may generally be performed according to the method of Merrifield et al., J. Am. Chem. Soc., 1963, 85:2149, which involves assembling a linear peptide chain on a resin support using protected amino acids. Solid phase peptide synthesis typically utilizes either the Boc or Fmoc strategy, which are well known in the art.

Those of ordinary skill in the art will recognize that, in solid phase synthesis, deprotection and coupling reactions must go to completion and the side-chain blocking groups must be stable throughout the synthesis. In addition, solid phase synthesis is generally most suitable when peptides are to be made on a small scale.

Acetylation of the N -terminal can be accomplished by reacting the final peptide with acetic anhydride before cleavage from the resin. C-amidation is accomplished using an appropriate resin such as methylbenzhydrylamine resin using the Boc technology.

Alternatively the GCRA peptides are produced by modern cloning techniques For example, the GCRA peptides are produced either in bacteria including, without limitation, E. coli, or in other existing systems for polypeptide or protein production (e.g., Bacillus subtilis, baculovirus expression systems using Drosophila Sf9 cells, yeast or filamentous fungal expression systems, mammalian cell expression systems), or they can be chemically synthesized. If the GCRA peptide or variant peptide is to be produced in bacteria, e.g., E. coli, the nucleic acid molecule encoding the polypeptide may also encode a leader sequence that permits the secretion of the mature polypeptide from the cell. Thus, the sequence encoding the polypeptide can include the pre sequence and the pro sequence of, for example, a naturally-occurring bacterial ST polypeptide. The secreted, mature polypeptide can be purified from the culture medium.

The sequence encoding a GCRA peptide described herein can be inserted into a vector capable of delivering and maintaining the nucleic acid molecule in a bacterial cell. The DNA molecule may be inserted into an autonomously replicating vector (suitable vectors include, for example, pGEM3Z and pcDNA3, and derivatives thereof). The vector nucleic acid may be a bacterial or bacteriophage DNA such as bacteriophage lambda or M13 and derivatives thereof.

Construction of a vector containing a nucleic acid described herein can be followed by transformation of a host cell such as a bacterium. Suitable bacterial hosts include but are not limited to, E. coli, B subtilis, Pseudomonas, Salmonella. The genetic construct also includes, in addition to the encoding nucleic acid molecule, elements that allow expression, such as a promoter and regulatory sequences. The expression vectors may contain transcriptional control sequences that control transcriptional initiation, such as promoter, enhancer, operator, and repressor sequences.

A variety of transcriptional control sequences are well known to those in the art. The expression vector can also include a translation regulatory sequence (e.g., an untranslated 5^{\prime} sequence, an untranslated 3^{\prime} sequence, or an internal ribosome entry site). The vector can be capable of autonomous replication or it can integrate into host DNA to ensure stability during polypeptide production.

The protein coding sequence that includes a GCRA peptide described herein can also be fused to a nucleic acid encoding a polypeptide affinity tag, e.g., glutathione S-transferase (GST), maltose E binding protein, protein A, FLAG tag, hexa-histidine, myc tag or the influenza HA tag, in order to facilitate purification. The affinity tag or reporter fusion joins the reading frame of the polypeptide of interest to the reading frame of the gene encoding the affinity tag such that a translational fusion is generated. Expression of the fusion gene results in translation of a single polypeptide that includes both the polypeptide of interest and the affinity tag. In some instances where affinity tags are utilized, DNA sequence encoding a protease recognition site will be fused between the reading frames for the affinity tag and the polypeptide of interest.

Genetic constructs and methods suitable for production of immature and mature forms of the GCRA peptides and variants described herein in protein expression systems other than bacteria, and well known to those skilled in the art, can also be used to produce polypeptides in a biological system.

The peptides disclosed herein may be modified by attachment of a second molecule that confers a desired property upon the peptide, such as increased half-life in the body, for example, pegylation. Such modifications also fall within the scope of the term "variant" as used herein.

Therapeutic Methods

The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated that is mediated by guanylate cyclase receptor agonists. Disorders mediated by the guanylate cyclase receptor agonists include gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity.Gastointestinal disorders include for example, irritable bowel syndrome (IBS), nonulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudoobstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., postoperative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs , osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema) . Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

The term "treatment" refers to reducing or alleviating symptoms in a subject, preventing symptoms from worsening or progressing, and/or preventing discase in a subject who is frec therefrom. For a given subject, improvement in a symptom, its worsening, regression, or progression may be determined by any objective or subjective measure. Efficacy of the treatment may be measured as an improvement in morbidity or mortality (e.g., lengthening of survival curve for a selected population). Thus, effective treatment would include therapy of existing disease, control of disease by slowing or stopping its progression, prevention of disease occurrence, reduction in the number or severity of symptoms, or a combination thereof. The effect may be shown in a controlled study using one or more statistically significant criteria.

Intracellular cGMP induced by exposing, e.g., contacting a tissue (e.g., gastrointestinals tissue) or cell with GCRA agonists. GC-C receptors are expressed throughout the GI tract starting from esophagus, duodenum, jejunum, ilium, caecum and colon. Human colon cancer cell lines (T81, CaCo-2 and HT-29) also express GC-C receptors. By inducing is meant an increase in cGMP production compared to a tissue or cell that has not been in contact with GCRA peptide or variant. Tissues or cells are directly contacted with a GCRA peptide or variant. Alternatively, the GCRA peptide or variant is administered systemically. GCRA peptide or variant are administered in an amount sufficient to increase intracellular cGMP concentration. cGMP production is measured by a cell-based assay known in the art (25).

Disorders are treated, prevented or alleviated by administering to a subject, e.g., a mammal such as a human in need thereof, a therapeutically effective dose of a GCRA peptide. The GCRA peptides may be in a pharmaceutical composition in unit dose form, together with one or more pharmaceutically acceptable excipients. The term "unit dose form" refers to a single drug delivery entity, e.g., a tablet, capsule, solution or inhalation formulation. The amount of peptide present should be sufficient to have a positive therapeutic effect when administered to a patient (typically, between $10 \mu \mathrm{~g}$ and 3 g). What constitutes a "positive therapeutic effect" will depend upon the particular condition being treated and will include any significant improvement in a condition readily recognized by one of skill in the art.

The GCRA peptides can be administered alone or in combination with other agents. For example the GCRA peptides can be administered in combination with inhibitors of cGMP dependent phosphodiesterase, such as, for example, suldinac sulfone, zaprinast, motapizone, vardenafil or sildenifil; one or more other chemotherapeutic agents; or anti-inflammatory drugs
such as, for example, steroids or non-steroidal anti-inflammatory drugs (NSAIDS), such as aspirin.

Combination therapy can be achieved by administering two or more agents, e.g., a GCRA peptide described herein and another compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within $1,2,3,6,9,12,15,18$, or 24 hours of each other or within $1,2,3,4,5,6,7,8,9,10,12,14$ days of each other or within $2,3,4,5,6,7,8,9$, or 10 weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so.

The GCRA peptides described herein may be combined with phosphodiesterase inhibitors, e.g., sulindae sulfone, Zaprinast, sildenafil, vardenafil or tadalafil to further enhance levels of cGMP in the target tissues or organs.

Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y- X, X-X-Y, Y-X-Y,Y-Y-X,X-X-Y-Y, etc.

Combination therapy can also include the administration of two or more agents via different routes or locations. For example, (a) one agent is administered orally and another agents is administered intravenously or (b) one agent is administered orally and another is administered locally. In each case, the agents can either simultaneously or sequentially. Approximated dosages for some of the combination therapy agents described herein are found in the "BNF Recommended Dose" column of tables on pages 11-17 of WO01/76632 (the data in the tables being attributed to the March 2000 British National Formulary) and can also be found
in other standard formularies and other drug prescribing directories. For some drugs, the customary presecribed dose for an indication will vary somewhat from country to country.

The GCRA peptides, alone or in combination, can be combined with any pharmaceutically acceptable carrier or medium. Thus, they can be combined with materials that do not produce an adverse, allergic or otherwise unwanted reaction when administered to a patient. The carriers or mediums used can include solvents, dispersants, coatings, absorption promoting agents, controlled release agents, and one or more inert excipients (which include starches, polyols, granulating agents, microcrystalline cellulose (e.g. celphere, Celphere beads $®$), diluents, lubricants, binders, disintegrating agents, and the like), etc. If desired, tablet dosages of the disclosed compositions may be coated by standard aqueous or nonaqueous techniques.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL ${ }^{\text {TM }}$ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium
containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polycthylenc glycol, and the like), and suitable mixtures thercof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a GCRA agonist) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. Such as mannitol, fructooligosaccharides, polyethylene glycol and other excepients. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent
such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositorics (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthocsters, and polylactic acid. Mcthods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811, incorporated fully herein by reference.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for
the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapcutic effect to be achicved.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

Compositions of the present invention may also optionally include other therapeutic ingredients, anti-caking agents, preservatives, sweetening agents, colorants, flavors, desiccants, plasticizers, dycs, glidants, anti-adherents, anti-static agents, surfactants (wetting agents), antioxidants, film- coating agents, and the like. Any such optional ingredient must be compatible with the compound described herein to insure the stability of the formulation.

The composition may contain other additives as needed, including for exanple lactose, glucose, fructose, galactose, trehalose, sucrose, maltose, raffnose, maltitol, melezitose, stachyose, lactitol, palatinite, starch, xylitol, mannitol, myoinositol, and the like, and hydrates thercof, and amino acids, for example alanine, glycinc and betainc, and polypeptides and proteins, for example albumen.

Examples of excipients for use as the pharmaceutically acceptable carriers and the pharmaceutically acceptable inert carriers and the aforementioned additional ingredients include, but are not limited to binders, fillers, disintegrants, lubricants, anti-microbial agents, and coating agents such as: BINDERS: corn starch, potato starch, other starches, gelatin, natural and synthetic gums such as acacia, xanthan, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone (e.g., povidone, crospovidone, copovidone, etc), methyl cellulose, Methocel, pre-gelatinized starch (e.g., STARCH $1500{ }^{\circledR}$ and STARCH 1500 LM ®, sold by Colorcon, Ltd.), hydroxypropyl methyl cellulose, microcrystalline cellulose (FMC Corporation, Marcus Hook, PA, USA), or mixtures thereof, FILLERS: talc, calcium carbonate (e.g., granules or powder), dibasic calcium phosphate, tribasic calcium phosphate, calcium sulfate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, dextrose, fructose, honey, lactose anhydrate, lactose monohydrate, lactose and aspartame, lactose and cellulose, lactose and microcrystalline cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose \& guar gum, molasses, sucrose,or mixtures
thereof, DISINTEGRANTS: agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmcllose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, clays, other algins, other celluloses, gums (like gellan), low-substituted hydroxypropyl cellulose, or mixtures thereof, LUBRICANTS: calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, sodium stearyl fumarate, vegetable based fatty acids lubricant, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil), zinc stearate, ethyl oleate, ethyl laurate, agar, syloid silica gel (AEROSIL 200, W.R. Grace Co., Baltimore, MD USA), a coagulated aerosol of synthetic silica (Deaussa Co., Piano, TX USA), a pyrogenic silicon dioxide (CAB-O-SIL, Cabot Co., Boston, MA USA), or mixtures thereof, ANTI-CAKING AGENTS: calcium silicate, magnesium silicate, silicon dioxide, colloidal silicon dioxide, talc, or mixtures thereof, ANTIMICROBIAL AGENTS: benzalkonium chloride, benzethonium chloride, benzoic acid, benzyl alcohol, butyl paraben, cetylpyridinium chloride, cresol, chlorobutanol, dehydroacetic acid, ethylparaben, methylparaben, phenol, phenylethyl alcohol, phenoxyethanol, phenylmercuric acetate, phenylmercuric nitrate, potassium sorbate, propylparaben, sodium benzoate, sodium dehydroacetate, sodium propionate, sorbic acid, thimersol, thymo, or mixtures thereof, and COATING AGENTS: sodium carboxymethyl cellulose, cellulose acetate phthalate, ethylcellulose, gelatin, pharmaceutical glaze, hydroxypropyl cellulose, hydroxypropyl methylcellulose (hypromellose), hydroxypropyl methyl cellulose phthalate, methylcellulose, polyethylene glycol, polyvinyl acetate phthalate, shellac, sucrose, titanium dioxide, carnauba wax, microcrystalline wax, gellan gum, maltodextrin, methacrylates, microcrystalline cellulose and carrageenan or mixtures thereof.

The formulation can also include other excipients and categories thereof including but not limited to L-histidine, Pluronic ${ }^{\circledR}$), Poloxamers (such as Lutrol ${ }^{\circledR}$) and Poloxamer 188), ascorbic acid, glutathione, permeability enhancers (e.g. lipids, sodium cholate, acylcarnitine, salicylates, mixed bile salts, fatty acid micelles, chelators, fatty acid, surfactants, medium chain glycerides), protease inhibitors (e.g. soybean trypsin inhibitor, organic acids), pH lowering agents and absorption enhancers effective to promote bioavailability (including but not limited to those described in US6086918 and US5912014), creams and lotions (like maltodextrin and carrageenans); materials for chewable tablets (like dextrose, fructose, lactose monohydrate,
lactose and aspartame, lactose and cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose and guar gum, sorbitol crystallinc); parentcrals (like mannitol and povidonc); plasticizers (like dibutyl sebacate, plasticizers for coatings, polyvinylacetate phthalate); powder lubricants (like glyceryl behenate); soft gelatin capsules (like sorbitol special solution); spheres for coating (like sugar spheres); spheronization agents (like glyceryl behenate and microcrystalline cellulose); suspending/gelling agents (like carrageenan, gellan gum, mannitol, microcrystalline cellulose, povidone, sodium starch glycolate, xanthan gum); sweeteners (like aspartame, aspartame and lactose, dextrose, fructose, honey, maltodextrin, maltose, mannitol, molasses, sorbitol crystalline, sorbitol special solution, sucrose); wet granulation agents (like calcium carbonate, lactose anhydrous, lactose monohydrate, maltodextrin, mannitol, microcrystalline cellulose, povidone, starch), caramel, carboxymethylcellulose sodium, cherry cream flavor and cherry flavor, citric acid anhydrous, citric acid, confectioner's sugar, D\&C Red No. 33, D\&C Yellow \#10 Aluminum Lake, disodium edetate, ethyl alcohol 15\%, FD\&C Yellow No. 6 aluminum lake, FD\&C Blue \# 1 Aluminum Lake, FD\&C Blue No. 1, FD\&C blue no. 2 aluminum lake, FD\&C Green No.3, FD\&C Red No. 40, FD\&C Yellow No. 6 Aluminum Lake, FD\&C Yellow No. 6, FD\&C Yellow No.10, glycerol palmitostearate, glyceryl monostearate, indigo carmine, lecithin, manitol, methyl and propyl parabens, mono ammonium glycyrrhizinate, natural and artificial orange flavor, pharmaceutical glaze, poloxamer 188, Polydextrose, polysorbate 20 , polysorbate 80 , polyvidone, pregelatinized corn starch, pregelatinized starch, red iron oxide, saccharin sodium, sodium carboxymethyl ether, sodium chloride, sodium citrate, sodium phosphate, strawberry flavor, synthetic black iron oxide, synthetic red iron oxide, titanium dioxide, and white wax.

Solid oral dosage forms may optionally be treated with coating systems (e.g. Opadry® fx film coating system, for example Opadry $\left.{ }^{(}\right)$blue (OY-LS-20921), Opadry ${ }^{(R)}$ white (YS-2-7063), Opadry ${ }^{\circledR}$) white (YS- 1-7040), and black ink (S- 1-8 106).

The agents either in their free form or as a salt can be combined with a polymer such as polylactic-glycoloic acid (PLGA), poly-(I)-lactic-glycolic-tartaric acid (P(I)LGT) (WO 01/12233), polyglycolic acid (U.S. $3,773,919$), polylactic acid (U.S. $4,767,628$), poly(ε caprolactone) and poly(alkylene oxide) (U.S. 20030068384) to create a sustained release formulation. Such formulations can be used to implants that release a polypeptide or another agent over a period of a few days, a few weeks or several months depending on the polymer, the
particle size of the polymer, and the size of the implant (See, e.g., U.S. 6,620,422). Other sustaincd release formulations and polymers for use in are described in EP 0467389 A2, WO 93/24150, U.S. 5,612,052, WO 97/40085, WO 03/075887, WO 01/01964A2, U.S. 5,922,356, WO 94/155587, WO 02/074247A2, WO 98/25642, U.S. 5,968,895, U.S. 6,180,608, U.S. 20030171296. U.S. 20020176841, U.S. 5,672,659, U.S. 5,893,985, U.S. 5,134,122, U.S. 5,192,741, U.S. 5,192,741, U.S. 4,668,506, U.S. 4,713,244, U.S. 5,445,832 U.S. 4,931,279, U.S. ,5, 980,945, WO 02/058672, WO 9726015, WO 97/04744, and US200200 19446. In such sustained release formulations microparticles (Delie and Blanco-Prieto 2005 Molecule 10:65-80) of polypeptide are combined with microparticles of polymer. One or more sustained release implants can be placed in the large intestine, the small intestine or both. U.S. 6,011,0 1 and WO 94/06452 describe a sustained release formulation providing either polyethylene glycols (i.e. PEG 300 and PEG 400) or triacetin. WO 03/053401 describes a formulation which may both enhance bioavailability and provide controlled releaseof the agent within the GI tract. Additional controlled release formulations are described in WO 02/38129, EP 326151, U.S. 5,236,704, WO 02/30398, WO 98/13029; U.S. 20030064105, U.S. 20030138488A1, U.S. 20030216307A1, U.S. 6,667,060, WO 01/49249, WO 01/49311, WO 01/49249, WO 01/49311, and U.S. 5,877,224 materials which may include those described in WO04041195 (including the seal and enteric coating described therein) and pH -sensitive coatings that achieve delivery in the colon including those described in US4,910,021 and WO9001329. US4910021 describes using a $\mathrm{pH}-$ sensitive material to coat a capsule. WO9001329 describes using pH-sensitive coatings on beads containing acid, where the acid in the bead core prolongs dissolution of the pH -sensitive coating. U. S. Patent No. 5,175,003 discloses a dual mechanism polymer mixture composed of pH sensitive enteric materials and film-forming plasticizers capable of conferring permeability to the enteric material, for use in drug-delivery systems; a matrix pellet composed of a dual mechanism polymer mixture permeated with a drug and sometimes covering a pharmaceutically neutral nucleus; a membrane- coated pellet comprising a matrix pellet coated with a dual mechanism polymer mixture envelope of the same or different composition; and a pharmaceutical dosage form containing matrix pellets. The matrix pellet releases acid-soluble drugs by diffusion in acid pH and by disintegration at pH levels of nominally about 5.0 or higher.

The GCRA peptideds described herein may be formulated in the pH triggered targeted control release systems described in WO04052339. The agents described herein may be
formulated according to the methodology described in any of WO03105812 (extruded hyrdratable polymers); WO0243767 (enzymc cleavable membranc translocators); WO03007913 and WO03086297 (mucoadhesive systems); WO02072075 (bilayer laminated formulation comprising pH lowering agent and absorption enhancer); WO04064769 (amidated polypeptides); WO05063156 (solid lipid suspension with pseudotropic and/or thixotropic properties upon melting); WO03035029 and WO03035041 (erodible, gastric retentive dosage forms); US5007790 and US5972389 (sustained release dosage forms); WO041 12711 (oral extended release compositions); WO05027878, WO02072033, and WO02072034 (delayed release compositions with natural or synthetic gum); WO05030182 (controlled release formulations with an ascending rate of release); WO05048998 (microencapsulation system); US Patent 5,952,314 (biopolymer); US5,108,758 (glassy amylose matrix delivery); US 5,840,860 (modified starch based delivery). JP10324642 (delivery system comprising chitosan and gastric resistant material such as wheat gliadin or zein); US5,866,619 and US6,368,629 (saccharide containing polymer); US 6,531,152 (describes a drug delivery system containing a water soluble core (Ca pectinate or other water-insoluble polymers) and outer coat which bursts (e.g. hydrophobic polymerEudragrit)); US 6,234,464; US 6,403,130 (coating with polymer containing casein and high methoxy pectin; WO0174 175 (Maillard reaction product); WO05063206 (solubility increasing formulation); WO040 19872 (transferring fusion proteins).

The GCRA peptides described herein may be formulated using gastrointestinal retention system technology (GIRES; Merrion Pharmaceuticals). GIRES comprises a controlled-release dosage form inside an inflatable pouch, which is placed in a drug capsule for oral administration. Upon dissolution of the capsule, a gas-generating system inflates the pouch in the stomach where it is retained for 16-24 hours, all the time releasing agents described herein.

The GCRA peptides described herein can be formulated in an osmotic device including the ones disclosed in US4,503,030, US5,609,590 and US5,358,502. US4,503,030 discloses an osmotic device for dispensing a drug to certain pH regions of the gastrointestinal tract. More particularly, the invention relates to an osmotic device comprising a wall formed of a semipermeable pH sensitive composition that surrounds a compartment containing a drug, with a passageway through the wall connecting the exterior of the device with the compartment. The device delivers the drug at a controlled rate in the region of the gastrointestinal tract having a pH of less than 3.5, and the device self- destructs and releases all its drug in the region of the
gastrointestinal tract having a pH greater than 3.5 , thereby providing total availability for drug absorption. U.S. Patent Nos. 5,609,590 and 5, 358,502 disclose an osmotic bursting device for dispensing a beneficial agent to an aqueous environment. The device comprises a beneficial agent and osmagent surrounded at least in part by a semi-permeable membrane. The beneficial agent may also function as the osmagent. The semi-permeable membrane is permeable to water and substantially impermeable to the beneficial agent and osmagent. A trigger means is attached to the semi-permeable membrane (e.g.,joins two capsule halves). The trigger means is activated by a pH of from 3 to 9 and triggers the eventual, but sudden, delivery of the beneficial agent. These devices enable the pH -triggered release of the beneficial agent core as a bolus by osmotic bursting.

Exemplary Agents for Combination Therapy

Analgesic Agents

The GCRA peptides described herein can be used in combination therapy with an analgesic agent, e.g., an analgesic compound or an analgesic polypeptide. These polypeptides and compounds can be administered with the GCRA peptides described herein (simultaneously or sequentially). They can also be optionally covalently linked or attached to an agent described herein to create therapeutic conjugates. Among the useful analgesic agents are: Ca channel blockers, 5 HT receptor antagonists (for example $5 \mathrm{HT} 3,5 \mathrm{HT} 4$ and 5 HTl receptor antagonists), opioid receptor agonists (loperamide, fedotozine, and fentanyl), NK1 receptor antagonists, CCK receptor agonists (e.g., loxiglumide), NK1 receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSRI), vanilloid and cannabanoid receptor agonists, and sialorphin. Analgesics agents in the various classes are described in the literature.

Among the useful analgesic polypeptides are sialorphin-related polypeptides, including those comprising the amino acid sequence QHNPR (SEQ ID NO:), including: VQHNPR (SEQ ID NO:); VRQHNPR (SEQ ID NO:); VRGQHNPR (SEQ ID NO:); VRGPQHNPR (SEQ ID NO:); VRGPRQHNPR (SEQ ID NO:); VRGPRRQHNPR (SEQ ID NO:); and RQHNPR (SEQ ID NO:). Sialorphin-related polypeptides bind to neprilysin and inhibit neprilysin- mediated breakdown of substance P and Met-enkephalin. Thus, compounds or polypeptides that are inhibitors of neprilysin are useful analgesic agents which can be administered with the polypeptides described herein in a co-therapy or linked to the polypeptides described herein, e.g.,
by a covalent bond. Sialophin and related polypeptides are described in U.S. Patent 6,589,750; U.S. 20030078200 Al ; and WO 02/051435 A2.

Opioid receptor antagonists and agonists can be administered with the GCRA peptides described herein in co-therapy or linked to the agent described herein, e.g., by a covalent bond. For example, opioid receptor antagonists such as naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, and nor-binaltorphimine are thought to be useful in the treatment of IBS. It can be useful to formulate opioid antagonists of this type is a delayed and sustained release formulation such that initial release of the antagonist is in the mid to distal small intestine and/or ascending colon. Such antagonists are described in WO 01/32180 A2. Enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-Lhomoserine) is an agonist of the mu and delta opioid receptors and is thought to be useful for increasing intestinal motility \{Eur. J. Pharm. 219:445, 1992), and this polypeptide can be used in conjunction with the polypeptides described herein. Also useful is trimebutine which is thought to bind to mu/delta/kappa opioid receptors and activate release of motilin and modulate the release of gastrin, vasoactive intestinal polypeptide, gastrin and glucagons. Kappa opioid receptor agonists such as fedotozine, asimadoline, and ketocyclazocine, and compounds described in WO03/097051 and WO05/007626 can be used with or linked to the polypeptides described herein. In addition, mu opioid receptor agonists such as morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH 2; WO 01/019849 Al) and loperamide can be used.

Tyr-Arg (kyotorphin) is a dipeptide that acts by stimulating the release of metenkephalins to elicit an analgesic effect (J. Biol. Chem 262:8165, 1987). Kyotorphin can be used with or linked to the GCRA peptides described herein.

Chromogranin-derived polypeptide (CgA 47-66; See, e.g., Ghia et al. 2004 Regulatory polypeptides 119:199) can be used with or linked to the GCRA peptides described herein.

CCK receptor agonists such as caerulein from amphibians and other species are useful analgesic agents that can be used with or linked to the GCRA peptides described herein.

Conotoxin polypeptides represent a large class of analgesic polypeptides that act at voltage gated calcium channels, NMDA receptors or nicotinic receptors. These polypeptides can be used with or linked to the polypeptides described herein.
Peptide analogs of thymulin (FR Application 2830451) can have analgesic activity and can be used with or linked to the polypeptides described herein.

CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R-isomer of loxiglumide) (WO 88/05774) can have analgesic activity and can be used with or linked to the polypeptides described herein.

Other useful analgesic agents include 5-HT4 agonists such as tegaserod (Zelnorm®), mosapride, metoclopramide, zacopride, cisapride, renzapride, benzimidazolone derivatives such as BIMU 1 and BIMU 8, and lirexapride. Such agonists are described in: EP1321 142 Al, WO 03/053432A1, EP 505322 Al, EP 505322 Bl, US 5,510,353, EP 507672 Al, EP 507672 B1, and US 5,273,983.

Calcium channel blockers such as ziconotide and related compounds described in, for example, EP625162B1, US 5,364,842, US 5,587,454, US 5,824,645, US 5,859,186, US 5,994,305, US 6087,091, US 6,136,786, WO 93/13128 Al, EP 1336409 Al , EP 835126 Al , EP 835126 Bl , US $5,795,864$, US $5,891,849$, US $6,054,429$, WO $97 / 01351 \mathrm{Al}$, can be used with or linked to the polypeptides described herein.

Various antagonists of the NK-I, NK-2, and NK-3 receptors (for a review see Giardina et al. 2003.Drugs 6:758) can be can be used with or linked to the polypeptides described herein.

NK1 receptor antagonists such as: aprepitant (Merck \& Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-48968 (Sanofi Synthelabo), CP-122,721 (Pfizer, Inc.), GW679769 (Glaxo Smith Kline), TAK-637 (Takeda/Abbot), SR-14033, and related compounds described in, for example, EP 873753 Al, US 20010006972 Al, US 20030109417 Al , WO $01 / 52844 \mathrm{Al}$, can be used with or linked to the polypeptides described herein.

NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi- Synthelabo), GW597599 (Glaxo Smith Kline), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc) can be used with or linked to the polypeptides described herein.

NK3 receptor antagonists such as osanetant (SR-142801; Sanofi-Synthelabo), SSR241586, talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 Al , WO 97/21680 Al, US 6,277,862, WO 98/1 1090, WO 95/28418, WO 97/19927, and Boden et al. (J Med Chem. 39:1664-75, 1996) can be used with or linked to the polypeptides described herein.

Norepinephrine-serotonin reuptake inhibitors (NSRI) such as milnacipran and related compounds described in WO 03/077897 Al can be used with or linked to the polypeptides described herein.

Vanilloid receptor antagonists such as arvanil and related compouds described in WO 01/64212 Al can be used with or linked to the polypeptides described herein.

The analgesic polypeptides and compounds can be administered with the polypeptides and agonists described herein (simultaneously or sequentially). The analgesic agents can also be covalently linked to the polypeptides and agonists described herein to create therapeutic conjugates. Where the analgesic is a polypeptide and is covalently linked to an agent described herein the resulting polypeptide may also include at least one trypsin cleavage site. When present within the polypeptide, the analgesic polypeptide may be preceded by (if it is at the carboxy terminus) or followed by (if it is at the amino terminus) a trypsin cleavage site that allows release of the analgesic polypeptide.

In addition to sialorphin-related polypeptides, analgesic polypeptides include: AspPhe, endomorphin-1, endomorphin-2, nocistatin, dalargin, lupron, ziconotide, and substance P.

Agents to Treat Gastrointestinal Disorders

Examples of additional therapatic agents to treat gastromestimal and other disonders inchde agents to treat constipation (e.g., a chloride channel activator such as the bicylic fatty acid, Eubiprostone (formerly known as SEI-0211; Sucanpo Phamaceuticais, The. Bethesda, MD), a laxative (eg a bulk-forming laxative (e.g, nonstarch polysacharides, Colonel Tablet (polycarbophil caleium), Plantago Ovata, Equalactio (Calcim Polycarbophi), fiber (ag. FBERCONQ (Calcium Polycabophi), an osmotic laxative, a stmulan laxative (suchas diphenymethanes (e.g. bisacodyl), anthraqumones (e.g. cascara, sema), and surfactant laxatives (e,g caswron, docusatcs), an cmolnent/hbricating agent (stoh as mineral ou, glycorine, and docusates), MiraLax (Brantree Laboratories, Brantree MA), dexloxighumide (Forest Laboratorics, alooknown as CR 2017 Rottapharm (Rota Research Laboratonum SpA) , salinc laxatives, enemas, suppositories, and CR 3700 (Rotapham (Rota Reseaven Laboratorium SpA); acid reducing gyents such as proton pump inhbitors (e.g, omeprazole (Priloseck), osoneprazole (Nexiun(B), lansopazole (PrevacidP), pantoprazle (Protonix B) and rabeprazole (Aciphex ${ }^{(0)}$) and Histamine H2 -receptor antagonist (also known as 12 receptor blockers including
cimetidine, ranitidne, famotidne and nizatidne); proknetic agents moluding itopride, octrotide, bethancohol, metoclopramde (Rcglan(i)), domperdone (Mothume), orythomyen (and dervatives thereon) or cisapride (propulsidQ); Prokineticin polypeptides homologs, variants and chmeras thereof moluding those described in US 7,052,674 which can be used with or linked to the polypeptides described heren; promothty agents such as the yasostatin-derived polypephde, chromogranin A (4-16) (See, e.g, Gha et al. 2004 Regulatory polypeptides 121:31) or moth agonist (e.g, GM-61 or mutemcinal fumarate) or nociceptin/Ompanm FQ receptor modulators (US20050169917), other peptides which can bind to and/or activate GC-C inchaing
 recoptor agonists or antagonists (including 5HTA antagonists (e.g. AGM-OOI AG3 therapentics), 5HT2B antagonists (e.g. PGN 1091 and PGNI 164 (Phamagene Laboratories Lmited), and 5 ETH receptor agonists (such as tegaserod (ZELNORMW), prucalopride, mosapma, metoclopramide, zacopride, cisamride, renzapride, benzimidazolone derivatives such as BRMU I and BIMU 8 , and hrexapride). Such agonists/modulators are desombed in: EP1321142 A, WO03/053432A1, EP 505322 Al , EP 505322 Bl , US 5,510,353, EP 507672 AB , EP 507672 BI, US $5,273,983$, and US $6,951,867$); 5 FT3 roceptor agonists such as MKC-733; and 5 HT 3 receptor antagonists such as DDB- 225 (MCT-225; Dynogen Pharmaceuticals, ho.),
 (ANZEMET(Q), palonosetron (AloxiQ), Granisctron (Kytri(Q), YM060(ramosetron; Astellas Phama hac, ramosetron may be given as a daily dose of 0.002 to 0.02 mg as described in EP01588707) and ATh-7000 (Aryx Therapeutics, Santa Clara CA), muscarinc receptor agonists; anti-infammatory agents antispasmodics including but not fimited to anticholinergic drugs (hike
 Bentyle, Bentylo(Q), hyoscyamine (e.g. IB-State, Nuleve, LevsinQ, LevbidQ, Levsinex
 Colidrops Liquid Pedatric (B, Gastrosed (B, Hyco ElixiQ, HyosolQ, Hyospaz(B, Hyosyne B, Cosamine(e), Medispaz(i), Noosol@, Spacobe, Spasdele), Symax@, Symax SLe), Domatal (eg. Domatal Extentabs(D), chdinum (e.g, Quaran, in combination with Lbrum =: Lbrax). methantheline (e.g. Banthine), Mepenzolate (e.g. Cantil), homatropine (e.g. hycodan, Homapin), Propanthelinc bromide (eg. Pro-Banthine), Oycopyrolate (e.g. Robinale, Robinul Fone8), scopolamine ($6 . g$ Transderm-Scop(8), Transdem-V(E), hyosine N-butybromide (e.g.

Buscopan(B), Prenzepine (e.g. Gastrozepin(b) Propantheline Bromide (e.g. Propanthelw), dicycloverne (e.g. Mcrbentyle), glycopyronim bromide (e.g. Glycopyrolates), byoscme hydrobromide, hyoscine methobromide, methantheliniom, and octatropine), peppermint oil, and direct smooth muscle relaxants the cmetropium bromide, mebeverine (DUSPATALQ, DUSPATALINQ, COLOFAC MRB, COLOTALB, otionium bromide (octionium), pinaverium (e.g. DicotelQ (pinaverium bromide, Solvay S. A.), Spasfon (hydrated
 (Modumen), antidenessants, inchuding but not hmited to those hated heren, as well as tricycho antidepressants hke amitryyine (Elavi@), desmamine (Norpramine), impramine (Gofranie), amoxapine (Asendine), nortiptyline, the selective serotonin reuptake inhbitors (SSRTs) hke paroxetine (Paxio), fhoxetine (ProzacB), sertrahe (Zolof(e), and citralopram (Celexa(\%); and ohers lke doxepin (Sinequano) and trazodone (Desyrolio); centrally-achne analgesic agents such as opioid recoptor agonists, opioid recontor antagonists (c.g, nalrexono); agents for the treatment of hnammatory bowel disease; agents for the treatment on Crohn's disease andor ulcerative colitis (e.g., alequel (Enzo Biochem, Inc., Famingsale, NY), the antiinflammatory polypeptide RDP58 (Genayme, Inc; Canbridge, MA), and TRAFICET-ENR (ChemoCentryx, me; San Canlos, CA); agents that treat gastrointestinal or visceral pain; agents that increase cGMP levels (as described in US20040121994) lke adrenergic receptor antagonists, wopamine receptor agonists and PDE (phosphodiesterase) inhibitors including but not limited to those disclosed hercin purgatives that draw fluids to the intestine (e.g., VSICOLO, a combination of sodim phosphate monobasic monohydrate and sodium phosphate dibasic anhydrate), Corticotropin Releasing Factor (CRF) recoptor antagonists (including NBI34941 (Neurocrine Biosciences, San Diego, CA), CRH9-41, astressin, R121919 (Janssen Phamaceutica), CP154,526, NB1-27914, Antalarmin, DMP696 (Bristoh-Myers Squbb) CT316311 (Pazer, Inc), SB723620(GSK), GW876008 (Neurocrine/Glaxo Smith Kline), ONO233 M 4 (Ono Phamacouticals), TS-041 (Ganssen), AAG561 (Novatis) and those diselosed in US 5,063,245, US 5,861,398, US20040224964, US20040108726, US20040176400, US20040171607, US20046110815, US20040006066, and US20050209253), glucagon like polypeptides (glp-1) and analogues thereof (including exendin-4 and GTP-010 (Gastrotech Phama A) and inhibitors of DPP-Y (DPY-M mediates the inactivation of glp-1); tofisopam, enantiomerically-pure R -tonsopam, and phamaceutically-acceptable sats theroof (US

20040229867 ; , tricyche anti-depressants of the dibenzothazepine type moluding but not limited to Dextonsoparm (Vela Phammacenicals), thancptino (StablonB) and othor agents doserbed in
 ylomamic acid nonacthylene glycol methyl ether ester and related componds described in WO 02/667942; the probiotic PROBACTRBX(i) The BioBalance Corporation, New Yok, NX) which contams microorganisms useful in the treament of gastrointestinal disorders; antidiameal drags inchuding but not hmited to loperade (montum, Pepto Diamea), diphenoxylate with atropine (Lomotil, Lomocot), cholestyranne (Questan, Cholybar), atropine (Co-Hhenotrope, Diased, Diphenoxylate, Lotone, Logen, honox, Vi-Atro, atopine sulfate inection) and Xifaxan@ (rifaximin; Salix Phamacenticals \& td), TzP-201(Tranzyme Pharma he), the newonal acetylehohe receptor (AAChR) blocker AOR-004 (AGI therapeuties), and bismeth subsalicylate (Pepo-bismol; anxiolytic drags inchding but not limited toAtivan (lorazepam), ahrazolam (Xanax (\$), chordiazepoxidechidmum (Lbrium®), Lbrax(B), clonazepam (Klonopine), clorazepate (Tranzene(B), dazepam (Vahame), estazolam (ProSome), furazepan (Dalmane(Q), oxazepam (Serax (B), prazepam (Centrax(Q), temazopam (Restori(Q), tiazolam (Hatcion®; Bedelx@ (Monmonllonte beidelhic; Msen Rod, Solvay SLV332 (ArQule Inc), YKP (Sk Pharma), Asimadoline (Toga Phamaceuticals/Merch), AGI-003 (AGs Therapeutics), neumbinin anagonist inchuding those described in US20060040950; potassimm chamel moduktors including those described in US7,002,015; the serotonin modulator AZD7371 (AstraZeneca PIo); M3 muscarinic receptor antagonists such as danfenacin (Enablex; Novartis AG and zamifenacin (Phzer); herbal and natural therapies inchding but not limited to acidophtus, chamomile tea, cyening primose oil, femel seeds, womwood, comfrey, and componds of Eao-y-Wan (magnoloh, honokioh, imperatorin, and isomperatonin) as in US6923992, and compositions comprising lysine and an ant-stress agent for the treatnent of irritable bowel syodrome as described in EPO 1550443.

Insulin and Insulin Modulating Agents

The GCRA peptides described herein can be used in combination therapy with insulin and related compounds including primate, roden, or rabbit insulm inchuding biologicaly active variants therof including allelic variants, more preferably human insuln avalable in recombinant form. Sources of haman insulin inchde phamaceutically accetable and stenie
 (hwmam incuin tDNA origin). See, tho THE PHYSECANS DESK REFERENCE, 5S. Sup th Ed. (200]) Medical Economics, '\}homson Healthcare (dischosing other sutable homan insulas). The GCRA pegtides described herein can abo be used in combination therapy with agents that can boost masum effects or levels of a swope upon admmistration, eg. ghazide andior rosigltazone. The polypeptides and agonistsuescribed herein can be used in
 a a polypeptides.

Agents for the Treament of Postoperative liens
The GCRA pegtides described herein can also be used in combination therapy with agents (e.g. Enteregm (abimopas; fommery called ado bor ADS 8-2698), convaptan and related agents describe in $456,645,959$) used for the treatment of postoperative hems and ofter disorders.

Anti-hypertenvive Agents

The GCRA peptides desenbed heren can be used in combination theray with an antihypentensive agent inchong but not limited w: () duretice, such as thazides, moluding chorthaidone, chothazide, dichbrophenamide, hydrofumethazide, indapande, polythazide, and hydrochomothazide; bop duretios, such as bmmetanide, ethacrynic acid, fumsenide, and torsemide; potassium sparing agents, such as amioride, and mamerene; carbonic anyonase inhibtors, osmotics(such as glycerm) and ahasterone antagonists, such as spmonolactone. epirenone, and the bee: (2) beta-atrenergic blockers anch as acebuoloh, abenokob, betanobot, bevanolok, bisoprobol, bopindolol, carteolol, carvediol, celiprobo, esmolol, indenolok,
 timolol, and the lke; (3) calcim channel blockerg such as amodipine, arandipine, azehidipine,
 galbopanil, isadipine, tacidine, lembiphe, lercandipine, nicardpine, niredipme, nivadiphe, nimodepine, nisoldipine, nitrendipine, manifiphe, mandipine, and verapami, and the hke, (4) angiotensin convering enzyme (ACE) inhbitors such as benazeprit; captopri; ceranaph;

quinapri; quinapilat, ramipni; perindopal; perindropri; quanipri; spiapul, tenocapni; trandolapril, and zofonopril, and the like; (S) noural codopeptidaso inhbitore such as omapathlat, cadoxatril and ecadotril, fosidotri, sampatilat, AVE7688, ER4030, and the like; (6) endothelin antagonists such as tezosentan, A308165, and YM62809, and the like; (7) vasodiators such as hydralazine, chondine, minoxidi, and micotmyl akcohol, and the like, (8) angiotonsin If receptor antagonists such as aprosartan, candesartan, eprosatan, irbesatan, losman, olwesartan, pratosatan, tasosantan, temisatan, valsartan, and EXP-3137, F6828K, and RNH6270, and the like; (9) a/ β adrenergic blockers such as mpradtol, arotinololand
 bunazosin, trimazosin, doxazosin, naftopidh, indoramin, WHP 164, and XENOW, and the hke; (1) apha 2 agonists such as lofexidine, tiamenidine, moxonidine, rimenidine and guanobenz, and the like; (12) aldosterone inhbitors, and the like, and (13) angopoietin-2 binding agents such as those disclosed in WO03/030833. Specific anti-hypertensive agents that can be ased in combination with polypeptides and agonists described berein include, but are not limited to: duretics, such as thazides (e.g, chlorthalidone, cyclothazide (CAS RN 2259-96-3), chlorohiazide (CAS RN 72956-09-3, which may be prepared as disclosed in US2809194), dichorophenamide, fydroflumethazide, indapamide, polythiazide, bendrofumethazide, methyclothazide, polythazide, trichlometbazide, chlortbalidone, mapamide, metolazone, quinethazone, althazide (CAS RN $5588-16-9$, which may be prepared as disclosed in British Patent No. 902,658), benzhiazide (CAS RN91-33-8, which may be prepared as diselosed in US3108097), buhiazide (which may be prepared as disclosed in British Patent Nos, 861, 367), and hydrochorothazide), bop duretics (e.g. bumetanide, ethacrynic acid, frosemide, and torasemide, potassium sparing agents (e.g. amiloside, and triamerene (CAS Number 396-0)O), and aldosterone antagonists ($6 . g$. spironolactone (CAS Number $52-01-7$), epirenone, and the hke); B-adrencrgio blockers such as Amiodarone (Cordaronc, Pacerone), bunolol bydrochloride
 methylethy)aminolpopoxylphenylubumamide, or (4)-3'Acetyn-4-[2-hydroxy -3(isopropylamino) propoxy] butyranilide), acebutol hydrochloride (e.g. SectralQ, WyethAyerst), alprenolol hydrochoride (CAS RN $13707-88-5$ see Nethenhands Patent Application No. $6,605,692$), atenolol (e.g Tenomin(B , AstraZeneca), canteolol hydrochloride (e, g Cantrol@ Filmabß, Abbott), Cehprolol hydrochloride (CAS RN 57470-78-7, also sec in US4034009),
cetamolol hydrochloride (CAS RN $77590-95-5$, see also US4059622), labetalol hydrochoride (c.g. Nomodynce), Schering), camolol hydrochlonde (c, g. Brevibloce, Baxtor), lovobetaxoloh hydrochoride (e.g. Betaxon Ophthalmic Suspension, Alcon), levobunoloh hydrachloride (e.g. Betagan 8 Liquifime with C CAPB Complance Cap, Alergan), nadolol (og. Nadolol, Mylan), practolo (CAS RN 6673-354, see also US3408387), propranolol hydrochloride (CAS RN 318 ~

 26921-17-5), bisoprolol (2-propanol, 4 [4-[12-(1-methylethoxy)ethoxy] methylphenory]-3-[1-

 butenedioate (2:1) (salt), eg. Zebetam, Lederle Consumer), nebivalol (2H-I-Benzonyran-2-
 U.S. Fat. No. 4,654,362), cicloprolol hydrochloride, such 2-Propanol, 1-[4.[2(cychopropylmelhoxy) othoxy lphenoxy]-3-[1-methylethylamino], hydrochloride, A. A.S. RN $63686-79-3$), dexpropranolol hydrochoride (2-Propanol, []-methylethy)-anmo]-3-(1-naphthaleryloxy)-hydrochloride (CAS RN 1307.-11-9), diacetolo) hydrochloride (Acetamide, N-[3-acety $-4[2$-hydroxy-3-[(k-methyl-ethyl)ammo]propoxy] [phenyl\}-, monohydrochioride CAS RN 69796-04-9), whevalol hydrochoride (Benzamide, 2-hydroxy-5-[]-hydroxy-2[[3-methyl-3-phenyipropy baninolethyl-, monohydrochoride, CAS RN 75659-08-4), exaprolol. hydrochionde (2-Promanol, 1-2-cyclohexylphenoxy)-3 [[(1 -methylethyl bamino] -, bydrochoride CASRN 59333-90-3), flestolol sulfate (Benzoic acid, 2 -ffuro-,3-[2-[aminocarbonylamino]- dimethylethyllamino]-2-hydroxypropy ester, (t)- suffate (1 (1) (salt), CAS RN 88844 -73-9; metalol bydrochoride (Mcthanesultonamide, N-[4][hydroxy-2(methylamino)propylphenyl], monohydrochoride CAS RN 7701-65-7), metoprolo 2 -
 metoprobl tartate (such as 2-Propanol, A-[4~(2-methoxyethyl)phenoxy]-3-[u-mothylethy)amino]- eg. Lomessor(8), Novartis), panatolol suffate (Carbamic ach, [2[4-[2-hydroxy-3[(1-methylethy)amino]propoxylphenyl]-thy]], methyl ester, (\quad) sulfate (salt) (2.1), CAS RN 59954-01-7), penbutolol sufate (2-Propanol, 1-(2-eydopentylphenoxy)-3-1, $1-$
dimethyle-thylhamino 1 , (S)-, sulfate (2:1) (salt), CAS RN $38363-32-5$), practolol (Acetamide, N-[4-2-bydroxy-3-[(1-methylothyDamino]-propoxy]phony[], CAS RN 6673-35-4) tipronolol hydrochoride (Propanol, $1[$ (l-methylethyl)amino $]-3-2$-(methylthios-phenoxy $]$ - hydrochloride, (-), CAS RN $39832-43-4$), tolamolol (Benzamide, 4 [2 [[2-hydroxy-3-(2-methyphenoxy)- propy] amino ethoxy\{], CAS RN $38103-61-6$, bopindolol, indenoloh, pindolo\}, propanolol, tertatol, and tifolol, and the like; calchum chame blockers swo as bealate sat of amtodiphe (such as 3 -cthyt-5-methyl-2-(2-ammothoxymethy)-4-(2-chomopheny)-1, f-dhydro-6methyl3,5 -pyridinedicarboxylate benzenesuphonate, e.g., Norvasc(i), Pfzer), clentiazem maleate (1,5 Benzothazepin-4(54)-one, 3-(acetyloxy)-8-chow-5-[2-(dmethytamino)ethyl]-2,3-6inydro-2-(4-methoxypheny)-(2S-cis)-, (Z)-2-butenedioate (1 1), see also US4567195), isradiphe (3,5Pyridinedicarboxyhc acid, 4 (4benzofurazany)- 4 - 4 hydro- 2,6 dmethyl-, methyl 1 . methylethyl ester, (t)-4(4-benzofurazany)-1,4-dinydro-2,6-dmethyl-3,5pyridinedicarboxylate, sco also US4466972); nimodipine (such as is isopropyl (2 - methoxyethy) 3, 4-dinydro-2,6-dimethyl -4-(3-nitropheny) - 3-5-pyidine - dicarboxylate, e, Nimotope, Bayer), felodipine (such as ethyl methyl 4 (2,3-dichoropheny)- $\}, 4$ dhydro-2,6-dimethyl-3,5-pyrdinedicarboxylate-, e.g. Plendio Rxtonded-Release, AstraZencoa LP), nivadipine ($3,5-$ Pyrdinedicatoxyfic acid, 2-cyano-1,4-dinydro-6-methyl-4-3-nitrophenyl)-3-methyl 5 -(methylethyl) cster, also see US3799934), nfedipine (such as 3, 5 -pyridinedicarboxylic acid, 4 , dibydro-2,6-dimethyl-4 (2-nitropheny), Amethyl ester, e.g, Procardia XL(B) Extended Release Tablets, Ffizer), dithazem hydrochloride (such as 1,5-Benzothazepin-4(5H)-one, 3-(acetyloxy)52 (dimetbylamino)ethyl)-2,-3-dinydro-2(4-methoxypheny), monohydrochloride, ()-cis, ag, Tazack, Forest), verapamil hydrochloride (sech as benzeneacetronitme, (alpha)-[3-[2-(3.4dimethoxyphenyl) edmymethylaminolpropy] - 3,4 -dimethoxy-(alpha)-(1 -methylethy) hydrochoride, eg. Isoptin(SR, Knoll Labs), toludipine hydrochoride (3,5-
 propenylhhenyl-4-dihydro-6-methyl-, diethyl ester, monobydrochoride) CAS RN $108700-$ 03-4), beffosdi (Ehosphomic acid, 2-(2 phenoxy ehyl)- 3,3 -propane- dylbis-, terabutyl cater CAS RN $10348679-9)$, fostedil (Phosphonic acid, [44 (2-benzothazoly phenyl]methyl]dicthyl ester CAS RN $75889-62-2$, aranidine, azelnidipme, bamidime, benidipine, bepridi, cinaldipine, clevidipine, efonidipine, gallopami, lacidipine, lemidipine, lercanidipise, monatepil

 nisoldipinc, murendipine, mandiphe, prandipine, and the like, T~ohamel cablum antagonists such as mberradi, angiotensin convering enzyme (ACE) inhibitors such as benazepri,
 ,4,5-tetrahydro-2-6xo- $\mathcal{H}-1-(3 \mathrm{~S})$-benzazepme- 1 -acetic acid monohydrochonde, e.g.,
 Captoprin, Mylan, CASRM 62571-86-2 and others disclosed in US4046889), ceranapril (and Others Gisclosed in USA452790), cetapril (abaceprif, Damppon dischosed man. Therap, Res.
 Phamacol 9:39 (1987), mdakpril (delaprib hydrochloride (2H-1,2,4- Benzothadiazine-7.
 $96-3$), disclosed in US4385051), enalani (and others disclosed in USA374829), onalopril,

 Phamacol. $5,643,655$ (1983), lsmopal (Merck), hosimopral, moexiprit, moexipal hydrochlonde
 oxopropyl]-1,-2,3,4-tetahydro-6,7-dmethoxy-, monohydrochoride, (3S)-CAS RN 82586-525), quinapri, quinapriak, tamprik (boechsat) diselosed in Ep 7902 and Gum, Ther, Res, 40:74 (1986), permdopri erbumine (such as $25,325,7 a S-1-[S)-\mathrm{N}-[\mathrm{S})-1$ -

Cabboxybutybalanybhexahyoro-indobnecarboxylic acis, -etryl ester, compomad with tert
 Phammacol, 3) 519 (987)), quanmmi (disclosed in US4344949), spragrif (Schering, disclosed in Acta. Phamacol. Toxicol. 59 (Supp. 5) : 173 (1986), tenocapni, trandolapri, zofonopul (and

 35115-60-7), BRL 36,378 (Snmth Klne Becham, see EP80822 mat EPG0668), ME-838
 (1-ethoxycarbony\{-3-phenyl-(1S)-propy]anino)-2,3,4,5-tetrahydro-2-ox-6-3-(3S)-benzazepine-1
acetic acid HCl, see UK. Patent No. 2103614), CGS 16,617 (Ciba-Geigy, 3(S)-[(US)-5-amino-1carboxypentyl]ammol $2,3,4,-5$-tctrabydro-2-oxo-1E-3-benzazopino-l-cthanoic acid, see US4473575), Ra44570 (Hocehst, see Araneimitelforschong 34:1254 (1985), R 31-2201 (Hoffman-LaRoche see FEBS Lett. $165: 201$ (1984), Clo25 (Pharmacologist 26243, 266 (1984), Wx-4422 (Wyeth, see 3. Med. Chen 26:394 (1983)), and those disclosed in US2003006922 (paragraph 2S), US4337201, US4432971 (phosphonamidates); neutral codopeptidase mhbitors such as omapatmiak (Vameve), CGS 30440 , cadoxatrit and ecadomit, fasiotril (also known as aladotil or alatriopal), sampatrilat, mixanpht, and genopatulat, AVE7688, ER4030, and those disclosed in US5362727, US5366973, US5225401, US4722810, US5223516, US4749688, US5552397, US5504080, US5612359, US5525723, EP0599444, EP0481522, EP0599444, EP0595610, EP0534363, EP534396, EP534492, EP0629627; endothelin antagonists such as tezosentan, A308165, and YM62499, and the like, vasodilators such as hydralazine (ayresoline), clonidine (chonidine hydrochoride (F - Imidazol- 2 -amine, N-(2,6-dichorophery)4,5-dhydro-, monohydrochorde CAS RN 420S-91-8), catapres, minoxidu (loniten), ncotnyl alcohol (roniacol), ditiazem hydrochoride (such as 1,5- Benzothiazepin-4(5H)-onc, 3-(acetyloxy)-5[2-\{dimehylamino)ehyy $]$-2,-3-dikydro-2(4-mehoxyphery)-, monohydrochoride, (+)-cis, e.g, Tiazace, Forest), isosobide dinitrate (such as 1,43,6-
 mononitate (such as 1,4:3,6-dianydro-B-ghato-1,5-ntrate, an organic nitrate, e.g., Immo 0 , Wyeth-Ayerst), nitroglycem (such as 2,3 propanctiol trintrate, e.g, Nitrostatis) Bake- Davis), verapamil hydrochloride (such as benzeneacetonitrie, ($)$) (abha) $[3-[2-3,4$ dmethoxypheny Dethylmethylaminolpropy] - 3 , A-dimethoxy-(alpha)- (1 methylethy) hydrochloride, e.g., Covera HSO Extended-Release, Searle), chomonar (which may be prepared as disclosed in US3282938), clontate (Amalen 1870 155), droprenilamine (which may be prepared as disclosed in DE2521113), fidofame (whioh may be prepared as disclosed in US 3267104); prenylamine (which may be prepared as disclosed in US3152173), propaty nitrate (which may be propared as disclosed in Frenoh patent No. $1,102,113$, miohamine bydrochonde (Piperameacetamide, 3(aminocarbonyl) $4[4,4$ bis(4 fuorophenylbutyl] $\mathrm{N}-(2,6$ - dichlorophenyl), dibydrochloride CAS RN 83898-67-3), mixidine (Benzenechanamine, 3,4- Gimethoxy-N(I-methyl-2-pyrolidinylidene)-Pyrolidine, $2[\{3,4$-dmethoxyphenethylimino $]$ - 1 -methyl- 1 Methyl-2-[$[3$, 4-dmethoxyphenethyl)minolpymolidine CAS RN $27737-38-8$), molsidomine ($1,2,3$ -

Oxadiazolimm, 5 [(ethoxycarbonyl)aminol-3-(4-mophohny)-, mer salt CAS RN 25717-80-0),
 erythrityl tetrantrate ($1,2,3,4$-Buanetetol, tetrantrate, ($2 \mathrm{R}, 3 \mathrm{~S}$)-rel- $\mathrm{CAS} \mathrm{RN} 7297-25-8$), clonitrate (1,2-Propanediol, 3-choro-, Gimtrate (7CI, 8CI, 9CD) CASRN 2612-33-1), dipyridamole Ethano\}, 2,2,2",2"~[4,8~di-kpiperidinylpyrimido[5,4-6hpyrimidne-2,6-diyl)dintriloltotrakis-CASRN 58-32-2), nicorandil (CAS RN 65141-46-03-), pyridnecarboxamide ($\mathrm{N}[2$-(nitwoxy)cthyl] Nisoldmino3,5-Pyrdinedicarboxylic aeid, 1,4-dhydro-2,6-dimethyl-4-2-ntrophenyl)-, methyl 2 -methylpropylester CAS RN 63675-72-9),
 ester CAS RN $21829-25-4$), perhexiline naleate (Piperidine, $2-(2,2$-dicychohexylethy)-, (22)-2. butenedioate (1)) CAS RN $6724-53$ a), oxprenolo hydrochoride (2 -Fropanol, 1-[(1methylethylamino $1-3$ - 2 -(2-propenyloxy)phenoxy)-, hydrochoride CAS RN 6452-73-9), pontinitrol (1,3-Propanediol, 2,2-bis[nthooxy)methyl]- mononitrate (ester) CAS RN 1607-17-
 3, 4-dmethoxy- α - $([$ methylethy $\}$ - CAS RN $52-53-9)$ and the like; angiotensin $1 /$ receptor antagonists such as, aprosartan, zolasartan, olmesartan, pratosartan, F6828K, RNJ6270, candesartan (1 H-Benzimidazole-7-carboxylie acid, 2-ethoxy-i-f[2-(HH-tetrazol-5-yb], ${ }^{-}$
 (cychohexyleabonyloxy)ethyl-2ethoxy-[H2-(H-tetrazol-5-y)biphenyl-4-y] HA -benzimidazole carboxylate, CAS RN 145040-37-5, US5703110 and US5196444), eprosartan (3-[14carboxyphenymethyl $\}$-2-a-butyl-imidazal-5-yl]-(2-hienylmethyl) propenoic acid, US585351 and US5650650), irbesartam (2-n-buty-3n [I2-\{h-tetrazol-5-ylbiphenyl-4-yl]methyl] $1,3-$

 US5138069, US5153197 and USS128355), tasosartan (5,8-dibydro-2,4 dimethyl-8-[2-(4] tetrazol-5-yl] [, bipheny]4-ylmethyl]-pyido[2,3-d]yymimidn-76H-one, US5149699),
 carboxylic acid, CAS RN $14470 \operatorname{A8}-4$, US5591762), milasartan, abitesartan, valsartan (Biovane (Novartis), (S)-N-valeryl-N-[2 -(H-tetrazol-5-yl)biphenyl-4-y]methy]vaine.
 methylimidazole-5-carboxylic acid, US5138069, US5153197 and US5128355), 3-2-(tetrazol-

5-yl)-1,r-biphen-4-yl)methyl-5,7-dimethyl-2-ethyl-3\}-imidazo[4,5-b]pyridine, 4T2-ethyl-4-
 bipheny]-2-carboxylic acid, 2-butyl-6-(hmethoxy-methylethyl)-24[2-)]s-zetrazol-5-y)biphenyl-4-ylmethyl] gunazolin-4(3H)-one, $3-\left[2^{\circ}\right.$-carboxybiphenyl-4-ylmethyl $]-2$ -

 , [' bipheny] -4-yl\}metby]-1 [-imidazole-5 carboxylic acid-1 \{ethoxycarbonyl-oxy)ethy\}

 yb)bipheny 4 -4-yl-methyl-N-valerolylaminomethylyeychopentane- I-carboxylic acid, 7 - methyl-
 ethy[-5,7-dimethyl-3H-imidazo[4,5-b]pyridine-3-ylmethyl]-2-qumolinylisodime benzoate, 2-
 ybmethyl]pyridne, 2 - [[2butyl- - - [4-abboxyphenylmethyl]-1 H-imidazol-5 -
 (caboxymethylphenoxy]-N-[2(R)-[4-\{2-suffobenzamido)imidazo\}- 1 -ylloctanoy] $[$-prohne, 1
 pyridinylmethy]-2h-imidazal-2-one, 5, 8-ethano-5, 8-dmethyl-2n-propyl-5,6,7,8-tetrabydro-
 one, $4\left[4\left[2^{2}(2,2,3,4\right.\right.$ tetrazol-5-y)biphen-4-yinmethylamino $]-5,6,7,8$-tetrabydro- $2-$

y) methyl-1,3,4-thadiazoline, 2 [5-ethyh-3-[2-(1H-tetazole-5-y)biphenyl-4-yl]methyl-3,3.4-

 ylmethyl]- I H- imidzole-5 -carboxylic acid I-ethoxycarbonyloxyethyl ester, those dischosed in patent publications EP475206, EP497150, EPS39086, EPS39713, EP535463, EP535465, EP542059, EP497121, EP535420, EP407342, EP415886, EP424317, EP435827, EP433983, EP475898, EP490820, EP528762, EP324377, EP323841, EP420237, EP500297, EP426021, EP480204, EP429257, EP430709, EK434249, EP446062, EP505954, EP524217, EPS14197, EPS 44198 , EPS14193, ERS 4192 , EP450566, EP468372, EP485929, ER503162, EPS33058, EP467207 EP399731, EP399732, EP412848, EP453210, EP456442, EP470794, EP470795, EP495626, EP495627, EP499414, EP499416, EP499415, EP511791, EP516392, EPS20723, EPS520724, EP539066, EP438869, EP505893, EP530702, EP400835, EP400974, EPP01030, EP407102, EP41766, EP409332, EP412594, EP419048, EP480659, EP481614, EP490587, EP46775, EP479479, EPS02725, EPS03838, EP505098, EP505111 EPS13,979 EP507594, EPS 10812, EP511767, EPS 2675 , EPS 12676, EP512870, EP517357, E3537937, EP534706, EPS27534, EP540356, EP461040, EP540039, EP465368, EP498723, EP498722, EP498721, EQS 15265 , EPS037S5, EP501892, EP519531, EPS32410, EP498361, EP432737, EPS04888, EP508393, EP508445, EP403159, EP403158, EP425211, EP427463, EP437103, EP481448, EP488532, EP501269, EPSO0409, ERS40400, EP005528, EPO28834, E6028833, EP4 1507 , EP425921, EP430300, EP434038, EP442473, EP443568, EP445811, EP459136, EP483683, ERY53033, EP520423, EP531876, EP531874, EP392337, EP468470, EP476543, EP502314, ERS29253, EP543263, EP540209, EP449699, EP465323, EP521768, EP415594, WO92/4468. W093/08171, W093/08169, WO91/00277, WO91/00281, WO91/4367, WO92/00067, W092/00977, W092/20342, W093/04045, W093/04046, WO91/15206, WO92/147/4, WO92/09600, WO92/16552, WO93/05025, W093/03018, WO91/07404, WO92/02508, WO92/13853, WO91/19697, WO91/1909, W091/12001, WO91/1999, WO91/15209, WO91/15479, WOO2/20687, WO92/20662, WO92/20661, WO93/01177, WO91/14679, WO91/13063, WO92/13564, W091/17148, W091/18888, WO91/19715, WO92/02257. W092/04335, W092/05161, WO92/07852, WO92/15577, WO93/03033, WO91/16313. WO92/00068, WO92/62510, WO92/09278, WO9210179, WO92/10180, WO92/10186, WO92/10181, WO92/10097, WO92/10183, WO92/10182, WO92/10187, WO92/10184,

WO92/10188, WO92/10180, WO92/10185, WO92/20651, WO93/03722, WO93/06828, WO93/03040, WO92/19211, WO92/22533, W092/06083, WO92/05784, WO93/00341, WO92/04343, WO92/64059, US5104877, US5187168, US5149699, US5385340, US48808804, US5138069, US4916129, US5153197, US5173494, US5137906, US5155126, US5140037, U85137902, U85157026, U85053329, U85132216, U85057522, U85066586, U85089626, US5049565, US5087702, US5124335, US5102880, US5128327, US5154435, US5202322, US5187159, US5198438, US5182288, US5036048, US5140036, US5087634, US5196537, US5153347, US5191086, US5190942, US5177097, US5212177, US5208234, US5208235, US5212195, US5130439, US5045540, US5041152, and US5210204, and phamacoucaly acceptable salts and esters thereof, a/ β adrenergie blockers such as nipradiol, arotiolol, amosulalol, bretyhum tosylate (CAS RN: 61.75-6), ditydroegtamine mesylate (such as
 monomethancsulfonate, eg., DHE 450 Micction, Novartis), carvodhol (such as (x)-(Cabazol-4-yloxy)-3-[2-(o-methoxyphenoxy)ethy] amino - 2-propanol, e.g, Corege, Smink hine Bechan), labetalol (such as 5-[h-hydroxy-2-[(l-methyl-3-phenylpropy] ammo] ohylisalicylamide monohydrochlonde, eg., Normodyneß, Schering, brethlum tosyate (Benzenemethanaminum, 2 -brono- N -ethyl N, N-dmethyl-, salt with 4 -methybenzenesulfonic acid (1:) CAS RN 61-75-6), phenthmine mesylate (Phenol, 3-[(4,5-dibydrommimidacol-2-yl)methyl](4-methylpheny)amino\}, monomethanesulfonate (salt) CAS [AN $65-28-1$), solypentine tartate ($5 \mathrm{H}-1,3$-Dioxolo[4,5-fimble, $7-[2-[4-(2$-ncthoxypheny)-ipigerazinyl]ethyl\}, (2m,3R)-2,3-dihydroxybutanedioate (1:1) CAS RN 559 -43-5), zolerine hydrochoride (Piperazine, l-phenyl4-[2-(H-tetrazel-5-y)ethy]-, monohydrochloride (8C1, 9Cl) CAS RN 7241-94-3) and the like; a adrenergic receptor blockers, such as alfuasin (CAS RN: 81403-68-1), terazosin, urapidi, prazosin (Minipress(6), tamsumosin, bunazosin, trimazosin, doxazosin, naftopidi, indoramin, WHP 164, XENOIO, fenspixide hytrochorde (which may bo prepared as disclosed in US3399192), proroxan (CAS RN 33743-96-3), and habetalol hydrochoride and combinations thereof, a 2 agonists such as methyldopa, methydopa HCL , Iofexidine, tiamenione, moxonidine, rimendine, guanobenz, and the tike; aldosterone imbibitors, and the bke; rom inhbitors including Alsikiren (SPPlOO; Novartis/Speedel; angiopoietin- 2 -binding agents such as those disclosed in WO03/030833; anti-angina agents such as ranolazine (hydrochoride 1-Pperazineacetamide, N (2,6 - dimethypheny),-4[2-hydroxy-3-
(2-methoxyphenoxy)propy], dinydrochloride CAS RN 95635-56-6), betaxolol hydrochoride
 hydrochoride CAS RN 63659-19-8), butoprozine hydrochoride (Methanone, [4~ [3(dibutylamino)propoxylphenyl](2-ethyl-3-ndohziny)-, monobydrochoride CAS RN 62134 .

34-3\}, cinepazet maleatel-kiperazineacetic acid, 4-\{1-oxo-3- $3,4,5$ - trmethoxypheny $\}$-2~ propenyl\}, ethy\} ester, (2Z)-2-butenedioate (1 : $)$ CAS RN $50679-97-7$), tosifen (Bencenesulonamide, 4 -methyl-N-[IUS)-methyl-2-phemylethylamino]carbony]-CASRN 32295-184), verapaminydrochoride (Benzeneacetonitile, er-[3-[2-(3,4
 monohydrochloride CAS RN $152-144$), molsidomine ($1,2,3$ Oxadiazolum, 5 [(ethoxycarbony) amino]-3-(4-morpholny)-, imer salt CAS RN $25717-80-0)$, and ranolazine hydrochoride (1 Piperazineacetamide, $N-(2,6 \text {-dmethyphenyl })_{4}[2$-bydroxy 3 - $(2$-methoxyphenoxy propy] -, difydrochonde CAS RN 95635-56-6); tosifen (Benzenesufonamide, 4-
 stimulants such as guanfacine hydrochloride (such as N-amidino-2-(2,6-dichorophenyl)
 hydrochorothazide (such as levo-3-(3,4-dibydroxypheny)-2-methylanne) combined with Hydrochorohiazide (such as 6 -chloro- 3,4 -dibydro- $2 \mathrm{~F}=-1,2,4$-benzohidiazine- 7 - sulfonamide 1, ldioxide, e.g., the combination as, e.g., Adonle Tablets avalable from Merck), methyldopachorothazide (such as 6-choro-2H-1, 2,4-benzothiadiazine-7-suffonamide 1, 1-dioxide and methyldopa as described above, e.g. Aldociore, Merck), clonidne hydrochloride (such as $2-$ (2,6-dienorophenyhmino) 2 -imidazoline hydrochlorde and chorthahdone (such as 2 -choro-5-
 Ingelheim), clonidne hydrochoride (such as 2 (2,6-dichlorophenylamino)-2-imidazoline hydrochorde, eg, Cataprese, Boehmger Ingelhem), clondine (ta-hmidazol-2-amine, $\mathrm{N}-2,6-$ dichloropheny)4,5-dibydro-CAS RN 4205-90-7), Hyzas (Merk; a combination of losartan and hydrochorothazide), Co-Diovan (Novartis; a combination of valsatan and hydrochorohazide, Eotel (Novatis; a combination of benazeprit and ambodipine) and Caduet (Pfizer; a combination of amboipme and atoryastatin, and those agents disclosed in US20030069221.

Agents for the Treatment of Respiratory Disorders
The GCRA peptides deschbed koroin can be used in combination therapy with one or more of the following agents asefal in the treatmen of respisatory and other disorders including

 METAPRELB), pibutcrol (MAXARR), reproterol, rmitrol, sametero, terbutabe (BRETHAREEB, BRETHRYER, BRACANYLQ), adrenalin, isoproterenol (BSURRELB), epmephme biartate (PRMVATENED), ephedrine, oromenhe, fenoterot and isochaminc, (2) steroids, includmg but not limited to beckomethasone, bechomethasone dipronionate, betanethasone, budesonide, bunedoside, butixocort, dexamethasone, fumisohde, tuocortin, Guticasone, bydrocortisone, methyt prednisone, mometasone, predonisolone, predomsone, thredane, fxocotal, triamomolone, and tramemolone acetonide (3) $\beta 2$-agonist-corticostoroid

 interupting the interaction between leukotwenes and the Cys LTl receptor inchuding but not
 poblukast, SkB-106,203 and compounds described as having $\{T O 4$ antagonizing activily described in US Fatent No $5,565,473$ (5) 5-ipoxygenase inmbitors andor leakotiene
 Hi recoptor antagonists/anthistammes (ie. any compoma that is capable of blocking, mbibing. reducing or otherwise internping the buteraction between histamine and its recentor inchang but not limited to astemizole, actyastine, antazoline, azatadne, azelastine, astamizoke, bromopheniramine, bromopheniramine maleate, carbinoxamine, carcbasthe, cetrizine, chorgheniramine, chomophenmamine mabate, cmetidine clomastine, cyclizine, cyproheptadine,
 diphenylpyrane, doxylamine succinate, doxylamine, ebastine, efletrizine, epinabtine, famotidme, fexofenadme, Fydroxyzine, hydroxyzine, ketotifen, levocabastme, levocetrizine, levoctinzine, Gratadine, mochane, mepyraminc, mequitazine, methdiazine, mianserin, mazolastine, noberastine, norastemizoke, nomatemizole, phenindanine, pheniramine, pioumast,
promethazine, pynlamine, pyriamine, ranitine, temelastine, terfenadine, trimeprazine, tripolonamine, and triproldine, (7) an anticholinotgic inctuding but not homod to: atropinc, benztopine, biperiden, futrophom, hyoscyamme (e.g. Levsinß; LewidB; Levsin/SL(B), Anaspaz(B), Levsinex timecaps(B), NuLev(B), ihtropium, ipratropium, ipratropium bromide, methscopolamine, oxybutinin, rispenzepine, scopolamine, and tiotropium, (8) an anti-tussive including but not hmited to: dextromethorphan, codeine, and hydronorphone; (9) a decongestant incheding bet not himited to: pseudoephedrane and phenylpopanolamine; (10) an expectorant inchding but not homed to: guafenesin, guaicolsulfate, tepin, ammonimm chonde, glycerof guacolate, and iodinated glyceot; (1) a bronchombator including but not limited to: theophylhe and aminophyline; (12) an ant-inflammatory moluding but not lmited to: furibiprofen, diclophenac, indonethacin, ketoproten, S-setroprophen, tenoxicam; (13) a PDE (phosphodiesterase) mabitor inchading but not limited to those disolosed heren; (14) a recombinant hamanzed monochonal antibody [cg. zolain (also called omalizamab), fruMab, and talizumab], (15) a humanzed lung suffactant inchoding recombinant forms of surfactant protens SP-B, SB-C or SP-D [c.g. SURFAXINR, fomerly known as dse-104 (Discovery Laboratories)], (16) agents that mbint epthelial sodinm chanch (ENaC) such as amilonde and related conpounds; (17) antmicrobial agents used to treat puimonary infections such as acyclovir, amikacm, amoxiciln, doxyeyche, wimetbomin sulamethoxazole, amphotericin B, azithronycin, clathronycin, roxithronyen, clarthromycin, cephalospornse ceffoxin, cefmetazole etc), ciprofloxacin, ethambutok, gentimycin, ganciclovir, imipenem, isoniazid, ituaconazole, penicilin, rbavirin, rifampin, rifabutin, amantadiee, rimantidne, streptomyen, tobranycin, and vancomyon; (18) agents that activate chloride seoretion through $\mathrm{Cat}+$ dependent chloride chanels (such as purnergic receptor (P2Y(2) agonists); (19) agents that decrease sputum viscosity, such as human recombinan DNase 1, (Pumozyme (6); (20) nonsterokal anti-infammatory agents (acemotacm, acetaminophen, acetyl salicybic acid, alchfonac, aminoprofen, apazone, aspirin, benoxaprofen, bezpiperylon, bueloxic acid, camphen, chdanac, dichofenac, dichfenac, difumsal, difusinal, etodolac, fenbuten, fenbufen, fenchofenac, fenconic acid, fenoprofen, fentazac, feprazone, fufenamic acid, fufenisal, flufenisal, fuprofen, flumprofen, flurbiprofen, furofenac, ibufonac, ibuprofen, indomethacin, indomethacin, indoprofen, isoxepac, isoxicam, ketoprofen, ketoprofen, ketorolac, medofenamic acid, meclofnamic acid, mefenamic acid, mefenamic acid, miroprofen, mofebutazone,
nabumetone oxaprozin, naproxen, naproxen, niflumic acid, oxaprozin, oxpinac, oxyphonbutazone, phonacotin, phonybutazone, phorybutazonc, piroxicam, piroxicam, pirprofen, panoprofen, sudoxicam, tenoxican, sultasalazine, sulindac, sulindac, suproten, thaprofenic acid, tiopinac, toxaprofen, tolfenamic acid, tolmetin, tometin, zidometacin, zomepirac, and zomepiac); and (2) aerosolized antoxidant therapeutics sach as $\mathrm{S}-$ Nitrosogintathone.

Anizobesity agents

The GCRA peptides described herem can be used in combination therayy wht an antobesity agent. Suitable such agents include, but are not moned to: 1 [B HSO-I (11 -beta hydroxy steroid dehydrogenase type 1) inhibitors, such as BVT 3498 , BVT 2733,3 ($($-adamantyl) $4-$
 $1,2,4$-triazole, 3 - adamantanyl-4,5,6,7,8,9,10,11,12,3a-decahydro-1,2,4-triazolo[4,3-a] JJanmene, and those compounds dischosed in WOO1/90091, woO 1/90090, WOO 1/90092 and W002/62084; 5YT antagonists such as those in WO03/037871, W003/037887, and the the; SHTha modulators such as carbidoma, benserazide and hose disclosed in US6207699, WO03/031439, and the he; 5RT20 (serotonin receptor 2 c) agonists, such as BVT933, DPCA3725, 1K264, PNU 22394, WAY161503, R-1065, SB 243213 (Claxo Smith Kine) and YM 348 and those disclosed in US3914250, WO00/77010, WO02/36596, WOO2/48124, WO02/10169, WO01/66548, WO02/44152, WO02/S1844, WO02/40456, and WO02/40457. SWT6 receptor modulators, such as those in WO03/030003, W003/035061, WO03/039547, and the here, acyl-estrogens, such as oleoyh-estrone, disclosed in del Mar-Grasa, M. et al, Obesity Research, 9:202-9 (200) and hapanese Fatent Application No. 1 P 200025690 ; anorectic bicyclic compounds such as 1426 (Aventis) and 1954 (Aventis), and the compounds disclosed in WO00/3749, WOO1/32638, WOO1/62746, WOO1/62747, and WO03/015769;CB $\}$ (cannabimid-1 receptor) antagonist/nverse agonists such as tmonabant (Acomplia; Sanofi), SR147778 (Sanofi), SR-141716 (Sanof), BAY $65-2520$ (Bayer), and SEV 319 (Solvay), and those disclosed in patent publications US4973587, US5013837, US5081122, US5112820, US5292736, US5532237, US562494, US6028084, US6509367, US6509367, W096/33159, W097/29079, WO98/31227, WO98/33765, WO98/37061, WO98/41519, WO98/43635, WO98/43636, WO99/02499, WO00/10967, WOO0/10968, WO01/09120, WOO1/58869, WO01/64632,

W001/64633, W001/64634, W001/70700, W001/96330, W002/676949, WO03/006007, W003/007887, WO03/020217, W003/026647, W003/026648, W003/027069, W003/027076, WOOB/627114, W003/037332, W003/040107, WO03/086940, W063/084943 and EB658546; CCK-A (cholecystokinm-A) agonists, such as AR-R $15849, G 18177$ (GSK), TMM-180, A-

 (Regeneron), and those dischosed in W094/09134, W098/22128, and W099/43813, dipeptidyl

 carboxyhe acid; disclosed by Yamada et al, Bioorg. E Med. Chem. Lett. 8(1998) 5537.1540),
 cyanopyrohidides and 4 -oyanopymolidides as disclosed by Ashworthet ab, Bioorg. E Med. Chem Kett, Fol, 6, No, 22, mp $163 \sim 1166$ and $2745-2748$ (1996) and be compomads disclosed patent whbleations. WO99/38501, W099/46272, W099/67279 (Erobiodrug), W099/67278 (Probiodrug), WO99/6143) (Frobiodrug), WO02/083128, W002/062764, W003/000180, WO03/000181. WO03/000250, W003/002530, W003/002531, WO63/602553, W003/002593, WO03/004498, W03/004496, W003/017936. WO03/024942, W003/624965, WO03/033524. W003/637327 and EP 258476 growth homone secretagogac receptor agonista/antagonists, such as NM703, hexselm, MK-0677 (Merck), SM-130686, CP-424391 (P4zer), LY 444,71\} (EA Lilly), L-692,429 and E~163,255, and such as those dischosed in USSN 09662448 , US provisional anmheation 60/203335, US6358951, U52002049196, US2002/022637, W001/56592
 imidazok-4 y 4 propy $\mathrm{N}-(4$-pentenyl)carbanate $)$, clobenpropit, iodophenpropit, moproxifan,
 Kononowicz, K. et ab, Phamazic, $55: 349-55(2000)$, pineridine-contaning bistamine B 3 . receptor amagomisis (lazewska, D. et al., Pharmazie, $56927-32$ (200)), benzophenone dervatives and related compounds (Sasse, A, et al, Aren Phame(Wembeim) 334:45-52 (200)), substhtuted N- phenylcarbanates (Reidemeister, S. et ak. Phamazic, 55:83-6(2000)), and provifan derivatives (Sasse, A. ef al., M. Med. Chem. $43.335-43(2000)$) and histamine 13 receptor moduators such as those disclosed in WO02/5905, W003/024928 and W003/024929;
leptin derivatives, such as those disclosed in US5552524, US5552523, US5552522, US5521283, WO96/23513, WO96/23514, WO96/23515, WO96/23516, WO96/23517, WO96/23518, WO96/23519, and WO9623520, leptin, inchung recombinant human leptin PECOB, Hofman La Roche) and recombinant methonylhuman leptin (Amgen); lipase inhbitors, such as tetrahydrolipstain (orlistai/Xenical(i), Triton WR1 339, RGC80267, Ipstatin, teasaponin, diethytumbelifery phosphate, FL-386, WAY-121898, Bay-N-3176, vailactone, cstencm, ebelactonc A, cbelactone B, and RHC 80267 , mad those disclosed in patent publications WOO1/77094, US4598089, US4452813, USUS5512565, US5391571, US5602151, US4405644, US4189438, and US4242453; hid motabolism modulators sach as maslmic acid, oythodiot, ursolie acid uvaol, betulinic acid, betuln, and the like and compounds disclosed in WO03/011267; Mc4r (melanocortin 4 receptor) agonists, such as CHIR86036 (Chiron), ME10142, ME-10145, and $38-131$ (Melacure), and those disclosed in PCT publication Nos. WOO9/64002, WO00/74679, WOO 1/991752, WOO /25102, WOO 1/52880, WOO 1/74844, WOO 1/70708, W001/70337, W001/91752, W002/059095, W002/059107, W002/059108, W002/059117, WO02/06276, WO02/12166, WO02/1715, WO02/12178, WO02/15909, WO02/38544, WO02/068387, WO02/068388, WO02/067869, WO02/081430, W003/06604, WO03/007949, WO03/009847, WO03/000850, WO03/013509, and WO03/031410; Me5: (melanocortin 5 receptor) modulators, such as those disclosed in WO97/19952, WO00/15826, W000/15790, US20030092041, melain-concentrating homone 1 receptor (MCHR) antagonists, such as T-226296 (Takeda), SB 568849, SNP-794 (Synaptic), and those dischosed in patent poblications WOO 1/21169, WO01/82925, WO01/87834, W002/053809, WO02/06245, WO02/676929, WO02/076947, WO02/04433, WO02151809, WO02083134. WO02/094790, WO03/004027, WO03/13574, WO03/15769, WO03/028641, W003/035624, W003/033476, WO03/033480, 313226269 , and 191437059 , mOluRS modulators such as those disclosed in WO03/029210, WO03/047581. WO03/648137, WO03/651315, WO03/051833, WO03/053922, WO03/059904, and the like; serotonmorgic agents, such as fonfuramine (such as Pondmin@ (Benzencehanamine, Nethyl-abha-methyl-3-(tifuommethy), hymochorde), Robbins), dexfenfuramine (such as Redux (Benzeneethanamine, Nuethyl-ahha-methyl~3(trithoromethyl), hydrochionide), Ktomenron) and sibntramine (Mcridia, KnollReductims) inchoding racemic mixures, as opically pure isomers (+) and (-), and pharmacenically acceptable salts, solvents, hydrates, clathrates and prodrugs thereof inchang sibutramine
hydrochionde monobydrate salts thercof, and those compounds disclosed in US4746680, US4806570, and US5436272, US20020006964, WOO 1/27068, and WOO 1/62341; NE (norepinephrine) transpor inhibitors, such as GW 320659 , despiramine, talsupran, and nomifensine: NPY 1 matagonists, such as BIBP3226, $3-115814$, BIBO 3304, EY-357897, CP- 671906, G1-264879A, and those disclosed in US6001836, WO96/43307, WO01/23387. WO99/51600, WO01/85690, WO01/85098, WO01/85173, and WO01/89528, NPY5 (neuropeptide Y Y5) antagonists, such as 152,804 , CW-569180A, CW-594884A, GW$587081 \mathrm{X}, \mathrm{GW}-54818 \mathrm{X}, \mathrm{FR} 235208, \mathrm{GR} 226928, \mathrm{FR} 240662, \mathrm{FR} 252384,1229 \mathrm{U91}, \mathrm{GL} 264879 \mathrm{~A}$, COP71683A, LY-377897, LY-366377, PD~160170, SR-120562A, SR-120819A, 1CF~164, and H409/22 and those compounds disclosed in patent publications US6440354, US6191160, US6218408, US6258837, US6313298, US6326375, US6329395, US6335345, US6337332, US6329395, US6340683, EPO1610691, EP-01644970, WO97/19682, WO97/20820, WO97/20821, WO97/20822, WO97/20823, WO98/27063, WO00/107469, WO00/185714, WO00/85730, WO00/64880, WO00/68197, WO00/69849, WO/0113977, WO01/09120, WO01/4376, WO01/85714, WOO1/85730, WO01/07409, WO01/02379, WO01/2335S, WO01/23389, WOO 1/44201, WO01/62737, WO01/62738, WO01/09120, WO02/20488, WO02/22592, WO02/48152, WO02/49648, WO02/051806, WO02/094789, WO03/009845. W003/014083, WO03/022849, W003/028726 and Nomman et al, J. Med. Chem, 43:4288-4312 (2000), opioid antagonists, whel as nalmefenc (REVEX (B), 3-methoxynaltrevone, methylnaltrexone, naloxone, and naltrexone (e.g. PT901; Pain Therapeutics, The) and those disclosed in US20050004155 and WOOn/21509; orexin antagonists, such as SB-334867-A and those disclosed in patent pebheations WO01/96302, WO01/68609, WO02/44172, WO02/51232, WO02/51838, WO02/089800, WO02/090355, WO03/023561, WO03/032991, and WO03/037847, PDE inhbitors (e,g compounds which slow the degradation of cychic AMP (CAMP) andor cycho GMP (COMP) by inhibition of the phospbodicstorases, wbion can lead to a rolative increase in the intracollular concentration of CAMP and $\mathrm{CGMP} ;$ possble PDE inbibitors are primarly bose substances which are to be numbered among the class consisting of the PDE 3 imbitors, the class consistiog of the PDE4 inbibitors and/or the class consisting of the PDE5 inhibitors, in particular those substances which can be designated as mixed types of PDE3/4 inhibitors or as mixed types of PDE3/4/5 mhbitors) such as those disclosed in patent pubhications DE1470341, DE2108438, DE2123328, DE2305339, DE2305575, DE2315801,

012402908, DE2413935, $3 \mathrm{E} 2451417,0 \mathrm{E} 2459090, \mathrm{DE2646469}, \mathrm{5E2727481}, \mathrm{0E2825048}$. DE2837161, DE2845220, DE2847621, DE2934747, DE3021792, ח3E3038166, DE3044568,
 16948, EPO150937, EPO158380, EP0161632, EPO161918, EPO167121, EPO199127, EB0220044,

 EPO482298, EPG490823, EP0506194, EP9511865, EP9527117, EP0626939, EPG664289, $\mathrm{El} 0671389, \mathrm{EPO} 685474, \mathrm{EPO685475}, \mathrm{EP} 9685479,5992234389,7199329652,1995010875$, US4963561, US5141931, W09117991, W09200968, W09212961, W09307146, W09315044, W09315045, W09318024, WO9319068, W09319720, W09319747, W09319749. W09319751, W09325517, WO9402465, W09406423, W09412461, W09420455, W09422852, W09425437, W09427947, W09560516, W09503980, W09503794, W09504045, W09504046, W09505386. W09508534, W09509623, W09509624, WO9509627, WO9569836, WO9514667, WO9534680, W09514681, W09517392, W09517399, W09519362, W09522520, W09524381, W09527692, W09528926, WO9535281, W09535282, W09600218, WO9601825, W09602541, W09611917,
 EP0667345 U56331543, U520050004222 (moluding those disclosedin formulas l- XIE and paragraphs $37-39,85-6545$ and $557-577$, WO9307124, EPO163965, EP0393500, EP0510562, EB0553174, WO9501338 and WO9603399, as wel as BDES inhbitors (such as RX-RA-69.

 ($20-20-1724$), MEM $144(\mathrm{R} 1533 / \mathrm{R1500}$; Phammacia Roche), denbufylme, mberans, oxagrelate, nitaquazone, $X-590, ~$ OH-6471, SKE-94 120 , motapizone, ixazinone, indohdan,
 PDB-093, UCB-29646, CDB-840, SKF-107806, niclamiast, RS- $77597, \mathrm{RS}-25344-000, \mathrm{SB}-$
 3600, CDP 440 , mogidamok, anagselide, ibudhast, ammone, pimobendan, cilostazok, quazinone

 ampazone, cilostamide, carbazeran, proxmone, imazodar, Ch-930, siguazodan, adbendan,
saterinone, SKE-95654, SOZ-MKS-492, $349-\mathrm{U}-85$, cmoradan, EMD-53998, EMD-57033, NSP306, NSP-307, revinonc, NM-702, WMN-62582 and WTN-63291, moximone and milinone, PDE3/4 inhbitors (such as benafentine, trequinsin, ORG - 30029 , cardaverine, $\{-686398$, SDZ-ISQ-844, ORG-20241, EMD-54622, and tolafentrine) and other PDE mhbitors (such as vimpocetin, papaverine, empofyline, cilomilast, fenozimone, pentoxifyline, roflumilast, tadalafl(Ciais(8), theophyline, and vardenanl(Levitae); Neuropeptide Y2 (NPY2) agonists inchde but are not hmited to: polypeptide YY and fagments and variants thereof (ceg. YY3-36 (FYY3-36) MN Engl 3. Med. 349:941, 2003; ,KPEAPGE DASFEELNRY YASLRHYLNL VTRORY (SEQ WD NO:XXX) and PYY agonists such as those disclosed in WOO2/47712, W003/026591, W003/057235, and WO03/027637; serotonin reuptake inhbitors, such as, paroxetine, fluoxetne (Prozac ${ }^{\text {mo }}$), fluvoxamine, sertraline, citalopram, and mipramine, and those disclosed in US6162805, US6365633, WO03/00663, WOO 1/27060, and WOO 1/162343; thyroid homone β agonists, such as KB-2611 (KambioBMS), and those disolosed in W002/15845, WO97/21993, W099/00353, GB98/284425, U.S. Provisional Application No. $60 / 183,223$, and lapanese Patent Application No. 19 2000256190; UCP (mocoupling protein-1), 2, or 3 activators, such as phytamic acid, 4 -[E $-2-(5,6,7,8$ - tetrabydro- $5,5,8,8$-tetramethy- $2-$ napthalenyl)-propenylbenzoic acid (TMPB), retmoic acd, and those disclosed in WO90/00123; $\beta 3$ (beta adrenergic receptor 3) agonists, such as A $3967 /$ TAK 677 (Dainippon/ Takeda), L750355 (Merk), C 3331648 (Pfizer), CL-316,243, SB 418790, BRL37344, L-796568, BMS-196085, BRL-35135A, CGP12177A, BTA-243, GW 427353, Trecadrine, Zeneca B7] 4 , N-5984 (Nisshin Kyorin), LY-377604 (Lily), SR 59119A, and those disclosed in US5541204, US5770615, US5491134, US5776983, US488064, US5705515, US5451677, WO94/18163, WO95/29159, WO97/46556, WO98/04526 and WO98/32753, WO01/74782, W002/32897, W003/014113, WO03/016276, WO03/016307, W003/024948, WO03/024953 and WO03/037881; noradrencrgic agent inchuding, bet not hmited to. diethylpropion (such as Tenuateß (1-propanone, 2 -(diethylamino)- -phenyl-, hydrochlondo), Merrell), dextommphetame (also known as dextroamphetamine sulfate, dexamphetamine, dexedrine, Dexamper, Ferndex, Oxydess I, Robese, Spancap \#) , mazindot (or Su(p~
 Mazanore), Wyeth Ayerat), phenylpropanolamine (or Benzenemethanol, atpha-(l-aminoethy)-, hydrochoride), phentemme ($($ or Phenol, $3-[4,5-$ duhydro-H-imidazol-2-y $)$ ethyl](4-
mothylpheny-laminol, monohydrochoride) such as Adipex- ${ }^{3}$ Q, Lemmon, FASTMQ, Smith-
 2phenymorpholine (- +)- tatrate ($1: 1$) such as Metra (Forest), Plegine (Wyeth-Ay erst), Frelu-2@ (Boehringer hgeheim), and Statobex(B) (Lemmon), phendamine tartate (such as
 (1), Hofmann-LaRoche), methamphotamine (such as Desoxyner), Abbot (S)-N, (alpha)dimethybencenchanamine hydrochorige), and phendimetraine tartate (such as Bontrio) Slow-Release Capsules, Amam ($-3,4$ Dmethyl-2-phenymorpholine Tartrate); faty acid oxidation upregutatormducers swo as FamoxinQ (Gonset), monamine oxidase mbibitors including but not lmited to befoxatone, moclobemide, brofaromine, phenoxathine, esuprone, befol, toloxatone, pirmdol, amiflamine, sercloremine, bazinaprine, lazabemide, milacemide, caroxazone and other cettain compounds as disclosed by WOO//2176; and wher anti-obesity agents such as 5HT-2 agonists, ACC (acotyl-CoA carboxylase) mbibitors such as those described in WO03/072197, apha-lpoic acid (aphan A), AOD9604, appette suppessant such as those in WO03/40107, ATE-962 (Alizyme PLC), benzocaine, benzphetamine hytrochloride (Didrex), bladderwack (focus vosiculosus), BRS3 (bombesin recoptor subtype 3) agonisis, buyropion, caffene, CCK agonists, chitosan, chromium, conugated lwoleic acid, conticotropin-releasing hormone agonists, dchydroepandrosterone, DGAT((dacylglycerol acyltansferase I) inhbitors, DGAT2 (diacylgycerol acyltansferase 2) mhbitors, dicarboxylate transpoter mhibitors, ephedra, exendin-4 (an inhbitor of glp-1)FAS (fatty acid synthase) imhibitors (such as Certenm and C75), fat resorption inhbitors (such as those in WO03/053451, and the like), faty acid transporter imibitors, natural water soluble fors (such as psylum, plantago, guar, oat, poctin), galanin antagonists, galega (Goats Rue, Fench Lilac), garcinia cambogia, gemander (tencrim chamaedrys), ghelin antibodies and ghelin antagonists (such as those disclosed in WOO3/87335, and WO02 08250 , polypetide homones and variants thercot which affect the islet cell secretion, such as the homones of the secretin/gastric inhibitory polypeptide (GW)/vasoactive intestnal polypeptide (VIP)/pituitary adenylate oyclase activating polypeptide (PACAP)/gheagon-ike polypeptide I (GLP - lly/ghentin/ghagon gene family andor those of the adrenomedulin/amylincalctonin gene related polypeptide (CGRP) gene family inchodingoup (ghacagon-like polypeptide 1) agonists (e.g (1) exendin-4, (2) those Cl ${ }^{3}-1$ molecules described in US20050130891 moluding GLE. 1(7-34), GLP-1(7.35), GLF-1(7-36) or

QLP-1(7-37) in its Cterminally carboxylated or amidated form or as modiffed GLP-3 polypeptides and modincations thoteof inchding these descmbed in paragraphs 1744 of US20050130891, and derivatives derived from GLPM-7. 34)COOF and the comesponding acid amide are employed which have the following gencral formula: R-NH-

GAEGTETSDVSYAEGQAAKEFAWLVK CONH 3_{2} wherein $R=H$ or an organic compound having from 1 to 10 carbon atoms. Preferably, R is the residne of a carboxylic acid. Particulanly prefered are the following carboxylic acid residues: formy, acety, propionyl, isopropionyt, methyl, ethyl, propyl, isopropy, n-buty, sechutyl, ten-butyl) and glp-1 (gheagon-like polypeptide- 1), gheocorticoid antagonists, glucose transpoter mhbitors, growth hormone secretagogues (such as those disclosed and specifically described in US5536716), intorlenkin-6 (IL-G) and modulators thereof (as in WO03/057237, and the Lhe), L. camitine, Me3r (melanoconin 3 receptor) agonists, MCH2R (melanin concentating homone 2R) agonist/antagonists, melamin concontrating homone antagonists, molanocortin agonists (sach as Melanotan 1 or those described in WO $90 / 64002$ and WO 00/74679, nomame herba, phosphate transporter inhibitors phytopham conmound 57 (CP 644,673), pyruvate, SCD-1 (stearoyl-CoA
 an anti-convulsant wheh has been shown to increase weight loss, transcription factor modutators (such as those disclosed in W003/026576), β-bydroxy steroid debydrogenase- I inhibiors (β-HSD-\}, β-hydroxy- β-methylbutyrate, $\overline{5} 5$ (Ffizer), Zonisamide Zonegranm, indicated as an anti-gpleptic which has been shown to lead to weight loss), and the agents disclosed in US2063019428 paragraphs 20-26.

Ant-Diabetic Agents

The GCRA pepides described hesein can be used in berapeutc combination with one or more anti-dabetic agents, including but not hmited to: Patay agonists such as ghazones (e.g., WAY-120,744, AB 5075, bahghtazone, cightazone, darglitazone (CP-86325, Pfzer), englitazone (CP-68722, Pfizer), isaghtazone (MY/re3), MCC- 555 (Mitsibish disclosed in US5594016), pioghtazone (sweh as such as Actos pioghtazone, Takeda), rosightazone (Avandia ; Smith kine Beecham), rosightazone maleate, troghtazone (Rezulno, disclosed in US4572912), rivoghtazone (CS-OL 1, Sankyo), GL-262570 (Glaxo Welcome), BR LA9653 (disclosed in WO98/65331), CLX-0921, 5-BTZD, GW-0207, [G-100641, JT: 503 (JPNTP\&U), L-895645 (Merd), R-119702 (Sankyo/Pfzer), NN-2344 (Dr ReddyNN), YM-

440 (Yamanouch), EY-300512, LY-519818, R483 (Roche), T 31 (Tularik, and the like and compounds disclosed in US4687777, US5002953, US5741803, US5965584, US6150383, US6150384, US6166642, US6166043, US6172090, US6211205, US6271243, US6288095, US6303640, US6329404, US5994554, W097/10813, WO97/27857, W097/28115, W097/28137,W097/27847, WO00/76488, WO03/000685,W003/027112,W003/035602, W003/048130, W003/055867, and phamacentically acoptable salts therof, biguandes suoh as metfomin hydrochlonide (N, N-dmethylmidodicamonimidic diamide hydrochonide, such as Glucophage ${ }^{\text {ma }}$, Bristoh Myers Squbb), metromin hydrochoride with glyburide, such as Glwovancers, Bristol-Myers Squibb); buforwin (Omidodicabonmidic diamido, Nobutyl-); ctoformine (-Butyl-2-thybiguanide, Schoring A. G.), other metformin salt forms (including where the salt is chosen from the group of, acetate, benzoate, citrate, fimarate, embonate, chorophenoxyacetate, glycolate, palmoate, aspantate, methanesulphonate, maleate, parachorophenoxyisobutyrato, formate, lactate, succinate, sulphate, artrate, cyclohexanecarboxylate, hexanoate, octanoate, decanoate, hexadecanoate, octodecanoate, benzenesulphonate, thmethorybenzoate, paratoluencrulphonate, adamantanecarboxylate, glycoxylate, ghatamate, pyrohidoncombozylate, naphtbalenesuphonate, 1-glacosophosphate, nitate, subpite, dithonate and phosphate, and phenformin; proten tyrosine phosphatase- IB (PTP-IB) inhubitors, such as A-401,674, KR 61639, OC- 060062, OC-83839, OC-297962, MC52445, MC52453, ISSS 113715 , and those disclosed in WO99/585521, WO99/58518. WO99/58522, WO99/61435, W003/032916, WO03/032982, WO03/041729, W003/055883, WO02/26707, WOO2/26743, 1p2002114768, and pharmacentically acceptable sats and esters theref, sulfonytureas sueh as accohexanto (e.g. Dymolor, Eli Lily), carbutamide,
 Canada ho, glimepiride (e.g. disclosed in US4379785, such as Amaryl, Aventis), glipentide, ghipizide (e.g. Ghwotrol or Ghootrol XL Extended Release, Pfzer), ghiowidone, ghsohamido, glyburide/glibenclamide (e.g. Mcronase or Glynase Frestab, फhamacia \& Upiom and Deabeta, Avents), tolazamde (eg. Tolnase), and tolbuamide (e.g. Orinase), and phamaccutically acceptable satts and esters thereof, meglitides such as repaghide (e.g. Banidin(, Novo Nordisk), KAD1229 (PF/Kissei), and nateginide (c.g. Stamix 8 , Novartis), and phamacentically acceptable salts and esters thereof, a glucoside hydrolase inhibitors (or glucoside inhibitors) such as acarbose (e.g. Precose ${ }^{\text {TM }}$, Bayer disclosed in US4904769), mightol (such as GEYSETM,

Whamacta \& Upohn disclosed in US4639436), camighoose (Methy $6-$ deoxy-6-[2R,3R,4R,5S)-3,4,5-whychoxy-2- (bydroxymothylyporidnol-alpha-D-ghoopyanosido, Marion Momela Bow), voghbose (Takeda), adiposine, emblinete, pradimicin-Q, salbostatin, CKD-711, MOK~ $25,637, \mathrm{MDR}-73,945$, and MOR 14, and the componmds disclosed m US4662950, US4174439, US4254256, Us4701559, US4639436, US5192772, U84634765, U55157116, U85504078, US5091418, US5217877, US51091 and WOO $1 / 47528$ (polyamines); w-amylase inhibitors such as temambstak, testatin, and A -3688 , and the compomads disclosed in USA45 1455 , US4623714, mad US4273765; SGL 2 inhotors meluding those disclosed in US6414126 and US65 51517 , an ap2 inhbitor such as disolosed in US6548529; insuma secreatagogues such as linoghide, A-4166, forskilin, dibutyr\} cAMP, isobutymethykanthme (anMX), and phamaceutically aceeptable salts and esters thereof; fty acid oxidation inhbitors, such as chonoxir, and etomoxir, and phammacemteally accepable sath and esters thereof, Az

 (Autommone), certan composibons as disclosed in US4579730, U54849405, U54963526, US5642868, US5763396, US5824638, US5843866, US6153632, US6191105, and WO 85/05029, and primate, rodent, or rabbit insulin inchoding biologically active variants thereof inctudng allehe variants, more preferaby human insulin avaibable mecombinan fom sources of hmman insubin inckude phammeentically aceepable and stenke fommations such as those
 also see the THE PuYSECIANS OESK REEERENCE, 55.Sug th Ed. (200) Medical Economies, Thomson Fealheare (disclosing other suiable haman ingubas); now-

 29 (Kyorin Merck; 5-[2,4-Bioxo thazolubay\}methy] methoxy-M-[14 (trikwormethyl)pheny] methybbenamide), 796449, K-90, NK-6767 (Merck/kyonin/Banyu), SB 2 19994, muraghtazar (BMS), tesaghtzar (Astazeneca), roghazar
(9TT-501) and those disclosed in WO99/16758, W099/19313, W099/20614, W099/38850. WO00/23415, WO00/23417, WO00/23445, WO00/50414, WO01/00579, WO01/79150, WO02/062799, WO03/004458, WO03/016265, WO03/038010, WO03/033481, WO03/033450, WO03/033453, WO03/043985, WO 031053976, U.S. application Ser. No. 09/664,598, fled Sep. [8.2000, Murakami et al, biabetes 47, 1843-1847 (1998), and phamacemically acceptable salts and esters thereof, other insuln senstizing dregs; VPAC2 receptor agonists; GEK modnlators, such as hose disclosed in WOO3/015774, rethoid modulators such as those disclosed in WOO3/000249, GSK 3 B/GSK 3 mhbitors such as 4 - 2 - (2-bromopheny) -4 - (4-fuorophenyl-h -imidazol-5- yluytidne and those compound disclosed in Wo03/024447, WO03/037869, W003/037877, W003/037891, WO03/068773, EP1295884, EP1295885, and the like; glycogen phosphorylase (HGLPa) inhbitors such as CP-368,296, CP-316, 19, BAYR3401, and compounds diselosed in WOO 1/94300, WOO2/20530, WO03/037864, and pharmacentically acceptable salts or cstors thereof, ATP consumption promotors such as those disclosed in WO03/007990; TRB3 $\mathbf{~ w h b i t o r s ; ~ v a n i l l o i d ~ r e c e p t o r ~ l i g a n d s ~ s u c h ~ a s ~ t h o s e ~ d i s c l o s e d ~ i n ~}$ WO03/049702; hypoglycemic agents such as those disclosed in WO03/015781 and WO03/040114; gycogen synthase kinase 3 inhbitors such as those dischosed in Wo03/035663 agents such as those disclosed in WO99/51225, US $20030134890, W O 0124786$, and WO03/059870; insulin-responsive DNA binding protem-1 (ERDBP-I) as disclosed in W003/057827, and the lke; adenosine A 2 antagonists such as those disclosed in W003/035639, WO03/035640, and the hike; PPARO agonists such as GW 501516 , GW 590735 , and compounds disclosed in 1P10237649 and WOO2/4291; dipeptidyl peptidase IV (DP-3V) inhbibors, such as isolencine thazolidde, NVP-DPP728A (1- [IL 2 [(S-cyanopyridin-2-
y) aminolethylammolacetyl-2-cyano-(S)-pymolidine, disclosed by Hughes et al, Biochemistry, 38036), 11597-1603, 1999), 132/98, NVY-LAB-237, 13298, TSL225 (tryptopiyl-1,2,3,4-temahydro-isogmmohne-3-carboxylic ach, disclosed by Xamada et al, Bioorg \& Med. Chem Lett $8(1908) 1537-1540)$, valne pymolidide, TMC-2A/2B/2C, CD-26 mbibitos, FE90901, P9310/K364, VIP 0177 , DPP4, SDZ 274444, 2-cyanopyrmblidides and 4-oyanopyrolidides as disclosed by Ashwort et al, Bioorg. \& Med. Chem, Lett, Vol. 6, No, 22, pp 1163-166 and 2745-2748 (1996), and the compomeds disclosed in US6395767, US6573257, US6395767 (compounds disclosed include BMS-47714, BMS-471211 and EMS 538,305), WO99/38501, WO99/46272, WO99/67279, WO99/67278, W099/61431W003/004498, WO03/004496,

EP1258476, WOO2/083128, WO02/062764, WO03/000250, WO03/002530, WO03/002531, WO03/002553, W003/002593, W003/000180, and W003/00018; GlP-I agonists such as exendin-3 and exendin-4 (mohading the 39 a polypeptide synthetic exendin-4 called Exenatidees), and compounds disclosed in US2003087821 and NZ 504256, and phamaceutically acceptable salts and esters thereof, peptides inchang amintide and Symbina (pramintide acetate); and glycokinase activators such as those disclosed in US2002 103199 (fused heteroaromatic compomds) and WO02/48106 (isomdolin- none-substinted propionamide compounds).

Phosphodiesterase whibitors

The GCRA peptides described herein can be used in combination therapy with a phosphodesterase inhbitor. PDE inhbitors are those componds which slow the degradation of cyche AMP (CAMP) andion cychic GMP (cGMP) by imbibition of the phosphodicetcrases, which can lead to a relative morease in the intracelluar concentation of CAMP and/or cGMP. Possible PDE Bhbitors are primarily those substances which are to be numbered among the class consisting of the PDE imhibtors, the class consisting of the PDEA inhbitors andor the class consisting of the PDES inhibitors, in particular those substances which can be designated as mixed types of PDE3/4 inhbitors or as mixed types of PDE $3 / 4 / 5$ mhbitors, By way of example, those PGE inhbitors may be mentioned such as are described and/or clamed in the following patent applications and patents: DEA40341, DE2108438, DE2123328, DE2305339, DE2305575, DE2315801, DE2402908, DE2413935, DE2451417, DE2459090, DE2646469, DE2727481, DE2825048, DE2837161, DE2845220, DE2847621, DE2934747, DE3021792, DE3038166, DE3044568, DPOOO718, EP0008408, EP0O10759, EPOO59948, EPOO75436, EP0096517, EPO1 12987, EPOL 16948, EP0150937, EPO158380, EPO161632, EP0161918, EP016721, EPO199127, EP0220044, EP0247725, EPO258191, EP0272910, EP0272914, EPO294647, EP0300726, EP0335386, EP0357788, EP0389282, EP0406958, EPO426180, EPO428302, EP0435811, EPOA70805, EP0482208, EPO490823, EP0506194, EP0511865, EP0527177, EP0626939, EP0664289, EP0671389, EPO685474, EP0685475, EP0685479, दP92234389, JP94329652, आP95010875, US. Pat. Nos. 4,963,561, 5, 141,931, WO9117991. WO9200968, WO9212961, W09307146, WO9315044, W09315045, WO9318024, W09319068, W09319720, W09319747, W09319749, W09319751, W09325517,

W09402465, WO9406423, WO9412461, WO9420455, W09422852, WO9425437. WO9427947, WO9500516, WO9501980, WO9503794, W09504045, W09504046, WO9505386, WO9508534, WO9509623, WO9509624, W09509627, WO9509836, WO9514667, WO9514680, WO9514681. WO9517392, WO9517399, WO9519362, WO9522520, WO9524381, WO5527692, W09528926, W09535281, W09535282, WO9600218, WO9601825, WO9602541, WO9611917, DE3142982, DE1 116676, DE2162096. EP0293063, EP0463756, EP0482208, ER0579496, EP0667345 US6,331,543, US20050004222 (including those disclosed in formulas $-X 1$ and paragraphs $37-39,85-0545$ and 557.577) and WO9307124, EP0163965, EP0393500, EPOS10562, EP0553174, WO9501338 and WO9603399. PDES inhbitors which may be mentioned by way of example are RX-RA-69, SCH-51866, KT. 734, vesnamone, zaprinast, SKF-96231, ER-21355, BF/GP-385, NM-702 and sildenafi (Vagra(B). PDE4 inhibtors which may be mentioned by way of example are RO-20-1724, MEM 1414 (R1533/R1500; Phamacia Rocho), DENBUFYLENNE, ROLIPRAM, OXAGRELATE, NTRAQUAZONE, Y-590, DE-6471, SKF-9420, MOTAPRONE, EXAZINONE, INDOLDDAN, OLPRINONE, ATLZORAM, KS-506-G, DIPAMFYLLNE, BMY-43351, ATVZORAM, AROFYLKNE, FLLAMMAST, PDB-693, UCB-29646, CDP-840, SKF- 107806, PGCLAMEAST, RS-17597, RS-25344-000, SB-207499, TBBENELAST, SB$210667, \mathrm{SB}-211572, \mathrm{SB-211600}, \mathrm{SB-212066}, \mathrm{SB-212170}, \mathrm{OW-3600}, \mathrm{CDP-840}, \mathrm{MOPDAMOL}$, ANAGRELDE, BBUDLLAST, AMRNONE, MMOQENDAN, CILOSTAZOL, QUAZINONE and N - 3,5 -dichloropyrid-4-y)-3-cyclopropymethoxy-difuoromethoxybenzamide. PDE 3 inhibiors when may be mentioned by way of example are SULMAZOLE, AMPLONE, CLIOSTAMIDE, CARBAZERAN, PIROXIMONE MMAZODAN, CI-930, SIGUAZODAN, ADIEENDRN, SATERTNONE, SKF-95654, SDZ-MES-492, 349-U-85, EMORADAN, EMD53998, EMD-57033, NSP-306, NST-307, REVLZTNONE, NM-702, WTN-62582 and WIN63293. ENOXIMONE and MURENONE PDE3/4 mhbitors which may be mentonod by way of example are BENARENTRINE, TREOUNSIN, ORG-30029, ZARDAVERINE, L-686398, SDZ-ISQ-844, ORG-20241, EMD-54622, and TOL APENTRINE Other PDE inhbitors nclude:
 zaprinast (PDE5 specific).

Anti- Ulenine Contractions Agents

The GCRA poptides described horcin can be used in combination therapy (for cxample, in order to decrease or inhbit uterine contractions) with a bocolytic agent inchading bat not limited to beta-adrenergic agents, magnesium sulfate, prostaglandin inhibitors, and calcum chamel blockers.

Anti- Neoplastic Agents

The GCRA pentides described herein can be used in combination therapy with an antincoplastio agents incluong but not fmited to alkylating agents, opipodophylotoxins, ntrosourcas, antimetabolites, vinca akiloids, anthracyeline antibiotics, nitrogen mustard agents, and the hike. Particular anti-noplastic agents may melude tamoxifen, taxol, etoposide and 5 . đuorowaci\}.

The GCRA peptides described herein can be used in combination therapy (for example as in a chemotherapentic composition) with an antivial and monoclonal antibody therapies.

Agents to treat Congestive Heart Failure
The GCRA peptides described herein can be used in combination therapy (for example, in prevention/teatment of congestive hoart falure or mother methot descrbed herem with the partal agonist of the noticentin recentor ORL 1 described by Dooley ef al. (The Joumat of Phamacology and Expermental Therapeutics, 283 (2): 735-741, 1997). The agonist is a hexapoptide baving the amino acid sequence Ac- RYY (RK) (W) (RK)-NR2 (the Dooley polypeptide"), where the brackets show allowable variation of amino acid residuc. Thus Dooley polypeptide can include but are not limited to KYYRWR, RYYRWR, KWRYYR, RYYRWK, RYYRWK (all-D amin acids), RYYRHK, RYYRBR, RYYKIK, RYYKMR, RYYKWR, RYYKWK, RYYRWR, RYYRWK, RYYRIK, RYYKWR, RYYKWK, RYYRWK and KYYR WK, wherem the ammo acid residues are in the L-fom umless otherwise specified. The GCRA peptides described herem can also be used in combination therapy with polypeptide conigate modifications of the Dooley polypeptide described in W00198324.

Dosage

Dosage levels of active ingredients in a pharmaceutical composition can also be varied so as to achieve a transient or sustained concentration of the compound in a subject, especially in and
around the site of inflammation or disease area, and to result in the desired response. It is well within the skill of the art to start doses of the compound at levels lower than required to achicve the desired effect and to gradually increase the dosage until the desired effect is achieved. It will be understood that the specific dose level for any particular subject will depend on a variety of factors, including body weight, general health, diet, natural history of disease, route and scheduling of administration, combination with one or more other drugs, and severity of disease.

An effective dosage of the composition will typically be between about $1 \mu \mathrm{~g}$ and about 10 mg per kilogram body weight, preferably between about $10 \mu \mathrm{~g}$ to 5 mg of the compound per kilogram body weight. Adjustments in dosage will be made using methods that are routine in the art and will be based upon the particular composition being used and clinical considerations.

The guanylate cyclase receptor agonists used in the methods described above may be administered orally, systemically or locally. Dosage forms include preparations for inhalation or injection, solutions, suspensions, emulsions, tablets, capsules, topical salves and lotions, transdermal compositions, other known peptide formulations and pegylated peptide analogs. Agonists may be administered as either the sole active agent or in combination with other drugs, e.g., an inhibitor of cGMP-dependent phosphodiesterase and anti-inflammatory agent. In all cases, additional drugs should be administered at a dosage that is therapeutically effective using the existing art as a guide. Drugs may be administered in a single composition or sequentially.

Dosage levels of the GCR agonist for use in methods of this invention typically are from about 0.001 mg to about $10,000 \mathrm{mg}$ daily, preferably from about 0.005 mg to about $1,000 \mathrm{mg}$ daily. On the basis of $\mathrm{mg} / \mathrm{kg}$ daily dose, either given in single or divided doses, dosages typically range from about $0.001 / 75 \mathrm{mg} / \mathrm{kg}$ to about $10,000 / 75 \mathrm{mg} / \mathrm{kg}$, preferably from about $0.005 / 75 \mathrm{mg} / \mathrm{kg}$ to about $1,000 / 75 \mathrm{mg} / \mathrm{kg}$.

The total daily dose of each inhibitor can be administered to the patient in a single dose, or in multiple subdoses. Typically, subdoses can be administered two to six times per day, preferably two to four times per day, and even more preferably two to three times per day. Doses can be in immediate release form or sustained release form sufficiently effective to obtain the desired control over the medical condition.

The dosage regimen to prevent, treat, give relief from, or ameliorate a medical condition or disorder, or to otherwise protect against or treat a medical condition with the combinations and compositions of the present invention is selected in accordance with a variety of factors.

These factors include, but are not limited to, the type, age, weight, sex, diet, and medical condition of the subject, the severity of the discasc, the route of administration, pharmacological considerations such as the activity, efficacy, pharmacokinetics and toxicology profiles of the particular inhibitors employed, whether a drug delivery system is utilized, and whether the inhibitors are administered with other active ingredients. Thus, the dosage regimen actually employed may vary widely and therefore deviate from the preferred dosage regimen set forth above.

Examples

Example 1: Synthesis And Purification of GCRA Peptides

The GCRA peptides were synthesized using standard methods for solid-phase peptide synthesis. Either a Boc/Bzl or Fmoc/tBu protecting group strategy was seleceted depending upon the scale of the peptide to be produced. In the case of smaller quantities, it is possible to get the desired product using an $\mathrm{Fmoc} / \mathrm{tBu}$ protocol, but for larger quantities (1 g or more), $\mathrm{Boc} / \mathrm{Bzl}$ is superior.

In each case the GCRA peptide was started by either using a pre-loaded Wang (Fmoc) or Merrifield (Boc) or Pam (Boc) resin. For products with C-terminal Leu, Fmoc-Leu-Wang (D1115) or Boc-Leu-Pam resin (D-1230) or Boc-Leu-Merrifield (D-1030) Thus, for peptides containing the C-terminal d-Leu, the resin was Fmoc-dLeu-Wang Resin (D-2535) and Boc-dLeu-Merrifield, Boc-dLeu-Pam-Resin (Bachem Product D-1230 and D-1590, respectively) (SP332 and related analogs). For peptides produced as C -terminal amides, a resin with Ramage linker (Bachem Product D-2200) (Fmoc) or mBHA (Boc) (Bachem Product D-1210 was used and loaded with the C-terminal residue as the first synthetic step.

Fmoc-tBu Overview

Each synthetic cycle consisted deprotection with 20% piperidine in DMF. Resin washes were accomplished with alternating DMF and IpOH to swell and shrink the resin, respectively. Peptide synthesis elongated the chain from the C -terminus to the N -terminus. Activation chemistry for each amino acid was with HBTU/DIEA in a 4 fold excess for 45 minutes. In automated chemistries, each amino acid was double coupled to maximize the coupling efficiency. To insure the correct position of disulfide bonds, the Cys residues were introduced as Cys(Acm) at positions 15 and 7. Cys(Trt) was positioned at Cys 4 and Cys12. This protecting
group strategy yields the correct topoisomer as the dominant product (75:25). (For enterotoxin analogs, a third disulfide bond protecting group (Mob) was utilized).

For peptides containing C-terminal Acea (aminoethyloxyethyloxyacetyl) groups, these were coupled to a Ramage amide linker using the same activation chemistry above by using an Fmoc-protected Aeea derivative. The Cys numbering in these cases remains the same and the positioning of the protecting groups as well. For the peptides containing the N -terminal extension of Aeea, the Cys residue numbering will be increased by three Cys 4 becomes Cys7, Cys 12 becomes Cys15; Cys 7 becomes Cys 10 and Cys 15 becomes Cys 18 . The latter pair is protected with Acm and the former pair keeps the Trt groups.

For analogs containing D-amino acid substitutions, these were introduced directly by incorporating the correctly protected derivative at the desired position using the same activation chemistry described in this document. For Fmoc strategies, Fmoc-dAsn(Trt)-OH, Fmoc-dAsn(Xan)-OH, Fmoc-dAsp(tBu)-OH, Fmoc-dGlu(tBu)-OH and for Boc strategies, Boc-dAsn(Xan)-OH, Boc-dAsn(Trt)-OH, Boc-dAsp(Chx), Boc-dAsp(Bzl)-OH, Boc-dGlu(Chx)-OH and Boc-dGlu(Bzl)-OH would be utilized.

Each peptide is cleaved from the solid-phase support using a cleavage cocktail of TFA:H2O:Trisisopropylsilane (8.5:0.75:0.75) ml / g of resin for 2 hr at RT. The crude deprotected peptide is filtered to remove the spent resin beads and precipitated into ice-cold diethylether.

Each disulfide bonds was introduced orthogonally. Briefly, the crude synthetic product was dissolved in water containing $\mathrm{NH}_{4} \mathrm{OH}$ to increase the pH to 9 . Following complete solubilization of the product, the disulfide bond was made between the Trt deprotected Cys residues by titration with $\mathrm{H}_{2} \mathrm{O}_{2}$. The monocyclic product was purified by RP-HPLC. The purified mono-cyclic product was subsequently treated with a solution of iodine to simultaneously remove the Acm protecting groups and introduce the second disulfide bond.

For enterotoxin analogs, the Mob group was removed via treatment of the dicyclic product with TFA 85% containing 10% DMSO and 5% thioanisole for 2 hr at RT.

Each product was then purified by RP-HPLC using a combination buffer system of TEAP in H2O versus MeCN, followed by TFA in H2O versus MeCN. Highly pure fractions were combined and lyophilized. The final product was converted to an Acetate salt using either ion exchange with Acetate loaded Dow-Ex resin or using RP-HPLC using a base-wash step with $\mathrm{NH}_{4} \mathrm{OAc}$ followed by $1 \% \mathrm{AcOH}$ in water versus MeCN .

It is also possible to prepare enterotoxin analogs using a random oxidation methodology using Cys(Trt) in Fmoc or Cys(McB) in Boc. Following cleavage, the disulfide bonds can be formed using disulfide interchange redox pairs such as glutathione (red/ox) and/or cysteine/cystine. This process will yield a folded product that the disulfide pairs must be determined as there would be no way of knowing their position directly.

Boc-Bzl Process

Peptide synthesis is initiated on a Merrifield or Pam pre-loaded resin or with mBHA for peptides produced as C-terminal amides. Each synthetic cycle consists of a deprotection step with 50% TFA in MeCL2. The resin is washed repetitively with MeCl 2 and MeOH . The TFA salt formed is neutralized with a base wash of 10% TEA in MeCl 2 . The resin is washed with MeCl 2 and MeOH and lastly with DMF prior to coupling steps. A colorimetric test is conducted to ensure deprotection. Each coupling is mediated with diisopropyl carbodiimide with HOBT to form the active ester. Each coupling is allowed to continue for 2 hr at RT or overnight on difficult couplings. Recouplings are conducted with either Uronium or Phosphonium reagents until a negative colorimetric test is obtained for free primary amines. The resin is then washed with DMF, MeCl 2 and MeOH and prepared for the next solid-phase step. Cys protection utilizes Cys(Acm) at positions 7 and 15, and Cys(MeB) at Cys 4 and Cys12.

Cleavage and simultaneous deprotection is accomplished by treatment with HF using anisole as a scavenger $(9: 1: 1) \mathrm{ml}: \mathrm{ml}: \mathrm{g}$ (resin) at $0^{\circ} \mathrm{C}$ for 60 min . The peptide is subsequently extracted from the resin and precipitated in ice cold ether. The introduction of disulfide bonds and purification follows the exact same protocol described above for the Fmoc-produced product.

Example 2: In vitro Proteolytic Stability Using Simulated Gastric Fluid (SGF) Digestion

The stability of SP-304 in the presence of simulated gastric fluid (SGF) was determined. SP-304 (final concentration of $8.5 \mathrm{mg} / \mathrm{ml}$) was incubated in SGF (Proteose peptone ($8.3 \mathrm{~g} / \mathrm{liter}$; Difco), D-Glucose ($3.5 \mathrm{~g} /$ liter; Sigma), $\mathrm{NaCl}\left(2.05 \mathrm{~g} /\right.$ liter; Sigma), $\mathrm{KH}_{2} \mathrm{PO}_{4}(0.6 \mathrm{~g} /$ liter; Sigma), $\mathrm{CaCl}_{2}(0.11 \mathrm{~g} /$ liter $), \mathrm{KCl}(0.37 \mathrm{~g} / \mathrm{liter}$; Sigma), Porcine bile (final 1 X concentration $0.05 \mathrm{~g} /$ liter; Sigma) in PBS, Lysozyme (final 1 X concentration $0.10 \mathrm{~g} / \mathrm{liter}$; Sigma) in PBS, Pepsin (final 1 X concentration $0.0133 \mathrm{~g} /$ liter; Sigma) in PBS). SGF was made on the day of the experiment and
the pH was adjusted to 2.0 ± 0.1 using HCl or NaOH as necessary. After the pH adjustment, SGF is filter sterilized with $0.22 \mu \mathrm{~m}$ membrane filters. SP-304 (final concentration of 8.5 $\mathrm{mg} / \mathrm{ml}$) was incubated in SGF at $37^{\circ} \mathrm{C}$ for $0,15,30,45,60$ and 120 min , respectively, in triplicate aliquots. Following incubations, samples were snap frozen in dry ice then stored in a - $80^{\circ} \mathrm{C}$ freezer until assayed in duplicate.

Figure 1A is a bar chart showing the biological activity of SP-304 after incubation with SGF for times as indicated. The activity at 0 min was taken as 100%. The data are an average of triplicates \pm SD for each data point. The data demonstrate that SP-304 is not sensitive to digestion with SGF. In addition, the data also suggest that the activity of SP-304 is not affected by exposure to the acidic pH of the SGF.

These results were further confirmed by the HPLC analyses of the samples after digestion with SGF. Here, aliquots of samples from all digestions were analyzed using a previously developed method for analyzing SP-304 peptide using HPLC. Samples from the SGF digestions were diluted to give a final concentration $0.17 \mathrm{mg} / \mathrm{mL}$ of $\mathrm{SP}-304$. Figure 1B shows HPLC chromatographs of SP-304 samples after incubation with SGF at indicated times. The major peak of SP-304 did not change following digestion with SGF, indicating that the peptide was resistant to SGF digestion.

Example 3: In vitro Proteolytic Stability Using Simulated Intestinal Fluid (SIF) Digestion

The stability of SP-304 was also evaluated after incubation with simulated intestinal fluid (SIF). SIF solution was prepared by the method as described in the United States Pharmacopoeia, 24th edition, p 2236 . The recipe to prepare SIF solution was as described below. The SIF solution contained $\mathrm{NaCl}\left(2.05 \mathrm{~g} / \mathrm{liter}\right.$; Sigma), $\mathrm{KH}_{2} \mathrm{PO}_{4}$ ($0.6 \mathrm{~g} / \mathrm{liter}$; Sigma^{2}), CaCl_{2} (0.11 $\mathrm{g} /$ liter $), \mathrm{KCl}(0.37 \mathrm{~g} /$ liter; Sigma $)$, and Pacreatin $10 \mathrm{mg} / \mathrm{ml}$. The pH was adjusted to 6 and the solution was filter sterilized. A solution of SP-304 ($8.5 \mathrm{mg} / \mathrm{ml}$) was incubated in SGF at $37^{\circ} \mathrm{C}$ for $0,30,60,90,120,150$ and 300 min respectively, in triplicate aliquots. Following incubations, samples were removed and snap frozen with dry ice and stored in a $-80^{\circ} \mathrm{C}$ freczer until assayed in duplicate. Figure 2A is a bar chart showing the ability of SP-304, after incubation in SIF for times as indicated, to stimulate cGMP synthesis in T84 cells. The cGMP stimulation activity at 0 min was taken as 100%. The data are an average of 3 triplicates $\pm \mathrm{SD}$.

The data indicated that the biological activity of SP-304 is reduced by 30% following digestion with SIF. This could be due to degradation of the peptide. Hence, samples after digestion with SIF were further analyzed by HPLC.

The integrity of SP-340 peptide exposed to SIF was evaluated by HPLC by essentially using the method described for SGF digestion. Figure 2B is a schematic representation of the results of HPLC chromatographic analyses of SP-304 samples after incubation with heatinactivated SIF for 300 min , and SIF for 120 min , respectively. The major pcak of SP-304, which elutes at 16.2 min was converted into another peak at 9.4 min and a few minor peptide peaks. Thus, it was important to find out structures of the metabolites of SP-304 produced after digestion with SIF. SP-304 peptide was incubated with SIF for various times and the peptide digestion products were isolated and subjected to structure elucidation by MS analysis.

Figure 3 is a schematic representation of the possible metabolites of SP-304. The major degradation products involve N and D clipped from the N -terminus and L from the C -terminus of SP304. However, there was only 30% reduction in biological activity, implying that one or more of the degradation products were also biologically active. To address this possibility, several truncated peptides were synthesized and evaluated for their abilities to stimulate cGMP synthesis in T84 cells (Figure 4).

Figure 4 shows data from the analyses of various peptides in the T84 cell cGMP stimulation assay (essentially as described in Shailubhai, et al., Cancer Research 60, 5151-5157 (2000) . Briefly, confluent monolayers of T-84 cells in 24 -well plates were washed twice with $250 \mu 1$ of DMEM containing 50 mM HEPES (pH 7.4) and pre-incubated at $37^{\circ} \mathrm{C}$ for 10 minutes with $250 \mu 1$ of DMEM containing 50 mM HEPES (pH 7.4) and 1 mM isobutyl methylxanthine (IBMX). Monolayers of T84 cells were then incubated with $250 \mu 1$ of DMEM containing 50 mM HEPES (pH 7.4) containing one of the peptides shown in the Figure 4 at a concentration of 1.0 $\mu \mathrm{M}$ for 30 min . After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of $\mathrm{NaOH}(0.1 \mathrm{~N})$ to neutralize the pH , intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021 ; Cayman Chemical, Ann Arbor, MI). Samples were run in duplicates incubations and each sample was run as duplicates in ELISA test.

The data suggest that the leucine (L) residue at the C-terminus of SP-304 contributes to the biological potency of the peptide. For example, there was considerable reduction in potency when L was deleted from SP-304, as in SP-338. Similarly, the peptides SP-327, SP-329 and SP331, without L at the C-terminal, also showed $20-25 \%$ reduction in biological potency as compared to their counterpart peptides with L at the C-terminus, as in SP-326, SP-328 and SP330 peptides. In addition, results also suggest that amino acid residues at the N -terminus might also be important for stability and/or potency of the peptides. Based on these results, several new peptides were synthesized with D-forms of amino acids replacing the corresponding L-forms at the C- and N-termini of the peptides. These peptides were evaluated for their abilities to stimulate cGMP synthesis in T84 cells as shown in Figure 5.

The results presented in Figure 5 suggest that substitution of L-amino acids with D-amino acids at the C- and N-termini did not significantly alter their potency. Peptides SP-332, SP-333 and SP- 335 showed comparable ability to stimulate cGMP synthesis in T84 cells. On the other hand, the substitution of L-leucine with D-leucine at the $6^{\text {th }}$ position in SP-337 resulted in a complete loss in its ability to stimulate cGMP synthesis in T84 cells. These results suggest that the amino acid residues Asn, Asp and Glu at the N-terminus and Leu at the C-terminus can be replaced with their respective D - amino acid forms. However, the leucine at the $6^{\text {th }}$ position can not be replaced with its D-form.

Figure 7 (A-F) shows the stabilities of peptides SP-332, SP-333 and SP-304 when incubated with SIF for two hours. The results demonstrated that the peptide SP-333, which has D-Asn at the N-terminus and D-Leu at the C-terminus, was virtually completely resistant to digestion with SIF (Figure 7F), and remained virtually 100% biologically active after a two hour incubation in SIF (Figure 7A). The peptide SP-332 with D-Leu at the C-terminus showed some reduction in potency following the 120 min incubation with SIF (Figure 7B). However, the HPLC analyses of SP-332 did not reveal any degradation of the peptide (Figure 7E), suggesting that these peptides are completely resistant to proteoysis by SIF. On the other hand, the peptide SP-304 lost about 30% of its potency following digestion with SIF for just one hour (Figure 7C). The HPLC analysis of SP-304 following SIF incubation confirmed its degradation (Figure 7D). These results suggest that the peptide SP-304 undergoes proteolysis following incubation with SIF, whereas substitution of L-Asn with D-Asn at the N-terminus plus the substitution of L-Leu
with D-Leu at the C-terminus protects SP-333 against digestion with SIF. Thus, the peptide SP333 appears more stable and potent as a drug candidate.

Example 4: Cyclic cGMP Stimulation Assays

The ability of the GCRA peptide to bind to and activate the intestinal GC-C receptor was tested by usingT 84 human colon carcinoma cell line. Human T84 colon carcinoma cells were obtained from the American Type Culture Collection. Cells were grown in a 1:1 mixture of Ham's F-12 medium and Dulbecco's modified Eagle's medium (DMEM) supplemented with 10\% fetal bovine serum, 100 U penicillin $/ \mathrm{ml}$, and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin. The cells were fed fresh medium every third day and split at a confluence of approximately 80%.

Biological activity of the GCRA peptides was assayed as previously reported (Shailubhai, et al., Cancer Research 60, 5151-5157 (2000)). Briefly, the confluent monolayers of T-84 cells in 24-well plates were washed twice with $250 \mu 1$ of DMEM containing 50 mM HEPES (pH 7.4), pre-incubated at $37^{\circ} \mathrm{C}$ for 10 min with 250μ l of DMEM containing 50 mM HEPES (pH 7.4) and 1 mM isobutylmethylxanthine (IBMX), followed by incubation with GCRA peptides (0.1 nM to $10 . \mathrm{mu} . \mathrm{M}$) for 30 min . The medium was aspirated, and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation, and neutralization with 0.1 N NaOH , the supernatant was used directly for measurements of cGMP using an ELISA kit (Caymen Chemical, Ann Arbor, Mich.).

Figure 6 shows results from the experiments evaluating potency of peptides that are similar to the E. coli enterotoxin ST peptide in the cGMP stimulation assay (as above). Among these the peptides SP-353 and SP-354 were found to be quite potent to stimulate cGMP synthesis in T84 cells. Particularly, the peptide SP-353 that has Ser residue at the $6^{\text {th }}$ position was found to be the most potent among the peptides tested. The peptide SP-355 that has D-Tyr at the Cterminus showed potency markedly less than the other peptides.

Example 5: Peggylated Peptides

An additional strategy to render peptides more resistant towards digestion by digestive proteases is to peggylate them at the N - and C-terminus. The peptide SP-333 was peggylated with the aminoethyloxy-ethyloxy-acetic acid (Acea) group at the C-terminus (SP-347) or at the N-terminus (SP-350) or at both termini (SP-343). Cyclic GMP synthesis in T84 cells was measured by the method as described above.

The peptides SP-347 and SP-350 showed potencies comparable to SP-333 in their abilitics to stimulate cGMP synthesis in T84 cells. However, peptide SP-343 was considerably less potent as compared to the other peptides tested. The poor activity of SP-343 might be due to the considerable steric hindrance afforded by the large Aeea groups at both termini.

Example 6: Combination Of Guanylate Cyclase Agonists With Phosphodiesterase InHibitors

Regulation of intracellular concentrations of cyclic nucleotides (i.e., cAMP and cGMP) and thus, signaling via these second messengers, has been generally considered to be governed by their rates of production versus their rates of destruction within cells. Thus, levels of cGMP in tissues and organs can also be regulated by the levels of expression of cGMP-specific phosphodiesterases (cGMP-PDE), which are generally overexpressed in cancer and inflammatory diseases. Therefore, a combination consisting of an agonist of GC-C with an inhibitor of cGMP-PDE might produce synergistic effect on levels of cGMP in the target tissues and organs.

Sulindac Sulfone (SS) and Zaprinast (ZAP) are two of the known inhibitors of cGMPPDE and have been shown to induce apoptosis in cancer cells via a cGMP-dependent mechanism. SS and ZAP in combination with SP304 or SP-333 was evaluated to see if these PDE inhibitors had any synergistic effect on intracellular accumulation of cGMP (Fig. 9-12). As the data shows, SS at concentration of $100 \mu \mathrm{M}$ did not enhance intracellular accumulation of cGMP. However, the combination SS with SP304 stimulated cGMP production several fold more then the stimulation by SP304 used alone. This synergistic effect on cGMP levels was more pronounced when SP304 were used at $0.1 \mu \mathrm{M}$ concentration (Fig 10). Similar observations were made when SP304 or SP333 were used in combination with ZAP (Fig 10, Fig 11 and Fig 12). These results suggest that the intracellular levels of cGMP are stabilized because SS inhibits cGMP-PDE that might be responsible for depletion of intracellular cGMP. Thus, the approach to use a combination of GC-C agonist with a cGMP-PDE inhibitor is attractive.

For the results shown in Figure 9, cyclic GMP synthesis in T84 cells was assessed essentially as described in Shailubhai et al., Cancer Research 60, 5151-5157 (2000). Briefly, confluent monolayers of T-84 cells in 24 -well plates were washed twice with $250 \mu \mathrm{l}$ of DMEM containing 50 mM HEPES (pH 7.4) and pre-incubated at $37^{\circ} \mathrm{C}$ for 10 minutes with $250 \mu \mathrm{l}$ of DMEM containing 50 mM HEPES (pH 7.4) and 1 mM isobutyl methylxanthine (IBMX).

Monolayers of T84 cells were then incubated with $250 \mu 1$ of DMEM containing 50 mM HEPES (pH 7.4) containing SP-304 or PDE inhibitors cither alonc or in combinations, as indicated below in the following experimental sets: 1) Control; 2) SP-304 (0.1 $\mu \mathrm{M}$); 3) Sulindac Sulfone (100 $\mu \mathrm{M})$; 4) Zaprinast ($100 \mu \mathrm{M}$); 5) SP-304 ($0.1 \mu \mathrm{M}$) + Sulindac Sulfone ($100 \mu \mathrm{M}$); and 6) SP-304 $(0.1 \mu \mathrm{M})+$ Zaprinast $(100 \mu \mathrm{M})$. After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of $\mathrm{NaOH}(0.1 \mathrm{~N})$ to neutralize the pH , intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021 ; Cayman Chemical, Ann Arbor, MI). Samples were run in duplicates incubations and each sample was run as duplicates in ELISA test.

For the results shown in Figure 10, the method used was same as the one used for Fig. 9 except that the monolayers of T84 cells were incubated with $500 \mu 1$ of DMEM containing 50 mM HEPES (pH 7.4) containing SP-304 (0.1 or $1.0 \mu \mathrm{M}$) or increasing concentrations of PDE inhibitors (0 to $750 \mu \mathrm{M}$) either alone or in combination with SP-304. After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of $\mathrm{NaOH}(0.1 \mathrm{~N})$ to neutralize the pH , intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021; Cayman Chemical, Ann Arbor, MI). Samples were run as triplicates in ELISA test.

For the results shown in Figure 11, the method used was same as the one used for Fig. 10 except that the monolayers of T84 cells were incubated with $500 \mu 1$ of DMEM containing 50 mM HEPES (pH 7.4) containing SP-3333 (0.1 or $1.0 \mu \mathrm{M}$) or increasing concentrations of ZAP (0 to $500 \mu \mathrm{M}$) either alone or in combination with SP-333. After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of $\mathrm{NaOH}(0.1 \mathrm{~N})$ to neutralize the pH , intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021 ; Cayman Chemical, Ann Arbor, MI). Samples were run as triplicates in ELISA test.

For the results shown in Figure 12, the method used was same as the one used for Fig. 10 except that the monolayers of T84 cells were incubated with $500 \mu \mathrm{l}$ of DMEM containing 50 mM HEPES (pH 7.4) containing SP-333 $(0.1 \mu \mathrm{M}$) or increasing concentrations of Sulindac Sulfone (0 to $500 \mu \mathrm{M}$) either alone or in combination with SP-333. After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid.

Following centrifugation and the addition of $\mathrm{NaOH}(0.1 \mathrm{~N})$ to neutralize the pH , intracellular cGMP levels were determincd in lysates using a cGMP ELISA kit (Cat. No. 581021 ; Cayman Chemical, Ann Arbor, MI). Samples were run as triplicates using the ELISA test.

Example 7: An Oral Range-Finding Toxicity Study in Cynomolgus Monkeys.

The objective of the study is to determine the toxicity of the GRCA peptides according to the invention following a single oral gavage administration to the cynomolgus monkey and to allow assessment of reversibility of any changes following a minimum 7-day observation/washout period. Each GRCA peptide according to the invention will be given at two different dose levels.

Experimental Design

The test (e.g., the GRCA peptides according to the invention) and control/vehicle article will be administered in three phases separated by a minimum 7-day observation period. Each phase will consist of a single oral gavage administration to female cynomolgus monkeys as indicated in the tables below:

Phase 1:
Eight non-naive female cynomolgus monkeys will be transferred from the ITR Spare Monkey colony and assigned to four dose groups as follows:

Group Number	Group Designation	Study Days	Dose Level $(\mathrm{mg} / \mathrm{kg})$	Dose Concentration $(\mathrm{mg} / \mathrm{mL})$	Dose Volume $(\mathrm{mL} / \mathrm{kg})$	Number of Animals $($ Females $)$
1	Control/Vehicle	1	0	0	10	2
2	Test Peptides	1	1	0.1	10	2

Following completion of the Phase 1 dosing, all monkeys will be observed for 33 days. Upon completion of the observation period, all monkeys will be transferred back to the ITR Spare Monkey Colony.

Phase 2:

The same eight non-naïve female cynomolgus monkeys as previously used in Phase 1 will be transferred from the ITR Spare Monkey colony and assigned to four dose groups as follows:

Group Number	Group Designation	Study Day	Dose Level $(\mathrm{mg} / \mathrm{kg})$	Dose Concentration $(\mathrm{mg} / \mathrm{mL})$	Dose Volume $(\mathrm{mL} / \mathrm{kg})$	Number of Animals $($ Females $)$
1	Control/Vehicle	1	10	1	10	2
2	Test Peptides	1	10	1	10	2

Following completion of the Phase 2 dosing, all monkeys will be observed for a minimum of 7 days.

Route of Administration

The oral route of administration has been chosen because it is a preferred human therapeutic route.

Preparation of Test and Control/Vehicle Articles

The test and control/vehicle articles will be prepared fresh on the day of dosing in cold distilled water (maintained in an ice water bath). A sufficient amount of test article powder will be added to the appropriate amount of distilled water in order to achieve the desired concentration. The dose formulations will be mixed by simple inversion.

Analvsis of Test Article Concentration and Stability in the Dose Formulations

For possible confirmation of the concentration and stability of the test article in the formulations, representative samples will be taken from the middle of each concentration, including the control/vehicle article on the first day of dosing of each group, as indicated below. Samples will be collected immediately after preparation on Day 1 and again after dosing is completed on that day and will be stored frozen (approximately $80^{\circ} \mathrm{C}$ nominal) in 20 mL screw cap vials. Therefore, the remaining dose formulation vials will be returned to the Pharmacy Department as soon as possible after completion of dosing.

Group 1: 1.5 mL in duplicate from the middle on Day 1 (pre-dose and post-dose).
Group 2: 1.5 mL in duplicate from the middle on Day 1 (pre-dose and post-dose).

Group 3: 1.5 mL in duplicate from the middle on Day 1 (pre-dose and post-dose).
Group 4: 1.5 mL in duplicate from the middle on Day 1 (pre-dose and post-dose).
The formulations will be maintained cold in an ice water bath during all sampling procedures.

The formulations will be stirred continuously with a stir bar for a minimum of 15 minutes prior to sampling.

The samples will be retained frozen (approximately $-80^{\circ} \mathrm{C}$ nominal) at ITR until requested by the Sponsor to be shipped to a laboratory designated by the Sponsor for analysis. The samples can be discarded once it is determined by the analyst and Study Director that they are no longer needed. These samples' disposition will be recorded in the raw data.

If analyzed, a Dose Formulation report will be prepared by the Principal Investigator (Formulation analysis) and will be provided to ITR for inclusion in the final report.

Test System

Species/Strain:
Source:

Total No. of monkeys on study:
Body Weight Range:
Age Range at Start:
Acclimation Period:

Cynomolgus Monkey (Macaca Fasicularis) orldwide Primates Inc.,
P.O. Box 971279

Miami, Florida, 33187, USA
and
Covance Research Products Inc.
P.O. Box 549

Alice, Texas, 78333, USA
8 non-naive females
$2-4 \mathrm{~kg}$ at onset of treatment Young adult at onset of treatment
The animals will be transferred from ITR's spare monkey colony. They are therefore, considered to be fully acclimated to the laboratory environment.

The actual age and body weight ranges will be noted in the final report.

Administration of the Test and Control/Vehicle Articles

The test and control/vehicle articles will be administered by oral gavage administration using a gavage tube attached to a syringe in three Phases separated by a minimum 7-day
observation/washout period. Each dosing session will consist of a single oral gavage administration. The gavage tube will be flushed with 3 mL of reversc osmosis water immediatcly following administration of the dose formulation in order to ensure that the entire dose volume has been delivered to the animal. The dose volume will be $10 \mathrm{~mL} / \mathrm{kg}$ for all animals, including controls. The actual volume administered to each monkey on Day 1 of each Phase will be calculated using the Day -1 body weights of each Phase.

Dosing formulations will be maintained cold during dose administration by placing them in an ice water bath.

The dosing formulations must be placed on a stir plate for a minimum of 15 minutes prior to the start of dosing and maintained on the stir plate throughout the dosing procedure.

The dosing formulations must be used within 2 hours of preparation.

Clinical Observations

Cage-side clinical signs (ill health, behavioral changes etc.) will be recorded as indicated below except on detailed clinical examination days, where the morning cage-side clinical signs will be replaced by a detailed clinical examination (DCE). During regular cage side clinical signs and detailed examinations, particular attention will be paid to stools with respect to amount of stools produced, description of stools, etc.

Cage side clinical signs will be performed as follows:
During the pretreatment period and during the 7-day (minimum) observation periods: Three times per day with a minimum of 3 hours between each occasion.

On the dosing day of Phase 1: pre-dose, $2,4,6,8$ and 24 hours post-dosing
On the dosing day of Phase 2: pre-dose, continuously for the first 4 hours post-dose and at 6,8 and 24 hours post-dosing

On the dosing day of Phase 3: pre-dose, continuously for the first 4 hours post-dose and at 6,8 and 24 hours post-dosing

A detailed clinical examination of each monkey will be performed once at the time of animal transfer and once weekly thereafter.

Animals whose health status is judged to warrant additional evaluation will be examined by a Clinical Veterinarian, or a technician working under the supervision of the Clinical Veterinarian. Any veterinarian-recommended treatments will only be performed once agreement has been obtained from the Study Director. Where possible, the Sponsor will be consulted prior to administration of therapeutic drugs.

Body weights will be recorded for all animals once daily from the day of transfer through to the end of the study.

Food consumption will be recorded for all animals once daily from the day of transfer through to the end of the study.

Cages will be cleaned prior to the start of the daily food consumption to ensure no food cookies remain in the cage. Monkeys will be fed 7 cookies before 12 pm and 7 cookies after 12 pm . The sum of the total number of cookies given for the day will be recorded.

The next morning, a visual check will be performed to see how many cookies are left in the cage. The number of whole cookies remaining in the food hopper or on the tray will be recorded. The number of whole cookies left will be subtracted from the total number of cookies given in order to calculate the number of cookies eaten.

Example 8: Suckling mouse model of intestinal secretion (SuMi assay)

The GCRA peptides described herein can be tested for their ability to increase intestinal secretion using a suckling mouse model of intestinal secretion. In this model a GCRA peptide is administered to suckling mice that are between seven and nine days old. After the mice are sacrificed, the gastrointestinal tract from the stomach to the cecum is dissected ("guts"). The remains ("carcass") as well as the guts are weighed and the ratio of guts to carcass weight is calculated. If the ratio is above 0.09 , one can conclude that the test compound increases intestinal secretion. Controls for this assay may include wild-type SP-304, ST polypeptide and Zelnorm®. Phenylbenzoquinone-induced writhing model

The PBQ-induced writhing model can be used to assess pain control activity of the GCRA peptide described herein. This model is described by Siegmund et al. (1957 Proc. Soc. Exp. Bio. Med. 95:729-731). Briefly, one hour after oral dosing with a test compound, e.g., a GCRA peptide, morphine or vehicle, 0.02% phenylbenzoquinone (PBQ) solution ($12.5 \mathrm{~mL} / \mathrm{kg}$)
is injected by intraperitoneal route into the mouse. The number of stretches and writhings are recorded from the $5^{\text {th }}$ to the $10^{\text {th }}$ minute after PBQ injection, and can also be counted between the $35^{\text {th }}$ and $40^{\text {th }}$ minute and between the $60^{\text {th }}$ and $65^{\text {th }}$ minute to provide a kinetic assessment. The results are expressed as the number of stretches and writhings (mean \pm SEM) and the percentage of variation of the nociceptive threshold calculated from the mean value of the vehicle-treated group. The statistical significance of any differences between the treated groups and the control group is determined by a Dunnett's test using the residual variance after a one-way analysis of variance ($\mathrm{P}<0.05$) using SigmaStat Software.

EXAMPLE 9 : PHARMACOKINETIC PROPERTY DETERMINATION OF GCRA PEPTIDES

Serum samples are extracted from the whole blood of exposed (mice dosed orally or intravenously with GCRA peptides (s) described herein) and control mice, then injected directly $(10 \mathrm{~mL})$ onto an in-line solid phase extraction (SPE) column (Waters Oasis HLB $25 \mu \mathrm{~m}$ column, $2.0 \times 15 \mathrm{~mm}$ direct connect) without further processing. The sample on the SPE column is washed with a 5% methanol, $95 \% \mathrm{dH}_{2} \mathrm{O}$ solution ($2.1 \mathrm{~mL} / \mathrm{min}, 1.0$ minute), then loaded onto an 0 analytical column using a valve switch that places the SPE column in an inverted flow path onto the analytical column (Waters Xterra MS C8 $5 \mu \mathrm{~m}$ IS column, $2.1 \times 20 \mathrm{~mm}$). The sample is eluted from the analytical column with a reverse phase gradient (Mobile Phase A: 10 mM ammonium hydroxide in $\mathrm{dH}_{2} \mathrm{O}$, Mobile Phase B: 10 mM ammonium hydroxide in 80% acetonitrile and 20% methanol; 20\% B for the first 3 minutes then ramping to 95% B over 4 min . and holding for 25 min ., all at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$.). At 9.1 minutes, the gradient returns to the initial conditions of 20% B for 1 min . polypeptide is eluted from the analytical column and is detected by triple-quadrapole mass spectrometry (MRM, 764 (+2 charge state) >182 (+1 charge state) Da ; cone voltage $=30 \mathrm{~V}$; collision $=20 \mathrm{eV}$; parent resolution $=2 \mathrm{Da}$ at base peak; daughter resolution $=2 \mathrm{Da}$ at base peak). Instrument response is converted into concentration units by comparison with a standard curve using known amounts of chemically synthesized polypeptide(s) prepared and injected in mouse plasma using the same procedure.

Similarly, pharmacokinetic properties are determined in rats using LCMS methodology. Rat plasma samples containing the GCRA peptide are extracted using a Waters Oasis MAX 96 well solid phase extraction (SPE) plate. A $200 \mu \mathrm{~L}$ volume of rat plasma is mixed with $200 \mu \mathrm{~L}$ of ${ }^{13} \mathrm{Cg},{ }^{15} \mathrm{~N}$-labeled polypeptide in the well of a prepared SPE plate. The samples are drawn
through the stationary phase with 15 mm Hg vacuum. All samples are rinsed with $200 \mu \mathrm{~L}$ of 2% ammonium hydroxide in water followed by $200 \mu \mathrm{~L}$ of 20% methanol in water. The samples are eluted with consecutive $100 \mu \mathrm{~L}$ volumes of 5/20/75 formic acid/water/methanol and $100 \mu \mathrm{~L}$ 5/15/80 formic acid/water/methanol. The samples are dried under nitrogen and resuspended in $100 \mu \mathrm{~L}$ of 20% methanol in water. Samples are analyzed by a Waters Quattro Micro mass spectrometer coupled to a Waters 1525 binary pump with a Waters 2777 autosampler. A $40 \mu \mathrm{~L}$ volume of each sample is injected onto a Thermo Hypersil GOLD C18 column (2.1x50 mm, 5 um). polypeptide is eluted by a gradient over 3 minutes with acetonitrile and water containing 0.05% trifluoroacetic acid. The Quattro Micro mass spectrometer is run in multiple reaction monitoring (MRM) mode using the mass transitions of, for example $764>182$ or $682>136$. Using this methodology, polypeptide is dosed orally and by IV to rats at $10 \mathrm{mg} / \mathrm{kg}$. Pharmacokinetic properties including area under the curve and bioavailabilty are determined.

Example 10: DiUresis related experiments Effect on Diuresis and Natriuresis

The effect of GCRA peptides described herein on diuresis and natriuresis can be determined using methodology similar to that described in WO06/001931 (examples 6 (p. 42) and 8 (p .45)). Briefly, the polypeptide/agonist described herein ($180-\mathrm{pmol}$) is infused for 60 min into a group of 5 anesthetized mice or primates. Given an estimated rat plasma volume of 10 mL , the infusion rate is approximately $3 \mathrm{pmol} / \mathrm{mL} / \mathrm{min}$. Blood pressure, urine production, and sodium excretion are monitored for approximately 40 minutes prior to the infusion, during the infusion, and for approximately 50 minutes after the infusion to measure the effect of the GCRA peptides on diuresis and natriuresis. For comparison, a control group of five rats is infused with regular saline. Urine and sodium excretion can be assessed. Dose response can also be determined. polypeptide/GC-C agonist described herein is infused intravenously into mice or primates over 60 minutes. Urine is collected at 30 minute intervals up to 180 minutes after termination of polypeptide/GC-C agonist infusion, and urine volume, sodium excretion, and potassium excretion are determined for each collection interval. Blood pressure is monitored continuously. For each dose a dose-response relationship for urine volume, sodium and potassium excretion can be determincd. Plasma concentration of the polypeptide/GC-agonist is also determined before and after iv infusion.

Mouse or Primate Diuresis Experiment: Once an appropriate level of anesthesia has been achicved, a sterile polyurethanc catheter is inserted into the urethra and secured using 1-2 drops of veterinary bond adhesive applied to urethra/catheter junction. Animals are then dosed with either vehicle or test article via the intravenous or intraperitoneal route. Animals are allowed to regain consciousness, and the volume of urine excreted over a 1-5 hour duration is recorded periodically for each rat.

References:

1. Currie, et al., Proc. Nat'l Acad. Sci. USA 89:947-951 (1992).
2. Hamra, et al., Proc. Nat'l Acad. Sci. USA 90:10464-10468 (1993).
3. Forte, L., Reg. Pept. 81:25-39 (1999).
4. Schulz, et al., Cell 63:941-948 (1990).
5. Guba, et al., Gastroenterology 111:1558-1568 (1996).
6. Joo, et al., Am. J. Physiol. 274:G633-G644 (1998).
7. Evan, et al., Nature (London) 411:342-348 (2001).
8. Eastwood, G., J. Clin. Gastroenterol. 14:S29-33 (1992).
9. Lipkin, M. Arch. Fr. Mal. Appl Dig. 61:691-693 (1972).
10. Wong, et al., Gut 50:212-217 (2002).
11. Potten, et al., Stem Cells 15:82-93.
12. Basoglu, et al., in: Proceedings of the Second FEPS Congress, June 29-July 4, 1999, Prague, Czech Republic., If2.cuni.cz/physiolres/feps/basoglu
13. Sindic, et al., J. Biol. Chem. March 11, 2002, manuscript M1 10627200 (in press).
14. Askling, J., Dickman, P.W., Karlen, P., Brostrom, O., Lapidus, A., Lofberg, R., and Ekbom, A. Colorectal cancer rates among first-degree relatives of patients with inflammatory bowel discasc: a population-bascd cohort study. Lancet, 357: 262-266,
15. Provenzale, D. and Onken, J. Surveillance issues in inflammatory bowel disease: Ulcerative colitis. J Clin Gastroenterol, 32:99-105, 2001.
16. Ettorre, G.M, Pescatori, M., Panis, Y., Nemeth, J., Crescenzi, A., and Valleur, P. Mucosal changes in ileal pouches after restorative proctocolectomy for ulcerative and Crohn's colitis. Dis Colon Rectum, 43:1743-1748, 2000.
17. Shinozaki M, Watanabe T, Kubota Y, Sawada T, Nagawa H, Muto T. High proliferative activity is associated with dysplasia in ulcerative colitis. Dis Colon Rectum, 43:S34-S39, 2000.
18. Deschner, E. E., Winawer, S.J., Katz, S., Katzka, I., and Kahn, E. Proliferative defects in ulcerative colitis patients. Cancer Invest, 1:41-47, 1983.
19. Wong, W.M., and Wright, N. A. Cell proliferation and gastrointestinal mucosa. J Clin Pathol, 52:321-333.
20. Potten, C.S., Wilson, J.W., and Booth, C. Regulation and significance of apoptosis in the stem cells. Stem Cells, 15:82-93.
21. Bhakdi, et al., Infect. Immun. 57:3512-3519 (1989).
22. Hughes, et al., J. Biol. Chem. 272:30567-30576 (1997).
23. Cermak, et al., Pflugers Arch. 43:571-577 (1996).
24. Wu, et al., J. Biol. Chem. 272:14860-14866 (1997).
25. Shailubhai et al., Cancer Research 60, 5151-5157 (2000)
26. Shailubhai et al., Curr. Opin. Drug Disc. Dev. 5(2): 261-268, 2002.
27. Collins, SM. JClin Gastroenterol. 41 Suppl 1:S30-32 (2007)
28. Ramamoorthy S et al., JBiol Chem. 282(16):11639-11647 (2007)

We claim:

1. A peptide consisting essentially of the amino acid sequence of any one of SEQ ID NO:2-54 and 57-98.
2. A pharmaceutical composition in unit dose comprising a guanylate cyclase receptor agonist peptide having the sequence of any one of NO:2-54 and 56-94 present in a therapeutically effective amount and a pharmacetical carrier, excipient or diluent.
3. The peptide of claim 1, wherein said peptide is SEQ ID NO: $8,9,10,58$ or 59.
4. The pharmaceutical composition of claim 2, wherein said peptide is SEQ ID NO: $8,9,10,58$ or 59 .
5. The peptide of claim 1, wherein said peptide is SEQ ID NO: 45-54 and said peptide increases cGMP production in a cell and wherein said peptide is not SEQ ID NO:1.
6. The pharmaceutical composition of claim 2, wherein said peptide is SEQ ID NO: 45-54, and said peptide increases cGMP production in a cell and wherein said peptide is not SEQ ID NO:1.
7. The peptide of claim 1, wherein said peptide is SEQ ID NO: 87-98, and said peptide increases cGMP production in a cell and wherein said peptide is not SEQ ID NO:55 or 56.
8. The pharmaceutical composition of claim 2, wherein said peptide is SEQ ID NO: 87-98, and said peptide increases cGMP production in a cell and wherein said peptide is not SEQ ID NO:55 or 56.
9. The pharmaceutical composition of any one of claims claim $2,4,6$, or 8 , wherein the unit dose form is selected from the group consisting of a tablet, a capsule, a solution or inhalation formulation.
10. A method for preventing or treating a condition selected from the group consisting of Ulcerative Colitis, Irritable bowel syndrome (IBS), non-ulcer dyspepsia chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, constipation associated with use of opiate pain killers, gastroesophageal reflux disease (GERD), post surgical constipation, gastroparesis, constipation associated with neuropathic disorders, heartburn, poor gastrointestinal motility , congestive heart failure, hypertension, benign prostatic hyperplasia (BPH), colon cancer, lung cancer, bladder cancer, liver cancer,
salivary gland cancer or skin cancer, bronchitis, tissue inflammation, organ inflammation, respiratory inflammation, asthma, COPD comprising administcring toa patient in necd thercof, an effective dosage of a guanylate cyclase receptor agonist having the sequence of any one of NO:2-54 and 56-94.
11. The method of claim 10, wherein said peptide is SEQ ID NO: 8, 9, 10, 58 or 59 .
12. A method of claim 11 or 12 , further comprising administering an effective dose of inhibitor of a cGMP-specific phosphodiesterase.
13. The method of claim 12 , further comprising administering to said patient an effective dose of an inhibitor of cGMP-dependent phosphodiesterase either concurrently or sequentially with said guanylate cyclase receptor agonist.
14. The method of claim 12, wherein said cGMP-dependent phosphodiesterase inhibitor is selected from the group consisting of suldinac sulfone, zaprinast, and motapizone, vardenifil, and suldenifil.
15. The method of claim 12, futher comprising administering an effective does of at least one anti-inflammatory agent.
16. The method of claim 12, wherein an anti-inflammatory agent is a steroid or nonsteroid anti-inflammatory drug (NISAIDS).

17 The use of any one of the peptides having the sequence of any one of SEQ ID $\mathrm{NO}: 2-54$ and 56-94 in the manufacture of a medicament for the treatment of a human disease.
18. The useof claim 17, wherein said peptide is SEQ ID NO: 8, 9, 10, 58 or 59.
19. A method of increasing cGMP production in a cell comprising contacting said cell with a peptide selected from the group consisting of the amino acid sequence of SEQ ID NO:254 and 57-98.
20. The method of claim 19, further comprising contacting said cell with a phosphodiesterase inhibitor.
21. The method of claim 20, wherein said cGMP-dependent phosphodiesterase inhibitor is selected from the group consisting of suldinac sulfone, zaprinast, and motapizone, vardenifil, and suldenifil.

Fig. 1A

2/17

Fig. 1B

Fig. 2A

Fig. 2B

Fig. 3

Fig. 4

6/17

Fig. 5

Fig. 6

Fig. 7A

Fig. 7B

Fig. 7C

Fig. 7D-1
XWC OF DAD SPECTRAL DATA: 218.0 TO 220.0 nm
FROM SAMPLE 1 (M-SCAN \#89950 DIGEST 60 MIN) OF 67. wiff
MAX. 130.5 mAU .
SP304 DIGEST 60 MIN.
9/17

10/17

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

17/17

Fig. 13

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 10 December 2009 ($\mathbf{1 0 . 1 2 . 2 0 0 9)}$

(10) International Publication Number WO 2009/149278 A1

(51) International Patent Classification:

C07K 14/435 (2006.01)
(21) International Application Number:

PCT/US2009/046287
(22) International Filing Date:

4 June 2009 (04.06.2009)
(25) Filing Language:
(26) Publication Language:
(30) Priority Data: 61/058,888 $\quad 4$ June 2008 (04.06.2008) US
(71) Applicant (for all designated States except US): SYNERGY PHARMACEUTICALS INC. [US/US]; 420 Lexington Avenue, Suite 1609, New York, NY 10170 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): SHAILUBHAI, Kunwar [-/US]; 2707 Bald Eagle Circle, Audubon, PA 19403 (US). JACOB, Gary, S. [US/US]; 171 East 84th Street, \#16J, New York, NY 10028 (US).
(74) Agents: ELRIFI, Ivor, R. et al.; Mintz, Levin, Cohn, Ferris, Glovsky And Popeo,P.C., One Financial Center, Boston, MA 02111 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$,
$\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, $\mathrm{DZ}, \mathrm{EC}, \mathrm{EE}, \mathrm{EG}, \mathrm{ES}, \mathrm{FI}, \mathrm{GB}, \mathrm{GD}, \mathrm{GE}, \mathrm{GH}, \mathrm{GM}, \mathrm{GT}$, HN, HR, HU, IT, IL, IN, IS, JP, KF, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG $, \mathrm{CH}, \mathrm{CY}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{EE}$, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) eases including gastrointestinal disorders, inflammation or cancer (e.g., a gastrointestinal cancer). The peptides can be administered either alone or in combination with an inhibitor of cGMP-dependent phosphodiesterase. The gastrointestinal disorder may be classified as either irritable bowel syndrome, constipation, or excessive acidity etc. The gastrointestinal disease may be classified as either inflammatory bowel disease or other GI condition including Crohn's disease and ulcerative colitis, and cancer.

AGONISTS OF GUANYLATE CYCLASE USEFUL FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS, INFLAMMATION, CANCER AND OTHER DISORDERS

RELATED APPLICATIONS

This application claims the benefit of U.S.S.N. 61/058,888, filed June 4, 2008 the contenst of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to the therapeutic use of guanylate cyclase C (GC-C) agonists as a means for enhancing the intracellular production of cGMP. The agonists may be used either alone or in combination with inhibitors of cGMP-specific phosphodiesterase to prevent or treat inflammation, cancer and other disorders, particularly of the gastrointestinal tract and the lung.

BACKGROUND OF THE INVENTION

Uroguanylin, guanylin and bacterial ST peptides are structurally related peptides that bind to a guanylate cyclase receptor and stimulate intracellular production of cyclic guanosine monophosphate (cGMP) (1-6). This results in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane channel for efflux of chloride from enterocytes lining the intestinal tract (1-6). Activation of CFTR and the subsequent enhancement of transepithelial secretion of chloride lead to stimulation of sodium and water secretion into the intestinal lumen. Therefore, by serving as paracrine regulators of CFTR activity, cGMP receptor agonists regulate fluid and electrolyte transport in the GI tract (1-6; US patent 5,489,670). Thus, the cGMP-mediated activation of CFTR and the downstream signaling plays an important role in normal functioning of gut physiology. Therefore, any abnormality in this process could potentially lead to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, excessive acidity and cancer $(25,26)$.

The process of epithelial renewal involves the proliferation, migration, differentiation, senescence, and eventual loss of GI cells in the lumen $(7,8)$. The GI mucosa can be divided into
three distinct zones based on the proliferation index of epithelial cells. One of these zones, the proliferative zone, consists of undifferentiated stem cells responsible for providing a constant source of new cells. The stem cells migrate upward toward the lumen to which they are extruded. As they migrate, the cells lose their capacity to divide and become differentiated for carrying out specialized functions of the GI mucosa (9). Renewal of GI mucosa is very rapid with complete turnover occurring within a 24-48 hour period (9). During this process mutated and unwanted cells are replenished with new cells. Hence, homeostasis of the GI mucosa is regulated by continual maintenance of the balance between proliferation and apoptotic rates (8).

The rates of cell proliferation and apoptosis in the gut epithelium can be increased or decreased in a wide variety of different circumstances, e.g., in response to physiological stimuli such as aging, inflammatory signals, hormones, peptides, growth factors, chemicals and dietary habits. In addition, an enhanced proliferation rate is frequently associated with a reduction in turnover time and an expansion of the proliferative zone (10). The proliferation index has been observed to be much higher in pathological cases of ulcerative colitis and other GI disorders (11). Thus, intestinal hyperplasia is the major promoter of gastrointestinal inflammation and carcinogenesis.

In addition to a role for uroguanylin and guanylin as modulators of intestinal fluid and ion secretion, these peptides may also be involved in the continual renewal of GI mucosa by maintaining the balance between proliferation and apoptosis in cells lining GI mucosa. Therefore, any disruption in this renewal process, due to reduced production of uroguanylin and/or guanylin can lead to GI inflammation and cancer $(25,26)$. This is consistent with previously published data in WO 01/25266, which suggest a peptide with the active domain of uroguanylin may function as an inhibitor of polyp development in the colon and may constitute a treatment of colon cancer. However, recent data also suggest that uroguanylin also binds to a currently unknown receptor, which is distinct from GC-C receptor $(3,4)$. Knockout mice lacking this guanylate cyclase receptor show resistance to ST peptides in the intestine, but effects of uroguanylin and ST peptides are not disturbed in the kidney in vivo (3). These results were further supported by the fact that membrane depolarization induced by guanylin was blocked by genistein, a tyrosine kinase inhibitor, whereas hyperpolarization induced by uroguanylin was not effected $(12,13)$. Thus, it is not clear if the anti-colon cancer and anti-inflammatory activities of uroguanylin and its analogs are mediated through binding to one or both of these receptors.

Inflammatory bowel disease is a general name given to a group of disorders that cause intestines to become inflamed, characterized by red and swollen tissue. Gastrointestinal (GI) inflammation can be a chronic condition and often leads to GI cancer (14). Examples of such inflammatory bowel diseases (IBD) include Crohn's disease and ulcerative colitis (UC). It is estimated that as many as $1,000,000$ Americans are afflicted with IBD, with male and female patients appearing to be equally affected. Most cases are diagnosed before age 30, but the disease can occur in the sixth, seventh, and later decades of life.

Crohn's disease is a serious inflammatory disease that predominantly effects ileum and colon, but can also occur in other sections of the GI tract, whereas UC is exclusively an inflammatory disease of the colon, the large intestine (15). Unlike Crohn's disease, in which all layers of the intestine are involved, and in which there can be normal healthy bowel in between patches of diseased bowel, UC affects only the innermost lining (mucosa) of the colon in a continuous manner (16). Depending on which portion of the GI tract is involved, Crohn's disease may be referred to as ileitis, regional enteritis, colitis, etc. Crohn's disease and UC differ from spastic colon or irritable bowel syndrome, which are motility disorders of the GI tract.

While the precise cause of IBD is not known, it is believed that the disruption of the process of continual renewal of GI mucosa may be involved in disease $(17,18)$. The renewal process of the GI lining is an efficient and dynamic process involving the continual proliferation and replenishment of unwanted damaged cells. Proliferation rates of cells lining the GI mucosa are very high, second only to the hematopoietic system. Thus, the balance between proliferation and apoptosis is important to the maintenance of the homeostasis of the GI mucosa $(19,20)$.

Necrotizing enterocolitis (NEC) is a devastating inflammatory condition of the gastrointestinal tract that afflicts 10% of premature infants born weighing less than 1500 grams. Despite modern medical advances, the etiology remains elusive, and morbidity and mortality is unacceptably high, with as many as $10-30 \%$ of affected infants succumbing to the disease. Although the pathophysiology is incompletely understood, it is known that prematurity, formula feeding, intestinal ischemia, and bacterial colonization are important risk factors. It has been suggested that these risk factors initiate the activation of the pro-inflammatory response that ultimately leads to bowel necrosis, and in some cases multi-organ dysfunction syndrome, and death. Multiple inflammatory mediators have been identified that might contribute to this final common pathway. Several of the pro- and anti-inflammatory molecules have been studied in
detail in animal models, in humans, and in vitro, including IL-6, IL-8, and IL-10 as well as nitric oxide, oxygen free radicals, and numerous others. Previously, we reported that SP-304 ameliorates GI inflammation in experimental models of murine colitis, possibly through downregulation of pro-inflammatory cytokines such as IL-4, IL-5, IL-17, IL-23 and TNF-a. (Shailubhai et al, 2007 and 2008). Therefore, GC-C agonists such as uroguanylin, guanylin, E.coli enterotoxin ST peptides and their analogs might be used to prevent, control and treat NEC. GC-C agonists may be given either in drinking water or in mother's milk to treat NEC in newborne babies.

GI homeostasis depends on both proliferation and programmed cellular death (apoptosis) of epithelial cells lining the gut mucosa. Hence, cells are continually lost from the villus into the lumen of the gut and are replenished at a substantially equal rate by the proliferation of cells in the crypts, followed by their upward movement to the villus. It has become increasingly apparent that the control of cell death is an equally, if not more, important regulator of cell number and proliferation index $(19,20)$. Reduced rates of apoptosis are often associated with abnormal growth, inflammation, and neoplastic transformation. Thus, both decreased proliferation and/or increased cell death may reduce cell number, whereas increased proliferation and/or reduced cell death may increase the proliferation index of intestinal tissue (20), which may lead to GI inflammatory diseases and cancer.

Uroguanylin and guanylin peptides also appear to promote apoptosis by controlling cellular ion flux. Alterations in apoptosis have been associated with tumor progression to the metastatic phenotype. While a primary gastrointestinal (GI) cancer is limited to the small intestine, colon, and rectum, it may metastasize and spread to such localities as bone, lymph nodes, liver, lung, peritoneum, ovaries, and brain. By enhancing the efflux of $K+$ and influx of Ca^{++}, uroguanylin and related peptides may promote the death of transformed cells and thereby inhibit metastasis

Irritable bowel syndrome (IBS) and chronic idiopathic constipation are pathological conditions that can cause a great deal of intestinal discomfort and distress but unlike the IBD diseases such as ulcerative colitis and Crohn's disease, IBS does not cause the serious inflammation or changes in bowel tissue and it is not thought to increase the risk of colorectal cancer. In the past, inflammatory bowel disease (IBD), celiac disease and irritable bowel syndrome (IBS) were regarded as completely separate disorders. Now, with the description of
inflammation, albeit low-grade, in IBS, and of symptom overlap between IBS and celiac disease, this contention has come under question. Acute bacterial gastroenteritis is the strongest risk factor identified to date for the subsequent development of postinfective irritable bowel syndrome. Clinical risk factors include prolonged acute illness and the absence of vomiting. A genetically determined susceptibility to inflammatory stimuli may also be a risk factor for irritable bowel syndrome. The underlying pathophysiology indicates increased intestinal permeability and low-grade inflammation, as well as altered motility and visceral sensitivity (27). Serotonin (5-hydroxytryptamine [5-HT]) is a key modulator of gut function and is known to play a major role in pathophysiology of IBS. It has been shown that the activity of 5-HT is regulated by cGMP (28). Therefore, based on this observation as well as other effects of cGMP, we believe that GC-C agonists will be useful in the treatment of IBS.

Given the prevalence of inflammatory conditions in Western societies and the attendant risk of developing cancerous lesions from inflamed tissue, particularly intestinal tissue, a need exists to improve the treatment options for inflammatory conditions, particularly of the gastrointestinal tract.

SUMMARY OF THE INVENTION

The present invention is based upon the development of agonists of guanylate cyclase receptor. The agonists are analogs of uroguanylin and bacterial ST peptides and have superior properties such as for example high resistance to degradation at the N -terminus and C -terminus from carboxypeptidases and/or by other proteolytic enzymes present in the stimulated human intestinal juices and human gastric juices.

The peptides of the invention may be used to treat any condition that responds to enhanced intracellular levels of cGMP. Intracellular levels of cGMP can be increased by enhancing intracellular production of cGMP and/or by inhibition of its degradation by cGMPspecific phosphodiesterases. Among the specific conditions that can be treated or prevented are gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity. Gastointestinal disorders include for example, irritable bowel syndrome (IBS), necrotizing enterocolitis (NEC), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudoobstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD), ileus inflammation
(e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema) . Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. In addition, GC-C agonist may also be useful to facilitate liver regeneration in liver transplant patients. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

In one aspect, the present invention is directed to a peptide consisting essentially of the amino acid sequence of, SEQ ID NOs: 2-8 and to therapeutic compositions which contain these peptides. The term "consisting essentially of" includes peptides that are identical to a recited sequence identification number and other sequences that do not differ substantially in terms of either structure or function. For the purpose of the present application, a peptide differs substantially if its structure varies by more than three amino acids from a peptide of SEQ ID NOs: 2-8 or if its activation of cellular cGMP production is reduced by more than 50% compared to a control peptide such as SEQ ID NO:1. Preferably, substantially similar peptides should differ by no more than two amino acids and not differ by more than about 25% with respect to
activating cGMP production. The instant peptide sequences comprise at least 12 amino acid residues, preferably between 12 and 26 amino acids in length.

The peptides may be in a pharmaceutical composition in unit dose form, together with one or more pharmaceutically acceptable carrier, excipients or diluents. The term "unit dose form" refers to a single drug delivery entity, e.g., a tablet, capsule, solution or inhalation formulation. The amount of peptide present should be sufficient to have a positive therapeutic effect when administered to a patient (typically, between $100 \mu \mathrm{~g}$ and 3 g). What constitutes a "positive therapeutic effect" will depend upon the particular condition being treated and will include any significant improvement in a condition readily recognized by one of skill in the art. For example, it may constitute a reduction in inflammation, shrinkage of polyps or tumors, a reduction in metastatic lesions, etc.

In yet another aspect, an invention provides administering to said patient an effective dose of an inhibitor of cGMP-specific phosphodiesterase (cGMP-PDE) either concurrently or sequentially with said guanylate cyclase receptor agonist. The cGMP-PDE inhibitor include for example suldinac sulfone, zaprinast, and motapizone, vardenifil, and sildenafil. In addition, GCC agonist peptides may be used in combination with inhibitors of cyclic nucleotide transporters.

Optionally, anti-inflammatory agents are also administered. Anti-inflammatory agents include for example steroids and non-steroidal anti-inflammatory drugs (NSAIDS).

Other features and advantages of the invention will be apparent from and are encompassed by the following detailed description and claims.

DETAILED DESCRIPTION

The present invention is based upon the development of agonists of guanylate cyclase-C (GC-C). The agonists are analogs of uroguanylin and have superior properties such as for example high resistance to degradation at the N -terminus and C -terminus from carboxypeptidases and/or by other proteolytic enzymes such as those present in the stimulated human intestinal fluid (SIF)and simulated human gastric fluid (SGF). Specifically, these peptides contain a d-amino acid at the amino- terminus and the carboxyl terminus. Additionally these peptides are modified as to mask the carboxyl-terminal carboxylic acid with an amide. Thus, the peptide is protected on both termini from degradation by proteases present in SIF and SGF. Examples of such a peptide include SP-363, SP-365, SP-367 and SP-373 shown in Table I.

The GC-C is expressed on various cells including on gastrointestinal epithelial cells, and on extra-intestinal tissues including kidney, lung, pancreas, pituitary, adrenal, developing liver, heart and male and female reproductive tissues (reviewed in Vaandrager 2002 Mol Cell Biochem 230:73-83). The GC-C is a key regulator of fluid and electrolyte balance in the intestine and kidney. In the intestine, when stimulated, the GC-C causes an increase in intestinal epithelial cGMP. This increase in cGMP causes a decrease in water and sodium absorption and an increase in chloride and potassium ion secretion, leading to changes in intestinal fluid and electrolyte transport and increased intestinal motility.

The gualylate cyclase-C agonists according to the invention include SEQ ID NO:2-8 and are summarized below in Table I. The gualylate cyclase-C agonists according to the invention are collectively refered to herein as "GCRA peptides".
Table I GCRA Peptides

Name	Structure	SEQ ID NO:
SP304	$\mathrm{Asn}^{1}-\mathrm{Asp}^{2}-\mathrm{Glu}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Leul}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}-\mathrm{Cys}^{15}-\mathrm{Leul}^{16}$	1
SP-333	dAsn ${ }^{1}-\mathrm{Asp}^{2}-\mathrm{Clu}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Leu}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Cly}^{14}-\mathrm{Cys}^{15}-\mathrm{dLeu}^{16}$	2
SP-363		3
SP-364	$\mathrm{dAsn}^{1}-\mathrm{Asp}^{2}-\mathrm{Glu}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Leu}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}-\mathrm{Cys}^{15}-\mathrm{dSer}^{16}$	4
SP-365	$\mathrm{dAsn}^{1}-\mathrm{Asp}^{2}-\mathrm{Glu}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Leu}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{11}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}-\mathrm{Cys}^{15}-\mathrm{dSer}^{\text {a }}$-AMIDE ${ }^{16}$	5
SP-366	$\mathrm{dAsn}^{1}-\mathrm{Asp}^{2}-\mathrm{Glu}^{3}-\mathrm{Cys}^{4}-\mathrm{Glu}^{5}-\mathrm{Leu}^{6}-\mathrm{Cys}^{7}-\mathrm{Val}^{8}-\mathrm{Asn}^{9}-\mathrm{Val}^{10}-\mathrm{Ala}^{111}-\mathrm{Cys}^{12}-\mathrm{Thr}^{13}-\mathrm{Gly}^{14}-\mathrm{Cys}^{15}-\mathrm{dTyr}^{16}$	6
SP-367		7
SP-373		8

The GCRA peptides described herein bind the guanylate cyclase C (GC-C) and stimulate intracellular production of cyclic guanosinc monophosphate (cGMP). Optionally, the GCRA peptides induce apoptosis. In some aspects, the GCRA peptides stimulate intracellular cGMP production at higher levels than naturally occurring GC-C agonists (e.g., uroguanylin, guanylin, and ST peptides) and/or SP-304. For example, the GCRA peptides of the invention stimulate 5 , $10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 75 \%, 90 \%$ or more intracellular cGMP compared to naturally occurring GC-C angonists and/or SP-304. The terms induced and stimulated are used interchangeably throughout the specification. The GCRA peptides described herein are more stable than naturally occurring GC-C agonists and/or SP-304. By more stable it is meant that the peptide degrade less and/or more slowly in simulated gastrointestinal fluid and/or simulatd intestinal fluid compared to naturally occurring GC-C angonists and/or SP-304. For example, the GCRA peptide of the invention degrade $2 \%, 3 \%, 5 \%, 10 \%, 15 \%, 20 \%, 30 \%, 40 \%, 50 \%$, $75 \%, 90 \%$ or less compared to naturally occurring GC-C angonists and/or SP-304.

The GCRA peptides described herein have therapeutic value in the treatment of a wide variety of disorders and conditions including for example gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity.Gastointestinal disorders include for example, irritable bowel syndrome (IBS), necrotizing enterocolitis (NEC), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema) . Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for
example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

As used herein, the term "guanylate cyclase C (GC-C)" refers to the class of guanylate cyclase C receptor on any cell type to which the inventive agonist peptides or natural agonists described herein bind. As used herein, "intestinal guanylate cyclase receptor" is found exclusively on epithelial cells lining the GI mucosa. Uroguanylin, guanylin, and ST peptides are expected to bind to these receptors and may induce apoptosis. The possibility that there may be different receptors for each agonist peptide is not excluded. Hence, the term refers to the class of guanylate cyclase receptors on epithelial cells lining the GI mucosa.

As used herein, the term "GCR agonist" is meant to refer to peptides and/or other compounds that bind to an intestinal guanylate cyclase C and stimulate fluid and electrolyte transport. This term also covers fragments and pro-peptides that bind to GC-C and stimulate fluid and water secretion.

As used herein, the term "substantially equivalent" is meant to refer to a peptide that has an amino acid sequence equivalent to that of the binding domain where certain residues may be deleted or replaced with other amino acids without impairing the peptide's ability to bind to an intestinal guanylate cyclase receptor and stimulate fluid and electrolyte transport.

Addition of carriers (e.g., phosphate-buffered saline or PBS) and other components to the composition of the present invention is well within the level of skill in this art. In addition to the compound, such compositions may contain pharmaceutically acceptable carriers and other ingredients known to facilitate administration and/or enhance uptake. Other formulations, such
as microspheres, nanoparticles, liposomes, and immunologically-based systems may also be used in accordance with the present invention. Other examples include formulations with polymers (e.g., $20 \% \mathrm{w} / \mathrm{v}$ polyethylene glycol) or cellulose, or enteric formulations.

The present invention is based upon several concepts. The first is that there is a cGMP- dependent mechanism which regulates the balance between cellular proliferation and apoptosis and that a reduction in cGMP levels, due to a deficiency of uroguanylin/guanylin and/or due to the activation of cGMP-specific phosphodiesterases, is an early and critical step in neoplastic transformation. A second concept is that the release of arachidonic acid from membrane phospholipids, which leads to the activation of cytoplasmic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2) and possibly 5-lipoxygenase (5-LO) during the process of inflammation, is down-regulated by a cGMP-dependent mechanism, leading to reduced levels of prostaglandins and leukotrienes, and that increasing intracellular levels of cGMP may therefore produce an anti-inflammatory response. In addition, a cGMP-dependent mechanism, is thought to be involved in the control of proinflammatory processes. Therefore, elevating intracellular levels of cGMP may be used as a means of treating and controlling gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity.Gastointestinal disorders include for example, irritable bowel syndrome (IBS), necrotizing enterocolitis (NEC), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema) . Lung Disorders include for example COPD and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer
(e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

Without intending to be bound by any theory, it is envisioned that ion transport across the plasma membrane may prove to be an important regulator of the balance between cell proliferation and apoptosis that will be affected by agents altering cGMP concentrations. Uroguanylin has been shown to stimulate $\mathrm{K}+$ efflux, $\mathrm{Ca}++$ influx and water transport in the gastrointestinal tract (3). Moreover, atrial natriuretic peptide (ANP), a peptide that also binds to a specific guanylate cyclase receptor, has also been shown to induce apoptosis in rat mesangial cells, and to induce apoptosis in cardiac myocytes by a cGMP mechanism (21-24).

Binding of the present agonists to a guanylate cyclase receptor stimulates production of cGMP. This ligand-receptor interaction, via activation of a cascade of cGMP-dependent protein kinases and CFTR, induces apoptosis in target cells. Therefore, administration of the novel peptides defined by SEQ ID NO:2-8, as shown in Table I are useful in eliminating or, at least retarding, the onset of gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity.Gastointestinal disorders include for example, irritable bowel syndrome (IBS), necrotizing enterocolitis (NEC), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD), ileus inflammation (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs , osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ
inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema) . Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

Uroguanylin is a circulating peptide hormone with natriuretic activity and has been found to stimulate fluid and electrolyte transport in a manner similar to another family of heat stable enterotoxins (ST peptides) secreted by pathogenic strains of E. coli and other enteric bacteria that activate guanylate cyclase receptor and cause secretory diarrhea. Unlike bacterial ST peptides, the binding of uroguanylin to guanylate cyclase receptor is dependent on the physiological pH of the gut. Therefore, uroguanylin is expected to regulate fluid and electrolyte transport in a pH dependent manner and without causing severe diarrhea.

GCRA PEPTIDES

In one aspect, the invention provides a GCRA peptide. The GCRA peptides are analogues uroguanylin and bacterial ST peptide. No particular length is implied by the term "peptide". In some embodiments, the GCRA peptide is less than 25 amino acids in length, e.g., less than or equal to $20,15,14,13,12,11,10$, or 5 amino acid in length.

The GCRA peptides can be polymers of L-amino acids, D-amino acids, or a combination of both. For example, in various embodiments, the peptides are D retro-inverso peptides. The term "retro-inverso isomer" refers to an isomer of a linear peptide in which the direction of the sequence is reversed and the chirality of each amino acid residue is inverted. See, e.g., Jameson et al., Nature, 368, 744-746 (1994); Brady et al., Nature, 368, 692-693 (1994). The net result of combining D-enantiomers and reverse synthesis is that the positions of carbonyl and amino groups in each amide bond are exchanged, while the position of the side-chain groups at each alpha carbon is preserved. Unless specifically stated otherwise, it is presumed that any given Lamino acid sequence of the invention may be made into an D retro-inverso peptide by synthesizing a reverse of the sequence for the corresponding native L -amino acid sequence. For example a GCRA peptide includes the sequence of SEQ ID NO: SEQ ID NO:2-8.

By inducing cGMP production is meant that the GCRA peptide induces the production of intracellular cGMP. Intracellular cGMP is measured by methods known in the art. For example, the GCRA peptide of the invention stimulate $5 \%, 10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 75 \%$, 90% or more intracellular cGMP compared to naturally occurring GC-C angonists. Optionally, the GCRA peptides of the invention of the invention stimulate $5 \%, 10 \%, 20 \%, 30 \%, 40 \%, 50 \%$, $75 \%, 90 \%$ or more intracellular cGMP compared SP-304 (SEQ ID NO:1). In further embodiments, the GCRA peptide stimulates apoptosis, e.g., programmed cell death or activate the cystic fibrosis transmembrane conductance regulator (CFTR). In some embodimenst the GCRA peptides described herein are more stable than naturally occurring GC-C agonists and/or SP-304 (SEQ ID NO:1). By more stable it is meant that the peptide degrade less and/or more slowly in simulated gastric fluid and/or simulated ntestinal fluid compared to naturally occurring GC-C angonists and/or SP-304. For example, the GCRA peptide of the invention degrade 2%, $3 \%, 5 \%, 10 \%, 15 \%, 20 \%, 30 \%, 40 \%, 50 \%, 75 \%, 90 \%$ or less compared to naturally occurring GC-C angonists and/or SP-304.

As used herein, the term "AMIDE" is meant to denote that the terminal carboxylic acid is replaced with an amide group, i.e., the terminal COOH is replaced with CONH_{2}.

In certain embodiments, one or more amino acids of the GCRA peptides can be replaced by a non-naturally occurring amino acid or a naturally or non-naturally occurring amino acid analog. There are many amino acids beyond the standard 20 (Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and VaI). Some are naturally-
occurring others are not. (See, for example, Hunt, The Non-Protein Amino Acids: In Chemistry and Biochemistry of the Amino Acids, Barrett, Chapman and Hall, 1985). For example, an aromatic amino acid can be replaced by 3,4-dihydroxy-L-phenylalanine, 3-iodo-L-tyrosine, triiodothyronine, L-thyroxine, phenylglycine (Phg) or nor-tyrosine (norTyr). Phg and norTyr and other amino acids including Phe and Tyr can be substituted by, e.g., a halogen, - $\mathrm{CH} 3,-\mathrm{OH},-$ $\mathrm{CH} 2 \mathrm{NH} 3,-\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{CH} 2 \mathrm{CH} 3,-\mathrm{CN},-\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{CH} 3,-\mathrm{SH}$, or another group. Any amino acid can be substituted by the D -form of the amino acid.

With regard to non-naturally occurring amino acids or naturally and non-naturally occurring amino acid analogs, a number of substitutions in the polypeptide and agonists described herein are possible alone or in combination.

For example, glutamine residues can be substituted with gamma-Hydroxy-Glu or gamma- Carboxy-Glu. Tyrosine residues can be substituted with an alpha substituted amino acid such as L-alpha-methylphenylalanine or by analogues such as: 3-Amino-Tyr; $\operatorname{Tyr}(\mathrm{CH} 3)$; $\operatorname{Tyr}(\mathrm{PO} 3(\mathrm{CH} 3) 2) ; \operatorname{Tyr}(\mathrm{SO} 3 \mathrm{H})$; beta-Cyclohexyl-Ala; beta-(l-Cyclopentenyl)-Ala; beta-Cyclopentyl-Ala; beta-Cyclopropyl-Ala; beta-Quinolyl-Ala; beta-(2-Thiazolyl)-Ala; beta-(Triazole-l-yl)-Ala; beta-(2-Pyridyl)-Ala; beta-(3-Pyridyl)-Ala; Amino-Phe; Fluoro-Phe; Cyclohexyl-Gly; tBu-Gly; beta-(3-benzothienyl)-Ala; beta-(2-thienyl)-Ala; 5-Methyl-Trp; and A- Methyl-Trp. Proline residues can be substituted with homopro (L-pipecolic acid); hydroxyPro; 3,4-Dehydro-Pro; 4-fluoro-Pro; or alpha-methyl-Pro or an N(alpha)-C(alpha) cyclized amino acid analogues with the structure: $\mathrm{n}=0,1,2,3$ Alanine residues can be substituted with alpha-substitued or N -methylated amino acid such as alpha-amino isobutyric acid (aib), L/D-alpha-ethylalanine (L/D-isovaline), L/D-methylvaline, or L/D-alpha-methylleucine or a nonnatural amino acid such as beta-fluoro-Ala. Alanine can also be substituted with: $\mathrm{n}=0,1,2,3$ Glycine residues can be substituted with alpha-amino isobutyric acid (aib) or L/D-alphaethylalanine (L/D-isovaline).

Further examples of unnatural amino acids include: an unnatural analog of tyrosine; an unnatural analogue of glutamine; an unnatural analogue of phenylalanine; an unnatural analogue of serine; an unnatural analogue of threonine; an alkyl, aryl, acyl, azido, cyano, halo, hydrazine, hydrazide, hydroxyl, alkenyl, alkynl, ether, thiol, sulfonyl, seleno, ester, thioacid, borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, hydroxylamine, keto, or amino substituted amino acid, or any combination thereof; an amino acid with a
photoactivatable cross-linker; a spin-labeled amino acid; a fluorescent amino acid; an amino acid with a novel functional group; an amino acid that covalently or noncovalently interacts with another molecule; a metal binding amino acid; an amino acid that is amidated at a site that is not naturally amidated, a metal-containing amino acid; a radioactive amino acid; a photocaged and/or photoisomerizable amino acid; a biotin or biotin-analogue containing amino acid; a glycosylated or carbohydrate modified amino acid; a keto containing amino acid; amino acids comprising polyethylene glycol or polyether; a heavy atom substituted amino acid (e.g., an amino acid containing deuterium, tritium, ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$, or ${ }^{18} \mathrm{O}$); a chemically cleavable or photocleavable amino acid; an amino acid with an elongated side chain; an amino acid containing a toxic group; a sugar substituted amino acid, e.g., a sugar substituted serine or the like; a carbon-linked sugar-containing amino acid; a redox-active amino acid; an α-hydroxy containing acid; an amino thio acid containing amino acid; an α, α disubstituted amino acid; a β amino acid; a cyclic amino acid other than proline; an O-methyl-L-tyrosine; an L-3-(2naphthyl)alanine; a 3-methyl-phenylalanine; a ρ-acetyl-L-phenylalanine; an O-4-allyl-L-tyrosine; a 4-propyl-L-tyrosine; a tri-O-acetyl-GlcNAc β-serine; an L-Dopa; a fluorinated phenylalanine; an isopropyl-L-phenylalanine; a p-azido-L-phenylalanine; a p-acyl-L-phenylalanine; a p-benzoyl-L-phenylalanine; an L-phosphoserine; a phosphonoserine; a phosphonotyrosine; a p-iodo-phenylalanine; a 4-fluorophenylglycine; a p-bromophenylalanine; a p-amino-Lphenylalanine; an isopropyl-L-phenylalanine; L-3-(2-naphthyl)alanine; D-3-(2-naphthyl)alanine (dNal); an amino-, isopropyl-, or O-allyl-containing phenylalanine analogue; a dopa, 0-methyl-L-tyrosine; a glycosylated amino acid; a p-(propargyloxy)phenylalanine; dimethyl-Lysine; hydroxy-proline; mercaptopropionic acid; methyl-lysine; 3-nitro-tyrosine; norleucine; pyroglutamic acid; Z (Carbobenzoxyl); ε - Acetyl-Lysine; β-alanine; aminobenzoyl derivative; aminobutyric acid (Abu); citrulline; aminohexanoic acid; aminoisobutyric acid (AIB); cyclohexylalanine; d-cyclohexylalanine; hydroxyproline; nitro-arginine; nitro-phenylalanine; nitro-tyrosine; norvaline; octahydroindole carboxylate; ornithine (Orn); penicillamine (PEN); tetrahydroisoquinoline; acetamidomethyl protected amino acids and pegylated amino acids. Further examples of unnatural amino acids and amino acid analogs can be found in U.S. 20030108885 , U.S. 20030082575 , US20060019347 (paragraphs 410-418) and the references cited therein. The polypeptides of the invention can include further modifications including those described in US20060019347, paragraph 589. Exempary GCRA peptides which include a n0n-
naturally occurring amino acid include for example SP-368 and SP-369.
In some embodiments, an amino acid can be replaced by a naturally-occurring, nonessential amino acid, e.g., taurine.

Alternatively, the GCRA peptides are cyclic peptides. GCRA cyclic peptide are prepared by methods known in the art. For example, macrocyclization is often accomplished by forming an amide bond between the peptide N - and C-termini, between a side chain and the N - or C-terminus [e.g., with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ at pH 8.5] (Samson et al., Endocrinology, 137: 5182-5185 (1996)), or between two amino acid side chains, such as cysteine. See, e.g., DeGrado, $A d v$ Protein Chem, 39: 51-124 (1988). In various aspects the GCRA peptides are [4,12; 7,15] bicycles.

In some GCRA peptides one or both members of one or both pairs of Cys residues which normally form a disulfide bond can be replaced by homocysteine, penicillamine, 3mercaptoproline (Kolodziej et al. 1996 Int J Pept Protein Res 48:274); β, β dimethylcysteine (Hunt et al. 1993 Int JPept Protein Res 42:249) or diaminopropionic acid (Smith et al. 1978 J Med Chem 2 1:117) to form alternative internal cross-links at the positions of the normal disulfide bonds.

In addition, one or more disulfide bonds can be replaced by alternative covalent crosslinks, e.g., an amide linkage (- $\mathrm{CH} 2 \mathrm{CH}(\mathrm{O}) \mathrm{NHCH} 2-$ or $-\mathrm{CH} 2 \mathrm{NHCH}(\mathrm{O}) \mathrm{CH} 2-)$, an ester linkage, a thioester linkage, a lactam bridge, a carbamoyl linkage, a urea linkage, a thiourea linkage, a phosphonate ester linkage, an alkyl linkage (- $\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{CH} 2 \mathrm{CH} 2-$), an alkenyl linkage(-CH $2 \mathrm{CH}=\mathrm{CHCH} 2-$), an ether linkage ($-\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{OCH} 2-$ or $-\mathrm{CH} 2 \mathrm{OCH} 2 \mathrm{CH} 2-$), a thioether linkage (-CH2CH2SCH2- or - CH2SCH2CH2-), an amine linkage (-CH2CH2NHCH2- or -CH2NHCH 2CH2-) or a thioamide linkage (-CH2CH(S)HNHCH 2- or - $\mathrm{CH} 2 \mathrm{NHCH}(\mathrm{S}) \mathrm{CH} 2$ 2-). For example, Ledu et al. (Proc Nat'l Acad. Sci. 100:11263-78, 2003) describe methods for preparing lactam and amide cross-links. Exemplary GCRA peptides which include a lactam bridge include for example SP-370.

The GCRA peptides can have one or more conventional polypeptide bonds replaced by an alternative bond. Such replacements can increase the stability of the polypeptide. For example, replacement of the polypeptide bond between a residue amino terminal to an aromatic residue (e.g. Tyr, Phe, Trp) with an alternative bond can reduce cleavage by carboxy peptidases
and may increase half-life in the digestive tract. Bonds that can replace polypeptide bonds include: a retro-inverso bond $(\mathrm{C}(\mathrm{O})-\mathrm{NH}$ instead of $\mathrm{NH}-\mathrm{C}(\mathrm{O})$; a reduced amide bond (NH-CH2); a thiomethylene bond (S-CH2 or CH2-S); an oxomethylene bond ($0-\mathrm{CH} 2$ or $\mathrm{CH} 2-\mathrm{O}$); an ethylene bond ($\mathrm{CH} 2-\mathrm{CH} 2$); a thioamide bond $(\mathrm{C}(\mathrm{S})-\mathrm{NH})$; a trans-olefine bond $(\mathrm{CH}=\mathrm{CH})$; a fiuoro substituted trans-olefme bond $(\mathrm{CF}=\mathrm{CH})$; a ketomethylene bond $(\mathrm{C}(\mathrm{O})-\mathrm{CHR}$ or $\mathrm{CHR}-\mathrm{C}(\mathrm{O})$ wherein R is H or CH 3 ; and a fluoro-ketomethylene bond $(\mathrm{C}(\mathrm{O})$-CFR or CFR- $\mathrm{C}(\mathrm{O})$ wherein R is H or F or CH 3 .

The GCRA peptides can be modified using standard modifications. Modifications may occur at the amino (N -), carboxy (C-) terminus, internally or a combination of any of the preceeding. In one aspect described herein, there may be more than one type of modification on the polypeptide. Modifications include but are not limited to: acetylation, amidation, biotinylation, cinnamoylation, farnesylation, formylation, myristoylation, palmitoylation, phosphorylation (Ser, Tyr or Thr), stearoylation, succinylation, sulfurylation and cyclisation (via disulfide bridges or amide cyclisation), and modification by Cys 3 or Cys5. The GCRA peptides described herein may also be modified by 2, 4-dinitrophenyl (DNP), DNP-lysine, modification by 7-Amino-4-methyl- coumarin (AMC), flourescein, NBD (7-Nitrobenz-2-Oxa-1,3-Diazole), p-nitro-anilide, rhodamine B, EDANS (5-((2-aminoethyl)amino)naphthalene-1- sulfonic acid), dabcyl, dabsyl, dansyl, texas red, FMOC, and Tamra (Tetramethylrhodamine). The GCRA peptides described herein may also be conjugated to, for example, polyethylene glycol (PEG); alkyl groups (e.g., C1-C20 straight or branched alkyl groups); fatty acid radicals; combinations of PEG, alkyl groups and fatty acid radicals (See, U.S. Patent 6,309,633; Soltero et al., 2001 Innovations in Pharmaceutical Technology 106-110); BSA and KLH (Keyhole Limpet Hemocyanin). The addition of PEG and other polymers which can be used to modify polypeptides of the invention is described in US20060 19347 section IX.

Also included in the invention are peptides that biologically or functional equivalent to the peptides described herein. The term "biologically equivalent" or functional equivalent" is intended to mean that the compositions of the present invention are capable of demonstrating some or all of the cGMP production modulatory effects.

GCRA peptides can also include derivatives of GCRA peptides which are intended to include hybrid and modified forms of GCRA peptides in which certain amino acids have been
deleted or replaced and modifications such as where one or more amino acids have been changed to a modified amino acid or unusual amino acid and modifications such as glycosylation so long the modified form retains the biological activity of GCRA peptides. By retaining the biological activity, it is meant that cGMP and or apoptosis is induced by the GCRA peptide, although not necessarily at the same level of potency as that of a naturally-occurring GCRA peptide identified.

Preferred variants are those that have conservative amino acid substitutions made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a GCRA polypeptide is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a GCRA coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened to identify mutants that retain activity.

Also included within the meaning of substantially homologous is any GCRA peptide which may be isolated by virtue of cross-reactivity with antibodies to the GCRA peptide.

Preparation of GCRA peptides

GCRA peptides are easily prepared using modern cloning techniques, or may be synthesized by solid state methods or by site-directed mutagenesis. A GCRA peptide may include dominant negative forms of a polypeptide.

Chemical synthesis may generally be performed using standard solution phase or solid phase peptide synthesis techniques, in which a peptide linkage occurs through the direct condensation of the amino group of one amino acid with the carboxy group of the other amino acid with the elimination of a water molecule. Peptide bond synthesis by direct condensation, as 20
formulated above, requires suppression of the reactive character of the amino group of the first and of the carboxyl group of the second amino acid. The masking substituents must permit their ready removal, without inducing breakdown of the labile peptide molecule.

In solution phase synthesis, a wide variety of coupling methods and protecting groups may be used (See, Gross and Meienhofer, eds., "The Peptides: Analysis, Synthesis, Biology," Vol. 1-4 (Academic Press, 1979); Bodansky and Bodansky, "The Practice of Peptide Synthesis," 2 d ed. (Springer Verlag, 1994)). In addition, intermediate purification and linear scale up are possible. Those of ordinary skill in the art will appreciate that solution synthesis requires consideration of main chain and side chain protecting groups and activation method. In addition, careful segment selection is necessary to minimize racemization during segment condensation. Solubility considerations are also a factor. Solid phase peptide synthesis uses an insoluble polymer for support during organic synthesis. The polymer-supported peptide chain permits the use of simple washing and filtration steps instead of laborious purifications at intermediate steps. Solid-phase peptide synthesis may generally be performed according to the method of Merrifield et al., J. Am. Chem. Soc., 1963, 85:2149, which involves assembling a linear peptide chain on a resin support using protected amino acids. Solid phase peptide synthesis typically utilizes either the Boc or Fmoc strategy, which are well known in the art.

Those of ordinary skill in the art will recognize that, in solid phase synthesis, deprotection and coupling reactions must go to completion and the side-chain blocking groups must be stable throughout the synthesis. In addition, solid phase synthesis is generally most suitable when peptides are to be made on a small scale.

Acetylation of the N -terminal can be accomplished by reacting the final peptide with acetic anhydride before cleavage from the resin. C-amidation is accomplished using an appropriate resin such as methylbenzhydrylamine resin using the Boc technology.

Alternatively the GCRA peptides are produced by modern cloning techniques For example, the GCRA peptides are produced either in bacteria including, without limitation, E. coli, or in other existing systems for polypeptide or protein production (e.g., Bacillus subtilis, baculovirus expression systems using Drosophila Sf9 cells, yeast or filamentous fungal expression systems, mammalian cell expression systems), or they can be chemically synthesized. If the GCRA peptide or variant peptide is to be produced in bacteria, e.g., E. coli, the nucleic
acid molecule encoding the polypeptide may also encode a leader sequence that permits the secretion of the mature polypeptide from the cell. Thus, the sequence encoding the polypeptide can include the pre sequence and the pro sequence of, for example, a naturally-occurring bacterial ST polypeptide. The secreted, mature polypeptide can be purified from the culture medium.

The sequence encoding a GCRA peptide described herein can be inserted into a vector capable of delivering and maintaining the nucleic acid molecule in a bacterial cell. The DNA molecule may be inserted into an autonomously replicating vector (suitable vectors include, for example, pGEM3Z and pcDNA3, and derivatives thereof). The vector nucleic acid may be a bacterial or bacteriophage DNA such as bacteriophage lambda or M13 and derivatives thereof. Construction of a vector containing a nucleic acid described herein can be followed by transformation of a host cell such as a bacterium. Suitable bacterial hosts include but are not limited to, E. coli, B subtilis, Pseudomonas, Salmonella. The genetic construct also includes, in addition to the encoding nucleic acid molecule, elements that allow expression, such as a promoter and regulatory sequences. The expression vectors may contain transcriptional control sequences that control transcriptional initiation, such as promoter, enhancer, operator, and repressor sequences.

A variety of transcriptional control sequences are well known to those in the art. The expression vector can also include a translation regulatory sequence (e.g., an untranslated 5^{\prime} sequence, an untranslated 3^{\prime} sequence, or an internal ribosome entry site). The vector can be capable of autonomous replication or it can integrate into host DNA to ensure stability during polypeptide production.

The protein coding sequence that includes a GCRA peptide described herein can also be fused to a nucleic acid encoding a polypeptide affinity tag, e.g., glutathione S-transferase (GST), maltose E binding protein, protein A, FLAG tag, hexa-histidine, myc tag or the influenza HA tag, in order to facilitate purification. The affinity tag or reporter fusion joins the reading frame of the polypeptide of interest to the reading frame of the gene encoding the affinity tag such that a translational fusion is generated. Expression of the fusion gene results in translation of a single polypeptide that includes both the polypeptide of interest and the affinity tag. In some instances
where affinity tags are utilized, DNA sequence encoding a protease recognition site will be fused between the reading frames for the affinity tag and the polypeptide of interest.

Genetic constructs and methods suitable for production of immature and mature forms of the GCRA peptides and variants described herein in protein expression systems other than bacteria, and well known to those skilled in the art, can also be used to produce polypeptides in a biological system.

The peptides disclosed herein may be modified by attachment of a second molecule that confers a desired property upon the peptide, such as increased half-life in the body, for example, pegylation. Such modifications also fall within the scope of the term "variant" as used herein.

Therapeutic Methods

The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated that is mediated by guanylate cyclase receptor agonists. Disorders mediated by the guanylate cyclase receptor agonists include gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity.Gastointestinal disorders include for example, irritable bowel syndrome (IBS), necrotizing enterocolitis (NEC), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema) . Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin
cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis.

The term "treatment" refers to reducing or alleviating symptoms in a subject, preventing symptoms from worsening or progressing, and/or preventing disease in a subject who is free therefrom. For a given subject, improvement in a symptom, its worsening, regression, or progression may be determined by any objective or subjective measure. Efficacy of the treatment may be measured as an improvement in morbidity or mortality (e.g., lengthening of survival curve for a selected population). Thus, effective treatment would include therapy of existing disease, control of disease by slowing or stopping its progression, prevention of disease occurrence, reduction in the number or severity of symptoms, or a combination thereof. The effect may be shown in a controlled study using one or more statistically significant criteria.

Intracellular cGMP induced by exposing, e.g., contacting a tissue (e.g., gastrointestinals tissue) or cell with GCRA agonists. GC-C receptors are expressed throughout the GI tract starting from esophagus, duodenum, jejunum, ilium, caecum and colon. Human colon cancer cell lines (T81, CaCo-2 and HT-29) also express GC-C receptors. By inducing is meant an increase in cGMP production compared to a tissue or cell that has not been in contact with GCRA peptide or variant. Tissues or cells are directly contacted with a GCRA peptide or variant. Alternatively, the GCRA peptide or variant is administered systemically. GCRA peptide or variant are administered in an amount sufficient to increase intracellular cGMP concentration. cGMP production is measured by a cell-based assay known in the art (25).

Disorders are treated, prevented or alleviated by administering to a subject, e.g., a mammal such as a human in need thereof, a therapeutically effective dose of a GCRA peptide. The GCRA peptides may be in a pharmaceutical composition in unit dose form, together with
one or more pharmaceutically acceptable excipients. The term "unit dose form" refers to a single drug delivery entity, e.g., a tablet, capsule, solution or inhalation formulation. The amount of peptide present should be sufficient to have a positive therapeutic effect when administered to a patient (typically, between $10 \mu \mathrm{~g}$ and 3 g). What constitutes a "positive therapeutic effect" will depend upon the particular condition being treated and will include any significant improvement in a condition readily recognized by one of skill in the art.

The GCRA peptides can be administered alone or in combination with other agents. For example the GCRA peptides can be administered in combination with inhibitors of cGMP dependent phosphodiesterase, such as, for example, suldinac sulfone, zaprinast, motapizone, vardenafil or sildenifil; one or more other chemotherapeutic agents; or anti-inflammatory drugs such as, for example, steroids or non-steroidal anti-inflammatory drugs (NSAIDS), such as aspirin.

Combination therapy can be achieved by administering two or more agents, e.g., a GCRA peptide described herein and another compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within $1,2,3,6,9,12,15,18$, or 24 hours of each other or within $1,2,3,4,5,6,7,8,9,10,12,14$ days of each other or within $2,3,4,5,6,7,8,9$, or 10 weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so.

The GCRA peptides described herein may be combined with phosphodiesterase inhibitors, e.g., sulindae sulfone, Zaprinast, sildenafil, vardenafil or tadalafil to further enhance levels of cGMP in the target tissues or organs.

Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination,
one could administer them sequentially in any combination one or more times, e.g., in the order X-Y- X, X-X-Y, Y-X-Y,Y-Y-X,X-X-Y-Y, etc.

Combination therapy can also include the administration of one of the GC-C agonist with azothioprine and/or other immunomodulating agents. The immunomodulating agents may include small molecule drugs and biologics such as Remicade, Humaira, Cimzia etc.

Combination therapy can also include the administration of two or more agents via different routes or locations. For example, (a) one agent is administered orally and another agents is administered intravenously or (b) one agent is administered orally and another is administered locally. In each case, the agents can either simultaneously or sequentially. Approximated dosages for some of the combination therapy agents described herein are found in the "BNF Recommended Dose" column of tables on pages 11-17 of WO01/76632 (the data in the tables being attributed to the March 2000 British National Formulary) and can also be found in other standard formularies and other drug prescribing directories. For some drugs, the customary presecribed dose for an indication will vary somewhat from country to country.

The GCRA peptides, alone or in combination, can be combined with any pharmaceutically acceptable carrier or medium. Thus, they can be combined with materials that do not produce an adverse, allergic or otherwise unwanted reaction when administered to a patient. The carriers or mediums used can include solvents, dispersants, coatings, absorption promoting agents, controlled release agents, and one or more inert excipients (which include starches, polyols, granulating agents, microcrystalline cellulose (e.g. celphere, Celphere beads ${ }^{\mathbb{R}}$), diluents, lubricants, binders, disintegrating agents, and the like), etc. If desired, tablet dosages of the disclosed compositions may be coated by standard aqueous or nonaqueous techniques.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as
ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL ${ }^{\text {TM }}$ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a GCRA agonist) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. Such as mannitol, fructooligosaccharides, polyethylene glycol and other excepients. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid,
collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,81 1, incorporated fully herein by reference.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

Compositions of the present invention may also optionally include other therapeutic ingredients, anti-caking agents, preservatives, sweetening agents, colorants, flavors, desiccants, plasticizers, dyes, glidants, anti-adherents, anti-static agents, surfactants (wetting agents), antioxidants, film- coating agents, and the like. Any such optional ingredient must be compatible with the compound described herein to insure the stability of the formulation.

The composition may contain other additives as needed, including for exanple lactose, glucose, fructose, galactose, trehalose, sucrose, maltose, raffnose, maltitol, melezitose, stachyose, lactitol, palatinite, starch, xylitol, mannitol, myoinositol, and the like, and hydrates thereof, and amino acids, for example alanine, glycine and betaine, and polypeptides and proteins, for example albumen.

Examples of excipients for use as the pharmaceutically acceptable carriers and the pharmaceutically acceptable inert carriers and the aforementioned additional ingredients include, but are not limited to binders, fillers, disintegrants, lubricants, anti-microbial agents, and coating agents such as: BINDERS: corn starch, potato starch, other starches, gelatin, natural and
synthetic gums such as acacia, xanthan, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone (e.g., povidone, crospovidone, copovidone, etc), methyl cellulose, Methocel, pre-gelatinized starch (e.g., STARCH $1500{ }^{\circledR}$ and STARCH 1500 LM ${ }^{\circledR}$, sold by Colorcon, Ltd.), hydroxypropyl methyl cellulose, microcrystalline cellulose (FMC Corporation, Marcus Hook, PA, USA), or mixtures thereof, FILLERS: talc, calcium carbonate (e.g., granules or powder), dibasic calcium phosphate, tribasic calcium phosphate, calcium sulfate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, dextrose, fructose, honey, lactose anhydrate, lactose monohydrate, lactose and aspartame, lactose and cellulose, lactose and microcrystalline cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose \& guar gum, molasses, sucrose,or mixtures thereof, DISINTEGRANTS: agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, clays, other algins, other celluloses, gums (like gellan), low-substituted hydroxypropyl cellulose, or mixtures thereof, LUBRICANTS: calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, sodium stearyl fumarate, vegetable based fatty acids lubricant, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil), zinc stearate, ethyl oleate, ethyl laurate, agar, syloid silica gel (AEROSIL 200, W.R. Grace Co., Baltimore, MD USA), a coagulated aerosol of synthetic silica (Deaussa Co., Piano, TX USA), a pyrogenic silicon dioxide (CAB-O-SIL, Cabot Co., Boston, MA USA), or mixtures thereof, ANTI-CAKING AGENTS: calcium silicate, magnesium silicate, silicon dioxide, colloidal silicon dioxide, talc, or mixtures thereof, ANTIMICROBIAL AGENTS: benzalkonium chloride, benzethonium chloride, benzoic acid, benzyl alcohol, butyl paraben, cetylpyridinium chloride, cresol, chlorobutanol, dehydroacetic acid, ethylparaben, methylparaben, phenol, phenylethyl alcohol, phenoxyethanol, phenylmercuric acetate, phenylmercuric nitrate, potassium sorbate, propylparaben, sodium benzoate, sodium dehydroacetate, sodium propionate, sorbic acid, thimersol, thymo, or mixtures thereof, and COATING AGENTS: sodium carboxymethyl cellulose, cellulose acetate phthalate, ethylcellulose, gelatin, pharmaceutical glaze,
hydroxypropyl cellulose, hydroxypropyl methylcellulose (hypromellose), hydroxypropyl methyl cellulose phthalate, methylcellulose, polyethylene glycol, polyvinyl acetate phthalate, shellac, sucrose, titanium dioxide, carnauba wax, microcrystalline wax, gellan gum, maltodextrin, methacrylates, microcrystalline cellulose and carrageenan or mixtures thereof.

The formulation can also include other excipients and categories thereof including but not limited to L-histidine, Pluronic ${ }^{\circledR}$, Poloxamers (such as Lutrol® and Poloxamer 188), ascorbic acid, glutathione, permeability enhancers (e.g. lipids, sodium cholate, acylcarnitine, salicylates, mixed bile salts, fatty acid micelles, chelators, fatty acid, surfactants, medium chain glycerides), protease inhibitors (e.g. soybean trypsin inhibitor, organic acids), pH lowering agents and absorption enhancers effective to promote bioavailability (including but not limited to those described in US6086918 and US5912014), creams and lotions (like maltodextrin and carrageenans); materials for chewable tablets (like dextrose, fructose, lactose monohydrate, lactose and aspartame, lactose and cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose and guar gum, sorbitol crystalline); parenterals (like mannitol and povidone); plasticizers (like dibutyl sebacate, plasticizers for coatings, polyvinylacetate phthalate); powder lubricants (like glyceryl behenate); soft gelatin capsules (like sorbitol special solution); spheres for coating (like sugar spheres); spheronization agents (like glyceryl behenate and microcrystalline cellulose); suspending/gelling agents (like carrageenan, gellan gum, mannitol, microcrystalline cellulose, povidone, sodium starch glycolate, xanthan gum); sweeteners (like aspartame, aspartame and lactose, dextrose, fructose, honey, maltodextrin, maltose, mannitol, molasses, sorbitol crystalline, sorbitol special solution, sucrose); wet granulation agents (like calcium carbonate, lactose anhydrous, lactose monohydrate, maltodextrin, mannitol, microcrystalline cellulose, povidone, starch), caramel, carboxymethylcellulose sodium, cherry cream flavor and cherry flavor, citric acid anhydrous, citric acid, confectioner's sugar, D\&C Red No. 33, D\&C Yellow \#10 Aluminum Lake, disodium edetate, ethyl alcohol 15\%, FD\&C Yellow No. 6 aluminum lake, FD\&C Blue \# 1 Aluminum Lake, FD\&C Blue No. 1, FD\&C blue no. 2 aluminum lake, FD\&C Green No.3, FD\&C Red No. 40, FD\&C Yellow No. 6 Aluminum Lake, FD\&C Yellow No. 6, FD\&C Yellow No.10, glycerol palmitostearate, glyceryl monostearate, indigo carmine, lecithin, manitol, methyl and propyl parabens, mono ammonium glycyrrhizinate, natural and artificial orange flavor, pharmaceutical glaze, poloxamer 188, Polydextrose, polysorbate 20 , polysorbate 80 , polyvidone, pregelatinized corn starch, pregelatinized starch, red
iron oxide, saccharin sodium, sodium carboxymethyl ether, sodium chloride, sodium citrate, sodium phosphate, strawberry flavor, synthetic black iron oxide, synthetic red iron oxide, titanium dioxide, and white wax.

Solid oral dosage forms may optionally be treated with coating systems (e.g. Opadry ${ }^{\circledR}{ }^{\circledR} \mathrm{fx}$ film coating system, for example Opadry ${ }^{\circledR}$ blue (OY-LS-20921), Opadry ${ }^{\circledR}$ white (YS-2-7063), Opadry® white (YS-1-7040), and black ink (S-1-8 106).

The agents either in their free form or as a salt can be combined with a polymer such as polylactic-glycoloic acid (PLGA), poly-(I)-lactic-glycolic-tartaric acid (P(I)LGT) (WO 01/12233), polyglycolic acid (U.S. 3,773,919), polylactic acid (U.S. 4,767,628), poly(ε caprolactone) and poly(alkylene oxide) (U.S. 20030068384) to create a sustained release formulation. Such formulations can be used to implants that release a polypeptide or another agent over a period of a few days, a few weeks or several months depending on the polymer, the particle size of the polymer, and the size of the implant (See, e.g., U.S. 6,620,422). Other sustained release formulations and polymers for use in are described in EP 0467389 A2, WO 93/24150, U.S. 5,612,052, WO 97/40085, WO 03/075887, WO 01/01964A2, U.S. 5,922,356, WO 94/155587, WO 02/074247A2, WO 98/25642, U.S. 5,968,895, U.S. 6, 180,608, U.S. 20030171296 . U.S. 20020176841 , U.S. $5,672,659$, U.S. $5,893,985$, U.S. $5,134,122$, U.S. $5,192,741$, U.S. $5,192,741$, U.S. $4,668,506$, U.S. $4,713,244$, U.S. $5,445,832$ U.S. $4,931,279$, U.S. ,5, 980,945, WO 02/058672, WO 9726015, WO 97/04744, and US200200 19446. In such sustained release formulations microparticles (Delie and Blanco-Prieto 2005 Molecule 10:65-80) of polypeptide are combined with microparticles of polymer. One or more sustained release implants can be placed in the large intestine, the small intestine or both. U.S. $6,011,01$ and WO 94/06452 describe a sustained release formulation providing either polyethylene glycols (i.e. PEG 300 and PEG 400) or triacetin. WO 03/053401 describes a formulation which may both enhance bioavailability and provide controlled releaseof the agent within the GI tract. Additional controlled release formulations are described in WO $02 / 38129$, EP 326151 , U.S. 5,236,704, WO 02/30398, WO 98/13029; U.S. 20030064105 , U.S. 20030138488 A 1 , U.S. 20030216307A1, U.S. $6,667,060$, WO $01 / 49249$, WO $01 / 49311$, WO $01 / 49249$, WO $01 / 49311$, and U.S. $5,877,224$ materials which may include those described in WO04041195 (including the seal and enteric coating described therein) and pH -sensitive coatings that achieve delivery in the colon including those described in US4,910,021 and WO9001329. US4910021 describes using a pH -
sensitive material to coat a capsule. WO9001329 describes using pH -sensitive coatings on beads containing acid, where the acid in the bead core prolongs dissolution of the pH -sensitive coating. U. S. Patent No. 5,175,003 discloses a dual mechanism polymer mixture composed of pH sensitive enteric materials and film-forming plasticizers capable of conferring permeability to the enteric material, for use in drug-delivery systems; a matrix pellet composed of a dual mechanism polymer mixture permeated with a drug and sometimes covering a pharmaceutically neutral nucleus; a membrane- coated pellet comprising a matrix pellet coated with a dual mechanism polymer mixture envelope of the same or different composition; and a pharmaceutical dosage form containing matrix pellets. The matrix pellet releases acid-soluble drugs by diffusion in acid pH and by disintegration at pH levels of nominally about 5.0 or higher.

The GCRA peptideds described herein may be formulated in the pH triggered targeted control release systems described in WO04052339. The agents described herein may be formulated according to the methodology described in any of WO03105812 (extruded hyrdratable polymers); WO0243767 (enzyme cleavable membrane translocators); WO03007913 and WO03086297 (mucoadhesive systems); WO02072075 (bilayer laminated formulation comprising pH lowering agent and absorption enhancer); WO04064769 (amidated polypeptides); WO05063156 (solid lipid suspension with pseudotropic and/or thixotropic properties upon melting); WO03035029 and WO03035041 (erodible, gastric retentive dosage forms); US5007790 and US5972389 (sustained release dosage forms); WO041 12711 (oral extended release compositions); WO05027878, WO02072033, and WO02072034 (delayed release compositions with natural or synthetic gum); WO05030182 (controlled release formulations with an ascending rate of release); WO05048998 (microencapsulation system); US Patent 5,952,314 (biopolymer); US5,108,758 (glassy amylose matrix delivery); US 5,840,860 (modified starch based delivery). JP 10324642 (delivery system comprising chitosan and gastric resistant material such as wheat gliadin or zein); US5,866,619 and US6,368,629 (saccharide containing polymer); US 6,531,152 (describes a drug delivery system containing a water soluble core (Ca pectinate or other water-insoluble polymers) and outer coat which bursts (e.g. hydrophobic polymerEudragrit)); US 6,234,464; US 6,403,130 (coating with polymer containing casein and high methoxy pectin; WO0174 175 (Maillard reaction product); WO05063206 (solubility increasing formulation); WO040 19872 (transferring fusion proteins).

The GCRA peptides described herein may be formulated using gastrointestinal retention system technology (GIRES; Merrion Pharmaceuticals). GIRES comprises a controlled-release dosage form inside an inflatable pouch, which is placed in a drug capsule for oral administration. Upon dissolution of the capsule, a gas-generating system inflates the pouch in the stomach where it is retained for 16-24 hours, all the time releasing agents described herein.

The GCRA peptides described herein can be formulated in an osmotic device including the ones disclosed in US4,503,030, US5,609,590 and US5,358,502. US4,503,030 discloses an osmotic device for dispensing a drug to certain pH regions of the gastrointestinal tract. More particularly, the invention relates to an osmotic device comprising a wall formed of a semipermeable pH sensitive composition that surrounds a compartment containing a drug, with a passageway through the wall connecting the exterior of the device with the compartment. The device delivers the drug at a controlled rate in the region of the gastrointestinal tract having a pH of less than 3.5, and the device self- destructs and releases all its drug in the region of the gastrointestinal tract having a pH greater than 3.5 , thereby providing total availability for drug absorption. U.S. Patent Nos. 5,609,590 and 5, 358,502 disclose an osmotic bursting device for dispensing a beneficial agent to an aqueous environment. The device comprises a beneficial agent and osmagent surrounded at least in part by a semi-permeable membrane. The beneficial agent may also function as the osmagent. The semi-permeable membrane is permeable to water and substantially impermeable to the beneficial agent and osmagent. A trigger means is attached to the semi-permeable membrane (e.g.,joins two capsule halves). The trigger means is activated by a pH of from 3 to 9 and triggers the eventual, but sudden, delivery of the beneficial agent. These devices enable the pH -triggered release of the beneficial agent core as a bolus by osmotic bursting.

Exemplary Agents for Combination Therapy

Analgesic Agents

The GCRA peptides described herein can be used in combination therapy with an analgesic agent, e.g., an analgesic compound or an analgesic polypeptide. These polypeptides and compounds can be administered with the GCRA peptides described herein (simultaneously or sequentially). They can also be optionally covalently linked or attached to an agent described herein to create therapeutic conjugates. Among the useful analgesic agents are: Ca channel blockers, 5 HT receptor antagonists (for example 5HT3, 5 HT 4 and 5 HTl receptor antagonists),
opioid receptor agonists (loperamide, fedotozine, and fentanyl), NKl receptor antagonists, CCK receptor agonists (e.g., loxiglumide), NK1 receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSRI), vanilloid and cannabanoid receptor agonists, and sialorphin. Analgesics agents in the various classes are described in the literature.

Among the useful analgesic polypeptides are sialorphin-related polypeptides, including those comprising the amino acid sequence QHNPR (SEQ ID NO:), including: VQHNPR (SEQ ID NO:); VRQHNPR (SEQ ID NO:); VRGQHNPR (SEQ ID NO:); VRGPQHNPR (SEQ ID NO:); VRGPRQHNPR (SEQ ID NO:); VRGPRRQHNPR (SEQ ID NO:); and RQHNPR (SEQ ID NO:). Sialorphin-related polypeptides bind to neprilysin and inhibit neprilysin- mediated breakdown of substance P and Met-enkephalin. Thus, compounds or polypeptides that are inhibitors of neprilysin are useful analgesic agents which can be administered with the polypeptides described herein in a co-therapy or linked to the polypeptides described herein, e.g., by a covalent bond. Sialophin and related polypeptides are described in U.S. Patent 6,589,750;
U.S. 20030078200 Al ; and WO 02/051435 A2.

Opioid receptor antagonists and agonists can be administered with the GCRA peptides described herein in co-therapy or linked to the agent described herein, e.g., by a covalent bond. For example, opioid receptor antagonists such as naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, and nor-binaltorphimine are thought to be useful in the treatment of IBS. It can be useful to formulate opioid antagonists of this type is a delayed and sustained release formulation such that initial release of the antagonist is in the mid to distal small intestine and/or ascending colon. Such antagonists are described in WO 01/32180 A2. Enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-Lhomoserine) is an agonist of the mu and delta opioid receptors and is thought to be useful for increasing intestinal motility \{Eur. J. Pharm. 219:445, 1992), and this polypeptide can be used in conjunction with the polypeptides described herein. Also useful is trimebutine which is thought to bind to $\mathrm{mu} /$ delta/kappa opioid receptors and activate release of motilin and modulate the release of gastrin, vasoactive intestinal polypeptide, gastrin and glucagons. Kappa opioid receptor agonists such as fedotozine, asimadoline, and ketocyclazocine, and compounds described in WO03/097051 and WO05/007626 can be used with or linked to the polypeptides described herein. In addition, mu opioid receptor agonists such as morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH 2; WO 01/019849 Al) and loperamide can be used.

Tyr-Arg (kyotorphin) is a dipeptide that acts by stimulating the release of metenkephalins to elicit an analgesic effect (J. Biol. Chem $262: 8165,1987$). Kyotorphin can be used with or linked to the GCRA peptides described herein.

Chromogranin-derived polypeptide (CgA 47-66; See, e.g., Ghia et al. 2004 Regulatory polypeptides 119:199) can be used with or linked to the GCRA peptides described herein.

CCK receptor agonists such as caerulein from amphibians and other species are useful analgesic agents that can be used with or linked to the GCRA peptides described herein.

Conotoxin polypeptides represent a large class of analgesic polypeptides that act at voltage gated calcium channels, NMDA receptors or nicotinic receptors. These polypeptides can be used with or linked to the polypeptides described herein.
Peptide analogs of thymulin (FR Application 2830451) can have analgesic activity and can be used with or linked to the polypeptides described herein.

CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R-isomer of loxiglumide) (WO 88/05774) can have analgesic activity and can be used with or linked to the polypeptides described herein.

Other useful analgesic agents include 5-HT4 agonists such as tegaserod (Zelnorm ${ }^{\circledR}$), mosapride, metoclopramide, zacopride, cisapride, renzapride, benzimidazolone derivatives such as BIMU 1 and BIMU 8, and lirexapride. Such agonists are described in: EP1321 142 A1, WO 03/053432A1, EP 505322 Al, EP 505322 B1, US 5,510,353, EP 507672 Al, EP 507672 B1, and US 5,273,983.

Calcium channel blockers such as ziconotide and related compounds described in, for example, EP625162B1, US 5,364,842, US 5,587,454, US 5,824,645, US 5,859,186, US 5,994,305, US 6087,091, US 6,136,786, WO 93/13128 Al, EP $1336409 \mathrm{Al}, \mathrm{EP} 835126 \mathrm{Al}$, EP 835126 Bl, US $5,795,864$, US $5,891,849$, US $6,054,429$, WO $97 / 01351 \mathrm{Al}$, can be used with or linked to the polypeptides described herein.

Various antagonists of the NK-I, NK-2, and NK-3 receptors (for a review see Giardina et al. 2003.Drugs 6:758) can be can be used with or linked to the polypeptides described herein.

NK1 receptor antagonists such as: aprepitant (Merck \& Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-48968 (Sanofi Synthelabo), CP-122,721 (Pfizer, Inc.), GW679769 (Glaxo Smith Kline), TAK-637 (Takeda/Abbot), SR-14033, and related compounds described in, for example, EP 873753 Al, US 20010006972 Al, US

20030109417 Al , WO $01 / 52844 \mathrm{Al}$, can be used with or linked to the polypeptides described herein.

NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi- Synthelabo), GW597599 (Glaxo Smith Kline), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc) can be used with or linked to the polypeptides described herein.

NK3 receptor antagonists such as osanetant (SR-142801; Sanofi-Synthelabo), SSR241586, talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 Al, WO 97/21680 Al, US 6,277,862, WO 98/1 1090, WO 95/28418, WO 97/19927, and Boden et al. (J Med Chem. 39:1664-75, 1996) can be used with or linked to the polypeptides described herein.

Norepinephrine-serotonin reuptake inhibitors (NSRI) such as milnacipran and related compounds described in WO 03/077897 Al can be used with or linked to the polypeptides described herein.

Vanilloid receptor antagonists such as arvanil and related compouds described in WO $01 / 64212 \mathrm{Al}$ can be used with or linked to the polypeptides described herein.

The analgesic polypeptides and compounds can be administered with the polypeptides and agonists described herein (simultaneously or sequentially). The analgesic agents can also be covalently linked to the polypeptides and agonists described herein to create therapeutic conjugates. Where the analgesic is a polypeptide and is covalently linked to an agent described herein the resulting polypeptide may also include at least one trypsin cleavage site. When present within the polypeptide, the analgesic polypeptide may be preceded by (if it is at the carboxy terminus) or followed by (if it is at the amino terminus) a trypsin cleavage site that allows release of the analgesic polypeptide.

In addition to sialorphin-related polypeptides, analgesic polypeptides include: AspPhe, endomorphin-1, endomorphin-2, nocistatin, dalargin, lupron, ziconotide, and substance P.

Agents to Treat Gastrointesinnal Disonders

Examples of addtional therapentic agens to treat gastromestinal and other disorders include agent to treat conetipation (e.g., a chboride chamel activator swoh as the bicythe faty
 MD), a baxative (eg. a bulk-foming laxabive (e, gonsareh polysambarides, Colone Tablet
 GbBERCONB (Calchum Polycabophol), an osmotic haxave, a stmonant baxave (sech as

 docusates), Mimax (Bramtree Laboramses, Brantree MA), dexloxighmide (Eorest Laboratories, also known as CR 2@f Rottapham (Rota Researeh Labomatorium SpA)), saline haxatives, enemas, sugpositories, and CR 370 (Rothpham (Rotha Researoh haboraboman SpA);

 octreotide, bethanechol, metochopramide (Keglas(B), domperione (Nothmax), erythromycin (and dervatives thereof or cisapride (propulside); prokincticin polypeptides homologs, variants and chimeras thereot inchadng those described in US 7,052,674 which can be ased with or linked to the polyeptides deschbed herem; promothity agents mel as the vasostatin-derived polypegtide, chromogranin A (4-16) (See, e.g., Gha et al. 2004 Regutatoy polypeptides 121.3\}) or motiln agonists (e.s, GM-6I) or mitemcinal fumarate) or nociceptin/Orphanin F Q receptor motulators (US20060169917); other peptides which can bind to andor activate GC-Cincuang

 therapeuties), 5 दH2 3 antagonists (e.g. PGN 1091 and PGNI 164 (Phamagene Eaborabories Limited), and 5 HG4 receptor agonists (such as tegaserod (ZELNORMAR), prucalopride. mosapnde, metoclopramide, zacopride cisabride, renzapride, benzmidazolone dervatives such as BINE I and BMME 8, and hrexapride . Such agonists/moduhtors are desenbed in:
EP1321142 AL, WO 03/053432A1, EY $505322 \mathrm{~A} 1, \mathrm{EP} 505322 \mathrm{Z}, \mathrm{US} 5,510,353, E P 507672 \mathrm{Ak}$, ED 507672 BI, US $5,273,983$, and US $6,951,867$; 5 STS recepor agonists such as MEC-733;

 (ANZEMET(2), ऍabonosemon (Aloxie), Granisetron(Eytrig), YMo60tranosetron; Astelkas Fharma lne, ramosetmon may begiven as a daty dose of 0.002 to 0.02 mg as deserbed in EPOT588707) and ATr 7000 (Aryx Therapentics, Santa Clam CA); muscarinic recephor agonists;
 dicyolomine (eg, Cobmex Fommbex, Lomine B, Provble, Viscerab, Spasmobane,

 methanthelme (e.g. Banthon), Mepenzolate (eg. Canil), homatopine (e.g. hyoodan, Gomapin),

 Buscopan 6), Bimenepine (eg. Gastrozepine) Propantheline Bromide (e.g. Propanthele),
 bybrobomide, byoscine methobromide, methanthelinum, and octatropine; peppermine oik; and direct smooth muscle relaxants lke cimetropium bromide, mebevenine (DUSpATALO, DUSPATAENE, COLOFACMER, COLORALE), Othonium bronide (octilonmms, pinaverim (e.g. Dicetele (pinaverimm bronde; Solvay S. A.), Spasfone Gydrated
 (Modubons); antidepressants, including but not limited to those isted herein, as well as tricyclic antidepressants ike amitriptyne (Elaviß), desipramine (Nomamine), mipramine (Tofani@), amoxapine (Asendn(e), notrigtybine, the selective serotonin rouptake imbibitors (SSRTs) like paroxetine (Paxio), fuoxetine (Prozace), sertrane (Zolofe), and citraboram (Celexa(6); and others like doxepin (Sinequan) and trazodone (Desyrele); centraly-acting analgesic agents such as opioid receptor agonists, opion receptor antagonists (eg, naltrexonc); agents for the treatment of lnfammatory bowel disease; agents for the treatment of Crohns disease andior ulcerative coltis (e.g., alequel (Enzo biochem, bne.; Famingsabe Ny), the antiinflammatory polypeptide RDP58 (Crename, Inc.; Cambridge, MA), and TRAFTCETMENTM (ChemoCentyx, Ine. San Cambs, CA); agents that treat gastromestmat or visectal pan; agents that increase cGMP levels (as describe\} in 152004012399) hae adrenergic receptor antagonists, dopamine recetor agonists and PDE (phosphodiesterase) mbibiors inchading but not limited to those bechosed herem; purgathes but fraw fugs to the intestine (e.g., VSSCOL B, a combination of sodimm phosphate monobasic monobydrate mat sodinmphosphate
 34041 (Neurocrine Biosciences, San Diego, CA), CRHOA1, astressin, R121939 (Ganssen Pharmacentica), CP154,526, NBG-27914, Anabamm, OMP696(Bristompyers Squbb) (P-
 2333 Ms (Ono Phamacenticals), TS-941 (Janssen), AAG56\} (Novarts) and those disclosed in US 5,063,245, US 5,861,398, US20040224964, US20040198726, US24040176400, US20040171607, US20040110815, US20040006066, and US20050209253); ghacagom-like polypeptides (gh-1) and analogues thereof (inchding exendin-4 and GTP-010 (Gastrotech Pharma A) and inhbitors of DPP-Y (DPP-IV mediates the inactivation of gh- $)$; tofsopam, enantiomerically-pure R-tofneopam, and pharmacemically-aceeptable salts thereof (US 20040229867 ; ; treyche anti-depressants of the dibenzothazepine type including but not limited to Dextofisopam((Vela Phamacenticals), tianeptine (Stablon(i)) and other agents described in US 6,683,072; (E)-4 (3,36 is (cyelohexylnethyl)-1,2,34,-tetrahydro-2,6-diono-9F-purin-8yheinamic acid nonethylene glycol methyl other ester and related componds described in WO $02 / 067942$; the probiotic PROBACTRXQ (The Biobalance Corporation; New York, NY) which contans microoganisms usefut in the treatment of gastrontestinal disorders; antidarheal drugs includng but not limitel to loperanide (Imodium, Pepto Diarthea), diphenoxylate with atropine (Lomotil, Lomocot, cholestyamine (Questran, Cholybar), atropine (Co-Phenotrope, Biarsed, Diphonorylate, Lofene, Logen, Lonox, Vi-Atro, atropine sulfate injection) and Xifexan (nifaximin; Salix Phamacenticals \&td), TzF 201 (Trazyme Phama lne.), the neuronal acetylholne receptor (nACh) blocker $\mathrm{A} \mathrm{G}-004$ (AGI therapeutics), and bismoth subsalicylate (Pepto-bismol); anxiolytic dugs inchoding but not limited toAtivan (lorazepam), alprazolan (Xanax®), chordiazopoxide clidinum (Lbriume, , fbraxe), clonazepan (Klonopin(), clorazepate (Tranxene(Q), diazepam (ValumQ), estazolam (ProSon(Q),

 (ArOuc Inc), YKF (SK Mhma), Asmadolnc (Tioga Phamacembals Morek), AGI-003 (AG) Therapentics); neurokimin antagonists inchuding hose described in US20060040950; potassium channe modulator incloung those described in US7,002,015; the serotonin modulator AZD7371 (AstraZeneca Ple); M3 muscarinc receptor antagonets wach as darfenacin (Enablex; Novaris AG and zamifnacin (Phore); herbal and natural therapies inchading but not himited to
asidophilus, chamomile tea, sweong primrose oh, fennel secds, womwood, comfey, and
 U56923992, and compositions comprising lysine and am anizatress agem for fle treatmen of irritable bowel syodrome as descrbed in EPO 1550443.

Insulin and Insulin Modulating Agents

The $3 C R A$ peptides descibed herein can be ased in combination theragy with manan and related oompounds including primate, rodent, or mbbit insubn moluding biologicaly active varants thereof including able variants, more peferably human masulin avalable in recombinant form. Sources of buman insuln inchude phammacebtoaly accoptable and sherile formulations such as those avalable from Eh Lilly (modanapolis, fod, 46285) as Humbin ma (hwman insuln mWA origin). See, the THE PHYSTCANS DESK REFERENCE, 55, swoth Ed (z001) Medical Economies, Thomson Heabheare (disclosing othor mitable hmman mathes).

Ge GCRA peptides described herein can also be nsed in combination therapy with agents that can boost insubin efects or levels of a subject upon administation, e g. glipizide andor rosightazone. The polypeptides and agonistsuescribed herein can be used in combitherapy with SYMETNe (pmaminde acetate) and Exenatide S (synthetic exendin-4, a 39 a polypatides.

Aschts for the Treathen of Postoperative lleus
The GCRA peptides deschbed herein can also be used in combination herapy with agents (eg., Entereg (alvimopan fomerly called ado lon' ADL $8-2698$), convaptan and related agents deseribe in US $6,645,959$) ased for the treatment of postoperative ileus and other disorders.

Anti-hypertensive Agents

The GCRA peptides deserbed hercin can be used in combination therayy with an antibypertensve agent including but not limited 6 . () dianctics, such as thazides, inchuding chbrthaldone, chtorthazide, dichorophenamide, bydrofumethazide, indapamale, pobybazias, and bydrochbothazide; loop furctics, such as bumetanide, chacrymic acha, Gurosemibe, and torsemide; potasimm spaxing agenis, such as amikride, and mamerene; warbonie anhybuase
 getenone, and the bke; (2) beta-adrenexgic blockers such as acebuto bl, atenotok, betaxolol,

 angiotensin converting enayme (ACE) inhbitors mach as berazepri; capoprit; ceranapmis;

 trandokapril, and zofenopris, and the here; (5) nental endopeptidase whbitors wheh as
 ondothelin antagonists such as tezosentan, A308165, and Y 162899 , and the like; (7) vasodilators such as hydrabazine, clonidine, minoxidn, and nicobiny abohol, and the fke; (8) angiotensin il receptor antagonists such as aprosartan, candesatan, eprosartan, irbesartan, losatan, mmesatan, pratosartan, tasosatan, temasaman, valsaman, and EXP-3137, Fr6828k, and RNH6270, and the like, (9) a/Badrencrgic blocters such as nipradiol, arotimolol and amosulalol, and the like; (10) abha blockers, such as terazosin, wapidil, prazosin, tamoulosin,
 (1]) amha 2 agonists such as bfexidine, thamenidine, moxondine, fimendine and guanobenz, and the like; (12) aldosterone inhibitors, and the like; and (13) angiopoletin-2 binding agents Such as those disclosed in W03/930833. Specitic anti-hypertensive agents that can be used in combination with polypeptides and agonists described herem include. but are not limited to: duretics, such as thazides (e.g., chorthahone, cychothazide (CAS RN 2259-96-3), chorothanide (CAS RN $72956-09$. 3. which may be prepared as bisclosed in US280910h), dichorophenamide, hydrothmehnazide, indapamide, polybhiazide, bendrofumethazide, methychothazide, polythazide, thoblomethazide, chlothahame, indapambe, metolazone, Gumethazone, athiaghe (CAS RN $5588-16-9$, whoh may be prepared as diselosed in Brinoh Patem No. 902,658), benthianie (CAS RN 91-33-8, which may be prepared as bisebosed in US3108097), buthazide (which may be prepared as disclosed in Britisf Fatent Nos. 361, 367),
and bydrochlorothazide), bo\} buretice (eg. bumetmade, etharynic acid, frosemide, and
 O), and aldonterone antagonsess (e.g. spiromolactone (GAS Number 52-01~7), epmenome, ama the hae\}; β-adencrgic bockers such as Amodarome (Cordarone, Pacerone), bunobo bydrochoride

 Ayerst), a\}renolol hybrochoride (CAS RN $3707-88-5$ see Netherbands Patert Applicaton No.
 Fimabe, Bbont, Celprobl bydrochowde (CAS RN $57470-78-7$, also see in US4034009), cetamobo hydrochonide (CAS $3 \mathrm{~N} 77590-95-5$, see also US4059622), baetabol hydrochoride (e.g. Vommonnek, Sehering), esmolol hydrochonde (e.g. Breviblock, Baxter), levobetaxolok mybochoride (e.g. Betaxonm Ophtammic Suspension, Aloon), bvonmolol hytrochlotido (e.g.
 practobl (CAS RN 6673-35-4, see also US3408387), propranolol bydrochoride (CAS kM 31898.9), sotalo hydrochoride (e.g. Betapace AFrm, Bedex), Tmolo (2-Bropanol, (\}, dimethyletry)aminol-3-\{4-4(4-momholiny\}-1,2,5-thadiazol-3-ylloxy\}, hemihydrate, (S\}-,

 26921-17-5), bisoprolol (2-Propanol, [-[4-[2-(Hemethylethoxy)ethoxy]methylphenoxyl]-3-[(1-

 U.S. Pat. No. 4,654,362), cicloprokol hydrochloride, such 2 -Propanot, 1 - 44 [2. (eyclopropymethoxy)ethoxylohenoxy]-3-[nmethylethyl)amino\} bydrochboride, A. A.S. EN $63686-79-3$), dexpropranolof hydrochoride (2-Propanol, h-menthlethy)-aminot-3-(l-

[^0]: Form PCT/ISA/210 (second sheet) (July 2008)

[^1]: Form PCT/ISA/2 10 (continuation of second sheet) (July 2008)

[^2]: Form PCT/ISA/210 (patent family annex) (July 2008)

