SCORE Placeholder Sheet for IFW Content Application Number: 15467648 Document Date: 03/23/2017 The presence of this form in the IFW record indicates that the following document type was received in electronic format on the date identified above. This content is stored in the SCORE database. Since this was an electronic submission, there is no physical artifact folder, no artifact folder is recorded in PALM, and no paper documents or physical media exist. The TIFF images in the IFW record were created from the original documents that are stored in SCORE. ## Sequence Listing At the time of document entry (noted above): - USPTO employees may access SCORE content via eDAN using the Supplemental Content tab, or via the SCORE web page. - External customers may access SCORE content via PAIR using the Supplemental Content tab. Form Revision Date: August 26, 2013 SYPA-009/C04US Stephen COMISKEY U.S. Patent and Trademark Office. U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. Attorney Docket No. ## UTILITY PATENT APPLICATION TRANSMITTAL FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS Title OF USE Express Mail Label No. First Inventor (Only for new nonprovisional applications under 37 CFR 1.53(b)) **Commissioner for Patents** APPLICATION ELEMENTS ADDRESS TO: P.O. Box 1450 See MPEP chapter 600 concerning utility patent application contents. Alexandria VA 22313-1450 **Fee Transmittal Form** ACCOMPANYING APPLICATION PARTS (PTO/SB/17 or equivalent) 10. **Assignment Papers** 2. Applicant asserts small entity status. (cover sheet & document(s)) See 37 CFR 1.27. Name of Assignee Applicant certifies micro entity status. See 37 CFR 1.29. Applicant must attach form PTO/SB/15A or B or equivalent. Specification [Total Pages **148**] 37 CFR 3.73(c) Statement Power of Attorney Both the claims and abstract must start on a new page. (when there is an assignee) (See MPEP § 608.01(a) for information on the preferred arrangement) **English Translation Document** 5. Drawing(s). (35 U.S.C. 113) [Total Sheets **6**] (if applicable) 6. Inventor's Oath or Declaration [Total Sheets 8] Information Disclosure Statement (including substitute statements under 37 CFR 1.64 and assignments (PTO/SB/08 or PTO-1449) serving as an oath or declaration under 37 CFR 1.63(e)) Copies of citations attached Newly executed (original or copy) 14. **Preliminary Amendment** A copy from a prior application (37 CFR 1.63(d)) 15. **Return Receipt Postcard Application Data Sheet** *See Note below. (MPEP § 503) (Should be specifically itemized) See 37 CFR 1.76 (PTO/AIA/14 or equivalent) 16. Certified Copy of Priority Document(s) CD-ROM or CD-R (if foreign priority is claimed) in duplicate, large table or Computer Program (Appendix) 17. **Nonpublication Request** Landscape Table on CD Under 35 U.S.C. 122(b)(2)(B)(i). Applicant must attach form 9. Nucleotide and/or Amino Acid Sequence Submission PTO/SB/35 or equivalent. (if applicable, items a. - c. are required) 18. Other: a. Computer Readable Form (CRF) Specification Sequence Listing on: CD-ROM or CD-R (2 copies); or Statements verifying identity of above copies (1) Benefit claims under 37 CFR 1.78 and foreign priority claims under 1.55 must be included in an Application Data Sheet (ADS). (2) For applications filed under 35 U.S.C. 111, the application must contain an ADS specifying the applicant if the applicant is an assignee, person to whom the inventor is under an obligation to assign, or person who otherwise shows sufficient proprietary interest in the matter. See 37 CFR 1.46(b). 19. CORRESPONDENCE ADDRESS The address associated with Customer Number: OR Correspondence address below Name Address State Zip Code City Country Telephone Email /Anne E. Fleckenstein/ March 23, 2017 Signature Date Registration No. Anne E. Fleckenstein 62.951 (Print/Type) This collection of information is required by 37 CFR 1.53(b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. | Electronic Patent | App | olication Fee | Transmi | ttal | | | | |---|---|---------------------|----------|--------|-------------------------|--|--| | Application Number: | | | | | | | | | Filing Date: | | | | | | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OUSE | | | | | | | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | | | | | Filer: | An | ne Elizabeth Flecke | nstein | | | | | | Attorney Docket Number: | SYI | PA-009C04US 32199 | 94- | | | | | | Filed as Small Entity | | | | | | | | | Filing Fees for Utility under 35 USC 111(a) | | | | | | | | | Description | | Fee Code | Quantity | Amount | Sub-Total in
USD(\$) | | | | Basic Filing: | | | | | | | | | UTILITY FILING FEE (ELECTRONIC FILING) | | 4011 | 1 | 70 | 70 | | | | UTILITY SEARCH FEE | | 2111 | 1 | 300 | 300 | | | | UTILITY EXAMINATION FEE | | 2311 | 1 | 360 | 360 | | | | Pages: | | | | | | | | | UTILITY APPL SIZE FEE PER 50 SHEETS > 100 | | 2081 | 1 | 200 | 200 | | | | Claims: | | | | | | | | | Miscellaneous-Filing: | | | | | | | | | Petition: | | | | | 0003 | | | | Description | Fee Code | Quantity | Amount | Sub-Total in
USD(\$) | |-----------------------------------|----------|-----------|--------|-------------------------| | Patent-Appeals-and-Interference: | | | | | | Post-Allowance-and-Post-Issuance: | | | | | | Extension-of-Time: | | | | | | Miscellaneous: | | | | | | | Tot | al in USD | (\$) | 930 | | | | | | | | Electronic Acknowledgement Receipt | | | | | | | | |--------------------------------------|---|--|--|--|--|--|--| | EFS ID: | 28715614 | | | | | | | | Application Number: | 15467648 | | | | | | | | International Application Number: | | | | | | | | | Confirmation Number: | 2133 | | | | | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | | | | | Customer Number: | 58249 | | | | | | | | Filer: | Anne Elizabeth Fleckenstein | | | | | | | | Filer Authorized By: | | | | | | | | | Attorney Docket Number: | SYPA-009C04US 321994- | | | | | | | | Receipt Date: | 23-MAR-2017 | | | | | | | | Filing Date: | | | | | | | | | Time Stamp: | 16:29:33 | | | | | | | | Application Type: | Utility under 35 USC 111(a) | | | | | | | ## **Payment information:** | Submitted with Payment | yes | |--|-----------------------------| | Payment Type | DA | | Payment was successfully received in RAM | \$930 | | RAM confirmation Number | 032417INTEFSW00016915501283 | | Deposit Account | | | Authorized User | | | | | The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: | File Listing | ; | | | | | | |-----------------------------|------------------------------------|------------------------------------|--|---------------------|---------------------|--| | Document
Number | Document Description | File Name | File Size(Bytes)/
Message Digest | Multi
Part /.zip | Pages
(if appl.) | | | 1 | Application Data Sheet | SYPA_009_C04US_ADS.pdf | 1793952
9_C04US_ADS.pdf
7e8e69fa21de76bc43fdcabfcf0847806774
028c | | 10 | | | Warnings: | | | | | | | | Information: | | | | | | | | | | | 818629 | | | | | 2 | | SYPA_009_C04US_Application.
pdf | 7a318e564c5a1e9b53035dc48ab32 2 63c77
9eb8c | 148 | | | | | Multip | part Description/PDF files in . | zip description | J | | | | | Document De | scription | Start | End | | | | | Specificat | 1 | 145 | | | | | | Claims | 146 | 1 | 47 | | | | | Abstrac | :t | 148 | | 148 | | | Warnings: | | | | | | | | Information: | | | | | | | | | Drawings-only black and white line | SVBA 000 COALIS Drawings | 478132 | | | | | 3 | drawings drawings | SYPA_009_C04US_Drawings.
pdf | f49c0e28d03942783023adbafa98ff46666e
2607 | no | 6 | | | Warnings: | | ! | | | | | | Information: | | | | | | | | | | | 931375 | | | | | 4 Oath or Declaration filed | | SYPA_009_C04US_Declaration.
pdf | 926b57d2ab04c16243e8f3b89a92c40520e
2c48f | no | 8 | | | Warnings: | | | | | | | | Information: | | | | | | | | 5 | Transmittal of New Application | SYPA_009_C04US_Transmittal. | 230955 | no | 1 | | | | | pdf | a4ed90c32fd1b7881b7f0a9335e37256892
64572 | 0006 | | | Γ | Warnings: | | | | | | |--------------|------------------------------|-----------------------------|--|-------|---| | Information: | | | | | | | _ | | SYPA_009_C04US_SeqList_St2 | 115883 | | | | 6 | Sequence Listing (Text File) | 5.txt | | no | - | | Warnings: | | | | | | | Information: | | | | | | | | | | 36884 | | | | 7 | Fee Worksheet (SB06) | fee-info.pdf | d57bad77c534e7cd2c24e9209c60ec393c5
6d937 | no | 2 | | Warnings: | | - | | | | | Information: | | | | | | | | | Total Files Size (in bytes) | : 44 | 05810 | | This Acknowledgement Receipt evidences
receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. #### New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. ## National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. #### New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application. | Application Da | ta She | et 37 CFR | 1 76 | Attorney | Dock | et N | lumber | SYPA-00 | 9/C04L | JS | | | | | |---|-------------------------|---|-------------------|-----------------------|----------|-------|-----------|----------------|----------|-------|---------------|-------------|------------------|----------| | дрисацоп Ба | Application Number | | | | | | er | | | | | | | | | Title of Invention | FORMU | JLATIONS OF | GUAN | /LATE CYCI | _ASE | C A | GONISTS | AND MET | HODS | OF | USE | | | | | The application data sh
bibliographic data arran
This document may be
document may be printe | ged in a fo
complete | ormat specified led electronically | by the Un | ited States Pa | tent a | nd Tr | ademark O | ffice as outli | ned in 3 | 7 CF | R 1.76 | | | | | Secrecy Orde | | | iated wit | th this Applic | cation | n Da | ıta Sheet | may fall u | ınder a | Se | crecy | Order p | ursua | ant to | | ☐ 37 CFR 5.2 (F | • | • | lications | that fall un | der S | Secr | ecy Orde | er may not | be file | d el | ectro | nically.) | | | | Inventor Infor | matio | n: | | | | | | | | | | ı | | | | Inventor 1
Legal Name | | | | | | | | | | Rem | ove | Prefix Given Nar | ne | | — Mi | iddle Name | • | | | Family | | | | | - ` | Suffix | | Stephen | antion (| Salast Ons) | | Dasidanav | | N L | an HC Day | COMISK | | i l | IC M | litam . Cam | <u> </u> | _ | | Residence Inform | | Select One) | | Residency
Province | PA | _ | on US Res | | | | US MIII
US | litary Serv | rice | | | City Doylestown | | | State | Province | PA | • | Countr | y of Resi | dence | Ш | υs | | | | | Mailing Address of | : Imronto | | | | | | | | | | | | | | | Mailing Address of | invento | | | | | | | | | | | | | | | Address 1 | | 105 Steeplec | hase Dri | ve | | | | | | | | | | | | Address 2 | | | | | | 1 | | | | | | | | | | - | estown | T | | 1 | | | tate/Prov | | PA | | | | | | | Postal Code | | 18902 | | | Col | untr | y i | us | | | | 1 | | | | Inventor 2
Legal Name | | | | | | | | | | Rem | ove | | | | | Prefix Given Nar | ne | | Mi | iddle Name | <u> </u> | | | Family | Name | | | | | Suffix | | Rong | | | | | | | | FENG | | | | | \Box | ~ | | Residence Inforn | nation (| Select One) | ① US | Residency | | No | on US Res | sidency | Act | ive | JS Mil | litary Serv | /ice | | | City Langhorne | | | State/ | Province | PA | | Countr | y of Resid | dence | | US | | | | | | | | | | <u> </u> | | | | | | , | | | | | Mailing Address of | Invento | or: | | | | | | | | | | | | | | Address 1 | | 74 Pine Glen | Road | | | | | | | | | | | | | Address 2 | | | | | | | | | | | | | | | | | horne | | | | | St | tate/Prov | rince | PA | | | | | | | Postal Code | | 19047 | | | Col | untr | | us | Ш | | | | | | | | | | | | | | | 1 | | Rem | ove | | | | | Inventor 3
Legal Name | | | | | | | | | | | | | | | | Prefix Given Nar | ne | | Mi | iddle Name | <u> </u> | | | Family | Name | | | | <u> </u> | Suffix | | John | | | ;;;; | | _ | | | FOSS | | | | | | J | | Residence Inform | nation (| Select One) | (iii) US | Residency | | No | on US Res | | Act | ive l | JS Mi | litary Serv |
/ice | Ľ | | | (| - , | | | | - | | | | | | 00 | //8 — | | PTO/AIA/14 (11-15) Approved for use through 04/30/2017. OMB 0651-0032 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. | Application Data She | et 37 CFR 1. | 76 Attorney Application | | | SYPA-009/C04US |) | | | | |--|------------------------|-------------------------|----------|-----------|--------------------|-----------------------|----------|--|--| | Title of Invention FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | | | | | | City Doylestown State/Province PA Country of Residence US | | | | | | | | | | | Mailing Address of Inventor: | | | | | | | | | | | Address 1 525 Linden Avenue | | | | | | | | | | | Address 2 | | | | | | | | | | | City Doylestown | | | s | tate/Prov | vince PA | | | | | | Postal Code | 18901 | | Count | ryi | US | | | | | | Inventor 4
Legal Name | | | | | Re | emove | | | | | Prefix Given Name | | Middle Name | <u> </u> | | Family Name | | Suffix | | | | Kunwar | | | | | SHAILUBHAI | | | | | | Residence Information (| Select One) (| US Residency | N | lon US Re | | e US Military Service | | | | | City Audubon | St | ate/Province | PA | Countr | y of Residence | us | | | | | Mailing Address of Invento | or:
2707 Bald Eagle | Circle | | | | | | | | | Address 2 | | | | | | | | | | | City Audubon | | | s | tate/Prov | vince PA | | | | | | Postal Code | 19403 | | Count | ryi | US | | | | | | All Inventors Must Be Ligenerated within this form | | | ormation | blocks | may be | Add | | | | | Correspondence In | formation: | | | | | | | | | | Enter either Customer Nu
For further information se | | | sponden | ce Inforn | nation section be | low. | | | | | An Address is being | provided for the | e corresponde | nce Info | rmation | of this applicatio | n. | | | | | Customer Number | 58249 | | | | | | | | | | Email Address | ZPATDCDOCK | TING@COOLE | Y.COM | | Add E | Remove | Email | | | | Application Information: | | | | | | | | | | | Title of the Invention | FORMULATION | IS OF GUANYLA | ATE CYC | LASE C AC | GONISTS AND MET | HODS OF USE | | | | | Attorney Docket Number | SYPA-009/C04 | JS | | Small Ent | tity Status Claime | ed 🛚 | | | | | Application Type | Nonprovisional | | | | | | • | | | | Subject Matter | Utility | | | | | | * | | | | Total Number of Drawing | Sheets (if any) | 6 | | Suggest | ed Figure for Pub | olication (if any) | | | | | | | , F | | | | | | | | |---|----------------------|------------|--------------------------------|--------|--|--|--|--|--| | Application Data Sheet 37 CFR 1.76 Attorney Docket Number SYPA-009/C04 | | | | | A-009/C04US | | | | | | Application Da | ta Sileet 37 Ci | K 1.70 | Application Number | | | | | | | | Title of Invention FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | | | | | | Filing By Refe | erence: | | | | | | | | | | Only complete this section when filing an application by reference under 35 U.S.C. 111(c) and 37 CFR 1.57(a). Do not complete this section if application papers including a specification and any drawings are being filed. Any domestic benefit or foreign priority information must be provided in the appropriate section(s) below (i.e., "Domestic Benefit/National Stage Information" and "Foreign Priority Information"). For the purposes of a filing date under 37 CFR 1.53(b), the description and any drawings of the present application are replaced by this reference to the previously filed application, subject to conditions and requirements of 37 CFR 1.57(a). | | | | | | | | | | | Application number o filed application | | | te (YYYY-MM-DD) | 1.57 | Intellectual Property Authority or Country | | | | | | | | | | | | | | | | | Publication I | nformation: | | | 1 | | | | | | | Request Early | Publication (Fee r | equired at | t time of Request 37 CFR 1.2 | 219) | | | | | | | 35 U.S.C. 122 subject of an a | (b) and certify that | the inver | ntion disclosed in the attache | d appl | ation not be published under
ication has not and will not be the national agreement, that requires | | | | | | Representative Information: Representative information should be provided for all practitioners having a power of attorney in the application. Providing this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32). Either enter Customer Number or complete the Representative Name section below. If both sections are completed the customer Number will be used for the Representative Information during processing. | | | | | | | | | | | Please Select One | : • Custom | er Number | US Patent Practitione | er (| Limited Recognition (37 CFR 11.9) | | | | | | Customer Number | 58249 | | ı | | | | | | | | Domestic Benefit/National Stage Information: This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, 365(c), or 386(c) or indicate National Stage entry from a PCT application. Providing benefit claim information in the Application Data Sheet constitutes the specific reference required by 35 U.S.C. 119(e) or 120, and 37 CFR 1.78. When referring to the current application, please leave the "Application Number" field blank. | | | | | | | | | | Remove 2015-09-04 **Prior Application Number** 14845644 Filing or 371(c) Date (YYYY-MM-DD) **Prior Application Status** **Application Number** Pending Continuation of **Continuity Type** | Application Da | ta Sheet 37 CFR 1.76 | Attorney Docket Number | SYPA-009/C04US | | | | |--------------------|--|------------------------|----------------|--|--|--| | Application Da | ita Sileet Si Ci K 1.70 | Application Number | | | | | | Title of Invention | e of Invention FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | | Prior Application Status | Abandoned | • | | Remove | | |---|-------------------------------|---|--------------------------|---------------------------------------|--| | Application Number | Continuity Type | | Prior Application Number | Filing or 371(c) Date
(YYYY-MM-DD) | | | 14845644 | Continuation of | • | 14661299 | 2015-03-18 | | | Prior Application Status | Pending | • | | Remove | | | Application Number | Continuity Type | | Prior Application Number | Filing or 371(c) Date
(YYYY-MM-DD) | | | 14661299 | Continuation of | • | 13421769 | 2012-03-15 | | | Prior Application Status | Expired | • | | Remove | | | Application Number | Continuity Type | | Prior Application Number | Filing or 371(c) Date
(YYYY-MM-DD) | | | 13421769 | Continuation in part of | ~ | PCTUS2011051805 | 2011-09-15 | | | Prior Application Status | Expired | • | | Remove | | | Application Number | Continuity Type | | Prior Application Number | Filing or 371(c) Date
(YYYY-MM-DD) | | | PCTUS2011051805 | Claims benefit of provisional | • | 61392186 | 2010-10-12 | | | Prior Application Status | Expired | ~ | | Remove | | | Application Number | Continuity Type | | Prior Application Number | Filing or 371(c) Date
(YYYY-MM-DD) | | | PCTUS2011051805 | Claims benefit of provisional | • | 61387636 | 2010-09-29 | | | Prior Application Status | Expired | ~ | | Remove | | | Application Number | Continuity Type | | Prior Application Number | Filing or 371(c) Date
(YYYY-MM-DD) | | | PCTUS2011051805 | Claims benefit of provisional | ~ | 61383156 | 2010-09-15 | | | Additional Domestic Benefit/National Stage Data may be generated within this form by selecting the Add button. | | | | | | ## **Foreign Priority Information:** This section allows for the applicant to claim priority to a foreign application. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119(b) and 37 CFR 1.55. When priority is claimed to a foreign application that is eligible for retrieval under the priority document exchange program (PDX)¹ the information will be used by the Office to automatically attempt retrieval pursuant to 37 CFR 1.55(i)(1) and (2). Under the PDX program, applicant bears the ultimate responsibility for ensuring that a copy of the foreign application is received by the Office from the participating foreign intellectual property office, or a certified copy of the foreign priority application is filed, within the time period specified in 37 CFR 1.55(g)(1). | Application Data Sheet 37 CFR 1.76 | | | Attorney Docket Nun | nber | SYPA-009/C04US | | | | | |---|---|-------------------|--------------------------|---------|--|--------|--|--|--| | | | | Application Number | | | | | | | | Title of Invention | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | Remove | | | | | Application Number Country ⁱ | | Filing Date (| YYYY- | -MM-DD) | Access Code ⁱ (if applicable) | | | | | | | | | | | | | | | | | Additional Foreign Add button. | Priority | Data may be gener | rated within this form t | y sele | ecting the | Add | | | | # Statement under 37 CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications | This application (1) claims priority to or the benefit of an application filed before March 16, 2013 and (2) also | |--| | contains, or contained at any time, a claim to a claimed invention that has an effective filing date on or after March | | 16, 2013. | | NOTE: By providing this statement under 37 CFR 1.55 or 1.78, this application, with a filing date on or after March | | 16, 2013, will be examined under the first inventor to file provisions of the AIA. | | Application Da | ita Sheet 37 CFR 1.76 | Attorney Docket Number | SYPA-009/C04US | |--------------------|-------------------------|--------------------------|----------------------| | Application Da | ita Sileet 37 Cl K 1.70 | Application Number | | | Title of Invention | FORMULATIONS OF GUANY | /LATE CYCLASE C AGONISTS | S AND METHODS OF USE | ## **Authorization or Opt-Out of Authorization to Permit Access:** When this Application Data Sheet is properly signed and filed with the application, applicant has provided written authority to permit a participating foreign intellectual property (IP) office access to the instant application-as-filed (see paragraph A in subsection 1 below) and the European Patent Office (EPO) access to any search results from the instant application (see paragraph B in subsection 1 below). Should applicant choose not to provide an authorization identified in subsection 1 below, applicant <u>must opt-out</u> of the authorization by checking the corresponding box A or B or both in subsection 2 below. **NOTE**: This section of the Application Data Sheet is **ONLY** reviewed and processed with the **INITIAL** filing of an application. After the initial filing of an application, an Application Data Sheet cannot be used to provide or rescind authorization for access by a foreign IP office(s). Instead, Form PTO/SB/39 or PTO/SB/69 must be used as appropriate. ### 1. Authorization to Permit Access by a Foreign Intellectual Property Office(s) - A. <u>Priority Document Exchange (PDX)</u> Unless box A in subsection 2 (opt-out of authorization) is checked, the undersigned hereby <u>grants the USPTO authority</u> to provide the European Patent Office (EPO), the Japan Patent Office (JPO), the Korean Intellectual Property Office (KIPO), the State Intellectual Property Office of the People's Republic of China (SIPO), the World Intellectual Property Organization (WIPO), and any other foreign intellectual property office participating with the USPTO in a bilateral or multilateral priority document exchange agreement in which a foreign application claiming priority to the instant patent application is filed, access to: (1) the instant patent application-as-filed and its related bibliographic data, (2) any foreign or domestic application to which priority or benefit is claimed by the instant application and its related bibliographic data, and (3) the date of filing of this Authorization. See 37 CFR 1.14(h) (1). - B. <u>Search Results from U.S. Application to EPO</u> Unless box B in subsection 2 (opt-out of authorization) is checked, the undersigned hereby <u>grants the USPTO authority</u> to provide the EPO access to the bibliographic data and search results from the instant patent application when a European patent application claiming priority to the instant patent application is filed. See 37 CFR 1.14(h)(2). The applicant is reminded that the EPO's Rule 141(1) EPC (European Patent Convention) requires applicants to submit a copy of search results from the instant application without delay in a European patent application that claims priority to the instant application. ## 2. Opt-Out of Authorizations to Permit Access by a Foreign Intellectual Property Office(s) - A. Applicant **DOES NOT** authorize the USPTO to permit a participating foreign IP office access to the instant application-as-filed. If this box is checked, the USPTO will not be providing a participating foreign IP office with any documents and information identified in subsection 1A above. - B. Applicant <u>DOES NOT</u> authorize the USPTO to transmit to the EPO any search results from the instant patent application. If this box is checked, the USPTO will not be providing the EPO with search results from the instant application. **NOTE**: Once the application has published or is otherwise publicly available, the USPTO may provide access to the application in accordance with 37 CFR 1.14. | Application Da | ta Sheet 37 CFR 1.76 | Attorney Docket Number | SYPA-009/C04US | |--------------------
-------------------------|-------------------------|--------------------| | Application Da | ita Sileet Si Ci K 1.70 | Application Number | | | Title of Invention | FORMULATIONS OF GUANY | LATE CYCLASE C AGONISTS | AND METHODS OF USE | ## **Applicant Information:** | Providing assign
to have an assign | | | | or compliance with any re | quirement of part 3 of Title 37 of CFR | | | |--|---|-----------|--------------------------------|---------------------------|--|--|--| | Applicant 1 | | | | Remove | | | | | If the applicant is the inventor (or the remaining joint inventor or inventors under 37 CFR 1.45), this section should not be completed. The information to be provided in this section is the name and address of the legal representative who is the applicant under 37 CFR 1.43; or the name and address of the assignee, person to whom the inventor is under an obligation to assign the invention, or person who otherwise shows sufficient proprietary interest in the matter who is the applicant under 37 CFR 1.46. If the applicant is an applicant under 37 CFR 1.46 (assignee, person to whom the inventor is obligated to assign, or person who otherwise shows sufficient proprietary interest) together with one or more joint inventors, then the joint inventor or inventors who are also the applicant should be identified in this section. | | | | | | | | | Assignee | | | Legal Representative un | der 35 U.S.C. 117 | Joint Inventor | | | | Person to who | m the inventor | is oblig | ated to assign. | Person who show | s sufficient proprietary interest | | | | If applicant is the | e legal repres | sentativ | e, indicate the authority to f | le the patent application | n, the inventor is: | | | | | | | | | ▼ | | | | Name of the De | ceased or Le | egally Ir | ncapacitated Inventor: | | | | | | If the Applicant | is an Organ | ization | check here. | | | | | | Organization N | Organization Name SYNERGY PHARMACEUTICALS, INC. | | | | | | | | Mailing Address Information For Applicant: | | | | | | | | | Address 1 | | 420 Le | xington Avenue | | | | | | Address 2 Suite 2 | | | 2012 | | | | | | City New Y | | New Y | ork | State/Province | NY | | | | Country US | | | | Postal Code | 10170 | | | | Phone Number | | | | Fax Number | | | | | Email Address | Email Address | | | | | | | | Additional Applicant Data may be generated within this form by selecting the Add button. | | | | | | | | ## **Assignee Information including Non-Applicant Assignee Information:** Providing assignment information in this section does not substitute for compliance with any requirement of part 3 of Title 37 of CFR to have an assignment recorded by the Office. PTO/AIA/14 (11-15) Approved for use through 04/30/2017. OMB 0651-0032 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. | Application Data Sheet 37 CFR 1.76 | | | Attorney Doo | Attorney Docket Number SYPA-009/C0- | |)9/C04US | 04US | | | | |---|--|---------|----------------------|-------------------------------------|--------------|---------------------------|------------------------------|--------|--|--| | | | | Application N | umber | | | | | | | | Title of Inven | tion FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | | | | | | | 1 | | | | | | | | | | | Assignee | 1 | | | | | | | | | | | Complete this section if assignee information, including non-applicant assignee information, is desired to be included on the patent application publication. An assignee-applicant identified in the "Applicant Information" section will appear on the patent application publication as an applicant. For an assignee-applicant, complete this section only if identification as an assignee is also desired on the patent application publication. | | | | | | | | | | | | | | | | | | | F | Remove | | | | If the Assigne | ee or Non-/ | Applica | ant Assignee is an | Organization | check here. | | | | | | | Prefix | | Give | n Name | Middle Nam | ne | Family Na | me | Suffix | | | | | lacksquare | | | | | | | | | | | Mailing Addre | ess Inform | ation | For Assignee inc | -
cluding Non- <i>F</i> | Applicant A | ssignee: | | | | | | Address 1 | | | | | | | | | | | | Address 2 | | | | | | | | | | | | City | | | | | State/Prov | vince | | | | | | Country i | | | | | Postal Cod | de | | | | | | Phone Numb | er | | | | Fax Numb | er | | | | | | Email Addres | ss | | | | | • | - | | | | | Additional Ass
selecting the | _ | | plicant Assignee | Data may be g | generated wi | thin this for | n by | Add | | | | | | | | | | | | | | | | Signature: | | | | | | | | | | | | NOTE: This Application Data Sheet must be signed in accordance with 37 CFR 1.33(b). However, if this Application Data Sheet is submitted with the INITIAL filing of the application and either box A or B is not checked in subsection 2 of the "Authorization or Opt-Out of Authorization to Permit Access" section, then this form must also be signed in accordance with 37 CFR 1.14(c). This Application Data Sheet must be signed by a patent practitioner if one or more of the applicants is a juristic entity (e.g., corporation or association). If the applicant is two or more joint inventors, this form must be signed by a patent practitioner, all joint inventors who are the applicant, or one or more joint inventor-applicants who have been given power of attorney (e.g., see USPTO Form PTO/AIA/81) on behalf of all joint inventor-applicants. See 37 CFR 1.4(d) for the manner of making signatures and certifications. | | | | | | | | | | | | Signature | Signature /Anne E. Fleckenstein/ | | | | | Date (\ | Date (YYYY-MM-DD) 2017-03-23 | | | | | First Name | ame Anne E. Last Name Fleckenstein | | | | | Registration Number 62951 | | | | | | Additional Si | gnature ma | ay be g | generated within the | nis form by sel | ecting the A | dd button. | | Add | | | | | | | | | | | | | | | | Application Da | ita Sheet 37 CFR 1.76 | Attorney Docket Number | SYPA-009/C04US | | |--------------------|---|------------------------|----------------|--| | Application ba | ita Sheet 37 Chik 1.70 | Application Number | | | | Title of Invention | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. **SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.** ## **Privacy Act Statement** The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the
application or expiration of the patent. The information provided by you in this form will be subject to the following routine uses: - 1 The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these records. - 2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations. - 3 A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m). - 5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent CooperationTreaty. - 6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)). - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent. - 9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation. # FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE #### RELATED APPLICATIONS [01] This application is a continuation of U.S. Patent Application No. 14/845,644 filed September 4, 2015, now U.S. Patent No. 9,610,321, which is a continuation of U.S. Patent Application No. 14/661,299, filed March 18, 2015, which is a continuation of U.S. Patent Application No. 13/421,769, filed March 15, 2012, which is a continuation-in-part of PCT/US2011/051805 filed on September 15, 2011, which claims the benefit of priority to U.S. Provisional Application No. 61/383,156 filed on September 15, 2010, U.S. Provisional Application No. 61/387,636 filed on September 29, 2010, and U.S. Provisional Application No. 61/392,186 filed on October 12, 2010, the contents of which are incorporated by reference in their entireties. ## INCORPORATION-BY-REFERENCE OF SEQUENCE LISTING [02] The contents of the text file named "SYPA_009_C04US_Sequence_Listing.txt", which was created on March 23, 2017 and is 113 KB in size, are hereby incorporated by reference in their entirety. ## FIELD OF THE INVENTION [03] The present invention relates to low-dose formulations of guanylate cyclase C peptide agonists useful for the treatment and prevention of various diseases and disorders. ### **BACKGROUND OF THE INVENTION** [04] Guanylate cyclase C is a transmembrane form of guanylate cyclase that is expressed on various cells, including gastrointestinal epithelial cells (reviewed in Vaandrager 2002 *Mol. Cell. Biochem.* 230:73-83). It was originally discovered as the intestinal receptor for the heat-stable toxin (ST) peptides secreted by enteric bacteria and which cause diarrhea. The ST peptides share a similar primary amino acid structure with two peptides isolated from intestinal mucosa and urine, guanylin and uroguanylin (Currie, *et al.*, *Proc. Nat'l Acad. Sci. USA 89*:947-951 (1992); Hamra, *et al.*, *Proc. Nat'l Acad. Sci. USA 90*:10464-10468 (1993); 5 Forte, L., Reg. Pept. 81:25-39 (1999); Schulz, et al., Cell 63:941-948 (1990); Guba, et al., Gastroenterology 111:1558-1568 (1996); Joo, et al., Am. J. Physiol. 274:G633-G644 (1998)). - [05] In the intestines, guanylin and uroguanylin act as regulators of fluid and electrolyte balance. In response to high oral salt intake, these peptides are released into the intestinal lumen where they bind to guanylate cyclase C localized on the luminal membrane of enterocytes (simple columnar epithelial cells of the small intestines and colon). The binding of the guanylin peptides to guanylate cyclase C induces electrolyte and water excretion into the intestinal lumen via a complex intracellular signaling cascade that is initiated by an increase in cyclic guanosine monophosphate (cGMP). - The cGMP-mediated signaling that is initiated by the guarylin peptides is critical for [06] the normal functioning of the gut. Any abnormality in this process could lead to gastrointestinal disorders such as irritable bowel syndrome (IBS) and inflammatory bowel diseases. Inflammatory bowel disease is a general name given to a group of disorders that cause the intestines to become inflamed, characterized by red and swollen tissue. Examples include ulcerative colitis and Crohn's disease. Crohn's disease is a serious inflammatory disease that predominantly affects the ileum and colon, but can also occur in other sections of the gastrointestinal tract. Ulcerative colitis is exclusively an inflammatory disease of the colon, the large intestine. Unlike Crohn's disease, in which all layers of the intestine are involved, and in which there can be normal healthy bowel in between patches of diseased bowel, ulcerative colitis affects only the innermost lining (mucosa) of the colon in a continuous manner. Depending on which portion of the gastrointestinal tract is involved, Crohn's disease may be referred to as ileitis, regional enteritis, colitis, etc. Crohn's disease and ulcerative colitis differ from spastic colon or irritable bowel syndrome, which are motility disorders of the gastrointestinal tract. Gastrointestinal inflammation can be a chronic condition. It is estimated that as many as 1,000,000 Americans are afflicted with inflammatory bowel disease, with male and female patients appearing to be equally affected. Most cases are diagnosed before age 30, but the disease can occur in the sixth, seventh, and later decades of life. - [07] IBS and chronic idiopathic constipation are pathological conditions that can cause a great deal of intestinal discomfort and distress but unlike the inflammatory bowel diseases, IBS does not cause the serious inflammation or changes in bowel tissue and it is not thought to increase the risk of colorectal cancer. In the past, inflammatory bowel disease, celiac disease and IBS were regarded as completely separate disorders. Now, with the description of inflammation, albeit low-grade, in IBS, and of symptom overlap between IBS and celiac disease, this contention has come under question. Acute bacterial gastroenteritis is the strongest risk factor identified to date for the subsequent development of postinfective irritable bowel syndrome. Clinical risk factors include prolonged acute illness and the absence of vomiting. A genetically determined susceptibility to inflammatory stimuli may also be a risk factor for irritable bowel syndrome. The underlying pathophysiology indicates increased intestinal permeability and low-grade inflammation, as well as altered motility and visceral sensitivity. Serotonin (5-hydroxytryptamine [5-HT]) is a key modulator of gut function and is known to play a major role in pathophysiology of IBS. The activity of 5-HT is regulated by cGMP. [80] While the precise causes of IBS and inflammatory bowel diseases (IBD) are not known, a disruption in the process of continual renewal of the gastrointestinal mucosa may contribute to disease pathology in IBD and aggravate IBS. The renewal process of the gastrointestinal lining is an efficient and dynamic process involving the continual proliferation and replenishment of unwanted damaged cells. Proliferation rates of cells lining the gastrointestinal mucosa are very high, second only to the hematopoietic system. Gastrointestinal homeostasis depends on both the proliferation and programmed cellular death (apoptosis) of epithelial cells lining the gut mucosa. Cells are continually lost from the villus into the lumen of the gut and are replenished at a substantially equal rate by the proliferation of cells in the crypts, followed by their upward movement to the villus. The rates of cell proliferation and apoptosis in the gut epithelium can be increased or decreased in a variety of circumstances, e.g., in response to physiological stimuli such as aging, inflammatory signals,
hormones, peptides, growth factors, chemicals and dietary habits. In addition, an enhanced proliferation rate is frequently associated with a reduction in turnover time and an expansion of the proliferative zone. The proliferation index is much higher in pathological states such as ulcerative colitis and other gastrointestinal disorders. Intestinal hyperplasia is a major promoter of gastrointestinal inflammation. Apoptosis and cell proliferation together regulate cell number and determine the proliferation index. Reduced rates of apoptosis are often associated with abnormal growth, inflammation, and neoplastic transformation. Thus, both increased proliferation and/or reduced cell death may increase the Attorney Docket No.: SYPA-009/C04US proliferation index of intestinal tissue, which may in turn lead to gastrointestinal inflammatory diseases. - [09] In addition to a role for uroguanylin and guanylin as modulators of intestinal fluid and ion secretion, these peptides may also be involved in the continual renewal of gastrointestinal mucosa by maintaining the balance between proliferation and apoptosis. For example, uroguanylin and guanylin peptides appear to promote apoptosis by controlling cellular ion flux. Given the prevalence of inflammatory conditions in Western societies a need exists to improve the treatment options for inflammatory conditions, particularly of the gastrointestinal tract. - [10] Peptide agonists of guanylate cyclase C agonists ("GCC agonists") are described in U.S. Patent Nos. 7,041,786, 7,799,897, and U.S. Patent Application Publication Nos. US2009/0048175, US 2010/0069306, US 2010/0120694, US 2010/0093635, and US 2010/0221329. However, the formulation of peptides for pharmaceutical delivery presents a number of special problems. For example, peptides are subject to structural modifications by a variety of degradation mechanisms resulting in problems of chemical and physical instability of the formulation. #### SUMMARY OF THE INVENTION [11] The present invention provides low-dose formulations of peptide agonists of guanylate cyclase C ("GCC") and methods for their use in the treatment and prevention of human diseases and disorders, such as a gastrointestinal motility disorder, irritable bowel syndrome, a functional gastrointestinal disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, nonulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, colonic pseudo-obstruction; Crohn's disease, ulcerative colitis, inflammatory bowel disease, colonic pseudo-obstruction, obesity, congestive heart failure, and benign prostatic hyperplasia. In certain embodiments, the formulations are stabilized against chemical degradation of the peptide. The low-dose formulations of the invention have unexpected efficacy in humans in a dosage range that was not predicted based on studies in primates. The formulations of the invention are particularly useful for the treatment or prevention of chronic idiopathic constipation. In certain embodiments, the GCC agonists are analogs of uroguanylin and bacterial ST peptides. In preferred embodiments, the analogs have superior properties compared to the naturally occurring or "wild-type" peptides. Examples of such superior properties include a high resistance to degradation at the N-terminus and C-terminus from carboxypeptidases, aminopeptidases, and/or by other proteolytic enzymes present in the stimulated human intestinal juices and human gastric juices. Examples of GCC agonists that can be used in the formulations and methods of the invention are described in more detail below and in U.S. Patent Nos. 7,041,786, 7,799,897, and U.S. Patent Application Publication Nos. US2009/0048175, US 2010/0069306, US 2010/0120694, US 2010/0093635, and US 2010/0221329, each of which is incorporated herein by reference in its entirety. - [12] The invention provides an oral dosage formulation comprising one or more pharmaceutically acceptable excipients and at least one GCC agonist peptide, wherein the amount of GCC agonist peptide per unit dose is from 0.01 mg to 10 mg, and wherein the GCC agonist peptide is selected from the group consisting of SEQ ID NOs: 1-54 and 56-249. In one embodiment, the GCC agonist peptide has a chromatographic purity of no less than 90%, no less than 90.5%, no less than 91%, no less than 92%, no less than 93%, no less than 94%, no less than 95%, no less than 96%, no less than 97%, no less than 98%, or no less than 99%. The chromatographic purity of the GCC agonist peptide is determined as area percent by HPLC. In one embodiment, the GCC agonist peptide is selected from the group consisting of SEQ ID NOs: 1, 8, 9, or 56. In one embodiment, the GCC agonist peptide is selected from the group consisting of SEQ ID NOs: 1 and 9. In one embodiment, the GCC agonist peptide is selected from the group consisting of SEQ ID NOs: 8 and 9. In one embodiment, the amount of GCC agonist peptide per unit dose is 0.1 mg, 0.3 mg, 0.6 mg, 1.0 mg, 3.0 mg, 6.0 mg, 9.0 mg or 9.5 mg. - [13] In one embodiment, the GCC agonist peptide has a total impurity content of no greater than 10%, no greater than 9.5%, no greater than 9%, no greater than 8%, no greater than 3%, no greater than 4%, no greater than 3%, no greater than 2%, or no greater than 1%. The total impurity content is determined as total area percentages of impurities by HPLC. The impurities do not include any pharmaceutically acceptable excipient used for the formulation. In one embodiment, the formulation is substantially free of inorganic acids and carboxylic acids, e.g., HCl, phosphoric acid, or acetic acid. In this context, carboxylic acids do not include amino acids or peptides. In this context "substantially" free of acids means that the acid content of the formulation at the time of packaging is preferably less than 0.2%, less than 0.1%, less than 0.05%, less than 0.01%, less than 0.005%, or less than 0.001% of the total weight of the formulation. In one embodiment, the formulation is free of HCl. - [14] In one embodiment, the formulation is a solid formulation. In one embodiment, the formulation is in the form of a powder, granule, sachet, troche, tablet, or capsule. In another embodiment, the formulation is a liquid formulation and the GCC agonist peptide is in solution or suspension in a lipophilic liquid. In one embodiment, the liquid is a refined specialty oil or a medium chain triglyceride or related ester. In one embodiment, the refined specialty oil is selected from Arachis oil, Castor oil, cottonseed oil, maize (corn) oil, olive oil, sesame oil, soybean oil, and sunflower oil. In one embodiment, the medium chain triglyceride or related ester is AKOMED E, AKOMED R, CAPTEX 355, LABRAFAC CC, LABRAFAC PG, LAUROGLYCOL FCC, MIGLYOL 810, MIGLYOL 812, MIGLYOL 829, MIGLYOL 840, and SOFTISAN 645. In one embodiment, the liquid is selected from the group consisting of medium chain triglycerides, propylene glycol dicaptylocaprate, vitamin E, soybean oil, Cremaphor, PG, and PG 400. In one embodiment, the unit dose is a powder, tablet, or capsule. In one embodiment, the unit dose is a liquid-filled capsule. In one embodiment, the capsule or tablet is in a blister pack or strip. Preferably, the blister pack or strip is made of a material that is impermeable to water vapor and oxygen. In one embodiment the blister pack is comprised of a metal foil. In one embodiment the blister pack is a FOIL/FOIL blister pack. In one embodiment, the container of the blister pack is flushed with an inert gas such as nitrogen or argon. In one embodiment, the container further includes a desiccant. In a preferred embodiment the desiccant is a molecular sieve. In one embodiment, the unit dose is in a high density polyethylene bottle having a seal. In one embodiment, the bottle further comprises a desiccant. In one embodiment, the bottle further comprises an oxygen scavenger or molecular sieve. In one embodiment, the bottle is nearly impermeable to oxygen and water vapor (e.g., much more impermeable than a HDPE bottle), such as an OxyGuard bottle. - [15] In one embodiment, the one or more pharmaceutically acceptable excipients include an inert carrier. In one embodiment, the inert carrier is a selected from mannitol, lactose, a microcrystalline cellulose, or starch. In one embodiment, the inert carrier has a particle size of from 50 to 900 microns, from 50 to 800 microns, from 50 to 300 microns, from 50 to 200 microns, from 75 to 150 microns, from 75 to 200 microns, or from 75 to 300 microns. - [16] In one embodiment, the GCC agonist peptide is stabilized against chemical or physical degradation for a period of at least 18 months at 30 °C and 65% relative humidity, or at least 18 months at 25 °C and 60% relative humidity, or at least 18 months at 2-8 °C. - [17] In one embodiment, the one or more pharmaceutically acceptable excipients include a divalent cation salt such as calcium chloride. In one embodiment, the one or more pharmaceutically acceptable excipients comprise an amino acid, such as leucine, histidine, or arginine, or an amine such TRIS or TRIS/HCl. - In one embodiment, the oral dosage formulation consists of the GCC agonist peptide described herein, an inert carrier (e.g., Celphere SCP-100, Avicel PH 102, or Avicel PH 112), and a lubricant (e.g., magnesium stearate). In one embodiment, the formulation consists of the GCC agonist peptide, an inert carrier (e.g., Avicel PH 200), a divalent cation salt (e.g., calcium chloride or calcium ascorbate), an amino acid (e.g., leucine, histidine, or arginine) or a protective amine (e.g., TRIS), a coating agent (e.g., Methocel ES Premium LV) and optionally a lubricant (e.g., magnesium stearate) or another additive (e.g., trehalose). In one embodiment, the formulation consists of the GCC agonist peptide, a binder (e.g., Provsolv SMCC 90 LM), and a disintegrant (e.g., Explotab). In one embodiment, the formulation consists of the GCC
agonist peptide, a diluent (e.g., Mannogem EZ), a binder (e.g., Provsolv SMCC 90 LM), a disintegrant (e.g., Explotab), a lubricant (e.g., Pruy). - The invention also provides a process for making the oral dosage formulations described herein, wherein the process comprises a step of dry granulation, wet granulation, or spray coating followed by drying. In another embodiment, the process comprises a step of dry mixing. In a preferred embodiment the step of dry mixing includes geometric blending. In one embodiment, the process comprises a step of direct compression. In one embodiment, the process for making the oral dosage formulations described herein is a spray coating-drying process which includes (a) providing an aqueous solution comprising: a GCC agonist peptide selected from the group consisting of SEQ ID NOs: 1-54 and 56-249, and one or more pharmaceutically acceptable excipients, wherein the concentration of the GCC agonist peptide ranges from 10 to 60 mg/mL; and (b) applying the aqueous solution to a pharmaceutically acceptable carrier to generate a GCC agonist peptide-coated carrier. - [20] In one embodiment of the spray coating-drying process above, the one or more pharmaceutically acceptable excipients comprise a divalent cation salt wherein the divalent cation is selected from Ca²⁺, Mg²⁺, Zn²⁺, and Mn²⁺. In one embodiment, the one or more pharmaceutically acceptable excipients comprise an amino acid selected from leucine, isoleucine, and valine. In one embodiment, the one or more pharmaceutically acceptable excipients comprise a coating agent (such as hypromellose Methocel E5 PremLV). In one embodiment, the aqueous solution has a pH greater than 4 (e.g., 4.5-5.5, 5-6, about 5, or greater than 5) or even greater than 7. In one embodiment, the aqueous solution is substantially free of inorganic acids and carboxylic acids. In one embodiment, the GCC agonist peptide is selected from the group consisting of SEQ ID NOs: 1, 8, 9, and 56. In one embodiment, the process further includes drying the GCC agonist peptide-coated carrier. - [21] The invention further provides an oral dosage formulation made by the process described herein. Preferably, the GCC agonist peptide as made is stabilized against chemical or physical degradation for a period of at least 18 months at 30 °C and 65% relative humidity, or at least 18 months at 25 °C and 60% relative humidity, or at least 18 months at 2-8 °C. - [22] The invention also provides a method for treating or preventing a disease or disorder in a subject in need thereof, comprising administering to the subject an oral dosage formulation comprising at least one GCC agonist peptide, wherein the amount of GCC agonist peptide per unit dose is from 0.01 mg to 10 mg, and wherein the GCC agonist peptide is selected from the group consisting of SEQ ID NOs: 1-54 and 56-249. Preferably, the subject is a human subject. In one embodiment, the GCC agonist peptide is selected from the group consisting of SEQ ID NOs: 1, 8, 9, or 56. In one embodiment, the GCC agonist peptide is selected from the group consisting of SEQ ID NOs: 1 and 9. In one embodiment, the amount of GCC agonist peptide per unit dose is 0.1 mg, 0.3 mg, 0.6 mg, 1.0 mg, 3.0 mg, 6.0 mg, 9.0 mg, 9.5 mg, or 10 mg. - [23] In one embodiment, the disease or disorder is a gastrointestinal disease or disorder selected from the group consisting of irritable bowel syndrome, non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastro esophageal reflux disease, constipation, gastroparesis, heartburn, gastric cancer, and H. pylori infection. In a preferred embodiment, the gastrointestinal disease or disorder is chronic idiopathic constipation. - [24] In one embodiment, the method further comprises administering to the subject an effective amount of an inhibitor of a cGMP-specific phosphodiesterase. In one embodiment, the cGMP-dependent phosphodiesterase inhibitor is selected from the group consisting of suldinac sulfone, zaprinast, and motapizone, vardenifil, and suldenifil. - [25] In one embodiment, the method further comprises administering to the subject an effective amount of at least one laxative. In one embodiment, the at least one laxative is selected from the group consisting of SENNA, MIRALAX, PEG, or calcium polycarbophil. - [26] In one embodiment, the method further comprises administering to the subject an effective amount of at least one anti-inflammatory agent. - [27] The invention also provides pharmaceutical compositions comprising the formulations described herein. - [28] Other features and advantages of the invention will be apparent from and are encompassed by the following detailed description and claims. #### **BRIEF DESCRIPTION OF THE DRAWINGS** - [29] <u>Figure 1</u>: Plecanatide (SP-304) treatment reduced time to first BM following daily dose. - [30] <u>Figure 2:</u> Effect of daily treatment with plecanatide on spontaneous bowel movements (SBM) in chronic constipation patients. - [31] <u>Figure 3</u>: Effect of daily treatment with plecanatide on complete spontaneous bowel movements (CSBM) in chronic constipation patients. - [32] <u>Figure 4:</u> Effect of daily treatment with plecanatide on Bristol Stool Form Scores (BSFS) in chronic constipation patients. - [33] <u>Figure 5</u>: Effect of daily treatment with plecanatide on straining scores in chronic constipation patients - [34] <u>Figure 6:</u> Percentage of subjects reporting improvements in abdominal discomfort scores after 14-days of daily treatment with plecanatide. Attorney Docket No.: SYPA-009/C04US #### **DETAILED DESCRIPTION** - [35] The invention provides pharmaceutical formulations of peptide GCC agonists. It is intended that the formulations of the invention are "pharmaceutical" formulations, meaning that they are suitable for pharmaceutical use. Accordingly, the term "formulations" as used herein is meant to encompass pharmaceutical formulations even if "pharmaceutical" is not expressly stated. Pharmaceutical compositions comprising the formulations described herein are also provided by the invention. The formulations of the invention preferably provide stability against chemical and physical degradation of the peptide, e.g., plecanatide (i.e., SEQ ID #1). - The invention is based in part upon the discovery that mannitol mixes very effectively with the GCC agonist peptides described herein and provides stability against degradation, allowing the peptides to be formulated at very low doses. The invention is also based in part on the discovery that very low doses of the GCC agonist peptides described herein are effective for the treatment of diseases and disorders in humans. The dosage range found to be effective was not predicted based on animal studies. The invention is also based in part upon the discovery that a divalent cation (e.g., Ca²⁺) and/or an amino acid (e.g., leucine or arginine) stabilize the GCC agonist peptides described herein during a process (e.g., spray coating-drying process) of manufacturing a formulation of the GCC agonist peptides and provides stability against degradation both during the manufacturing process and storage of the formulation. - [37] Plecanatide is a charged peptide due to the presence of four carboxylic acids and single amine group with a calculated pKa of approximately 3.5. Therefore plecanatide is likely to interact with ions in solution or in the solid state. Plecanatide is a hygroscopic peptide requiring the control of water during manufacture and storage to promote long term stability. Plecanatide is prone to degradation by oxidation in the presence of residual peroxides or formaldehyde contaminants that are formed from peroxide reaction with polymeric excipients. The present invention discloses a manufacturing process and dry solid formulation compositions that minimizes water content. The formulations are comprised of components to minimize levels of residual formaldehyde and peroxides commonly found in many pharmaceutical excipients. The invention also discloses additives (i.e. CaCl₂) that may function as local desiccants in the formulation. Divalent cation salts such as calcium ascorbate, MgCl₂, ZnCl₂, MnCl₂ and CaCl₂ bind plecanatide and sterically hinder reactive species such as water or oxygen from causing plecanatide degradation by molecular displacement. The invention further includes scavengers of residual formaldehyde (amines such as TRIS or TRIS/HCl or amino acids such as leucine, isoleucine and valine), and discloses packaging confirmations to minimize oxygen exposure and water vapor during storage. The invention also discloses a stable manufacturing process comprised of initially dissolving plecanatide in cold water to minimize solution degradation, followed by spray coating the peptide solution on particles and drying to remove moisture. - [38] The formulations of the invention are particularly useful for the treatment or prevention of a gastrointestinal disease or disorder selected from the group consisting of irritable bowel syndrome, non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastro esophageal reflux disease, chronic idiopathic constipation, gastroparesis, heartburn, gastric cancer, and H. pylori infection. - [39] In one embodiment, the formulations of the invention are used in a method for the treatment of constipation. Clinically accepted criteria that define constipation range from the frequency of bowel movements, the consistency of feces and the ease of bowel movement. One common definition of constipation is less than three bowel movements per week. Other definitions include abnormally hard stools or defecation that requires excessive straining. Constipation may be idiopathic (functional constipation or slow transit constipation) or secondary to other causes including neurologic, metabolic or endocrine
disorders. These disorders include diabetes mellitus, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple sclerosis, Parkinson's disease, spinal cord lesions, Neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung disease and cystic fibrosis. Constipation may also be the result of surgery or due to the use of drugs such as analgesics (like opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. In a preferred embodiment, the constipation is chronic idiopathic constipation. - [40] The stabilized formulations of the invention comprise at least one GCC agonist peptide formulated with one or more excipients such that the peptide is stabilized against chemical degradation. Chemical degradation of peptides results from a number of mechanisms including oxidation, water-mediated degradation, and reaction with aldehydes or reducing sugars. The ideal excipient or combination of excipients will be non-hygroscopic, have few or no reducing sugars, and be substantially free of contaminants such as iron, peroxide, and formaldehyde. The formulations of the invention are preferably substantially free of water. In this context "substantially" free of water means that the water content of the formulation at the time of packaging is preferably less than 7%, less than 5%, less than 1%, or less than 0.5% of the total weight of the formulation. In one embodiment the amount of water is between 0.1 to 5% of the total weight of the formulation. In one embodiment, the amount of water in the formulation of the invention manuafactured through a spray-coating process is less than 0.5% (e.g., about 0.47%). - [41] In the context of the present formulations, the term "stable" or "stabilized" refers to the resistance of the peptide to chemical or physical degradation over time. Preferably, a stable formulation of the invention retains an amount of the peptide in the formulation over a period of time that is at least 90%, preferably at least 95%, and most preferably at least 99% the amount of peptide initially present in the formulation. In one embodiment, a stable formulation of the invention, over a period of time (e.g., 18 month), has an increase in the total impurity content not greater than 8%, not greater than 7%, not greater than 6%, not greater than 5%, not greater than 4%, not greater than 3%, not greater than 2%, or not greater than 1%. In one embodiment, the peptide is chemically stable in the formulation for a period of time that is at least 18 months, at least 20 months, or at least 24 months when stored at 25 degrees Celsius (25C) and 60 % relative humidity. In one embodiment, the peptide is chemically stable in the formulation for a period of time that is at least 18 months, at least 20 months, or at least 24 months when stored at 2-8 degrees Celsius (2-8C). In one embodiment, the peptide is chemically stable in the formulation for a period of time that is at least 3 months, 12 months, 18 months and preferably 24 months when stored at 25 degrees Celsius (25C) and 60 % relative humidity. In one embodiment, the peptide is chemically stable in the formulation for a period of time that is at least 3 months, 18 months and preferably 24 months when stored at 30 degrees Celsius (30C). - [42] The low-dose formulations of the invention comprise an amount of at least one GCC agonist peptide per unit dose that is less than 10 mg. It is especially advantageous to formulate oral compositions in unit dosage form for ease of administration and uniformity of dosage. The term "unit dosage form" as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved. In one embodiment, the unit dosage form is a tablet or a capsule. - [43] In one embodiment of the low-dose formulations of the invention, the amount of GCC agonist peptide per unit dose is from 0.01 mg to 10 mg. In one embodiment, the amount of GCC agonist peptide per unit dose is 0.1 mg, 0.3 mg, 0.6 mg, 1.0 mg, 3.0 mg, 6.0 mg, 9.0 mg, 9.5 mg, or 10 mg. - [44] In one embodiment, the low-dose formulation contains a carrier that is non-hygroscopic. In one embodiment, the carrier is selected from mannitol and maltose (e.g., ADVANTOSE 100). - [45] In one embodiment, the carrier is cellulose, preferably microcrystalline cellulose (e.g., Avicel PH 102, low moisture Avicel PH 112, Avicel PH 200, or Celphere SCP-100). In one embodiment, the carrier is calcium phosphate or calcium sulphate. In another embodiment, the carrier is a saccharide. The term "saccharide" as used herein also refers to polysaccharides. Thus, the term saccharide is meant to include polysaccharides. In one embodiment, the saccharide is selected from mannitol, trehalose, lactose, sucrose, sorbitol, and maltose. In a preferred embodiment, the saccharide is mannitol. Preferably the saccharide has a low water content, a small particle size and a narrow particle-size distribution. - [46] Carriers having small particle sizes, and/or spherical shape, and narrow size distribution are preferred. Particles of less than 20 microns have a relatively high surface area to volume ratio causing inter-particle attractive forces to dominate and resist bulk flow. Larger particles (greater than 100 microns) tend to roll or slide over one another and exhibit superior bulk flow properties compared with small particles. A narrow particle-size distribution reduces particle packing and increases flow. In one embodiment, the particles are between 20 and 500 microns in size (as measured across the largest diameter of the particle, on average). In one embodiment, a small particle size and a narrow particle size range refers to particles having a size range of from 20-300 microns, 50-200 microns, or 75- 150 microns. In certain embodiments, the carrier has a substantially spherical shape such as can be obtained with a spray drying process. - In one embodiment, the low-dose formulation is a solid formulation and the unit dose is in the form of a tablet or capsule. In one embodiment, the low-dose formulation is a liquid formulation and the unit dosage form is a liquid-filled capsule. In one embodiment, the liquid formulation in the form of a solution or suspension of the GCC agonist peptide in an lipophilic liquid. Examples of suitable liquids include medium chain triglycerides (e.g., LABRAFAC PG), vitamin E (e.g., α tocopherol), propylene glycol dicaprylocaprate (e.g., LABRAFAC PG), vitamin E (e.g., α tocopherol), PEG 400 (e.g., Polyethylene glycol low M.W. (liquid)), propylene glycol, soybean oil, and Castor oil. In one embodiment, the liquid is selected from the group consisting of medium chain triglycerides, propylene glycol dicaprylocaprate, vitamin E, and soybean oil. In one embodiment, the refined specialty oil is selected from Arachis oil, Castor oil, cottonseed oil, maize (corn) oil, olive oil, sesame oil, soybean oil, and sunflower oil. In one embodiment, the medium chain triglyceride or related ester is AKOMED E, AKOMED R, CAPTEX 355, LABRAFAC CC, LABRAFAC PG, LAUROGLYCOL FCC, MIGLYOL 810, MIGLYOL 812, MIGLYOL 829, MIGLYOL 840, and SOFTISAN 645. - [48] A formulation according to the invention may be contained in a blister pack. In a particular embodiment, the powder, tablet, or capsule comprising the formulation is contained in a blister pack. Preferably, the blister pack is made of a material that allows only minimal permeation by water vapor and oxygen. In one embodiment the blister pack is comprised of a metal foil. In one embodiment, the blister pack is comprised of ACLAR. In one embodiment, the container of the blister pack is flushed with an inert gas such as nitrogen or argon. In one embodiment, the container further includes a desiccant. In one embodiment, the desiccant is calcium chloride. In one embodiment the desiccant is a molecular sieve. - [49] While any GCC agonist known in the art can be formulated according to the present invention, analogs of uroguanylin and bacterial ST peptides are preferred. In certain embodiments, the uroguanylin and bacterial ST peptide analogs have superior properties compared to naturally occurring, or "wild-type" peptides. For example, the uroguanylin and bacterial ST peptides for use in the present invention are preferably modified to increase their resistance to degradation at the N-terminus and C-terminus from carboxypeptidases, aminopeptidases, and/or by other proteolytic enzymes present in the stimulated human intestinal juices and human gastric juices. In certain embodiments, the GCC agonist formulation comprises a peptide consisting essentially of an amino acid sequence selected from SEQ ID NOs: 1-249. In a preferred embodiment, the peptide consists essentially of an amino acid sequence selected from SEQ ID NOs: 1, 8, 9, 55 and 56. The term "consists essentially of" refers to a peptide that is identical to the reference peptide in its amino acid sequence or to a peptide that does not differ substantially in terms of either structure or function from the reference peptide. A peptide differs substantially from the reference peptide if its primary amino acid sequence varies by more than three amino acids from the reference peptide or if its activation of cellular cGMP production is reduced by more than 50% compared to the reference peptide. Preferably, substantially similar peptides differ by no more than two amino acids and not by more than about 25% with respect to activating cGMP production. In preferred embodiments, the GCC agonist is a peptide comprising at least 12 amino acid residues, and most preferably comprising
between 12 and 26 amino acids. Non-limiting examples of such analogs of uroguanylin and bacterial ST peptides are described in Section 1.2 below. [50] The invention provides methods for treating or preventing certain diseases and disorders and methods for increasing gastrointestinal motility in a subject in need thereof by administering an effective amount of a GCC agonist formulation to the subject. The term "treating" as used herein refers to a reduction, a partial improvement, amelioration, or a mitigation of at least one clinical symptom associated with the gastrointestinal disorders being treated. The term "preventing" refers to an inhibition or delay in the onset or progression of at least one clinical symptom associated with the gastrointestinal disorders to be prevented. The term "effective amount" as used herein refers to an amount that provides some improvement or benefit to the subject. In certain embodiments, an effective amount is an amount that provides some alleviation, mitigation, and/or decrease in at least one clinical symptom of the gastrointestinal disorder to be treated. In other embodiments, the effective amount is the amount that provides some inhibition or delay in the onset or progression of at least one clinical symptom associated with the gastrointestinal disorder to be prevented. The therapeutic effects need not be complete or curative, as long as some benefit is provided to the subject. The term "subject" preferably refers to a human subject but may also refer to a non-human primate or other mammal preferably selected from among a mouse, a rat, a dog, a cat, a cow, a horse, or a pig. [51] In accordance with the methods of the present invention, the GCC agonist formulation can be administered alone or in combination with one or more additional therapeutic agents to prevent or treat inflammation, cancer and other disorders, particularly of the gastrointestinal tract. In a preferred embodiment, the GCC agonist formulation is administered for the treatment of chronic constipation. In one embodiment, the GCC agonist formulation is administered in combination with one or more additional therapeutic agents selected from the group consisting of phosphodiesterase inhibitors, cyclic nucleotides (such as cGMP and cAMP), a laxative (such as SENNA, METAMUCIL, MIRALAX, PEG, or calcium polycarbophil), a stool softener, an anti-tumor necrosis factor alpha therapy for IBD (such as REMICADE, ENBREL, or HUMAIRA), and anti-inflammatory drugs (such as COX-2 inhibitors, sulfasalazine, 5-ASA derivatives and NSAIDS). In certain embodiments, the GCC agonist formulation is administered in combination with an effective dose of an inhibitor of cGMP-specific phosphodiesterase (cGMP-PDE) either concurrently or sequentially with said GCC agonist. cGMP-PDE inhibitors include, for example, suldinac sulfone, zaprinast, motapizone, vardenifil, and sildenafil. In another embodiment, the GCC agonist formulation is administered in combination with inhibitors of cyclic nucleotide transporters. #### 1.1 Formulations - [52] The formulations of the invention contain one or more GCC agonist peptides described herein, in combination with one or more pharmaceutically acceptable carriers (also referred to as diluents) and/or excipients. In a preferred embodiment, the formulations of the invention include an inert carrier. The inert carrier is preferably non-hygroscopic. In one embodiment, the carrier in the formulation contains few or no reducing sugars and is substantially free of contaminants including, but not limited to, iron, peroxide, and formaldehyde. In one embodiment, the carrier is selected from the group consisting of sorbitol, mannitol, EMDEX, and starch. In one embodiment, the carrier is mannitol (e.g., MANNOGEM) or microcrystalline cellulose (e.g. PROSOLV, CELPHERE, CELPHERE beads). - [53] The low-dose formulations of the invention contain no greater than 10 mg per unit dose of a GCC agonist peptide. The remainder of the formulation is comprised of the carrier and one or more optional excipients. In one embodiment, the amount of carrier is at least 90% of the total weight of the formulation. In another embodiment, the amount of carrier is at least 95% or at least 98% of the total weight of the formulation. In one embodiment, the amount of carrier is between 90 and 99.9% of the total weight of the formulation. In one embodiment, the one or more optional excipients comprise a disintegrant which is present at 1 to 5% of the total weight of the formulation. In one embodiment, the one or more optional excipients comprise a lubricant which is present at 0.02 to 5% of the total weight of the formulation. In one embodiment, the one or more optional excipients comprise an amino acid such as arginine, leucine, isoleucine, valine, histidine, phenylalanine, alanine, glutamic acid, aspartic acid, glutamine, methionine, asparagine, tyrosine, threonine, tryptophan, or glycine, which is present at 0.1 to 4% (e.g., 0.1-1%) of the total weight of the formulation. In one embodiment, the molar ratio between the amino acid and the GCC agonist peptide is from about 2:1 to about 30:1 or about 2:1 to about 20:1 (e.g., 5:1). In one embodiment, the one or more optional excipients comprise a stabilizer such as a divalent cation salt, more specifically, a water-soluble divalent cation salt (e.g., calcium chloride, magnesium chloride, zinc chloride, manganese chloride, or calcium ascorbate), which is present at 0.1 to 12% (e.g., 0.1-4%) of the total weight of the formulation. In one embodiment, the molar ratio between the salt and the GCC agonist peptide is from about 5:1 to about 20:1 (e.g., 10:1). - [54] The formulations may contain other additives as needed, including for example lactose, glucose, fructose, galactose, trehalose, sucrose, maltose, raffnose, maltitol, melezitose, stachyose, lactitol, palatinite, starch, xylitol, mannitol, myoinositol, and the like, and hydrates thereof, and amino acids, for example alanine, glycine and betaine, and polypeptides and proteins, for example albumen. - Further examples of pharmaceutically acceptable carriers and excipients include, but are not limited to binders, fillers, disintegrants, lubricants, anti-microbial agents, antioxidant, and coating agents such as: BINDERS: corn starch, potato starch, other starches, gelatin, natural and synthetic gums such as acacia, xanthan, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone (e.g., povidone, crospovidone, copovidone, etc), methyl cellulose, Methocel, pre-gelatinized starch (e.g., STARCH 1500® and STARCH 1500 LM®, sold by Colorcon, Ltd.), hydroxypropyl methyl cellulose, microcrystalline cellulose (FMC Corporation, Marcus Hook, PA, USA), Emdex, Plasdone, or mixtures thereof, FILLERS: tale, calcium carbonate (e.g., granules or powder), dibasic calcium phosphate, tribasic calcium phosphate, calcium sulfate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, dextrose, fructose, honey, lactose anhydrate, lactose monohydrate, lactose and aspartame, lactose and cellulose, lactose and microcrystalline cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose & amp; guar gum, molasses, sucrose, or mixtures thereof, DISINTEGRANTS: agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate (such as Explotab), potato or tapioca starch, other starches, pre-gelatinized starch, clays, other algins, other celluloses, gums (like gellan), low-substituted hydroxypropyl cellulose, ployplasdone, or mixtures thereof, LUBRICANTS: calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, compritol, stearic acid, sodium lauryl sulfate, sodium stearyl fumarate (such as Pruy), vegetable based fatty acids lubricant, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil), zinc stearate, ethyl oleate, ethyl laurate, agar, syloid silica gel (AEROSIL 200, W.R. Grace Co., Baltimore, MD USA), a coagulated aerosol of synthetic silica (Deaussa Co., Piano, TX USA), a pyrogenic silicon dioxide (CAB-O-SIL, Cabot Co., Boston, MA USA), or mixtures thereof, ANTI-CAKING AGENTS: calcium silicate, magnesium silicate, silicon dioxide, colloidal silicon dioxide, talc, or mixtures thereof, ANTIMICROBIAL AGENTS: benzalkonium chloride, benzethonium chloride, benzoic acid, benzyl alcohol, butyl paraben, cetylpyridinium chloride, cresol, chlorobutanol, dehydroacetic acid, ethylparaben, methylparaben, phenol, phenylethyl alcohol, phenoxyethanol, phenylmercuric acetate, phenylmercuric nitrate, potassium sorbate, propylparaben, sodium benzoate, sodium dehydroacetate, sodium propionate, sorbic acid, thimersol, thymo, or mixtures thereof, ANTOXIDANTS: ascorbic acid, BHA, BHT, EDTA, or mixture thereof, and COATING AGENTS: sodium carboxymethyl cellulose, cellulose acetate phthalate, ethylcellulose, gelatin, pharmaceutical glaze, hydroxypropyl cellulose, hydroxypropyl methylcellulose (hypromellose), hydroxypropyl methyl cellulose phthalate, methylcellulose, polyethylene glycol, polyvinyl acetate phthalate, shellac, sucrose, titanium dioxide, carnauba wax, microcrystalline wax, gellan gum, maltodextrin, methacrylates, microcrystalline cellulose and carrageenan or mixtures thereof. - [56] The formulation can also include other excipients and categories thereof including but not limited to Pluronic®, Poloxamers (such as Lutrol® and Poloxamer 188), ascorbic acid, glutathione, protease inhibitors (e.g. soybean trypsin inhibitor, organic acids), pH lowering
agents, creams and lotions (like maltodextrin and carrageenans); materials for chewable tablets (like dextrose, fructose, lactose monohydrate, lactose and aspartame, lactose and cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose and guar gum, sorbitol crystalline); parenterals (like mannitol and povidone); plasticizers (like dibutyl sebacate, plasticizers for coatings, polyvinylacetate phthalate); powder lubricants (like glyceryl behenate); soft gelatin capsules (like sorbitol special solution); spheres for coating (like sugar spheres); spheronization agents (like glyceryl behenate and microcrystalline cellulose); suspending/gelling agents (like carrageenan, gellan gum, mannitol, microcrystalline cellulose, povidone, sodium starch glycolate, xanthan gum); sweeteners (like aspartame, aspartame and lactose, dextrose, fructose, honey, maltodextrin, maltose, mannitol, molasses, sorbitol crystalline, sorbitol special solution, sucrose); wet granulation agents (like calcium carbonate, lactose anhydrous, lactose monohydrate, maltodextrin, mannitol, microcrystalline cellulose, povidone, starch), caramel, carboxymethylcellulose sodium, cherry cream flavor and cherry flavor, citric acid anhydrous, citric acid, confectioner's sugar, D&C Red No. 33, D&C Yellow #10 Aluminum Lake, disodium edetate, ethyl alcohol 15%, FD&C Yellow No. 6 aluminum lake, FD&C Blue # 1 Aluminum Lake, FD&C Blue No. 1, FD&C blue no. 2 aluminum lake, FD&C Green No.3, FD&C Red No. 40, FD&C Yellow No. 6 Aluminum Lake, FD&C Yellow No. 6, FD&C Yellow No. 10, glycerol palmitostearate, glyceryl monostearate, indigo carmine, lecithin, manitol, methyl and propyl parabens, mono ammonium glycyrrhizinate, natural and artificial orange flavor, pharmaceutical glaze, poloxamer 188, Polydextrose, polysorbate 20, polysorbate 80, polyvidone, pregelatinized corn starch, pregelatinized starch, red iron oxide, saccharin sodium, sodium carboxymethyl ether, sodium chloride, sodium citrate, sodium phosphate, strawberry flavor, synthetic black iron oxide, synthetic red iron oxide, titanium dioxide, and white wax. - [57] Solid oral dosage forms may optionally be treated with coating systems (e.g. Opadry® fx film coating system, for example Opadry® blue (OY-LS-20921), Opadry® white (YS-2-7063), Opadry® white (YS-1-7040), and black ink (S-1-8 106). - [58] The agents either in their free form or as a salt can be combined with a polymer such as polylactic-glycoloic acid (PLGA), poly-(I)-lactic-glycolic-tartaric acid (P(I)LGT) (WO 01/12233), polyglycolic acid (U.S. 3,773,919), polylactic acid (U.S. 4,767,628), poly(εcaprolactone) and poly(alkylene oxide) (U.S. 20030068384) to create a sustained release formulation. Other sustained release formulations and polymers for use in the compositions and methods of the invention are described in EP 0 467 389 A2, WO 93/24150, U.S. 5,612,052, WO 97/40085, WO 03/075887, WO 01/01964A2, U.S. 5,922,356, WO 94/155587, WO 02/074247A2, WO 98/25642, U.S. 5,968,895, U.S. 6,180,608, U.S. 20030171296, U.S. 20020176841, U.S. 5,672,659, U.S. 5,893,985, U.S. 5,134,122, U.S. 5,192,741, U.S. 5,192,741, U.S. 4,668,506, U.S. 4,713,244, U.S. 5,445,832 U.S. 4,931,279, U.S. 5,980,945, WO 02/058672, WO 97/26015, WO 97/04744, and US20020019446. In such sustained release formulations microparticles (Delie and Blanco-Prieto 2005 Molecule 10:65-80) of polypeptide are combined with microparticles of polymer. U.S. 6,011,0 1 and WO 94/06452 describe a sustained release formulation providing either polyethylene glycols (i.e. PEG 300 and PEG 400) or triacetin. WO 03/053401 describes a formulation which may both enhance bioavailability and provide controlled releaseof the agent within the GI tract. Additional controlled release formulations are described in WO 02/38129, EP 326151, U.S. 5,236,704, WO 02/30398, WO 98/13029; U.S. 20030064105, U.S. 20030138488A1, U.S. 20030216307A1, U.S. 6,667,060, WO 01/49249, WO 01/49311, WO 01/49249, WO 01/49311, and U.S. 5,877,224 materials which may include those described in WO04041195 (including the seal and enteric coating described therein) and pH-sensitive coatings that achieve delivery in the colon including those described in US4,910,021 and WO9001329. US4910021 describes using a pH-sensitive material to coat a capsule. WO9001329 describes using pH-sensitive coatings on beads containing acid, where the acid in the bead core prolongs dissolution of the pH-sensitive coating. U. S. Patent No. 5,175,003 discloses a dual mechanism polymer mixture composed of pH-sensitive enteric materials and film-forming plasticizers capable of conferring permeability to the enteric material, for use in drug-delivery systems; a matrix pellet composed of a dual mechanism polymer mixture permeated with a drug and sometimes covering a pharmaceutically neutral nucleus; a membrane- coated pellet comprising a matrix pellet coated with a dual mechanism polymer mixture envelope of the same or different composition; and a pharmaceutical dosage form containing matrix pellets. The matrix pellet releases acid-soluble drugs by diffusion in acid pH and by disintegration at pH levels of nominally about 5.0 or higher. [59] The GCC peptides described herein may be formulated in the pH triggered targeted control release systems described in WO04052339. The agents described herein may be formulated according to the methodology described in any of WO03105812 (extruded hyrdratable polymers); WO0243767 (enzyme cleavable membrane translocators); WO03007913 and WO03086297 (mucoadhesive systems); WO02072075 (bilayer laminated formulation comprising pH lowering agent and absorption enhancer); WO04064769 (amidated polypeptides); WO05063156 (solid lipid suspension with pseudotropic and/or thixotropic properties upon melting); WO03035029 and WO03035041 (erodible, gastric retentive dosage forms); US5007790 and US5972389 (sustained release dosage forms); WO041 1271 1 (oral extended release compositions); WO05027878, WO02072033, and WO02072034 (delayed release compositions with natural or synthetic gum); WO05030182 (controlled release formulations with an ascending rate of release); WO05048998 (microencapsulation system); US Patent 5,952,314 (biopolymer); US5,108,758 (glassy amylose matrix delivery); US 5,840,860 (modified starch based delivery). JP10324642 (delivery system comprising chitosan and gastric resistant material such as wheat gliadin or zein); US 5,866,619 and US 6,368,629 (saccharide containing polymer); US 6,531,152 (describes a drug delivery system containing a water soluble core (Ca pectinate or other water-insoluble polymers) and outer coat which bursts (e.g. hydrophobic polymer-Eudragrit)); US 6,234,464; US 6,403,130 (coating with polymer containing casein and high methoxy pectin; WO0174 175 (Maillard reaction product); WO05063206 (solubility increasing formulation); WO040 19872 (transferring fusion proteins). - [60] The GCC peptides described herein may be formulated using gastrointestinal retention system technology (GIRES; Merrion Pharmaceuticals). GIRES comprises a controlled-release dosage form inside an inflatable pouch, which is placed in a drug capsule for oral administration. The capsule shell can be a HPMC capsule shell or Gelatin capsule shell. Upon dissolution of the capsule, a gas-generating system inflates the pouch in the stomach where it is retained for 16-24 hours, all the time releasing agents described herein. - [61] The GCC peptides described herein can also be formulated using the multi matrix system technology (MMX). - [62] The GCC peptides described herein can be formulated in an osmotic device including the ones disclosed in US 4,503,030, US 5,609,590 and US 5,358,502. US 4,503,030 discloses an osmotic device for dispensing a drug to certain pH regions of the gastrointestinal tract. More particularly, the invention relates to an osmotic device comprising a wall formed of a semi-permeable pH sensitive composition that surrounds a compartment containing a drug, with a passageway through the wall connecting the exterior of the device with the compartment. The device delivers the drug at a controlled rate in the region of the gastrointestinal tract having a pH of less than 3.5, and the device self- destructs and releases all its drug in the region of the gastrointestinal tract having a pH greater than 3.5, thereby providing total availability for drug absorption. U.S. Patent Nos. 5,609,590 and 5, 358,502 disclose an osmotic bursting device for dispensing a beneficial agent to an aqueous environment. The device comprises a beneficial agent and osmagent surrounded at least in part by a semi-permeable membrane. The beneficial agent may also function as the osmagent. The semi-permeable membrane is permeable to water and substantially impermeable to the beneficial agent and osmagent. A trigger means is attached to the semi-permeable membrane (e.g., joins two capsule halves). The trigger means is activated by a pH of from 3 to 9 and triggers the eventual, but sudden, delivery of the beneficial agent. These devices enable the pH-triggered release of the beneficial agent core as a bolus by osmotic bursting. [63] In one embodiment the formulation contains a GCC agonist peptide, mannitol, silicified microcrystalline cellulose, sodicum starch glycolate, and sodium stearyl fumarate. The GCC agonist is at a concentration of less than 5% w/w, less than 4%, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 0.23% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The mannitol is at a concentration of at least 60% w/w, at least 65% w/w, at least 70% w/w, at least 75% w/w, or at least 80% w/w. In some embodiments the mannitol is present at about 79% w/w (e.g., 79.77%). The mannitol is preferably Mannogem EZ. The silicified microcrystalline cellulose is at a concentration of at least 5% w/w, at least 10% w/w, or at
least 15% w/w. In some embodiments the concentration of the silicified microcrystalline cellulose is about 15% w/w. The silicified microcrystalline cellulose is preferably Prosolv SMCC 90 LM. The sodicum starch glycolate is at a concentration of at least 1% w/w, at least 2% w/w, at least 3% w/w, or at least 4% w/w. In some embodiments the concentration of the sodicum starch glycolate is about 4% w/w. The sodicum starch glycolate is preferably Explotab. The sodium stearyl fumarate is at a concentration of at least 0.2% w/w, at least 0.5% w/w, at least 0.7% w/w, at least 0.8% w/w, at least 0.9, or at least 1% w/w. In some embodiments the concentration of the sodium stearyl fumarate is about 1% w/w. The sodium stearyl fumarate is preferably Pruv. - [64] In one embodiment the formulation contains a GCC agonist peptide, silicified microcrystalline cellulose, and sodicum starch glycolate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 0.3% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The silicified microcrystalline cellulose is at a concentration of at least 10% w/w, at least 20% w/w, at least 30% w/w, at least 40% w/w, at least 50% w/w, at least 50% w/w. In some embodiments the concentration of the silicified microcrystalline cellulose is about 95.7% w/w. The silicified microcrystalline cellulose is preferably Prosolv SMCC 90 HD. The sodicum starch glycolate is at a concentration of at least 1% w/w, at least 2% w/w, at least 3% w/w, or at least 4% w/w. In some embodiments the concentration of the sodicum starch glycolate is 4% w/w. The sodicum starch glycolate is preferably Explotab. - In one embodiment the formulation contains a GCC agonist peptide, microcrystalline [65] cellulose, calcium chloride dihydrate, leucine, and hyrpomellose. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 0.3246% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The microcrystalline cellulose is at a concentration of at least 50% w/w, at least 60% w/w, at least 70% w/w, at least 80% w/w, at least 90% w/w, at least 95% w/w, or at least 99% w/w. In some embodiments the concentration of the microcrystalline cellulose is about 99.10% w/w. The microcrystalline cellulose is preferably Celphere SCP-100. The calcium chloride dihydrate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the calcium chloride dihydrate is about 0.2622% w/w. The leucine is at a concentration of at least 0.05% w/w, at least 0.1% w/w, at least 0.12% w/w, or at least 0.15% w/w. In some embodiments the concentration of leucine is about 0.12% w/w. The hypromellose is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the hypromellose is about 0.2% w/w. The hypromellose is preferably Methocel E5 PremLV. - [66] In one embodiment the formulation contains a GCC agonist peptide, microcrystalline cellulose, calcium chloride dihydrate, leucine, hypromellose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 0.36% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The microcrystalline cellulose is at a concentration of at least 50% w/w, at least 60% w/w, at least 70% w/w, at least 80% w/w, at least 90% w/w, at least 95% w/w, or at least 99% w/w. In some embodiments the concentration of the microcrystalline cellulose is about 98.75% w/w. The microcrystalline cellulose is preferably Avicel PH 102. The calcium chloride dihydrate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, at least 0.25% w/w, or at least 0.3% w/w. In some embodiments the concentration of the calcium chloride dihydrate is about 0.29% w/w. The leucine is at a concentration of at least 0.05% w/w, at least 0.1% w/w, at least 0.12% w/w, or at least 0.15% w/w. In some embodiments the concentration of leucine is about 0.13% w/w. The hypromellose is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the hypromellose is about 0.22% w/w. The hypromellose is preferably Methocel E5 PremLV. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is about 0.25% w/w. - [67] In one embodiment the formulation contains a GCC agonist peptide, microcrystalline cellulose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 0.32% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The microcrystalline cellulose is at a concentration of at least 50% w/w, at least 60% w/w, at least 70% w/w, at least 80% w/w, at least 90% w/w, at least 95% w/w, or at least 99% w/w. In some embodiments the concentration of the microcrystalline cellulose is about 99.43% w/w. The microcrystalline cellulose is preferably Avicel PH 102. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is about 0.25% w/w. - [68] In one embodiment the formulation contains a GCC agonist peptide, microcrystalline cellulose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 0.32% w/w, about 1.18% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The microcrystalline cellulose is at a concentration of at least 30% w/w, at least 40% w/w, at least 50% w/w, at least 60% w/w, at least 70% w/w, at least 80% w/w, at least 90% w/w, at least 95% w/w, or at least 99% w/w. In some embodiments the concentration of the microcrystalline cellulose is about 98.57 % w/w. The microcrystalline cellulose is preferably Avicel PH 102. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is about 0.25% w/w. - In one embodiment the formulation contains a GCC agonist peptide, microcrystalline cellulose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 1.18% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The microcrystalline cellulose is at a concentration of at least 30% w/w, at least 40% w/w, at least 50% w/w, at least 60% w/w, at least 70% w/w, at least 80% w/w, at least 99% w/w. In some embodiments the concentration of the microcrystalline cellulose is about 97.09 % w/w. The microcrystalline cellulose is preferably Avicel PH 112. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is about 0.25% w/w. - In one embodiment the formulation contains a GCC agonist peptide, trehalose granules, hypromellose, histidine, calcium ascorbate, trehalose powder, microcrystalline cellulose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 1.18% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The trehalose granules are at a concentration of at least 50% w/w, at least 55% w/w, at least 65% w/w, at least 70% w/w, or at least 75% w/w. In some embodiments the concentration of the trehalose granules is 55-75% w/w. In a particular embodiment, the concentration of the trehalose granules is 70.48% w/w. The hypromellose is at a concentration of at least 0.1% w/w, at least 0.2% w/w, at least 0.3% w/w, at least 0.4% w/w, or at least 0.5% w/w. In some embodiments the concentration of the hypromellose is 0.2-2% w/w. In a particular embodiment the concentration of the hypromellose about 0.5% w/w. The hypromellose is preferably Methocel ES Premium LV. The histine is a concentration of at least 0.6% w/w, at least 0.8% w/w, at least 0.9% w/w, at least 1% w/w, at least 3% w/w, or at least 5% w/w. In some embodiments the concentration of the histidine is 1-6% w/w. In a particular embodiment, the concentration of the arginine is 1.48% w/w. The calcium ascorbate is at a concentration of at least 0.05% w/w, at least 0.07% w/w, at least 0.09% w/w, or at least 0.1% w/w. In some embodiments the concentration of the calcium ascorbate is 0.05-10% w/w. In a particular embodiment, the concentration of the calcium ascorbate is about 0.1% w/w. The trehalose powder is at a concentration of at least 0.5% w/w, at least 0.7% w/w, at least 0.8% w/w, at least 0.9% w/w, at least 1% w/w, or at least 1.2% w/w. In some embodiments the concentration of the trehalose powder is 0.5-4%
w/w. In a particular embodiment, the concentration of the trehalose powder is 1.02% w/w. The microcrystalline cellulose is at a concentration of at least 10% w/w, at least 20% w/w, or at least 25% w/w. In some embodiments the concentration of the microcrystalline cellulose is 20-40% w/w. In a particular embodiment, the concentration of the microcrystalline cellulose is 25% w/w. The microcrystalline cellulose is preferably Avicel PH 200. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is 0.2-1% w/w. In a particular embodiment the concentration of the magnesium stearate is about 0.25% w/w. In one embodiment the formulation contains a GCC agonist peptide, trehalose granules, hypromellose, arginine, calcium ascorbate, trehalose powder, microcrystalline cellulose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 1.17% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The trehalose granules are at a concentration of at least 50% w/w, at least 55% w/w, at least 60% w/w, at least 65% w/w, at least 70% w/w, or at least 75% w/w. In some embodiments the concentration of the trehalose granules is 55-75% w/w. In a particular embodiment, the concentration of the trehalose granules is 70.31% w/w. The hypromellose is at a concentration of at least 0.1% w/w, at least 0.2% w/w, at least 0.3% w/w, at least 0.4% w/w, or at least 0.5% w/w. In some embodiments the concentration of the hypromellose is 0.2-2% w/w. In a particular embodiment the concentration of the hypromellose about 0.5% w/w. The hypromellose is preferably Methocel ES Premium LV. The arginine is a concentration of at least 0.5% w/w, at least 1% w/w, at least 1.5% w/w, or at least 2% w/w. In some embodiments the concentration of the arginine is 1-6% w/w. In a particular embodiment, the concentration of the arginine is 1.66% w/w. The calcium ascorbate is at a concentration of at least 0.05% w/w, at least 0.07% w/w, at least 0.09% w/w, or at least 0.1% w/w. In some embodiments the concentration of the calcium ascorbate is 0.05-10% w/w. In a particular embodiment, the concentration of the calcium ascorbate is about 0.1% w/w. The trehalose powder is at a concentration of at least 0.5% w/w, at least 0.7% w/w, at least 0.8% w/w, at least 0.9% w/w, at least 1% w/w, or at least 1.2% w/w. In some embodiments the concentration of the trehalose powder is 0.5-4% w/w. In a particular embodiment, the concentration of the trehalose powder is 1.02% w/w. The microcrystalline cellulose is at a concentration of at least 10% w/w, at least 20% w/w, or at least 25% w/w. In some embodiments the concentration of the microcrystalline cellulose is 20-40% w/w. In a particular embodiment, the concentration of the microcrystalline cellulose is 25% w/w. The microcrystalline cellulose is preferably Avicel PH 200. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is 0.2-1% w/w. In a particular embodiment the concentration of the magnesium stearate is about 0.25% w/w. In one embodiment the formulation contains a GCC agonist peptide, trehalose granules, hypromellose, TRIS, calcium ascorbate, trehalose powder, microcrystalline cellulose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 1.17% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The trehalose granules are at a concentration of at least 50% w/w, at least 55% w/w, at least 60% w/w, at least 65% w/w, at least 70% w/w, or at least 75% w/w. In some embodiments the concentration of the trehalose granules is 55-75% w/w. In a particular embodiment, the concentration of the trehalose granules is 70.81% w/w. The hypromellose is at a concentration of at least 0.1% w/w, at least 0.2% w/w, at least 0.3% w/w, at least 0.4% w/w, or at least 0.5% w/w. In some embodiments the concentration of the hypromellose is 0.2-2% w/w. In a particular embodiment the concentration of the hypromellose about 0.5% w/w. The hypromellose is preferably Methocel ES Premium LV. The TRIS is a concentration of at least 0.6% w/w, at least 0.8% w/w, at least 0.9% w/w, or at least 1% w/w. In some embodiments the concentration of the TRIS is 0.5-6% w/w. In a particular embodiment, the concentration of the arginine is 1.15% w/w. The calcium ascorbate is at a concentration of at least 0.05% w/w, at least 0.07% w/w, at least 0.1% w/w, or at least 1% w/w. In some embodiments the concentration of the calcium ascorbate is 0.05-10% w/w. In a particular embodiment, the concentration of the calcium ascorbate is about 0.1% w/w. The trehalose powder is at a concentration of at least 0.5% w/w, at least 0.7% w/w, at least 0.8% w/w, at least 0.9% w/w, at least 1% w/w, or at least 1.2% w/w. In some embodiments the concentration of the trehalose powder is 0.5-4% w/w. In a particular embodiment, the concentration of the trehalose powder is 1.02% w/w. The microcrystalline cellulose is at a concentration of at least 10% w/w, at least 20% w/w, or at least 25% w/w. In some embodiments the concentration of the microcrystalline cellulose is 20-40% w/w. In a particular embodiment, the concentration of the microcrystalline cellulose is 25% w/w. The microcrystalline cellulose is preferably Avicel PH 200. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is 0.2-1% w/w. In a particular embodiment the concentration of the magnesium stearate is about 0.25% w/w. - In one embodiment the formulation contains a GCC agonist peptide, microcrystalline cellulose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 1.10% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The microcrystalline cellulose is at a concentration of at least 30% w/w, at least 40% w/w, at least 50% w/w, at least 60% w/w, at least 70% w/w, at least 80% w/w, at least 90% w/w, at least 95% w/w, or at least 99% w/w. In some embodiments the concentration of the microcrystalline cellulose is about 98.64 % w/w. The microcrystalline cellulose is preferably Avicel PH 102. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is about 0.25% w/w. - [74] In one embodiment the formulation contains a GCC agonist peptide, microcrystalline cellulose, and magnesium stearate. The GCC agonist is at a concentration of less than 5% w/w, less than 4% w/w, less than 3% w/w, less than 2% w/w, less than 1% w/w, less than 0.5% w/w, or less than 0.25% w/w. In some embodiments the GCC peptide is at a concentration of about 3.32% w/w. The GCC peptide is preferably SEQ NO: 1 or SEQ NO: 9. The microcrystalline cellulose is at a concentration of at least 30% w/w, at least 40% w/w, at least 50% w/w, at least 60% w/w, at least 70% w/w, at least 80% w/w, at least 90% w/w, at least 95% w/w, or at least 99% w/w. In some embodiments the concentration of the microcrystalline cellulose is about 96.43 % w/w. The microcrystalline cellulose is preferably Avicel PH 102. The magnesium stearate is at a concentration of at least 0.1% w/w, at least 0.15% w/w, at least 0.2% w/w, or at least 0.25% w/w. In some embodiments the concentration of the magnesium stearate is about 0.25% w/w. ## 1.2 GCC Agonists - [75] The GCC agonists for use in the formulations and methods of the invention bind to guanylate cyclase C and stimulate intracellular production of cGMP. Optionally, the GCC agonists induce apoptosis and inhibit proliferation of epithelial cells. The term, "guanylate cyclase C" refers to a transmembrane form of guanylate cyclase that acts as the intestinal receptor for the heat-stable toxin (ST) peptides secreted by enteric bacteria. Guanylate cyclase C is also the receptor for the naturally occurring peptides guanylin and uroguanylin. The possibility that there may be different receptors for each of these peptides has not been excluded. Hence, the term "guanylate cyclase C" may also encompass a class of transmembrane guanylate cyclase receptors expressed on epithelial cells lining the gastrointestinal mucosa. - [76] The term "GCC agonist" refers to both peptides and non-peptide compounds such as that bind to an intestinal guanylate cyclase C and stimulate the intracellular production of cGMP. Where the GCC agonist is a peptide, the term encompasses biologically active fragments of such peptides and pro-peptides that bind to guanylate cyclase C and stimulate the intracellular production of cGMP. - [77] Preferably, the GCC agonists for use in the formulations and methods of the invention stimulate intracellular cGMP production at higher levels than naturally occurring GCC agonists such as uroguanylin, guanylin, and ST peptides. In some embodiments, the GCC agonists stimulate intracellular cGMP production at higher levels than the peptide designated SP-304 (SEQ ID NO:1). In specific embodiments, a GCC agonist for use in the formulations and methods of the invention stimulates 5%, 10%, 20%, 30%, 40%, 50%, 75%, 90% or more intracellular cGMP compared to uroguanylin,
guanylin, lymphoguanylin, linaclotide, ST peptides, or SP-304. The terms "induce" and "stimulate" are used interchangeably throughout the specification. - Preferably, the GCC agonists for use in the formulations and methods of the invention are more stable than naturally occurring GCC agonists such as uroguanylin, guanylin, and ST peptides. In some embodiments, the GCC agonists are more stable than the peptide designated SP-304. "Stability" in this context refers to resistance to degradation in gastrointestinal fluid and/or intestinal fluid (or simulated gastrointestinal or intestinal fluids) compared to the reference peptide. For example, the GCC agonists for use in the formulations and methods of the invention preferably degrade 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 75%, 90% or less compared to naturally occurring GCC angonists and/or SP-304. - The GCC agonists for use in the formulations and methods of the invention are preferably peptides. In some embodiments, the GCC agonist peptide is less than 30 amino acids in length. In particular embodiments, the GCC agonist peptide is less than or equal to 30, 25, 20, 15, 14, 13, 12, 11, 10, or 5 amino acids in length. Examples of GCC agonist peptides for use in the formulations and methods of the invention include those described in U.S. Serial Nos.: 12/133,344, filed June 4, 2008, 12/478505, filed June 4, 2009; 12/478511, filed June 4, 2009; 12/504288, filed July 16, 2009; and U.S. Provisional Application Serial Nos.: 60/933194, filed June 4, 2007; 61/058,888, filed June 4, 2008; 61/058,892, filed June 4, 2008; and 61/081,289, filed July 16, 2008, each of which is incorporated by reference herein in its entirety. - [80] Specific examples of GCC agonist peptides for use in the formulations and methods of the invention include those described in Tables I-VII below. As used Tables I-VII, the terms "PEG3" or "3PEG" refer to a polyethylene glycol such as aminoethyloxy-ethyloxy-acetic acid (AeeA), and polymers thereof. The term "X_{aa}" refers to any natural or unnatural amino acid or amino acid analogue. The term "M_{aa}" refers to a cysteine (Cys), penicillamine (Pen) homocysteine, or 3-mercaptoproline. The term "Xaa_{n1}" is meant to denote an amino acid sequence of any natural or unnatural amino acid or amino acid analogue that is one, two or three residues in length; Xaa_{n2} is meant to denote an amino acid sequence that is zero or one residue in length; and Xaa_{n3} is meant to denote an amino acid sequence zero, one, two, three, four, five or six residues in length. Additionally, any amino acid represented by Xaa, Xaa_{n1}, Xaa_{n2}, or Xaa_{n3} may be an L-amino acid, a D-amino acid, a methylated amino acid or any combination of thereof. Optionally, any GCC agonist peptide represented by Formulas I to XX in the tables may contain on or more polyethylene glycol residues at the the N-terminus, C-terminus or both. - [81] In certain embodiments, a GCC agonist formulation of the invention comprises a peptide selected from SEQ ID NOs: 1-249, the sequences of which are set forth below in Tables I to VII below. In one embodiment, a GCC agonist formulation comprises the peptide designated by SEQ ID NOs:1, 8, 9, 55, or 56. - [82] In certain embodiments, a GCC agonist formulation of the invention comprises a peptide that is substantially equivalent to a peptide selected from SEQ ID NOs: 1-249. The term "substantially equivalent" refers to a peptide that has an amino acid sequence equivalent to that of the binding domain where certain residues may be deleted or replaced with other amino acids without impairing the peptide's ability to bind to an intestinal guanylate cyclase receptor and stimulate fluid and electrolyte transport. ## 1.2.1 GCC Agonist Peptides - [83] In a preferred embodiment, the GCC agonists for use in the formulations and methods of the invention are GCC agonist peptides. In certain embodiments, the GCC agonist peptides are analogues of uroguanylin or a bacterial ST peptide. Uroguanylin is a circulating peptide hormone with natriuretic activity. An ST peptide is a member of a family of heat stable enterotoxins (ST peptides) secreted by pathogenic strains of *E. coli* and other enteric bacteria that activate guanylate cyclase receptor and cause secretory diarrhea. Unlike bacterial ST peptides, the binding of uroguanylin to guanylate cyclase receptor is dependent on the physiological pH of the gut. Therefore, uroguanylin is expected to regulate fluid and electrolyte transport in a pH dependent manner and without causing severe diarrhea. - [84] The GCC agonist peptides for use in the formulations and methods of the invention can be polymers of L-amino acids, D-amino acids, or a combination of both. For example, in various embodiments, the peptides are D retro-inverso peptides. The term "retro-inverso isomer" refers to an isomer of a linear peptide in which the direction of the sequence is reversed and the chirality of each amino acid residue is inverted. *See*, *e.g.*, Jameson *et al.*, *Nature*, 368, 744-746 (1994); Brady *et al.*, Nature, 368, 692-693 (1994). The net result of combining D-enantiomers and reverse synthesis is that the positions of carbonyl and amino groups in each amide bond are exchanged, while the position of the side-chain groups at each alpha carbon is preserved. Unless specifically stated otherwise, it is presumed that any given L-amino acid sequence of the invention may be made into a D retro-inverso peptide by synthesizing a reverse of the sequence for the corresponding native L-amino acid sequence. - [85] The GCC agonist peptides for use in the formulations and methods of the invention are able to induce intracellular cGMP production in cells and tissues expressing guanylate cyclase C. In certain embodiments, the GCC agonist peptide stimulates 5%, 10%, 20%, 30%, 40%, 50%, 75%, 90% or more intracellular cGMP compared to naturally occurring GCC agonists such as uroguanylin, guanylin, or ST peptides. Optionally, the GCC agonist peptide stimulates 5%, 10%, 20%, 30%, 40%, 50%, 75%, 90% or more intracellular cGMP compared SP-304 (SEQ ID NO:1). In further embodiments, the GCC agonist peptide stimulates apoptosis, *e.g.*, programmed cell death, or activate the cystic fibrosis transmembrane conductance regulator (CFTR). - [86] In some embodiments, the GCC agonist peptides for use in the formulations and methods of the invention are more stable than naturally occurring GCC agonists and/or SP-304 (SEQ ID NO:1), SP-339 (linaclotide) (SEQ ID NO: 55) or SP-340 (SEQ ID NO: 56). For example, the GCC agonist peptide degrades 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 75%, 90% or less compared to naturally occurring GCC agonists and/or SP-304, SP-339 (linaclotide) or SP-340. In certain embodiments, the GCC agonist peptides for use in the formulations and methods of the invention are more stable to proteolytic digestion than naturally occurring GCC agonists and/or SP-304 (SEQ ID NO:1), SP-339 (linaclotide) (SEQ ID NO: 55) or SP-340 (SEQ ID NO: 56). In one embodiment, a GCC agonist peptide is pegylated in order to render the peptides more resistant towards protealysis by enzymes of the gastrointestinal tract. In a preferred embodiment, the GCC agonist peptide is pegylated with the aminoethyloxy-ethyloxy-acetic acid (Aeea) group at its C-terminal end, at its N-terminal end, or at both termini. - [87] Specific examples of GCC agonist peptides that can be used in the methods and formulations of the invention include a peptide selected from the group designated by SEQ ID NOs: 1-249. - [88] In one embodiment, the GCC agonist peptide is a peptide having the amino acid sequence of any one of Formulas X- XVII (e.g. SEQ ID NO:87-98). - [89] In some embodiments, GCC agonist peptides include peptides having the amino acid sequence of Formula I, wherein at least one amino acid of Formula I is a D-amino acid or a methylated amino acid and/or the amino acid at position 16 is a serine. Preferably, the amino acid at position 16 of Formula I is a D-amino acid or a methylated amino acid. For example, the amino acid at position 16 of Formula I is a d-leucine or a d-serine. Optionally, one or more of the amino acids at positions 1-3 of Formula I are D-amino acids or methylated amino acids or a combination of D-amino acids or methylated amino acids. For example, Asn¹, Asp² or Glu³ (or a combination thereof) of Formula I is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position Xaa⁶ of Formula I is a leucine, serine or tyrosine. - [90] In alternative embodiments, GCC agonist peptides include peptides having the amino acid sequence of Formula II, wherein at least one amino acid of Formula II is a D-amino acid or a methylated amino acid. Preferably, the amino acid denoted by Xaa_{n2} of Formula II is a D-amino acid or a methylated amino acid. In some embodiments, the amino acid denoted by Xaa_{n2} of Formula II is a leucine, a d-leucine, a serine, or a d-serine. Preferably, the one or more amino acids denoted by Xaa_{n1} of Formula II is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position Xaa⁶ of Formula II is a leucine, a serine, or a tyrosine. - [91] In some embodiments, GCC agonist peptides include peptides having the amino acid sequence of Formula III, wherein at least one amino acid of Formula III is a D-amino acid or a methylated amino acid and/or Maa is not a cysteine. Preferably, the amino acid denoted by Xaa_{n2} of Formula III is a D-amino acid or a methylated amino acid. In some embodiments the amino acid denoted by Xaa_{n2} of Formula III is a leucine, a d-leucine, a serine, or a d-serine. Preferably, the one or more amino acids denoted by Xaa_{n1} of Formula III is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position Xaa⁶ of Formula III is a leucine, a serine, or a tyrosine. - [92] In other embodiments, GCC agonist peptides include peptides having the amino acid sequence of
Formula IV, wherein at least one amino acid of Formula IV is a D-amino acid or a methylated amino acid, and/or Maa is not a cysteine. Preferably, the Xaan2 of Formula IV is a D-amino acid or a methylated amino acid. In some embodiments, the amino acid denoted by Xaan2 of Formula IV is a leucine, a d-leucine, a serine, or a d-serine. Preferably, the one or more of the amino acids denoted by Xaan1 of Formula IV is a D-amino acid or a methylated amino acid. Preferably, the amino acid denoted Xaa⁶ of Formula IV is a leucine, a serine, or a tyrosine. - [93] In further embodiments, GCC agonist peptides include peptides having the amino acid sequence of Formula V, wherein at at least one amino acid of Formula V is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position 16 of Formula V is a D-amino acid or a methylated amino acid. For example, the amino acid at position 16 (i.e., Xaa¹⁶) of Formula V is a d-leucine or a d-serine. Optionally, one or more of the amino acids at position 1-3 of Formula V are D-amino acids or methylated amino acids or a combination of D-amino acids or methylated amino acids. For example, Asn¹, Asp² or Glu³ (or a combination thereof) of Formula V is a D-amino acids or a methylated amino acid. Preferably, the amino acid denoted at Xaa⁶ of Formula V is a leucine, a serine, or a tyrosine. - [94] In additional embodiments, GCC agonist peptides include peptides having the amino acid sequence of Formula VI, VII, VIII, or IX. Preferably, the amino acid at position 6 of Formula VI, VII, VIII, or IX is a leucine, a serine, or a tyrosine. In some aspects the amino acid at position 16 of Formula VI, VII, VIII, or IX is a leucine or a serine. Preferably, the amino acid at position 16 of Formula V is a D-amino acid or a methylated amino acid. - [95] In additional embodiments, GCC agonist peptides include peptides having the amino acid sequence of Formula X, XI, XII, XIII, XIV, XV, XVI or XVII. Optionally, one or more amino acids of Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-amino acid or a methylated amino acid. Preferably, the amino acid at the carboxy terminus of the peptides according to Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-amino acid or a methylated amino acid. For example the the amino acid at the carboxy terminus of the peptides according to Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-tyrosine. - [96] Preferably, the amino acid denoted by Xaa⁶ of Formula XIV is a tyrosine, phenyalanine or a serine. Most preferably the amino acid denoted by Xaa⁶ of Formula XIV is a phenyalanine or a serine. Preferably, the amino acid denoted by Xaa⁴ of Formula XV, XVI or XVII is a tyrosine, a phenyalanine, or a serine. Most preferably, the amino acid position Xaa⁴ of Formula V, XVI or XVII is a phenyalanine or a serine. - [97] In some embodiments, GCRA peptides include peptides containing the amino acid sequence of Formula XVIII. Preferably, the amino acid at position 1 of Formula XVIII is a glutamic acid, aspartic acid, glutamine or lysine. Preferably, the amino acid at position 2 and 3 of Formula XVIII is a glutamic acid, or an aspartic acid. Preferably, the amino acid at position 5 a glutamic acid. Preferably, the amino acid at position 6 of Formula XVIII is an isoleucine, valine, serine, threonine or tyrosine. Preferably, the amino acid at position 9 of Formula XVIII is a valine or isoleucine. Preferably, the amino acid at position 9 of Formula XVIII is a an asparagine. Preferably, the amino acid at position 10 of Formula XVIII is a valine or an methionine. Preferably, the amino acid at position 11 of Formula XVIII is an alanine. Preferably, the amino acid at position 13 of Formula XVIII is a threonine. Preferably, the amino acid at position 14 of Formula XVIII is a glycine. Preferably, the amino acid at position 16 of Formula XVIII is a leucine, serine or threonine - In alternative embodiments, GCRA peptides include peptides containing the amino acid sequence of Formula XIX. Preferably, the amino acid at position 1 of Formula XIX is a serine or asparagine. Preferably, the amino acid at position 2 of Formula XIX is a histidine or an aspartic acid. Preferably, the amino acid at position 3 of Formula XIX is a threonine or a glutamic acid. Preferably, the amino acid at position 5 of Formula XIX is a glutamic acid. Preferably, the amino acid at position 6 of Formula XIX is an isoleucine, leucine, valine or tyrosine. Preferably, the amino acid at position 8, 10, 11, or 13 of Formula XIX is a alanine. Preferably, the amino acid at position 9 of Formula XIX is an asparagine or a phenylalanine. Preferably, the amino acid at position 14 of Formula XIX is a glycine. - [99] In further embodiments, GCRA peptides include peptides containing the amino acid sequence of Formula XX. Preferably, the amino acid at position 1 of Formula XX is a glutamine. Preferably, the amino acid at position 2 or 3 of Formula XX is a glutamic acid or a aspartic acid. Preferably, the amino acid at position 5 of Formula XX is a glutamic acid. Preferably, the amino acid at position 6 of Formula XX is threonine, glutamine, tyrosine, isoleucine, or leucine. Preferably, the amino acid at position 9 of Formula XX is asparagine. Preferably, the amino acid at position 10 of Formula XX is methionine or valine. Preferably, the amino acid at position 11 of Formula XX is alanine. Preferably, the amino acid at position 13 of Formula XX is a threonione. Preferably, the amino acid at position 1 of Formula XX is a glycine. Preferably, the amino acid at position 15 of Formula XX is a tyrosine. Optionally, the amino acid at position 15 of Formula XX is two amino acid in length and is Cysteine (Cys), Penicillamine (Pen) homocysteine, or 3-mercaptoproline and serine, leucine or threonine. [100] In certain embodiments, one or more amino acids of the GCC agonist peptides are replaced by a non-naturally occurring amino acid or a naturally or non-naturally occurring amino acid analog. Such amino acids and amino acid analogs are known in the art. See, for example, Hunt, "The Non-Protein Amino Acids," in Chemistry and Biochemistry of the Amino Acids, Barrett, Chapman and Hall, 1985. In some embodiments, an amino acid is replaced by a naturally-occurring, non-essential amino acid, e.g., taurine. Non-limiting examples of naturally occurring amino acids that can be replaced by non-protein amino acids include the following: (1) an aromatic amino acid can be replaced by 3,4-dihydroxy-Lphenylalanine, 3-iodo-L-tyrosine, triiodothyronine, L-thyroxine, phenylglycine (Phg) or nortyrosine (norTyr); (2) Phg and norTyr and other amino acids including Phe and Tyr can be substituted by, e.g., a halogen, -CH3, -OH, -CH2NH3, -C(O)H, -CH2CH3, - CN, -CH2CH2CH3, -SH, or another group; (3) glutamine residues can be substituted with gamma-Hydroxy-Glu or gamma- Carboxy-Glu; (4) tyrosine residues can be substituted with an alpha substituted amino acid such as L-alpha-methylphenylalanine or by analogues such as: 3-Amino-Tyr; Tyr(CH3); Tyr(PO3(CH3)2); Tyr(SO3H); beta-Cyclohexyl-Ala; beta-(l-Cyclopentenyl)-Ala; beta-Cyclopentyl-Ala; beta-Cyclopropyl-Ala; beta-Quinolyl-Ala; beta-(2-Thiazolyl)-Ala; beta-(Triazole-l-yl)-Ala; beta-(2-Pyridyl)-Ala; beta-(3-Pyridyl)-Ala; Amino-Phe; Fluoro-Phe; Cyclohexyl-Gly; tBu-Gly; beta-(3-benzothienyl)-Ala; beta-(2thienyl)-Ala; 5-Methyl-Trp; and A- Methyl-Trp; (5) proline residues can be substituted with homopro (L-pipecolic acid); hydroxy-Pro; 3,4-Dehydro-Pro; 4-fluoro-Pro; or alpha-methyl-Pro or an N(alpha)-C(alpha) cyclized amino acid analogues with the structure: n = 0, 1, 2, 3; and (6) alanine residues can be substituted with alpha-substitued or N-methylated amino acid such as alpha-amino isobutyric acid (aib), L/D-alpha-ethylalanine (L/D-isovaline), L/Dmethylvaline, or L/D-alpha-methylleucine or a non-natural amino acid such as beta-fluoro-Ala. Alanine can also be substituted with: n = 0, 1, 2, 3 Glycine residues can be substituted with alpha-amino isobutyric acid (aib) or L/D-alpha- ethylalanine (L/D-isovaline). [101] Further examples of non-natural amino acids include: an unnatural analog of tyrosine; an unnatural analogue of glutamine; an unnatural analogue of phenylalanine; an unnatural analogue of serine; an unnatural analogue of threonine; an alkyl, aryl, acyl, azido, cyano, halo, hydrazine, hydrazide, hydroxyl, alkenyl, alkynl, ether, thiol, sulfonyl, seleno, ester, thioacid, borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, hydroxylamine, keto, or amino substituted amino acid, or any combination thereof; an amino acid with a photoactivatable cross-linker; a spin-labeled amino acid; a fluorescent amino acid; an amino acid with a novel functional group; an amino acid that covalently or noncovalently interacts with another molecule; a metal binding amino acid; an amino acid that is amidated at a site that is not naturally amidated, a metal-containing amino acid; a radioactive amino acid; a photocaged and/or photoisomerizable amino acid; a biotin or biotinanalogue containing amino acid; a glycosylated or carbohydrate modified amino acid; a keto containing amino acid; amino acids comprising polyethylene glycol or polyether; a heavy atom substituted amino acid (e.g., an amino acid containing deuterium, tritium, ¹³C, ¹⁵N, or ¹⁸O); a chemically cleavable or photocleavable amino acid; an amino acid with an elongated side chain; an amino acid containing a toxic group; a sugar substituted amino acid, e.g., a sugar substituted serine or the like; a carbon-linked sugar-containing amino acid; a redoxactive amino acid; an α-hydroxy containing acid; an amino thio acid containing amino acid; an α , α disubstituted amino acid; a β - amino acid; a cyclic amino acid other than proline; an O-methyl-L-tyrosine; an L-3-(2- naphthyl)alanine; a 3-methyl-phenylalanine; a ρ-acetyl-Lphenylalanine; an O-4-allyl-L-tyrosine; a 4-propyl-L-tyrosine; a
tri-O-acetyl-GlcNAc β serine; an L-Dopa; a fluorinated phenylalanine; an isopropyl-L-phenylalanine; a p-azido-Lphenylalanine; a p-acyl-L-phenylalanine; a p- benzoyl-L-phenylalanine; an L-phosphoserine; a phosphonoserine; a phosphonotyrosine; a p-iodo-phenylalanine; a 4-fluorophenylglycine; a p-bromophenylalanine; a p-amino-L- phenylalanine; an isopropyl-L-phenylalanine; L-3-(2naphthyl)alanine; D- 3-(2-naphthyl)alanine (dNal); an amino-, isopropyl-, or O-allylcontaining phenylalanine analogue; a dopa, 0-methyl-L-tyrosine; a glycosylated amino acid; a p-(propargyloxy)phenylalanine; dimethyl-Lysine; hydroxy-proline; mercaptopropionic acid; methyl-lysine; 3-nitro-tyrosine; norleucine; pyro-glutamic acid; Z (Carbobenzoxyl); ε-Acetyl-Lysine: β-alanine; aminobenzoyl derivative; aminobutyric acid (Abu); citrulline; aminohexanoic acid; aminoisobutyric acid (AIB); cyclohexylalanine; d-cyclohexylalanine; hydroxyproline; nitro-arginine; nitro-phenylalanine; nitro-tyrosine; norvaline; octahydroindole carboxylate; ornithine (Orn); penicillamine (PEN); tetrahydroisoquinoline; acetamidomethyl protected amino acids and pegylated amino acids. Further examples of unnatural amino acids and amino acid analogs can be found in U.S. 20030108885, U.S. 20030082575, US20060019347 (paragraphs 410-418) and the references cited therein. The polypeptides of the invention can include further modifications including those described in US20060019347, paragraph 589. Exempary GCC agonist peptides which include a non-naturally occurring amino acid include for example SP-368 and SP-369. [102] In some embodiments, the GCC agonist peptides are cyclic peptides. GCC agonist cyclic peptides can be prepared by methods known in the art. For example, macrocyclization is often accomplished by forming an amide bond between the peptide N- and C-termini, between a side chain and the N- or C-terminus [e.g., with K₃Fe(CN)₆ at pH 8.5] (Samson et al., Endocrinology, 137: 5182-5185 (1996)), or between two amino acid side chains, such as cysteine. See, e.g., DeGrado, Adv Protein Chem, 39: 51-124 (1988). In various embodiments, the GCC agonist peptides are [4,12; 7,15] bicycles. [103] In certain embodiments, one or both Cys residues which normally form a disulfide bond in a GCC agonist peptide are replaced with homocysteine, penicillamine, 3-mercaptoproline (Kolodziej *et al.* 1996 *Int. J. Pept. Protein Res.* 48:274), β, β dimethylcysteine (Hunt *et al.* 1993 *Int. J. Pept. Protein Res.* 42:249), or diaminopropionic acid (Smith *et al.* 1978 *J. Med. Chem.* 2 1:117) to form alternative internal cross-links at the positions of the normal disulfide bonds. [104] In certain embodiments, one or more disulfide bonds in a GCC agonist peptide are replaced by alternative covalent cross-links, *e.g.*, an amide linkage (-CH₂CH(O)NHCH₂- or -CH₂NHCH(O)CH₂-), an ester linkage, a thioester linkage, a lactam bridge, a carbamoyl linkage, a urea linkage, a thiourea linkage, a phosphonate ester linkage, an alkyl linkage (-CH₂CH₂CH₂CH₂-), an alkenyl linkage (-CH₂CH=CHCH₂-), an ether linkage (-CH₂CH₂CH₂- or -CH₂OCH₂-), a thioether linkage (-CH₂CH₂SCH₂- or -CH₂SCH₂CH₂-), an amine linkage (-CH₂CH₂NHCH₂- or -CH₂NHCH₂-) or a thioamide linkage (-CH₂CH(S)HNHCH₂- or -CH₂NHCH(S)CH₂-). For example, Ledu *et al.* (*Proc. Natl. Acad. Sci.* 100:11263-78, 2003) describe methods for preparing lactam and amide cross-links. Exemplary GCC agonist peptides which include a lactam bridge include, for example, SP-370. [105] In certain embodiments, the GCC agonist peptides have one or more conventional polypeptide bonds replaced by an alternative bond. Such replacements can increase the stability of the polypeptide. For example, replacement of the polypeptide bond between a residue amino terminal to an aromatic residue (*e.g.* Tyr, Phe, Trp) with an alternative bond can reduce cleavage by carboxy peptidases and may increase half-life in the digestive tract. Bonds that can replace polypeptide bonds include: a retro-inverso bond (C(O)-NH instead of NH-C(O); a reduced amide bond (NH-CH₂); a thiomethylene bond (S-CH₂ or CH₂-S); an oxomethylene bond (O-CH₂ or CH₂-O); an ethylene bond (CH₂-CH₂); a thioamide bond (C(S)-NH); a trans-olefine bond (CH=CH); a fiuoro substituted trans-olefine bond (CF=CH); a ketomethylene bond (C(O)-CHR or CHR-C(O) wherein R is H or CH₃; and a fluoro-ketomethylene bond (C(O)-CFR or CFR-C(O) wherein R is H or F or CH₃. [106] In certain embodiments, the GCC agonist peptides are modified using standard modifications. Modifications may occur at the amino (N-), carboxy (C-) terminus, internally or a combination of any of the preceeding. In one aspect described herein, there may be more than one type of modification on the polypeptide. Modifications include but are not limited to: acetylation, amidation, biotinylation, cinnamovlation, farnesylation, formylation, myristoylation, palmitoylation, phosphorylation (Ser, Tyr or Thr), stearoylation, succinylation, sulfurylation and cyclisation (via disulfide bridges or amide cyclisation), and modification by Cys3 or Cys5. The GCC agonist peptides described herein may also be modified by 2, 4-dinitrophenyl (DNP), DNP-lysine, modification by 7-Amino-4-methylcoumarin (AMC), flourescein, NBD (7-Nitrobenz-2-Oxa-1,3-Diazole), p-nitro-anilide, rhodamine B, EDANS (5-((2-aminoethyl)amino)naphthalene-l- sulfonic acid), dabcyl, dabsyl, dansyl, texas red, FMOC, and Tamra (Tetramethylrhodamine). The GCC agonist peptides described herein may also be conjugated to, for example, polyethylene glycol (PEG); alkyl groups (e.g., C1-C20 straight or branched alkyl groups); fatty acid radicals; combinations of PEG, alkyl groups and fatty acid radicals (See, U.S. Patent 6,309,633; Soltero et al., 2001 Innovations in Pharmaceutical Technology 106-110); BSA and KLH (Keyhole Limpet Hemocyanin). The addition of PEG and other polymers which can be used to modify polypeptides of the invention is described in US20060 19347 section IX. [107] A GCC agonist peptide can also be a derivatives of a GCC agonist peptide described herein. For example, a derivative includes hybrid and modified forms of GCC agonist peptides in which certain amino acids have been deleted or replaced. A modification may also include glycosylation. Preferrably, where the modification is an amino acid substitution, it is a conservative substitution at one or more positions that are predicted to be non-essential amino acid residues for the biological activity of the peptide. A "conservative substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (*e.g.*, lysine, arginine, histidine), acidic side chains (*e.g.*, aspartic acid, glutamic acid), uncharged polar side chains (*e.g.*, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (*e.g.*, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (*e.g.*, threonine, valine, isoleucine) and aromatic side chains (*e.g.*, tyrosine, phenylalanine, tryptophan, histidine). - [108] In one embodiment, a GCC agonist peptide described herein is subjected to random mutagenesis in order to identify mutants having biological activity. - [109] In one embodiment, the GCC agonist peptide is substantially homologous is a GCC agonist peptide described herein. Such substantially homologous peptides can be isolated by virtue of cross-reactivity with antibodies to a GCC agonist peptide described herein. - [110] Further examples of GCC agonist peptides that can be used in the methods and formulations of the invention are found in Tables I VII below. ## 1.2.2 Preparation of GCC agonist peptides - [111] GCC agonist peptides can be prepared using art recognized techniques such as molecular cloning, peptide synthesis, or site-directed mutagenesis. - [112] Peptide synthesis can be performed using standard solution phase or solid phase peptide synthesis techniques or a combination of both process where segments are synthesized by solid phase and condensed in solution phase, in which a peptide linkage occurs through the direct condensation of the amino group of one amino acid with the carboxy group of the other amino acid with the elimination of a water molecule. Peptide bond synthesis by direct condensation, as formulated above, requires suppression of the reactive character of the amino group of the first and of the carboxyl group of the second amino acid. The masking substituents must permit their ready removal, without inducing breakdown of the labile peptide molecule. - [113] In solution phase synthesis, a wide variety of coupling methods and protecting groups may be used (*See*, Gross and Meienhofer, eds., "The Peptides: Analysis, Synthesis, Biology," Vol. 1-4 (Academic Press, 1979); Bodansky and Bodansky, "The Practice of Peptide Synthesis," 2d ed. (Springer Verlag, 1994)). In addition, intermediate purification and linear scale up are possible. Those of ordinary skill in the art will appreciate that solution synthesis requires consideration of main chain and side chain protecting groups and activation method. In addition, careful segment selection is necessary to minimize racemization during segment condensation. Solubility considerations are also a factor. Solid phase peptide synthesis uses an insoluble polymer for support during organic synthesis. The polymer-supported peptide chain permits the use of simple washing and filtration steps instead of laborious purifications at intermediate steps. Solid-phase peptide synthesis may generally be performed according to the method of Merrifield et al., J. Am. Chem. Soc., 1963, 85:2149, which involves assembling a linear peptide chain on a resin support using protected amino acids. Solid phase peptide synthesis typically utilizes either
the Boc or Fmoc strategy, which are well known in the art. - [114] Those of ordinary skill in the art will recognize that, in solid phase synthesis, deprotection and coupling reactions must go to completion and the side-chain blocking groups must be stable throughout the synthesis. In addition, solid phase synthesis is generally most suitable when peptides are to be made on a small scale. - [115] Acetylation of the N-terminal can be accomplished by reacting the final peptide with acetic anhydride before cleavage from the resin. C-amidation is accomplished using an appropriate resin such as methylbenzhydrylamine resin using the Boc technology. - [116] Alternatively the GCC agonist peptides are produced by modern cloning techniques For example, the GCC agonist peptides are produced either in bacteria including, without limitation, E. coli, or in other existing systems for polypeptide or protein production (*e.g.*, Bacillus subtilis, baculovirus expression systems using Drosophila Sf9 cells, yeast or filamentous fungal expression systems, mammalian cell expression systems), or they can be chemically synthesized. If the GCC agonist peptide or variant peptide is to be produced in bacteria, *e.g.*, E. coli, the nucleic acid molecule encoding the polypeptide may also encode a leader sequence that permits the secretion of the mature polypeptide from the cell. Thus, the sequence encoding the polypeptide can include the pre sequence and the pro sequence of, for example, a naturally-occurring bacterial ST polypeptide. The secreted, mature polypeptide can be purified from the culture medium. [117] The sequence encoding a GCC agonist peptide described herein can be inserted into a vector capable of delivering and maintaining the nucleic acid molecule in a bacterial cell. The DNA molecule may be inserted into an autonomously replicating vector (suitable vectors include, for example, pGEM3Z and pcDNA3, and derivatives thereof). The vector nucleic acid may be a bacterial or bacteriophage DNA such as bacteriophage lambda or M13 and derivatives thereof. Construction of a vector containing a nucleic acid described herein can be followed by transformation of a host cell such as a bacterium. Suitable bacterial hosts include but are not limited to, E. coli, B subtilis, Pseudomonas, Salmonella. The genetic construct also includes, in addition to the encoding nucleic acid molecule, elements that allow expression, such as a promoter and regulatory sequences. The expression vectors may contain transcriptional control sequences that control transcriptional initiation, such as promoter, enhancer, operator, and repressor sequences. [118] A variety of transcriptional control sequences are well known to those in the art. The expression vector can also include a translation regulatory sequence (*e.g.*, an untranslated 5' sequence, an untranslated 3' sequence, or an internal ribosome entry site). The vector can be capable of autonomous replication or it can integrate into host DNA to ensure stability during polypeptide production. [119] The protein coding sequence that includes a GCC agonist peptide described herein can also be fused to a nucleic acid encoding a polypeptide affinity tag, *e.g.*, glutathione S-transferase (GST), maltose E binding protein, protein A, FLAG tag, hexa-histidine, myc tag or the influenza HA tag, in order to facilitate purification. The affinity tag or reporter fusion joins the reading frame of the polypeptide of interest to the reading frame of the gene encoding the affinity tag such that a translational fusion is generated. Expression of the fusion gene results in translation of a single polypeptide that includes both the polypeptide of interest and the affinity tag. In some instances where affinity tags are utilized, DNA sequence encoding a protease recognition site will be fused between the reading frames for the affinity tag and the polypeptide of interest. [120] Genetic constructs and methods suitable for production of immature and mature forms of the GCC agonist peptides and variants described herein in protein expression systems other than bacteria, and well known to those skilled in the art, can also be used to produce polypeptides in a biological system. [121] The peptides disclosed herein may be modified by attachment of a second molecule that confers a desired property upon the peptide, such as increased half-life in the body, for example, pegylation. Such modifications also fall within the scope of the term "variant" as used herein. Table I. GCRA Peptides (SP-304 and Derivatives) | Name | Position of | Structure | SEQ | |--------|-----------------|--|-----| | | Disulfide bonds | | ID | | | | | NO | | SP-304 | C4:C12, C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 1 | | SP-326 | C3:C11, C6:C14 | Asp ¹ -Glu ² -Cys ³ -Glu ⁴ -Leu ⁵ -Cys ⁶ -Val ⁷ -Asn ⁸ -Val ⁹ -Ala ¹⁰ -Cys ¹¹ -Thr ¹² -Gly ¹³ -Cys ¹⁴ -Leu ¹⁵ | 2 | | SP-327 | C2:C10, C5:C13 | Asp ¹ -Glu ² -Cys ³ -Glu ⁴ -Leu ⁵ -Cys ⁶ -Val ⁷ -Asn ⁸ -Val ⁹ -Ala ¹⁰ -Cys ¹¹ -Thr ¹² -Gly ¹³ -Cys ¹⁴ | 3 | | SP-328 | C2:C10, C5:C13 | Glu ¹ -Cys ² -Glu ³ -Leu ⁴ -Cys ⁵ -Val ⁶ -Asn ⁷ -Val ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -Leu ¹⁴ | 4 | | SP-329 | C2:C10, C5:C13 | Glu¹-Cys²-Glu³-Leu⁴-Cys⁵-Val⁶-Asn⁻-Val⁶-Ala⁶-Cys¹⁰-Thr¹¹-Gly¹²-Cys¹³ | 5 | | SP-330 | C1:C9, C4:C12 | Cys ¹ -Glu ² -Leu ³ -Cys ⁴ -Val ⁵ -Asn ⁶ -Val ⁷ -Ala ⁸ -Cys ⁹ -Thr ¹⁰ -Gly ¹¹ -Cys ¹² -Leu ¹³ | 6 | | SP-331 | C1:C9, C4:C12 | Cys ¹ -Glu ² -Leu ³ -Cys ⁴ -Val ⁵ -Asn ⁶ -Val ⁷ -Ala ⁸ -Cys ⁹ -Thr ¹⁰ -Gly ¹¹ -Cys ¹² | 7 | | SP332 | C4:C12,C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 8 | | SP-333 | C4:C12,C7:C15 | dAsn¹-Asp²-Glu³-Cys⁴-Glu⁵-Leu⁶-Cys²-Val ⁸ -Asn ⁹ -Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶ | 9 | | SP-334 | C4:C12,C7:C15 | dAsn¹-dAsp²-Glu³-Cys⁴-Glu⁵-Leu⁶-Cys⁻-Val⁴-Asn⁰-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶ | 10 | | SP-335 | C4:C12,C7:C15 | dAsn ¹ -dAsp ² -dGlu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 11 | | SP-336 | C4:C12,C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 12 | | SP-337 | C4:C12,C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -dLeu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 13 | | SP-338 | C4:C12, C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ | 14 | | SP-342 | C4:C12, C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 15 | | SP-343 | C4:C12, C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 16 | | SP-344 | C4:C12, C7:C15 | PEG3-dAsn¹-dAsp²-Glu³-Cys⁴-Glu⁵-Leu⁶-Cys⁻-Val®-Asn⁰-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶-PEG3 | 17 | | SP-347 | C4:C12, C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 18 | | SP-348 | C4:C12, C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 19 | | SP-350 | C4:C12, C7:C15 | PEG3-dAsn¹-Asp²-Glu³-Cys⁴-Glu⁵-Leu⁶-Cys⁻-Val³-Asnց-Val¹¹-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶ | 20 | |--------|----------------|--|----| | SP-352 | C4:C12, C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 21 | | SP-358 | C4:C12,C7:C15 | PEG3-dAsn ¹ -dAsp ² -dGlu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 22 | | SP-359 | C4:C12,C7:C15 | PEG3-dAsn¹-dAsp²-dGlu³-Cys⁴-Glu⁵-Leu⁶-Cys⁻-Valⁿ-Asnց-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶ | 23 | | SP-360 | C4:C12, C7:C15 | dAsn ¹ -dAsp ² -dGlu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 24 | | SP-361 | C4:C12, C7:C15 | dAsn¹-dAsp²-Glu³-Cys⁴-Glu⁵-Leu⁶-Cys⁻-Val⁴-Asn⁰-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶-PEG3 | 25 | | SP-362 | C4:C12, C7:C15 | PEG3-dAsn¹-dAsp²-Glu³-Cys⁴-Glu⁵-Leu⁶-Cys⁻-Val®-Asn⁰-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶ | 26 | | SP-368 | C4:C12, C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dNal ¹⁶ | 27 | | SP-369 | C4:C12, C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -AIB ⁸ -Asn ⁹ -AIB ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 28 | | SP-370 | C4:C12, C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Asp[Lactam] ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Om ¹⁵ -dLeu ¹ | 29 | | SP-371 | C4:C12,C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 30 | | SP-372 | C4:C12,C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 31 | | N1 | C4:C12,C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 |
32 | | N2 | C4:C12,C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 33 | | N3 | C4:C12,C7:C15 | dAsn¹-Asp²-Glu³-Cys⁴-Glu⁵-Tyr⁶-Cys⁻-Val®-Asn°-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶ PEG3 | 34 | | N4 | C4:C12,C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 35 | | N5 | C4:C12,C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 36 | | N6 | C4:C12,C7:C15 | dAsn¹-Asp²-Glu³-Cys⁴-Glu⁵-Ser⁶-Cys⁻-Val8-Asn9-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶-PEG3 | 37 | | N7 | C4:C12,C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 38 | | N8 | C4:C12,C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ -PEG3 | 39 | | N9 | C4:C12,C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 40 | | N10 | C4:C12,C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ -PEG3 | 41 | | N11 | C4:C12,C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dSer ¹⁶ -PEG3 | 42 | |-----------------|---------------|---|----| | N12 | C4:C12,C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dSer ¹⁶ | 43 | | N13 | C4:C12,C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dSer ¹⁶ -PEG3 | 44 | | Formula I | C4:C12,C7:C15 | Asn¹-Asp²-Glu³-Cys⁴-Xaa⁵-Xaa⁶-Cys⁻-Xaaፄ-Xaa⁰-Xaa¹⁰-Xaa¹¹-Cys¹²-Xaa¹³-Xaa¹⁴-Cys¹⁵-Xaa¹⁶ | 45 | | Formula II | C4:C12,C7:C15 | Xaa _{n1} -Cys ⁴ -Xaa ⁵ -Xaa ⁶ -Cys ⁷ -Xaa ⁸ -Xaa ⁹ -Xaa ¹⁰ -Xaa ¹¹ -Cys ¹² -Xaa ¹³ -Xaa ¹⁴ -Cys ¹⁵ -Xaa _{n2} ¹⁶ | 46 | | Formula
III | 4:12,7:15 | Xaa _{n1} -Maa ⁴ -Glu ⁵ -Xaa ⁶ -Maa ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Maa ¹² -Thr ¹³ -Gly ¹⁴ -Maa ¹⁵ - Xaa _{n2} | 47 | | Formula
IV | 4:12,7:15 | Xaa _{n1} - Maa ⁴ -Xaa ⁵ -Xaa ⁶ - Maa ⁷ -Xaa ⁸ -Xaa ⁹ -Xaa ¹⁰ -Xaa ¹¹ - Maa ¹² -Xaa ¹³ -Xaa ¹⁴ - Maa ¹⁵ -Xaa _{n2} | 48 | | Formula V | C4:C12,C7:C15 | Asn¹-Asp²-Asp³-Cys⁴-Xaa⁵-Xaa⁶-Cys⁻-Xaaፄ-Asnց-Xaa¹¹-Cys¹²-Xaa¹³-Xaa¹⁴-Cys¹⁵-Xaa¹⁶ | 49 | | Formula
VI | C4:C12,C7:C15 | dAsn¹-Glu²-Glu³-Cys⁴-Xaa⁵-Xaa6-Cys⁻-X38-Asn9-Xaa¹¹-Cys¹²-Xaa¹³-Xaa¹⁴-Cys¹⁵-d-Xaa¹6 | 50 | | Formula
VII | C4:C12,C7:C15 | dAsn¹-dGlu²-Asp³-Cys⁴-Xaa⁵-Xaa⁶-Cys²-Xaa®-Asn٩-Xaa¹¹-Cys¹²-Xaa¹³-Xaa¹⁴-Cys¹⁵-d-Xaa¹⁶ | 51 | | Formula
VII | C4:C12,C7:C15 | dAsn¹-dAsp²-Glu³-Cys⁴-Xaa⁵-Xaa6-Cys⁻-Xaa8-Asn9-Xaa¹¹-Cys¹²-Xaa¹¹-Cys¹²-Xaa¹⁴-Cys¹⁵-d-Xaa¹6 | 52 | | Formula
VIII | C4:C12,C7:C15 | dAsn¹-dAsp²-dGlu³-Cys⁴-Xaa⁵-Xaa⁶-Cys⁻-Xaaፄ-Tyr९-Xaa¹¹-Cys¹²-Xaa¹¹-Cys¹²-Xaa¹¹-Cys¹⁵-d-Xaa¹⁶ | 53 | | Formula
IX | C4:C12,C7:C15 | dAsn¹-dGlu²-dGlu³-Cys⁴-Xaa⁵-Xaa6-Cys⁻-Xaa8-Tyr9-Xaa¹0-Xaa¹¹-Cys¹²-Xaa¹³-Xaa¹⁴-Cys¹⁵-d-Xaa¹6 | 54 | Table II. Linaclotide and Derivatives | Name | Position of Disulfide bonds | Structure | SEQ ID
NO: | |----------------------|-----------------------------|---|---------------| | SP-339 (linaclotide) | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu3-Tyr⁴-Cys⁵-Cys6-Asn7-Pro8-Ala9-Cys¹0-Thr¹¹-Gly¹²-Cys¹3-Tyr¹⁴ | 55 | | SP-340 | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu³-Tyr⁴-Cys⁵-Cys⁶-Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys¹⁰-Thr¹¹-Gly¹²-Cys¹³ | 56 | | SP-349 | C1:C6, C2:C10, C5:13 | PEG3-Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -Tyr ¹⁴ -PEG3 | 57 | | SP-353 | C3:C8, C4:C12, C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 58 | | SP-354 | C3:C8, C4:C12, C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 59 | | SP-355 | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu³-Tyr⁴-Cys⁵-Cys⁴-Asn7-Pro8-Ala9-Cys¹0-Thr¹¹-Gly¹²-Cys¹3-dTyr¹⁴ | 60 | | SP-357 | C1:C6, C2:C10, C5:13 | PEG3-Cys¹-Cys²-Glu³-Tyr⁴-Cys⁵-Cys⁶-Asn⁻-Pro®-Ala⁰-Cys¹0-Thr¹1-Gly¹²-Cys¹³-Tyr¹⁴ | 61 | | SP-374 | C3:C8, C4:C12, C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 62 | | SP-375 | C3:C8, C4:C12, C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 63 | | SP-376 | C3:C8, C4:C12, C7:15 | dAsn¹-Phe²-Cys³-Cys⁴-Glu⁵-Ser6-Cys²-Cys8-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹6 | 64 | | SP-377 | C3:C8, C4:C12, C7:15 | dAsn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 65 | | SP-378 | C3:C8, C4:C12, C7:15 | Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Thr⁴-Cys²-Cys8-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dTyr¹6 | 66 | | SP-379 | C3:C8, C4:C12, C7:15 | dAsn¹-Phe²-Cys³-Cys⁴-Glu⁵-Thr⁶-Cys²-Cys8-Asn9-Pro¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹⁶ | 67 | | SP-380 | C3:C8, C4:C12, C7:15 | dAsn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 68 | | SP-381 | C3:C8, C4:C12, C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 69 | | SP-382 | C3:C8, C4:C12, C7:15 | dAsn¹-Phe²-Cys³-Cys⁴-Glu⁵-Phe6-Cys7-Cys8-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹6 | 70 | |--------|----------------------|---|----| | SP-383 | C3:C8, C4:C12, C7:15 | dAsn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 71 | | SP384 | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu³-Tyr⁴-Cys⁵-Cys⁶-Asn²-Pro®-Ala9-Cys¹0-Thr¹1-Gly¹²-Cys¹³-Tyr¹⁴-PEG3 | 72 | | N14 | C1:C6, C2:C10, C5:13 | PEG3-Cys¹-Cys²-Glu³-Tyr⁴-Cys⁵-Cys⁶-Asn⁻-Pro⁶-Ala⁶-Cys¹⁰-Thr¹¹-Gly¹²-Cys¹³-PEG3 | 73 | | N15 | C1:C6, C2:C10, C5:13 | PEG3-Cys¹-Cys²-Glu³-Tyr⁴-Cys⁵-Cys6-Asn7-Pro8-Ala9-Cys¹0-Thr¹¹-Gly¹²-Cys¹3 | 74 | | N16 | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu³-Tyr⁴-Cys⁵-Cys⁶-Asn²-Pro⁶-Ala⁶-Cys¹⁰-Thr¹¹-Gly¹²-Cys¹³-PEG3 | 75 | | N17 | C3:C8, C4:C12, C7:15 | PEG3- Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ -PEG3 | 76 | | N18 | C3:C8, C4:C12, C7:15 | PEG3- Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 77 | | N19 | C3:C8, C4:C12, C7:15 | Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Ser⁶-Cys²-Cys8-Asn9-Pro¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹⁶-
PEG3 | 78 | | N20 | C3:C8, C4:C12, C7:15 | PEG3- Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Phe⁶-Cys²-Cys8-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-
Tyr¹⁶-PEG3 | 79 | | N21 | C3:C8, C4:C12, C7:15 | PEG3- Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Phe⁶-Cys²-Cys8-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-
Tyr¹⁶ | 80 | | N22 | C3:C8, C4:C12, C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ -PEG3 | 81 | | N23 | C3:C8, C4:C12, C7:15 | PEG3- Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Tyr⁶-Cys²-Cys8-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-
Tyr¹⁶-PEG3 | 82 | | N24 | C3:C8, C4:C12, C7:15 | PEG3- Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 83 | | N25 | C3:C8, C4:C12, C7:15 | Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Tyr⁶-Cys²-Cys8-Asn9-Pro¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹⁶-
PEG3 | 84 | |-----------------|----------------------------|---|----| | N26 | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu3-Ser⁴-Cys⁵-Cys⁶-Asn²-Proፄ-Ala9-Cys¹0-Thr¹¹-Gly¹²-Cys¹³-Tyr¹⁴ | 85 | | N27 | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu3-Phe⁴-Cys⁵-Cys⁶-Asn²-Proð-Ala9-Cys¹0-Thr¹¹-Gly¹²-Cys¹³-Tyr¹⁴ | 86 | | N28 | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu3-Ser⁴-Cys⁵-Cys⁶-Asn²-Pro⁶-Ala⁶-Cys¹⁰-Thr¹¹-Gly¹²-Cys¹³- | 87 | | N29 | C1:C6, C2:C10, C5:13 | Cys¹-Cys²-Glu3-Phe⁴-Cys⁵-Cys⁶-Asn²-Pro⁶-Ala⁰-Cys¹⁰-Thr¹¹-Gly¹²-Cys¹³ | 88 | | N30 | 1:6, 2:10, 5:13 | Pen ¹ -Pen ² -Glu3-Tyr ⁴ -Pen ⁵ -Pen ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Pen ¹⁰ -Thr ¹¹ -Gly ¹² -Pen ¹³ -Tyr ¹⁴ | 89 | | N31 | 1:6, 2:10, 5:13 | Pen ¹ -Pen ² -Glu3-Tyr ⁴ -Pen ⁵ -Pen ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Pen ¹⁰ -Thr ¹¹ -Gly ¹² -Pen ¹³ | 90 | | Formula X | C9:C14, C10:C18,
C13:21 | Xaa ¹ -Xaa ² -Xaa ³ -Xaa ⁴ -Xaa ⁵ -Xaa ⁶ - Asn ⁷ - Tyr ⁸ -Cys ⁹ -Cys ¹⁰ -Xaa ¹¹ -Tyr ¹² -Cys ¹³ -Cys ¹⁴ -Xaa ¹⁵ -Xaa ¹⁶ - Xaa ¹⁷ -Cys ¹⁸ - Xaa ¹⁹ -Xaa ²⁰ -Cys ²¹ -Xaa ²² | 91 | | Formula XI | C9:C14, C10:C18,
C13:21 | Xaa ¹
-Xaa ² -Xaa ³ -Xaa ⁴ -Xaa ⁵ -Xaa ⁶ -Asn ⁷ - Phe ⁸ -Cys ⁹ -Cys ¹⁰ -Xaa ¹¹ -Phe ¹² - Cys ¹³ -Cys ¹⁴ -Xaa ¹⁵ -Xaa ¹⁶ - Xaa ¹⁷ -Cys ¹⁸ - Xaa ¹⁹ -Xaa ²⁰ -Cys ²¹ -Xaa ²² | 92 | | Formula XII | C3:C8, C4:C12, C7:15 | Asn ¹ - Phe ² -Cys ³ -Cys ⁴ - Xaa ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ - Xaa ⁹ -Xaa ¹⁰ - Xaa ¹¹ -Cys ¹² - Xaa ³ -Xaa ¹⁴ -Cys ¹⁵ -Xaa ¹⁶ | 93 | | Formula
XIII | 3:8, 4:12, C:15 | Asn ¹ - Phe ² -Pen ³ -Cys ⁴ - Xaa ⁵ -Phe ⁶ -Cys ⁷ -Pen ⁸ - Xaa ⁹ -Xaa ¹⁰ - Xaa ¹¹ -Cys12- Xaa ¹³ -Xaa ¹⁴ -Cys ¹⁵ - Xaa ¹⁶ | 94 | | Formula
XIV | 3:8, 4:12, 7:15 | Asn¹- Phe²-Maa³-Maa⁴ - Xaa⁵-Xaa⁶-Maa⁶-Maa⁶- Xaa⁶-Xaa¹⁰- Xaa¹¹-Maa¹²- Xaa¹³-Xaa¹⁴-Maa¹⁵- Xaa¹⁶ | 95 | | Formula XV | 1:6, 2:10, 5:13 | Maa ¹ -Maa ² -Glu3-Xaa ⁴ - Maa ⁵ -Maa ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Maa ¹⁰ -Thr ¹¹ -Gly ¹² -Maa ¹³ -Tyr ¹⁴ | 96 | | Formula
XVI | 1:6, 2:10, 5:13 | Maa ¹ -Maa ² -Glu ³ -Xaa ⁴ - Maa ⁵ -Maa ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Maa ¹⁰ -Thr ¹¹ -Gly ¹² -Maa ¹³ - | 97 | | Formula
XVII | 1:6, 2:10, 5:13 | Xaa _{n3} -Maa ¹ -Maa ² -Xaa ³ -Xaa ⁴ -Maa ⁵ -Maa ⁶ -Xaa ⁷ -Xaa ⁸ -Xaa ⁹ -Maa ¹⁰ -Xaa ¹¹ -Xaa ¹² -Maa ¹³ -Xaa _{n2} | 98 | ## **Table III. GCRA Peptides** | Name | Position of | Structure | SEQ ID | |-----------|-----------------|--|--------| | | Disulfide bonds | | NO: | | SP-363 | C4:C12,C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu- | 99 | | | | AMIDE ¹⁶ | | | SP-364 | C4:C12, C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dSer ¹⁶ | 100 | | SP-365 | C4:C12, C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dSer- | 101 | | | | AMIDE ¹⁶ | | | SP-366 | C4:C12, C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 102 | | SP-367 | C4:C12, C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr- | 103 | | | | AMIDE ¹⁶ | | | SP-373 | C4:C12, C7:C15 | Pyglu ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu- | 104 | | | | AMIDE ¹⁶ | | | SP-304 di | C4:C12, C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ - | 105 | | PEG | | PEG3 | | | SP-304 N- | C4:C12, C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 106 | | PEG | | | | | SP-304 C- | C4:C12, C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ -PEG3 | 107 | | PEG | | | | Table IV. SP-304 Analogs, Uroguanylin, and Uroguanylin Analogs | Name | Position of | Structure | SEQ | |-------------|-----------------|---|-------| | | Disulfide bonds | | ID NO | | Formula | C4:C12, | Xaa ¹ - Xaa ² - Xaa ³ -Maa ⁴ -Xaa ⁵ -Xaa ⁶ -Maa ⁷ -Xaa ⁸ -Xaa ⁹ -Xaa ¹⁰ -Xaa ¹¹ -Maa ¹² -Xaa ¹³ -Xaa ¹⁴ -Maa ¹⁵ -Xaa ¹⁶ | 108 | | XVIII | C7:C15 | | | | Uroguanylin | C4:C12, | Asn¹-Asp²-Asp³-Cys⁴-Glu⁵-Leu⁶-Cys⁻-Val⁴-Asn⁴-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Leu¹⁶ | 109 | | | C7:C15 | | | | N32 | C4:C12, | Glu ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 110 | | | C7:C15 | | | | N33 | C4:C12, | Glu ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 111 | | | C7:C15 | | | | N34 | C4:C12, | Glu ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 112 | | | C7:C15 | | | | N35 | C4:C12, | Glu ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 113 | | | C7:C15 | | | | N36 | C4:C12, | Asp ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 114 | | | C7:C15 | | | | N37 | C4:C12, | Asp ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 115 | | | C7:C15 | | | | N38 | C4:C12, | Asp ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 116 | | | C7:C15 | | | | N39 | C4:C12, | Asp ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 117 | |-----|---------|---|-----| | | C7:C15 | | | | N40 | C4:C12, | Gln ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 118 | | | C7:C15 | | | | N41 | C4:C12, | Gln ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 119 | | | C7:C15 | | | | N42 | C4:C12, | Gln ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 120 | | | C7:C15 | | | | N43 | C4:C12, | Gln ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 121 | | | C7:C15 | | | | N44 | C4:C12, | Lys ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 122 | | | C7:C15 | | | | N45 | C4:C12, | Lys ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 123 | | | C7:C15 | | | | N46 | C4:C12, | Lys ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 124 | | | C7:C15 | | | | N47 | C4:C12, | Lys ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 125 | | | C7:C15 | | | | N48 | C4:C12, | Glu ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 126 | | | C7:C15 | | | | N49 | C4:C12, | $\texttt{Glu}^{1}\textbf{-}\texttt{Asp}^{2}\textbf{-}\texttt{Glu}^{3}\textbf{-}\texttt{Cys}^{4}\textbf{-}\texttt{Glu}^{5}\textbf{-}\texttt{Leu}^{6}\textbf{-}\texttt{Cys}^{7}\textbf{-}\texttt{Val}^{8}\textbf{-}\texttt{Asn}^{9}\textbf{-}\texttt{Val}^{10}\textbf{-}\texttt{Ala}^{11}\textbf{-}\texttt{Cys}^{12}\textbf{-}\texttt{Thr}^{13}\textbf{-}\texttt{Gly}^{14}\textbf{-}\texttt{Cys}^{15}\textbf{-}\texttt{Ser}^{16}$ | 127 | | | C7:C15 | | | | N50 | C4:C12, | Glu ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 128 | | | C7:C15 | | | |-----|---------|---|-----| | N51 | C4:C12, | Glu ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 129 | | | C7:C15 | | | | N52 | C4:C12, | Asp ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 130 | | | C7:C15 | | | | N53 | C4:C12, | Asp ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 131 | | | C7:C15 | | | | N54 | C4:C12, | Asp ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 132 | | | C7:C15 | | | | N55 | C4:C12, | Asp ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 133 | | | C7:C15 | | | | N56 | C4:C12, | ${\tt Gln^1-Asp^2-Asp^3-Cys^4-Glu^5-Leu^6-Cys^7-Val^8-Asn^9-Val^{10}-Ala^{11}-Cys^{12}-Thr^{13}-Gly^{14}-Cys^{15}-Ser^{16}}$ | 134 | | | C7:C15 | | | | N57 | C4:C12, | ${\tt Gln^1-Asp^2-Glu^3-Cys^4-Glu^5-Leu^6-Cys^7-Val^8-Asn^9-Val^{10}-Ala^{11}-Cys^{12}-Thr^{13}-Gly^{14}-Cys^{15}-Ser^{16}}$ | 135 | | | C7:C15 | | | | N58 | C4:C12, | ${\tt Gln^1\text{-}Glu^2\text{-}Asp^3\text{-}Cys^4\text{-}Glu^5\text{-}Leu^6\text{-}Cys^7\text{-}Val^8\text{-}Asn^9\text{-}Val^{10}\text{-}Ala^{11}\text{-}Cys^{12}\text{-}Thr^{13}\text{-}Gly^{14}\text{-}Cys^{15}\text{-}Ser^{16}}$ | 136 | | | C7:C15 | | | | N59 | C4:C12, | Gln ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 137 | | | C7:C15 | | | | N60 | C4:C12, | Lys ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 138 | | | C7:C15 | | | | N61 | C4:C12, | Lys ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 139 | | | C7:C15 | | | | N62 | C4:C12, | Lys ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴
-Cys ¹⁵ -Ser ¹⁶ | 140 | |-----|---------|---|-----| | | C7:C15 | | | | N63 | C4:C12, | Lys ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 141 | | | C7:C15 | | | | N65 | C4:C12, | Glu ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 142 | | | C7:C15 | | | | N66 | C4:C12, | Glu ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 143 | | | C7:C15 | | | | N67 | C4:C12, | Glu ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 144 | | | C7:C15 | | | | N68 | C4:C12, | Glu ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 145 | | | C7:C15 | | | | N69 | C4:C12, | Asp ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 146 | | | C7:C15 | | | | N70 | C4:C12, | Asp ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 147 | | | C7:C15 | | | | N71 | C4:C12, | Asp ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 148 | | | C7:C15 | | | | N72 | C4:C12, | Asp ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 149 | | | C7:C15 | | | | N73 | C4:C12, | Gln ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 150 | | | C7:C15 | | | | N74 | C4:C12, | | 151 | | | | | | | | C7:C15 | | | |-----|---------|--|-----| | N75 | C4:C12, | Gln ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 152 | | | C7:C15 | | | | N76 | C4:C12, | Gln ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 153 | | | C7:C15 | | | | N77 | C4:C12, | Lys ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 154 | | | C7:C15 | | | | N78 | C4:C12, | Lys ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 155 | | | C7:C15 | | | | N79 | C4:C12, | Lys ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 156 | | | C7:C15 | | | | N80 | C4:C12, | Lys ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 157 | | | C7:C15 | | | | N81 | C4:C12, | Glu ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 158 | | | C7:C15 | | | | N82 | C4:C12, | $\texttt{Glu}^{1} - \texttt{Asp}^{2} - \texttt{Glu}^{3} - \texttt{Cys}^{4} - \texttt{Glu}^{5} - \texttt{Leu}^{6} - \texttt{Cys}^{7} - \texttt{Ile}^{8} - \texttt{Asn}^{9} - \texttt{Met}^{10} - \texttt{Ala}^{11} - \texttt{Cys}^{12} - \texttt{Thr}^{13} - \texttt{Gly}^{14} - \texttt{Cys}^{15} - \texttt{Ser}^{16}$ | 159 | | | C7:C15 | | | | N83 | C4:C12, | Glu ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 160 | | | C7:C15 | | | | N84 | C4:C12, | Glu ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 161 | | | C7:C15 | | | | N85 | C4:C12, | $ \text{Asp1-Asp2-Asp3-Cys4-Glu5-Leu6-Cys7-Ile8-Asn9-Met10-Ala11-Cys12-Thr13-Gly14-Cys15-Ser$^{16} } $ | 162 | | | C7:C15 | | | | N86 | C4:C12, | Asp ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 163 | |-----|---------|---|-----| | | C7:C15 | | | | N87 | C4:C12, | Asp ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 164 | | | C7:C15 | | | | N88 | C4:C12, | Asp ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 165 | | | C7:C15 | | | | N89 | C4:C12, | Gln ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 166 | | | C7:C15 | | | | N90 | C4:C12, | Gln ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 167 | | | C7:C15 | | | | N91 | C4:C12, | Gln ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 168 | | | C7:C15 | | | | N92 | C4:C12, | Gln ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 169 | | | C7:C15 | | | | N93 | C4:C12, | Lys ¹ -Asp ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 170 | | | C7:C15 | | | | N94 | C4:C12, | Lys ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 171 | | | C7:C15 | | | | N95 | C4:C12, | Lys ¹ -Glu ² -Asp ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 172 | | | C7:C15 | | | | N96 | C4:C12, | Lys ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 173 | | | C7:C15 | | | Table V. Guanylin and Analogs | Name | Position of | Structure | SEQ ID | |----------|-----------------|--|--------| | | Disulfide bonds | | NO | | Formula | 4:12,7:15 | Xaa ¹ - Xaa ² - Xaa ³ -Maa ⁴ -Xaa ⁵ -Xaa ⁶ -Maa ⁷ -Xaa ⁸ -Xaa ⁹ -Xaa ¹⁰ -Xaa ¹¹ -Maa ¹² -Xaa ¹³ -Xaa ¹⁴ -Maa ¹⁵ | 174 | | XIX | | | | | Guanylin | C4:C12, C7:C15 | Ser ¹ -His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Ile ⁶ -Cys ⁷ -Ala ⁸ -Phe ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 175 | | N97 | C4:C12, C7:C15 | Ser¹- His²-Thr³ -Cys⁴-Glu⁵-Ile⁶-Cys²-Ala®-Asn9-Ala¹¹-Cys¹²-Ala¹³-Gly¹⁴-Cys¹⁵ | 176 | | N98 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 177 | | N99 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Val ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 178 | | N100 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 179 | | N101 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Ile ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 180 | | N102 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 181 | | N103 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Val ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 182 | | N104 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 183 | | N105 | C4:C12, C7:C15 | Ser¹- His²-Thr³ -Cys⁴-Glu⁵-Ile⁴-Cys²-Ala8-Asn9-Ala¹¹-Cys¹²-Ala¹³-Gly¹⁴-Cys¹⁵ | 184 | | N106 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 185 | | N107 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Val ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 186 | | N108 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 187 | | N109 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Ile ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 188 | |------|----------------|---|-----| | N110 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 189 | | N111 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Val ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 190 | | N112 | C4:C12, C7:C15 | Ser ¹ - His ² -Thr ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 191 | | N113 | C4:C12, C7:C15 | Asn¹- Asp²-Glu³ -Cys⁴-Glu⁵-Ile⁴-Cys⁻-Ala⁴-Asn⁴-Ala¹¹-Cys¹²-Ala¹³-Gly¹⁴-Cys¹⁵ | 192 | | N114 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 193 | | N115 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴
-Glu ⁵ -Val ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 194 | | N116 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 195 | | N117 | C4:C12, C7:C15 | Asn¹- Asp²-Glu³ -Cys⁴-Glu⁵-Ile⁴-Cys⁻-Ala8-Asn9-Ala¹¹-Ala¹¹-Cys¹²-Ala¹³-Gly¹⁴-Cys¹⁵ | 196 | | N118 | C4:C12, C7:C15 | Asn¹- Asp²-Glu³ -Cys⁴-Glu⁵-Leu⁴-Cys²-Ala8-Asn9-Ala¹¹-Ala¹¹-Cys¹²-Ala¹³-Gly¹⁴-Cys¹⁵ | 197 | | N119 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Val ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 198 | | N120 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 199 | | N121 | C4:C12, C7:C15 | Asn¹- Asp²-Glu³ -Cys⁴-Glu⁵-Ile⁴-Cys⁻-Ala®-Asn9-Ala¹¹-Ala¹¹-Cys¹²-Ala¹³-Gly¹⁴-Cys¹⁵ | 200 | | N122 | C4:C12, C7:C15 | Asn¹- Asp²-Glu³ -Cys⁴-Glu⁵-Leu⁴-Cys²-Ala8-Asn9-Ala¹¹-Ala¹¹-Cys¹²-Ala¹³-Gly¹⁴-Cys¹⁵ | 201 | | N123 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Val ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 202 | | N124 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 203 | | N125 | C4:C12, C7:C15 | Asn¹- Asp²-Glu³ -Cys⁴-Glu⁵-Ile⁴-Cys⁻-Ala⁴-Asn⁴-Ala¹¹-Cys¹²-Ala¹³-Gly¹⁴-Cys¹⁵ | 204 | | N126 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 205 | | N127 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Val ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 206 | |------|----------------|---|-----| | N128 | C4:C12, C7:C15 | Asn ¹ - Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ala ⁸ -Asn ⁹ -Ala ¹⁰ -Ala ¹¹ -Cys ¹² -Ala ¹³ -Gly ¹⁴ -Cys ¹⁵ | 207 | # Table VI. Lymphoguanylin and Analogs | Name | Position of | Structure | SEQ | |----------------|-------------|--|-------| | | Disulfide | | ID NO | | | bonds | | | | Formula XX | 4:12,7:15 | Xaa ¹ - Xaa ² - Xaa ³ -Maa ⁴ -Xaa ⁵ -Xaa ⁶ -Maa ⁷ -Xaa ⁸ -Xaa ⁹ -Xaa ¹⁰ -Xaa ¹¹ -Maa ¹² -Xaa ¹³ -Xaa ¹⁴ -Xaa _{n1} ¹⁵ | 208 | | Lymphoguanylin | C4:C12 | Gln ¹ -Glu ² -Glu- ³ Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 209 | | N129 | C4:C12 | Gln ¹ -Glu ² -Glu ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 210 | | N130 | C4:C12 | Gln¹-Asp²- Glu³ -Cys⁴-Glu⁵-Thr⁶-Cys⁻-Ile®-Asn⁰-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Tyr¹⁵ | 211 | | N131 | C4:C12 | Gln ¹ -Asp ² - Asp ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 212 | | N132 | C4:C12 | Gln¹-Glu²- Asp³ -Cys⁴-Glu⁵-Thr⁶-Cys⁻-Ile⁵-Asn⁵-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Tyr¹⁵ | 213 | | N133 | C4:C12 | Gln¹-Glu²- Glu³ -Cys⁴-Glu⁵-Glu6-Cys⁻-Ile8-Asn9-Met¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Tyr¹5 | 214 | | N134 | C4:C12 | Gln ¹ -Asp ² - Glu ³ -Cys ⁴ -Glu ⁵ -Glu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 215 | | N135 | C4:C12 | Gln ¹ -Asp ² - Asp ³ -Cys ⁴ -Glu ⁵ -Glu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 216 | | N136 | C4:C12 | Gln ¹ -Glu ² - Asp ³ -Cys ⁴ -Glu ⁵ -Glu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 217 | | | | |------|-------------------|--|-----|--|--|--| | N137 | C4:C12 | Gln¹-Glu²- Glu³ -Cys⁴-Glu⁵-Tyr⁶-Cys⁻-Ile8-Asn9-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Tyr¹⁵ | 218 | | | | | N138 | C4:C12 | C4:C12 Gln¹-Asp²-Glu³-Cys⁴-Glu⁵-Tyr⁶-Cys⁻-Ile®-Asnց-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Tyr¹⁵ | | | | | | N139 | C4:C12 | Gln ¹ -Asp ² - Asp ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 220 | | | | | N140 | C4:C12 | Gln ¹ -Glu ² - Asp ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 221 | | | | | N141 | C4:C12 | C4:C12 Gln¹-Glu²- Glu³ -Cys⁴-Glu⁵-Ile⁶-Cys⁻-Ile⁶-Asn⁶-Met¹¹-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Tyr¹⁵ | | | | | | N142 | C4:C12 | Gln ¹ -Asp ² - Glu ³ -Cys ⁴ -Glu ⁵ -Ile ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 223 | | | | | N143 | C4:C12 | Gln¹-Asp²- Asp³ -Cys⁴-Glu⁵-Ile⁶-Cys⁻-Ile⁶-Asnց-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Tyr¹⁵ | 224 | | | | | N144 | C4:C12 | Gln ¹ -Glu ² - Asp ³ -Cys ⁴ -Glu ⁵ -Ile ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Tyr ¹⁵ | 225 | | | | | N145 | C4:C12,
C7:C15 | Gln ¹ -Glu ² - Glu ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 226 | | | | | N146 | C4:C12,
C7:C15 | Gln ¹ -Asp ² - Glu ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 227 | | | | | N147 | C4:C12, | Gln ¹ -Asp ² - Asp ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 228 | | | | | N148 | C7:C15 | Gln ¹ -Glu ² - Asp ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 229 | | | | | N149 | C7:C15 | Gln¹-Glu²- Glu³ -Cys⁴-Glu⁵-Glu6-Cys⁻-Ile8-Asn9-Met¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹6 | 230 | | | | | | C7:C15 | | | | | | | N150 | C4:C12, | Gln¹-Asp²- Glu³ -Cys⁴-Glu⁵-Glu⁶-Cys⁻-Ile⁵-Asnց-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser | 231 | |------|---------|--|-----| | | C7:C15 | | | | N151 | C4:C12, | Gln ¹ -Asp ² - Asp ³ -Cys ⁴ -Glu ⁵ -Glu ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 232 | | | C7:C15 | | | | N152 | C4:C12, | Gln¹-Glu²- Asp³ -Cys⁴-Glu⁵-Glu⁶-Cys⁻-Ile³-Asn9-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹⁶ | 233 | | | C7:C15 | | | | N153 | C4:C12, | Gln¹-Glu²- Glu³ -Cys⁴-Glu⁵-Tyr⁶-Cys⁻-Ile8-Asn9-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹⁶ | 234 | | | C7:C15 | | | | N154 | C4:C12, | Gln¹-Asp²- Glu³ -Cys⁴-Glu⁵-Tyr⁶-Cys⁻-Ile8-Asn9-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹⁶ | 235 | | | C7:C15 | | | | N155 | C4:C12, | Gln ¹ -Asp ² - Asp ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 236 | | | C7:C15 | | | | N156 | C4:C12, | Gln¹-Glu²- Asp³ -Cys⁴-Glu⁵-Tyr⁶-Cys⁻-Ile⁵-Asn9-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹⁶ | 237 | | | C7:C15 | | | | N157 | C4:C12, | Gln¹-Glu²- Glu³ -Cys⁴-Glu⁵-Ile⁴-Cys⁻-Ile⁴-Asn⁴-Met¹¹-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹⁶ | 238 | | | C7:C15 | | | | N158 | C4:C12, | Gln ¹ -Asp ² - Glu ³ -Cys ⁴ -Glu ⁵ -Ile ⁶ -Cys ⁷ -Ile ⁸ -Asn ⁹ -Met ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 239 | | | C7:C15 | | | | N159 | C4:C12, | Gln¹-Asp²- Asp³ -Cys⁴-Glu⁵-Ile⁶-Cys⁻-Ile⁶-Asnց-Met¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹⁶ | 240 | | | C7:C15 | | | | | | | | | N160 | C4:C12, | Gln¹-Glu²- Asp³ -Cys⁴-Glu⁵-Ile⁴-Cys⁻-Ile⁴-Asn⁴-Met¹¹-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹⁴ | 241 | |------|---------|--|-----| | | C7:C15 | | | | | | | | ## Table VII. ST Peptide and Analogues | Name | Position of | Structure | SEQ ID | |---------|---|--|--------| | | Disulfide bonds | | NO | | ST | C3:C8, C4:C12, | Asn ¹ - Ser ² -Ser ³ -Asn ⁴ -Ser ⁵ -Ser ⁶ -Asn ⁷ -Tyr ⁸ -Cys ⁹ -Cys ¹⁰ -Glu ¹¹ -Lys ¹² -Cys ¹³ -Cys ¹⁴ -Asn ¹⁵ -Pro ¹⁶ -Ala ¹⁷ -Cys ¹⁸ - | 242 | | Peptide | Peptide $C7:15$ Thr^{19} -Gly ²⁰ -Cys ²¹ -Tyr ²² | | | | | C3:C8, C4:C12, | PEG3-Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ -PEG3 | 243 | | N161 | C7:15 | | | | N162 | C3:C8, C4:C12, | PEG3-Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 244 | | | C7:15 | | | | N163 | C3:C8, C4:C12, | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ -PEG3 | 245 | | | C7:15 | | | | N164 | C3:C8, C4:C12, | Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Tyr⁶-Cys²-Cys8-Asn9-Pro¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹⁶ | 246 | | | C7:15 | | | | N165 | C3:C8, C4:C12, | dAsn¹-Phe²-Cys³-Cys⁴-Glu⁵-Tyr⁶-Cys²-Cys8-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dTyr¹⁶ | 247 | | | C7:15 | | | | N166 | C3:C8, C4:C12, | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 248 | | | C7:15 | | | | N167 | C3:C8, C4:C12, | dAsn¹-Phe²-Cys³-Cys⁴-Glu⁵-Tyr⁶-Cys²-Cys8-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹⁶ | 249 | | | C7:15 | | | Attorney Docket No.:
SYPA-009/C04US | - 1 | | | | |-----|--|--|--| #### 1.3 Methods of Use [122] The invention provides methods for treating or preventing gastrointestinal disorders and increasing gastrointestinal motility in a subject in need thereof by administering an effective amount of a GCC agonist formulation to the subject. Non-limiting examples of gastrointestinal disorders that can be treated or prevented according to the methods of the invention include irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD), ileus (*e.g.*, post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (*e.g.*, constipation associated with use of medications such as opioids, osteoarthritis drugs, or osteoporosis drugs); post surgical constipation, constipation associated with neuropathic disorders, Crohn's disease, and ulcerative colitis. [123] In one embodiment, the invention provides methods for treating or preventing gastrointestinal motility disorder, irritable bowel syndrome, a functional gastrointestinal disorder, gastroesophageal reflux disease, duodenogastric reflux, functional heartburn, dyspepsia, functional dyspepsia, nonulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, colonic pseudo-obstruction, obesity, congestive heart failure, or benign prostatic hyperplasia. [124] In one embodiment, the invention provides methods for treating or preventing constipation and/or increasing gastrointestinal motility in a subject in need thereof by administering an effective amount of a GCC agonist formulation to the subject. Clinically accepted criteria that define constipation range from the frequency of bowel movements, the consistency of feces and the ease of bowel movement. One common definition of constipation is less than three bowel movements per week. Other definitions include abnormally hard stools or defecation that requires excessive straining (Schiller 2001 Aliment Pharmacol Ther 15:749-763). Constipation may be idiopathic (functional constipation or slow transit constipation) or secondary to other causes including neurologic, metabolic or endocrine disorders. These disorders include diabetes mellitus, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple sclerosis, Parkinson's disease, spinal cord lesions, Neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung disease and cystic fibrosis. Constipation may also be the result of surgery or due to the use of drugs such as analgesics (like opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. [125] In various embodiments, the constipation is associated with use of a therapeutic agent; the constipation is associated with a neuropathic disorder; the constipation is postsurgical constipation; the constipation is associated with a gastrointestinal disorder; the constipation is idiopathic (functional constipation or slow transit constipation); the constipation is associated with neuropathic, metabolic or endocrine disorder (e.g., diabetes mellitus, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung disease or cystic fibrosis). Constipation may also be the result of surgery or due to the use of drugs such as analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. [126] In one embodiment, the invention provides methods for treating or preventing chronic idiopathic constipation and increasing gastrointestinal motility in a subject in need thereof by administering an effective amount of a GCC agonist formulation to the subject. [127] The term "treating" as used herein refers to a reduction, a partial improvement, amelioration, or a mitigation of at least one clinical symptom associated with the gastrointestinal disorders being treated. The term "preventing" refers to an inhibition or delay in the onset or progression of at least one clinical symptom associated with the gastrointestinal disorders to be prevented. The term "effective amount" as used herein refers to an amount that provides some improvement or benefit to the subject. In certain embodiments, an effective amount is an amount that provides some alleviation, mitigation, and/or decrease in at least one clinical symptom of the gastrointestinal disorder to be treated. In other embodiments, the effective amount is the amount that provides some inhibition or delay in the onset or progression of at least one clinical symptom associated with the gastrointestinal disorder to be prevented. The therapeutic effects need not be complete or curative, as long as some benefit is provided to the subject. The term "subject" preferably refers to a human subject but may also refer to a non-human primate or other mammal preferably selected from among a mouse, a rat, a dog, a cat, a cow, a horse, or a pig. - [128] The invention also provides methods for treating gastrointestinal cancer in a subject in need thereof by administering an effective amount of a GCC agonist formulation to the subject. Non-limiting examples of gastrointestinal cancers that can be treated according to the methods of the invention include gastric cancer, esophageal cancer, pancreatic cancer, colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer. - [129] The invention also provides methods for treating lipid metabolism disorders, biliary disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders including cardiovascular disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, and obesity. - [130] Lipid metabolism disorders include, but are not limited to, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypercholesterolemia, familial hypercholesterolemia, xanthoma, combined hyperlipidemia, lecithin cholesterol acyltransferase deficiency, tangier disease, abetalipoproteinemia, erectile dysfunction, fatty liver disease, and hepatitis. - [131] Billary disorders include gallbladder disorders such as for example, gallstones, gall bladder cancer cholangitis, or primary sclerosing cholangitis; or bile duct disorders such as for example, cholecystitis, bile duct cancer or fascioliasis. - [132] Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); necrotizing enterocolitis (NEC); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). - [133] Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. - [134] Cancer includes tissue and organ carcinogenesis including metastases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. [135] Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high triglycerides. Cardiovascular disorders include for example aneurysm, angina, atherosclerosis, cerebrovascular accident (stroke), cerebrovasculardisease, congestive heart failure, coronary artery disease, myocardial infarction (heart attack), or peripheral vascular disease. [136] Liver disorders include for example cirrhosis and fibrosis. In addition, GC-C agonist may also be useful to facilitate liver regeneration in liver transplant patients. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis. ## 1.3.1 Therapeutically Effective Dosages [137] Disorders are treated, prevented or alleviated by administering to a subject, *e.g.*, a mammal such as a human in need thereof, a therapeutically effective dose of a GCC agonist peptide. The present invention is based in part on the unexpected results of clinical trials in humans which demonstrated that the formulations of the invention are therapeutically effective at much lower doses than predicted based on animal studies. In accordance with one aspect of the invention, the therapeutically effective dose is between 0.01 milligrams (mg) and 10 mg per unit dose. The term "unit dose" refers to a single drug delivery entity, *e.g.*, a tablet, capsule, solution or inhalation formulation. In one embodiment, the effective dose is between 0.01 mg and 5 mg. In another embodiment, the effective dose is between 0.01 mg and 5 mg. In another embodiment, the effective dose is between 0.10 mg and 5 mg. In another embodiment, the effective dose is between 0.10 mg and 3 mg. In one embodiment, the unit dose is .01 mg, .05 mg, 0.1 mg, 0.2 mg, 0.3 mg, 0.5 mg, 1.0 mg, 1.5 mg, 2.0 mg, 2.5 mg, 3.0 mg, 5 mg, or 10 mg. In one embodiment, the unit dose is 0.3 mg, 1.0 mg, 3.0 mg, 9.0 mg, or 9.5 mg. - [138] The GCC agonist peptides may be in a pharmaceutical composition in unit dose form, together with one or more pharmaceutically acceptable excipients.
The amount of peptide present should be sufficient to have a positive therapeutic effect when administered to a patient. What constitutes a "positive therapeutic effect" will depend upon the particular condition being treated and will include any significant improvement in a condition readily recognized by one of skill in the art. - [139] The GCC agonists for use in the methods described above are preferably administered orally. Dosage forms include solutions, suspensions, emulsions, tablets, and capsules. - [140] The total daily dose can be administered to the patient in a single dose, or in multiple subdoses. Typically, sub-doses can be administered two to six times per day, preferably two to four times per day, and even more preferably two to three times per day. Preferably, a single daily dose is administered. - [141] The GCC agonists may be administered as either the sole active agent or in combination with one or more additional active agents. In all cases, additional active agents should be administered at a dosage that is therapeutically effective using the existing art as a guide. The GCC agonists may be administered in a single composition or sequentially with the one or more additional active agents. In one embodiment, the GCC agonist is administered in combination with one or more inhibitors of cGMP dependent phosphodiesterase such as suldinac sulfone, zaprinast, motapizone, vardenafil, or sildenifil. In another embodiment, the GCC agonist is administered in combination with one or more chemotherapeutic agents. In another embodiment, the GCC agonist is administered in combination with one or more or anti-inflammatory drugs such as steroids or non-steroidal anti-inflammatory drugs (NSAIDS), such as aspirin. - [142] Combination therapy can be achieved by administering two or more agents, *e.g.*, a GCC agonist peptide described herein and another compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. [143] The GCC agonist peptides described herein may be combined with phosphodiesterase inhibitors, *e.g.*, sulindae sulfone, Zaprinast, sildenafil, vardenafil or tadalafil to further enhance levels of cGMP in the target tissues or organs. [144] Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, *e.g.*, in the order X-Y-X, X-X-Y, Y-X-Y,Y-Y-X,X-Y-Y, etc. #### 1.3.2 Exemplary Agents for Combination Therapy [145] The GCC agonist formulations of the invention may be administered alone or in combination with one or more additional therapeutic agents as part of a therapeutic regimen for the treatment or prevention of a gastrointestinal disease or disorder. In some embodiments, the GCC agonist formulation comprises one or more additional therapeutic agents. In other embodiments, the GCC agonist is formulated separately from the one or more additional therapeutic agents. In accordance with this embodiment, the GCC agonist is administered either simultaneously, sequentially, or at a different time than the one or more additional therapeutic agents. In one embodiment, the GCC agonist formulation is administered in combination with one or more additional therapeutic agents selected from the group consisting of phosphodiesterase inhibitors, cyclic nucleotides (such as cGMP and cAMP), a laxative (such as SENNA or METAMUCIL), a stool softner, an anti-tumor necrosis factor alpha therapy for IBD (such as REMICADE, ENBREL, or HUMIRA), and anti-inflammatory drugs (such as COX-2 inhibitors, sulfasalazine, 5-ASA derivatives and NSAIDS). In certain embodiments, the GCC agonist formulation is administered in combination with an effective dose of an inhibitor of cGMP-specific phosphodiesterase (cGMP-PDE) either concurrently or sequentially with said GCC agonist. cGMP-PDE inhibitors include, for example, suldinac sulfone, zaprinast, motapizone, vardenifil, and sildenafil. In another embodiment, the GCC agonist formulation is administered in combination with inhibitors of cyclic nucleotide transporters. Further examples of therapeutic agents that may be administered in combination with the GCC agonist formulations of the invention are given in the following sections. ## **1.3.2.1** Agents to Treat Gastrointestinal Cancers [146] The GCC agonist formulations described herein can be used in combination with one or more antitumor agents including but not limited to alkylating agents, epipodophyllotoxins, nitrosoureas, anti-metabolites, vinca alkaloids, anthracycline antibiotics, nitrogen mustard agents, and the like. Particular antitumor agents include tamoxifen, taxol, etoposide, and 5-fluorouracil. In one embodiment, the GCC agonist formulations are used in combination with an antiviral agent or a monoclonal antibody. [147] Non-limiting examples of antitumor agents that can be used in combination with the GCC agonist formulations of the invention for the treatment of colon cancer include antiproliferative agents, agents for DNA modification or repair, DNA synthesis inhibitors, DNA/RNA transcription regulators, RNA processing inhibitors, agents that affect protein expression, synthesis and stability, agents that affect protein localization or their ability to exert their physiological action, agents that interfere with protein-protein or protein-nucleic acid interactions, agents that act by RNA interference, receptor binding molecules of any chemical nature (including small molecules and antibodies), targeted toxins, enzyme activators, enzyme inhibitors, gene regulators, HSP-90 inhibitors, molecules interfering with microtubules or other cytoskeletal components or cell adhesion and motility, agents for phototherapy, and therapy adjuncts. [148] Representative anti-proliferative agents include N-acetyl-D-sphingosine (C.sub.2 ceramide), apigenin, berberine chloride, dichloromethylenediphosphonic acid disodium salt, loeemodine, emodin, HA 14-1, N-hexanoyl-D-sphingosine (C.sub.6 ceramide), 7b-hydroxycholesterol, 25-hydroxycholesterol, hyperforin, parthenolide, and rapamycin. Representative agents for DNA modification and repair include aphidicolin, bleomycin sulfate, carboplatin, carmustine, chlorambucil, cyclophosphamide monohydrate, cyclophosphamide monohydrate ISOPAC.RTM., cis-diammineplatinum(II) dichloride (Cisplatin), esculetin, melphalan, methoxyamine hydrochloride, mitomycin C, mitoxantrone dihydrochloride, oxaliplatin, and streptozocin. - [149] Representative DNA synthesis inhibitors include (.+-.)amethopterin (methotrexate), 3-amino-1,2,4-benzotriazine 1,4-dioxide, aminopterin, cytosine b-D-arabinofurdnoside (Ara-C), cytosine b-D-arabinofuranoside (Ara-C) hydrochloride, 2-fluoroadenine-9-b-D-arabinofuranoside (Fludarabine des-phosphate; F-ara-A), 5-fluoro-5'-deoxyuridinc, 5-fluorouracil, ganciclovir, hydroxyurea, 6-mercaptopurine, and 6-thioguanine. - [150] Representative DNA/RNA transcription regulators include actinomycin D, daunorubicin hydrochloride, 5,6-dichlorobenzimidazole 1-b-D-ribofuranoside, doxorubicin hydrochloride, homoharringtonine, and idarubicin hydrochloride. - [151] Representative enzyme activators and inhibitors include forskolin, DL-aminoglutethimide, apicidin, Bowman-Birk Inhibitor, butein, (S)-(+)-camptothecin, curcumin, (-)-deguelin, (-)-depudecin, doxycycline hyclate, etoposide, formestane, fostriecin sodium salt, hispidin, 2-imino-1-imidazolidineacetic acid (Cyclocreatine), oxamflatin, 4-phenylbutyric acid, roscovitine, sodium valproate, trichostatin A, tyrphostin AG 34, tyrphostin AG 879, urinary trypsin inhibitor fragment, valproic acid (2-propylpentanoic acid), and XK469. - [152] Representative gene regulators include 5-aza-2'-deoxycytidine, 5-azacytidine, cholecalciferol (Vitamin D3), ciglitizone, cyproterone acetate, 15-deoxy-D.sup.12,14-prostaglandin J.sub.2, epitestosterone, flutamide, glycyrrhizic acid ammonium salt (glycyrrhizin), 4-hydroxytamoxifen, mifepristone, procainamide hydrochloride, raloxifene hydrochloride, all trans-retinal (vitamin A aldehyde), retinoic acid (vitamin A acid), 9-cis- retinoic acid, 13-cis-retinoic acid, retinoic acid p-hydroxyanilide, retinol (Vitamin A), tamoxifen, tamoxifen citrate salt, tetradecylthioacetic acid, and troglitazone. - [153] Representative HSP-90 inhibitors include 17-(allylamino)-17-demethoxygeldanamycin and geldanamycin. - [154] Representative microtubule inhibitors include colchicines, dolastatin 15, nocodazole, taxanes and in particular paclitaxel, podophyllotoxin, rhizoxin, vinblastine sulfate salt, vincristine sulfate salt, and vindesine sulfate salt and vinorelbine (Navelbine) ditartrate salt. - [155] Representative agents for performing phototherapy include photoactive porphyrin rings, hypericin, 5-methoxypsoralen, 8-methoxypsoralen, psoralen and ursodeoxycholic acid. - [156] Representative agents
used as therapy adjuncts include amifostine, 4-amino-1,8-naphthalimide, brefeldin A, cimetidine, phosphomycin disodium salt, leuprolide (leuprorelin) acetate salt, luteinizing hormone-releasing hormone (LH-RH) acetate salt, lectin, papaverine hydrochloride, pifithrin-a, (-)-scopolamine hydrobromide, and thapsigargin. - [157] The agents can also be anti-VEGF (vascular endothelial growth factor) agents, as such are known in the art. Several antibodies and small molecules are currently in clinical trials or have been approved that function by inhibiting VEGF, such as Avastin (Bevacizumab), SU5416, SU11248 and BAY 43-9006. The agents can also be directed against growth factor receptors such as those of the EGF/Erb-B family such as EGF Receptor (Iressa or Gefitinib, and Tarceva or Erlotinib), Erb-B2, receptor (Herceptin or Trastuzumab), other receptors (such as Rituximab or Rituxan/MabThera), tyrosine kinases, non-receptor tyrosine kinases, cellular serine/threonine kinases (including MAP kinases), and various other proteins whose deregulation contribute to oncogenesis (such as small/Ras family and large/heterotrimeric G proteins). Several antibodies and small molecules targeting those molecules are currently at various stages of development (including approved for treatment or in clinical trials). - [158] In a preferred embodiment, the invention provides a method for treating colon cancer in a subject in need thereof by administering to the subject a GCC agonist formulation in combination with one or more antitumor agent selected from the group consisting of paclitaxel, docetaxel, tamoxifen, vinorelbine, gemcitabine, cisplatin, etoposide, topotecan, irinotecan, anastrozole, rituximab, trastuzumab, fludarabine, cyclophosphamide, gentuzumab, carboplatin, interferons, and doxorubicin. In a particular embodiment the antitumor agent is paclitaxel. In a further embodiment, the method further comprises an antitumor agent selected from the group consisting of 5-FU, doxorubicin, vinorelbine, cytoxan, and cisplatin. ## **1.3.2.2** Agents that Treat Crohn's Disease [159] In one embodiment, a GCC agonist formulation of the invention is administered as part of a combination therapy with one or more additional therapeutic agents for the treatment of Crohn's disease. Non-limiting examples of the one or more additional therapeutic agents include sulfasalazine and other mesalamine-containing drugs, generally known as 5-ASA agents, such as Asacol, Dipentum, or Pentasa, or infliximab (REMICADE). In certain embodiments, the one or more additional agents is a corticosteroid or an immunosuppressive agent such as 6-mercaptopurine or azathioprine. In another embodiment, the one or more additional agents is an antidiarrheal agent such as diphenoxylate, loperamide, or codeine. #### 1.3.2.3 Agents that Treat Ulcerative Colitis [160] In one embodiment, a GCC agonist formulation of the invention is administered as part of a combination therapy with one or more additional therapeutic agents for the treatment of ulcerative colitis. The agents that are used to treat ulcerative colitis overlap with those used to treat Chrohn's Disease. Non-limiting examples of the one or more additional therapeutic agents that can be used in combination with a GCC agonist formulation of the invention include aminosalicylates (drugs that contain 5-aminosalicyclic acid (5-ASA)) such as sulfasalazine, olsalazine, mesalamine, and balsalazide. Other therapeutic agents that can be used include corticosteroids, such as prednisone and hydrocortisone, immunomodulators, such as azathioprine, 6-mercapto-purine (6-MP), cytokines, interleukins, and lymphokines, and anti-TNF-alpha agents, including the thiazolidinediones or glitazones such as rosiglitazone and pioglitazone. In one emobidment, the one or more additional therapeutic agents includes both cyclosporine A and 6-MP or azathioprine for the treatment of active, severe ulcerative colitis. #### 1.3.2.4 Agents that Treat Constipation/Irritable Bowel Syndrome [161] In one embodiment, a GCC agonist formulation of the invention is administered as part of a combination therapy with one or more additional therapeutic agents for the treatment of constipation, such as that associated with irritable bowel syndrome. Non-limiting examples of the one or more additional therapeutic agents include laxatives such as SENNA, MIRALAX, LACTULOSE, PEG, or calcium polycarbophil), stool softeners (such as mineral oil or COLACE), bulking agents (such as METAMUCIL or bran), agents such as ZELNORM (also called tegaserod), and anticholinergic medications such as BENTYL and LEVSIN. ### **1.3.2.5** Agents for the Treatment of Postoperative Ileus [162] In one embodiment, a GCC agonist formulation of the invention is administered as part of a combination therapy with one or more additional therapeutic agents for the treatment of postoperative ileus. Non-limiting examples of the one or more additional therapeutic agents include ENTEREG (alvimopan; formerly called ado lor/ ADL 8-2698), conivaptan, and related agents describes in US 6,645,959. #### 1.3.2.6 Anti-obesity agents [163] In one embodiment, a GCC agonist formulation of the invention is administered as part of a combination therapy with one or more additional therapeutic agents for the treatment of obesity. Non-limiting examples of the one or more additional therapeutic agents include 1 lβ HSD-I (11-beta hydroxy steroid dehydrogenase type 1) inhibitors, such as BVT 3498, BVT 2733, 3-(l-adamantyl)-4-ethyl-5-(ethylthio)- 4H-l,2,4-triazole, 3-(l-adamantyl)-5-(3,4,5-trimethoxyphenyl)-4-methyl-4H-l,2,4-triazole, 3- adamantanyl-4,5,6,7,8,9,10,11,12,3a-decahydro-1,2,4-triazolo[4,3-a][1 l]annulene, and those compounds disclosed in WO01/90091, WOO 1/90090, WOO 1/90092 and WO02/072084; 5HT antagonists such as those in WO03/037871, WO03/037887, and the like; 5HTIa modulators such as carbidopa, benserazide and those disclosed in US6207699, WO03/031439, and the like; 5HT2c (serotonin receptor 2c) agonists, such as BVT933, DPCA37215, IK264, PNU 22394, WAY161503, R-1065, SB 243213 (Glaxo Smith Kline) and YM 348 and those disclosed in US3914250, WO00/77010, WO02/36596, WO02/48124, WO02/10169, WO01/66548, WO02/44152, WO02/51844, WO02/40456, and WO02/40457; 5HT6 receptor modulators, such as those in WO03/030901, WO03/035061, WO03/039547, and the like; acyl-estrogens, such as oleoyl-estrone, disclosed in del Mar-Grasa, M. et al, Obesity Research, 9:202-9 (2001) and Japanese Patent Application No. JP 2000256190; anorectic bicyclic compounds such as 1426 (Aventis) and 1954 (Aventis), and the compounds disclosed in WO00/18749, WO01/32638, WO01/62746, WO01/62747, and WO03/015769; CB 1 (cannabinoid-1 receptor) antagonist/inverse agonists such as rimonabant (Acomplia; Sanofi), SR-147778 (Sanofi), SR-141716 (Sanofi), BAY 65-2520 (Bayer), and SLV 319 (Solvay), and those disclosed in patent publications US4973587, US5013837, US5081122, US5112820, US5292736, US5532237, US5624941, US6028084, US6509367, US6509367, WO96/33159, WO97/29079, WO98/31227, WO98/33765, WO98/37061, WO98/41519, WO98/43635, WO98/43636, WO99/02499, WO00/10967, WO00/10968, WO01/09120, WO01/58869, WO01/64632, WO01/64633, WO01/64634, WO01/70700, WO01/96330, WO02/076949, WO03/006007, WO03/007887, WO03/020217, WO03/026647, WO03/026648, WO03/027069, WO03/027076, WO03/027114, WO03/037332, WO03/040107, WO03/086940, WO03/084943 and EP658546; CCK-A (cholecystokinin-A) agonists, such as AR-R 15849, GI 181771 (GSK), JMV-180, A-71378, A-71623 and SR146131 (Sanofi), and those described in US5739106; CNTF (Ciliary neurotrophic factors), such as GI- 181771 (Glaxo-SmithKline), SRI 46131 (Sanofi Synthelabo), butabindide, PD 170,292, and PD 149164 (Pfizer); CNTF derivatives, such as Axokine® (Regeneron), and those disclosed in WO94/09134, WO98/22128, and WO99/43813; dipeptidyl peptidase IV (DP-IV) inhibitors, such as isoleucine thiazolidide, valine pyrrolidide, NVP-DPP728, LAF237, P93/01, P 3298, TSL 225 (tryptophyl-1,2,3,4tetrahydroisoguinoline-3- carboxylic acid; disclosed by Yamada et al, Bioorg. & Med. Chem. Lett. 8 (1998) 1537-1540), TMC-2A/2B/2C, CD26 inhibtors, FE 999011, P9310/K364, VIP 0177, SDZ 274-444, 2- cyanopyrrolidides and 4-cyanopyrrolidides as disclosed by Ashworth et al, Bioorg. & Med. Chem. Lett., Vol. 6, No. 22, pp 1163-1166 and 2745-2748 (1996) and the compounds disclosed patent publications. WO99/38501, WO99/46272, WO99/67279 (Probiodrug), WO99/67278 (Probiodrug), WO99/61431 (Probiodrug), WO02/083128, WO02/062764, WO03/000180, WO03/000181, WO03/000250, WO03/002530, WO03/002531, WO03/002553, WO03/002593, WO03/004498, WO03/004496, WO03/017936, WO03/024942, WO03/024965, WO03/033524, WO03/037327 and EP1258476; growth hormone secretagogue receptor agonists/antagonists, such as NN703, hexarelin, MK-0677 (Merck), SM-130686, CP-424391 (Pfizer), LY 444,711 (Eli Lilly), L-692,429 and L- 163,255, and such as those disclosed in USSN 09/662448, US provisional application 60/203335, US6358951, US2002049196, US2002/022637, WO01/56592 and WO02/32888; H3 (histamine H3) antagonist/inverse agonists, such as thioperamide, 3-(lH-imidazol-4-yl)propyl N-(4-pentenyl)carbamate), clobenpropit, iodophenpropit, imoproxifan, GT2394 (Gliatech), and A331440, O-[3-(IHimidazol-4-yl)propanol]carbamates (Kiec-Kononowicz, K. et al., Pharmazie, 55:349-55 (2000)), piperidine-containing histamine H3-receptor antagonists (Lazewska, D. et al., Pharmazie, 56:927-32 (2001), benzophenone derivatives and related compounds (Sasse, A. et al., Arch. Pharm. (Weinheim) 334:45-52 (2001), substituted N-phenylcarbamates (Reidemeister, S. et al., Pharmazie, 55:83-6 (2000)), and proxifan derivatives (Sasse, A. et al., J. Med. Chem. 43:3335-43 (2000)) and histamine H3 receptor modulators such as those disclosed in WO02/15905, WO03/024928 and WO03/024929; leptin derivatives, such as those disclosed in US5552524, US5552523, US5552522, US5521283, WO96/23513, WO96/23514, WO96/23515, WO96/23516, WO96/23517,
WO96/23518, WO96/23519, and WO96/23520; leptin, including recombinant human leptin (PEG-OB, Hoffman La Roche) and recombinant methionyl human leptin (Amgen); lipase inhibitors, such as tetrahydrolipstatin (orlistat/Xenical®), Triton WRl 339, RHC80267, lipstatin, teasaponin, diethylumbelliferyl phosphate, FL-386, WAY-121898, Bay-N-3176, valilactone, esteracin, ebelactone A, ebelactone B, and RHC 80267, and those disclosed in patent publications WO01/77094, US4598089, US4452813, USUS5512565, US5391571, US5602151, US4405644, US4189438, and US4242453; lipid metabolism modulators such as maslinic acid, erythrodiol, ursolic acid uvaol, betulinic acid, betulin, and the like and compounds disclosed in WO03/011267; Mc4r (melanocortin 4 receptor) agonists, such as CHIR86036 (Chiron), ME-10142, ME-10145, and HS-131 (Melacure), and those disclosed in PCT publication Nos. WO99/64002, WO00/74679, WOO 1/991752, WOO 1/25192, WOO 1/52880, WOO 1/74844, WOO 1/70708, WO01/70337, WO01/91752, WO02/059095, WO02/059107, WO02/059108, WO02/059117, WO02/06276, WO02/12166, WO02/11715, WO02/12178, WO02/15909, WO02/38544, WO02/068387, WO02/068388, WO02/067869, WO02/081430, WO03/06604, WO03/007949, WO03/009847, WO03/009850, WO03/013509, and WO03/031410; Mc5r (melanocortin 5 receptor) modulators, such as those disclosed in WO97/19952, WO00/15826, WO00/15790, US20030092041; melanin-concentrating hormone 1 receptor (MCHR) antagonists, such as T-226296 (Takeda), SB 568849, SNP-7941 (Synaptic), and those disclosed in patent publications WOO 1/21169, WO01/82925, WO01/87834, WO02/051809, WO02/06245, WO02/076929, WO02/076947, WO02/04433, WO02/51809, WO02/083134, WO02/094799, WO03/004027, WO03/13574, WO03/15769, WO03/028641, WO03/035624, WO03/033476, WO03/033480, JP13226269, and JP1437059; mGluR5 modulators such as those disclosed in WO03/029210, WO03/047581, WO03/048137, WO03/051315, WO03/051833, WO03/053922, WO03/059904, and the like; serotoninergic agents, such as fenfluramine (such as Pondimin® (Benzeneethanamine, N-ethyl- alpha-methyl-3-(trifluoromethyl)-, hydrochloride), Robbins), dexfenfluramine (such as Redux® (Benzeneethanamine, N-ethyl-alpha-methyl-3-(trifluoromethyl)-, hydrochloride), Interneuron) and sibutramine ((Meridia®, Knoll/ReductilTM) including racemic mixtures, as optically pure isomers (+) and (-), and pharmaceutically acceptable salts, solvents, hydrates, clathrates and prodrugs thereof including sibutramine hydrochloride monohydrate salts thereof, and those compounds disclosed in US4746680, US4806570, and US5436272, US20020006964, WOO 1/27068, and WOO 1/62341; NE (norepinephrine) transport inhibitors, such as GW 320659, despiramine, talsupram, and nomifensine; NPY 1 antagonists, such as BIBP3226, J-115814, BIBO 3304, LY-357897, CP-671906, GI- 264879A, and those disclosed in US6001836, WO96/14307, WO01/23387, WO99/51600, WO01/85690, WO01/85098, WO01/85173, and WO01/89528; NPY5 (neuropeptide Y Y5) antagonists, such as 152,804, GW-569180A, GW-594884A, GW-587081X, GW-548118X, FR235208, FR226928, FR240662, FR252384, 1229U91, GI-264879A, CGP71683A, LY-377897, LY-366377, PD-160170, SR- 120562A, SR-120819A, JCF-104, and H409/22 and those compounds disclosed in patent publications US6140354, US6191160, US6218408, US6258837, US6313298, US6326375, US6329395, US6335345, US6337332, US6329395, US6340683, EP01010691, EP-01044970, WO97/19682, WO97/20820, WO97/20821, WO97/20822, WO97/20823, WO98/27063, WO00/107409, WO00/185714, WO00/185730, WO00/64880, WO00/68197, WO00/69849, WO/0113917, WO01/09120, WO01/14376, WO01/85714, WO01/85730, WO01/07409, WO01/02379, WO01/23388, WO01/23389, WOO 1/44201, WO01/62737, WO01/62738, WO01/09120, WO02/20488, WO02/22592, WO02/48152, WO02/49648, WO02/051806, WO02/094789, WO03/009845, WO03/014083, WO03/022849, WO03/028726 and Norman et al, J. Med. Chem. 43:4288-4312 (2000); opioid antagonists, such as nalmefene (REVEX ®), 3-methoxynaltrexone, methylnaltrexone, naloxone, and naltrexone (e.g. PT901; Pain Therapeutics, Inc.) and those disclosed in US20050004155 and WO00/21509; orexin antagonists, such as SB-334867-A and those disclosed in patent publications WO01/96302, WO01/68609, WO02/44172, WO02/51232, WO02/51838, WO02/089800, WO02/090355, WO03/023561, WO03/032991, and WO03/037847; PDE inhibitors (e.g. compounds which slow the degradation of cyclic AMP (cAMP) and/or cyclic GMP (cGMP) by inhibition of the phosphodiesterases, which can lead to a relative increase in the intracellular concentration of cAMP and cGMP; possible PDE inhibitors are primarily those substances which are to be numbered among the class consisting of the PDE3 inhibitors, the class consisting of the PDE4 inhibitors and/or the class consisting of the PDE5 inhibitors, in particular those substances which can be designated as mixed types of PDE3/4 inhibitors or as mixed types of PDE3/4/5 inhibitors) such as those disclosed in patent publications DE1470341, DE2108438, DE2123328, DE2305339, DE2305575, DE2315801, DE2402908, DE2413935, DE2451417, DE2459090, DE2646469, DE2727481, DE2825048, DE2837161, DE2845220, DE2847621, DE2934747, DE3021792, DE3038166, DE3044568, EP000718, EP0008408, EP0010759, EP0059948, EP0075436, EP0096517, EPOI 12987, EPOI 16948, EP0150937, EP0158380, EP0161632, EP0161918, EP0167121, EP0199127, EP0220044, EP0247725, EP0258191, EP0272910, EP0272914, EP0294647, EP0300726, EP0335386, EP0357788, EP0389282, EP0406958, EP0426180, EP0428302, EP0435811, EP0470805, EP0482208, EP0490823, EP0506194, EP0511865, EP0527117, EP0626939, EP0664289, EP0671389, EP0685474, EP0685475, EP0685479, JP92234389, JP94329652, JP95010875, US4963561, US5141931, WO9117991, WO9200968, WO9212961, WO9307146, WO9315044, WO9315045, WO9318024, WO9319068, WO9319720, WO9319747, WO9319749, WO9319751, WO9325517, WO9402465, WO9406423, WO9412461, WO9420455, WO9422852, WO9425437, WO9427947, WO9500516, WO9501980, WO9503794, WO9504045, WO9504046, WO9505386, WO9508534, WO9509623, WO9509624, WO9509627, WO9509836, WO9514667, WO9514680, WO9514681, WO9517392, WO9517399, WO9519362, WO9522520, WO9524381, WO9527692, WO9528926, WO9535281, WO9535282, WO9600218, WO9601825, WO9602541, WO9611917, DE3142982, DEI 116676, DE2162096, EP0293063, EP0463756, EP0482208, EP0579496, EP0667345 US6331543, US20050004222 (including those disclosed in formulas I- XIII and paragraphs 37-39, 85-0545 and 557-577), WO9307124, EP0163965, EP0393500, EP0510562, EP0553174, WO9501338 and WO9603399, as well as PDE5 inhibitors (such as RX-RA-69, SCH-51866, KT-734, vesnarinone, zaprinast, SKF-96231, ER-21355, BF/GP-385, NM-702 and sildenafil (ViagraTM)), PDE4 inhibitors (such as etazolate, ICI63197, RP73401, imazolidinone (RO-20-1724), MEM 1414 (R1533/R1500; Pharmacia Roche), denbufylline, rolipram, oxagrelate, nitraquazone, Y-590, DH-6471, SKF-94120, motapizone, lixazinone, indolidan, olprinone, atizoram, KS-506-G, dipamfylline, BMY-43351, atizoram, arofylline, filaminast, PDB-093, UCB-29646, CDP-840, SKF-107806, piclamilast, RS-17597, RS-25344-000, SB-207499, TIBENELAST, SB-210667, SB-211572, SB-211600, SB-212066, SB-212179, GW-3600, CDP-840, mopidamol, anagrelide, ibudilast, amrinone, pimobendan, cilostazol, quazinone and N-(3,5-dichloropyrid-4-yl)-3-cyclopropylmethoxy4-difluoromethoxybenzamide, PDE3 inhibitors (such as ICI153, 100, bemorandane (RWJ 22867), MCI-154, UD-CG 212, sulmazole, ampizone, cilostamide, carbazeran, piroximone, imazodan, CI-930, siguazodan, adibendan, saterinone, SKF-95654, SDZ-MKS-492, 349-U-85, emoradan, EMD-53998, EMD-57033, NSP-306, NSP-307, revizinone, NM-702, WIN-62582 and WIN-63291, enoximone and milrinone, PDE3/4 inhibitors (such as benafentrine, trequinsin, ORG-30029, zardaverine, L-686398, SDZ-ISQ-844, ORG-20241, EMD-54622, and tolafentrine) and other PDE inhibitors (such as vinpocetin, papaverine, enprofylline, cilomilast, fenoximone, pentoxifylline, roflumilast, tadalafil(Cialis®), theophylline, and vardenafil(Levitra®); Neuropeptide Y2 (NPY2) agonists include but are not limited to: polypeptide YY and fragments and variants thereof (e.g. YY3-36 (PYY3-36)(N. Engl. J. Med. 349:941, 2003; IKPEAPGE DASPEELNRY YASLRHYLNL VTRQRY (SEQ ID NO:XXX)) and PYY agonists such as those disclosed in WO02/47712, WO03/026591, WO03/057235, and WO03/027637; serotonin reuptake inhibitors, such as, paroxetine, fluoxetine (ProzacTM), fluvoxamine, sertraline, citalogram, and imipramine, and those disclosed in US6162805, US6365633, WO03/00663, WOO 1/27060, and WOO 1/162341; thyroid hormone β agonists, such as KB-2611 (KaroBioBMS), and those disclosed in WO02/15845, WO97/21993, WO99/00353, GB98/284425, U.S. Provisional Application No. 60/183,223, and Japanese Patent Application No. JP 2000256190; UCP-I (uncoupling protein-1). 2, or 3 activators, such as phytanic acid, 4-[(E)-2-(5, 6,7,8- tetrahydro-5,5,8,8-tetramethyl-2napthalenyl)-l-propenyl]benzoic acid (TTNPB), retinoic acid, and those disclosed in WO99/00123; β3 (beta adrenergic receptor 3) agonists, such as AJ9677/TAK677 (Dainippon/Takeda), L750355 (Merck), CP331648 (Pfizer), CL-316,243, SB 418790, BRL- 37344, L-796568, BMS-196085, BRL-35135A, CGP12177A, BTA-243, GW 427353, Trecadrine, Zeneca D7114, N-5984 (Nisshin Kyorin), LY-377604 (Lilly), SR 59119A, and those disclosed in US5541204, US5770615, US5491134, US5776983, US488064, US5705515, US5451677, WO94/18161, WO95/29159, WO97/46556, WO98/04526 and WO98/32753, WO01/74782, WO02/32897, WO03/014113, WO03/016276, WO03/016307, WO03/024948, WO03/024953 and WO03/037881; noradrenergic agents including, but not limited to, diethylpropion (such as Tenuate® (1- propanone, 2-(diethylamino)-l -phenyl-, hydrochloride), Merrell), dextroamphetamine (also known as dextroamphetamine sulfate, dexamphetamine, dexedrine, Dexampex, Ferndex, Oxydess II, Robese, Spancap #1), mazindol ((or 5-(pchlorophenyl)-2,5-dihydro-3H- imidazo[2,1-a]isoindol-5-ol) such as Sanorex®, Novartis or Mazanor®, Wyeth Ayerst), phenylpropanolamine (or Benzenemethanol, alpha-(l-aminoethyl)-, hydrochloride), phentermine ((or Phenol,
3-[[4,5-duhydro-lH-imidazol-2-yl)ethyl](4methylpheny-l)amino], monohydrochloride) such as Adipex-P®, Lemmon, FASTIN®, Smith-Kline Beecham and Ionamin®, Medeva), phendimetrazine ((or (2S,3S)-3,4-Dimethyl-2phenylmorpholine L-(+)- tartrate (1:1) such as Metra® (Forest), Plegine® (Wyeth- Ay erst), Prelu-2® (Boehringer Ingelheim), and Statobex® (Lemmon), phendamine tartrate (such as Thephorin® (2,3,4,9- Tetrahydro-2-methyl-9-phenyl-lH-indenol[2,1-c]pyridine L-(+)-tartrate (1 :1)), Hoffmann- LaRoche), methamphetamine (such as Desoxyn®, Abbot ((S)-N, (alpha)dimethylbenzeneethanamine hydrochloride)), and phendimetrazine tartrate (such as Bontril® Slow-Release Capsules, Amarin (-3,4-Dimethyl-2-phenylmorpholine Tartrate); fatty acid oxidation upregulator/inducers such as Famoxin® (Genset); monamine oxidase inhibitors including but not limited to befloxatone, moclobemide, brofaromine, phenoxathine, esuprone, befol, toloxatone, pirlindol, amiflamine, sercloremine, bazinaprine, lazabemide, milacemide, caroxazone and other certain compounds as disclosed by WO01/12176; and other anti-obesity agents such as 5HT-2 agonists, ACC (acetyl-CoA carboxylase) inhibitors such as those described in WO03/072197, alpha-lipoic acid (alpha-LA), AOD9604, appetite suppressants such as those in WO03/40107, ATL-962 (Alizyme PLC), benzocaine, benzphetamine hydrochloride (Didrex), bladderwrack (focus vesiculosus), BRS3 (bombesin receptor subtype 3) agonists, bupropion, caffeine, CCK agonists, chitosan, chromium, conjugated linoleic acid, corticotropin-releasing hormone agonists, dehydroepiandrosterone, DGATI (diacylglycerol acyltransferase 1) inhibitors, DGAT2 (diacylglycerol acyltransferase 2) inhibitors, dicarboxylate transporter inhibitors, and C75), fat resorption inhibitors (such as those in WO03/053451, and the like), fatty acid transporter inhibitors, natural water soluble fibers (such as psyllium, plantago, guar, oat, pectin), galanin antagonists, galega (Goat's Rue, French Lilac), garcinia cambogia, germander (teucrium chamaedrys), ghrelin antibodies and ghrelin antagonists (such as those disclosed in WO01/87335, and WO02/08250), polypeptide hormones and variants thereof which affect the islet cell secretion, such as the hormones of the secretin/gastric inhibitory polypeptide (GIP)/vasoactive intestinal polypeptide (VIP)/pituitary adenylate cyclase activating polypeptide (PACAP)/glucagon-like polypeptide II (GLP- II)/glicentin/glucagon gene family and/or those of the adrenomedullin/amylin/calcitonin gene related polypeptide (CGRP) gene family includingGLP-1 (glucagon-like polypeptide 1) agonists (e.g. (1) exendin-4, (2) those GLP-I molecules described in US20050130891 including GLP-1(7-34), GLP-1(7-35), GLP-1(7-36) or GLP-I(7-37) in its C-terminally carboxylated or amidated form or as modified GLP-I polypeptides and modifications thereof including those described in paragraphs 17-44 of US20050130891, and derivatives derived from GLP-1-(7-34)COOH and the corresponding acid amide are employed which have the following general formula: R-NH-HAEGTFTSDVSYLEGQAAKEFIAWLVK-CONH2 wherein R=H or an organic compound having from 1 to 10 carbon atoms. Preferably, R is the residue of a carboxylic acid. Particularly preferred are the following carboxylic acid residues: formyl, acetyl, propionyl, isopropionyl, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert- butyl.) and glp-1 (glucagon-like polypeptide- 1), glucocorticoid antagonists, glucose transporter inhibitors, growth hormone secretagogues (such as those disclosed and specifically described in US5536716), interleukin-6 (IL-6) and modulators thereof (as in WO03/057237, and the like), L- carnitine, Mc3r (melanocortin 3 receptor) agonists, MCH2R (melanin concentrating hormone 2R) agonist/antagonists, melanin concentrating hormone antagonists, melanocortin agonists (such as Melanotan II or those described in WO 99/64002 and WO 00/74679), nomame herba, phosphate transporter inhibitors, phytopharm compound 57 (CP 644,673), pyruvate, SCD-I (stearovl-CoA desaturase-1) inhibitors, T71 (Tularik, Inc., Boulder CO), Topiramate (Topimax®, indicated as ephedra, exendin-4 (an inhibitor of glp-1) FAS (fatty acid synthase) inhibitors (such as Cerulenin an anti-convulsant which has been shown to increase weight loss), transcription factor modulators (such as those disclosed in WO03/026576), β-hydroxy steroid dehydrogenase- 1 inhibitors (β -HSD-I), β-hydroxy-β-methylbutyrate, p57 (Pfizer), Zonisamide (ZonegranTM, indicated as an anti-epileptic which has been shown to lead to weight loss), and the agents disclosed in US20030119428 paragraphs 20-26. ## **1.3.2.7** Phosphodiesterase inhibitors [164] In certain embodiments, the regimen of combination therapy includes the administration of one or more phosphodiesterase ("PDE") inhibitors. PDE inhibitors slow the degradation of cyclic AMP (cAMP) and/or cyclic GMP (cGMP) by inhibiting phosphodiesterases, which can lead to a relative increase in the intracellular concentration of cAMP and/or cGMP. Nonlimiting examples of PDE inhibitors that can be used in combination with the GCC agonists of the invention include PDE3 inhibitors, PDE4 inhibitors and/or PDE5 inhibitors, in particular those substances which can be designated as mixed types of PDE3/4 inhibitors or as mixed types of PDE3/4/5 inhibitors. Non-limiting examples of such PDE inhibitors are described in the following patent applications and patents: DE1470341, DE2108438, DE2123328, DE2305339, DE2305575, DE2315801, DE2402908, DE2413935, DE2451417, DE2459090, DE2646469, DE2727481, DE2825048, DE2837161, DE2845220, DE2847621, DE2934747, DE3021792, DE3038166, DE3044568, EP000718, EP0008408, EP0010759, EP0059948, EP0075436, EP0096517, EP01 12987, EP01 16948, EP0150937, EP0158380, EP0161632, EP0161918, EP0167121, EP0199127, EP0220044, EP0247725, EP0258191, EP0272910, EP0272914, EP0294647, EP0300726, EP0335386, EP0357788, EP0389282, EP0406958, EP0426180, EP0428302, EP0435811, EP0470805, EP0482208, EP0490823, EP0506194, EP0511865, EP0527117, EP0626939, EP0664289, EP0671389, EP0685474, EP0685475, EP0685479, JP92234389, JP94329652, JP95010875, U.S. Pat. Nos. 4,963,561, 5,141,931, WO9117991, WO9200968, WO9212961, WO9307146, WO9315044, WO9315045, WO9318024, WO9319068, WO9319720, WO9319747, WO9319749, WO9319751, WO9325517, WO9402465, WO9406423, WO9412461, WO9420455, WO9422852, WO9425437, WO9427947, WO9500516, WO9501980, WO9503794, WO9504045, WO9504046, WO9505386, WO9508534, WO9509623, WO9509624, WO9509627, WO9509836, WO9514667, WO9514680, WO9514681, WO9517392, WO9517399, WO9519362, WO9522520, WO9524381, WO9527692, WO9528926, WO9535281, WO9535282, WO9600218, WO9601825, WO9602541, WO9611917, DE3142982, DEI 116676, DE2162096, EP0293063, EP0463756, EP0482208, EP0579496, EP0667345 US6,331,543, US20050004222 (including those disclosed in formulas I-XIII and paragraphs 37-39, 85-0545 and 557-577) and WO9307124, EP0163965, EP0393500, EP0510562, EP0553174, WO9501338 and WO9603399. PDE5 inhibitors which may be mentioned by way of example are RX-RA-69, SCH-51866, KT-734, vesnarinone, zaprinast, SKF-96231, ER-21355, BF/GP-385, NM-702 and sildenafil (Viagra®). PDE4 inhibitors which may be mentioned by way of example are RO-20-1724, MEM 1414 (R1533/R1500; Pharmacia Roche), DENBUFYLLINE, ROLIPRAM, OXAGRELATE, NITRAQUAZONE, Y-590, DH-6471, SKF-94120, MOTAPIZONE, LIXAZINONE, INDOLIDAN, OLPRINONE, ATIZORAM, KS-506-G, DIPAMFYLLINE, BMY-43351, ATIZORAM, AROFYLLINE, FILAMINAST, PDB-093, UCB-29646, CDP-840, SKF-107806, PICLAMILAST, RS-17597, RS-25344-000, SB-207499, TIBENELAST, SB-210667, SB-211572, SB-211600, SB-212066, SB-212179, GW-3600, CDP-840, MOPIDAMOL, ANAGRELIDE, IBUDILAST, AMRINONE, PIMOBENDAN, CILOSTAZOL, QUAZINONE and N-(3,5-dichloropyrid-4-yl)-3-cyclopropylmethoxy4-difluoromethoxybenzamide. PDE3 inhibitors which may be mentioned by way of example are SULMAZOLE, AMPIZONE, CILOSTAMIDE, CARBAZERAN, PIROXIMONE, IMAZODAN, CI-930, SIGUAZODAN, ADIBENDAN, SATERINONE, SKF-95654, SDZ-MKS-492, 349-U-85, EMORADAN, EMD-53998, EMD-57033, NSP-306, NSP-307, REVIZINONE, NM-702, WIN-62582 and WIN-63291, ENOXIMONE and MILRINONE. PDE3/4 inhibitors which may be mentioned by way of example are BENAFENTRINE, TREQUINSIN, ORG-30029, ZARDAVERINE, L-686398, SDZ-ISQ-844, ORG-20241, EMD-54622, and TOLAFENTRINE. Other PDE inhibitors include: cilomilast, pentoxifylline, roflumilast, tadalafil(Cialis®), theophylline, and vardenafil(Levitra®), zaprinast (PDE5 specific). GCC AGONIST ## 1.3.2.8 Analgesic Agents [165] In certain embodiments, the regimen of combination therapy includes the administration of one or more analysic agents, *e.g.*, an analysic compound or an analysic polypeptide. In some embodiments, the GCC agonist formulation is administered simultaneously or sequentially with one or more analysic agents. In other embodiments, the GCC agonist is covalently linked or attached to an analysic agent to create a therapeutic conjugate. Non-limiting examples of analgesic agents that can be used include calcium channel blockers, 5HT receptor antagonists (for example 5HT3, 5HT4 and 5HTl receptor antagonists), opioid receptor agonists (loperamide, fedotozine, and fentanyl), NKl receptor antagonists, CCK receptor agonists (*e.g.*, loxiglumide), NKl receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSRI), vanilloid and cannabanoid receptor agonists, and sialorphin. Further examples of analgesic agents in the various classes are known in the art. [166] In one embodiment, the analgesic agent is an analgesic polypeptide selected from the group consisting of sialorphin-related polypeptides, including those comprising the amino acid sequence QHNPR (SEQ ID NO: 239), including: VQHNPR (SEQ ID NO: 240); VRQHNPR (SEQ ID NO: 241); VRGQHNPR (SEQ ID NO: 242); VRGPQHNPR (SEQ ID NO: 243); VRGPRQHNPR (SEQ ID NO: 244); VRGPRRQHNPR (SEQ ID NO: 245); and RQHNPR (SEQ ID NO: 246). Sialorphin-related polypeptides bind to neprilysin and
inhibit neprilysin-mediated breakdown of substance P and Met-enkephalin. Thus, compounds or polypeptides that are inhibitors of neprilysin are useful analgesic agents which can be administered with the GCC agonists described herein or covalently linked to a GCC agonist to form a therapeutic conjugate. Sialorphin and related polypeptides are described in U.S. Patent 6,589,750; U.S. 20030078200 Al; and WO 02/051435 A2. [167] In another embodiment, a GCC agonist formulation of the invention is administered as part of a regimen of combination therapy with an opioid receptor antagonist or agonist. In one embodiment, the GCC agonist and the opioid receptor antagonist or agonist are linked via a covalent bond. Non-limiting examples of opioid receptor antagonists include naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, nor-binaltorphimine, enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-L-homoserine), trimebutine, vasoactive intestinal polypeptide, gastrin, glucagons. Non-limiting examples of opioid receptor agonists include fedotozine, asimadoline, and ketocyclazocine, the compounds described in WO03/097051 and WO05/007626, morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH 2; WO 01/019849 Al), and loperamide. [168] Further non-limiting examples of analgesic agents that can be used in a regimen of combination therapy along with the GCC agonist formulations of the invention include the dipeptide Tyr-Arg (kyotorphin); the chromogranin-derived polypeptide (CgA 47-66; See, e.g., Ghia et al. 2004 Regulatory polypeptides 119:199); CCK receptor agonists such as caerulein; conotoxin polypeptides; peptide analogs of thymulin (FR Application 2830451); CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R- isomer of loxiglumide) (WO 88/05774); 5-HT4 agonists such as tegaserod (Zelnorm®), mosapride, metoclopramide, zacopride, cisapride, renzapride, benzimidazolone derivatives such as BIMU 1 and BIMU 8, and lirexapride; calcium channel blockers such as ziconotide and related compounds described in, for example, EP625162B1, US 5,364,842, US 5,587,454, US 5,824,645, US 5,859,186, US 5,994,305, US 6087,091, US 6,136,786, WO 93/13128 AI, EP 1336409 Al, EP 835126 Al, EP 835126 Bl, US 5,795,864, US 5,891,849, US 6,054,429, WO 97/01351 Al; NK-I, receptor antagonists such as aprepitant (Merck & Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-48968 (Sanofi Synthelabo), CP-122,721 (Pfizer, Inc.), GW679769 (Glaxo Smith Kline), TAK-637 (Takeda/Abbot), SR-14033, and related compounds described in, for example, EP 873753 Al, US 20010006972 Al, US 20030109417 Al, WO 01/52844 Al (for a review see Giardina et al. 2003.Drugs 6:758); NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi-Synthelabo), GW597599 (Glaxo Smith Kline), SR-144190 (Sanofu-Synthelabo) and UK-290795 (Pfizer Inc); NK3 receptor antagonists such as osanetant (SR-142801; Sanofi-Synthelabo), SSR-241586, talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 Al, WO 97/21680 Al, US 6,277,862, WO 98/1 1090, WO 95/28418, WO 97/19927, and Boden et al. (J Med Chem. 39:1664-75, 1996); norepinephrine-serotonin reuptake inhibitors (NSRI) such as milnacipran and related compounds described in WO 03/077897; and vanilloid receptor antagonists such as arvanil and related compounds described in WO 01/64212 Al. [169] In addition to sialorphin-related polypeptides, analgesic polypeptides include: AspPhe, endomorphin-1, endomorphin-2, nocistatin, dalargin, lupron, ziconotide, and substance P. ## 1.3.2.9 Insulin and Insulin Modulating Agents [170] The GCC agonist peptides described herein can be used in combination therapy with insulin and related compounds including primate, rodent, or rabbit insulin including biologically active variants thereof including allelic variants, more preferably human insulin available in recombinant form. Sources of human insulin include pharmaceutically acceptable and sterile formulations such as those available from Eli Lilly (Indianapolis, Ind. 46285) as Humulin[™] (human insulin rDNA origin). See, the THE PHYSICIAN'S DESK REFERENCE, 55.sup.th Ed. (2001) Medical Economics, Thomson Healthcare (disclosing other suitable human insulins). [171] The GCC peptides described herein can also be used in combination therapy with agents that can boost insulin effects or levels of a subject upon administration, e.g. glipizide and/or rosiglitazone. The polypeptides and agonistsdescribed herein can be used in combitherapy with SYMLIN® (pramlintide acetate) and Exenatide® (synthetic exendin-4; a 39 aa polypeptide). ## **1.3.2.10** Anti-Hypertensive Agents [172] The GCC agonist peptides described herein can be used in combination therapy with an anti-hypertensive agent including but not limited to: (1) diuretics, such as thiazides, including chlorthalidone, chlorthiazide, dichlorophenamide, hydroflumethiazide, indapamide, polythiazide, and hydrochlorothiazide; loop diuretics, such as bumetanide, ethacrynic acid, furosemide, and torsemide; potassium sparing agents, such as amiloride, and triamterene; carbonic anhydrase inhibitors, osmotics(such as glycerin) and aldosterone antagonists, such as spironolactone, epirenone, and the like; (2) beta-adrenergic blockers such as acebutolol, atenolol, betaxolol, bevantolol, bisoprolol, bopindolol, carteolol, carvedilol, celiprolol, esmolol, indenolol, metaprolol, nadolol, nebivolol, penbutolol, pindolol, propanolol, sotalol, tertatolol, tilisolol, and timolol, and the like; (3) calcium channel blockers such as amlodipine, aranidipine, azelnidipine, barnidipine, benidipine, bepridil, cinaldipine, clevidipine, diltiazem, efonidipine, felodipine, gallopamil, isradipine, lacidipine, lemildipine, lercanidipine, nicardipine, nifedipine, nilvadipine, nimodepine, nisoldipine, nitrendipine, manidipine, pranidipine, and verapamil, and the like; (4) angiotensin converting enzyme (ACE) inhibitors such as benazepril; captopril; ceranapril; cilazapril; delapril; enalapril; enalopril; fosinopril; imidapril; lisinopril; losinopril; moexipril; quinapril; quinaprilat; ramipril; perindopril; perindropril; quanipril; spirapril; tenocapril; trandolapril, and zofenopril, and the like; (5) neutral endopeptidase inhibitors such as omapatrilat, cadoxatril and ecadotril, fosidotril, sampatrilat, AVE7688, ER4030, and the like; (6) endothelin antagonists such as tezosentan, A308165, and YM62899, and the like; (7) vasodilators such as hydralazine, clonidine, minoxidil, and nicotinyl alcohol, and the like; (8) angiotensin II receptor antagonists such as aprosartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, pratosartan, tasosartan, telmisartan, valsartan, and EXP-3137, FI6828K, and RNH6270, and the like; (9) α/β adrenergic blockers such as nipradilol, arotinolol and amosulalol, and the like; (10) alpha 1 blockers, such as terazosin, urapidil, prazosin, tamsulosin, bunazosin, trimazosin, doxazosin, naftopidil, indoramin, WHP 164, and XENOIO, and the like; (11) alpha 2 agonists such as lofexidine, tiamenidine, moxonidine, rilmenidine and guanobenz, and the like; (12) aldosterone inhibitors, and the like; and (13) angiopoietin-2 -binding agents such as those disclosed in WO03/030833. Specific anti-hypertensive agents that can be used in combination with polypeptides and agonists described herein include, but are not limited to: diuretics, such as thiazides (e.g., chlorthalidone, cyclothiazide (CAS RN 2259-96-3), chlorothiazide (CAS RN 72956-09-3, which may be prepared as disclosed in US2809194), dichlorophenamide, hydroflumethiazide, indapamide, polythiazide, bendroflumethazide, methyclothazide, polythiazide, trichlormethazide, chlorthalidone, indapamide, metolazone, quinethazone, althiazide (CAS RN 5588-16-9, which may be prepared as disclosed in British Patent No. 902,658), benzthiazide (CAS RN 91-33-8, which may be prepared as disclosed in US3108097), buthiazide (which may be prepared as disclosed in British Patent Nos. 861, 367), and hydrochlorothiazide), loop diuretics (e.g. bumetanide, ethacrynic acid, furosemide, and torasemide), potassium sparing agents (e.g. amiloride, and triamterene (CAS Number 396-01-O)), and aldosterone antagonists (e.g. spironolactone (CAS Number 52-01-7), epirenone, and the like); β-adrenergic blockers such as Amiodarone (Cordarone, Pacerone), bunolol hydrochloride (CAS RN 31969-05-8, Parke-Davis), acebutolol (±N-[3-Acetyl-4-[2-hydroxy-3-[(1 methylethyl)amino[propoxy]phenyl]-butanamide, or (±)-3'-Acetyl-4'-[2-hydroxy -3-(isopropylamino) propoxy] butyranilide), acebutolol hydrochloride (e.g. Sectral®, Wyeth-Ayerst), alprenolol hydrochloride (CAS RN 13707-88-5 see Netherlands Patent Application No. 6,605,692), atenolol (e.g. Tenormin®, AstraZeneca), carteolol hydrochloride (e.g. Cartrol® Filmtab®, Abbott), Celiprolol hydrochloride (CAS RN 57470-78-7, also see in US4034009), cetamolol hydrochloride (CAS RN 77590-95-5, see also US4059622), labetalol hydrochloride (e.g. Normodyne®, Schering), esmolol hydrochloride (e.g. Brevibloc®, Baxter), levobetaxolol hydrochloride (e.g. BetaxonTM Ophthalmic Suspension, Alcon), levobunolol hydrochloride (e.g. Betagan® Liquifilm® with C CAP® Compliance Cap, Allergan), nadolol (e.g. Nadolol, Mylan), practolol (CAS RN 6673-35-4, see also US3408387), propranolol hydrochloride (CAS RN 31898-9), sotalol hydrochloride (e.g. Betapace AFTM, Berlex), timolol (2-Propanol,1-[(1,1dimethylethyl)aminol-3-[[4-4(4-morpholinyl)-1,2,5-thiadiazol-3-yl]oxyl-, hemihydrate, (S)-, CAS RN 91524-16-2), timolol maleate (S)-I -[(1,1 -dimethylethyl) amino]-3-[[4- (4morpholinyl)-1,2,5-thiadiazol -3- yl] oxy]-2-propanol (Z)-2-butenedioate (1:1) salt, CAS RN 26921-17-5), bisoprolol (2-Propanol, 1-[4-[[2-(l-methylethoxy)ethoxy]-methyl]phenoxyl]-3-[(lmeth-ylethyl)amino]-, (\pm), CAS RN 66722-44-9), bisoprolol
fumarate (such as (\pm)-1-[4-[[2-(1-Methylethoxy) ethoxy methyl phenoxy - 3-[(1-methylethyl)amino] - 2-propanol (E) - 2butenedioate (2:1) (salt), e.g., Zebeta[™], Lederle Consumer), nebivalol (2H-l-Benzopyran-2methanol, αα'-[iminobis(methylene)]bis[6-fluoro-3,4-dihydro-, CAS RN 99200-09-6 see also U.S. Pat. No. 4,654,362), cicloprolol hydrochloride, such 2-Propanol, 1-[4-[2-(cyclopropylmethoxy)ethoxy]phenoxy]-3-[l-methylethyl)amino]-, hydrochloride, A.A.S. RN 63686-79-3), dexpropranolol hydrochloride (2-Propanol,1-[1-methylethy)-amino]-3-(1naphthalenyloxy)-hydrochloride (CAS RN 13071-11-9), diacetolol hydrochloride (Acetamide, N-[3-acetyl-4-[2-hydroxy-3-[(1-methyl-ethyl)amino]propoxy] [phenyl]-, monohydrochloride CAS RN 69796-04-9), dilevalol hydrochloride (Benzamide, 2-hydroxy-5-[1-hydroxy-2-[1methyl-3-phenylpropyl)aminolethyll-, monohydrochloride, CAS RN 75659-08-4), exaprolol hydrochloride (2-Propanol, 1 -(2-cyclohexylphenoxy)-3 - [(1-methylethyl)amino] -, hydrochloride CAS RN 59333-90-3), flestolol sulfate (Benzoic acid, 2-fluro-, 3-[[2-[aminocarbonyl)amino] - dimethylethyl]amino]-2-hydroxypropyl ester, (+)- sulfate (1:1) (salt), CAS RN 88844-73-9; metalol hydrochloride (Methanesulfonamide, N-[4-[1-hydroxy-2-(methylamino)propyl]phenyl]-, monohydrochloride CAS RN 7701-65-7), metoprolol 2-Propanol, 1-[4-(2- methoxyethyl)phenoxy]-3-[1-methylethyl)amino]-; CAS RN 37350-58-6), metoprolol tartrate (such as 2-Propanol, 1-[4-(2-methoxyethyl)phenoxy]-3-[(1methylethyl)amino]-, e.g., Lopressor®, Novartis), pamatolol sulfate (Carbamic acid, [2-[4-[2hydroxy-3-[(l- methylethyl)amino]propoxyl]phenyl]-ethyl]-, methyl ester, (\pm) sulfate (salt) (2:1), CAS RN 59954-01-7), penbutolol sulfate (2-Propanol, 1-(2-cyclopentylphenoxy)-3-[1,1dimethyle-thyl)aminol 1, (S)-, sulfate (2:1) (salt), CAS RN 38363-32-5), practolol (Acetamide, N-[4-[2-hydroxy-3-[(1-methylethyl)amino]-propoxy]phenyl]-, CAS RN 6673-35-4;) tiprenolol hydrochloride (Propanol, 1-[(1-methylethyl)amino]-3-[2-(methylthio)-phenoxy]-, hydrochloride, (±), CAS RN 39832-43-4), tolamolol (Benzamide, 4-[2-[[2-hydroxy-3-(2-methylphenoxy)propyl] amino] ethoxyl]-, CAS RN 38103-61-6), bopindolol, indenolol, pindolol, propanolol, tertatolol, and tilisolol, and the like; calcium channel blockers such as besylate salt of amlodipine (such as 3-ethyl-5-methyl-2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylate benzenesulphonate, e.g., Norvasc®, Pfizer), clentiazem maleate (1,5-Benzothiazepin-4(5H)-one, 3-(acetyloxy)-8-chloro-5-[2-(dimethylamino)ethyl]-2,3-dihydro-2-(4-methoxyphenyl)-(2S-cis)-, (Z)-2-butenedioate (1:1), see also US4567195), isradipine (3,5-Pyridinedicarboxylic acid, 4-(4-benzofurazanyl)-1,4-dihydro-2,6-dimethyl-, methyl 1methylethyl ester, (±)-4(4-benzofurazanyl)- 1,4-dihydro-2,6-dimethyl-3,5 pyridinedicarboxylate, see also US4466972); nimodipine (such as is isopropyl (2- methoxyethyl) 1, 4- dihydro -2,6- dimethyl -4- (3-nitrophenyl) -3,5- pyridine - dicarboxylate, e.g. Nimotop®, Bayer), felodipine (such as ethyl methyl 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5pyridinedicarboxylate-, e.g. Plendil® Extended-Release, AstraZeneca LP), nilvadipine (3,5-Pyridinedicarboxylic acid, 2-cyano-l,4-dihydro-6-methyl-4-(3-nitrophenyl)-,3-methyl 5-(lmethylethyl) ester, also see US3799934), nifedipine (such as 3, 5 -pyridinedicarboxylic acid,1,4dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, dimethyl ester, e.g., Procardia XL® Extended Release Tablets, Pfizer), diltiazem hydrochloride (such as 1,5-Benzothiazepin-4(5H)-one,3-(acetyloxy)-5[2-(dimethylamino)ethyl]-2,-3-dihydro-2(4-methoxyphenyl)-, monohydrochloride, (+)-cis., e.g., Tiazac®, Forest), verapamil hydrochloride (such as benzeneacetronitrile, (alpha)-[[3-[[2-(3,4dimethoxyphenyl) ethyl]methylamino]propyl] -3,4-dimethoxy-(alpha)-(1-methylethyl) hydrochloride, e.g., Isoptin® SR, Knoll Labs), teludipine hydrochloride (3,5-Pyridinedicarboxylic acid, 2-[(dimethylamino)methyl]4-[2-[(IE)-3-(I,I-dimethylethoxy)-3-oxo-1propenyl]phenyl]-l,4-dihydro-6-methyl-, diethyl ester, monohydrochloride) CAS RN 108700-03-4), belfosdil (Phosphonic acid, [2-(2-phenoxy ethyl)-1,3-propane-diyl]bis-, tetrabutyl ester CAS RN 103486-79-9), fostedil (Phosphonic acid, [[4-(2-benzothiazolyl)phenyl]methyl]-, diethyl ester CAS RN 75889-62-2), aranidipine, azelnidipine, barnidipine, benidipine, bepridil, cinaldipine, clevidipine, efonidipine, gallopamil, lacidipine, lemildipine, lercanidipine, monatepil maleate (1-Piperazinebutanamide, N-(6, 11 -dihydrodibenzo(b,e)thiepin- 11 -yl)4-(4fluorophenyl)-, (\pm)-, (Z)-2-butenedioate (1:1) (\pm)-N-(6,1 l-Dihydrodibenzo(b,e)thiep- in-l l-yl)-4-(p-fluorophenyl)-l-piperazinebutyramide maleate (1:1) CAS RN 132046-06-1), nicardipine, nisoldipine, nitrendipine, manidipine, pranidipine, and the like; T-channel calcium antagonists such as mibefradil; angiotensin converting enzyme (ACE) inhibitors such as benazepril, benazepril hydrochloride (such as 3-[[l-(ethoxycarbonyl)-3- phenyl-(1 S)-propyl]amino]-2,3 ,4,5-tetrahydro-2-oxo- 1 H - 1 -(3 S)-benzazepine- 1 -acetic acid monohydrochloride, e.g., Lotrel®, Novartis), captopril (such as 1-[(2S)-3-mercapto-2- methylpropionyl]-L-proline, e.g., Captopril, Mylan, CAS RN 62571-86-2 and others disclosed in US4046889), ceranapril (and others disclosed in US4452790), cetapril (alacepril, Dainippon disclosed in Eur. Therap. Res. 39:671 (1986); 40:543 (1986)), cilazapril (Hoffman-LaRoche) disclosed in J. Cardiovasc. Pharmacol. 9:39 (1987), indalapril (delapril hydrochloride (2H-1,2,4- Benzothiadiazine-7sulfonamide, 3-bicyclo[2.2.1]hept-5-en-2-yl-6-chloro-3,4-dihydro-, 1,1- dioxide CAS RN 2259-96-3); disclosed in US4385051), enalapril (and others disclosed in US4374829), enalopril, enaloprilat, fosinopril, ((such as L-proline, 4-cyclohexyl-l-[[[2-methyl-l-(l-oxopropoxy) propoxyl(4-phenylbutyl) phosphinyl]acetyl]-, sodium salt, e.g., Monopril, Bristol-Myers Squibb and others disclosed in US4168267), fosinopril sodium (L- Proline, 4-cyclohexyl-1-[[(R)-[(1S)-2methyl-l-(l-ox- opropoxy)propox), imidapril, indolapril (Schering, disclosed in J. Cardiovasc. Pharmacol. 5:643, 655 (1983)), lisinopril (Merck), losinopril, moexipril, moexipril hydrochloride (3-Isoquinolinecarboxylic acid, 2-[(2S)-2-[[(1S)-1-(ethoxycarbonyl)-3-phenylpropyl]amino]-1oxopropyl]- 1,-2,3,4-tetrahydro-6,7-dimethoxy-, monohydrochloride, (3S)- CAS RN 82586-52-5), quinapril, quinaprilat, ramipril (Hoechsst) disclosed in EP 79022 and Curr. Ther. Res. 40:74 (1986), perindopril erbumine (such as 2S,3aS,7aS-1-[(S)-N-[(S)-1-Carboxybutyljalanyljhexahydro^-indolinecarboxylic acid, 1 -ethyl ester, compound with tertbutylamine (1:1), e.g., Aceon®, Solvay), perindopril (Servier, disclosed in Eur. J. clin. Pharmacol. 31:519 (1987)), quanipril (disclosed in US4344949), spirapril (Schering, disclosed in Acta. Pharmacol. Toxicol. 59 (Supp. 5): 173 (1986)), tenocapril, trandolapril, zofenopril (and others disclosed in US4316906), rentiapril (fentiapril, disclosed in Clin. Exp. Pharmacol. Physiol. 10:131 (1983)), pivopril, YS980, teprotide (Bradykinin potentiator BPP9a CAS RN 35115-60-7), BRL 36,378 (Smith Kline Beecham, see EP80822 and EP60668), MC-838 (Chugai, see CA. 102:72588v and Jap. J. Pharmacol. 40:373 (1986), CGS 14824 (Ciba-Geigy, 3-([1-ethoxycarbonyl-3-phenyl-(IS)-propyl]amino)-2,3,4,5-tetrahydro-2-ox- o-1-(3S)-benzazepine-l acetic acid HCl, see U.K. Patent No. 2103614), CGS 16,617 (Ciba- Geigy, 3(S)-[[(IS)-5-amino-lcarboxypentyl]amino]-2,3,4,- 5-tetrahydro-2-oxo-lH-l- benzazepine-1-ethanoic acid, see US4473575), Ru 44570 (Hoechst, see Arzneimittelforschung 34:1254 (1985)), R 31-2201 (Hoffman-LaRoche see FEBS Lett. 165:201 (1984)), CI925 (Pharmacologist 26:243, 266 (1984)), WY-44221 (Wyeth, see J. Med. Chem. 26:394 (1983)), and those disclosed in US2003006922 (paragraph 28), US4337201, US4432971 (phosphonamidates); neutral endopeptidase inhibitors such as omapatrilat (Vanley®), CGS 30440, cadoxatril and ecadotril, fasidotril (also known as aladotril or alatriopril), sampatrilat, mixanpril, and gemopatrilat, AVE7688, ER4030, and those disclosed in US5362727, US5366973, US5225401, US4722810, US5223516, US4749688, US5552397, US5504080, US5612359, US5525723, EP0599444, EP0481522, EP0599444, EP0595610, EP0534363, EP534396, EP534492, EP0629627; endothelin antagonists such as tezosentan, A308165, and YM62899, and the like; vasodilators such as hydralazine (apresoline), clonidine (clonidine hydrochloride (1H-Imidazol- 2-amine, N-(2,6-dichlorophenyl)4,5-dihydro-, monohydrochloride CAS RN 4205-91-8), catapres, minoxidil (loniten), nicotinyl alcohol (roniacol), diltiazem hydrochloride (such as 1,5- Benzothiazepin-4(5H)-one,3-(acetyloxy)-5[2-(dimethylamino)ethyl]-2,-3-dihydro-2(4-methoxyphenyl)-, monohydrochloride, (+)-cis, e.g., Tiazac®, Forest), isosorbide dinitrate (such as 1,4:3,6dianhydro-D-glucitol 2,5-dinitrate e.g., Isordil® Titradose®, Wyeth- Ayerst), sosorbide mononitrate (such as 1,4:3,6-dianhydro-D-glucito-1,5-nitrate, an organic nitrate, e.g., Ismo®, Wyeth-Averst), nitroglycerin (such as 2,3 propanetriol trinitrate, e.g., Nitrostat® Parke-Davis), verapamil hydrochloride (such as benzeneacetonitrile, (\pm) -(alpha)[3-[[2-(3,4 dimethoxypheny 1)ethyl]methylamino]propyl] -3,4-dimethoxy-(alpha)- (1-methylethyl) hydrochloride, e.g., Covera HS® Extended-Release, Searle), chromonar (which may be prepared as disclosed in US3282938), clonitate (Annalen 1870 155), droprenilamine (which may be prepared as disclosed in DE2521113), lidoflazine (which may be prepared as disclosed in US3267104); prenylamine (which may be prepared as disclosed in US3152173), propatyl nitrate (which may be prepared as disclosed in French Patent No. 1,103,113), mioflazine hydrochloride (1 -Piperazineacetamide, 3-(aminocarbonyl)4-[4,4-bis(4-fluorophenyl)butyl]-N-(2,6-dichlorophenyl)-, dihydrochloride CAS RN 83898-67-3), mixidine (Benzeneethanamine, 3,4- dimethoxy-N-(l-methyl-2pyrrolidinylidene)- Pyrrolidine,
2-[(3,4-dimethoxyphenethyl)imino]- 1 -methyl-1-Methyl-2- [(3, 4-dimethoxyphenethyl)imino]pyrrolidine CAS RN 27737-38-8), molsidomine (1,2,3-Oxadiazolium, 5-[(ethoxycarbonyl)amino]-3-(4-morpholinyl)-, inner salt CAS RN 25717-80-0), isosorbide mononitrate (D-Glucitol, 1,4:3,6-dianhydro-, 5-nitrate CAS RN 16051-77-7), erythrityl tetranitrate (1,2,3,4-Butanetetrol, tetranitrate, (2R,3S)-rel-CAS RN 7297-25-8), clonitrate(1,2-Propanediol, 3-chloro-, dinitrate (7CI, 8CI, 9CI) CAS RN 2612-33-1), dipyridamole Ethanol, 2,2',2",2"'-[(4,8-di-l-piperidinylpyrimido[5,4-d]pyrimidine-2,6diyl)dinitrilo]tetrakis- CAS RN 58-32-2), nicorandil (CAS RN 65141-46-0 3-), pyridinecarboxamide (N-[2-(nitrooxy)ethyl]-Nisoldipine3,5-Pyridinedicarboxylic acid, 1,4dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, methyl 2-methylpropyl ester CAS RN 63675-72-9), nifedipine3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, dimethyl ester CAS RN 21829-25-4), perhexiline maleate (Piperidine, 2-(2,2-dicyclohexylethyl)-, (2Z)-2butenedioate (1:1) CAS RN 6724-53-4), oxprenolol hydrochloride (2-Propanol, 1-[(1methylethyl)amino]-3-[2-(2-propenyloxy)phenoxy]-, hydrochloride CAS RN 6452-73-9), pentrinitrol (1,3-Propanediol, 2,2-bis[(nitrooxy)methyl]-, mononitrate (ester) CAS RN 1607-17-6), verapamil (Benzeneacetonitrile, α -[3-[[2-(3,4-dimethoxyphenyl)ethyl]- methylamino]propyl]-3, 4-dimethoxy-α-(1-methylethyl)- CAS RN 52-53-9) and the like; angiotensin II receptor antagonists such as, aprosartan, zolasartan, olmesartan, pratosartan, FI6828K, RNH6270, candesartan (1 H-Benzimidazole-7-carboxylic acid, 2-ethoxy-1-[[2'-(lH-tetrazol-5-yl)[1,1'biphenyl]4-yl]methyl]- CAS RN 139481-59-7), candesartan cilexetil ((+/-)-l-(cyclohexylcarbonyloxy)ethyl-2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]-lH-benzimidazole carboxylate, CAS RN 145040-37-5, US5703110 and US5196444), eprosartan (3-[1-4carboxyphenylmethyl)-2-n-butyl-imidazol-5-yl]-(2-thienylmethyl) propenoic acid, US5185351 and US5650650), irbesartan (2-n-butyl-3- [[2'-(lh-tetrazol-5-yl)biphenyl-4-yl]methyl] 1,3diazazspiro[4,4]non-l-en-4-one, US5270317 and US5352788), losartan (2-N-butyl-4-chloro-5hydroxymethyl-l-[(2'-(lH-tetrazol-5-yl)biphenyl-4-yl)-methyl]imidazole, potassium salt, US5138069, US5153197 and US5128355), tasosartan (5,8-dihydro-2,4-dimethyl-8-[(2'-(lHtetrazol-5-yl)[l,r-biphenyl]4-yl)methyl]-pyrido[2,3-d]pyrimidin-7(6H)-one, US5149699), telmisartan (4'-[(1,4-dimethyl-2'-propyl-(2,6'-bi-lH-benzimidazol)-r-yl)]-[1,1'-biphenyl]-2carboxylic acid, CAS RN 144701-48-4, US5591762), milfasartan, abitesartan, valsartan (Diovan® (Novartis), (S)-N-valeryl-N-[[2'-(lH-tetrazol-5-yl)biphenyl-4-yl)methyl]valine, US5399578), EXP-3137 (2-N-butyl-4-chloro-l-[(2'-(lH-tetrazol-5-yl)biphenyl-4-yl)methyl]imidazole-5-carboxylic acid, US5138069, US5153197 and US5128355), 3-(2'-(tetrazol-5-yl)-l,r-biphen-4-yl)methyl-5,7-dimethyl-2-ethyl-3H-imidazo[4,5-b]pyridine, 4'[2-ethyl-4methyl-6-(5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-2-yl]-benzimidazol-l-yl]-methyl]-l,rbiphenyl]-2- carboxylic acid, 2-butyl-6-(l-methoxy-l-methylethyl)-2-[2'-)IH-tetrazol-5yl)biphenyl-4-ylmethyl] guinazolin-4(3H)-one, 3 - [2 '-carboxybiphenyl-4-yl)methyl] -2cyclopropyl-7-methyl- 3H-imidazo[4,5-b]pyridine, 2-butyl-4-chloro-l-[(2'-tetrazol-5yl)biphenyl-4-yl)methyl]imidazole-carboxylic acid, 2-butyl-4-chloro-l-[[2'-(IH-tetrazol-5- yl) [1 . 1'-biphenyl] -4-yllmethyl]- 1 H-imidazole-5 -carboxylic acid- 1 -(ethoxycarbonyl-oxy)ethyl ester potassium salt, dipotassium 2-butyl-4-(methylthio)-l-[[2-[[[(propylamino)carbonyl]amino]sulfonyl](1,1'-biphenyl)-4-yl]methyl]-l H-imidazole-5 -carboxylate, methyl-2-[[4-butyl-2methyl-6-oxo-5-[[2'-(lH-tetrazol-5-yl)-[l,l '-biphenyl]-4-yl]methyl]-l-(6H)- pyrimidinyl]methyl]-3-thiophencarboxylate, 5-[(3,5-dibutyl-lH-l,2,4-triazol-l-yl)methyl]-2-[2- (1 H-tetrazol-5 ylphenyl)]pyridine, 6-butyl-2-(2-phenylethyl)-5 [[2'-(I H-tetrazol-5 -yl)[1,1 '- biphenyl]-4methyl]pyrimidin-4-(3H)-one D,L lysine salt, 5-methyl-7-n-propyl-8-[[2'-(1H- tetrazol-5yl)biphenyl-4-yl]methyl]-[1,2,4]-triazolo[1,5-c]pyrimidin-2(3H)-one, 2,7-diethyl-5- [[2'-(5tetrazoly)biphenyl-4-yl]methyl]-5H-pyrazolo[1,5-b][1,2,4]triazole potassium salt, 2-[2-butyl-4,5dihydro-4-oxo-3-[2'-(1H-tetrazol-5-yl)-4-biphenylmethyl]-3H-imidazol[4,5-c]pyridine-5ylmethyl]benzoic acid, ethyl ester, potassium salt, 3-methoxy-2,6-dimethyl-4- [[2'(1H-tetrazol-5yl)-l,l '-biphenyl-4-yl]methoxy]pyridine, 2-ethoxy-l-[[2'-(5-oxo-2,5-dihydro-1,2,4-oxadiazol-3yl)biphenyl-4-yl]methyl] - 1 H-benzimidazole-7-carboxylic acid, 1 - [N-(2 ' -(1 H- tetrazol-5vl)biphenyl-4-yl-methyl)-N-valerolylaminomethyl)cyclopentane- 1 -carboxylic acid, 7- methyl-2n-propyl-3-[[2'1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-3H-imidazo[4,5-6]pyridine, 2- [5-[(2-1)]methyl]-3H-imidazo[4,5-6]pyridine, [5-[(2-1)]methyllago[4,5-6]pyridine, 2- [5-[(2-1)]methyllago[4,5-6]pyridine, 2- [5-[(2-1)]methyllago[4,5-6]pyridine, 2- [5-[(2-1)]methyllago[4,5-6]pyridine, 2- [5-[(2-1)]methyllago[4,5ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridine-3-yl)methyl]-2-quinolinyl]sodium benzoate, 2butyl-6-chloro-4-hydroxymethyl-5 -methyl-3 -[[2'-(I H-tetrazol-5 -yl)biphenyl-4yl]methyl]pyridine, 2- [[[2-butyl- 1 - [(4-carboxyphenyl)methyl] - 1 H-imidazol-5 yl]methyl]amino]benzoic acid tetrazol-5-yl)biphenyl-4-yl]methyl]pyrimidin-6-one, 4(S)- [4-(carboxymethyl)phenoxy]-N-[2(R)-[4-(2-sulfobenzamido)imidazol- 1-yl]octanoyl]-L-proline, 1 - (2,6-dimethylphenyl)-4-butyl-1,3-dihydro-3-[[6-[2-(1H-tetrazol-5-vl)phenyl]-3pyridinyl|methyl|-2H-imidazol-2-one, 5,8-ethano-5,8-dimethyl-2-n-propyl-5,6,7,8-tetrahydro-1 - [[2'(lH-tetrazol-5-yl)biphenyl-4-yl]methyl]-lH,4H-l,3,4a,8a-tetrazacyclopentanaphthalene-9one, 4-[1-[2'-(1,2,3,4-tetrazol-5-yl)biphen-4-yl)methylamino]-5,6,7,8-tetrahydro-2trifylquinazoline, 2-(2-chlorobenzoyl)imino-5-ethyl-3-[2'-(1H-tetrazole-5-yl)biphenyl-4vl)methyl-1,3,4-thiadiazoline, 2-[5-ethyl-3-[2-(lH-tetrazole-5-vl)biphenyl-4-yl]methyl-1,3,4thiazoline-2-ylidene]aminocarbonyl-1-cyclopentencarboxylic acid dipotassium salt, and 2-butyl-4-[N-methyl-N-(3 -methylcrotonoyl)amino] - 1 - [[2'-(1 H-tetrazol-5-yl)biphenyl-4vl]methyl]- 1 H- imidzole-5 -carboxylic acid 1-ethoxycarbonyloxyethyl ester, those disclosed in patent publications EP475206, EP497150, EP539086, EP539713, EP535463, EP535465, EP542059, EP497121, EP535420, EP407342, EP415886, EP424317, EP435827, EP433983, EP475898, EP490820, EP528762, EP324377, EP323841, EP420237, EP500297, EP426021, EP480204, EP429257, EP430709, EP434249, EP446062, EP505954, EP524217, EP514197, EP514198, EP514193, EP514192, EP450566, EP468372, EP485929, EP503162, EP533058, EP467207 EP399731, EP399732, EP412848, EP453210, EP456442, EP470794, EP470795, EP495626, EP495627, EP499414, EP499416, EP499415, EP511791, EP516392, EP520723, EP520724, EP539066, EP438869, EP505893, EP530702, EP400835, EP400974, EP401030, EP407102, EP411766, EP409332, EP412594, EP419048, EP480659, EP481614, EP490587, EP467715, EP479479, EP502725, EP503838, EP505098, EP505111 EP513,979 EP507594, EP510812, EP511767, EP512675, EP512676, EP512870, EP517357, EP537937, EP534706, EP527534, EP540356, EP461040, EP540039, EP465368, EP498723, EP498722, EP498721, EP515265, EP503785, EP501892, EP519831, EP532410, EP498361, EP432737, EP504888, EP508393, EP508445, EP403159, EP403158, EP425211, EP427463, EP437103, EP481448, EP488532, EP501269, EP500409, EP540400, EP005528, EP028834, EP028833, EP411507, EP425921, EP430300, EP434038, EP442473, EP443568, EP445811, EP459136, EP483683, EP518033, EP520423, EP531876, EP531874, EP392317, EP468470, EP470543, EP502314, EP529253, EP543263, EP540209, EP449699, EP465323, EP521768, EP415594, WO92/14468, WO93/08171, WO93/08169, WO91/00277, WO91/00281, WO91/14367, WO92/00067, WO92/00977, WO92/20342, WO93/04045, WO93/04046, WO91/15206, WO92/14714, WO92/09600, WO92/16552, WO93/05025, WO93/03018, WO91/07404, WO92/02508, WO92/13853, WO91/19697, WO91/11909, WO91/12001, WO91/11999, WO91/15209, WO91/15479, WO92/20687, WO92/20662, WO92/20661, WO93/01177, WO91/14679, WO91/13063, WO92/13564, WO91/17148, WO91/18888, WO91/19715, WO92/02257, WO92/04335, WO92/05161, WO92/07852, WO92/15577, WO93/03033, WO91/16313, WO92/00068, WO92/02510, WO92/09278, WO9210179, WO92/10180, WO92/10186, WO92/10181, WO92/10097, WO92/10183, WO92/10182, WO92/10187, WO92/10184, WO92/10188, WO92/10180, WO92/10185, WO92/20651, WO93/03722, WO93/06828, WO93/03040, WO92/19211, WO92/22533, WO92/06081, WO92/05784, WO93/00341, WO92/04343, WO92/04059, US5104877, US5187168, US5149699, US5185340, US4880804, US5138069, US4916129, US5153197, US5173494, US5137906, US5155126, US5140037, US5137902, US5157026, US5053329, US5132216, US5057522, US5066586, US5089626, US5049565, US5087702, US5124335, US5102880, US5128327, US5151435, US5202322, US5187159, US5198438, US5182288, US5036048, US5140036, US5087634, US5196537, US5153347, US5191086, US5190942, US5177097, US5212177, US5208234, US5208235, US5212195, US5130439, US5045540, US5041152, and US5210204, and pharmaceutically acceptable salts and esters thereof; α/β adrenergic blockers such as nipradilol, arotinolol, amosulalol, bretylium tosylate (CAS RN: 61-75-6), dihydroergtamine mesylate (such as ergotaman-3', 6',18-trione,9,-10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)-, $(5'(\alpha))$ -, monomethanesulfonate, e.g., DHE 45® Injection, Novartis), carvedilol (such as (±)-l-(Carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl] amino] -2-propanol, e.g., Coreg®, SmithKline Beecham), labetalol (such as 5-[l-hydroxy-2-[(l-methyl-3-phenylpropyl) amino] ethylisalicylamide monohydrochloride, e.g., Normodyne®, Schering), bretylium tosylate (Benzenemethanaminium, 2-bromo-N-ethyl-N,N-dimethyl-, salt with 4-methylbenzenesulfonic acid (1:1) CAS RN 61-75-6), phentolamine mesylate (Phenol, 3-[[(4,5-dihydro-lH-imidazol-2yl)methyl](4-methylphenyl)amino]-, monomethanesulfonate (salt) CAS RN 65-28-1), solvpertine tartrate (5H-1,3-Dioxolo[4,5-f]indole, 7-[2-[4-(2-methoxyphenyl)-lpiperazinyl]ethyl]-,
(2R,3R)-2,3-dihydroxybutanedioate (1:1) CAS RN 5591-43-5), zolertine hydrochloride (Piperazine, 1-phenyl4-[2-(lH-tetrazol-5-yl)ethyl]-, monohydrochloride (8Cl, 9Cl) CAS RN 7241-94-3) and the like; α adrenergic receptor blockers, such as alfuzosin (CAS RN: 81403-68-1), terazosin, urapidil, prazosin (Minipress®), tamsulosin, bunazosin, trimazosin, doxazosin, naftopidil, indoramin, WHP 164, XENOIO, fenspiride hydrochloride (which may be prepared as disclosed in US3399192), proroxan (CAS RN 33743-96-3), and labetalol hydrochloride and combinations thereof; α 2 agonists such as methyldopa, methyldopa HCL, lofexidine, tiamenidine, moxonidine, rilmenidine, guanobenz, and the like; aldosterone inhibitors, and the like; renin inhibitors including Aliskiren (SPPIOO; Novartis/Speedel); angiopoietin-2-binding agents such as those disclosed in WO03/030833; anti-angina agents such as ranolazine (hydrochloride 1-Piperazineacetamide, N-(2,6-dimethylphenyl)-4-[2-hydroxy-3-(2-methoxyphenoxy)propyl]-, dihydrochloride CAS RN 95635- 56-6), betaxolol hydrochloride (2-Propanol, 1-[4-[2 (cyclopropylmethoxy)ethyl]phenoxy]-3-[(1- methylethyl)amino]-, hydrochloride CAS RN 63659-19-8), butoprozine hydrochloride (Methanone, [4-[3(dibutylamino)propoxy]phenyl](2-ethyl-3-indolizinyl)-, monohydrochloride CAS RN 62134-34-3), cinepazet maleatel-Piperazineacetic acid, 4-[1-oxo-3-(3,4,5- trimethoxyphenyl)-2propenyl]-, ethyl ester, (2Z)-2-butenedioate (1:1) CAS RN 50679-07-7), tosifen (Benzenesulfonamide, 4-methyl-N-[[[(IS)-l-methyl-2-phenylethyl]amino]carbonyl]- CAS RN 32295-184), verapamilhydrochloride (Benzeneacetonitrile, α -[3-[[2-(3,4dimethoxyphenyl)ethyl]methylamino[propyl]-3,4-dimethoxy- α -(1-methylethyl)-, monohydrochloride CAS RN 152-114), molsidomine (1,2,3-Oxadiazolium, 5-[(ethoxycarbonyl)amino]-3-(4-morpholinyl)-, inner salt CAS RN 25717-80-0), and ranolazine hydrochloride (1 -Piperazineacetamide, N-(2,6-dimethylphenyl)4-[2-hydroxy-3-(2-methoxyphenoxy)propyl]-, dihydrochloride CAS RN 95635-56-6); tosifen (Benzenesulfonamide, 4methyl-N-[[[(1S)-1-methyl-2-phenylethyl]amino]carbonyl]- CAS RN 32295-184); adrenergic stimulants such as guanfacine hydrochloride (such as N-amidino-2-(2,6-dichlorophenyl) acetamide hydrochloride, e.g., Tenex® Tablets available from Robins); methyldopahydrochlorothiazide (such as levo-3-(3,4-dihydroxyphenyl)-2-methylalanine) combined with Hydrochlorothiazide (such as 6-chloro-3,4-dihydro-2H -1,2,4-benzothiadiazine-7- sulfonamide 1,1-dioxide, e.g., the combination as, e.g., Aldoril® Tablets available from Merck), methyldopachlorothiazide (such as 6-chloro-2H-1, 2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide and methyldopa as described above, e.g., Aldoclor®, Merck), clonidine hydrochloride (such as 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride and chlorthalidone (such as 2-chloro-5-(1-hydroxy-3-oxo-1-isoindolinyl) benzenesulfonamide), e.g., Combipres®, Boehringer Ingelheim), clonidine hydrochloride (such as 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride, e.g., Catapres®, Boehringer Ingelheim), clonidine (lH-Imidazol-2-amine, N-(2,6dichlorophenyl)4,5-dihydro-CAS RN 4205-90-7), Hyzaar (Merck; a combination of losartan and hydrochlorothiazide), Co-Diovan (Novartis; a combination of valsartan and hydrochlorothiazide, Lotrel (Novartis; a combination of benazepril and amlodipine) and Caduet (Pfizer; a combination of amlodipine and atorvastatin), and those agents disclosed in US20030069221. ## **1.3.2.11** Agents for the Treatment of Respiratory Disorders [173] The GCC agonist peptides described herein can be used in combination therapy with one or more of the following agents useful in the treatment of respiratory and other disorders including but not limited to: (1) β -agonists including but not limited to: albuterol (PRO VENTIL®, S ALBUT AMOl®, VENTOLIN®), bambuterol, bitoterol, clenbuterol, fenoterol, formoterol, isoetharine (BRONKOSOL®, BRONKOMETER®), metaproterenol (ALUPENT®, METAPREL®), pirbuterol (MAXAIR®), reproterol, rimiterol, salmeterol, terbutaline (BRETHAIRE®, BRETHINE®, BRICANYL®), adrenalin, isoproterenol (ISUPREL®), epinephrine bitartrate (PRIMATENE®), ephedrine, orciprenline, fenoterol and isoetharine; (2) steroids, including but not limited to beclomethasone, beclomethasone dipropionate, betamethasone, budesonide, bunedoside, butixocort, dexamethasone, flunisolide, fluocortin, fluticasone, hydrocortisone, methyl prednisone, mometasone, predonisolone, predonisone, tipredane, tixocortal, triamcinolone, and triamcinolone acetonide; (3) β2-agonist-corticosteroid combinations [e.g., salmeterol-fluticasone (AD V AIR®), formoterol-budesonid (S YMBICORT®)]; (4) leukotriene D4 receptor antagonists/leukotriene antagonists/LTD4 antagonists (i.e., any compound that is capable of blocking, inhibiting, reducing or otherwise interrupting the interaction between leukotrienes and the Cys LTI receptor) including but not limited to: zafhiukast, montelukast, montelukast sodium (SINGULAIR®), pranlukast, iralukast, pobilukast, SKB-106,203 and compounds described as having LTD4 antagonizing activity described in U.S. Patent No. 5,565,473; (5) 5 -lipoxygenase inhibitors and/or leukotriene biosynthesis inhibitors [e.g., zileuton and BAY1005 (CA registry 128253-31-6)]; (6) histamine HI receptor antagonists/antihistamines (i.e., any compound that is capable of blocking, inhibiting, reducing or otherwise interrupting the interaction between histamine and its receptor) including but not limited to: astemizole, acrivastine, antazoline, azatadine, azelastine, astamizole, bromopheniramine, bromopheniramine maleate, carbinoxamine, carebastine, cetirizine, chlorpheniramine, chloropheniramine maleate, cimetidine clemastine, cyclizine, cyproheptadine, descarboethoxyloratadine, dexchlorpheniramine, dimethindene, diphenhydramine, diphenylpyraline, doxylamine succinate, doxylarnine, ebastine, efletirizine, epinastine, famotidine, fexofenadine, hydroxyzine, hydroxyzine, ketotifen, levocabastine, levocetirizine, levocetirizine, loratadine, meclizine, mepyramine, mequitazine, methdilazine, mianserin, mizolastine, noberastine, norasternizole, noraztemizole, phenindamine, pheniramine, picumast, promethazine, pyrilamine, ranitidine, temelastine, terfenadine, trimeprazine, tripelenamine, and triprolidine; (7) an anticholinergic including but not limited to: atropine, benztropine, biperiden, flutropium, hyoscyamine (e.g. Levsin®; Levbid®; Levsin/SL®, Anaspaz®, Levsinex timecaps®, NuLev®), ilutropium, ipratropium, ipratropium bromide, methscopolamine, oxybutinin, rispenzepine, scopolamine, and tiotropium; (8) an anti-tussive including but not limited to: dextromethorphan, codeine, and hydromorphone; (9) a decongestant including but not limited to: pseudoephedrine and phenylpropanolamine; (10) an expectorant including but not limited to: guafenesin, guaicolsulfate, terpin, ammonium chloride, glycerol guaicolate, and iodinated glycerol; (11) a bronchodilator including but not limited to: theophylline and aminophylline; (12) an anti-inflammatory including but not limited to: fluribiprofen, diclophenac, indomethacin, ketoprofen, S-ketroprophen, tenoxicam; (13) a PDE (phosphodiesterase) inhibitor including but not limited to those disclosed herein; (14) a recombinant humanized monoclonal antibody [e.g. xolair (also called omalizumab), rhuMab, and talizumab]; (15) a humanized lung surfactant including recombinant forms of surfactant proteins SP-B, SP-C or SP-D [e.g. SURFAXIN®, formerly known as dsc-104 (Discovery Laboratories)], (16) agents that inhibit epithelial sodium channels (ENaC) such as amiloride and related compounds; (17) antimicrobial agents used to treat pulmonary infections such as acyclovir, amikacin, amoxicillin, doxycycline, trimethoprin sulfamethoxazole, amphotericin B, azithromycin, clarithromycin, roxithromycin, clarithromycin, cephalosporins(ceffoxitin, cefmetazole etc), ciprofloxacin, ethambutol, gentimycin, ganciclovir, imipenem, isoniazid, itraconazole, penicillin, ribavirin, rifampin, rifabutin, amantadine, rimantidine, streptomycin, tobramycin, and vancomycin; (18) agents that activate chloride secretion through Ca++ dependent chloride channels (such as purinergic receptor (P2Y(2) agonists); (19) agents that decrease sputum viscosity, such as human recombinant DNase 1, (Pulmozyme®); (20) nonsteroidal anti-inflammatory agents (acemetacin, acetaminophen, acetyl salicylic acid, alclofenac, alminoprofen, apazone, aspirin, benoxaprofen, bezpiperylon, bucloxic acid, carprofen, clidanac, diclofenac, diclofenac, diflunisal, diflusinal, etodolac, fenbufen, fenbufen, fenclofenac, fenclozic acid, fenoprofen, fentiazac, feprazone, flufenamic acid, flufenisal, flufenisal, fluprofen, flurbiprofen, flurbiprofen, furofenac, ibufenac, ibuprofen, indomethacin, indomethacin, indoprofen, isoxepac, isoxicam, ketoprofen, ketoprofen, ketorolac, meclofenamic acid, meclofenamic acid, mefenamic acid, mefenamic acid, miroprofen, mofebutazone, nabumetone oxaprozin, naproxen, naproxen, niflumic acid, oxaprozin, oxpinac, oxyphenbutazone, phenacetin, phenylbutazone, phenylbutazone, piroxicam, piroxicam, pirprofen, pranoprofen, sudoxicam, tenoxican, sulfasalazine, sulindac, sulindac, suprofen, tiaprofenic acid, tiopinac, tioxaprofen, tolfenamic acid, tolmetin, tolmetin, zidometacin, zomepirac, and zomepirac); and (21) aerosolized antioxidant therapeutics such as S-Nitrosoglutathione. ## **1.3.2.12** Anti-Diabetic Agents [174] The GCC agonist peptides described herein can be used in therapeutic combination with one or more anti-diabetic agents, including but not limited to: PPARy agonists such as glitazones (e.g., WAY-120,744, AD 5075, balaglitazone, ciglitazone, darglitazone (CP-86325, Pfizer), englitazone (CP-68722, Pfizer), isaglitazone (MIT/J&J), MCC-555 (Mitsibishi disclosed in US5594016), pioglitazone (such as such as Actos™ pioglitazone; Takeda), rosiglitazone (AvandiaTM; Smith Kline Beecham), rosiglitazone
maleate, troglitazone (Rezulin®, disclosed in US4572912), rivoglitazone (CS-Ol 1, Sankyo), GL-262570 (Glaxo Welcome), BRL49653 (disclosed in WO98/05331), CLX-0921, 5-BTZD, GW-0207, LG-100641, JJT-501 (JPNT/P&U), L-895645 (Merck), R-119702 (Sankyo/Pfizer), NN-2344 (Dr. Reddy/NN), YM-440 (Yamanouchi), LY-300512, LY-519818, R483 (Roche), T131 (Tularik), and the like and compounds disclosed in US4687777, US5002953, US5741803, US5965584, US6150383, US6150384, US6166042, US6166043, US6172090, US6211205, US6271243, US6288095, US6303640, US6329404, US5994554, W097/10813, WO97/27857, WO97/28115, WO97/28137,WO97/27847, WO00/76488, WO03/000685,WO03/027112,WO03/035602, WO03/048130, WO03/055867, and pharmaceutically acceptable salts thereof; biguanides such as metformin hydrochloride (N,N-dimethylimidodicarbonimidic diamide hydrochloride, such as Glucophage™, Bristol-Myers Squibb); metformin hydrochloride with glyburide, such as GlucovanceTM, Bristol-Myers Squibb); buformin (Imidodicarbonimidic diamide, N-butyl-); etoformine (1-Butyl-2-ethylbiguanide, Schering A. G.); other metformin salt forms (including where the salt is chosen from the group of, acetate, benzoate, citrate, ftimarate, embonate, chlorophenoxyacetate, glycolate, palmoate, aspartate, methanesulphonate, maleate, parachlorophenoxyisobutyrate, formate, lactate, succinate, sulphate, tartrate, cyclohexanecarboxylate, hexanoate, octanoate, decanoate, hexadecanoate, octodecanoate, benzenesulphonate, trimethoxybenzoate, paratoluenesulphonate, adamantanecarboxylate, glycoxylate, glutarnate, pyrrolidonecarboxylate, naphthalenesulphonate, 1-glucosephosphate, nitrate, sulphite, dithionate and phosphate), and phenformin; protein tyrosine phosphatase- IB 5 10 15 20 25 (PTP-IB) inhibitors, such as A-401.674, KR 61639, OC-060062, OC-83839, OC-297962. MC52445, MC52453, ISIS 113715, and those disclosed in WO99/585521, WO99/58518, WO99/58522, WO99/61435, WO03/032916, WO03/032982, WO03/041729, WO03/055883, WO02/26707, WO02/26743, JP2002114768, and pharmaceutically acceptable salts and esters 5 thereof; sulfonylureas such as acetohexamide (e.g. Dymelor, Eli Lilly), carbutamide, chlorpropamide (e.g. Diabinese®, Pfizer), gliamilide (Pfizer), gliclazide (e.g. Diamcron, Servier Canada Inc), glimepiride (e.g. disclosed in US4379785, such as Amaryl, Aventis), glipentide, glipizide (e.g. Glucotrol or Glucotrol XL Extended Release, Pfizer), gliquidone, glisolamide, glyburide/glibenclamide (e.g. Micronase or Glynase Prestab, Pharmacia & Upjohn and Diabeta, Aventis), tolazamide (e.g. Tolinase), and tolbutamide (e.g. Orinase), and pharmaceutically 10 acceptable salts and esters thereof; meglitinides such as repaglinide (e.g. Pranidin®, Novo Nordisk), KAD1229 (PF/Kissei), and nateglinide (e.g. Starlix®, Novartis), and pharmaceutically acceptable salts and esters thereof; a glucoside hydrolase inhibitors (or glucoside inhibitors) such as acarbose (e.g. PrecoseTM, Bayer disclosed in US4904769), miglitol (such as GLYSETTM, Pharmacia & Upjohn disclosed in US4639436), camiglibose (Methyl 6-deoxy-6-[(2R,3R,4R,5S)-15 3,4,5-trihydroxy-2- (hydroxymethyl)piperidinol-alpha-D-glucopyranoside, Marion Merrell Dow), voglibose (Takeda), adiposine, emiglitate, pradimicin-Q, salbostatin, CKD-711, MDL-25,637, MDL-73,945, and MOR 14, and the compounds disclosed in US4062950, US4174439, US4254256, US4701559, US4639436, US5192772, US4634765, US5157116, US5504078, 20 US5091418, US5217877, US51091 and WOO 1/47528 (polyamines); α-amylase inhibitors such as tendamistat, trestatin, and Al -3688, and the compounds disclosed in US4451455, US4623714, and US4273765; SGLT2 inhibtors including those disclosed in US6414126 and US6515117; an aP2 inhibitor such as disclosed in US6548529; insulin secreatagogues such as linogliride, A-4166, forskilin, dibutyrl cAMP, isobutylmethylxanthine (IBMX), and 25 pharmaceutically acceptable salts and esters thereof; fatty acid oxidation inhibitors, such as clomoxir, and etomoxir, and pharmaceutically acceptable salts and esters thereof; A2 antagonists, such as midaglizole, isaglidole, deriglidole, idazoxan, earoxan, and fluparoxan, and pharmaceutically acceptable salts and esters thereof; insulin and related compounds (e.g. insulin mimetics) such as biota, LP-100, novarapid, insulin detemir, insulin lispro, insulin glargine, 30 insulin zinc suspension (lente and ultralente), Lys-Pro insulin, GLP-I (1-36) amide, GLP-I (73-7) (insulintropin, disclosed in US5614492), LY-315902 (Lilly), GLP-I (7-36)-NH2), AL-401 (Autoimmune), certain compositions as disclosed in US4579730, US4849405, US4963526, US5642868, US5763396, US5824638, US5843866, US6153632, US6191105, and WO 85/05029, and primate, rodent, or rabbit insulin including biologically active variants thereof including allelic variants, more preferably human insulin available in recombinant form (sources of human insulin include pharmaceutically acceptable and sterile formulations such as those available from Eli Lilly (Indianapolis, Ind. 46285) as Humulin™ (human insulin rDNA origin), also see the THE PHYSICIAN'S DESK REFERENCE, 55.sup.th Ed. (2001) Medical Economics, Thomson Healthcare (disclosing other suitable human insulins); nonthiazolidinediones such as JT-501 and farglitazar (GW-2570/GI- 262579), and pharmaceutically acceptable salts and esters thereof; PPARα/γ dual agonists such as AR-HO39242 (Aztrazeneca), GW-409544 (Glaxo-Wellcome), BVT-142, CLX-0940, GW-1536, GW-1929, GW-2433, KRP-297 (Kyorin Merck; 5-[(2,4-Dioxo thiazolidinyl)methyl] methoxy-N-[[4-(trifluoromethyl)phenyl] methylibenzamide), L-796449, LR-90, MK-0767 (Merck/Kyorin/Banyu), SB 219994, muraglitazar (BMS), tesaglitzar (Astrazeneca), reglitazar (JTT-501) and those disclosed in WO99/16758, WO99/19313, WO99/20614, WO99/38850, WO00/23415, WO00/23417, WO00/23445, WO00/50414, WO01/00579, WO01/79150, WO02/062799, WO03/004458, WO03/016265, WO03/018010, WO03/033481, WO03/033450, WO03/033453, WO03/043985, WO 031053976, U.S. application Ser. No. 09/664,598, filed Sep. 18, 2000, Murakami et al. Diabetes 47, 1841-1847 (1998), and pharmaceutically acceptable salts and esters thereof; other insulin sensitizing drugs; VPAC2 receptor agonists; GLK modulators, such as those disclosed in WO03/015774; retinoid modulators such as those disclosed in WO03/000249; GSK 3B/GSK 3 inhibitors such as 4-[2-(2-bromophenyl)-4-(4-fluorophenyl-lHimidazol-5- yl]pyridine and those compounds disclosed in WO03/024447, WO03/037869, WO03/037877, WO03/037891, WO03/068773, EP1295884, EP1295885, and the like; glycogen phosphorylase (HGLPa) inhibitors such as CP-368,296, CP-316,819, BAYR3401, and compounds disclosed in WOO 1/94300, WOO2/20530, WOO3/037864, and pharmaceutically acceptable salts or esters thereof; ATP consumption promotors such as those disclosed in WO03/007990; TRB3 inhibitors; vanilloid receptor ligands such as those disclosed in WO03/049702; hypoglycemic agents such as those disclosed in WO03/015781 and WO03/040114; glycogen synthase kinase 3 inhibitors such as those disclosed in WO03/035663 agents such as those disclosed in WO99/51225, US20030134890, WO01/24786, and 5 10 15 20 25 30 WO03/059870; insulin-responsive DNA binding protein-1 (IRDBP-I) as disclosed in WO03/057827, and the like; adenosine A2 antagonists such as those disclosed in WO03/035639, WO03/035640, and the like; PPARδ agonists such as GW 501516, GW 590735, and compounds disclosed in JP10237049 and WO02/14291; dipeptidyl peptidase IV (DP-IV) inhibitors, such as 5 isoleucine thiazolidide, NVP-DPP728A (1- [[[2-[(5-cyanopyridin-2yl)aminolethyllaminolacetyll-2-cyano-(S)-pyrrolidine, disclosed by Hughes et al, Biochemistry, 38(36), 11597-11603, 1999), P32/98, NVP-LAF-237, P3298, TSL225 (tryptophyl-1,2,3,4tetrahydro-isoquinoline-3-carboxylic acid, disclosed by Yamada et al, Bioorg. & Med. Chem. Lett. 8 (1998) 1537-1540), valine pyrrolidide, TMC-2A/2B/2C, CD- 26 inhibitors, FE999011, P9310/K364, VIP 0177, DPP4, SDZ 274-444, 2-cyanopyrrolidides and 4-cyanopyrrolidides as 10 disclosed by Ashworth et al, Bioorg. & Med. Chem. Lett., Vol. 6, No. 22, pp 1163-1166 and 2745-2748 (1996), and the compounds disclosed in US6395767, US6573287, US6395767 (compounds disclosed include BMS-477118, BMS-471211 and BMS 538,305), WO99/38501, WO99/46272, WO99/67279, WO99/67278, WO99/61431WO03/004498, WO03/004496, EP1258476, WO02/083128, WO02/062764, WO03/000250, WO03/002530, WO03/002531, 15 WO03/002553, WO03/002593, WO03/000180, and WO03/000181; GLP-I agonists such as exendin-3 and exendin-4 (including the 39 aa polypeptide synthetic exendin-4 called Exenatide®), and compounds disclosed in US2003087821 and NZ 504256, and pharmaceutically acceptable salts and esters thereof; peptides including amlintide and Symlin® 20 (pramlintide acetate); and glycokinase activators such as those disclosed in US2002103199 (fused heteroaromatic compounds) and WO02/48106 (isoindolin-1-one-substituted propionamide compounds). #### **EXAMPLES** # Example 1: Clinical Study for safety and efficacy in humans for the treatment of chronic idiopathic constipation [175] A randomized, double-blind, placebo-controlled, 14-day repeat oral, dose ranging study was conducted in patients with chronic idiopathic constipation (CIC). The primary objective of this study was to evaluate the safety of SP-304 (1.0 mg, 3.0 mg, 9.0 mg and 0.3 mg) for 14 days in patients with CIC. One secondary objective was to assess the pharmacokinetic profile of SP-304 in plasma. Other secondary objectives included evaluations of pharmacodynamic effects (efficacy) on parameters such as the time to first bowel movement after daily dosing with SP-304, bowel habits over time – for example, spontaneous bowel movements (SBMs), complete spontaneous bowel movements (CSBMs), and stool consistency [using Bristol Stool Form Scale (BSFS)] – and other patient reported outcomes such as abdominal discomfort. [176] The study included five arms with assigned interventions as indicated in the table below. | Arms |
Interventions | |-----------------------------|--| | SP-304 1.0 mg: Experimental | Subjects receiving SP-304 1.0 mg for 14 consecutive days | | SP-304 3.0 mg: Experimental | Subjects receiving SP-304 3.0 mg for 14 consecutive days | | SP-304 9.0 mg: Experimental | Subjects receiving SP-304 9.0 mg for 14 consecutive days | | Placebo: Placebo Comparator | Subjects receiving Placebo for 14 consecutive days | | SP-304 0.3 mg: Experimental | Subjects receiving SP-304 0.3 mg for 14 consecutive days | [177] Subjects diagnosed with CIC were screened for the anticipated 4 cohorts to yield 80 randomized subjects for enrollment. There were four dose cohorts (1.0 mg, 3.0mg, 9.0 mg and 0.3 mg) with 20 subjects per dose cohort [randomization ratio 3:1 (15 receive SP-304:5 receive placebo)]. Subjects who continued to meet all the entry criteria and complete the pre-treatment bowel movement (BM) diary received, in a double-blind, randomized fashion, SP-304 or matching placebo. The entry criteria included (1) meeting modified ROME III criteria for chronic constipation (CC); (2) no significant finding in colonoscopy within past 5 years; (3) good health as determined by physical examination, medical history, vital signs, ECG, clinical chemistry, hematology, urinalysis, drug screen and serology assessments; and (4) during 14-day pre-treatment period, subjects reporting < 6 SBM and < 3 CSBM in each pre-treatment week. All subjects receiving at least one dose of SP-304 or matching placebo were considered evaluable for the safety endpoints (78 total). If a subject did not have a major protocol deviation, had at least 5 days of study treatment each week and corresponding entries for bowel habits, he/she was considered evaluable for efficacy parameters (54-55 total). [178] The demographics of the subjects in the study are summarized in the table below. | | Placebo | 0.3 mg | 1.0 mg | 3.0 mg | 9.0 mg | | |---------------------|-------------|-------------|-------------|-------------|-------------|--| | Age | | | | | | | | | 47.7 (14.6) | 51.1 (12.0) | 50.5 (10.6) | 48.5 (16.1) | 47.3 (12.7) | | | | | Ger | ıder | | | | | Female | 18 (90.0%) | 12 (85.7%) | 14 (100%) | 13 (86.7) | 12 (80%) | | | Male | 2 (10.0%) | 2 (14.3%) | 0 | 2 (13.3%) | 3 (20%) | | | | | Ra | ice | | | | | White | 17 (85.0%) | 13 (92.9%) | 12 (85.7%) | 14 (93.3%) | 12 (80.0%) | | | African
American | 1 (5.0%) | 0 | 1 (7.1%) | 0 | 2 (13.3%) | | | Asian | 1 (5.0%) | 1 (7.1%) | 1 (7.1%) | 0 | 1 (6.7%) | | | American
Indian | 1 (5.0%) | 0 | 0 | 0 | 0 | | | Other | 0 | 0 | 0 | 1 (6.7%) | 0 | | Values for age are the mean (standard deviation); values for gender and race are the number (percentage of experimental arm). ## Results ## [179] Pharmacokinetics and Safety: [180] There was no detectable systemic absorption of plecanatide (assay sensitivity ≥ 10 ng/mL). No serious adverse events (SAE) were reported in subjects receiving plecanatide and no deaths reported in this study. 10% (2/20) subjects who received placebo and 17.2% (10/58) subjects who received SP-304 reported adverse events considered as related to the treatment. The majority of adverse events were mild / moderate and transient in nature. 10% (2/20) subjects who received placebo and 5.2% (3/58) subjects who received SP-304 reported GI-related adverse events considered as related to treatment. There was no diarrhea reported for any subject receiving SP-304. The table below is a GI-related adverse event (AE) summary. | | Placebo
n=20 | 0.3 mg
n=14 | 1.0 mg
n=14 | 3.0 mg
n=15 | 9.0 mg
n=15 | |-----------------------|-----------------|----------------|----------------|----------------|----------------| | Abdominal
Cramping | 1 (5.0%) | 0 | 0 | 0 | 0 | | Abdominal
Pain | 1 (5.0%) | 0 | 0 | 0 | 0 | | Bloating | 0 | 0 | 0 | 0 | 1 (6.7%) | | Diarrhea | 1 (5.0%) | 0 | 0 | 0 | 0 | | Flatulence | 2 (10.0%) | 0 | 0 | 0 | 0 | | Nausea | 0 | 1 (7.1%) | | 0 | 0 | | Upset
Stomach | 0 | 0 | 0 | 1 (6.7%) | 0 | Values are the number (percentage of experimental arm). # [181] Efficacy: [182] SP-304 (plecanatide) treatment decreased the time to first bowel movement, increased stool frequency (SBM and CSBM), improved stool consistency, and reduced straining and abdominal discomfort. See Figures 1-6. **Example 2: Composition of Wet Granulation batch 10005** | Item No. | Ingredient | Use | Concentration % w/w | |----------|---|--------------|---------------------| | 1 | SP304 | | 0.23 | | 2 | Mannogem EZ,
USP/EP (Mannitol) | Diluent | 79.77 | | 3 | PROSOLV SMCC 90
LM (silicified
microcrystalline
cellulose) | Binder | 15.0 | | 4 | Purified Water (chilled to 5°C), USP | vehicle | n/a | | 5 | Purified Water (chilled to 5°C), USP | | n/a | | 6 | Explotab (Sodium
Starch Glycolate) | Disintregant | 4.0 | | 7 | Pruv (sodium stearyl fumarate) | Lubricant | 1.0 | |---|--------------------------------|-----------|-----| | | Total | | 100 | **Example 3: Composition of Wet Granulation batch 10007** | Item No. | Ingredient | Use | Concentration % w/w | |----------|---|--------------|---------------------| | 1 | SP304 | | 0.3 | | 3 | PROSOLV SMCC 90
HD (silicified
microcrystalline
cellulose) | Binder | 95.7 | | 4 | Purified Water (chilled to 5°C), USP | vehicle | n/a | | 5 | Purified Water (chilled to 5°C), USP | | n/a | | 6 | Explotab (Sodium
Starch Glycolate) | Disintregant | 4.0 | | | Total | | 100 | # **Example 4: EXCIPIENT COMPATIBILITY** [183] Binary mixtures of SP-304 were prepared and stored in glass vials. For solid excipients the binary mixtures were comprised of 9.1% or 50% excipient. Glass vials were stored at 40C/75RH open or closed. The percent purity (measured by HPLC) of the GCC agonist peptide (SP-304) after storage for the time indicated in each column (i.e., 1, 2, or 3 months for the closed vial and 0.5, 1, 2, or 3 months for the open vials) is indicated by numerical values. | Closed | Open | |--------|------| | PURPOSE | EXCIPIENT | 1M | 2M | 3M | 0.5M | 1M | 2M | 3M | |---------|-----------|------|------|------|------|------|------|------| | None | None | 91.4 | 88.2 | 84.1 | 93.7 | 91.2 | 88.2 | 84.8 | | Diluent | Sorbitol | 92.4 | 90.1 | 87.2 | 92.2 | 90.8 | 87.1 | 80.9 | | | Mannitol | 91.9 | 88.4 | 85.1 | 92.6 | 90.5 | 87.9 | 83.8 | | | Prosolv | 92.2 | 89.6 | 86.3 | 93 | 90.5 | 87.8 | 83.7 | | | Starch | 91.4 | 88.7 | 85.4 | 92.5 | 90.5 | 87.9 | 83.7 | | Binder | Emdex | 91.3 | 88.7 | 85.2 | 91.8 | 90.7 | 87.9 | 81.9 | | | Plasdone | 92.8 | 90.6 | 85.6 | 93.1 | 90.4 | 87.3 | 83 | |----------------------------------|---------------------|------|------|------|------|------|------|------| | Disintegrant | Explotab | 91.9 | 89.4 | 87.1 | 92.2 | 90.3 | 84.7 | 78.3 | | | Polyplasdone | 92 | 89 | 85.6 | 93.5 | 90.3 | 87.4 | 83.1 | | Glidant | Cabosil | 92.1 | 88.3 | 85.6 | 92.6 | 90.5 | 87.3 | 84 | | Lubricant | Mg stearte | 91.5 | 87.7 | 84.6 | 92.6 | 90.6 | 87.6 | 83.8 | | | PRUV | 92 | 88.3 | 85.7 | 92.2 | 90.5 | 87.5 | 83.8 | | | compritol | 90.8 | 87.1 | 84.4 | 92 | 90.5 | 86.7 | 84.1 | | Excipient | PEG 3350 | 90.9 | 87 | 83.3 | 91.5 | 89.4 | 84.4 | 77.5 | | Antioxidant | Ascorbic acid | 91.3 | 86.9 | 83 | 92.8 | 90 | 85.7 | 83.8 | | | BHA | 91.9 | 88.9 | 85.9 | 93.5 | 90.8 | 87.4 | 85.8 | | | BHT | 90.8 | 87.2 | 84.6 | 92.4 | 90.3 | 86.6 | 83.6 | | | EDTA | 90.9 | 87.5 | 84.1 | 92.3 | 90.4 | 86.7 | 84.6 | | Capsule | HPMC capsule | 92.2 | 89 | 85.2 | 92.3 | 90.2 | 86.4 | 83.5 | | | Gelatin capsule | 91.5 | 88.3 | 84.3 | 84.3 | 90.5 | 86.7 | 83.6 | | Liquid for liquid filled capsule | Medium chain trig | | 90.4 | | | | | | | | PG dicaprylocaprate | | 89.3 | | | | | | | | Vit E | | 90 | | | | | | | | Soybean oil | | 89.6 | | | | | | | | Cremaphor | | 79.7 | | | | | | | | PG | | 3.4 | | | | | | | | PG 400 | | 0.7 | | | | | | Example 5: Geometric dry mix for 0.3mg capsule [184] Place 12g mannitol in mortar. Add 4g SP-304 and gently mix until a visually uniform powder is obtained. Transfer to Turbula mixer. Rinse mortar with mannitol and transfer to Turbula mixer and mix at high speed for 10 minutes. Add about 150g of mannitol to 4 quart V-shell mixer. Transfer the contents of the Turbula mixer to the V-shell and add 150g of mannitol mix. Discharge v-shell contents and screen through 40 mesh and return to mixer. Add 586g of mannitol to mixer and mix for 20 minutes. ## **Example 6: Wet granulation process:** [185] Batch 017-10005 comprised of mannitol and low-moisture (2.4%) PROSOLV LM90 (0.33 g/mL) was sprayed with SP-304 solution and fluid bed dried resulted in granulation water content of 0.35%. The final blend contained 1% water, flowed well, and filled capsules well. The 2nd prototype 017-1006 comprised of the same components was adjusted to obtain a target capsule fill weight of 100 mg based on the results of the 1st batch. Water was sprayed onto powder blend with SP-304. The inlet temperature was 50C and the granulation was dried for 1.5 hours and stopped when the product temperature reached 36C. The 3rd (batch017-10006) and 4th (batch 017-10007) capsule prototypes will use PROSOLV HD90, which is a higher density material with superior flow properties and higher moisture content of 5.5% than the PROSOLV LM90. The moisture content of the PROSOLV HD90 is readily removed by fluid bed drying. The density of PROSOLV HD90 is about 0.55 g/mL. The PRUV lubricant will be removed for these batches. ## **Example 7: Wet granulation stability** [186] SP-304 was extracted from the capsules by sonication at either at room temperature (RT) or cold temperature and the amount of peptide was determined by HPLC. Initial percentages are based on the amount stated on the label. | Batch | % peptide (initial) | % peptide (1 mos at RT) | |-----------|----------------------|-------------------------| |
017-10006 | 101.1 (sonicated RT) | 97.6 (sonicated cold) | | 017-10008 | 97.5 (sonicated RT) | 108.2 (sonciated cold) | #### **Example 8: 1M capsule stability in HDPE Bottles** [187] Capsules contained 0.3 mg SP-304 with the remainder of the fill weight (up to 5 mg) made up by mannitol (Perlitol 300 DC). Each capsule contained 1.5% by weight SP-304 and 98.5% mannitol. The capsule shell was composed of HPMC. Amounts are relative to the amount specified on the label (i.e., 0.30 mg peptide). The indicated number of capsules was placed in a high density polyethylene bottle with an induction seal and molecular sieve desiccant for 1 month at either 2-8C (first two columns) or 25C and 60% relative humidity (last two columns). The initial amount of peptide present was 101% of the label claim. The last row gives the amount of peptide remaining after 1 month storage at the indicated temperature as determined by HPLC. | 2-8C | 2-8C | 25C/60RH | 25C/60RH | |---------------|----------------|---------------|----------------| | 1-capsule per | 6-capsules per | 1-capsule per | 6-capsules per | | bottle | bottle | bottle | bottle | | 100% | 92% | 92% | 98% | Example 9: Composition of batch 1528-2855-RD (capsules) and spray coating and drying process | Item No. | Ingredient | Amount per unit (mg) | Concentration % w/w | |----------|---|----------------------|---------------------| | 1 | SP-304 | 0.3246 | 0.3246 | | 2 | Microcrystalline
cellulose (Celphere
SCP-100) | 99.10 | 99.10 | | 3 | Calcium chloride dihydrate | 0.2622 | 0.2622 | | 4 | Leucine USP | 0.1171 | 0.1171 | | 5 | Hypromellose
(Methocel E5
PremLV) | 0.2000 | 0.2000 | | 6 | Purified Water, USP | 7.2 mL* | n/a | | | Total | 100 | 100 | ^{*:} The amount of water is calculated based on use of 119.0 mL purified water for the whole batch containing 5.356 g SP-304. [188] The spray drying process of making the batch 2855-RD is described below. ## Preparation of Coating Dispersion: [189] Purified water was added to a glass container and stirred such that a liquid vortex was produced without introducing air. Then calcium chloride dihydrate was slowly added into the water. The mixture was stirred until the salt was dissolved or well dispersed. Next, leucine was slowly added and the resulting mixture was stirred until the amino acid was dissolved or well dispersed. Afterward, methocel was slowly added and the mixture was stirred until methocel was completely dissolved. The solution could be warmed up to dissolve methocel, if necessary. The resulting excipient solution was allowed to cool to room temperature and pass through 80 mesh screen. Then, 127.9g of screened excipient solution was added to a glass container and placed in an ice bath for 0.5 to 1 hour until the solution reached 0 °C. Next, SP-304 was added into the cold excipient solution. The mixture was stir vigorously to allow the peptide to dissolve in the cold solution. The resulting peptide solution was kept cold in the ice bath as a spraying/coating solution. ## **Drug Layering** [190] A Glatt GPCG-2 fluid bed processor (with top spray tower) with a Wurster insert was set up for drug layering onto Celphere SCP-100 beads. After loading the Wurster column with Celphere SCP-100 beads, bed temperature was raised to 35 °C and maintained for 30 minutes with minimum fluidization of the beads. The bed temperature was reduced until an exhaust temperature of 35 °C was achieved. The pump tubing of the peristaltic pump used was primed by circulating the spraying solution mentioned above. After the spraying apparatus was adjusted to obtain a satisfactory spray pattern, the coating solution was sprayed onto Celphere SCP-100 beads until all coating solution was sprayed. Operating parameters were recorded. The bed temperature and fluidization were maintained until the beads were sufficiently dry. The fluidization was then reduced while the bed temperature was maintained at 35 °C for 10 minutes. 2g of beads were sampled for moisture analysis when the bed temperature was kept at 35 °C. When the moisture of the sampled beads reached < 5% moisture, the coated beads were discharged and loaded into a dry container. LOD (loss on drying) 2.399%. Example 10: Composition of batch 1528-2851-RD (tablets) and spray coating and drying process | Item No. | Ingredient | Amount per unit (mg) | Concentration % w/w | |----------|------------------|----------------------|---------------------| | 1 | SP-304 | 0.3246 | 0.3607 | | 2 | Microcrystalline | 88.88 | 98.75 | | | cellulose (Avicel PH 102) | | | |---|---|---------|--------| | 3 | Calcium chloride dihydrate | 0.2622 | 0.2913 | | 4 | Leucine USP | 0.1171 | 0.1301 | | 5 | Hypromellose
(Methocel E5
PremLV) | 0.2000 | 0.2222 | | 6 | Magnesium stearate | 0.225 | 0.2500 | | 7 | Purified Water, USP | 7.2 mL* | n/a | | | Total | 90.0 | 100 | ^{*:} The amount of water is calculated based on use of 119.0 mL purified water for the whole batch containing 5.356 g SP-304. [191] The spray coating and drying process of making the batch 2851-RD is described below. ## Preparation of Coating Dispersion: [192] Purified water was added to a glass container and stirred such that a liquid vortex was produced without introducing air. Then calcium chloride dihydrate was slowly added into the water. The mixture was stirred until the salt was dissolved or well dispersed. Next, leucine was slowly added and the resulting mixture was stirred until the amino acid was dissolved or well dispersed. Afterward, methocel was slowly added and the mixture was stirred until methocel was completely dissolved. The solution could be warmed up to dissolve methocel, if necessary. The resulting excipient solution was allowed to cool to room temperature and pass through 80 mesh screen. Then, 127.9g of screened excipient solution was added to a glass container and placed in an ice bath for 0.5 to 1 hour until the solution reached 0 °C. Next, SP-304 was added into the cold excipient solution. The mixture was stir vigorously to allow the peptide to dissolve in the cold solution. The resulting peptide solution was kept cold in the ice bath as a spraying/coating solution. #### Drug Layering [193] A Glatt GPCG-2 fluid bed processor (with top spray tower) with a Wurster insert was set up for drug layering onto Avicel PH 102 beads. After loading the Wurster column with Avicel PH 102 beads, temperature was raised to 35 °C and maintained for 30 minutes with minimum fluidization of the beads. The bed temperature was reduced until an exhaust temperature of 35 °C was achieved. The pump tubing of the peristaltic pump used was primed by circulating the spraying solution mentioned above. After the spraying apparatus was adjusted to obtain a satisfactory spray pattern, the coating solution was sprayed onto Avicel PH 102 beads until all coating solution was sprayed. Operating parameters were recorded. The bed temperature and fluidization were maintained until the beads were sufficiently dry. The fluidization was then reduced while the bed temperature was maintained at 35 °C for 10 minutes. 2g of beads were sampled for moisture analysis when the bed temperature was kept at 35 °C. When the moisture of the sampled beads reached < 5% moisture, the coated beads were discharged and loaded into a dry container. LOD (loss on drying) <5%. [194] The net weight of the coated blend was determined for calculation of the amount of magnesium stearate needed to lubricate the blend. Then the magnesium stearate was added to the coated blend and the mixture was blended for 1 minute. ## Compression [195] A Fette tablet press was set up. Then the blend mixture was loaded into the powder hopper and tooling was installed. The weight of each tablet was set to be 90 mg±5% and hardness to be 4-6 Kp. The weight, hardness and thickness of tablets were measured and recorded every 5 to 10 minutes. Friability measurement was also performed to ensure satisfactory product. Example 11: Composition of batch 1528-2850-RD (capsules) and process | Item No. | Ingredient | Concentration % w/w | |----------|--|---------------------| | 1 | SP-304 | 0.3246 | | 2 | Microcrystalline
cellulose (Avicel PH
102) | 99.43 | | 3 | Magnesium stearate | 0.2500 | | 4 | HPMC capsule shells | n/a | | Total | 100 | |-------|-----| |-------|-----| [196] The dry blend process of making the batch 2850-RD is described below. ## Blending: [197] Avicel PH 102 was screened through a 60 mesh screen. V-blenders (1 Qt, 4Qt, and 16 Qt) were then dusted by the screened Avicel PH 102. SP-304 was screened through a 200 mesh screen and loaded into the 1-Qt V-blender. Then, about 80 g Avicel PH 102 was added into the 1-Qt blender and the mixture was blended for 10 minutes at 25 rpm. The mixture was then transferred to the 4-Qt V-blender which was pre-dusted by the screened Avicel PH 102. The 1-Qt blender was rinsed with Avicel and the rinse material was transferred to the 4-Qt blender. The rinsing was repeated until all SP-304 was transferred to the 4-Qt blender. About 200g Avicel was added to the 4-Qt V-blender and the mixture was blended for 10 minutes. The resulting blend was then screened through a 60 mesh screen and then transferred into the predusted 16-Qt blender (dusted with 1500g Avicel). The 4-Qt blender was rinsed with Avicel and the rinse material was transferred to the 16-Qt blender. The remaining Avicel was added to the 16-Qt blender and the mixture was blended for 10 minutes. The resulting blend was passed through Comil and then returned to the 16-Qt blender and was further blended for 5 minutes. Proper amount of magnesium stearate was weighed, screened through a 60 mesh screen, and added into the 16-Qt blender. The resulting mixture was blended for 2 minutes. #### Encapsulation [198] A MG2 Planeta capsule filler was set up. Average weight of the empty
capsule shells was determined and target capsule fill weight was calculated (±5%). The blend from the above process was added into the hopper of the capsule filler and encapsulation was started. Run weight parameters were manually adjusted. Resulting capsules were then sorted according to the target fill weight. Example 12: Composition of batch 1528-2850B-RD (tablets) and process | Item No. | Ingredient | Concentration % w/w | |----------|--|---------------------| | 1 | SP-304 | 0.3246 | | 2 | Microcrystalline
cellulose (Avicel PH
102) | 99.43 | | 3 | Magnesium stearate | 0.2500 | | | Total | 100 | [199] The dry blend process of making the batch 2850B-RD is described below. #### Blending: [200] Avicel PH 102 was screened through a 60 mesh screen. V-blenders (1 Qt, 4Qt, and 16 Qt) were then dusted by the screened Avicel PH 102. SP-304 was screened through a 200 mesh screen and loaded into the 1-Qt V-blender. Then, about 80 g Avicel PH 102 was added into the 1-Qt blender and the mixture was blended for 10 minutes at 25 rpm. The mixture was then transferred to the 4-Qt V-blender which was pre-dusted by the screened Avicel PH 102. The 1-Qt blender was rinsed with Avicel and the rinse material was transferred to the 4-Qt blender. The rinsing was repeated until all SP-304 was transferred to the 4-Qt blender. About 200g Avicel was added to 4-Qt V-blender and the mixture was blended for 10 minutes. The resulting blend was then screened through a 60 mesh screen and then transferred into the pre-dusted 16-Qt blender (dusted with 1500g Avicel). The 4-Qt blender was rinsed with Avicel and the rinse material was transferred to the 16-Qt blender. The remaining Avicel was added to the 16-Qt blender and the mixture was blended for 10 minutes. The resulting blend was passed through Comil and then returned to the 16-Qt blender and was further blended for 5 minutes. Proper amount of magnesium stearate was weighed, screened through a 60 mesh screen, and added into the 16-Qt blender. The resulting mixture was blended for 2 minutes. #### Compression [201] A Fette tablet press was set up. Then the blend mixture was loaded into the powder hopper and tooling was installed. The weight of each tablet was set to be 90 mg±5% and hardness to be 4-6 Kp. The weight, hardness, and thickness of tablets were measured and recorded every 5 to 10 minutes. Friability measurement was also performed to ensure satisfactory product. Example 13: Composition of dry blend tablet formulation 1528-3161-RD, 1mg for vacuum drying | Item No. | Ingredient | Concentration % | |----------|----------------------|-----------------| | | | w/w | | 1 | SP-304 | 1.176 | | 2 | Microcrystalline | 98.57 | | | cellulose (Avicel PH | | | | 102) | | | 3 | Magnesium stearate | 0.2500 | | | Total | 100 | Example 14: Composition of dry blend tablet formulation 1528-3162-RD, 1mg with low- ## 5 moisture cellulose | Item No. | Ingredient | Concentration % | |----------|----------------------|-----------------| | | | w/w | | 1 | SP-304 | 1.176 | | 2 | Microcrystalline | 97.09 | | | cellulose (Avicel PH | | | | 112) | | | 3 | Magnesium stearate | 0.2500 | | | Total | 100 | Example 15: Composition of spray coated trehalose granules tablet formulation 1528-3170-RD, 1mg | Item No. | Ingredient | Concentration % | |----------|-----------------------|-----------------| | | | w/w | | 1 | SP-304 | 1.176 | | 2 | Trehalose granules | 70.48 | | 3 | Methocel ES Premium | 0.50 | | | LV | | | 4 | Histidine (in coating | 0.9225 | | | solution) | | | 5 | Calcium ascorbate | 0.100 | | 6 | Purified water | N/A | | 7 | Trehalose powder (in | 1.0176 | | | coating solution) | | | 8 | Microcrystalline | 25.00 | | | cellulose (Avicel PH | | | | 200) | | | 9 | Histidine | 0.5535 | | 10 | Magnesium stearate | 0.2500 | | | Total | 100 | The process for making spray coated trehalose Granules tablet formulation 1528-3170-RD is described below. # Preparation of the Coating Dispersion [202] Add purified water to labeled container and begin stirring. Stir such that a liquid vortex is produced without introducing air into liquid. Slowly add Methocel to solution. Stir until methocel is completely dissolved. Warm the solution if necessary to dissolve Methocel (≤ 50 °C). Solution must be cooled before adding other materials. Add Trehalose to solution. Stir until materials are dissolved. Add Calcium Ascorbate to solution. Stir until materials are dissolved. Adjust pH to 7.0 with 1N NaOH solution if pH >7.0. Record adjusted pH. Place the Coating Solution in an ice bath and allow it stay in the batch for 0.5 to 1 hour until it reaches the ice temperature. Check with a thermometer to ensure at ice temperature. Weigh portions of required amount of API on a weighing boat and add each portion carefully to the cold Excipient Solution. Stir vigorously to allow peptide wetting and dissolving in the cold solution. Total amount of peptide must equal 14.107 g. Continue stirring solution such that a liquid vortex is produced without introducing air into liquid. Stir until PLECANATIDE is completely dissolved. Keep peptide solution cold all the time in the ice bath. Add Histidine to solution. Stir not more than 10min to dissolve the material. Obtain final pH of the Coating Solution. Obtain net weight of the Coating Solution. Coating Solution must be used within 30min to avoid coloration. ## **Drug Layering** [203] Setup Glatt GPCG2 with Wurster insert according to SOP EQP-OCM-064 for drug layering onto Trehalose Granules with coating dispersion. Use Glatt GPCG2 In-process form, "EQP-OCM-064-F1," to record in-process information. Turn unit on and preheat column. Fluid Bed Processor: Glatt GPCG-2. Filter: 200 micron screen. Product Container: 4" wurster, stainless steel. Insert height from bottom: 1". Spray direction: Top Spray. Fluid Nozzle Size/ Type: 1mm. Pump: Peristaltic, Master Flex LS. Tubing: Nalge #14 Silicon. Bed Temperature: ≤ 40°C. Inlet air temperature: Adjust to meet bed temperature target. Outlet air temperature: Monitor & record. Spray rate: initial rate 4-6g/min, adjust as required. Atomizing air pressure: 20 psi. Air flow: 60cmh and adjust for fluidization. Prepare double polyethylene bags large enough to hold drug layered Granules. Load column with Trehalose. Increase bed temperature to 35°C and maintain for 30 minutes with minimum fluidization of the Granules. Reduce bed temperature until an exhaust temperature of 35 °C is achieved. Prime pump tubing by circulating spraying solution; must not use more than 40g for tubing priming. Adjust the spraying apparatus to obtain satisfactory spray pattern. Coating Solution Weight after priming should > 317g. Record initial weight below before spraying onto trehalose. Start spraying the coating solution onto Trehalose Granules. Record operating parameters on fluid bed processing form. Stop spraying when 297.2 g of coating solution has been sprayed. Maintain bed temperature and continue fluidization until Granules are sufficiently dry. Reduce fluidization and maintain bed temperature at 35°C for 10 minutes. Do not cool down the Granules. Sample 2g for moisture analysis until moisture is below 1%. Discharge coated Granules into preprepared and labeled container (with tare weight) lined with double polyethylene bag. Calculate net weight of drug layered Granules. Setup Lyophilizer per SOP EQP-OCM-00002. Load drug layered granules into a Lyoguard tray (Save bags). Use recipe 3 to dry blend overnight. Discharge dried blend into saved polyethylene bags. Obtain final moisture of the dried granules. Record final Moisture (<1%). Calculate net weight of dried Granules. Blending 5 10 15 20 25 [204] Screen required Avicel and pass through 60 mesh screen. Setup 4 qt V-blender per SOP EQP-OCM-00056. Weigh amount of Histidine needed and blend with small amount of Avicel weighed. Charge into 4 qt. V-blender. Transfer Plecanatide Dried Granules into the V-Blender. Rinse 2-3 times the Lyoguard tray from Step 24 with adequate amount of Weighed Avicel .Transfer rinses into 4 qt. V-b; ender. Transfer all remaining Pre-weighed/screened Avicel into the V-Blender. Mix for 15 minutes. Weigh and screen Magnesium Stearate through a 60 mesh screen. Charge Magnesium Stearate to the 4 qt V-Blender. Ensure the cover is securely closed with no potential powder leakage during blending. Blend for 2 minutes. #### Compression [205] Set-up Korsch press per SOP EQP-OCM-00087. Install 0.250" Standard Concave Round Plain tolling. Obtain blend Assay results and calculate Target Tablet Weight. Acceptable weight range of tablets is \pm 5.0%. Load the Final Blend into the powder hopper. Refill as necessary. Adjust fill weight to obtain tablets in the range of 95.0 - 105.0mg and hardness in the range of 4-6kP. Verify friability is NMT 1.0%. Check 5 tablet weights periodically every 5-10min to ensure tablet weight is within the range and record on form QRA-DOC-00011-F6. After tablet weights are recorded, obtain and record 3 tablet hardness and thickness during the periodic weight check. Continue to compress acceptable tablets until the blend is used up. Once press is running properly to achieve specifications above, perform final Friability test and record results (Spec: NMT 1.0%). Example 16: Composition of spray coated trehalose granules tablet formulation 1528-3171-RD, 1mg | Item No. | Ingredient | Concentration % w/w | |----------|--|---------------------| | 1 | SP-304 | 1.167 | | 2 | Trehalose granules | 70.31 | | 3 | Methocel ES Premium
LV | 0.50 | | 4 | Arginine | 1.657 | | 5 | Calcium ascorbate | 0.100 | | 6 | Water for injection | N/A | | 7 | Trehalose powder (in coating solution) | 1.0176 | | 8 | Microcrystalline
cellulose (Avicel PH
200) | 25.00 | | 9 | Magnesium stearate | 0.2500 | | | Total | 100 | [206] The process for making spray coated trehalose Granules tablet formulation 1528-3171-RD is
described below. ## Preparation of Coating Solution 5 Add purified water (Item 6) to labeled container and begin stirring. Stir such that a liquid vortex is produced without introducing air into liquid. Slowly add Methocel to solution. Stir until methocel is completely dissolved. Warm the solution if necessary to dissolve Methocel (≤ 50 °C). Record appearance of solution. Solution must be cooled before adding other materials. Add Trehalose to solution. Stir until materials are dissolved. Record appearance of solution. Add Arginine to solution. Stir until materials are dissolved. Record appearance of solution. Add Calcium Ascorbate to solution. Stir until materials are dissolved. Record appearance of solution. Adjust solution pH to pH 8.5 - 8.6 with concentrated HCl followed by adjust pH to 8.3 - 8.4 with 10N HCl. Record final adjusted pH. Place the Coating Solution in an ice bath and allow it stay in the batch for 0.5 to 1 hour until it reaches the ice temperature. Check with a thermometer to ensure at ice temperature. Weigh portions of required amount of API on a weighing boat and add each portion carefully to the cold Excipient Solution. Stir vigorously to allow peptide wetting and dissolving in the cold solution. Total amount of peptide must equal 14.006 g. Continue stirring solution such that a liquid vortex is produced without introducing air into liquid. Stir until PLECANATIDE is completely dissolved. Keep peptide solution cold all the time in the ice bath. Weigh 5.0g of WFI to rinse API container. Carefully rinse the side of coating solution container and completely transfer the rinse back to the coating solution container. Obtain final pH of the Coating Solution. Obtain net weight of the Coating Solution (~360.3 g). Coating Solution must be used within as soon as possible. ## 20 <u>Drug Layering</u> 5 10 15 25 30 [207] Setup Glatt GPCG2 with Wurster insert according to SOP EQP-OCM-064 for drug layering onto Trehalose Granules with coating dispersion. Use Glatt GPCG2 In-process form, "EQP-OCM-064-F1," to record in-process information. Turn unit on and preheat column. Fluid Bed Processor: Glatt GPCG-2. Filter: 200 micron screen. Product Container: 4" wurster, stainless steel. Insert height from bottom: 1". Spray direction: Top Spray. Fluid Nozzle Size/ Type: 1mm. Pump: Peristaltic, Master Flex LS. Tubing: Nalge #14 Silicon. Bed Temperature: ≤ 40°C. Inlet air temperature: Adjust to meet bed temperature target. Outlet air temperature: Monitor & record. Spray rate: initial rate 4-6g/min, adjust as required. Atomizing air pressure: 20psi. Air flow: 60cmh and adjust for fluidization. Load column with Trehalose G. Increase bed temperature to 35°C and maintain for 30 minutes with minimum fluidization of the Granules. Reduce bed temperature until an exhaust temperature of 35 °C is achieved. Prime pump tubing with coating solution. Must not use more than 40g for tubing priming. Adjust the spraying apparatus to obtain satisfactory spray pattern. Record initial weight below before spraying onto trehalose. Start spraying the coating solution onto Trehalose Granules. Record operating parameters on fluid bed processing form. Stop spraying when 300.3 g of coating solution has been sprayed. Maintain bed temperature and continue fluidization until Granules are sufficiently dry. Reduce fluidization and maintain bed temperature at 35°C for 10 minutes. Do not cool down the Granules. Sample 2g for moisture analysis until moisture is below 1%. Discharge coated Granules into pre-prepared and labeled container (with tare weight) lined with double polyethylene bag. Calculate net weight of drug layered Granules. If moisture is > 1%, vacuum dry blend as follows: Setup Lyophilizer per SOP EQP-OCM-00002. Load drug layered granules into a Lyoguard tray. Use recipe 3 to dry blend overnight. Discharge dried blend into saved polyethylene bags. Obtain final moisture of the dried granules. Calculate net weight of dried Granules. ## 15 Blending 5 10 20 [208] Screen required Avicel and pass through 60 mesh screen. Setup 4 qt V-blender. Transfer Plecanatide Dried Granules into the V-Blender. Save bag for discharging final blend. Rinse 2-3 times the Lyoguard tray and bag with adequate amount of Weighed Avicel. Transfer rinses into 4 qt. V-b; ender. Transfer all remaining Pre-weighed/screened Avicel into the V-Blender. Mix for 20 minutes. Weigh and screen Magnesium Stearate through a 60 mesh screen. Charge Magnesium Stearate to the 4 qt V-Blender. Ensure the cover is securely closed with no potential powder leakage during blending. Blend for 2 minutes. Sample 3 x 350 mg of blend at three locations. Obtain exact weight of each sample that has been transferred into the sampling bottle. #### Compression Set-up Korsch press per SOP EQP-OCM-00087. Install 0.250" Standard Concave Round Plain tolling. Obtain blend Assay results and calculate Target Tablet Weight. Acceptable weight range of tablets is ± 5.0%. Load the Final Blend into the powder hopper. Refill as necessary. Adjust fill weight to obtain tablets in the range of 95.0 - 105.0mg and hardness in the range of 4-6kP. Verify friability is NMT 1.0%. Check 5 tablet weights periodically every 5-10min to ensure tablet weight is within the range. After tablet weights are recorded, obtain and record 3 tablet hardness and thickness during the periodic weight check. Continue to compress acceptable tablets until the blend is used up. Once press is running properly to achieve specifications above, perform final Friability test and record results (Spec: NMT 1.0%). Example 17: Composition of spray coated trehalose granules tablet formulation 1528-3172, 1mg | Item No. | Ingredient | Concentration % w/w | |----------|--|---------------------| | 1 | SP-304 | 1.167 | | 2 | Trehalose granules | 70.81 | | 3 | Methocel ES Premium LV | 0.50 | | 4 | TRIS | 1.1524 | | 5 | Calcium ascorbate | 0.100 | | 6 | Water for injection | N/A | | 7 | Trehalose powder (in coating solution) | 1.0176 | | 8 | Microcrystalline
cellulose (Avicel PH
200) | 25.00 | | 9 | Magnesium stearate | 0.2500 | | | Total | 100 | [209] The process for making spray coated trehalose granules tablet formulation 1528-3172-RD is described below. ## 10 Preparation of Coating Solution 5 [210] Add purified water to labeled container and begin stirring. Stir such that a liquid vortex is produced without introducing air into liquid. Slowly add Methocel to solution. Stir until methocel is completely dissolved. Warm the solution if necessary to dissolve Methocel ($\leq 50^{\circ}$ C). Record appearance of solution. 5 [211] Solution must be cooled before adding other materials. Add Trehalose to solution. Stir until materials are dissolved. Record appearance of solution. Add TRIS to solution. Stir until materials are dissolved. Record appearance of solution. Add Calcium Ascorbate to solution. Stir until materials are dissolved. Record appearance of solution. Obtain solution pH: Adjust pH to pH 7.8 – 7.9 with concentrated HCl followed by adjust pH to 7.7 – 7.6 with 10N HCl. Record 10 final adjusted pH. Place the Coating Solution in an ice bath and allow it stay in the batch for 0.5 to 1 hour until it reaches the ice temperature. Check with a thermometer to ensure at ice temperature. Weigh portions of required amount of API on a weighing boat and add each portion carefully to the cold Excipient Solution. Stir vigorously to allow peptide wetting and dissolving in the cold solution. Total amount of peptide must equal 14.006 g. Continue stirring 15 solution such that a liquid vortex is produced without introducing air into liquid. Stir until PLECANATIDE is completely dissolved. Keep peptide solution cold all the time in the ice bath. Weigh 5.0g of WFI to rinse API container. Carefully rinse the side of coating solution container and completely transfer the rinse back to the coating solution container. Obtain final pH of the Coating Solution. Obtain net weight of the Coating Solution (~354.2 g). Coating Solution must 20 be used as soon as possible. The blending and compression processes for batch 1528-3172-RD are similar to that described above for batch 1528-3171-RD. Example 18: Composition of 1mg dry blend tablet formulation 1528-2925-RD | Item No. | Ingredient | Concentration % | |----------|----------------------|-----------------| | | | w/w | | 1 | SP-304 | 1.106 | | 2 | Microcrystalline | 98.64 | | | cellulose (Avicel PH | | | | 102) | | |---|--------------------|--------| | 3 | Magnesium stearate | 0.2500 | | | Total | 100 | Example 19: Composition of 3mg dry blend tablet formulation 1528-2926-RD | Item No. | Ingredient | Concentration % | |----------|--|-----------------| | | | w/w | | 1 | SP-304 | 3.318 | | 2 | Microcrystalline
cellulose (Avicel PH
102) | 96.43 | | 3 | Magnesium stearate | 0.2500 | | | Total | 100 | - [212] Other batches were prepared by the processes similar to those described in Examples 9-12. Their compositions are listed below. - [213] Batch 500-55: 0.33% plecanatide, 95.17% microcyrstalline cellulose, 4.0% sodium starch glycolate, and 0.5% magnesium stearate. - [214] Batches 1528-2907-RD and 2010F100A: 3.318% plecanatide, 96.43% Avicel, and 0.25% Mg stearate. - [215] Batches 1528-2906-RD and 2010F099A: 1.106% plecanatide, 98.65% Avicel, and 0.25% Mg stearate. - [216] Batches 1528-2890-RD and 2010F101A: 0.3246% plecanatide, 99.43% Avicel, and 0.25% Mg stearate. [217] Formula compositions for batches 11H141, 11H152, and 11H140 in this table below (not previously disclosed) are the same as the formula compositions for GMP stability batches 2010F101A, 2010F099A, and 2010F100A, respectively. ## Example 20: Plecanatide tablet and capsule stability [218] Capsules and tablets of different batches were tested for their stability and the results were provided. Unless otherwise specified, 1M, 2M, 3M, or 4M in the tables below
denotes that the measurements were carried out at the end of 1, 2, 3, or 4 month(s) of the storage period. Potency Summary: This test was performed by taking a composite sample of about 5 units to determine the average potency of the sample. The table below shows the stability of capsules or tablets in terms of potency (% of label claim). | | | | | | | | | Po | tency (% | Label (| Claim) | | | | | | | | | | |--|-------|--------------------|-------------------|----------|----|-----|----------|----|----------|----------|--------|-----|----|-----|-----|----|----|------|----|------| | Lot | | Package | Storage Condition | | | | | | | | | | | | | | | | | | | (description) | Bulk* | D1 | T 1.1 1 | 40C/75RH | | | 30C/65RH | | | 25C/60RH | | | | | 5C | | | | | | | | | Package | Initial | 1M | 2M | 3M | 1M | 2M | 3M | 1M | 2M | 3M | 7M | 10M | 1M | 2M | 3M | 4M | 7M | 8.5M | | 1528-2850- | | HDPE bottle | | 89 | | 87 | | | 89 | | | 91 | | 80 | | | | 89.3 | | 89 | | RD (0.3mg
dry blend | 88 | Oxyguard
bottle | | 91 | | 91 | | | 92 | | | 91 | | 79 | | | | 88.9 | | 90 | | capsules) | | Blister strip | 90 | 90 | | 85 | | | 88 | | | 91 | | 79 | | | | | | 90 | | 1528-2855- | | HDPE bottle | | 101 | | 100 | | | 96 | | | 102 | | 88 | | | | | | 98 | | RD (0.3mg coated bead | 94 | Oxyguard
bottle | | 101 | | 96 | | | 99 | | | 104 | | 87 | | | | | | 100 | | capsule) | | Blister strip | | 97 | | 103 | | | 99 | | | 98 | | 87 | | | | | | 97 | | 500-55 | | HDPE bottle | | 97 | | 94 | | | 95 | | | 96 | | 84 | | | | | | 98 | | (0.3mg dry
blend | 97 | Oxyguard bottle | | 98 | | 96 | | | 96 | | | 102 | | 83 | | | | | | 97 | | capsule) | | Blister strip | 93 | 97 | | 93 | | | 95 | | | 106 | | 83 | | | | | | 96 | | 1528-2850B- | | HDPE bottle | | 85 | | 88 | | | 94 | | | 83 | | 67 | | | | | | 70 | | RD (0.3mg
dry blend
tablet) | 76 | Oxyguard
bottle | | 84 | | 84 | | | 88 | | | 74 | | 74 | | | | | | 80 | | 1528-2851- | | HDPE bottle | | 115 | | 72 | | | 90 | | | 99 | | 99 | | | | | | 78 | | RD (0.3mg
coated
particle
tablet) | 96 | Oxyguard
bottle | | 81 | | 88 | | | 83 | | | 111 | | 85 | | | | | | 96 | | 2010F100A
(3mg dry
blend
capsule) | 101 | Blister strip | 97 | 95 | 94 | 91 | 95 | 95 | 92 | 97 | 95 | 93 | | | 97 | 94 | 94 | | | | | 2010F101A
(0.3mg dry
blend
capsule) | 97 | Blister strip | 92 | 91 | 91 | 86 | 94 | 92 | 85 | 95 | 93 | 88 | | | 95 | 95 | 92 | | | | | 2010F099A
(1mg dry
blend
capsule) | 98 | Blister srtip | 94 | 92 | 91 | 89 | 93 | 94 | 89 | 94 | 94 | 91 | | | 95 | 94 | 92 | | | | | 11H141
(0.3mg dry
blend | 103 | Blister strip | 101 | 95 | 92 | 87 | 98 | 93 | 92 | 96 | 92 | 95 | | | 100 | 97 | 97 | | | | | capsule) |--|-----|-------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|--| | 11H152 (1mg
dry blend
capsule) | 102 | Blister strip | 97 | 91 | 91 | 93 | 94 | 95 | 96 | 96 | 95 | 96 | | 97 | 95 | 97 | | | | 11H140 (3mg
dry blend
capsule) | 105 | Blister strip | 99 | 94 | 95 | 94 | 95 | 94 | 97 | 99 | 95 | 97 | | 99 | 97 | 97 | | | | 1528-2925-
RD (1mg dry
blend tablet) | 99 | Oxyguard 40cc
with
PharnaKeep | | | | | | | | | | | 99 | | | | 103 | | | 1528-2926-
RD (3mg dry
blend tablet) | 100 | Oxyguard 40cc
with
PharnaKeep | | | | | | | | | | | 94 | | | | 93 | | | 1528-2907-
RD (3mg dry
blend
capsule) | 98 | | | | | | | | | | | | | | | | | | | 1528-2906-
RD (1mg dry
blend
capsule) | 98 | | | | | | | | | | | | | | | | | | | 1528-2890-
RD (0.3mg
dry blend
capsule) | 93 | | | | | | | | | | | | | | | | | | *Blend [219] As demonstrated by the table above, there was little or no appreciable loss in potency after storage under accelerated conditions (40C/75RH or 30C/65RH), which suggests that these capsules or tablets could be stable at room temperature for 18 months or for longer times if refrigerated or stored at 25C. [220] <u>Water content summary</u>: The table below shows that the water content was stable over the testing period in the packages evaluated for various capsule/tablet compositions. This further demonstrated that products were stable. # 5 [221] | Lot | Water | Packaging | Water packaged product | |-----|-------|-----------|------------------------| | | (in- | | | 4 | 0C/75R | Н | 3 | 0C/65R | Н | | | 25C/60F | H | | | | | 5C | | | |--|--------------|---|---------|------|--------|------|-----|--------|------|-----|-----|---------|----|------|-----|-----|-----|------|----|------| | | proces
s) | | Initial | 1M | 2M | 3M | 1M | 2M | 3M | 1M | 2M | 3M | 7M | 10M | 1M | 2M | 3M | 4M | 7M | 8.5M | | 1528-2850- | | 32-count, HDPE bottle,
60cc, N2, 2g mol. sieve | | 5.03 | | 5.64 | | | 3.00 | | | 2.22 | | 2.39 | | | | 5.48 | | 1.8 | | RD 0.3mg
dry blend
capsule | | 32-count, Oxyguard
bottle, 40cc, PharmaKeep
KD-20 | | 5.07 | | 5.24 | | | 4.28 | | | 5.33 | | 4.08 | | | | 5.31 | | 3.7 | | | | Blister, N2 | 4.21 | 4.87 | | 5.80 | | | 4.76 | | | 4.31 | | 4.09 | | | | | | 2.8 | | 1528-2855- | | 32-count, HDPE bottle,
60cc, N2, 2g mol. sieve | | 0.57 | | 0.47 | | | 1.63 | | | 0.68 | | 0.42 | | | | | | 0.2 | | RD 0.3mg
coated bead
capsule | 2.40 | 32-count, Oxyguard
bottle, 40cc, PharmaKeep
KD-20 | | 2.10 | | 1.05 | | | 1.29 | | | 2.07 | | 0.30 | | | | | | 0.8 | | _ | | Blister strip | | 0.73 | | 2.11 | | | 0.54 | | | 0.58 | | 0.32 | | | | | | 0.3 | | 500-55 | | HDPE bottle | | 5.63 | | 4.19 | | | 5.51 | | | 5.79 | | 2.98 | | | | | | 2.7 | | 0.3mg dry
blend | | Oxyguard bottle | | 5.78 | | 4.69 | | | 5.90 | | | 5.66 | | 2.99 | | | | | | 2.8 | | capsule | | Blister strip | 4.09 | 5.78 | | 4.17 | | | 5,53 | | | 6.16 | | 3.12 | | | | | | 2.9 | | 1528-
2850B-RD | | 32-count, HDPE bottle,
60cc, N2, 2g mol. sieve | | 4.09 | | 4.03 | | | 6.28 | | | 6.10 | | 2.86 | | | | | | 2.1 | | 0.3mg dry
blend tablet | | 32-count, Oxyguard
bottle, 40cc, PharmaKeep
KD-20 | | 4.81 | | 4.91 | | | 6.15 | | | 6.30 | | 4.05 | | | | | | 3.4 | | 1528-2851-
RD 0.3mg | | 32-count, HDPE bottle,
60cc, N2, 2g mol. sieve | | 4.33 | | 4.50 | | | 5.09 | | | 5.90 | | 2.55 | | | | | | 1.5 | | coated particle tablet | 3.32 | 32-count, Oxyguard
bottle, 40cc, PharmaKeep
KD-20 | | 5.15 | | 4.88 | | | 5.82 | | | 6.02 | | 4.34 | | | | | | 3.0 | | 2010F100A
(3mg dry
blend
capsule) | | Blister strip | 4.7 | 4.5 | 4.6 | 4.4 | 4.5 | 4.7 | 4.4 | 4.5 | 4.8 | 4.4 | | | 4.5 | 4.8 | 4.5 | | | | | 2010F101A
(0.3mg dry
blend
capsule) | | Blister strip | 4.5 | 4.8 | 4.7 | 4.7 | 4.5 | 4.7 | 4.3 | 4.4 | 4.7 | 4.3 | | | 4.5 | 4.7 | 4.2 | | | | | 2010F099A
(1mg dry
blend
capsule) | | Blister strip | 4,6 | 4.4 | 4.6 | 4.4 | 4.5 | 4.5 | 4.3 | 4.4 | 4.6 | 4.4 | | | 4.2 | 4.7 | 4.3 | | | | | 11H141
(0.3mg dry
blend
capsule) | Blister strip | 5 | 4.8 | 4.9 | 4.9 | 5.1 | 4.9 | 4.8 | 5.0 | 5.0 | 4.9 | | 5.0 | 4.9 | 4.9 | | | |--|----------------------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--| | 11H152
(1mg dry
blend
capsule) | Blister strip | 5.2 | 4.8 | 4.9 | 4.8 | 4.8 | 4.8 | 4.9 | 4.8 | 4.8 | 4.9 | | 5.0 | 4.9 | 4.8 | | | | 11H140
(3mg dry
blend
capsule) | Blister strip | 5.2 | 5.0 | 5.0 | 5.0 | 4.9 | 5.0 | 5,0 | 4.9 | 5.0 | 4.9 | | 4.9 | 4.9 | 4.8 | | | | 1528-2925-
RD (1mg
dry blend
tablet) | Oxyguard 40cc with
PharnaKeep | | | | | | | | | | | 4.9 | | | | 4.0 | | | 1528-2926-
RD (3mg
dry blend
capsule) | Oxyguard 40cc with
PharnaKeep | | | | | | | | | | | 4.0 | | | | 4.0 | | | 1528-2907-
RD 3mg
dry blend
capsule | Bulk capsule | 4.78 | | | | | | | | | | | | | | | | | 1528-2906-
RD 1m dry
blend
capsule | Bulk capsule | 4.84 | | | | | | | | | | | | | | | | | 1528-2890-
RD | Bulk capsule | 4.8 | | | | | | | | | | | | | | | | [222] Impurity summary: The table below shows the product stability in terms of HPLC or UPLC of total impurities as a function of time and storage condition. The data in the table suggest that the increase in total impurities in tested batches except batch 500-55 be no greater than 7% at room temperature after 18 months. It also suggest that the increase in total impurities in all tested 1528-2855-RD batche in different packages be no greater than 7% at 30 °C for 18 months. It was also observed that the 1528-2855-RD batch had less impurity increase than the 1528-2850-RD batch or was more stable than the 1528-2850-RD batch. | | | | | | | | | , | Total in | puritie | s % are | a | | | | | | | | |--|-----------------|---------|-----|----------|-----|-----|--------|-----|----------|---------|---------|----|-----|-----|-----|-----|-----|----|------| | Batch | Package | Initial | 4 | 10C/75RI | Н | 3 | 0C/65R | Н | | Ź | 25C/60R | H. | | | | | 5C | | | | | | muai | 1M | 2M | 3M | 1M | 2M | 3M | 1M | 2M | 3M | 7M | 10M | 1M | 2M | 3M | 4M | 7M | 8.5M | | | HDPE bottle | | 5.1 | | 5.9 | | | 4.4 | | | 3.8 | | 4.8 | | | | 3.1 | | 3.7 | | 1528-2850-
RD | Oxyguard bottle | 3.2 | 5.7 | | 7.4 | | | 5.3 | | | 4.3 | | 5.3 | | | | 3.1 | | 3.5 | | 1.0 | Blister strip | | 5.5 | | 7.0 | | | 5.0 | | | 4.3 | | 5.5 | | | | | | 3.7 | | | HDPE bottle | | 3.6 | | 5.1 | | | 3.8 | | | 3.4 | | 4.4 | | | | | | 3.4 | | 1528-2855-
RD | Oxyguard bottle | 3.5 | 3.9 | | 4.4 | | | 4.1 | | | 3.7 | | 4.0 | | | | | | 3.7 | | 113 | Blister strip | | 4.0 | | 5.2 | | | 4.0 | | | 3.6 | | 4.2 | | | | | | 3.8 | | | HDPE bottle | | 5.7 | | 8.4 | | | 5.4 | | | 4.4 | | 6.0 | | | | | | 3.5 | | 500-55 | Oxyguard bottle | 3.2 | 5.6 | | 7.0 | | | 5.1 | | | 4.3 | | 5.6 | | | | | | 3.5 | | |
Blister strip | | 6.5 | | 8.0 | | | 5.7 | | | 4.8 | | 6.5 | | | | | | 3.6 | | 1528- | HDPE bottle | 3,6 | 5.0 | | 6.5 | | | 4.5 | | | 3.9 | | 4.7 | | | | | | 3.7 | | 2850B-RD | Oxyguard bottle | 3.0 | 5.6 | | 7.3 | | | 4.7 | | | 4.1 | | 4.9 | | | | | | 3.6 | | 1528-2851- | HDPE bottle | 3.7 | 4.2 | | 5.1 | | | 4.0 | | | 3.8 | | 3.9 | | | | | | 3.7 | | RD | Oxyguard bottle | 3.1 | 4.9 | | 6.8 | | | 4.7 | | | 4.4 | | 4.3 | | | | | | 3.9 | | 2010F101A
(0.3mg dry
blend
capsule) | Blister strip | 2.1 | 4.4 | 3.9 | 4.7 | 2.9 | 3.2 | 3.4 | 3.1 | 2.7 | 3.2 | | | 2.0 | 1.3 | 2.0 | | | | | 2010F099A
(1mg dry
blend
capsule) | Blister strip | 2.9 | 3.7 | 3.8 | 4.3 | 3.1 | 3.1 | 3.6 | 2.7 | 2.9 | 3.2 | | | 2.4 | 2.4 | 2.4 | | | | | 2010F100A
(3mg dry
blend
capsule) | Blister strip | 2.4 | 3.2 | 3.6 | 4.2 | 2.8 | 2.8 | 3.0 | 2.6 | 2.7 | 2.9 | | | 2.4 | 2.5 | 2.7 | | | | | 11H141
(0.3mg dry
blend
capsule) | Blister strip | 1.3 | 3.3 | 4.2 | 4.5 | 2.5 | 3.6 | 3.3 | 2.0 | 2.8 | 2.9 | | 1.4 | 1.5 | 1.8 | | | |---|----------------------------------|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--| | 11H152
(1mg dry
blend
capsule) | Blister strip | 2.4 | 3.6 | 4.2 | 4.1 | 2.6 | 3.2 | 3.1 | 2.6 | 3.1 | 2.9 | | 2.3 | 2.3 | 2.1 | | | | 11H140
(3mg dry
blend
capsule) | Blister strip | 2.1 | 3.5 | 3.7 | 4.5 | 2.6 | 2.7 | 3.3 | 2.5 | 2.7 | 2.9 | | 2.3 | 2.2 | 1.8 | | | | 1528-2925-
RD (1mg
dry blend
tablet) | Oxyguard 40cc
with PharnaKeep | | | | | | | | | | | 2.7 | | | | 1.7 | | | RD (3mg
dry blend
capsule) | Oxyguard 40cc
with PharnaKeep | | | | | | | | | | | 2.6 | | | | | | | 1528-2906-
RD | HDPE bottle | 1.83 | | 5.18 | | | | | | | | | | | | | | | 1528-2907-
RD | HDPE bottle | 1.85 | | 4.58 | | | | | | | | | | | | | | | 1528-2890-
RD | Bulk | 1.9 | | | | | | | | | | | | | | | | <u>Content uniformity</u>: This test was performed by placing 10 individual capsule/tablet units in 10 individual bottles and potency of each unit was measured to show whether individual capsules or tablets have uniform potency (% label claim or %LC). | 0.3mg Dry blend tablet
1528-2850B-RD | | | | | | | | | | | |---|---------------|--|--|--|--|--|--|--|--|--| | | %LC | | | | | | | | | | | | 1528-2850B- | | | | | | | | | | | Sample | RD (dry tabs) | | | | | | | | | | | 1 | 78.62 | | | | | | | | | | | 2 | 91.43 | | | | | | | | | | | 3 | 86.52 | | | | | | | | | | | 4 | 90.9 | | | | | | | | | | | 5 | 84.83 | | | | | | | | | | | 6 | 95.29 | | | | | | | | | | | 7 | 75.69 | | | | | | | | | | | 8 | 76.87 | | | | | | | | | | | 9 | 84.92 | | | | | | | | | | | 10 | 86.9 | | | | | | | | | | | Mean | 85.2 | | | | | | | | | | | std. dev | 6.51 | | | | | | | | | | | % RSD | 7.64 | | | | | | | | | | | 0.3mg Coated particle tablet
1528-2851-RD | | | | | | | | | | | | | | | |--|-----------------------------|--------|--|--|--|--|--|--|--|--|--|--|--|--| | Sample | Sample Weight % Label Claim | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | 1 | 88.86 | 69.55 | | | | | | | | | | | | | | 2 | 89 | 94.41 | | | | | | | | | | | | | | 3 | 88.89 | 94.34 | | | | | | | | | | | | | | 4 | 88.6 | 72.18 | | | | | | | | | | | | | | 5 | 88.37 | 142.52 | | | | | | | | | | | | | | 6 | 88.76 | 149.44 | | | | | | | | | | | | | | 7 | 89.42 | 78.8 | | | | | | |----|--------------|--------|--|--|--|--|--| | 8 | 88.56 | 131.08 | | | | | | | 9 | 89.08 | 102.55 | | | | | | | 10 | 88.78 | 99.13 | | | | | | | N | 1 ean | 103.4 | | | | | | | St | . Dev | 28.53 | | | | | | | % | RSD | 27.59 | | | | | | | 0.3mg Dry
capsule 152 | | 3mg Dr
capsule
2907 | 1528- | 1mg Dry
capsule 152
RD | | |--------------------------|-------|---------------------------|-------|------------------------------|-------| | Sample | %LC | Sample | %LC | Sample | %LC | | | | | | | | | 1 | 87.2 | 1 | 94.5 | 1 | 98.1 | | 2 | 94.6 | 2 | 101.2 | 2 | 101.8 | | 3 | 92.6 | 3 | 97.9 | 3 | 93.1 | | 4 | 94.2 | 4 | 94.5 | 4 | 97.5 | | 5 | 93.5 | 5 | 95.9 | 5 | 97.9 | | 6 | 91.7 | 6 | 95.2 | 6 | 97.1 | | 7 | 91.6 | 7 | 96.1 | 7 | 94.5 | | 8 | 99 | 8 | 99 | 8 | 100.1 | | 9 | 91.8 | 9 | 93.8 | 9 | 98.1 | | 10 | 92.1 | 10 | 93.4 | 10 | 97.9 | | Mean | 92.8 | Mean | 96.2 | Mean | 97.6 | | RSD | 3.20% | RSD | 2.60% | RSD | 2.50% | | AV(10)*** | 12.8 | AV(10) | 8.4 | AV(10) | 6.8 | ^{***}AV = acceptance value used for UPS <905> content uniformity. Idealy AV should be less than 15 to pass USP <905> content uniformity. | 0.3mg dry | blend capsule 1528- | -2850-RD | |-----------|---------------------|---------------------| | Sample | Original
%LC | Re -preparation %LC | | 1 | 82.73 | 85.87 | | 2 | 84.57 | 89.45 | | 3 | 80.29 | 91.39 | | 4 | 84.88 | 88.45 | | 5 | 85.2 | 86.96 | | 6 | 82.9 | 84.84 | | 7 | 84.75 | 86.21 | | 8 | 86.58 | 91.37 | | 9 | 84.34 | 88.79 | | 10 | 88.82 | 84.75 | | Mean | 84.51 | 87.81 | | std. dev | 2.288445 | 2.467121 | | % RSD | 2.7 | 2.8 | | Conte1528-
2855-RD
Sample | %LC | 1528-
2850B-RD
Sample | %LC | |---------------------------------|-------|-----------------------------|-------| | 1 | 88.82 | 1 | 78.62 | | 2 | 93.73 | 2 | 91.43 | | 3 | 89.06 | 3 | 86.52 | | 4 | 84.94 | 4 | 90.9 | | 5 | 89.93 | 5 | 84.83 | | 6 | 88.7 | 6 | 95.29 | | 7 | 88.71 | 7 | 75.69 | | 8 | 86.85 | 8 | 76.87 | | 9 | 86.92 | 9 | 84.92 | | 10 | 91.33 | 10 | 86.9 | | Mean | 88.9 | Mean | 85.2 | | std. dev | 2.45 | std. dev | 6.51 | | % RSD | 2.76 | % RSD | 7.64 | | 50 | 0-55 | |--------|---------------| | Sample | % label claim | | 1 | 96.90% | | 2 | 99.40% | | 3 | 103.20% | | 4 | 96.90% | | 5 | 100.00% | | 6 | 99.60% | | 7 | 96.90% | | 8 | 102.80% | | 9 | 96.80% | | 10 | 93.90% | | Mean | 98.60% | | SD | 2.91 | | RSD | 3.00% | | AV | 7.1 (PASS) | [223] The data in the tables above show that all of the batches yield very good content uniformity acceptable for commercial product. [224] <u>Dissolution 50-rpm summary</u>: The tables below are summaries of the dissolution of drug from capsules or tablets in an unconventional small-volume apparatus needed to measure the small amount of drug in the units using slow stirring to look for changes in dissolution over time. The test was performed by placing one unit into a very small volume of water at 37C with a paddle stirring at 50-rpm (which is slow) and data were collected at 15, 30 45, and 60 minutes to show the drug release rate over time. These tested products are "immediate release" oral solid dosage forms and a conventional requirement is to have about 75% released in about 45 minutes. The tables summarize the results at 45 minutes and indicate that dissolution was stable over time. | | | Dis | solut | ion (% label | claim at 4 | 15 minute | es) | | |--------------------------|----------|------|-------|--------------|------------|-----------|-----|-----| | | | Init | ial | 40C/75RH | 30C/6 | 55RH | 25C | 5C | | Lot (description) | | bulk | 0M | 1M | 2M | 3M | 3M | 4M | | | Vessel 1 | 85 | | 78 | 84 | 81 | 86 | 83 | | | Vessel 2 | 87 | | 73 | 90 | 82 | 84 | 85 | | 1528-2850-RD | Vessel 3 | 88 | | 79 | 85 | 79 | 91 | 87 | | (dry blend V- | Vessel 4 | 84 | | 86 | 87 | 78 | 83 | 85 | | Cap capsule | Vessel 5 | 89 | | 72 | 89 | 80 | 79 | 90 | | HDPE bottle) | Vessel 6 | 88 | | 81 | 85 | 82 | 88 | 83 | | | Average | 87 | | 78 | 87 | 80 | 85 | 85 | | | RSD | 2 | | 6.4 | 2.7 | 2.1 | 5.0 | 2.9 | | | Vessel 1 | 85 | | 69 | 89 | 79 | 88 | 82 | | 1500 0050 PP | Vessel 2 | 87 | | 75 | 89 | 87 | 81 | 85 | | 1528-2850-RD | Vessel 3 | 88 | | 77 | 87 | 86 | 84 | 86 | | (dry blend | Vessel 4 | 84 | | 80 | 87 | 83 | 83 | 80 | | Vcap capsule
OxyGuard | Vessel 5 | 89 | | 71 | 88 | 89 | 84 | 84 | | bottle) | Vessel 6 | 88 | | 76 | 88 | 79 | 86 | 89 | | bottie) | Average | 87 | | 75 | 88 | 84 | 84 | 84 | | | RSD | 2 | | 5.3 | 1.2 | 5.2 | 3.1 | 3.6 | | | Vessel 1 | 85 | 75 | 59 | 86 | 73 | 83 | | | | Vessel 2 | 87 | 89 | 77 | 79 | 81 | 81 | | | 1528-2850-RD | Vessel 3 | 88 | 88 | 83 | 87 | 74 | 84 | | | (dry blend V- | Vessel 4 | 84 | 89 | 67 | 93 | 85 | 83 | | | cap capsule | Vessel 5 | 89 | 93 | 75 | 82 | 82 | 84 | | | blister strip) | Vessel 6 | 88 | 90 | 82 | 90 | 67 | 87 | | | | Average | 87 | 87 | 74 | 86 | 77 | 84 | | | | RSD | 2 | 7 | 12.5 | 6.3 | 8.6 | 2.4 | | | | Dissolution (% label claim at 45 minutes) | | | | | | | | | |-------------------|---|---------|----------|----------|----|-----|--|--|--| | | | Initial | 40C/75RH | 30C/65RH | | 25C | | | | | Lot (description) | | bulk | 1M | 2M | 3M | 3M | | | | | | Vessel | | | | | | | | | | 1528-2855-RD | 1 | 104 | 85 | 100 | 79 | 83 | | | | | (coated bead | Vessel | | | | | | | | | | V-Cap capsule | 2 | 89 | 90 | 97 | 83 | 88 | | | | | HDPE bottle) | Vessel | | | | | | | | | | | 3 | 91 | 84 | 71 | 91 | 50 | | | | | | X71 | I | | Ι | Ι | | |----------------|-------------|-----|------------|-----|------|------| | | Vessel
4 | 88 | 64 | 73 | 94 | 88 | | | Vessel | | 0. | | | | | | 5 | 94 | 75 | 72 | 75 | 92 | | | Vessel | | | | | | | | 6 | 93 | 80 | 39 | 96 | 94 | | | Average | 93 | 80 | 75 | 86 | 83 | | | RSD | 6 | 12 | 29 | 9.7 | 20 | | | Vessel | | | | | | | | 1 | 104 | 88 | 80 | 87 | 78 | | | Vessel | | | | | | | | 2 | 89 | 79 | 91 | 86 | 94 | | | Vessel | | | | | | | 1528-2855RD | 3 | 91 | 84 | 63 | 92 | 74 | | (coated bead | Vessel | | | | | | | V-cap capsule | 4 | 88 | 92 | 98 | 90 | 98 | | OxyGuard | Vessel | | | | | | | bottle) | 5 | 94 | 89 | 81 | 81 | 93 | | | Vessel | | | | | | | | 6 | 93 | 44 | 99 | 81 | 78 | | | Average | 93 | 79 | 85 | 86 | 86 | | | RSD | 6 | 23 | 16 | 5.3 | 12.1 | | | Vessel | | | | | | | | 1 | 104 | 85 | 98 | 100 | 81 | | | Vessel | | | | | | | | 2 | 89 | 84 | 94 | 63 | 80 | | | Vessel | | | | | | | 1528-2855-RD | 3 | 91 | 97 | 96 | 82 | 87 | | (coated bead | Vessel | | | | | | | V-cap
capsule | 4 | 88 | 94 | 96 | 55 | 74 | | blister strip) | Vessel | | | | | | | | 5 | 94 | 64 | 75 | 95 | 66 | | | Vessel | | | | | | | | 6 | 93 | 96 | 102 | 89 | 82 | | | Average | 93 | 8 7 | 93 | 81 | 78 | | | RSD | 6 | 14 | 10 | 22.4 | 9.2 | | | Dissolution (% label claim at 45 minutes) | | | | | | | | |-------------------|---|------|----|----|----|--|--|--| | | Initial 40C/75RH 30C/65RH | | | | | | | | | Lot (description) | | bulk | 1M | 2M | 3M | | | | | 1528-2851- | Vessel 1 | 58% | 67 | 68 | 89 | | | | | RD (coated | Vessel 2 | 77% | 84 | 78 | 124 | |--------------------------|----------|-----|-----|-----|-----| | particle tablet | Vessel 3 | 57% | 62 | 68 | 70 | | HDPE bottle) | Vessel 4 | 96% | 110 | 84 | 105 | | | Vessel 5 | 95% | 65 | 107 | 61 | | | Vessel 6 | 64% | 103 | 76 | 51 | | | Average | 74% | 82 | 80 | 83 | | | RSD | 24% | 26 | 18 | 33 | | | Vessel 1 | 58% | 89 | 54 | 118 | | | Vessel 2 | 77% | 73 | 101 | 69 | | 1528-2851- | Vessel 3 | 57% | 75 | 82 | 80 | | RD (coated | Vessel 4 | 96% | 68 | 67 | 73 | | particle tablet OxyGuard | Vessel 5 | 95% | 76 | 162 | 96 | | bottle) | Vessel 6 | 64% | 97 | 82 | 95 | | | Average | 74% | 80 | 91 | 89 | | | RSD | 24% | 14 | 42 | 21 | | | Dissolution (% label claim at 45 minutes) | | | | | | | | |------------------------|---|---------|----------|-------|------|--|--|--| | | | Initial | 40C/75RH | 30C/6 | 55RH | | | | | Lot (description) | | bulk | 1M | 2M | 3M | | | | | | Vessel 1 | 90% | 88 | 96 | 92 | | | | | | Vessel 2 | 69% | 79 | 82 | 92 | | | | | 1528-2850B- | Vessel 3 | 83% | 76 | 100 | 85 | | | | | RD (dry blend | Vessel 4 | 94% | 96 | 86 | 94 | | | | | tablet HDPE
bottle) | Vessel 5 | 88% | 89 | 89 | 83 | | | | | | Vessel 6 | 92% | 83 | 97 | 83 | | | | | | Average | 86% | 85 | 92 | 88 | | | | | | RSD | 11% | 8.2 | 8 | 5.6 | | | | | | Vessel 1 | 90% | 74 | 80 | 91 | | | | | | Vessel 2 | 69% | 97 | 87 | 95 | | | | | 1528-2850B- | Vessel 3 | 83% | 91 | 86 | 90 | | | | | RD (dry blend | Vessel 4 | 94% | 94 | 91 | 90 | | | | | tablet
OxyGuard | Vessel 5 | 88% | 83 | 91 | 89 | | | | | bottle) | Vessel 6 | 92% | 91 | 76 | 84 | | | | | ĺ | Average | 86% | 88 | 85 | 90 | | | | | | RSD | 11% | 9.6 | 7 | 4.0 | | | | | | Dis | solutio | n (% | label claim at | 45 min | utes) | | |---------------------|----------|---------|------------|----------------|--------|-------|-----| | | | Init | ial | 40C/75RH | 30C/6 | 55RH | 25C | | Lot (description) | | bulk | 0 M | 1M | 2M | 3M | 3M | | | Vessel 1 | 95 | | 90 | 92 | 91 | 89 | | | Vessel 2 | 98 | | 85 | 98 | 97 | 98 | | 500-55 (dry | Vessel 3 | 69 | | 85 | 96 | 94 | 76 | | blend V-Cap | Vessel 4 | 94 | | 89 | 95 | 100 | 97 | | Plus capsule | Vessel 5 | 99 | | 89 | 97 | 98 | 86 | | HDPE bottle) | Vessel 6 | 104 | | 100 | 99 | 94 | 92 | | | Average | 93 | | 89 | 96 | 96 | 90 | | | RSD | 13.1 | | 6.2 | 2.4 | 3.6 | 9.1 | | | Vessel 1 | 95 | | 84 | 103 | 99 | 94 | | | Vessel 2 | 98 | | 97 | 101 | 95 | 103 | | 500-55 (dry | Vessel 3 | 69 | | 97 | 99 | 98 | 97 | | blend V-Cap | Vessel 4 | 94 | | 92 | 97 | 92 | 96 | | Plus capsule | Vessel 5 | 99 | | 91 | 100 | 95 | 101 | | OxyGuard
bottle) | Vessel 6 | 104 | | 96 | 95 | 93 | 91 | | bottle) | Average | 93 | | 93 | 99 | 95 | 97 | | | RSD | 13.1 | | 5.3 | 2.7 | 2.7 | 4.3 | | | Vessel 1 | 95 | 98 | 99 | | 89 | 98 | | | Vessel 2 | 98 | 101 | 88 | | 94 | 87 | | 500-55 (dry | Vessel 3 | 69 | 107 | 90 | | 89 | 96 | | blend V-Cap | Vessel 4 | 94 | 96 | 90 | | 86 | 87 | | Plus capsule | Vessel 5 | 99 | 99 | 68 | | 89 | 94 | | foil blister) | Vessel 6 | 104 | 99 | 90 | | 82 | 89 | | | Average | 93 | 100 | 87 | | 88 | 92 | | | RSD | 13.1 | 3.8 | 11.8 | | 4.3 | 5.5 | | Dry blend 3mg lot 1528-2907-RD 500-mL | | | | | | | | | | |---------------------------------------|--------|----|-----|-----|-----|--|--|--|--| | | | | 30 | 45 | 60 | | | | | | | 15 min | | min | min | min | | | | | | Vessel 1 | | 91 | 96 | 97 | 96 | | | | | | Vessel 2 | | 96 | 95 | 97 | 96 | | | | | | Vessel 3 | | 96 | 97 | 97 | 97 | | | | | | Vessel 4 | | 95 | 102 | 100 | 100 | | | | | | Vessel 5 | | 97 | 96 | 96 | 97 | | | | | | Vessel 6 | | 92 | 99 | 98 | 98 | | | | | | Average | 94 | 97 | 98 | 97 | |---------|-----|-----|-----|-----| | RSD | 2.7 | 2.5 | 1.1 | 1.4 | | Dry blend 1mg l | ot 1528-2906-F | RD 150 |)-mL | | |-----------------|----------------|--------|------|-----| | | | 30 | 45 | 60 | | | 15 min | min | min | min | | Vessel 1 | 65 | 92 | 96 | 99 | | Vessel 2 | 49 | 91 | 95 | 96 | | Vessel 3 | 46 | 88 | 96 | 97 | | Vessel 4 | 44 | 96 | 101 | 102 | | Vessel 5 | 39 | 78 | 93 | 99 | | Vessel 6 | 57 | 90 | 95 | 96 | | Average | 50 | 89 | 96 | 98 | | RSD | 18.8 | 7 | 2.8 | 2.4 | | Dry blend 0.3mg lot 1528-2890-RD 50-mL | | | | | | | | | | |--|--------|-----|-----|-----|--|--|--|--|--| | | | 30 | 45 | 60 | | | | | | | | 15 min | min | min | min | | | | | | | Vessel 1 | 57 | 94 | 100 | 105 | | | | | | | Vessel 2 | 60 | 96 | 100 | 105 | | | | | | | Vessel 3 | 86 | 93 | 94 | 95 | | | | | | | Vessel 4 | 76 | 90 | 91 | 101 | | | | | | | Vessel 5 | 69 | 90 | 97 | 106 | | | | | | | Vessel 6 | 68 | 95 | 97 | 97 | | | | | | | Average | 69 | 93 | 97 | 102 | | | | | | | RSD | 15.6 | 2.8 | 3.4 | 4.5 | | | | | | | | | Capsule Dissolution at 45 minutes | | | | | | | | | | | | |------------|------|-----------------------------------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----| | | | | 5C | | | 25C | | | 30C | | | 40C | | | Lot | | 1M | | 3M | | (strength) | COA | | 2M | | | 2M | | | 2M | | | 2M | | | 2011F101 | | | | | | | | | | | | | | | A (0.3mg) | 98% | 99% | 95% | 95% | 95% | 92% | 95% | 94% | 93% | 97% | 93% | 90% | 92% | | 2011F099 | | | | | | | | | | | | | | | A (1mg) | 96% | 95% | 95% | 95% | 91% | 93% | 94% | 93% | 90% | 95% | 95% | 92% | 93% | | 2011F100 | | | | | 100 | | | | | | | | | | A (3mg) | 99% | 101% | 97% | 97% | % | 95% | 95% | 98% | 95% | 95% | 96% | 93% | 95% | | 11H141 | | | 101 | 101 | 105 | | 106 | 102 | | 103 | | | | | (0.3mg) | 101% | 102% | % | % | % | 96% | % | % | 97% | % | 99% | 96% | 98% | | 11H152 | | | | | | | | | | | | | | | (1mg) | 96% | 96% | 99% | 97% | 96% | 99% | 97% | 96% | 96% | 98% | 96% | 96% | 98% | | 11H140 | | · | 102 | 101 | 105 | | | 102 | | 102 | 101 | | | | (3mg) | 102% | 102% | % | % | % | 100% | 97% | % | 99% | % | % | 99% | 96% | [225] <u>Dissolution 75-rpm</u>: The tables below show a few examples where the stirring rate was increased slightly to 75-rpm to give more consistent results and indicates stable dissolution after accelerated storage of 1 or 2 months at 40C 75% relative humidity. | Dry blend 0.3mg lot 1528-2850-RD 1M
40C/75RH 75-rpm 50-mL | | | | | | | | | | | |--|-----------------------------------|-----|-----|-----|--|--|--|--|--|--| | | 15 min 30 min 45 min 60 min | | | | | | | | | | | Vessel 1 | 75 | 80 | 80 | 81 | | | | | | | | Vessel 2 | 61 | 75 | 80 | 82 | | | | | | | | Vessel 3 | 65 | 81 | 83 | 84 | | | | | | | | Vessel 4 | 78 | 86 | 84 | 85 | | | | | | | | Vessel 5 | 66 | 79 | 83 | 84 | | | | | | | | Vessel 6 | 62 | 79 | 84 | 86 | | | | | | | | Average | 68 | 80 | 82 | 84 | | | | | | | | RSD | 10.3 | 4.5 | 2.3 | 2.2 | | | | | | | | Dry blend 1mg lot 1528-2906A-RD 2M | | | | | | | | | | | |------------------------------------|-----------------------------------|-----|-----|-----|--|--|--|--|--|--| | 40C/75RH 75-rpm 50-mL | | | | | | | | | | | | | 15 min 30 min 45 min 60 mir | | | | | | | | | | | Vessel 1 | 69 | 84 | 88 | 88 | | | | | | | | Vessel 2 | 62 | 82 | 84 | 85 | | | | | | | | Vessel 3 | 65 | 82 | 85 | 85 | | | | | | | | Vessel 4 | 58 | 70 | 80 | 79 | | | | | | | | Vessel 5 | 59 | 77 | 82 | 81 | | | | | | | | Vessel 6 | 68 | 80 | 83 | 84 | | | | | | | | Average | 64 | 79 | 84 | 84 | | | | | | | | RSD | 7.2 | 6.4 | 3.3 | 3.8 | | | | | | | [226] <u>2855-RD dissolution</u>: The tables below are all the dissolution profiles of batch 1528-2850-RD and indicate stable drug release over time. | | Initial Percent Dissolved | | | | | | | | | | |--------|---------------------------|-----|------|------|--|--|--|--|--|--| | Vessel | 15 | 30 | 45 | 60 | | | | | | | | 1 | 84% | 99% | 104% | 104% | | | | | | | | 2 | 28% | 80% | 89% | 92% | | | | | | | | 3 | 68% | 83% | 91% | 95% | | | | | | | | 4 | 56% | 79% | 88% | 98% | | | | | | | Attorney Docket No.: SYPA-009/C04US | 5 | 29% | 83% | 94% | 98% | |------|--------|-------|-------|-------| | 6 | 74% | 85% | 93% | 96% | | Mean | 57% | 85% | 93% | 97% | | RSD | 41.20% | 8.50% | 6.00% | 4.20% | | 1M 40C/75RH OxyGuard Packaging | | | | | 2 | 2M 30C/65RH
OxyGuard | | | | | M 300
OxyO | | H | | 3M 25C/60RH
OxyGuard | | | | | |--------------------------------|-------------------------------|------|-------------|------|--------|-------------------------|--------|-----|------|--------|------------------|--------|-----|---------------------|-------------------------|------------------|------|-----------|--| | 1W1 4UC//3N | 15 | 30 | 45 | 60 | 15 | 30 | 45 | 60 | | 15 | 30 | 45 | 60 | | ''' | | | | | | Vessel | min | min | 45
 min | min | min | min | min | min | | min | min | min | min | | min | min | min | 60
min | | | 1 | 35 | 74 | 88 | 93 | 47 | 67 | 80 | 90 | | 76 | 83 | 87 | 88 | | 44 | 62 | 78 | 85 | | | 2 | 46 | 74 | 79 | 85 | 57 | 80 | 91 | 95 | | 65 | 79 | 86 | 91 | | 70 | 89 | 94 | 97 | | | 3 | 39 | 78 | 84 | 88 | 43 | 55 | 63 | 71 | | 64 | 84 | 92 | 97 | | 48 | 62 | 74 | 79 | | | 4 | 59 | 82 | 92 | 94 | 753 | 92 | 98 | 101 | | 71 | 85 | 90 | 94 | | 65 | 92 | 98 | 103 | | | 5 | 22 | 82 | 89 | 92 | 38 | 64 | 81 | 92 | | 60 | 75 | 81 | 87 | | 72 | 86 | 93 | 96 | | | 6 | 4 | 20 | 44 | 61 | 54 | 94 | 99 | 101 | | 55 | 74 | 81 | 87 | | 53 | 74 | 78 | 84 | | | | | | | | - | | | | | - | | | | | | | | | | | Average | 34 | 68 | 79 | 86 | 52 | 75 | 85 | 92 | | 65 | 80 |
86 | 91 | | 59 | 78 | 86 | 91 | | | RSD | 5 7 | 35 | 23 | 14 | 25 | 21 | 16 | 12 | | 11.7 | 5.7 | 5.3 | 4.6 | | 20.1 | 17.4 | 12.1 | 10.4 | | | | | | | | | | | | | | | | | | - | | | | | | 1M 40C | / 75RH | HDPE | Bottle | | 2M 3 | 2M 30C/65RH HDPE | | | | | 3M 30C/65RH HDPE | | | | | 3M 25C/60RH HDPE | | | | | | 15 | 30 | 45 | 60 | 15 | 30 | 45 | 60 | | 15 | 30 | 45 | 60 | | 15 | 30 | 45 | 60 | | | Vessel | min | min | min | min | min | | min | min | min | min | | | 1 | 61 | 78 | 85 | 89 | 78 | 97 | 100 | 103 | | 58 | 72 | 79 | 85 | | 54 | 70 | 83 | 92 | | | 2 | 63 | 83 | 90 | 92 | 77 | 93 | 97 | 98 | | 51 | 72 | 83 | 90 | | 66 | 81 | 88 | 92 | | | 3 | 66 | 79 | 84 | 91 | 41 | 59 | 71 | 78 | | 53 | 84 | 91 | 94 | | 10 | 29 | 50 | 66 | | | 4 | 25 | 44 | 64 | 77 | 50 | 65 | 73 | 78 | | 66 | 89 | 94 | 95 | | 69 | 81 | 88 | 92 | | | 5 | 47 | 67 | 75 | 80 | 37 | 59 | 72 | 83 | | 48 | 66 | 75 | 81 | | 68 | 83 | 92 | 97 | | | 6 | 57 | 71 | 80 | 85 | 6 | 21 | 39 | 52 | | 85 | 94 | 96 | 99 | | 82 | 91 | 94 | 97 | | | Average | 53 | 70 | 80 | 86 | 48 | 66 | 75 | 82 | | 60 | 80 | 86 | 91 | | 58 | 73 | 83 | 89 | | | RSD | 28 | 20 | 12 | 7 | 56 | 42 | 29 | 22 | | 22.6 | 14 | 9.7 | 7.3 | | 43 | 30.6 | 19.6 | 13.3 | | | | | • | • | | | | | | | | | | | | | | | | | | 1M 40C/75 | 1M 40C/75RH Blister Packaging | | | 2M 3 | 80C/65 | RH B | lister | | 3M 3 | 30C/65 | RH B | lister | | 3M 25C/60RH Blister | | | | | | | | 15 | 30 | 45 | 60 | 15 | 30 | 45 | 60 | | 15 | 30 | 45 | 60 | | 15 | 30 | 45 | 60 | | | Vessel | min | min | min | min | min | | min | min | min | min | | | 1 | 36 | 69 | 85 | 90 | 61 | 91 | 98 | 100 | | 82 | 95 | 100 | 102 | | 53 | 71 | 81 | 90 | | | 2 | 41 | 69 | 84 | 88 | 57 | 82 | 94 | 100 | | 31 | 48 | 63 | 74 | | 27 | 57 | 80 | 87 | | | 3 | 67 | 96 | 97 | 98 | 63 | 87 | 96 | 100 | 69 | 77 | 82 | 85 | 70 | 78 | 87 | 92 | |---------|------------|----|------------|-----|----|-----|-----|-----|------|------|------|------|------|------|-----|------------| | 4 | 54 | 83 | 94 | 104 | 36 | 80 | 96 | 100 | 29 | 41 | 55 | 69 | 52 | 66 | 74 | 87 | | 5 | 10 | 46 | 64 | 79 | 45 | 61 | 75 | 83 | 84 | 94 | 95 | 97 | 25 | 48 | 66 | 80 | | 6 | 70 | 91 | 96 | 100 | 87 | 100 | 102 | 104 | 74 | 84 | 89 | 82 | 50 | 74 | 82 | 84 | | Average | 4 7 | 76 | 8 7 | 93 | 58 | 83 | 93 | 98 | 62 | 73 | 81 | 85 | 46 | 66 | 78 | 8 7 | | RSD | 48 | 25 | 14 | 10 | 30 | 16 | 10 | 8 | 40.5 | 32.1 | 22.4 | 14.9 | 37.0 | 17.0 | 9.2 | 5.3 | [227] Bathes 2850-RD, 2850B-RD, 2851-RD, and 500-55 were also tested in the similar fashion and all showed stable drug release over time. #### We claim: 5 - 1. A method for treating chronic constipation in a human subject comprising orally administering to said human subject a composition consisting of SEQ ID NO:1 wherein the peptide is a [4,12; 7,15] bicycle, an inert low moisture carrier, and a lubricant, and wherein the peptide has a chromatographic purity of no less than 91% after storage for at least three months. - 2. The method of claim 1, wherein the constipation is associated with irritable bowel syndrome or chronic idiopathic constipation. - A method of treating or alleviating a symptom associated with chronic idiopathic constipation or irritable bowel syndrome in a human subject comprising orally administering to said human subject a composition consisting of SEQ ID NO:1 wherein the peptide is a [4,12; 7,15] bicycle, an inert low moisture carrier, and a lubricant, and wherein the peptide has a chromatographic purity of no less than 91% after storage for at least three months. - 4. The method of claim 3, wherein the symptom is constipation or abdominal pain. - 5. The method of claim 1, further comprising administering to said patient an effective dose of an inhibitor of cGMP-dependent phosphodiesterase either concurrently or sequentially with said guanylate cyclase receptor agonist. - 6. The method of claim 5, wherein said inhibitor of cGMP-dependent phosphodiesterase is selected from the group consisting of sulindac sulfone, zaprinast, and motapizone. - 7. The method of claim 1, further comprising administering to said patient an effective dose of a laxative. 25 - 8. The method of claim 3, further comprising administering to said patient an effective dose of an inhibitor of cGMP-dependent phosphodiesterase either concurrently or sequentially with said guanylate cyclase receptor agonist. - 5 9. The method of claim 8, wherein said inhibitor of cGMP-dependent phosphodiesterase is selected from the group consisting of sulindac sulfone, zaprinast, and motapizone. - 10. The method of claim 3, further comprising administering to said patient an effective dose of a laxative. 11. The method of claim 1, wherein the inert low moisture carrier is microcrystalline cellulose. - 12. The method of claim 1, wherein the lubricant is magnesium stearate. - 13. The method of claim 1, wherein the inert low moisture carrier is microcrystalline cellulose and the lubricant is magnesium stearate. - 14. The method of claim 3, wherein the inert low moisture carrier is microcrystalline cellulose. - 15. The method of claim 3, wherein the lubricant is magnesium stearate. - The method of claim 3, wherein the inert low moisture carrier is microcrystalline cellulose and the lubricant is magnesium stearate. 10 15 ### ABSTRACT OF THE DISCLOSURE The invention provides low-dose formulations of guanylate cyclase-C ("GCC") agonist peptides and methods for their use. The formulations of the invention can be administered either alone or in combination with one or more additional therapeutic agents, preferably an inhibitor of cGMP-dependent phosphodiesterase or a laxative. T Q % of Subjects Reporting Improvement in Abdominal Discomfort 9 1 Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. # DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN APPLICATION DATA SHEET (37 CFR 1.76) | Title of
Invention | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS USE | OF | |---|--|---| | As the below | w named inventor, I hereby declare that: | | | This declara | 388881 1792 2020 CORO 2000 C200 CC | | | | United States application or PCT international application number | | | | filed on | · | | The above-i | identified application was made or authorized to be made by me. | | | I believe tha | at I am the original inventor or an original joint inventor of a claimed invention in the application. | | | | knowledge that any willful faise statement made in this declaration is punishable under 18 U.S.C. 1001 aprisonment of not more than five (5) years, or both. | | | | WARNING: | | | contribute to
(other than a
to support a
petitioners/a;
USPTO. Pe
application (i
patent. Furth
referenced in | oplicant is cautioned to avoid submitting personal information in documents filed in a patent application that identity theft. Personal information such as social security numbers, bank account numbers, or credit card a check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the petition or an application. If this type of personal information is included in documents submitted to the US applicants should consider redacting such personal information from the documents before submitting them stitioner/applicant is advised that the record of a patent application is available to the public after publication unless a non-publication request in compliance with 37 CFR 1.213(a) is made in the application) or issuance thermore, the record from an abandoned application may also be available to the public if the application is not a published application or an issued patent (see 37 CFR 1.14). Checks and credit card, authorization for submitted for payment purposes are not retained in the application file and therefore are not publicly available. | numbers ne USPTO SPTO, to the of the e of a | | LEGAL NA | AME OF INVENTOR | | | Inventor: | Stephen Comiskey Date (Optional): 2/10/2015 | | | | / ication data sheet (PTO/SB/14 or equivalent), including naming the entire inventive entity, must accompany this form or a sty filed. Use an additional PTO/AIA/01 form for each additional inventor. | must have | This collection of information is required by 35 U.S.C. 115 and 37 CFR 1.63. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 1 minute to complete, including gathering, preparing, and submitting the completed application form
to the USPTO. Time will vary depending upon the individual case, Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. The **Privacy Act of 1974 (P.L. 93-579)** requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent. - The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act. - A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations. - 3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m). - A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty. - 6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 216(c)). - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent. - A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. # DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN APPLICATION DATA SHEET (37 CFR 1.76) | Title of
Invention | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | |--|---| | As the belo | w named inventor, I hereby declare that: | | This declar
is directed | 1888 I DE STRACTEO SCONCERIOR OF | | | United States application or PCT international application number | | | filed on | | The above-i | dentified application was made or authorized to be made by me. | | I believe tha | t I am the original inventor or an original joint inventor of a claimed invention in the application. | | | nowledge that any willful false statement made in this declaration is punishable under 18 U.S.C. 1001 prisonment of not more than five (5) years, or both. | | | WARNING: | | contribute to
(other than a
to support a
petitioners/a
USPTO. Pe
application (
patent. Furt
referenced is | uplicant is cautioned to avoid submitting personal information in documents filed in a patent application that may identify theft. Personal information such as social security numbers, bank account numbers, or credit card numbers a check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the USPTO petition or an application. If this type of personal information is included in documents submitted to the USPTO, pplicants should consider redacting such personal information from the documents before submitting them to the titioner/applicant is advised that the record of a patent application is available to the public after publication of the unless a non-publication request in compliance with 37 CFR 1.213(a) is made in the application) or issuance of a hermore, the record from an abandoned application may also be available to the public if the application forms a published application or an issued patent (see 37 CFR 1.14). Checks and credit card authorization forms ubmitted for payment purposes are not retained in the application file and therefore are not publicly available. | | LEGAL N | AME OF INVENTOR | | Inventor: _ | Rong Feng Date (Optional): 10 Fel. 2015 | | Note: An appl
been previous | ication data sheet (PTO/SB/14 or equivalent), including naming the entire inventive entity, must accompany this form or must have sly filed. Use an additional PTO/AIA/01 form for each additional inventor. | This collection of information is required by 35 U.S.C. 115 and 37 CFR 1.63. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 1 minute to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2. The **Privacy Act of 1974 (P.L. 93-579)** requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment
of the application or expiration of the patent. - The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act. - A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing coursel in the course of settlement negotiations. - 3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m). - 5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty. - 6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)). - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent. - A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. ### DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN **APPLICATION DATA SHEET (37 CFR 1.76)** | Title of
Invention | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | | |--|---|--|--|--|--|--|--| | As the belo | w named inventor, I hereby declare that: | | | | | | | | This declar | 1888 THE STREET ADDITION OF | | | | | | | | | United States application or PCT international application number | | | | | | | | | filed on | | | | | | | | The above-i | dentified application was made or authorized to be made by me. | | | | | | | | I believe tha | t I am the original inventor or an original joint inventor of a claimed invention in the application. | | | | | | | | | nowledge that any willful false statement made in this declaration is punishable under 18 U.S.C. 1001
prisonment of not more than five (5) years, or both. | | | | | | | | | WARNING: | | | | | | | | Petitioner/applicant is cautioned to avoid submitting personal information in documents filed in a patent application that may contribute to identity theft. Personal information such as social security numbers, bank account numbers, or credit card numbers (other than a check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the USPTO to support a petition or an application. If this type of personal information is included in documents submitted to the USPTO, petitioners/applicants should consider redacting such personal information from the documents before submitting them to the USPTO. Petitioner/applicant is advised that the record of a patent application is available to the public after publication of the application (unless a non-publication request in compliance with 37 CFR 1.213(a) is made in the application) or issuance of a patent. Furthermore, the record from an abandoned application may also be available to the public if the application is referenced in a published application or an issued patent (see 37 CFR 1.14). Checks and credit card authorization forms PTO-2038 submitted for payment purposes are not retained in the application file and therefore are not publicly available. | | | | | | | | | LEGAL NA | AME OF INVENTOR | | | | | | | | Inventor: _ | John Foss Date (Optional): 09 7cb 2015 | | | | | | | | Signature: | Yolm Food | | | | | | | | | C) cation data sheet (PTO/SB/14 or equivalent), including naming the entire inventive entity, must accompany this form or must have ly filed. Use an additional PTO/AIA/01 form for each additional inventor. | | | | | | | This collection of information is required by 35 U.S.C. 115 and 37 CFR 1.63. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application, Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 1 minute to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2. The **Privacy Act of 1974 (P.L. 93-579)** requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent. - The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act. - A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations. - A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject
matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m). - 5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty. - 6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)). - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent. - A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation. ## DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN **APPLICATION DATA SHEET (37 CFR 1.76)** | Title of
Invention | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS (
USE | Þ | |--|---|---------------------------------| | As the belo | w named inventor, I hereby declare that: | DESCRIPTION | | This declar
is directed t | 1888 1 116 SUSCIECT SUBJECT OF COLORS | | | | United States application or PCT international application number | | | | filed on | | | | dentified application was made or authorized to be made by me. It I am the original inventor or an original joint inventor of a claimed invention in the application. | | | | nowledge that any willful false statement made in this declaration is punishable under 18 U.S.C. 1001 prisonment of not more than five (5) years, or both. | | | | WARNING: | | | contribute to
(other than a
to support a
petitioners/a
USPTO. Pe
application (
patent. Furt
referenced in | uplicant is cautioned to avoid submitting personal information in documents filed in a patent application that me identity theft. Personal information such as social security numbers, bank account numbers, or credit card is check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the petition or an application. If this type of personal information is included in documents submitted to the USF pplicants should consider redacting such personal information from the documents before submitting them the titioner/applicant is advised that the record of a patent application is available to the public after publication cunless a non-publication request in compliance with 37 CFR 1.213(a) is made in the application) or issuance hermore, the record from an abandoned application may also be available to the public if the application is a published application or an issued patent (see 37 CFR 1.14). Checks and credit card, authorization form ubmitted for payment purposes are not retained in the application file and therefore are not publicly available. | umbers USPTO TO, the f the of a | | LEGAL NA | AME OF INVENTOR | | | Inventor: | Kunwar Shailubhai Date (Optional): 02/10/20 | 215 | | Note: An appi
been previous | ication data sheet (PTO/SB/14 or equivalent), including naming the entire inventive entity, must accompany this form or m
ly filed. Use an additional PTO/AIA/01 form for each additional inventor. | ust have | This collection of information is required by 35 U.S.C. 115 and 37 CFR 1.83. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentially is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 1 minute to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2. The **Privacy Act of 1974 (P.L. 93-579)** requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent. - The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act. - A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing coursel in the course of settlement negotiations. - 3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m). - 5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty. - 6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)). - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used
to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent. - A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation. _____ Sequence Listing was accepted. If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free). Reviewer: Anjum, Durreshwar Timestamp: [year=2017; month=3; day=31; hr=10; min=16; sec=20; ms=245;] ______ #### Validated By CRFValidator v 1.0.5 Application No: 15467648 Version No: 1.1 Input Set: Output Set: **Started:** 2017-03-31 10:16:02.540 **Finished:** 2017-03-31 10:16:08.298 **Elapsed:** 0 hr(s) 0 min(s) 5 sec(s) 758 ms Total Warnings: 293 Total Errors: 0 No. of SeqIDs Defined: 261 Actual SeqID Count: 261 | Err | or code | Error Descriptio | n | | | | | | | | | |-----|---------|------------------|----|---------|-------|----|-------|----|-----|----|------| | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (1) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (2) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (3) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (4) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (5) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (6) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (7) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (8) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (9) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (10) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (11) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (12) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (13) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (14) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (15) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (16) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (17) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (18) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (19) | | W | 213 | Artificial o | or | Unknown | found | in | <213> | in | SEQ | ID | (20) | #### Input Set: #### Output Set: **Started:** 2017-03-31 10:16:02.540 **Finished:** 2017-03-31 10:16:08.298 **Elapsed:** 0 hr(s) 0 min(s) 5 sec(s) 758 ms Total Warnings: 293 Total Errors: 0 No. of SeqIDs Defined: 261 Actual SeqID Count: 261 | Err | Error code Error Description | | | | | | |-----|------------------------------|--|--|--|--|--| | | | This error has occured more than 20 times, will not be displayed | | | | | | W | 447 | n or Xaa used, for: SEQID(27) on line number 751 | | | | | | W | 447 | n or Xaa used, for: SEQID(28) on line number 786 | | | | | | W | 447 | n or Xaa used, for: SEQID(29) on line number 826 | | | | | | W | 447 | n or Xaa used, for: SEQID(45) on line number 1268 | | | | | | W | 447 | n or Xaa used, for: SEQID(46) on line number 1335 | | | | | | W | 447 | n or Xaa used, for: SEQID(47) on line number 1412 | | | | | | W | 447 | n or Xaa used, for: SEQID(48) on line number 1503 | | | | | | W | 447 | n or Xaa used, for: SEQID(49) on line number 1553 | | | | | | W | 447 | n or Xaa used, for: SEQID(50) on line number 1608 | | | | | | W | 447 | n or Xaa used, for: SEQID(51) on line number 1668 | | | | | | W | 447 | n or Xaa used, for: SEQID(52) on line number 1728 | | | | | | W | 447 | n or Xaa used, for: SEQID(53) on line number 1793 | | | | | | W | 447 | n or Xaa used, for: SEQID(54) on line number 1858 | | | | | | W | 447 | n or Xaa used, for: SEQID(89) on line number 2559 | | | | | | W | 447 | n or Xaa used, for: SEQID(90) on line number 2594 | | | | | | W | 447 | n or Xaa used, for: SEQID(91) on line number 2644 | | | | | | W | 447 | n or Xaa used, for: SEQID(91) on line number 2648 | | | | | | W | 447 | n or Xaa used, for: SEQID(92) on line number 2698 | | | | | | W | 447 | n or Xaa used, for: SEQID(92) on line number 2702 | | | | | | W | 447 | n or Xaa used, for: SEQID(93) on line number 2745 This error has occured more than 20 times, will not be displayed | | | | | #### SEQUENCE LISTING ``` <110> Comiskey, Stephen Feng, Rong Foss, John Shailubhai, Kunwar <120> Formulations of Guanylate Cyclase C Agonists and Methods of Use <130> SYPA-009/C04US 321994- <140> US 15/467,648 <141> 2017-03-23 <150> US 14/845,644 <151> 2015-09-04 <150> US 14/661,299 <151> 2015-03-18 <150> US 13/421,769 <151> 2012-06-04 <150> PCT/US11/051805 <151> 2011-09-15 <150> US 61/383,156 <151> 2010-09-15 <150> US 61/387,636 <151> 2010-09-29 <150> US 61/392,186 <151> 2010-10-12 <160> 261 <170> PatentIn version 3.5 <210> 1 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <400> 1 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 15 ``` <210> 2 ``` <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <400> 2 Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 10 <210> 3 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <400> 3 Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys <210> 4 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <400> 4 Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 5 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <400> 5 Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys 5 <210> 6 ``` <211> 15 <211> 13 ``` <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <400> 6 Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 <210> 7 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <400> 7 Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys 5 <210> 8 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 8 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 15 <210> 9 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE ``` ``` <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 9 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 10 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (2)..(2) <223> wherein ASP is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 10 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 10 15 <210> 11 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid ``` ``` <220> <221> MISC_FEATURE <222> (2)..(2) <223> wherein ASP is a D-amino acid <220> <221> MISC_FEATURE <222> (3)..(3) <223> wherein GLU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 11 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu <210> 12 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <400> 12 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 10 <210> 13 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid ``` <220> ``` <221> MISC_FEATURE <222> (6)..(6) <223> wherein LEU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 13 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 14 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <400> 14 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys 5 10 15 <210> 15 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <400> 15 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 15 ``` ``` <210> 16 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <220> <221>
MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <400> 16 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 10 <210> 17 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid ``` <220> 0190 ``` <221> MISC_FEATURE <222> (2)..(2) <223> wherein ASP is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <400> 17 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 18 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <220> <221> MISC FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 18 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 19 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized ``` ``` <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 19 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 20 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 20 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 21 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized ``` ``` <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 21 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 10 <210> 22 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (2)..(2) <223> wherein ASP is a D-amino acid <220> <221> MISC_FEATURE <222> (3)..(3) <223> wherein GLU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <400> 22 ``` ``` Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 10 <210> 23 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (2)..(2) <223> wherein ASP is a D-amino acid <220> <221> MISC_FEATURE <222> (3)..(3) <223> wherein GLU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 23 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 15 <210> 24 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) ``` <223> wherein ASN is a D-amino acid ``` <220> <221> MISC_FEATURE <222> (2)..(2) <223> wherein ASP is a D-amino acid <220> <221> MISC_FEATURE <222> (3)..(3) <223> wherein GLU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 24 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu <210> 25 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (2)..(2) <223> wherein ASP is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 25 ``` ``` Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu <210> 26 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (2)..(2) <223> wherein ASP is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 26 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 27 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE ``` <222> (16)..(16) ``` <223> wherein x is 3-(2-naphthyl) alanine <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein x is a D-amino acid <400> 27 Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Xaa 5 10 <210> 28 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MOD_RES <222> (8)..(8) <223> wherein the x is a 2-aminoisobutyric acid, Aib <220> <221> MOD_RES <222> (10)..(10) <223> wherein the x is a 2-aminoisobutyric acid, Aib <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 28 Asn Asp Glu Cys Glu Leu Cys Xaa Asn Xaa Ala Cys Thr Gly Cys Leu 1 5 <210> 29 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized ``` ``` <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (7)..(7) <223> wherein ASP at position 7 is attached to a Lactam bridge <220> <221> MISC_FEATURE <222> (15)..(15) <223> wherein x at position 15 is ornithine <220> <221> MOD_RES <222> (15)..(15) <223> wherein x is an ornithine, Orn <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 29 Asn Asp Glu Cys Glu Leu Asp Val Asn Val Ala Cys Thr Gly Xaa Leu 5 10 15 <210> 30 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 30 Asn Asp Glu Cys Glu Tyr Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 15 ``` <210> 31 ``` <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 31 Asn Asp Glu Cys Glu Ser Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 32 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <400> 32 Asn Asp Glu Cys Glu Tyr Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 15 ``` ``` <210> 33 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 33 Asn Asp Glu Cys Glu Tyr Cys Val Asn Val Ala Cys Thr Gly Cys Leu <210> 34 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <400> 34 ``` 0200 ``` <210> 35 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN at position 1 is attached to polyethylene glycol <220> <221> MISC_FEATURE <222> (1)..(1) <223> wherein ASN is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU is a D-amino acid <220> <221> MISC_FEATURE <222> (16)..(16) <223> wherein LEU at position 16 is attached to polyethylene glycol <400> 35 Asn Asp Glu Cys Glu Ser Cys Val Asn Val Ala Cys Thr Gly Cys Leu 5 10 <210> 36 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Chemically Synthesized <220> <221> MISC_FEATURE <222> (1)..(1) <223> wher ``` Asn Asp Glu Cys Glu Tyr Cys Val Asn Val Ala Cys Thr Gly Cys Leu #### UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov FILING or GRP ART APPLICATION FIL FEE REC'D ATTY.DOCKET.NO NUMBER 371(c) DATE UNIT TOT CLAIMS IND CLAIMS 930 15/467,648 03/23/2017 SYPA-009/C04US 17 2 CONFIRMATION NO. 2133 FILING RECEIPT 58249 COOLEY LLP ATTN: Patent Group 1299 Pennsylvania Avenue, NW Suite 700
Washington, DC 20004 Date Mailed: 04/11/2017 Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections #### Inventor(s) Stephen COMISKEY, Doylestown, PA; Rong FENG, Langhorne, PA; John FOSS, Doylestown, PA; Kunwar SHAILUBHAI, Audubon, PA; #### Applicant(s) SYNERGY PHARMACEUTICALS, INC., New York, NY Power of Attorney: None #### Domestic Priority data as claimed by applicant This application is a CON of 14/845,644 09/04/2015 PAT 9610321 which is a CON of 14/661,299 03/18/2015 ABN which is a CON of 13/421,769 03/15/2012 PAT 9616097 which is a CIP of PCT/US2011/051805 09/15/2011 which claims benefit of 61/383,156 09/15/2010 and claims benefit of 61/387,636 09/29/2010 and claims benefit of 61/392,186 10/12/2010 **Foreign Applications** for which priority is claimed (You may be eligible to benefit from the **Patent Prosecution Highway** program at the USPTO. Please see http://www.uspto.gov for more information.) - None. Foreign application information must be provided in an Application Data Sheet in order to constitute a claim to foreign priority. See 37 CFR 1.55 and 1.76. Permission to Access Application via Priority Document Exchange: No #### Permission to Access Search Results: No. Applicant may provide or rescind an authorization for access using Form PTO/SB/39 or Form PTO/SB/69 as appropriate. If Required, Foreign Filing License Granted: 04/10/2017 The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US 15/467,648 **Projected Publication Date:** 07/20/2017 Non-Publication Request: No Early Publication Request: No ** SMALL ENTITY ** **Title** FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE **Preliminary Class** Statement under 37 CFR 1.55 or 1.78 for AIA (First Inventor to File) Transition Applications: No #### PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process **simplifies** the filing of patent applications on the same invention in member countries, but **does not result** in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired. Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely. Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing. Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html. For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific page 2 of 4 countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4258). # LICENSE FOR FOREIGN FILING UNDER Title 35, United States Code, Section 184 Title 37, Code of Federal Regulations, 5.11 & 5.15 #### **GRANTED** The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14. This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive. The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy. #### **NOT GRANTED** No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b). #### SelectUSA The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The U.S. offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to promote and facilitate business investment. SelectUSA provides information assistance to the international investor community; serves as an ombudsman for existing and potential investors; advocates on behalf of U.S. cities, states, and regions competing for global investment; and counsels U.S. economic development organizations on investment attraction best practices. To learn more about why the United States is the best country in the world to develop | technology, manufacture products, +1-202-482-6800. | deliver services, | and grow your bus | siness, visit <u>http://www</u> | w.SelectUSA.gov or call | |--|-------------------|-------------------|---------------------------------|-------------------------| PATE | NT APPLI | | ON FEE DE titute for Form | | TION RECC | RD |) | Applica
15/46 | tion or Docket Nun
7,648 | nber | |-------------------------------|---|--
--|---|---------------------------------------|-------------------------------------|---------------|-----------------------|------------------|-----------------------------|-----------------------| | | APPL | ICATION AS | | | umn 2) | SMA | ALL E | ENTITY | OR | OTHEF
SMALL | | | FOR NUMBER FILED NUMBER EXTRA | | | | | R EXTRA | RATE(\$) | | FEE(\$) | | RATE(\$) | FEE(\$) | | | IC FEE
FR 1.16(a), (b), or (c)) | N | /A | N | I/A | N/A | T | 70 | 1 | N/A | | | | RCH FEE
FR 1.16(k), (i), or (m)) | N | /A | ١ | J/A | N/A | | 300 | 1 | N/A | | | | MINATION FEE
FR 1.16(o), (p), or (q)) | N | / A | ١ | J/A | N/A | | 360 | | N/A | | | | AL CLAIMS
FR 1.16(i)) | 17 | minus | 20= * | | × 40 | = | 0.00 | OR | | | | | PENDENT CLAIM
FR 1.16(h)) | S 2 | minus | 3 = * | | × 210 | = | 0.00 | 1 | | | | FEE | PLICATION SIZE
E
CFR 1.16(s)) | sheets of p
\$310 (\$155
50 sheets | paper, the for small for fraction of the formal form | and drawings e
e application si
all entity) for ea
on thereof. See
CFR 1.16(s). | ze fee due is
ch additional | | | 200 | | | | | MUL | TIPLE DEPENDEN | IT CLAIM PRE | SENT (3 | 7 CFR 1.16(j)) | | | | 0.00 | 1 | | | | * If th | ne difference in colu | ımn 1 is less th | an zero, | enter "0" in colur | nn 2. | TOTAL | T | 930 | 1 | TOTAL | | | LΑ | | (Column 1) CLAIMS REMAINING AFTER AMENDMENT | | (Column 2) HIGHEST NUMBER PREVIOUSLY PAID FOR | (Column 3) PRESENT EXTRA | SMA | ALL E | ADDITIONAL FEE(\$) | OR | OTHEF
SMALL
RATE(\$) | | | AMENDMENT | Total , | • | Minus | ** | = | х | = | | OR | x = | | | | Independent
(37 CFR 1.16(h)) | • | Minus | *** | = | x | = | | OR | x = | | | AM | Application Size Fee | (37 CFR 1.16(s)) | | | | | | | | | | | | FIRST PRESENTAT | ION OF MULTIPL | E DEPEN | DENT CLAIM (37 C | CFR 1.16(j)) | | | | OR | | | | | | | | | | TOTAL
ADD'L FEE | . | | OR | TOTAL
ADD'L FEE | | | В | | (Column 1) CLAIMS REMAINING AFTER | | (Column 2) HIGHEST NUMBER PREVIOUSLY | (Column 3) PRESENT EXTRA | RATE(\$) | | ADDITIONAL
FEE(\$) |] | RATE(\$) | ADDITIONAL
FEE(\$) | | | Total | AMENDMENT | Minus | PAID FOR | = | × | = | | | | | | AMENDMENT | (37 CFR 1.16(i)) Independent | • | Minus | *** | = | | _ | | OR | x = | | | | (37 CFR 1.16(h)) | (07.0EB : 457.11 | | | | х | = | | OR | x = | | | ₹ | Application Size Fee | | | | | | \dashv | | OR | | | | | FIRST PRESENTAT | ION OF MULTIPL | E DEPEN | DENT CLAIM (37 C | CFR 1.16(j)) | TOTAL
ADD'L FEE | $\frac{1}{2}$ | | OR | TOTAL
ADD'L FEE | | | ** | * If the entry in colu
* If the "Highest Nu
* If the "Highest Num
The "Highest Numbe | mber Previousl
ber Previously f | y Paid For" | or" IN THIS SPA
IN THIS SPACE is | CE is less than
s less than 3, ent | mn 3.
20, enter "20".
er "3". | _ | n column 1. | J | AUU'L FEE | | PTO/AIA/82A (07-13) **Document Description: Power of Attorney** Approved for use through 11/30/2014. OMB 0651-0051 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. ## TRANSMITTAL FOR POWER OF ATTORNEY TO ONE OR MORE REGISTERED PRACTITIONERS NOTE: This form is to be submitted with the Power of Attorney by Applicant form (PTO/AIA/82B) to identify the application to which the Power of Attorney is directed, in accordance with 37 CFR 1.5, unless the application number and filing date are identified in the Power of Attorney by Applicant form. If neither form PTO/AIA/82A nor form PTO/AIA82B identifies the application to which the Power of Attorney is directed, the Power of Attorney will not be recognized in the application. Application Number 15/467,648 03/23/2017 Filing Date Stephen COMISKEY First Named Inventor FORMULATIONS OF GUANYLATE CYCLASE C AND METHODS OF USE Title 1676 Art Unit Jai-Hai Lee Examiner Name SYPA-009/C04US Attorney Docket Number **SIGNATURE of Applicant or Patent Practitioner** Signature /Cynthia Kozakiewicz/ Date (Optional) Name Registration Cynthia Kozakiewicz 42764 Number Title (if Applicant is a iuristic entity) Applicant Name (if Applicant is a juristic entity) NOTE: This form must be signed in accordance with 37 CFR 1.33. See 37 CFR 1.4(d) for signature requirements and certifications. If more than one applicant, use multiple forms. *Total of _ forms are submitted. This collection of information is required by 37 CFR 1.131, 1.32, and 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. # POWER OF ATTORNEY BY APPLICANT | | by revoke all proxes below. | evious powers of attorney given in the applic | ation ider | ntified in <u>either</u> the atta | ached transmittal letter or | | | |-----------------|---|---|--------------|--|--|--|--| | | | Application Number | Filin | g Date | | | | | | | 739 | | | | | | | | | | | | | | | | | (Note | e: The boxes above may be left blank if information | on is provi | ded on form PTO/AIA/82 | 2A.) | | | | Ø | to transact all bu | t the Patent Practitioner(s) associated with the follusiness in the United States Patent and Trademar
Insmittal letter (form PTO/AIA/82A) or identified ab | k Office c | stomer Number as my/or
onnected therewith for it
58249 | ir attorney(s) or agent(s), and ne application referenced in | | | | | OR | | | | | | | | | I hereby appoint Practitioner(s) named in the attached list (form PTO/AIA/82C) as my/our attorney(s) or agent(s), and to transact all business in the United States Patent and Trademark Office connected therewith for the patent application referenced in the attached transmittal letter (form PTO/AIA/82A) or identified above. (Note: Complete form PTO/AIA/82C.) | | | | | | | | Pleas
letter | | change the correspondence address for | the appli | ication identified in t | he attached transmittal | | | | | The address as | sociated with the above-mentioned Customer Nur | nber | | | | | | | OR | | | | | | | | | The address as | sociated with Customer Number: | | | | | | | Name and | OR | | | | | | | | Firm | | | | | | | | | Indiv
Addres | idual Name | | | | | | | | Aquies | | | | | | | | | City | | State | | | Zip | | | | Countr | ************************* | | Email | | | | | | Teleph | •••••••••• | | | | | | | | I am th | e Applicant (if the | Applicant is a juristic entity, list the Applicant nar | ne in the b |)OX): | | | | | SYI | VERGY PHA | RMACEUTICALS INC. | | | | | | | | Inventor or Jo
 pint Inventor (title not required below) | | | | | | | | | entative of a Deceased or Legally Incapacitated I | nventor (ti | itle not required below) | | | | | \boxtimes | Assignee or f | Person to Whom the Inventor is Under an Obligati | ion to Assi | ign (provide signer's title | if applicant is a juristic entity) | | | | | Decree 19ths Otherwise Shows Sufficient Proprietary Interset (e.g., a polition under 37 CFR 1.46(hV2) was granted in the | | | | | | | | | | | | | | | | | The | undersigned (who | se title is supplied below) is authorized to act on bel | alf of the a | applicant (e.g., where the | applicant is a juristic entity) | | | | | ature | <u> </u> | | Date (Optional) | <u> 10t. b, 2014 —</u> | | | | | Name Gary S. Vacob, Ph.Q/ | | | | | | | | Title | | President and Chief Executive Officer form must be signed by the applicant in accordance | with 37 CF | FR 1.33. See 37 CFR 1.4 | for signature requirements and | | | | certific | cations. If more that | in one applicant, use multiple forms. | | | | | | | | *Total of | forms are submitted. | | | | | | This collection of information is required by 37 CFR 1.131, 1.32, and 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Petent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. American LegalNet, Inc. | Electronic Acl | Electronic Acknowledgement Receipt | | | | | |--------------------------------------|---|--|--|--|--| | EFS ID: | 29785228 | | | | | | Application Number: | 15467648 | | | | | | International Application Number: | | | | | | | Confirmation Number: | 2133 | | | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | | | Customer Number: | 58249 | | | | | | Filer: | Cynthia A. Kozakiewicz/peg waters | | | | | | Filer Authorized By: | Cynthia A. Kozakiewicz | | | | | | Attorney Docket Number: | SYPA-009/C04US | | | | | | Receipt Date: | 14-JUL-2017 | | | | | | Filing Date: | 23-MAR-2017 | | | | | | Time Stamp: | 13:08:27 | | | | | | Application Type: | Utility under 35 USC 111(a) | | | | | # **Payment information:** | Submitted with Payment | no | |------------------------|----| |------------------------|----| ## File Listing: | Document
Number | Document Description | File Name | File Size(Bytes)/
Message Digest | Multi
Part /.zip | Pages
(if appl.) | | | | |--------------------|----------------------|------------------------|--|---------------------|---------------------|--|--|--| | 1 | Power of Attorney | SYPA-009_C04US_POA.PDF | 405012
16ff0cf0b1135ec2af8b3b413f3782d48067c
8b2 | no | 2 | | | | | Warnings: | Warnings: 0209 | | | | | | | | | Information: | | | |--------------|------------------------------|--------| | | Total Files Size (in bytes): | 405012 | This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. #### New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. #### National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application. #### United States Patent and Trademark Office UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE 15/467,648 03/23/2017 Stephen COMISKEY SYPA-009/C04US CONFIRMATION NO. 2133 58249 COOLEY LLP ATTN: Patent Group 1299 Pennsylvania Avenue, NW Suite 700 Washington, DC 20004 **PUBLICATION NOTICE** Title:FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE Publication No.US-2017-0202904-A1 Publication Date:07/20/2017 #### NOTICE OF PUBLICATION OF APPLICATION The above-identified application will be electronically published as a patent application publication pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date are set forth above. The publication may be accessed through the USPTO's publically available Searchable Databases via the Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/. The publication process established by the Office does not provide for mailing a copy of the publication to applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Public Records Division. The Public Records Division can be reached by telephone at (571) 272-3150 or (800) 972-6382, by facsimile at (571) 273-3250, by mail addressed to the United States Patent and Trademark Office, Public Records Division, Alexandria, VA 22313-1450 or via the Internet. In addition, information on the status of the application, including the mailing date of Office actions and the dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and Retrieval (PAIR) system. The direct link to access this status information is currently https://portal.uspto.gov/pair/PublicPair. Prior to publication, such status information is confidential and may only be obtained by applicant using the private side of PAIR. Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent Electronic Business Center at 1-866-217-9197. Office of Data Managment, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101 ### United States Patent and Trademark Office UNITED STATES DEPARTMENT OF COMMERCE UNITED STATES DEPARTMENT OF COMME United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Vriginia 22313-1450 www.usplo.gov APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE 15/467,648 03/23/2017 Stephen COMISKEY SYPA-009/C04US > **CONFIRMATION NO. 2133 POA ACCEPTANCE LETTER** 58249 **COOLEY LLP ATTN: Patent Group** 1299 Pennsylvania Avenue, NW Suite 700 Washington, DC 20004 Date Mailed: 07/24/2017 #### NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY This is in response to the Power of Attorney filed 07/14/2017. The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33. > Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101. | /vnguyen/ | |-----------| | | | Doc Code: DIST.E.FILE
Document Description: Electronic T | erminal Disclaimer - Filed | PTO/SB/25
PTO/SB/26
U.S. Patent and Trademark Office
Department of Commerce | | | | |---|------------------------------------|--|--|--|--| | Electronic Petition Request | REJECTION OVER A PENDING | BVIATE A PROVISIONAL DOUBLE PATENTING "REFERENCE" APPLICATION TO OBVIATE A DOUBLE PATENTING REJECTION OVER A | | | | | Application Number | 15467648 | | | | | | Filing Date | 23-Mar-2017 | | | | | | First Named Inventor | Stephen COMISKEY | | | | | | Attorney Docket Number | SYPA-009/C04US | | | | | | Title of Invention | FORMULATIONS OF GUANYLA | ATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | Filing of terminal disclaimer does Office Action | s not obviate requirement for re | sponse under 37 CFR 1.111 to outstanding | | | | | This electronic Terminal Disclaim | er is not being used for a Joint F |
lesearch Agreement. | | | | | Owner | l | Percent Interest | | | | | Synergy Pharmaceuticals, Inc. | | 100 % | | | | The owner(s) of percent interest listed above in the instant application hereby disclaims, except as provided below, the terminal part of the statutory term of any patent granted on the instant application which would extend beyond the expiration date of the full statutory term of any patent granted on pending reference Application Number(s) 15467631 filed on 03/23/2017 as the term of any patent granted on said reference application may be shortened by any terminal disclaimer filed prior to the grant of any patent on the pending reference application. The owner hereby agrees that any patent so granted on the instant application shall be enforceable only for and during such period that it and any patent granted on the reference application are commonly owned. This agreement runs with any patent granted on the instant application and is binding upon the grantee, its successors or assigns. In making the above disclaimer, the owner does not disclaim the terminal part of any patent granted on the instant application that would extend to the expiration date of the full statutory term of any patent granted on said reference application, "as the term of any patent granted on said reference application may be shortened by any terminal disclaimer filed prior to the grant of any patent on the pending reference application," in the event that any such patent granted on the pending reference application: expires for failure to pay a maintenance fee, is held unenforceable, is found invalid by a court of competent jurisdiction, is statutorily disclaimed in whole or terminally disclaimed under 37 CFR 1.321, has all claims canceled by a reexamination certificate, is reissued, or is in any manner terminated prior to the expiration of its full statutory term as shortened by any terminal disclaimer filed prior to its grant. The owner(s) with percent interest listed above in the instant application hereby disclaims, except as provided below, the terminal part of the statutory term of any patent granted on the instant application which would extend beyond the expiration date of the full statutory term of prior patent number(s) 0213 | 0.44.007 | | | | | | | |---|--|------------------|--|--|--|--| | 9616097 | | | | | | | | 9610321 | | | | | | | | granted on the instant application sl | esently shortened by any terminal disclaimer. The owner hereby agrees that
nall be enforceable only for and during such period that it and the prior pato
y patent granted on the instant application and is binding upon the grante | ent are commonly | | | | | | application that would extend to the is presently shortened by any termin - expires for failure to pay a maintent is held unenforceable; - is found invalid by a court of composite in the state of the same application. | etent jurisdiction; | | | | | | | - is statutorily disclaimed in whole or
- has all claims canceled by a reexam | terminally disclaimed under 37 CFR 1.321; | | | | | | | - is reissued; or | mation certificate, | | | | | | | - is in any manner terminated prior t | o the expiration of its full statutory term as presently shortened by any term | inal disclaimer. | | | | | | Terminal disclaimer fee under | 37 CFR 1.20(d) is included with Electronic Terminal Disclaimer request. | | | | | | | 17) | CFR 1.4(d)(4), that the terminal disclaimer fee under 37 CFR 1.20(d) aimer has already been paid in the above-identified application. | | | | | | | Applicants claims the following fee s | tatus: | | | | | | | Small Entity | | | | | | | | Micro Entity | | | | | | | | Regular Undiscounted | | | | | | | | belief are believed to be true; and fu
the like so made are punishable by fi | made herein of my own knowledge are true and that all statements made o
rther that these statements were made with the knowledge that willful false
one or imprisonment, or both, under Section 1001 of Title 18 of the United S
y jeopardize the validity of the application or any patent issued thereon. | e statements and | | | | | | THIS PORTION MUST BE COMPLETE | D BY THE SIGNATORY OR SIGNATORIES | | | | | | | I certify, in accordance with 37 CFR | 1.4(d)(4) that I am: | | | | | | | An attorney or agent registered this application | to practice before the Patent and Trademark Office who is of record in | | | | | | | Registration Number 42764 | <u> </u> | | | | | | | A sole inventor | | | | | | | | A joint inventor; I certify that I am authorized to sign this submission on behalf of all of the inventors as evidenced by the power of attorney in the application | | | | | | | | A joint inventor; all of whom a | A joint inventor; all of whom are signing this request | | | | | | | Signature | /Cynthia Kozakiewicz/ | | | | | | | Name | Cynthia Kozakiewicz | 0214 | | | | | *Statement under 37 CFR 3.73(b) is required if terminal disclaimer is signed by the assignee (owner). Form PTO/SB/96 may be used for making this certification. See MPEP § 324. | Electronic Patent Application Fee Transmittal | | | | | | |---|---|----------|----------|--------|-------------------------| | Application Number: | 15467648 | | | | | | Filing Date: | 23-Mar-2017 | | | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | | | Filer: | Cynthia A. Kozakiewicz/peg waters | | | | | | Attorney Docket Number: | SYPA-009/C04US | | | | | | Filed as Small Entity | | | | | | | Filing Fees for Utility under 35 USC 111(a) | | | | | | | Description | | Fee Code | Quantity | Amount | Sub-Total in
USD(\$) | | Basic Filing: | | | | | | | STATUTORY OR TERMINAL DISCLAIMER | | 2814 | 1 | 160 | 160 | | Pages: | | | | | | | Claims: | | | | | | | Miscellaneous-Filing: | | | | | | | Petition: | | | | | | | Patent-Appeals-and-Interference: | | | | | | | Post-Allowance-and-Post-Issuance: | | | | | | | Description | Fee Code | Quantity | Amount | Sub-Total in
USD(\$) | |--------------------|----------|-----------|--------|-------------------------| | Extension-of-Time: | | | | | | Miscellaneous: | | | | | | | Tot | al in USD | (\$) | 160 | | | | | | | | Doc Code: DISQ.E.FILE Document Description: Electronic Terminal Disclaimer – Approved | |---| | Application No.: 15467648 | | Filing Date: 23-Mar-2017 | | Applicant/Patent under Reexamination: COMISKEY | | Electronic Terminal Disclaimer filed on July 25, 2017 | | | | This patent is subject to a terminal disclaimer | | DISAPPROVED | | Approved/Disapproved by: Electronic Terminal Disclaimer automatically approved by EFS-Web | | U.S. Patent and Trademark Office | | Electronic Acknowledgement Receipt | | | | | |--------------------------------------|---|--|--|--| | EFS ID: | 29882585 | | | | | Application Number: | 15467648 | | | | | International Application Number: | | | | | | Confirmation Number: | 2133 | | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | | Customer Number: | 58249 | | | | | Filer: | Cynthia A. Kozakiewicz/peg waters | | | | | Filer Authorized By: | Cynthia A. Kozakiewicz | | | | | Attorney Docket Number: | SYPA-009/C04US | | | | | Receipt Date: | 25-JUL-2017 | | | | | Filing Date: | 23-MAR-2017 | | | | | Time Stamp: | 14:28:09 | | | | | Application Type: | Utility under 35 USC 111(a) | | | | ## **Payment information:** | Submitted with Payment | yes | |--|-----------------------------| | Payment Type | DA | | Payment was successfully received in RAM | \$160 | | RAM confirmation Number | 072617INTEFSW00000808501283 | | Deposit Account | | | Authorized User | | The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: | File Listing | File Listing: | | | | | | | | | | |--------------------|--|---------------------------|--|---------------------|---------------------|--|--|--|--|--| | Document
Number | Document Description | File Name | File Size(Bytes)/
Message Digest | Multi
Part /.zip | Pages
(if appl.) | | | | | | | | | | 36306 | | | | | | | | | 1 | Terminal Disclaimer-Filed (Electronic) | e Terminal-Disclaimer.pdf | 7383a7ec017ae9919b038f70b6acac26c04a
32de | no | 3 | | | | | | | Warnings: | - | | - | · | | | | | | | | Information: | | | | | | | | | | | | | | | 30707 | | | | | | | | | 2 | Fee Worksheet (SB06) | fee-info.pdf | c457115a7d1b46acfe783e482f81249dea7b
d22d | no | 2 | | | | | | | Warnings: | | | - | | | | | | | | | Information: | | | | | | | | | | | This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. Total Files Size (in bytes): #### New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary
components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. #### National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application. 67013 UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 #### NOTICE OF ALLOWANCE AND FEE(S) DUE COOLEY LLP ATTN: Patent Group 1299 Pennsylvania Avenue, NW Suite 700 Washington, DC 20004 EXAMINER LEE, JIA-HAI ART UNIT PAPER NUMBER 1676 DATE MAILED: 08/14/2017 | APPLICATION NO. | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. | |-----------------|-------------|----------------------|---------------------|------------------| | 15/467,648 | 03/23/2017 | Stephen COMISKEY | SYPA-009/C04US | 2133 | TITLE OF INVENTION: FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | APPLN. TYPE | ENTITY STATUS | ISSUE FEE DUE | PUBLICATION FEE DUE | PREV. PAID ISSUE FEE | TOTAL FEE(S) DUE | DATE DUE | |----------------|---------------|---------------|---------------------|----------------------|------------------|------------| | nonprovisional | SMALL | \$480 | \$0 | \$0 | \$480 | 11/14/2017 | THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308. THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE. #### HOW TO REPLY TO THIS NOTICE: I. Review the ENTITY STATUS shown above. If the ENTITY STATUS is shown as SMALL or MICRO, verify whether entitlement to that entity status still applies. If the ENTITY STATUS is the same as shown above, pay the TOTAL FEE(S) DUE shown above. If the ENTITY STATUS is changed from that shown above, on PART B - FEE(S) TRANSMITTAL, complete section number 5 titled "Change in Entity Status (from status indicated above)". For purposes of this notice, small entity fees are 1/2 the amount of undiscounted fees, and micro entity fees are 1/2 the amount of small entity fees II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B. III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary. IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due. #### PART B - FEE(S) TRANSMITTAL #### Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450 (571)-273-2885 or <u>Fax</u> INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications. Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission. CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address) Certificate of Mailing or Transmission 58249 08/14/2017 I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below. 7590 COOLEY LLP ATTN: Patent Group 1299 Pennsylvania Avenue, NW (Depositor's name Suite 700 (Signature Washington, DC 20004 (Date APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO. 15/467.648 03/23/2017 Stephen COMISKEY SYPA-009/C04US 2133 TITLE OF INVENTION: FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE APPLN. TYPE **ENTITY STATUS** ISSUE FEE DUE PUBLICATION FEE DUE PREV. PAID ISSUE FEE TOTAL FEE(S) DUE DATE DUE \$0 \$0 \$480 11/14/2017 **SMALL** \$480 nonprovisional **EXAMINER** ART UNIT CLASS-SUBCLASS LEE, JIA-HAI 1676 424-451000 1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). 2. For printing on the patent front page, list (1) The names of up to 3 registered patent attorneys ☐ Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached. or agents OR, alternatively, (2) The name of a single firm (having as a member a registered attorney or agent) and the names of up to 2 registered patent attorneys or agents. If no name is listed, no name will be printed. ☐ "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required. 3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type) PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment. (A) NAME OF ASSIGNEE (B) RESIDENCE: (CITY and STATE OR COUNTRY) Please check the appropriate assignee category or categories (will not be printed on the patent): 🔲 Individual 📮 Corporation or other private group entity 🖵 Government 4a. The following fee(s) are submitted: 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) ☐ Issue Fee A check is enclosed. ☐ Publication Fee (No small entity discount permitted) Payment by credit card. Form PTO-2038 is attached. Advance Order - # of Copies _ The director is hereby authorized to charge the required fee(s), any deficiency, or credits any overpayment, to Deposit Account Number 5. Change in Entity Status (from status indicated above) NOTE: Absent a valid certification of Micro Entity Status (see forms PTO/SB/15A and 15B), issue fee payment in the micro entity amount will not be accepted at the risk of application abandonment. Applicant certifying micro entity status. See 37 CFR 1.29 Applicant asserting small entity status. See 37 CFR 1.27 \underline{NOTE} : If the application was previously under micro entity status, checking this box will be taken to be a notification of loss of entitlement to micro entity status. ☐ Applicant changing to regular undiscounted fee status. NOTE: Checking this box will be taken to be a notification of loss of entitlement to small or micro entity status, as applicable. NOTE: This form must be signed in accordance with 37 CFR 1.31 and 1.33. See 37 CFR 1.4 for signature requirements and certifications. Authorized Signature _ Date Typed or printed name _ Registration No. _ > Page 2 of 3 0222 #### UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov DATE MAILED: 08/14/2017 | APPLICATION NO. | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. | |-----------------------|---------------|----------------------|---------------------|------------------| | 15/467,648 03/23/2017 | | Stephen COMISKEY | SYPA-009/C04US | 2133 | | 58249 75 | 90 08/14/2017 | | EXAM |
INER | | COOLEY LLP | | LEE, JIA-HAI | | | | ATTN: Patent Gro | up | | | | | 1299 Pennsylvania | | | ART UNIT | PAPER NUMBER | | Suite 700 | | | 1676 | | | Washington, DC 20 | 0004 | | | | #### Determination of Patent Term Adjustment under 35 U.S.C. 154 (b) (Applications filed on or after May 29, 2000) The Office has discontinued providing a Patent Term Adjustment (PTA) calculation with the Notice of Allowance. Section 1(h)(2) of the AIA Technical Corrections Act amended 35 U.S.C. 154(b)(3)(B)(i) to eliminate the requirement that the Office provide a patent term adjustment determination with the notice of allowance. See Revisions to Patent Term Adjustment, 78 Fed. Reg. 19416, 19417 (Apr. 1, 2013). Therefore, the Office is no longer providing an initial patent term adjustment determination with the notice of allowance. The Office will continue to provide a patent term adjustment determination with the Issue Notification Letter that is mailed to applicant approximately three weeks prior to the issue date of the patent, and will include the patent term adjustment on the patent. Any request for reconsideration of the patent term adjustment determination (or reinstatement of patent term adjustment) should follow the process outlined in 37 CFR 1.705. Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200. #### OMB Clearance and PRA Burden Statement for PTOL-85 Part B The Paperwork Reduction Act (PRA) of 1995 requires Federal agencies to obtain Office of Management and Budget approval before requesting most types of information from the public. When OMB approves an agency request to collect information from the public, OMB (i) provides a valid OMB Control Number and expiration date for the agency to display on the instrument that will be used to collect the information and (ii) requires the agency to inform the public about the OMB Control Number's legal significance in accordance with 5 CFR 1320.5(b). The information collected by PTOL-85 Part B is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. #### **Privacy Act Statement** The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent. The information provided by you in this form will be subject to the following routine uses: - 1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act. - 2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations. - 3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m). - 5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty. - 6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent. - 9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation, 0224 # Notice of Allowability Application No. 15/467,648 COMISKEY ET AL. Examiner JIA-HAI LEE Art Unit 1676 All (First Inventor to File) Status No | The MAILING DATE of this communication appears on the All claims being allowable, PROSECUTION ON THE MERITS IS (OR REM herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other a NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. To the Office or upon petition by the applicant. See 37 CFR 1.313 and MPE | IAINS) CLOSED in this application. If not included appropriate communication will be mailed in due course. THIS his application is subject to withdrawal from issue at the initiative | |--|---| | 1. ☑ This communication is responsive to <u>03/23/2017</u> . | | | A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed | d on | | An election was made by the applicant in response to a restriction recrequirement and election have been incorporated into this action. | quirement set forth during the interview on; the restriction | | The allowed claim(s) is/are <u>1-16</u>. As a result of the allowed claim(s), y Highway program at a participating intellectual property office for the http://www.uspto.gov/patents/init_events/pph/index.jsp or send an index. | corresponding application. For more information, please see | | 4. Acknowledgment is made of a claim for foreign priority under 35 U.S. | C. § 119(a)-(d) or (f). | | Certified copies: | | | a) ☐ All b) ☐ Some *c) ☐ None of the: | | | Certified copies of the priority documents have been rec | eived. | | Certified copies of the priority documents have been rec | eived in Application No | | Copies of the certified copies of the priority documents h | nave been received in this national stage application from the | | International Bureau (PCT Rule 17.2(a)). | | | * Certified copies not received: | | | Applicant has THREE MONTHS FROM THE "MAILING DATE" of this connoted below. Failure to timely comply will result in ABANDONMENT of the THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. | | | 5. \square CORRECTED DRAWINGS (as
"replacement sheets") must be subm | itted. | | including changes required by the attached Examiner's Amenda Paper No./Mail Date | nent / Comment or in the Office action of | | Identifying indicia such as the application number (see 37 CFR 1.84(c)) sho
each sheet. Replacement sheet(s) should be labeled as such in the header | | | DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGIC
attached Examiner's comment regarding REQUIREMENT FOR THE D | | | Attack mant/a) | | | Attachment(s) 1. ☑ Notice of References Cited (PTO-892) | 5. 🛛 Examiner's Amendment/Comment | | 2. ☐ Information Disclosure Statements (PTO/SB/08), | 6. 🛮 Examiner's Statement of Reasons for Allowance | | Paper No./Mail Date | 7 Char | | Examiner's Comment Regarding Requirement for Deposit of Biological Material | 7. Other | | 4. ☑ Interview Summary (PTO-413), Paper No./Mail Date <u>20170731</u> . | | | /SATYANARAYANA R GUDIBANDE/ | | | Primary Examiner, Art Unit 1676 | | | | | | | | | | | U.S. Patent and Trademark Office PTOL-37 (Rev. 08-13) 20170731 #### **DETAILED ACTION** The present application is being examined under the pre-AIA first to invent provisions. #### **EXAMINER'S COMMENT** Applicant filed terminal disclaimers against the two patents US 9,610,321 B2 and US 9,616,097 B2. A third terminal disclaimer was filed for the copending application 15/467,631. #### **REASONS FOR ALLOWANCE** The following is an examiner's statement of reasons for allowance: The closest prior art reference Shailubhai et al. (Digestive Disease Week. San Diego: 2008) taught the use of a per unit dose of a [4, 12; 7, 15] bicyclic peptide consisting of SEQ ID NO: 1 (named SP-304) in a clinical trial, but the reference did not teach or suggest the composition further comprising an inert low moisture carrier and a lubricant, and wherein the peptide has a chromatographic purity of no less than 91 % after storage for at least three months as claimed. The other closest reference Shailubhai et al. (WO 2008/151257 A2) suggest the use of SP-304 to treat gastrointestinal disorders comprising irritable bowel syndrome (IBS) and constipation (p5, line 8-21). Shailubhai et al. further suggest the oral composition comprising a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch and/or a lubricant such as magnesium stearate or Sterotes (p41, line 19-30). However, Shailubhai et al. did not teach the composition consisting of SP-304, an inert low moisture carrier and a lubricant, and wherein the peptide has a chromatographic purity of no less than 91 % after storage for at least three months as claimed. Since applicant filed terminal disclaimers against the previously issued patents US 9,610,321B2 and US 9,616,097 B2 as well as the co-pending application No. 15/467,631, this instant application is allowable. Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance." Any inquiry concerning this communication or earlier communications from the examiner should be directed to JIA-HAI LEE whose telephone number is (571)270-1691. The examiner can normally be reached on Mon-Fri from 9:00 A.M. to 5:30 P.M.. Examiner interviews are available via telephone, in-person, and video conferencing using a USPTO supplied web-based collaboration tool. To schedule an interview, applicant is encouraged to use the USPTO Automated Interview Request (AIR) at http://www.uspto.gov/interviewpractice. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Karlheinz R. Skowronek can be reached on 571-272-9047. The fax phone number for the organization where this application or proceeding is assigned is 571- Application/Control Number: 15/467,648 Page 4 Art Unit: 1676 273-8300. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000. /J. L./ Examiner, Art Unit 1676 31-July-2017 /SATYANARAYANA R GUDIBANDE/ Primary Examiner, Art Unit 1676 | Examiner-Initiated Interview Summary | 15/467,648 | COMISKEY ET | AL. | | | | | | |---|---|---|--------------------------|--|--|--|--|--| | Examiner-initiated interview Summary | Examiner | Art Unit | | | | | | | | | JIA-HAI LEE | 1676 | | | | | | | | All participants (applicant, applicant's representative, PTO | personnel): | | | | | | | | | (1) <u>JIA-HAI LEE</u> . | (3) | | | | | | | | | (2) <u>Cynthia Kozakiewicz</u> . | (4) | | | | | | | | | Date of Interview: <u>14 July 2017</u> . | | | | | | | | | | Type: X Telephonic Video Conference Personal [copy given to: Applicant [| ☑ applicant's representative] | | | | | | | | | Exhibit shown or demonstration conducted: Yes If Yes, brief description: | ☑ No. | | | | | | | | | Issues Discussed 101 112 102 103 Other (For each of the checked box(es) above, please describe below the issue and detail | | | | | | | | | | Claim(s) discussed: <u>1</u> . | | | | | | | | | | Identification of prior art discussed: <u>US 9,610,321B2 and U</u> | <u>S 9,616,097 B2</u> . | | | | | | | | | Substance of Interview (For each issue discussed, provide a detailed description and indicate if agreement was reached. Some topics may include: identification or clarification of a reference or a portion thereof, claim interpretation, proposed amendments, arguments of any applied references etc) The agreement was reached. Applicant will file terminal disclaimers against the two issued patents US 9,610,321 and US 9,616,097 to place this instant application in condition for allowance. Applicant also filed a third terminal disclaimer for the other co-pending application 15/467,631. | | | | | | | | | | Applicant recordation instructions: It is not necessary for applicant to provide a separate record of the substance of interview. | | | | | | | | | | Examiner recordation instructions : Examiners must summarize the substance of an interview should include the items listed in MPEP 713.04 figeneral thrust of each argument or issue discussed, a general indication of general results or outcome of the interview, to include an indication as to we | or complete and proper recordation inc
any other pertinent matters discussed | luding the identificati
regarding patentabil | on of the
ity and the | | | | | | | Attachment | 1 | | | | | | | | | /J. L./
Examiner, Art Unit 1676 | | | | | | | | | | | | | | | | | | | Application No. Applicant(s) U.S. Patent and Trademark Office PTOL-413B (Rev. 8/11/2010) # Notice of References Cited Application/Control No. 15/467,648 Examiner JIA-HAI LEE Application/Control No. Applicant(s)/Patent Under Reexamination COMISKEY ET AL. Page 1 of 1 #### **U.S. PATENT DOCUMENTS** | * | | Document Number
Country Code-Number-Kind Code | Date
MM-YYYY | Name | CPC Classification | US Classification | | | |---|---|--|-----------------|-------------------|--------------------|-------------------|--|--| | * | Α | US-9,610,321 B2 | 04-2017 | Comiskey; Stephen | A61K9/1623 | 1/1 | | | | * | В | US-9,616,097 B2 | 04-2017 | Comiskey; Stephen | A61K9/1623 | 1/1 | | | | | С | US- | | | | | | | | | D | US- | | | | | | | | | Е | US- | | | | | | | | | F | US- | | | | | | | | | G | US- | | | | | | | | | Н | US- | | | | | | | | | _ | US- | | | | | | | | | J | US- | | | | | | | | | К | US- | | | | | | | | | ┙ | US- | | | | | | | | | М | US- | | | | | | | #### FOREIGN PATENT DOCUMENTS | * | | Document Number
Country Code-Number-Kind Code | Date
MM-YYYY | Country | Name | CPC Classification | |---|---|--|-----------------|---------|-------------------|--------------------| | | Ν | WO2008151257A2 | 12-2008 | US | Shailubhai et al. | | | | 0 | | | | | | | | Ρ | | | | | | | | σ | | | | | | | | R | | | | | | | | Ø | | | | | | | | Т | | | | | | #### **NON-PATENT DOCUMENTS** | | NON-FATENT DOCUMENTS | | | | | | |---|----------------------|--|--|--|--|--| | * | | Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) | | | | | | | U | Shailubhai, K.; Gerson, W.; Talluto, C.; Jacob, G. Digestive
Disease Week. San Diego: 2008. A randomized, double-blind, placebo-controlled, single-, ascending-, oral-dose safety, tolerability and pharmacokinetic study of SP-304 in healthy adult human male and female volunteers. | | | | | | | V | | | | | | | | w | | | | | | | | х | | | | | | *A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).) Dates in MM-YYYY format are publication dates. Classifications may be US or foreign. # (19) World Intellectual Property Organization International Bureau (43) International Publication Date 11 December 2008 (11.12.2008) (10) International Publication Number WO 2008/151257 A2 (51) International Patent Classification: C07K 7/08 (2006.01) A A61K 38/10 (2006.01) A **A61K 47/48** (2006.01) **A61P 1/00** (2006.01) (21) International Application Number: PCT/US2008/065824 **(22) International Filing Date:** 4 June 2008 (04.06.2008) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 60/933,194 4 June 2007 (04.06.2007) US (63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application: US 60/933,194 (CIP) Filed on 4 June 2007 (04.06.2007) - (71) Applicant (for all designated States except US): SYN-ERGY PHARMACEUTICALS INC. [US/US]; 420 Lexington Avenue, Suite 1609, New York, NY 10170 (US). - (72) Inventors; and - (75) Inventors/Applicants (for US only): SHAILUBHAI, Kunwar [US/US]; 2707 Bald Eagle Circle, Audubon, PA 19403 (US). JACOB, Gary, S. [US/US]; 171 East 84th Street, #16J, New York, NY 10028 (US). - (74) Agents: ELRIFI, Ivor, R. et al.; Mintz, Levin, Cohn, Ferris, Glovsky And Popeo, P.C., One Financial Center, Boston, MA 02111 (US). - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US (patent), UZ, VC, VN, ZA, ZM, ZW. - (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). #### **Published:** without international search report and to be republished upon receipt of that report (54) Title: AGONISTS OF GUANYLATE CYCLASE USEFUL FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS, INFLAMMATION, CANCER AND OTHER DISORDERS (57) Abstract: The invention provides novel guanylate cyclase-C agonist peptides and their use in the treatment of human diseases including gastrointestinal disorders, inflammation or cancer (e.g., a gastrointestinal cancer). The peptides can be administered either alone or in combination with an inhibitor of cGMP-dependent phosphodiesterase. The gastrointestinal disorder may be classified as either irritable bowel syndrome, constipation, or excessive acidity etc. The gastrointestinal disease may be classified as either inflammatory bowel disease or other GI condition, including Crohn's disease and ulcerative colitis, and cancer. # AGONISTS OF GUANYLATE CYCLASE USEFUL FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS, INFLAMMATION, CANCER AND OTHER DISORDERS 5 10 15 20 25 30 #### RELATED APPLICATIONS This application claims the benefit of priority to U.S. Provisional Application No. 60/933,194 filed on June 4, 2007, the contents of which is incorporated by reference in its entirety. #### FIELD OF THE INVENTION The present invention relates to the therapeutic use of guanylate cyclase C (GC-C) agonists as a means for enhancing the intracellular production of cGMP. The agonists may be used either alone or in combination with inhibitors of cGMP-specific phosphodiesterase to prevent or treat inflammation, cancer and other disorders, particularly of the gastrointestinal tract and the lung. #### **BACKGROUND OF THE INVENTION** Uroguanylin, guanylin and bacterial ST peptides are structurally related peptides that bind to a guanylate cyclase receptor and stimulate intracellular production of cyclic guanosine monophosphate (cGMP) (1-6). This results in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane channel for efflux of chloride from enterocytes lining the intestinal tract (1-6). Activation of CFTR and the subsequent enhancement of transepithelial secretion of chloride lead to stimulation of sodium and water secretion into the intestinal lumen. Therefore, by serving as paracrine regulators of CFTR activity, cGMP receptor agonists regulate fluid and electrolyte transport in the GI tract (1-6; US patent 5,489,670). Thus, the cGMP-mediated activation of CFTR and the downstream signaling plays an important role in normal functioning of gut physiology. Therefore, any abnormality in this process could potentially lead to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, excessive acidity and cancer (25, 26). The process of epithelial renewal involves the proliferation, migration, differentiation, senescence, and eventual loss of GI cells in the lumen (7, 8). The GI mucosa can be divided into three distinct zones based on the proliferation index of epithelial cells. One of these 1 zones, the proliferative zone, consists of undifferentiated stem cells responsible for providing a constant source of new cells. The stem cells migrate upward toward the lumen to which they are extruded. As they migrate, the cells lose their capacity to divide and become differentiated for carrying out specialized functions of the GI mucosa (9). Renewal of GI mucosa is very rapid with complete turnover occurring within a 24-48 hour period (9). During this process mutated and unwanted cells are replenished with new cells. Hence, homeostasis of the GI mucosa is regulated by continual maintenance of the balance between proliferation and apoptotic rates (8). 5 10 15 20 25 30 The rates of cell proliferation and apoptosis in the gut epithelium can be increased or decreased in a wide variety of different circumstances, *e.g.*, in response to physiological stimuli such as aging, inflammatory signals, hormones, peptides, growth factors, chemicals and dietary habits. In addition, an enhanced proliferation rate is frequently associated with a reduction in turnover time and an expansion of the proliferative zone (10). The proliferation index has been observed to be much higher in pathological cases of ulcerative colitis and other GI disorders (11). Thus, intestinal hyperplasia is the major promoter of gastrointestinal inflammation and carcinogenesis. In addition to a role for uroguanylin and guanylin as modulators of intestinal fluid and ion secretion, these peptides may also be involved in the continual renewal of GI mucosa by maintaining the balance between proliferation and apoptosis in cells lining GI mucosa. Therefore, any disruption in this renewal process, due to reduced production of uroguanylin and/or guanylin can lead to GI inflammation and cancer (25, 26). This is consistent with previously published data in WO 01/25266, which suggest a peptide with the active domain of uroguanylin may function as an inhibitor of polyp development in the colon and may constitute a treatment of colon cancer. However, recent data also suggest that uroguanylin also binds to a currently unknown receptor, which is distinct from GC-C receptor (3,4). Knockout mice lacking this guanylate cyclase receptor show resistance to ST peptides in the intestine, but effects of uroguanylin and ST peptides are not disturbed in the kidney in vivo (3). These results were further supported by the fact that membrane depolarization induced by guanylin was blocked by genistein, a tyrosine kinase inhibitor, whereas hyperpolarization induced by uroguanylin was not effected (12, 13). Thus, it is not clear if the anti-colon cancer and anti-inflammatory activities of uroguanylin and its analogs are mediated through binding to one or both of these receptors. Inflammatory bowel disease is a general name given to a group of disorders that cause intestines to become inflamed, characterized by red and swollen tissue. Gastrointestinal (GI) inflammation can be a chronic condition and often leads to GI cancer (14). Examples of such inflammatory bowel diseases (IBD) include Crohn's disease and ulcerative colitis (UC). It is estimated that as many as 1,000,000 Americans are afflicted with IBD, with male and female patients appearing to be equally affected. Most cases are diagnosed before age 30, but the disease can occur in the sixth, seventh, and later decades of life. Crohn's disease is a serious inflammatory disease that predominantly effects ileum and colon, but can also occur in other sections of the GI tract, whereas UC is exclusively an inflammatory disease of the colon, the large intestine (15). Unlike Crohn's disease, in which all layers of the intestine are involved, and in which there can be normal healthy bowel in between patches of diseased bowel, UC affects only the innermost lining (mucosa) of the colon in a continuous manner (16). Depending on which portion of the GI tract is involved, Crohn's disease may be referred to as ileitis, regional enteritis, colitis, etc. Crohn's disease and UC differ from spastic colon or irritable bowel syndrome, which are motility disorders of the GI tract. While the precise cause of IBD is not known, it is believed that the disruption of the process of continual renewal of GI mucosa may be involved in disease
(17,18). The renewal process of the GI lining is an efficient and dynamic process involving the continual proliferation and replenishment of unwanted damaged cells. Proliferation rates of cells lining the GI mucosa are very high, second only to the hematopoietic system. Thus, the balance between proliferation and apoptosis is important to the maintenance of the homeostasis of the GI mucosa (19,20). GI homeostasis depends on both proliferation and programmed cellular death (apoptosis) of epithelial cells lining the gut mucosa. Hence, cells are continually lost from the villus into the lumen of the gut and are replenished at a substantially equal rate by the proliferation of cells in the crypts, followed by their upward movement to the villus. It has become increasingly apparent that the control of cell death is an equally, if not more, important regulator of cell number and proliferation index (19,20). Reduced rates of apoptosis are often associated with abnormal growth, inflammation, and neoplastic transformation. Thus, both decreased proliferation and/or increased cell death may reduce cell number, whereas increased proliferation and/or reduced cell death may increase the proliferation index of intestinal tissue (20), which may lead to GI inflammatory diseases and cancer. Uroguanylin and guanylin peptides also appear to promote apoptosis by controlling cellular ion flux. Alterations in apoptosis have been associated with tumor progression to the metastatic phenotype. While a primary gastrointestinal (GI) cancer is limited to the small intestine, colon, and rectum, it may metastasize and spread to such localities as bone, lymph nodes, liver, lung, peritoneum, ovaries, and brain. By enhancing the efflux of K+ and influx of Ca++, uroguanylin and related peptides may promote the death of transformed cells and thereby inhibit metastasis 5 10 15 20 25 30 Irritable bowel syndrome (IBS) and chronic idiopathic constipation are pathological conditions that can cause a great deal of intestinal discomfort and distress but unlike the IBD diseases such as ulcerative colitis and Crohn's disease, IBS does not cause the serious inflammation or changes in bowel tissue and it is not thought to increase the risk of colorectal cancer. In the past, inflammatory bowel disease (IBD), celiac disease and irritable bowel syndrome (IBS) were regarded as completely separate disorders. Now, with the description of inflammation, albeit low-grade, in IBS, and of symptom overlap between IBS and celiac disease, this contention has come under question. Acute bacterial gastroenteritis is the strongest risk factor identified to date for the subsequent development of postinfective irritable bowel syndrome. Clinical risk factors include prolonged acute illness and the absence of vomiting. A genetically determined susceptibility to inflammatory stimuli may also be a risk factor for irritable bowel syndrome. The underlying pathophysiology indicates increased intestinal permeability and low-grade inflammation, as well as altered motility and visceral sensitivity (27). Serotonin (5-hydroxytryptamine [5-HT]) is a key modulator of gut function and is known to play a major role in pathophysiology of IBS. It has been shown that the activity of 5-HT is regulated by cGMP (28). Therefore, based on this observation as well as other effects of cGMP, we believe that GC-C agonists will be useful in the treatment of IBS. Given the prevalence of inflammatory conditions in Western societies and the attendant risk of developing cancerous lesions from inflamed tissue, particularly intestinal tissue, a need exists to improve the treatment options for inflammatory conditions, particularly of the gastrointestinal tract. #### **SUMMARY OF THE INVENTION** The present invention is based upon the development of agonists of guanylate cyclase receptor. The agonists are analogs of uroguanylin and bacterial ST peptides and have superior properties such as for example high resistance to degradation at the N-terminus and C-terminus from carboxypeptidases and/or by other proteolytic enzymes present in the stimulated human intestinal juices and human gastric juices. 5 10 15 20 25 30 The peptides of the invention may be used to treat any condition that responds to enhanced intracellular levels of cGMP. Intracellular levels of cGMP can be increased by enhancing intracellular production of cGMP and/or by inhibition of its degradation by cGMPspecific phosphodiesterases. Among the specific conditions that can be treated or prevented are gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity. Gastointestinal disorders include for example, irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudoobstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD), ileus inflammation (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. In addition, GC-C agonist may also be useful to facilitate liver regeneration in liver transplant patients. Eye disorders include for example increased intraocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis. 5 10 15 20 25 30 In one aspect, the present invention is directed to a peptide consisting essentially of the amino acid sequence of, SEQ ID NOs: 2-54 and 57-98 and to therapeutic compositions which contain these peptides. Prefered peptides include SEQ ID NO: 8, 9, 10, 58 and 59. The term "consisting essentially of" includes peptides that are identical to a recited sequence identification number and other sequences that do not differ substantially in terms of either structure or function. For the purpose of the present application, a peptide differs substantially if its structure varies by more than three amino acids from a peptide of SEQ ID NOs 2-54 and 57-98 or if its activation of cellular cGMP production is reduced by more than 50% compared to a control peptide such as SEQ ID NO:1, 55 or 56. Preferably, substantially similar peptides should differ by no more than two amino acids and not differ by more than about 25% with respect to activating cGMP production. The instant peptide sequences comprise at least 12 amino acid residues, preferably between 12 and 26 amino acids in length. The peptides may be in a pharmaceutical composition in unit dose form, together with one or more pharmaceutically acceptable carrier, excipients or diluents. The term "unit dose form" refers to a single drug delivery entity, e.g., a tablet, capsule, solution or inhalation formulation. The amount of peptide present should be sufficient to have a positive therapeutic effect when administered to a patient (typically, between 100 µg and 3 g). What constitutes a "positive therapeutic effect" will depend upon the particular condition being treated and will include any significant improvement in a condition readily recognized by one of skill in the art. For example, it may constitute a reduction in inflammation, shrinkage of polyps or tumors, a reduction in metastatic lesions, etc. In yet another aspect, an invention provides administering to said patient an effective dose of an inhibitor of cGMP-specific phosphodiesterase (cGMP-PDE) either concurrently or sequentially with said guanylate cyclase receptor agonist. The cGMP-PDE inhibitor include for example suldinac sulfone, zaprinast, and motapizone, vardenifil, and sildenafil. In addition, GC-C agonist peptides may be used in combination with inhibitors of cyclic nucleotide transporters. Optionally, anti-inflammatory agents are also administered. Anti-inflammatory agents include for example steroids and non-steroidal anti-inflammatory drugs (NSAIDS). Other features and advantages of the invention will be apparent from and are encompassed by the following detailed description and claims. 5 10 15 20 #### BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A is a bar chart showing the biological activity of SP-304 after incubation with simulated gastric fluid (SGF) for times as indicated. The biological
activity of SP-304 was determined by measuring its ability to stimulate cGMP synthesis in T84 cells. Following the incubations, samples were used for their abilities to stimulate cGMP synthesis in T84 cells. The cGMP stimulation activity in sample at 0 min of incubation with SGF was taken as 100%. The activities in samples from other times of incubations with SGF were calculated as percentage of the activity in the sample at 0 min. The data is average of triplicates \pm SD Figure 1B is a schematic representation of the results of HPLC chromatographic analyses of SP-304 samples after incubation with SGF at indicated times. The major peak of SP-304 did not change following incubation with SGF, indicating that the peptide was resistant to SGF digestion. The arrows indicate the elution position of SP-304. Figure 2A is a bar chart showing Cyclic GMP synthesis in T84 cells by SP304 samples after incubation with simulated intestinal fluid (SIF) for the indicated times. Following the incubations, samples were used for their abilities to stimulate cGMP synthesis in T84 cells. The cGMP stimulation activity in sample at 0 min of incubation with SIF was taken as 100%. The activities in samples from other times of incubations with SIF were calculated as percentage of the activity in the sample at 0 min. The data is average of triplicates \pm SD Figure 2B is a schematic representation of the results of HPLC chromatographic analyses of SP304 samples after incubation with (A) heat inactivated SIF for 300 min or with (B) SIF for 120 min. The incubation with SIF completely converted SP-304 into another peptide eluting at 9.4 min, as indicated by *. Arrows indicate the position of SP-304. Figure 3 is a schematic representation of the possible degradation products of SP-304. Figure 4 shows stimulation of cGMP synthesis in T84 cells by the truncated peptides of SP-304. Thus, SP-338 has the same peptide sequence as SP-304 except that it lacks Leu at the C-terminus. Similarly, SP-327, SP-329 and SP-331 have Leu at their C-termini deleted relative to their corresponding parents, SP-326, SP-328 and SP-330. Peptides were evaluated for their abilities to stimulate cGMP synthesis in T84 cells. The results are expressed as an average of duplicates. 5 15 20 Figure 5 shows stimulation of cGMP synthesis in T84 cells by SP-304 and similar peptides. Cells were exposed to peptide analogs for 30 min and cell lysates were used to determine intracellular cGMP levels. Results are expressed as an average of triplicates \pm SD. Figure 6 shows stimulation of cGMP synthesis in T84 cells by SP-339 and other peptides. T84 Cells were exposed to the indicated peptide for 30 min and cell lysates were used to determine intracellular cGMP levels. Results are expressed as an average of triplicates ± SD. Figure 7A shows stability of SP-333 against digestion with simulated intestinal fluid (SIF) for indicated times. The control sample marked as C120 was produced by incubating peptides with heat inactivated SIF. Samples from the incubations were removed and heated at 95° C for 5 min to inactivate digestive enzymes and then used to stimulate cyclic GMP synthesis in T84 cells. The cGMP stimulation activity at 0 min was taken as 100% in each set. The data is average of triplicates \pm SD. Figure 7B shows stability of SP-332 against digestion with simulated intestinal fluid (SIF) for indicated times. The control sample marked as C120 was produced by incubating peptides with heat inactivated SIF. Samples from the digestions were removed and heated at 95°C for 5 min to inactivate digestive enzymes and then used to stimulate cyclic GMP synthesis in T84 cells. The cGMP stimulation activity at 0 min was taken as 100% in each set. The data is average of triplicates ± SD. Figure 7C shows stability of SP-304 against digestion with simulated intestinal fluid (SIF) for indicated times. The control samples marked as C0 and C60 were produced by incubating peptides with heat inactivated SIF. Samples from the digestions were removed and heated at 95°C for 5 min to inactivate digestive enzymes and then used to stimulate cyclic GMP synthesis in T84 cells. The cGMP stimulation activity at 0 min was taken as 100% in each set. The data is average of 3 determinations ± SD. Figure 7D shows HPLC analysis of samples of SP-304 at 0 and 60 minutes following incubation with SIF. Arrow indicates the elution position of SP-304 peptide. The data clearly shows that the SP-304 peak eluting at 14.3 min completely vanished and two new peaks emerged at 7.4 and 10.3 minutes. These new peptide peaks represent the possible degradation products of SP-304. 5 20 25 30 Figure 7E shows HPLC analysis of samples of SP-332 at 0 and 120 minutes following incubation with SIF. Arrow indicates the elution position of SP-332 peptide. The data shows that the peptide SP-332 eluting at 14.8 minutes was not changed following incubation with SIF, suggesting that SP-332 is not sensitive to proteolysis by proteases present in SIF. Figure 7F shows HPLC analysis of samples of SP-333 at 0 and 120 minutes following incubation with SIF. Arrows indicate the elution position of SP-333. The data show that peptide SP-333, eluting at 14.8 minutes, was not changed following incubation with SIF, suggesting that SP-333 is not sensitive to proteolysis by proteases present in SIF during the 120 minute incubation period. Figure 8 shows stimulation of cGMP synthesis in T84 cells by the peggylated analogs of SP-333. T84 cells were exposed to the indicated peptides for 30 min and cell lysates were used to determine intracellular cGMP levels. Results are expressed as an average of triplicates ± SD. Figure 9 shows stimulation of cGMP synthesis in T84 cells by SP-304 (0.1 μ M) either alone or in combination with the phosphodiesterase (PDE) inhibitors Sulindac Sulfone (100 μ M) or Zaprinast (100 μ M). T84 cells were exposed to various treatments, as indicated, for 30 min and the cell lysates were used to determine the intracellular cGMP levels. Results are expressed as an average of duplicates. Figure 10 shows stimulation of cGMP synthesis in T84 cells by SP-304 (0.1 or 1.0 μ M) either alone or in combination with incremental concentrations of phosphodiesterase (PDE) inhibitors, as indicated. T84 cells were exposed to various treatments, as indicated, for 30 min and the cell lysates were used to determine the intracellular cGMP levels. Results are expressed as an average of duplicates. Figure 11 shows stimulation of cGMP synthesis in T84 by SP-333 (0.1 or 1.0 μ M) either alone or in combination with incremental concentrations Zaprinast, as indicated. T84 cells were exposed to various treatments, as indicated, for 30 min and the cell lysates were used to determine the intracellular cGMP levels. Results are expressed as an average of duplicates. Figure 12 shows stimulation of cGMP synthesis in T84 by SP-333 (0.1 μM) either alone or in combination with incremental concentrations Sulindac Sulfone, as indicated. T84 cells were exposed to various treatments, as indicated, for 30 min and the cell lysates were used to determine the intracellular cGMP levels. Results are expressed as an average of duplicates. 5 10 15 20 25 Figure 13 shows a schematic of the mainatance of intracellular concentrations of cGMP levels. The intracellular levels of cGMP can be maintained by stimulating its synthesis via the activation of GC-C and by inhibiting its degradation by cGMP-PDE. Thus, a combination of a GC-C agonist with an inhibitor of PDE may produce a synergistic effect to enhance levels of cGMP in tissues and organs. #### **DETAILED DESCRIPTION** The present invention is based upon the development of agonists of guanylate cyclase-C (GC-C). The agonists are analogs of uroguanylin and bacterial ST peptides and have superior properties such as for example high resistance to degradation at the N-terminus and C-terminus from carboxypeptidases and/or by other proteolytic enzymes such as those present in the stimulated human intestinal juices and human gastric juices. The GC-C is expressed on various cells including on gastrointestinal epithelial cells, and on extra-intestinal tissues including kidney, lung, pancreas, pituitary, adrenal, developing liver, heart and male and female reproductive tissues (reviewed in Vaandrager 2002 Mol Cell Biochem 230:73-83). The GC-C is a key regulator of fluid and electrolyte balance in the intestine and kidney. In the intestine, when stimulated, the GC-C causes an increase in intestinal epithelial cGMP. This increase in cGMP causes a decrease in water and sodium absorption and an increase in chloride and potassium ion secretion, leading to changes in intestinal fluid and electrolyte transport and increased intestinal motility. The gualylate cyclase-C agonists according to the invention include SEQ ID NO:2-54, and SEQ ID NO: 57-98 and are summarized below in Table I and Table II. The gualylate cyclase-C agonists according to the invention are collectively referred to herein as "GCRA peptides". ### Table I. GCRA peptides | Name | Position | Structure | SEQ | |--------|---------------------|--|-------| | | of Disulfid e bonds | | ID NO | | SP-304 | C4:C12,
C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 1 | | SP-326 | C3:C11,
C6:C14 | Asp ¹ -Glu ² -Cys ³ -Glu ⁴ -Leu ⁵ -Cys ⁶ -Val ⁷ -Asn ⁸ -Val ⁹ -Ala ¹⁰ -Cys ¹¹ -Thr ¹² -Gly ¹³ -Cys ¹⁴ -Leu ¹⁵ | 2 | | SP-327 | C2:C10,
C5:C13 | Asp ¹ -Glu ² -Cys ³ -Glu ⁴ -Leu ⁵ -Cys ⁶ -Val ⁷ -Asn ⁸ -Val ⁹ -Ala ¹⁰ -Cys ¹¹ -Thr ¹² -Gly ¹³ -Cys ¹⁴ | 3 | | SP-328 | C2:C10,
C5:C13 |
Glu¹-Cys²-Glu³-Leu⁴-Cys⁵-Va¹⁶-Asn²-Va¹⁶-Ala9-Cys¹⁰-Thr¹¹-Gly¹²-Cys¹³-Leu¹⁴ | 4 | | SP-329 | C2:C10,
C5:C13 | Glu ¹ -Cys ² -Glu ³ -Leu ⁴ -Cys ⁵ -Val ⁶ -Asn ⁷ -Val ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ | 5 | | SP-330 | C1:C9,
C4:C12 | Cys¹-Glu²-Leu³-Cys⁴-Val⁵-Asn6-Val²-Ala8-Cys²-Thr¹0-Gly¹¹-Cys¹²-Leu¹³ | 6 | | SP-331 | C1:C9,
C4:C12 | Cys¹-Glu²-Leu³-Cys⁴-Val⁵-Asn⁶-Val ⁷ -Ala ⁸ -Cys⁰-Thr¹0-Gly¹¹-Cys¹² | 7 | | SP332 | C4:C12,
C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 8 | | SP333 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 9 | | SP-334 | C4:C12,
C7:C15 | dAsn ¹ -dAsp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 10 | | SP-335 | C4:C12,
C7:C15 | dAsn¹-dAsp²-dGlu³-Cys⁴-Glu⁵-Leu⁶-Cys²-Val⁶-Asnց-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶ | 11 | |--------|-------------------|---|----| | SP-336 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Leu ¹⁶ | 12 | | SP-337 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -dLeu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 13 | | SP-338 | C4:C12,
C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ | 14 | | SP-342 | C4:C12,
C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 15 | | SP-343 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 16 | | SP-344 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -dAsp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 17 | | SP-347 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 18 | | SP-348 | C4:C12,
C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 19 | | SP-350 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 20 | | SP-352 | C4:C12,
C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 21 | | SP-358 | C4:C12,
C7:C15 | PEG3-dAsn¹-dAsp²-dGlu³-Cys⁴-Glu⁵-Leu⁶-Cys⁻-Val⁶-Asn⁰-Val¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶-PEG3 | 22 | | SP-359 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -dAsp ² -dGlu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 23 | | SP-360 | C4:C12,
C7:C15 | dAsn¹-dAsp²-dGlu³-Cys⁴-Glu⁵-Leu⁴-Cys²-Val8-Asn9-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁴-PEG3 | 24 | |--------|-------------------|--|----| | SP-361 | C4:C12,
C7:C15 | dAsn¹-dAsp²-Glu³-Cys⁴-Glu⁵-Leu⁶-Cys²-Val⁶-Asn⁰-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dLeu¹⁶-PEG3 | 25 | | SP-362 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -dAsp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 26 | | SP-368 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dNal ¹⁶ | 27 | | SP-369 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -AIB ⁸ -Asn ⁹ -AIB ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 28 | | SP-370 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Asp[Lactam] ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Orn ¹⁵ -dLeu ¹⁶ | 29 | | SP-371 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 30 | | SP-372 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 31 | | N1 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 32 | | N2 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 33 | | N3 | C4:C12,
C7:C15 | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ PEG3 | 34 | | N4 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 35 | | N5 | C4:C12,
C7:C15 | PEG3-dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ | 36 | | N6 | C4:C12, | dAsn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dLeu ¹⁶ -PEG3 | 37 | | | C7:C15 | | | |----------------|-------------------|---|----| | N7 | C4:C12,
C7:C15 | Asn¹-Asp²-Glu³-Cys⁴-Glu⁵-Leu⁶-Cys²-Val⁵-Asn⁰-Val¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Ser¹⁶ | 38 | | N8 | C4:C12,
C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ -PEG3 | 39 | | N9 | C4:C12,
C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ | 40 | | N10 | C4:C12,
C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Ser ¹⁶ -PEG3 | 41 | | N11 | C4:C12,
C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dSer ¹⁶ -PEG3 | 42 | | N12 | C4:C12,
C7:C15 | PEG3-Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dSer ¹⁶ | 43 | | N13 | C4:C12,
C7:C15 | Asn ¹ -Asp ² -Glu ³ -Cys ⁴ -Glu ⁵ -Leu ⁶ -Cys ⁷ -Val ⁸ -Asn ⁹ -Val ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dSer ¹⁶ -PEG3 | 44 | | Formula
I | C4:C12,
C7:C15 | Asn¹-Asp²-Glu³-Cys⁴-Xaa⁵-Xaa⁶-Cys⁻-Xaa⁶-Xaa⁶-Xaa⁶-Xaa¹¹-Cys¹²-Xaa¹¹-Cys¹²-Xaa¹⁴-Cys¹⁵-Xaa¹⁶ | 45 | | Formula
II | C4:C12,
C7:C15 | Xaa _{n1} -Cys ⁴ -Xaa ⁵ -Xaa ⁶ -Cys ⁷ -Xaa ⁸ -Xaa ⁹ -Xaa ¹⁰ -Xaa ¹¹ -Cys ¹² -Xaa ¹³ -Xaa ¹⁴ -Cys ¹⁵ -Xaa _{n2} ¹⁶ | 46 | | Formula
III | 4:12,7:1
5 | Xaa_{n1} -Maa 4 -Glu 5 -Xaa 6 -Maa 7 -Val 8 -Asn 9 -Val 10 -Ala 11 -Maa 12 -Thr 13 -Gly 14 -Maa 15 - Xaa $_{n2}$ | 47 | | Formula
IV | 4:12,7:1
5 | Xaa _{nl} - Maa ⁴ -Xaa ⁵ -Xaa ⁶ - Maa ⁷ -Xaa ⁸ -Xaa ⁹ -Xaa ¹⁰ -Xaa ¹¹ - Maa ¹² -Xaa ¹³ -Xaa ¹⁴ - Maa ¹⁵ -Xaa _{n2} | 48 | | Formula
V) | C4:C12,
C7:C15 | Asn¹-Asp²-Asp³-Cys⁴-Xaa⁵-Xaa⁶-Cys²-Xaa®-Asn²-Xaa¹¹-Cys¹²-Xaa¹³-Xaa¹⁴-Cys¹⁵-Xaa¹⁶ | 49 | | Formula
VI | C4:C12,
C7:C15 | dAsn¹-Glu²-Glu³-Cys⁴-Xaa⁵-Xaa6-Cys⁻-X38-Asn9-Xaa¹¹-Cys¹²-Xaa¹³-Xaa¹⁴-Cys¹⁵-d-Xaa¹6 | 50 | | Formula
VII | C4:C12,
C7:C15 | dAsn¹-dGlu²-Asp³-Cys⁴-Xaa⁵-Xaa⁶-Cys²-Xaa®-Asn°-Xaa¹¹-Cys¹²-Xaa¹³-Xaa¹⁴-Cys¹⁵-d-Xaa¹⁶ | 51 | | Formula
VII
(NEW) | C4:C12,
C7:C15 | dAsn ¹ -dAsp ² -Glu ³ -Cys ⁴ -Xaa ⁵ -Xaa ⁶ -Cys ⁷ -Xaa ⁸ -Asn ⁹ -Xaa ¹⁰ -Xaa ¹¹ -Cys ¹² -Xaa ¹³ -Xaa ¹⁴ -Cys ¹⁵ -d-Xaa ¹⁶ | 52 | |--------------------------|-------------------|--|----| | Formula
VIII
(NEW) | C4:C12,
C7:C15 | dAsn ¹ -dAsp ² -dGlu ³ -Cys ⁴ -Xaa ⁵ -Xaa ⁶ -Cys ⁷ -Xaa ⁸ -Tyr ⁹ -Xaa ¹⁰ -Xaa ¹¹ -Cys ¹² -Xaa ¹³ -Xaa ¹⁴ -Cys ¹⁵ -d-Xaa ¹⁶ | 53 | | Formula
IX | C4:C12,
C7:C15 | dAsn ¹ -dGlu ² -dGlu ³ -Cys ⁴ -Xaa ⁵ -Xaa ⁶ -Cys ⁷ -Xaa ⁸ -Tyr ⁹ -Xaa ¹⁰ -Xaa ¹¹ -Cys ¹² -Xaa ¹³ -Xaa ¹⁴ -Cys ¹⁵ -d-Xaa ¹⁶ | 54 | ## Table II. GCRA Peptides | Name | Position of Disulfide bonds | Structure | SEQ ID NO: | |--------|-----------------------------|--|------------| | SP-339 | C1:C6,
C2:C10,
C5:13 | Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -Tyr ¹⁴ | 55 | | SP-340 | C1:C6,
C2:C10,
C5:13 | Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ | 56 | | SP-349 | C1:C6,
C2:C10,
C5:13 | PEG3-Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -Tyr ¹⁴
-PEG3 | 57 | | SP-353 | C3:C8,
C4:C12, | Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Ser⁶-Cys²-Cys®-Asn9-Pro¹0-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-
Tyr¹⁶ | 58 | | | C7:15 | | | |--------|----------------------------|--|----| | SP-354 | C3:C8,
C4:C12,
C7:15 | Asn ¹ -Phe ² ·Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 59 | | SP-355 | C1:C6,
C2:C10,
C5:13 | Cys¹-Cys²-Glu³-Tyr⁴-Cys⁵-Cys6-Asn²-Pro8-Ala9-Cys¹0-Thr¹¹-Gly¹²-Cys¹³-dTyr¹⁴ | 60 | | SP-357 | C1:C6,
C2:C10,
C5:13 | PEG3-Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -Tyr ¹⁴ | 61 | | SP-374 | C3:C8,
C4:C12,
C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 62 | | SP-375 | C3:C8,
C4:C12,
C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 63 | | SP-376 | C3:C8,
C4:C12,
C7:15 | dAsn¹-Phe²-Cys³-Cys⁴-Glu⁵-Ser⁶-Cys²-Cys®-Asn⁰-Pro¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-
Cys¹⁵-Tyr¹⁶ | 64 | | SP-377 | C3:C8,
C4:C12,
C7:15 | dAsn¹-Phe²-Cys³-Cys⁴-Glu⁵-Ser⁶-Cys²-Cys®-Asnº-Pro¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-dTyr¹⁶ | 65 | | SP-378 | C3:C8,
C4:C12,
C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 66 | | SP-379 | C3:C8,
C4:C12,
C7:15 | dAsn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 67 | | SP-380 | C3:C8,
C4:C12,
C7:15 | dAsn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Thr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 68 | |--------|----------------------------|---|----| | SP-381 | C3:C8,
C4:C12,
C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 69 | | SP-382 | C3:C8,
C4:C12,
C7:15 | dAsn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 70 | | SP-383 | C3:C8,
C4:C12,
C7:15 | dAsn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -dTyr ¹⁶ | 71 | | SP384 | C1:C6,
C2:C10,
C5:13 | Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -Tyr ¹⁴ -PEG3 | 72 | | N14 | C1:C6,
C2:C10,
C5:13 | PEG3-Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -PEG3 | 73 | | N15 | C1:C6,
C2:C10,
C5:13 | PEG3-Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ | 74 | | N16 | C1:C6,
C2:C10,
C5:13 | Cys ¹ -Cys ² -Glu ³ -Tyr ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -PEG3 | 75 | | N17 | C3:C8,
C4:C12,
C7:15 | PEG3- Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Ser⁶-Cys²-Cys®-Asn⁰-Pro¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹⁶-PEG3 | 76 | | N18 | C3:C8,
C4:C12,
C7:15 | PEG3- Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 77 | |-----|----------------------------|---|----| | N19 | C3:C8,
C4:C12,
C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Ser ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ -PEG3 | 78 | | N20 | C3:C8,
C4:C12,
C7:15 | PEG3- Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ -PEG3 | 79 | | N21 | C3:C8,
C4:C12,
C7:15 | PEG3- Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 80 | | N22 | C3:C8,
C4:C12,
C7:15 | Asn¹-Phe²-Cys³-Cys⁴-Glu⁵-Phe⁶-Cys²-Cys®-Asn⁰-Pro¹⁰-Ala¹¹-Cys¹²-Thr¹³-Gly¹⁴-Cys¹⁵-Tyr¹⁶-PEG3 | 81 | | N23 | C3:C8,
C4:C12,
C7:15 | PEG3- Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ -PEG3 | 82 | | N24 | C3:C8,
C4:C12,
C7:15 | PEG3- Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ | 83 | | N25 | C3:C8,
C4:C12,
C7:15 | Asn ¹ -Phe ² -Cys ³ -Cys ⁴ -Glu ⁵ -Tyr ⁶ -Cys ⁷ -Cys ⁸ -Asn ⁹ -Pro ¹⁰ -Ala ¹¹ -Cys ¹² -Thr ¹³ -Gly ¹⁴ -Cys ¹⁵ -Tyr ¹⁶ -PEG3 | 84 | | N26 | C1:C6, | Cys¹-Cys²-Glu3-Ser⁴-Cys⁵-Cys⁶-Asn²-Pro⁶-Ala²-Cys¹⁰-Thr¹¹-Gly¹²-Cys¹³-Tyr¹⁴ | 85 | | | C2:C10,
C5:13 | | | |----------------|-------------------------------|--|----| | N27 | C1:C6,
C2:C10,
C5:13 | Cys ¹ -Cys ² -Glu ³ -Phe ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ -Tyr ¹⁴ | 86 | | N28 | C1:C6,
C2:C10,
C5:13 | Cys ¹ -Cys ² -Glu3-Ser ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ - | 87 | | N29 | C1:C6,
C2:C10,
C5:13 | Cys ¹ -Cys ² -Glu ³ -Phe ⁴ -Cys ⁵ -Cys ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Cys ¹⁰ -Thr ¹¹ -Gly ¹² -Cys ¹³ | 88 | | N30 | 1:6, 2:10,
5:13 | Pen ¹ -Pen ² -Glu3-Tyr ⁴ -Pen ⁵ -Pen ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Pen ¹⁰ -Thr ¹¹ -Gly ¹² -Pen ¹³ -Tyr ¹⁴ | 89 | | N31 | 1:6, 2:10,
5:13 | Pen ¹ -Pen ² -Glu3-Tyr ⁴ -Pen ⁵ -Pen ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Pen ¹⁰ -Thr ¹¹ -Gly ¹² -Pen ¹³ | 90 | | Formula X | C9:C14,
C10:C18,
C13:21 | Xaa ¹ -Xaa ² Xaa ³ -Xaa ⁴ -Xaa ⁵ -Xaa ⁶ - Asn ⁷ - Tyr ⁸ -Cys ⁹ -Cys ¹⁰ -Xaa ¹¹ -Tyr ¹² -Cys ¹³ -Cys ¹⁴ - Xaa ¹⁵ -Xaa ¹⁶ -Xaa ¹⁷ -Cys ¹⁸ - Xaa ¹⁹ -Xaa ²⁰ -Cys ²¹ -Xaa ²² | 91 | | Formula XI | C9:C14,
C10:C18,
C13:21 | Xaa ¹ -Xaa ² Xaa ³ -Xaa ⁴ -Xaa ⁵ -Xaa ⁶ -Asn ⁷ - Phe ⁸ -Cys ⁹ -Cys ¹⁰ -Xaa ¹¹ -Phe ¹² - Cys ¹³ -Cys ¹⁴ - Xaa ¹⁵ -Xaa ¹⁶ -Xaa ¹⁷ -Cys ¹⁸ - Xaa ¹⁹ -Xaa ²⁰ -Cys ²¹ -Xaa ²² | 92 | | Formula
XII | C3:C8,
C4:C12, | Asn ¹ - Phe ² -Cys ³ -Cys ⁴ - Xaa ⁵ -Phe ⁶ -Cys ⁷ -Cys ⁸ - Xaa ⁹ -Xaa ¹⁰ - Xaa ¹¹ -Cys ¹² - Xaa ³ -Xaa ¹⁴ -Cys ¹⁵ -Xaa ¹⁶ | 93 | | | C7:15 | | | |-----------------|--------------------|--|----| | Formula
XIII | 3:8, 4:12,
C:15 | Asn ¹ - Phe ² - Pen ³ - Cys ⁴ - Xaa ⁵ - Phe ⁶ - Cys ⁷ - Pen ⁸ - Xaa ⁹ - Xaa ¹⁰ - Xaa ¹¹ - Cys ¹² - Xaa ¹³ - Xaa ¹⁴ - Cys ¹⁵ - Xaa ¹⁶ | 94 | | Formula
XIV | 3:8, 4:12,
7:15 | Asn ¹ - Phe ² - Maa ³ - Maa ⁴ - Xaa ⁵ - Xaa ⁶ - Maa ⁷ - Maa ⁸ - Xaa ⁹ - Xaa ¹⁰ - Xaa ¹¹ - Maa ¹² - Xaa ¹³ - Xaa ¹⁴ Maa ¹⁵ - Xaa ¹⁶ | 95 | | Formula
XV | 1:6, 2:10,
5:13 | Maa ¹ -Maa ² -Glu3-Xaa ⁴ - Maa ⁵ -Maa ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Maa ¹⁰ -Thr ¹¹ -Gly ¹² -Maa ¹³ -Tyr ¹⁴ | 96 | | Formula
XVI | 1:6, 2:10,
5:13 | Maa ¹ -Maa ² -Glu3-Xaa ⁴ - Maa ⁵ -Maa ⁶ -Asn ⁷ -Pro ⁸ -Ala ⁹ -Maa ¹⁰ -Thr ¹¹ -Gly ¹² -Maa ¹³ - | 97 | | Formula
XVII | 1:6, 2:10,
5:13 | Xaa _{n3} -Maa ¹ -Maa ² -Xaa ³ -Xaa ⁴ -Maa ⁵ -Maa ⁶ -Xaa ⁷ -Xaa ⁸ -Xaa ⁹ -Maa ¹⁰ -Xaa ¹¹ -Xaa ¹² -Maa ¹³ -Xaa _{n2} | 98 | | | | | | The GCRA peptides described herein bind the guanylate cyclase C (GC-C) and stimulate intracellular production of cyclic guanosine monophosphate (cGMP). Optionally, the GCRA peptides induce apoptosis. In some aspects, the GCRA peptides stimulate intracellular cGMP production at higher levels than naturally occurring GC-C agonists (*e.g.*, uroguanylin, guanylin, and ST peptides) and/or SP-304. For example, the GCRA peptides of the invention stimulate 5%, 10%, 20%, 30%, 40%, 50%, 75%, 90% or more intracellular cGMP compared to naturally occurring GC-C angonists and/or SP-304. The terms induced and stimulated are used interchangeably throughout the specification. The GCRA peptides described herein are more stable than naturally occurring GC-C agonists and/or SP-304. By more stable it is meant that the peptide degrade less and/or more slowly in simulated gastrointestinal fluid and/or simulated intestinal fluid compared to naturally occurring GC-C angonists and/or SP-304. For example, the GCRA peptide of the invention degrade 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 75%, 90% or less compared to naturally occurring GC-C angonists and/or SP-304. 5 10 15 20 25 30 The GCRA peptides described herein have therapeutic value in the treatment of a wide variety of disorders and conditions including for example gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity. Gastointestinal disorders
include for example, irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis. 5 10 15 20 25 30 As used herein, the term "guanylate cyclase C (GC-C)" refers to the class of guanylate cyclase C receptor on any cell type to which the inventive agonist peptides or natural agonists described herein bind. As used herein, "intestinal guanylate cyclase receptor" is found exclusively on epithelial cells lining the GI mucosa. Uroguanylin, guanylin, and ST peptides are expected to bind to these receptors and may induce apoptosis. The possibility that there may be different receptors for each agonist peptide is not excluded. Hence, the term refers to the class of guanylate cyclase receptors on epithelial cells lining the GI mucosa. As used herein, the term "GCR agonist" is meant to refer to peptides and/or other compounds that bind to an intestinal guanylate cyclase C and stimulate fluid and electrolyte transport. This term also covers fragments and pro-peptides that bind to GC-C and stimulate fluid and water secretion. As used herein, the term "substantially equivalent" is meant to refer to a peptide that has an amino acid sequence equivalent to that of the binding domain where certain residues may be deleted or replaced with other amino acids without impairing the peptide's ability to bind to an intestinal guanylate cyclase receptor and stimulate fluid and electrolyte transport. Addition of carriers (*e.g.*, phosphate-buffered saline or PBS) and other components to the composition of the present invention is well within the level of skill in this art. In addition to the compound, such compositions may contain pharmaceutically acceptable carriers and other ingredients known to facilitate administration and/or enhance uptake. Other formulations, such as microspheres, nanoparticles, liposomes, and immunologically-based systems may also be used in accordance with the present invention. Other examples include formulations with polymers (e.g., 20% w/v polyethylene glycol) or cellulose, or enteric formulations. 5 10 15 20 25 30 The present invention is based upon several concepts. The first is that there is a cGMPdependent mechanism which regulates the balance between cellular proliferation and apoptosis and that a reduction in cGMP levels, due to a deficiency of uroguanylin/guanylin and/or due to the activation of cGMP-specific phosphodiesterases, is an early and critical step in neoplastic transformation. A second concept is that the release of arachidonic acid from membrane phospholipids, which leads to the activation of cytoplasmic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2) and possibly 5-lipoxygenase (5-LO) during the process of inflammation, is down-regulated by a cGMP-dependent mechanism, leading to reduced levels of prostaglandins and leukotrienes, and that increasing intracellular levels of cGMP may therefore produce an anti-inflammatory response. In addition, a cGMP-dependent mechanism, is thought to be involved in the control of proinflammatory processes. Therefore, elevating intracellular levels of cGMP may be used as a means of treating and controlling gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity. Gastointestinal disorders include for example, irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). Lung Disorders include for example COPD and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (*e.g.*, periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis. Without intending to be bound by any theory, it is envisioned that ion transport across the plasma membrane may prove to be an important regulator of the balance between cell proliferation and apoptosis that will be affected by agents altering cGMP concentrations. Uroguanylin has been shown to stimulate K+ efflux, Ca++ influx and water transport in the gastrointestinal tract (3). Moreover, atrial natriuretic peptide (ANP), a peptide that also binds to a specific guanylate cyclase receptor, has also been shown to induce apoptosis in rat mesangial cells, and to induce apoptosis in cardiac myocytes by a cGMP mechanism (21-24). Binding of the present agonists to a guanylate cyclase receptor stimulates production of cGMP. This ligand-receptor interaction, via activation of a cascade of cGMP-dependent protein kinases and CFTR, induces apoptosis in target cells. Therefore, administration of the novel peptides defined by SEQ ID NO:2-54, and SEQ ID NO: 57-98, as shown in Tables I and II, or peptides similar to uroguanylin, or guanylin or E. coli ST peptide are useful in eliminating or, at least retarding, the onset of gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity. Gastointestinal disorders include for example, irritable bowel syndrome (IBS), non-ulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD), ileus inflammation (e.g., post-operative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). Lung Disorders include for example chronic obstructive pulmonary disease
(COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example Benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis. Uroguanylin is a circulating peptide hormone with natriuretic activity and has been found to stimulate fluid and electrolyte transport in a manner similar to another family of heat stable enterotoxins (ST peptides) secreted by pathogenic strains of *E. coli* and other enteric bacteria that activate guanylate cyclase receptor and cause secretory diarrhea. Unlike bacterial ST peptides, the binding of uroguanylin to guanylate cyclase receptor is dependent on the physiological pH of the gut. Therefore, uroguanylin is expected to regulate fluid and electrolyte transport in a pH dependent manner and without causing severe diarrhea. ### GCRA PEPTIDES 5 10 15 20 25 30 In one aspect, the invention provides a GCRA peptide. The GCRA peptides are analogues uroguanylin and bacterial ST peptide. No particular length is implied by the term "peptide". In some embodiments, the GCRA peptide is less than 25 amino acids in length, *e.g.*, less than or equal to 20, 15, 14, 13, 12, 11, 10, or 5 amino acid in length. The GCRA peptides can be polymers of L-amino acids, D-amino acids, or a combination of both. For example, in various embodiments, the peptides are D retro-inverso peptides. The 5 10 15 20 25 30 term "retro-inverso isomer" refers to an isomer of a linear peptide in which the direction of the sequence is reversed and the chirality of each amino acid residue is inverted. See, e.g., Jameson et al., Nature, 368, 744-746 (1994); Brady et al., Nature, 368, 692-693 (1994). The net result of combining D-enantiomers and reverse synthesis is that the positions of carbonyl and amino groups in each amide bond are exchanged, while the position of the side-chain groups at each alpha carbon is preserved. Unless specifically stated otherwise, it is presumed that any given Lamino acid sequence of the invention may be made into an D retro-inverso peptide by synthesizing a reverse of the sequence for the corresponding native L-amino acid sequence. For example a GCRA peptide includes the sequence of SEQ ID NO: SEQ ID NO:2-54, and SEQ ID NO: 57-98. In various embodiments, the GCRA peptide includes the amino acid sequence of SEO ID NO:45-54 and SEO ID NO:87-98 where the peptide induces cGMP production by a cell. In various embodiments the GCRA peptide of the invention includes the amino acid sequence according to Formulas I-IX (e.g. SEQ ID NO:45-54) with the proviso that the GCRA peptide is not SEQ ID NO:1. In further embodiments the GCRA peptide of the invention include the amino acid sequence according to Formulas X- XVII (e.g. SEQ ID NO:87-98) with the proviso that the GCRA peptide is not SEQ ID NO:55 or SEQ ID NO:56. By inducing cGMP production is meant that the GCRA peptide induces the production of intracellular cGMP. Intracellular cGMP is measured by methods known in the art. For example, the GCRA peptide of the invention stimulate 5%, 10%, 20%, 30%, 40%, 50%, 75%, 90% or more intracellular cGMP compared to naturally occurring GC-C angonists. Optionally, the GCRA peptides of the invention of the invention stimulate 5%, 10%, 20%, 30%, 40%, 50%, 75%, 90% or more intracellular cGMP compared SP-304 (SEQ ID NO:1). In further embodiments, the GCRA peptide stimulates apoptosis, e.g., programmed cell death or activate the cystic fibrosis transmembrane conductance regulator (CFTR). In some embodimenst the GCRA peptides described herein are more stable than naturally occurring GC-C agonists and/or SP-304 (SEQ ID NO:1), SP-339 (SEQ ID NO: 55) or SP-340 (SEQ ID NO: 56). By more stable it is meant that the peptide degrade less and/or more slowly in simulated gastric fluid and/or simulated ntestinal fluid compared to naturally occurring GC-C angonists and/or SP-304. For example, the GCRA peptide of the invention degrade 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 75%, 90% or less compared to naturally occurring GC-C angonists and/or SP-304, SP-339 or SP-340. As used herein PEG3, 3 PEG, is meant to denote polyethylene glycol such as include aminoethyloxy-ethyloxy-acetic acid (AeeA). As used herein, (*e.g.*, in Formulas I- XVII, SEQ ID NO:45-54 and SEQ ID NO:87-98) X_{aa} is any any natural, unnatural amino acid or amino acid analogue; M_{aa} is a Cysteine (Cys), Penicillamine (Pen) homocysteine, or 3-mercaptoproline; Xaa_{n1} is meant to denote an amino acid sequence of any any natural, unnatural amino acid or amino acid analogue that is one, two or three residues in length; Xaa_{n2} is meant to denote an amino acid sequence of any any natural, unnatural amino acid or amino acid analogue that is zero or one residue in length; and Xaa_{n3} is meant to denote an amino acid sequence of any any natural, unnatural amino acid or amino acid analogue that is zero, one, two, three, four, five or six residues in length. Additionally, any amino acid represented by Xaa, Xaa_{n1}, Xaa_{n2}, or Xaa_{n3} may be an L-amino acid, a D-amino acid, a methylated amino acid or any combination of thereof. Optionally, any GCRA peptide represented by Formulas I-VII may contain on or more polyethylene glycol residues at the the N- terminus, C-terminus or both. An exemplary polyethylene glycol include aminoethyloxy-ethyloxy-acetic acid and polymers thereof. In some embodiments, GCRA peptides include peptides containing the amino acid sequence of Formula I, wherein at at least one amino acid of Formula I is a D-amino acid or a methylated amino acid and/or the amino acid at position 16 is a serine. Preferably, the amino acid at position 16 of Formula I is a D-amino acid or a methylated amino acid. For example, the amino acid at position 16 of Formula I is a d-leucine or a d-serine. Optionally, one or more of the amino acids at position 1-3 of Formula I are D-amino acids or methylated amino acids or a combination of D-amino acids or methylated amino acids. For example, Asn1, Asp2 or Glu3 (or a combination thereof) of Formula I is a D-amino acids or a methylated amino acid. Preferably, the amino acid at position Xaa⁶ of Formula I is a leucine, serine or tyrosine. In alternative embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula II, wherein at least one amino acid of Formula II is a D-amino acid or a methylated amino acid. Preferably, the amino acid denoted by Xaa_{n2} of Formula II is a D-amino acid or a methylated amino acid. In some embodimenst the amino acid denoted by Xaa_{n2} of Formula II is a leucine, d-leucine, serine or d-serine. Preferably, the one or more of the amino acids denoted by Xaa_{n1} of Formula II is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position Xaa⁶ of Formula II is a leucine, serine or tyrosine. In some embodiments, GCRA peptides include peptides containing the amino acid sequence of Formula III, wherein 1) at at least one amino acid of Formula I is a D-amino acid or a methylated amino acid and/or 2) Maa is not a cysteine. Preferably, the amino acid denoted by Xaa_{n2} of Formula III is a D-amino acid or a methylated amino acid. In some embodiments the amino acid denoted by Xaa_{n2} of Formula III is a leucine, d-leucine, serine or d-serine. Preferably, the one or more of the amino acids denoted by Xaa_{n1} of Formula III is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position Xaa⁶ of Formula III is a leucine, serine or tyrosine. 5 10 15 20 25 In other embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula IV, wherein at least one amino acid of Formula IV is a D-amino acid or a methylated amino acid and/or 2) Maa is not a cysteine. Preferably, the Xaa_{n2} of Formula IV is a D-amino acid or a methylated amino acid. In some embodimenst the amino acid denoted by Xaa_{n2} of Formula IV is a leucine, d-leucine, serine or d-serine. Preferably, the one or more of the amino acids denoted by Xaa_{nl} of Formula IV is a D-amino acid or a methylated amino acid. Preferably, the amino acid denoted Xaa⁶ of Formula IV is a leucine, serine or tyrosine. In further embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula V, wherein at at least one amino acid of Formula V is a D-amino acid or a methylated amino acid. Preferably, the amino acid at position 16 of Formula V is a D-amino acid or a methylated amino acid. For example, the amino acid at position 16 (i.e., Xaa¹⁶) of Formula V is a d-leucine or a d-serine. Optionally, one or more of the amino acids at position 1-3 of Formula V are D-amino acids or methylated amino acids or a combination of D-amino acids or methylated amino acids. For example, Asn1, Asp2 or Glu3 (or a combination thereof) of Formula V is a D-amino acids or a methylated amino acid. Preferably, the amino acid denoted at Xaa⁶ of Formula V
is a leucine, serine or tyrosine. In additional embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula VI, VII, VIII, IX. Preferably, the amino acid at position 6 of Formula VI, VIII, VIII, IX. is a leucine, serine or tyrosine. In some aspects the amino acid at position 16 of Formula VI, VII, VIII, IX is a leucine or a serine. Preferably, the amino acid at position 16 of Formula V is a D-amino acid or a methylated amino acid. In prefered embodiments, the GCRA peptide is SP-332 (SEQ ID NO:8), SP-333 (SEQ ID NO:9) or SP-334 (SEQ ID NO:10). In additional embodiments, GCRA peptides include peptides containing containing the amino acid sequence of Formula X, XI, XII, XIII, XIV, XV, XVI or XVII. Optionally, one or more amino acids of Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-amino acid or a methylated amino acid. Preferably, the amino acid at the carboxy terminus of the peptides according to Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-amino acid or a methylated amino acid. For example the the amino acid at the carboxy terminus of the peptides according to Formulas X, XI, XII, XIII, XIV, XV, XVI or XVII is a D-tyrosine 5 10 15 20 25 30 Preferably, the amino acid denoted by Xaa⁶ of Formula XIV is a tyrosine, phenyalanine or a serine. Most preferably the amino acid denoted by Xaa⁶ of Formula XIV is a phenyalanine or a serine. Preferably, the amino acid denoted by Xaa⁴ of Formula XV, XVI or XVII is a tyrosine, phenyalanine or a serine. Most preferably, the amino acid position Xaa⁴ of Formula V, XVI or XVII is a phenyalanine or a serine. In prefered embodiments, the GCRA peptide is SP-353 (SEQ ID NO:58) or SP-354 (SEQ ID NO:59). In certain embodiments, one or more amino acids of the GCRA peptides can be replaced by a non-naturally occurring amino acid or a naturally or non-naturally occurring amino acid analog. There are many amino acids beyond the standard 20 (Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and VaI). Some are naturally-occurring others are not. (*See*, for example, Hunt, The Non-Protein Amino Acids: In Chemistry and Biochemistry of the Amino Acids, Barrett, Chapman and Hall, 1985). For example, an aromatic amino acid can be replaced by 3,4-dihydroxy-L-phenylalanine, 3-iodo-L-tyrosine, triiodothyronine, L-thyroxine, phenylglycine (Phg) or nor-tyrosine (norTyr). Phg and norTyr and other amino acids including Phe and Tyr can be substituted by, *e.g.*, a halogen, -CH3, -OH, -CH2NH3, -C(O)H, -CH2CH3, - CN, -CH2CH2CH3, -SH, or another group. Any amino acid can be substituted by the D-form of the amino acid. With regard to non-naturally occurring amino acids or naturally and non-naturally occurring amino acid analogs, a number of substitutions in the polypeptide and agonists described herein are possible alone or in combination. For example, glutamine residues can be substituted with gamma-Hydroxy-Glu or gamma- Carboxy-Glu. Tyrosine residues can be substituted with an alpha substituted amino acid such as L-alpha-methylphenylalanine or by analogues such as: 3-Amino-Tyr; Tyr(CH3); Tyr(PO3(CH3)2); Tyr(SO3H); beta-Cyclohexyl-Ala; beta-(l-Cyclopentenyl)-Ala; beta-Cyclopentyl-Ala; beta-Cyclopentyl-Ala 5 10 15 20 25 30 Further examples of unnatural amino acids include: an unnatural analog of tyrosine; an unnatural analogue of glutamine; an unnatural analogue of phenylalanine; an unnatural analogue of serine; an unnatural analogue of threonine; an alkyl, aryl, acyl, azido, cyano, halo, hydrazine, hydrazide, hydroxyl, alkenyl, alkynl, ether, thiol, sulfonyl, seleno, ester, thioacid, borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, hydroxylamine, keto, or amino substituted amino acid, or any combination thereof; an amino acid with a photoactivatable cross-linker; a spin-labeled amino acid; a fluorescent amino acid; an amino acid with a novel functional group; an amino acid that covalently or noncovalently interacts with another molecule; a metal binding amino acid; an amino acid that is amidated at a site that is not naturally amidated, a metal-containing amino acid; a radioactive amino acid; a photocaged and/or photoisomerizable amino acid; a biotin or biotin-analogue containing amino acid; a glycosylated or carbohydrate modified amino acid; a keto containing amino acid; amino acids comprising polyethylene glycol or polyether; a heavy atom substituted amino acid (e.g., an amino acid containing deuterium, tritium, ¹³C, ¹⁵N, or ¹⁸O); a chemically cleavable or photocleavable amino acid; an amino acid with an elongated side chain; an amino acid containing a toxic group; a sugar substituted amino acid, e.g., a sugar substituted serine or the like; a carbon-linked sugar-containing amino acid; a redox-active amino acid; an α-hydroxy containing acid; an amino thio acid containing amino acid; an α , α disubstituted amino acid; a β amino acid; a cyclic amino acid other than proline; an O-methyl-L-tyrosine; an L-3-(2naphthyl)alanine; a 3-methyl-phenylalanine; a ρ-acetyl-L-phenylalanine; an O-4-allyl-L-tyrosine; a 4-propyl-L-tyrosine; a tri-O-acetyl-GlcNAc β -serine; an L-Dopa; a fluorinated phenylalanine; an isopropyl-L-phenylalanine; a p-azido-L-phenylalanine; a p-acyl-L-phenylalanine; a pbenzoyl-L-phenylalanine; an L-phosphoserine; a phosphonoserine; a phosphonotyrosine; a piodo-phenylalanine; a 4-fluorophenylglycine; a p-bromophenylalanine; a p-amino-Lphenylalanine; an isopropyl-L-phenylalanine; L-3-(2-naphthyl)alanine; D- 3-(2-naphthyl)alanine (dNal); an amino-, isopropyl-, or O-allyl-containing phenylalanine analogue; a dopa, 0-methyl-L-tyrosine; a glycosylated amino acid; a p-(propargyloxy)phenylalanine; dimethyl-Lysine; hydroxy-proline; mercaptopropionic acid; methyl-lysine; 3-nitro-tyrosine; norleucine; pyroglutamic acid; Z (Carbobenzoxyl); ε-Acetyl-Lysine; β-alanine; aminobenzoyl derivative; aminobutyric acid (Abu); citrulline; aminohexanoic acid; aminoisobutyric acid (AIB); cyclohexylalanine; d-cyclohexylalanine; hydroxyproline; nitro-arginine; nitro-phenylalanine; nitro-tyrosine; norvaline; octahydroindole carboxylate; ornithine (Orn); penicillamine (PEN); tetrahydroisoquinoline; acetamidomethyl protected amino acids and pegylated amino acids. Further examples of unnatural amino acids and amino acid analogs can be found in U.S. 20030108885, U.S. 20030082575, US20060019347 (paragraphs 410-418) and the references cited therein. The polypeptides of the invention can include further modifications including those described in US20060019347, paragraph 589. Exempary GCRA peptides which include a nonnaturally occurring amino acid include for example SP-368 and SP-369. 5 10 15 20 25 30 In some embodiments, an amino acid can be replaced by a naturally-occurring, non-essential amino acid, *e.g.*, taurine. Alternatively, the GCRA peptides are cyclic peptides. GCRA cyclic peptide are prepared by methods known in the art. For example, macrocyclization is often accomplished by forming an amide bond between the peptide N- and C-termini, between a side chain and the N- or C-terminus [e.g., with K₃Fe(CN)₆ at pH 8.5] (Samson et al., Endocrinology, 137: 5182-5185 (1996)), or between two amino acid side chains, such as cysteine. See, e.g., DeGrado, Adv Protein Chem, 39: 51-124 (1988). In various aspects the GCRA peptides are [4,12; 7,15] bicycles. In some GCRA peptides one or both members of one or both pairs of Cys residues which normally form a disulfide bond can be replaced by homocysteine, penicillamine, 3-mercaptoproline (Kolodziej et al. 1996 Int J Pept Protein Res 48:274); β , β dimethylcysteine (Hunt et al. 1993 Int JPept Protein Res 42:249) or diaminopropionic acid (Smith et al. 1978 J Med Chem 2 1:117) to form alternative internal cross-links at the positions of the normal disulfide bonds. In addition, one or more disulfide bonds can be replaced by alternative covalent cross-links, *e.g.*, an amide linkage (-CH2CH(O)NHCH 2- or -CH2NHCH(O)CH 2-), an ester linkage, a thioester linkage, a lactam bridge, a carbamoyl linkage, a urea linkage, a thiourea linkage, a phosphonate ester linkage, an alkyl linkage (-CH2CH2CH2CH2-), an alkenyl linkage(-CH2CH2CH2-), an ether linkage (-CH2CH2OCH2- or -CH2OCH2CH2-), a thioether linkage (-CH2CH2SCH2- or - CH2SCH2CH2-), an amine linkage (-CH2CH2NHCH2- or -CH2NHCH 2CH2-) or a thioamide linkage (-CH2CH(S)HNHCH 2- or -CH2NHCH(S)CH 2-). For example, Ledu et al. (Proc Nat'l Acad. Sci. 100:11263-78, 2003) describe methods for preparing lactam and amide cross-links. Exemplary GCRA peptides which include a lactam bridge include for example SP-370. The GCRA peptides can have one or more conventional polypeptide bonds replaced by an alternative bond. Such replacements can increase the stability of the polypeptide. For example, replacement of the polypeptide bond between a residue amino terminal to an aromatic residue (*e.g.* Tyr, Phe, Trp) with an alternative bond can reduce cleavage by carboxy peptidases and may increase half-life in the digestive tract. Bonds that can replace polypeptide bonds include: a retro-inverso bond (C(O)-NH instead of NH-C(O); a reduced amide bond (NH-CH2); a thiomethylene bond (S-CH2 or CH2-S); an oxomethylene bond (0-CH 2 or CH2-O); an ethylene bond (CH2-CH2); a thioamide bond (C(S)-NH); a trans-olefine bond (CH=CH); a fiuoro substituted trans-olefine bond (CF=CH); a ketomethylene bond (C(O)-CHR or CHR-C(O) wherein R is H or CH3; and a fluoro-ketomethylene bond (C(O)-CFR or CFR-C(O) wherein R is H or CH3. The GCRA peptides can be modified using standard modifications. Modifications may occur at the amino (N-), carboxy (C-) terminus, internally or a combination of any of the preceding. In one aspect described herein, there may be more than one type of modification on the polypeptide. Modifications include but are not limited to: acetylation, amidation, biotinylation, cinnamoylation,
farnesylation, formylation, myristoylation, palmitoylation, phosphorylation (Ser, Tyr or Thr), stearoylation, succinylation, sulfurylation and cyclisation (via disulfide bridges or amide cyclisation), and modification by Cys3 or Cys5. The GCRA peptides described herein may also be modified by 2, 4-dinitrophenyl (DNP), DNP-lysine, modification by 7-Amino-4-methyl- coumarin (AMC), flourescein, NBD (7-Nitrobenz-2-Oxa-l,3-Diazole), p-nitro-anilide, rhodamine B, EDANS (5-((2-aminoethyl)amino)naphthalene-1- sulfonic acid), dabcyl, dabsyl, dansyl, texas red, FMOC, and Tamra (Tetramethylrhodamine). The GCRA peptides described herein may also be conjugated to, for example, polyethylene glycol (PEG); alkyl groups (e.g., C1-C20 straight or branched alkyl groups); fatty acid radicals; combinations of PEG, alkyl groups and fatty acid radicals (*See*, U.S. Patent 6,309,633; Soltero et al., 2001 Innovations in Pharmaceutical Technology 106-110); BSA and KLH (Keyhole Limpet Hemocyanin). The addition of PEG and other polymers which can be used to modify polypeptides of the invention is described in US20060 19347 section IX. Also included in the invention are peptides that biologically or functional equivalent to the peptides described herein. The term "biologically equivalent" or functional equivalent" is intended to mean that the compositions of the present invention are capable of demonstrating some or all of the cGMP production modulatory effects. GCRA peptides can also include derivatives of GCRA peptides which are intended to include hybrid and modified forms of GCRA peptides in which certain amino acids have been deleted or replaced and modifications such as where one or more amino acids have been changed to a modified amino acid or unusual amino acid and modifications such as glycosylation so long the modified form retains the biological activity of GCRA peptides. By retaining the biological activity, it is meant that cGMP and or apoptosis is induced by the GCRA peptide, although not necessarily at the same level of potency as that of a naturally-occurring GCRA peptide identified. Preferred variants are those that have conservative amino acid substitutions made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (*e.g.*, lysine, arginine, histidine), acidic side chains (*e.g.*, aspartic acid, glutamic acid), uncharged polar side chains (*e.g.*, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (*e.g.*, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (*e.g.*, threonine, valine, isoleucine) and aromatic side chains (*e.g.*, tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a GCRA polypeptide is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a GCRA coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened to identify mutants that retain activity. Also included within the meaning of substantially homologous is any GCRA peptide which may be isolated by virtue of cross-reactivity with antibodies to the GCRA peptide. #### PREPARATION OF GCRA PEPTIDES 5 10 15 20 25 30 GCRA peptides are easily prepared using modern cloning techniques, or may be synthesized by solid state methods or by site-directed mutagenesis. A GCRA peptide may include dominant negative forms of a polypeptide. Chemical synthesis may generally be performed using standard solution phase or solid phase peptide synthesis techniques, in which a peptide linkage occurs through the direct condensation of the amino group of one amino acid with the carboxy group of the other amino acid with the elimination of a water molecule. Peptide bond synthesis by direct condensation, as formulated above, requires suppression of the reactive character of the amino group of the first and of the carboxyl group of the second amino acid. The masking substituents must permit their ready removal, without inducing breakdown of the labile peptide molecule. In solution phase synthesis, a wide variety of coupling methods and protecting groups may be used (*See*, Gross and Meienhofer, eds., "The Peptides: Analysis, Synthesis, Biology," Vol. 1-4 (Academic Press, 1979); Bodansky and Bodansky, "The Practice of Peptide Synthesis," 2d ed. (Springer Verlag, 1994)). In addition, intermediate purification and linear scale up are possible. Those of ordinary skill in the art will appreciate that solution synthesis requires consideration of main chain and side chain protecting groups and activation method. In addition, careful segment selection is necessary to minimize racemization during segment condensation. Solubility considerations are also a factor. Solid phase peptide synthesis uses an insoluble polymer for support during organic synthesis. The polymer-supported peptide chain permits the use of simple washing and filtration steps instead of laborious purifications at intermediate steps. Solid-phase peptide synthesis may generally be performed according to the method of Merrifield et al., J. Am. Chem. Soc., 1963, 85:2149, which involves assembling a linear peptide chain on a resin support using protected amino acids. Solid phase peptide synthesis typically utilizes either the Boc or Fmoc strategy, which are well known in the art. 5 10 15 20 25 30 Those of ordinary skill in the art will recognize that, in solid phase synthesis, deprotection and coupling reactions must go to completion and the side-chain blocking groups must be stable throughout the synthesis. In addition, solid phase synthesis is generally most suitable when peptides are to be made on a small scale. Acetylation of the N-terminal can be accomplished by reacting the final peptide with acetic anhydride before cleavage from the resin. C-amidation is accomplished using an appropriate resin such as methylbenzhydrylamine resin using the Boc technology. Alternatively the GCRA peptides are produced by modern cloning techniques. For example, the GCRA peptides are produced either in bacteria including, without limitation, E. coli, or in other existing systems for polypeptide or protein production (*e.g.*, Bacillus subtilis, baculovirus expression systems using Drosophila Sf9 cells, yeast or filamentous fungal expression systems, mammalian cell expression systems), or they can be chemically synthesized. If the GCRA peptide or variant peptide is to be produced in bacteria, *e.g.*, E. coli, the nucleic acid molecule encoding the polypeptide may also encode a leader sequence that permits the secretion of the mature polypeptide from the cell. Thus, the sequence encoding the polypeptide can include the pre sequence and the pro sequence of, for example, a naturally-occurring bacterial ST polypeptide. The secreted, mature polypeptide can be purified from the culture medium. The sequence encoding a GCRA peptide described herein can be inserted into a vector capable of delivering and maintaining the nucleic acid molecule in a bacterial cell. The DNA molecule may be inserted into an autonomously replicating vector (suitable vectors include, for example, pGEM3Z and pcDNA3, and derivatives thereof). The vector nucleic acid may be a bacterial or bacteriophage DNA such as bacteriophage lambda or M13 and derivatives thereof. Construction of a vector containing a nucleic acid described herein can be followed by transformation of a host cell such as a bacterium. Suitable bacterial hosts include but are not limited to, E. coli, B subtilis, Pseudomonas, Salmonella. The genetic construct also includes, in addition to the encoding nucleic acid molecule, elements that allow expression, such as a promoter and regulatory sequences. The expression vectors may contain transcriptional control sequences that control transcriptional initiation, such as promoter, enhancer, operator, and repressor sequences. 5 10 15 20 25 A variety of transcriptional control sequences are well known to those in the art. The expression vector can also include a translation regulatory sequence (*e.g.*, an untranslated 5' sequence, an untranslated 3' sequence, or an internal ribosome entry site). The vector can be capable of autonomous replication or it can integrate into host DNA to ensure stability during polypeptide production. The protein coding sequence that includes a GCRA peptide described herein can also be fused to a nucleic acid encoding a polypeptide affinity tag, *e.g.*, glutathione S-transferase (GST), maltose E binding protein, protein A, FLAG tag, hexa-histidine, myc tag or the influenza HA tag, in order to facilitate purification. The affinity tag or reporter fusion joins the reading frame of the polypeptide of interest to the reading frame of the gene encoding the affinity tag such that a translational fusion is generated. Expression of the fusion gene results in translation of a single polypeptide that includes both the polypeptide of interest and the affinity tag. In some instances where affinity tags are utilized, DNA sequence encoding a protease recognition site will be fused between the reading frames for the affinity tag and the polypeptide of interest. Genetic constructs and methods suitable for production of immature and mature forms of the GCRA peptides and variants described herein in protein expression systems other than bacteria, and well known to those skilled in the art, can also be used to produce polypeptides in a biological system. The peptides disclosed herein may be modified by attachment of a second molecule that confers a desired property upon
the peptide, such as increased half-life in the body, for example, pegylation. Such modifications also fall within the scope of the term "variant" as used herein. #### THERAPEUTIC METHODS 5 10 15 20 25 30 The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated that is mediated by guanylate cyclase receptor agonists. Disorders mediated by the guanylate cyclase receptor agonists include gastrointestinal disorders, inflammatory disorders, lung disorders, cancer, cardiac disorders, eye disorders, oral disorders, blood disorders, liver disorders, skin disorders, prostate disorders, endocrine disorders, increasing gastrointestinal motility and obesity. Gastointestinal disorders include for example, irritable bowel syndrome (IBS), nonulcer dyspepsia, chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudoobstruction, duodenogastric reflux, gastroesophageal reflux disease (GERD)ileus (e.g., postoperative ileus), gastroparesis, heartburn (high acidity in the GI tract), constipation (e.g., constipation associated with use of medications such as opioids, osteoarthritis drugs, osteoporosis drugs; post surigical constipation, constipation associated with neuropathic disorders. Inflammatory disorders include tissue and organ inflammation such as kidney inflammation (e.g., nephritis), gastrointestinal system inflammation (e.g., Crohn's disease and ulcerative colitis); pancreatic inflammation (e.g., pancreatis), lung inflammation (e.g., bronchitis or asthma) or skin inflammation (e.g., psoriasis, eczema). Lung Disorders include for example chronic obstructive pulmonary disease (COPD), and fibrosis. Cancer includes tissue and organ carcinogenesis including metatases such as for example gastrointestinal cancer, (e.g., gastric cancer, esophageal cancer, pancreatic cancer colorectal cancer, intestinal cancer, anal cancer, liver cancer, gallbladder cancer, or colon cancer; lung cancer; thyroid cancer; skin cancer (e.g., melanoma); oral cancer; urinary tract cancer (e.g. bladder cancer or kidney cancer); blood cancer (e.g. myeloma or leukemia) or prostate cancer. Cardiac disorders include for example, congestive heart failure, trachea cardia hypertension, high cholesterol, or high tryglycerides. Liver disorders include for example cirrhosis and fibrosis. Eye disorders include for example increased intra-ocular pressure, glaucoma, dry eyes retinal degeneration, disorders of tear glands or eye inflammation. Skin disorders include for example xerosis. Oral disorders include for example dry mouth (xerostomia), Sjögren's syndrome, gum diseases (e.g., periodontal disease), or salivary gland duct blockage or malfunction. Prostate disorders include for example benign prostatic hyperplasia (BPH). Endocrine disorders include for example diabetes mellitus, hyperthyroidism, hypothyroidism, and cystic fibrosis. The term "treatment" refers to reducing or alleviating symptoms in a subject, preventing symptoms from worsening or progressing, and/or preventing disease in a subject who is free therefrom. For a given subject, improvement in a symptom, its worsening, regression, or progression may be determined by any objective or subjective measure. Efficacy of the treatment may be measured as an improvement in morbidity or mortality (*e.g.*, lengthening of survival curve for a selected population). Thus, effective treatment would include therapy of existing disease, control of disease by slowing or stopping its progression, prevention of disease occurrence, reduction in the number or severity of symptoms, or a combination thereof. The effect may be shown in a controlled study using one or more statistically significant criteria. Intracellular cGMP induced by exposing, *e.g.*, contacting a tissue (*e.g.*, gastrointestinals tissue) or cell with GCRA agonists. GC-C receptors are expressed throughout the GI tract starting from esophagus, duodenum, jejunum, ilium, caecum and colon. Human colon cancer cell lines (T81, CaCo-2 and HT-29) also express GC-C receptors. By inducing is meant an increase in cGMP production compared to a tissue or cell that has not been in contact with GCRA peptide or variant. Tissues or cells are directly contacted with a GCRA peptide or variant. Alternatively, the GCRA peptide or variant is administered systemically. GCRA peptide or variant are administered in an amount sufficient to increase intracellular cGMP concentration. cGMP production is measured by a cell-based assay known in the art (25). Disorders are treated, prevented or alleviated by administering to a subject, *e.g.*, a mammal such as a human in need thereof, a therapeutically effective dose of a GCRA peptide. The GCRA peptides may be in a pharmaceutical composition in unit dose form, together with one or more pharmaceutically acceptable excipients. The term "unit dose form" refers to a single drug delivery entity, *e.g.*, a tablet, capsule, solution or inhalation formulation. The amount of peptide present should be sufficient to have a positive therapeutic effect when administered to a patient (typically, between 10 µg and 3 g). What constitutes a "positive therapeutic effect" will depend upon the particular condition being treated and will include any significant improvement in a condition readily recognized by one of skill in the art. The GCRA peptides can be administered alone or in combination with other agents. For example the GCRA peptides can be administered in combination with inhibitors of cGMP dependent phosphodiesterase, such as, for example, suldinac sulfone, zaprinast, motapizone, vardenafil or sildenifil; one or more other chemotherapeutic agents; or anti-inflammatory drugs such as, for example, steroids or non-steroidal anti-inflammatory drugs (NSAIDS), such as aspirin. 5 10 15 20 25 Combination therapy can be achieved by administering two or more agents, *e.g.*, a GCRA peptide described herein and another compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. The GCRA peptides described herein may be combined with phosphodiesterase inhibitors, *e.g.*, sulindae sulfone, Zaprinast, sildenafil, vardenafil or tadalafil to further enhance levels of cGMP in the target tissues or organs. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, *e.g.*, in the order X-Y-X, X-X-Y, Y-X-Y,Y-Y-X,X-X-Y-Y, etc. Combination therapy can also include the administration of two or more agents via different routes or locations. For example, (a) one agent is administered orally and another agents is administered intravenously or (b) one agent is administered orally and another is administered locally. In each case, the agents can either simultaneously or sequentially. Approximated dosages for some of the combination therapy agents described herein are found in the "BNF Recommended Dose" column of tables on pages 11-17 of WO01/76632 (the data in the tables being attributed to the March 2000 British National Formulary) and can also be found in other standard formularies and other drug prescribing directories. For some drugs, the customary presecribed dose for an indication will vary somewhat from country to country. The GCRA peptides, alone or in combination, can be combined with any pharmaceutically acceptable carrier or medium. Thus, they can be combined with materials that do not produce an adverse, allergic or otherwise unwanted reaction when administered to a patient. The carriers or mediums used can include solvents, dispersants, coatings, absorption promoting agents, controlled release agents, and one or more inert excipients (which include starches, polyols, granulating agents, microcrystalline cellulose (*e.g.* celphere, Celphere beads®), diluents, lubricants, binders, disintegrating agents, and the like), etc. If desired, tablet dosages of the disclosed compositions may be coated by standard aqueous or nonaqueous techniques. A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, *e.g.*, intravenous, intradermal, subcutaneous, oral (*e.g.*, inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers
such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin. Sterile injectable solutions can be prepared by incorporating the active compound (*e.g.*, a GCRA agonist) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. Oral compositions generally include an inert diluent or an edible carrier. Such as mannitol, fructooligosaccharides, polyethylene glycol and other excepients. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. 5 10 15 20 25 30 For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, *e.g.*, a gas such as carbon dioxide, or a nebulizer. Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. The compounds can also be prepared in the form of suppositories (*e.g.*, with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery. In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811, incorporated fully herein by reference. It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved. The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration. 5 10 15 20 25 30 Compositions of the present invention may also optionally include other therapeutic ingredients, anti-caking agents, preservatives, sweetening agents, colorants, flavors, desiccants, plasticizers, dyes, glidants, anti-adherents, anti-static agents, surfactants (wetting agents), anti-oxidants, film- coating agents, and the like. Any such optional ingredient must be compatible with the compound described herein to insure the stability of the formulation. The composition may contain other additives as needed, including for example lactose, glucose, fructose, galactose, trehalose, sucrose, maltose, raffnose, maltitol, melezitose, stachyose, lactitol, palatinite, starch, xylitol, mannitol, myoinositol, and the like, and hydrates thereof, and amino acids, for example alanine, glycine and betaine, and polypeptides and proteins, for example albumen. Examples of excipients for use as the pharmaceutically acceptable carriers and the pharmaceutically acceptable inert carriers and the aforementioned additional ingredients include, but are not limited to binders, fillers, disintegrants, lubricants, anti-microbial agents, and coating agents such as: BINDERS: corn starch, potato starch, other starches, gelatin, natural and synthetic gums such as acacia, xanthan, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone (e.g., povidone, crospovidone, copovidone, etc), methyl cellulose, Methocel, pre-gelatinized starch (e.g., STARCH 1500® and STARCH 1500 LM®, sold by Colorcon, Ltd.), hydroxypropyl methyl cellulose, microcrystalline cellulose (FMC Corporation, Marcus Hook, PA, USA), or mixtures thereof, FILLERS: talc, calcium carbonate (e.g., granules or powder), dibasic calcium phosphate, tribasic calcium phosphate, calcium sulfate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, dextrose, fructose, honey, lactose anhydrate, lactose monohydrate, lactose and aspartame, lactose and cellulose, lactose and microcrystalline cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose & amp; guar gum, molasses, sucrose, or mixtures thereof, DISINTEGRANTS: agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, clays, other algins, other celluloses, gums (like gellan), low-substituted hydroxypropyl cellulose, or mixtures thereof, LUBRICANTS: calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, sodium stearyl fumarate, vegetable based fatty acids lubricant, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil), zinc stearate, ethyl oleate, ethyl laurate, agar, syloid silica gel (AEROSIL 200, W.R. Grace Co., Baltimore, MD USA), a coagulated aerosol of synthetic
silica (Deaussa Co., Piano, TX USA), a pyrogenic silicon dioxide (CAB-O-SIL, Cabot Co., Boston, MA USA), or mixtures thereof, ANTI-CAKING AGENTS: calcium silicate, magnesium silicate, silicon dioxide, colloidal silicon dioxide, talc, or mixtures thereof, ANTIMICROBIAL AGENTS: benzalkonium chloride, benzethonium chloride, benzoic acid, benzyl alcohol, butyl paraben, cetylpyridinium chloride, cresol, chlorobutanol, dehydroacetic acid, ethylparaben, methylparaben, phenol, phenylethyl alcohol, phenoxyethanol, phenylmercuric acetate, phenylmercuric nitrate, potassium sorbate, propylparaben, sodium benzoate, sodium dehydroacetate, sodium propionate, sorbic acid, thimersol, thymo, or mixtures thereof, and COATING AGENTS: sodium carboxymethyl cellulose, cellulose acetate phthalate, ethylcellulose, gelatin, pharmaceutical glaze, hydroxypropyl cellulose, hydroxypropyl methylcellulose (hypromellose), hydroxypropyl methyl cellulose phthalate, methylcellulose, polyethylene glycol, polyvinyl acetate phthalate, shellac, sucrose, titanium dioxide, carnauba wax, microcrystalline wax, gellan gum, maltodextrin, methacrylates, microcrystalline cellulose and carrageenan or mixtures thereof. 5 10 15 20 25 30 The formulation can also include other excipients and categories thereof including but not limited to L-histidine, Pluronic®, Poloxamers (such as Lutrol® and Poloxamer 188), ascorbic acid, glutathione, permeability enhancers (e.g. lipids, sodium cholate, acylcarnitine, salicylates, mixed bile salts, fatty acid micelles, chelators, fatty acid, surfactants, medium chain glycerides), protease inhibitors (e.g. soybean trypsin inhibitor, organic acids), pH lowering agents and absorption enhancers effective to promote bioavailability (including but not limited to those described in US6086918 and US5912014), creams and lotions (like maltodextrin and carrageenans); materials for chewable tablets (like dextrose, fructose, lactose monohydrate, lactose and aspartame, lactose and cellulose, maltodextrin, maltose, mannitol, microcrystalline cellulose and guar gum, sorbitol crystalline); parenterals (like mannitol and povidone); plasticizers (like dibutyl sebacate, plasticizers for coatings, polyvinylacetate phthalate); powder lubricants (like glyceryl behenate); soft gelatin capsules (like sorbitol special solution); spheres for coating (like sugar spheres); spheronization agents (like glyceryl behenate and microcrystalline cellulose); suspending/gelling agents (like carrageenan, gellan gum, mannitol, microcrystalline cellulose, povidone, sodium starch glycolate, xanthan gum); sweeteners (like aspartame, aspartame and lactose, dextrose, fructose, honey, maltodextrin, maltose, mannitol, molasses, sorbitol crystalline, sorbitol special solution, sucrose); wet granulation agents (like calcium carbonate, lactose anhydrous, lactose monohydrate, maltodextrin, mannitol, microcrystalline cellulose, povidone, starch), caramel, carboxymethylcellulose sodium, cherry cream flavor and cherry flavor, citric acid anhydrous, citric acid, confectioner's sugar, D&C Red No. 33, D&C Yellow #10 Aluminum Lake, disodium edetate, ethyl alcohol 15%, FD&C Yellow No. 6 aluminum lake, FD&C Blue # 1 Aluminum Lake, FD&C Blue No. 1, FD&C blue no. 2 aluminum lake, FD&C Green No.3, FD&C Red No. 40, FD&C Yellow No. 6 Aluminum Lake, FD&C Yellow No. 6, FD&C Yellow No.10, glycerol palmitostearate, glyceryl monostearate, indigo carmine, lecithin, manitol, methyl and propyl parabens, mono ammonium glycyrrhizinate, natural and artificial orange flavor, pharmaceutical glaze, poloxamer 188, Polydextrose, polysorbate 20, polysorbate 80, polyvidone, pregelatinized corn starch, pregelatinized starch, red iron oxide, saccharin sodium, sodium carboxymethyl ether, sodium chloride, sodium citrate, sodium phosphate, strawberry flavor, synthetic black iron oxide, synthetic red iron oxide, titanium dioxide, and white wax. 5 10 15 20 25 30 Solid oral dosage forms may optionally be treated with coating systems (*e.g.* Opadry® fx film coating system, for example Opadry® blue (OY-LS-20921), Opadry® white (YS-2-7063), Opadry® white (YS- 1-7040), and black ink (S- 1-8 106). The agents either in their free form or as a salt can be combined with a polymer such as polylactic-glycoloic acid (PLGA), poly-(I)-lactic-glycolic-tartaric acid (P(I)LGT) (WO 01/12233), polyglycolic acid (U.S. 3,773,919), polylactic acid (U.S. 4,767,628), poly(\varepsilon-caprolactone) and poly(alkylene oxide) (U.S. 20030068384) to create a sustained release formulation. Such formulations can be used to implants that release a polypeptide or another agent over a period of a few days, a few weeks or several months depending on the polymer, the 5 10 15 20 25 30 particle size of the polymer, and the size of the implant (See, e.g., U.S. 6,620,422). Other sustained release formulations and polymers for use in are described in EP 0 467 389 A2, WO 93/24150, U.S. 5,612,052, WO 97/40085, WO 03/075887, WO 01/01964A2, U.S. 5,922,356, WO 94/155587, WO 02/074247A2, WO 98/25642, U.S. 5,968,895, U.S. 6,180,608, U.S. 20030171296. U.S. 20020176841, U.S. 5,672,659, U.S. 5,893,985, U.S. 5,134,122, U.S. 5,192,741, U.S. 5,192,741, U.S. 4,668,506, U.S. 4,713,244, U.S. 5,445,832 U.S. 4,931,279, U.S. ,5, 980,945, WO 02/058672, WO 9726015, WO 97/04744, and US200200 19446. In such sustained release formulations microparticles (Delie and Blanco-Prieto 2005 Molecule 10:65-80) of polypeptide are combined with microparticles of polymer. One or more sustained release implants can be placed in the large intestine, the small intestine or both. U.S. 6,011,0 1 and WO 94/06452 describe a sustained release formulation providing either polyethylene glycols (i.e. PEG 300 and PEG 400) or triacetin. WO 03/053401 describes a formulation which may both enhance bioavailability and provide controlled releaseof the agent within the GI tract. Additional controlled release formulations are described in WO 02/38129, EP 326151, U.S. 5,236,704, WO 02/30398, WO 98/13029; U.S. 20030064105, U.S. 20030138488A1, U.S. 20030216307A1, U.S. 6,667,060, WO 01/49249, WO 01/49311, WO 01/49249, WO 01/49311, and U.S. 5,877,224 materials which may include those described in WO04041195 (including the seal and enteric coating described therein) and pH-sensitive coatings that achieve delivery in the colon including those described in US4,910,021 and WO9001329. US4910021 describes using a pHsensitive material to coat a capsule. WO9001329 describes using pH-sensitive coatings on beads containing acid, where the acid in the bead core prolongs dissolution of the pH-sensitive coating. U. S. Patent No. 5,175,003 discloses a dual mechanism polymer mixture composed of pHsensitive enteric materials and film-forming plasticizers capable of conferring permeability to the enteric material, for use in drug-delivery systems; a matrix pellet composed of a dual mechanism polymer mixture permeated with a drug and sometimes covering a pharmaceutically neutral nucleus; a membrane- coated pellet comprising a matrix pellet coated with a dual mechanism polymer mixture envelope of the same or different composition; and a pharmaceutical dosage form containing matrix pellets. The matrix pellet releases acid-soluble drugs by diffusion in acid pH and by disintegration at pH levels of nominally about 5.0 or higher. The GCRA peptideds described herein may be formulated in the pH triggered targeted control release systems described in WO04052339. The agents described herein may be formulated according to the methodology described in any of WO03105812 (extruded hyrdratable polymers); WO0243767 (enzyme cleavable membrane translocators); WO03007913 and WO03086297 (mucoadhesive systems); WO02072075 (bilayer laminated formulation comprising pH lowering agent and absorption enhancer); WO04064769 (amidated polypeptides); WO05063156 (solid lipid suspension with pseudotropic and/or thixotropic properties upon melting); WO03035029 and WO03035041 (erodible, gastric retentive dosage forms); US5007790 and US5972389 (sustained release dosage forms); WO041 1271 1 (oral extended release compositions); WO05027878, WO02072033, and WO02072034 (delayed release compositions with natural or synthetic gum); WO05030182 (controlled release formulations with an ascending rate of release); WO05048998 (microencapsulation system); US Patent 5,952,314 (biopolymer); US5,108,758 (glassy amylose matrix delivery); US 5,840,860 (modified starch based delivery). JP10324642 (delivery system comprising chitosan and gastric resistant material such as wheat gliadin or zein); US5,866,619 and US6,368,629 (saccharide containing polymer); US 6,531,152 (describes a drug delivery system containing a water soluble core (Ca pectinate or other water-insoluble polymers) and outer coat which bursts (e.g. hydrophobic polymer-Eudragrit)); US 6,234,464; US 6,403,130 (coating with polymer containing casein and high methoxy pectin; WO0174 175 (Maillard reaction product); WO05063206 (solubility increasing formulation); WO040 19872 (transferring fusion proteins). 5 10 15 20 25 30 The GCRA peptides described herein may be formulated using gastrointestinal retention system technology (GIRES; Merrion Pharmaceuticals). GIRES comprises a controlled-release dosage form inside an inflatable pouch, which is placed in a drug capsule for oral administration. Upon dissolution of the capsule, a gas-generating system inflates the pouch in the stomach where it is retained for 16-24 hours, all the time releasing agents described herein. The GCRA peptides described herein can be formulated in an osmotic device including the ones disclosed in US4,503,030, US5,609,590 and US5,358,502. US4,503,030 discloses an osmotic device for dispensing a drug to certain pH regions of the gastrointestinal tract. More particularly, the invention relates to an osmotic device comprising a wall formed of a semi-permeable pH sensitive composition that surrounds a compartment containing a drug, with a passageway
through the wall connecting the exterior of the device with the compartment. The device delivers the drug at a controlled rate in the region of the gastrointestinal tract having a pH of less than 3.5, and the device self- destructs and releases all its drug in the region of the gastrointestinal tract having a pH greater than 3.5, thereby providing total availability for drug absorption. U.S. Patent Nos. 5,609,590 and 5, 358,502 disclose an osmotic bursting device for dispensing a beneficial agent to an aqueous environment. The device comprises a beneficial agent and osmagent surrounded at least in part by a semi-permeable membrane. The beneficial agent may also function as the osmagent. The semi-permeable membrane is permeable to water and substantially impermeable to the beneficial agent and osmagent. A trigger means is attached to the semi-permeable membrane (e.g.,joins two capsule halves). The trigger means is activated by a pH of from 3 to 9 and triggers the eventual, but sudden, delivery of the beneficial agent. These devices enable the pH-triggered release of the beneficial agent core as a bolus by osmotic bursting. ### **EXEMPLARY AGENTS FOR COMBINATION THERAPY** Analgesic Agents 5 10 15 20 25 30 The GCRA peptides described herein can be used in combination therapy with an analgesic agent, e.g., an analgesic compound or an analgesic polypeptide. These polypeptides and compounds can be administered with the GCRA peptides described herein (simultaneously or sequentially). They can also be optionally covalently linked or attached to an agent described herein to create therapeutic conjugates. Among the useful analgesic agents are: Ca channel blockers, 5HT receptor antagonists (for example 5HT3, 5HT4 and 5HTl receptor antagonists), opioid receptor agonists (loperamide, fedotozine, and fentanyl), NKl receptor antagonists, CCK receptor agonists (*e.g.*, loxiglumide), NKl receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSRI), vanilloid and cannabanoid receptor agonists, and sialorphin. Analgesics agents in the various classes are described in the literature. Among the useful analgesic polypeptides are sialorphin-related polypeptides, including those comprising the amino acid sequence QHNPR (SEQ ID NO:), including: VQHNPR (SEQ ID NO:); VRQHNPR (SEQ ID NO:); VRGPQHNPR (SEQ ID NO:); VRGPQHNPR (SEQ ID NO:); VRGPRQHNPR (SEQ ID NO:); and RQHNPR (SEQ ID NO:). Sialorphin-related polypeptides bind to neprilysin and inhibit neprilysin- mediated breakdown of substance P and Met-enkephalin. Thus, compounds or polypeptides that are inhibitors of neprilysin are useful analgesic agents which can be administered with the polypeptides described herein in a co-therapy or linked to the polypeptides described herein, *e.g.*, by a covalent bond. Sialophin and related polypeptides are described in U.S. Patent 6,589,750; U.S. 20030078200 Al; and WO 02/051435 A2. 5 10 15 20 25 30 Opioid receptor antagonists and agonists can be administered with the GCRA peptides described herein in co-therapy or linked to the agent described herein, e.g., by a covalent bond. For example, opioid receptor antagonists such as naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, and nor-binaltorphimine are thought to be useful in the treatment of IBS. It can be useful to formulate opioid antagonists of this type is a delayed and sustained release formulation such that initial release of the antagonist is in the mid to distal small intestine and/or ascending colon. Such antagonists are described in WO 01/32180 A2. Enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-Lhomoserine) is an agonist of the mu and delta opioid receptors and is thought to be useful for increasing intestinal motility {Eur. J. Pharm. 219:445, 1992), and this polypeptide can be used in conjunction with the polypeptides described herein. Also useful is trimebutine which is thought to bind to mu/delta/kappa opioid receptors and activate release of motilin and modulate the release of gastrin, vasoactive intestinal polypeptide, gastrin and glucagons. Kappa opioid receptor agonists such as fedotozine, asimadoline, and ketocyclazocine, and compounds described in WO03/097051 and WO05/007626 can be used with or linked to the polypeptides described herein. In addition, mu opioid receptor agonists such as morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH 2; WO 01/019849 Al) and loperamide can be used. Tyr-Arg (kyotorphin) is a dipeptide that acts by stimulating the release of metenkephalins to elicit an analgesic effect (J. Biol. Chem 262:8165, 1987). Kyotorphin can be used with or linked to the GCRA peptides described herein. Chromogranin-derived polypeptide (CgA 47-66; *See, e.g.*, Ghia et al. 2004 Regulatory polypeptides 119:199) can be used with or linked to the GCRA peptides described herein. CCK receptor agonists such as caerulein from amphibians and other species are useful analgesic agents that can be used with or linked to the GCRA peptides described herein. Conotoxin polypeptides represent a large class of analgesic polypeptides that act at voltage gated calcium channels, NMDA receptors or nicotinic receptors. These polypeptides can be used with or linked to the polypeptides described herein. Peptide analogs of thymulin (FR Application 2830451) can have analgesic activity and can be used with or linked to the polypeptides described herein. CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R- isomer of loxiglumide) (WO 88/05774) can have analysesic activity and can be used with or linked to the polypeptides described herein. Other useful analgesic agents include 5-HT4 agonists such as tegaserod (Zelnorm®), mosapride, metoclopramide, zacopride, cisapride, renzapride, benzimidazolone derivatives such as BIMU 1 and BIMU 8, and lirexapride. Such agonists are described in: EP1321 142 Al, WO 03/053432A1, EP 505322 Al, EP 505322 Bl, US 5,510,353, EP 507672 Al, EP 507672 Bl, and US 5,273,983. 5 10 15 20 25 Calcium channel blockers such as ziconotide and related compounds described in, for example, EP625162B1, US 5,364,842, US 5,587,454, US 5,824,645, US 5,859,186, US 5,994,305, US 6087,091, US 6,136,786, WO 93/13128 Al, EP 1336409 Al, EP 835126 Al, EP 835126 Bl, US 5,795,864, US 5,891,849, US 6,054,429, WO 97/01351 Al, can be used with or linked to the polypeptides described herein. Various antagonists of the NK-I, NK-2, and NK-3 receptors (for a review see Giardina et al. 2003.Drugs 6:758) can be can be used with or linked to the polypeptides described herein. NKl receptor antagonists such as: aprepitant (Merck & Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-48968 (Sanofi Synthelabo), CP-122,721 (Pfizer, Inc.), GW679769 (Glaxo Smith Kline), TAK-637 (Takeda/Abbot), SR-14033, and related compounds described in, for example, EP 873753 Al, US 20010006972 Al, US 20030109417 Al, WO 01/52844 Al, can be used with or linked to the polypeptides described herein. NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi- Synthelabo), GW597599 (Glaxo Smith Kline), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc) can be used with or linked to the polypeptides described herein. NK3 receptor antagonists such as osanetant (SR-142801; Sanoft-Synthelabo), SSR-241586, talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 Al, WO 97/21680 Al, US 6,277,862, WO 98/1 1090, WO 95/28418, WO 97/19927, and Boden et al. (J Med Chem. 39:1664-75, 1996) can be used with or linked to the polypeptides described herein. Norepinephrine-serotonin reuptake inhibitors (NSRI) such as milnacipran and related compounds described in WO 03/077897 Al can be used with or linked to the polypeptides described herein. Vanilloid receptor antagonists such as arvanil and related compouds described in WO 01/64212 Al can be used with or linked to the polypeptides described herein. The analgesic polypeptides and compounds can be administered with the polypeptides and agonists described herein (simultaneously or sequentially). The analgesic agents can also be covalently linked to the polypeptides and agonists described herein to create therapeutic conjugates. Where the analgesic is a polypeptide and is covalently linked to an agent described herein the resulting polypeptide may also include at least one trypsin cleavage site. When present within the polypeptide, the analgesic polypeptide may be preceded by (if it is at the carboxy terminus) or followed by (if it is at the amino terminus) a trypsin cleavage site that allows release of the analgesic polypeptide. In addition to sialorphin-related polypeptides, analgesic polypeptides include: AspPhe, endomorphin-1, endomorphin-2, nocistatin, dalargin, lupron, ziconotide, and substance P. # Agents to Treat Gastrointestinal Disorders 5 10 15 20 25 30 Examples of additional therapeutic agents to treat gastrointestinal and other disorders include agents to treat constipation (*e.g.*, a chloride channel activator such as the bicylic fatty acid, Lubiprostone (formerly known as SPI-0211; Sucampo Pharmaceuticals, Inc.; Bethesda, MD), a laxative (*e.g.* a bulk-forming laxative (*e.g.* nonstarch polysaccharides, Colonel Tablet (polycarbophil calcium), Plantago Ovata®, Equalactin® (Calcium Polycarbophil)), fiber (*e.g.* FIBERCON® (Calcium Polycarbophil), an osmotic laxative, a stimulant laxative (such as diphenylmethanes (*e.g.* bisacodyl), anthraquinones (*e.g.* cascara, senna), and surfactant laxatives (*e.g.* castor oil, docusates), an emollient/lubricating agent (such as mineral oil, glycerine, and docusates), MiraLax (Braintree Laboratories, Braintree MA), dexloxiglumide (Forest Laboratories, also known as CR 2017 Rottapharm (Rotta Research Laboratorium SpA)), saline laxatives, enemas, suppositories, and CR 3700 (Rottapharm (Rotta Research
Laboratorium SpA); acid reducing agents such as proton pump inhibitors (*e.g.*, omeprazole (Prilosec®), esomeprazole (Nexium®), lansoprazole (Prevacid®), pantoprazole (Protonix®) and rabeprazole (Aciphex®)) and Histamine H2 -receptor antagonist (also known as H2 receptor blockers including cimetidine, ranitidine, famotidine and nizatidine); prokinetic agents including itopride, octreotide, bethanechol, metoclopramide (Reglan®), domperidone (Motilium®), erythromycin (and derivatives thereof) or cisapride (propulsid®); Prokineticin polypeptides homologs, variants and chimeras thereof including those described in US 7,052,674 which can be used with or linked to the polypeptides described herein; pro-motility agents such as the vasostatin-derived polypeptide, chromogranin A (4-16) (See, e.g., Ghia et al. 2004 Regulatory polypeptides 121:31) or motilin agonists (e.g., GM-611 or mitemeinal fumarate) or nociceptin/Orphanin FQ receptor modulators (US20050169917); other peptides which can bind to and/or activate GC-C including those described in US20050287067; complete or partial 5HT (e.g. 5HTl, 5HT2, 5HT3, 5HT4) receptor agonists or antagonists (including 5HT1A antagonists (e.g. AGI-OOl (AGI therapeutics), 5HT2B antagonists (e.g. PGN 1091 and PGNI 164 (Pharmagene Laboratories Limited), and 5HT4 receptor agonists (such as tegaserod (ZELNORM®), prucalopride, mosapride, metoclopramide, zacopride, cisapride, renzapride, benzimidazolone derivatives such as BIMU 1 and BIMU 8, and lirexapride). Such agonists/modulators are described in: EP1321142 AI, WO 03/053432A1, EP 505322 AI, EP 505322 BI, US 5,510,353, EP 507672 AI, EP 507672 Bl, US 5,273,983, and US 6,951,867); 5HT3 receptor agonists such as MKC-733; and 5HT3 receptor antagonists such as DDP-225 (MCI-225; Dynogen Pharmaceuticals, Inc.), cilansetron (Calmactin®), alosetron (Lotronex®), Ondansetron HCl (Zofran®), Dolasetron (ANZEMET®), palonosetron (Aloxi®), Granisetron (Kytril®), YM060(ramosetron; Astellas Pharma Inc.; ramosetron may be given as a daily dose of 0.002 to 0.02 mg as described in EP01588707) and ATI-7000 (Aryx Therapeutics, Santa Clara CA); muscarinic receptor agonists; anti-inflammatory agents; antispasmodics including but not limited to anticholinergic drugs (like dicyclomine (e.g. Colimex®, Formulex®, Lomine®, Protylol®, Visceral®, Spasmoban®, Bentyl®, Bentylol®), hvoscyamine (e.g. IB-Stat®, Nulev®, Levsin®, Levbid®, Levsinex Timecaps®, Levsin/SL®, Anaspaz®, A-Spas S/L®, Cystospaz®, Cystospaz-M®, Donnamar®, Colidrops Liquid Pediatric®, Gastrosed®, Hyco Elixir®, Hyosol®, Hyospaz®, Hyosyne®, Losamine®, Medispaz®, Neosol®, Spacol®, Spasdel®, Symax®, Symax SL®), Donnatal (e.g. Donnatal Extentabs®), clidinium (e.g. Quarzan, in combination with Librium = Librax), methantheline (e.g. Banthine), Mepenzolate (e.g. Cantil), homatropine (e.g. hycodan, Homapin), Propantheline bromide (e.g. Pro-Banthine), Glycopyrrolate (e.g. Robinul®, Robinul Forte®), scopolamine (e.g. Transderm-Scop®, Transderm-V®), hyosine-N-butylbromide (e.g. 10 15 20 25 30 Buscopan®), Pirenzepine (e.g. Gastrozepin®) Propantheline Bromide (e.g. Propanthel®), dicycloverine (e.g. Merbentyl®), glycopyrronium bromide (e.g. Glycopyrrolate®), hyoscine hydrobromide, hyoscine methobromide, methanthelinium, and octatropine); peppermint oil; and direct smooth muscle relaxants like cimetropium bromide, mebeverine (DUSPATAL®, DUSPATALIN®, COLOFAC MR®, COLOTAL®), otilonium bromide (octilonium), pinaverium (e.g. Dicetel® (pinaverium bromide; Solvay S. A.)), Spasfon® (hydrated phloroglucinol and trimethylphloroglucinol)and trimebutine (including trimebutine maleate (Modulon®); antidepressants, including but not limited to those listed herein, as well as tricyclic antidepressants like amitriptyline (Elavil®), desipramine (Norpramin®), imipramine (Tofranil®), amoxapine (Asendin®), nortriptyline; the selective serotonin reuptake inhibitors (SSRTs) like paroxetine (Paxil®), fluoxetine (Prozac®), sertraline (Zoloft®), and citralopram (Celexa®); and others like doxepin (Sinequan®) and trazodone (Desyrel®); centrally-acting analgesic agents such as opioid receptor agonists, opioid receptor antagonists (e.g., naltrexone); agents for the treatment of Inflammatory bowel disease; agents for the treatment of Crohn's disease and/or ulcerative colitis (e.g., alequel (Enzo Biochem, Inc.; Farmingsale, NY), the antiinflammatory polypeptide RDP58 (Genzyme, Inc.; Cambridge, MA), and TRAFICET-ENTM (ChemoCentryx, Inc.; San Carlos, CA); agents that treat gastrointestinal or visceral pain; agents that increase cGMP levels (as described in US20040121994) like adrenergic receptor antagonists, dopamine receptor agonists and PDE (phosphodiesterase) inhibitors including but not limited to those disclosed herein; purgatives that draw fluids to the intestine (e.g., VISICOL®, a combination of sodium phosphate monobasic monohydrate and sodium phosphate dibasic anhydrate); Corticotropin Releasing Factor (CRF) receptor antagonists (including NBI-34041 (Neurocrine Biosciences, San Diego, CA), CRH9-41, astressin, R121919 (Janssen Pharmaceutica), CP154,526, NBI-27914, Antalarmin, DMP696 (Bristol-Myers Squibb) CP-316,311 (Pfizer, Inc.), SB723620 (GSK), GW876008 (Neurocrine/Glaxo Smith Kline), ONO-2333Ms (Ono Pharmaceuticals), TS-041 (Janssen), AAG561 (Novartis) and those disclosed in US 5,063,245, US 5,861,398, US20040224964, US20040198726, US20040176400, US20040171607, US20040110815, US20040006066, and US20050209253); glucagon-like polypeptides (glp-1) and analogues thereof (including exendin-4 and GTP-010 (Gastrotech Pharma A)) and inhibitors of DPP-IV (DPP-IV mediates the inactivation of glp-1); tofisopam, 10 15 20 25 30 enantiomerically-pure R-tofisopam, and pharmaceutically-acceptable salts thereof (US 20040229867); tricyclic anti-depressants of the dibenzothiazepine type including but not limited to Dextoftsopam® (Vela Pharmaceuticals), tianeptine (Stablon®) and other agents described in US 6,683,072; (E)-4 (1,3bis(cyclohexylmethyl)-1,2,34,-tetrahydro-2,6-diono-9H-purin-8yl)cinnamic acid nonaethylene glycol methyl ether ester and related compounds described in WO 02/067942; the probiotic PROBACTRIX® (The BioBalance Corporation; New York, NY) 5 which contains microorganisms useful in the treatment of gastrointestinal disorders; antidiarrheal drugs including but not limited to loperamide (Imodium, Pepto Diarrhea), diphenoxylate with atropine (Lomotil, Lomocot), cholestyramine (Questran, Cholybar), atropine (Co-Phenotrope, Diarsed, Diphenoxylate, Lofene, Logen, Lonox, Vi-Atro, atropine sulfate injection) and 10 Xifaxan® (rifaximin; Salix Pharmaceuticals Ltd), TZP-201(Tranzyme Pharma Inc.), the neuronal acetylcholine receptor (nAChR) blocker AGI-004 (AGI therapeutics), and bismuth subsalicylate (Pepto-bismol); anxiolytic drugs including but not limited to Ativan (lorazepam), alprazolam (Xanax®), chlordiazepoxide/clidinium (Librium®, Librax®), clonazepam (Klonopin®), clorazepate (Tranxene®), diazepam (Valium®), estazolam (ProSom®), 15 flurazepam (Dalmane®), oxazepam (Serax®), prazepam (Centrax®), temazepam (Restoril®), triazolam (Halcion®; Bedelix® (Montmorillonite beidellitic; Ipsen Ltd), Solvay SLV332 (ArQuIe Inc), YKP (SK Pharma), Asimadoline (Tioga Pharmaceuticals/Merck), AGI-003 (AGI Therapeutics); neurokinin antagonists including those described in US20060040950; potassium channel modulators including those described in US7,002,015; the serotonin modulator AZD7371 (AstraZeneca PIc); M3 muscarinic receptor antagonists such as darifenacin (Enablex; 20 Novartis AG and zamifenacin (Pfizer); herbal and natural therapies including but not limited to acidophilus, chamomile tea, evening primrose oil, fennel seeds, wormwood, comfrey, and compounds of Bao-Ji-Wan (magnolol, honokiol, imperatorin, and isoimperatorin) as in US6923992; and compositions comprising lysine and an anti-stress agent for the treatment of 25 irritable bowel syndrome as described in EPO 1550443. # Insulin and Insulin Modulating Agents 30 The GCRA peptides described herein can be used in combination therapy with insulin and related compounds including primate, rodent, or rabbit insulin including biologically active variants thereof including allelic variants, more preferably human insulin available in recombinant form. Sources of human insulin include pharmaceutically acceptable and sterile formulations such as those available from Eli Lilly (Indianapolis, Ind. 46285) as Humulin™ (human insulin rDNA origin). *See*, the THE PHYSICIAN'S DESK REFERENCE, 55.sup.th Ed. (2001) Medical Economics, Thomson Healthcare (disclosing other suitable human insulins). The GCRA peptides described herein can also be used in combination therapy with agents that can boost insulin effects or levels of a subject upon administration, e.g. glipizide and/or rosiglitazone. The polypeptides and agonists described herein can be used in combitherapy with SYMLIN® (pramlintide acetate) and Exenatide® (synthetic exendin-4; a 39 as polypeptide). Agents for the Treatment of Postoperative Ileus The GCRA peptides described herein can also be used in combination therapy with agents (*e.g.*, Entereg[™] (alvimopan; formerly called ado lor/ADL 8-2698), conivaptan and related agents describe in US 6,645,959) used for the treatment of postoperative ileus and other disorders. 15 20 25 30 5 10 ## Anti-Hypertensive Agents The GCRA peptides described herein can be used in combination therapy with an anti-hypertensive agent including but not limited to: (1) diuretics, such as thiazides, including chlorthalidone, chlorthiazide, dichlorophenamide, hydroflumethiazide, indapamide, polythiazide, and hydrochlorothiazide; loop diuretics, such as bumetanide, ethacrynic acid, furosemide, and torsemide; potassium sparing agents, such as amiloride, and triamterene; carbonic anhydrase inhibitors, osmotics(such as glycerin) and aldosterone antagonists, such as spironolactone, epirenone, and the like; (2) beta-adrenergic blockers such as
acebutolol, atenolol, betaxolol, bevantolol, bisoprolol, bopindolol, carteolol, carvedilol, celiprolol, esmolol, indenolol, metaprolol, nadolol, nebivolol, penbutolol, pindolol, propanolol, sotalol, tertatolol, tilisolol, and timolol, and the like; (3) calcium channel blockers such as amlodipine, aranidipine, azelnidipine, barnidipine, benidipine, bepridil, cinaldipine, clevidipine, diltiazem, efonidipine, felodipine, gallopamil, isradipine, lacidipine, lemildipine, lercanidipine, nicardipine, nifedipine, nilvadipine, nimodepine, nisoldipine, nitrendipine, manidipine, pranidipine, and verapamil, and the like; (4) angiotensin converting enzyme (ACE) inhibitors such as benazepril; captopril; ceranapril; cilazapril; delapril; enalopril; fosinopril; imidapril; lisinopril; losinopril; moexipril; 5 10 15 20 25 30 quinapril; quinaprilat; ramipril; perindopril; perindropril; quanipril; spirapril; tenocapril; trandolapril, and zofenopril, and the like; (5) neutral endopeptidase inhibitors such as omapatrilat, cadoxatril and ecadotril, fosidotril, sampatrilat, AVE7688, ER4030, and the like; (6) endothelin antagonists such as tezosentan, A308165, and YM62899, and the like; (7) vasodilators such as hydralazine, clonidine, minoxidil, and nicotinyl alcohol, and the like; (8) angiotensin II receptor antagonists such as aprosartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, pratosartan, tasosartan, telmisartan, valsartan, and EXP-3137, FI6828K. and RNH6270, and the like; (9) α/β adrenergic blockers such as nipradilol, arotinolol and amosulalol, and the like; (10) alpha 1 blockers, such as terazosin, urapidil, prazosin, tamsulosin, bunazosin, trimazosin, doxazosin, naftopidil, indoramin, WHP 164, and XENOIO, and the like; (11) alpha 2 agonists such as lofexidine, tiamenidine, moxonidine, rilmenidine and guanobenz. and the like; (12) aldosterone inhibitors, and the like; and (13) angiopoietin-2 -binding agents such as those disclosed in WO03/030833. Specific anti-hypertensive agents that can be used in combination with polypeptides and agonists described herein include, but are not limited to: diuretics, such as thiazides (e.g., chlorthalidone, cyclothiazide (CAS RN 2259-96-3), chlorothiazide (CAS RN 72956-09-3, which may be prepared as disclosed in US2809194), dichlorophenamide, hydroflumethiazide, indapamide, polythiazide, bendroflumethazide, methyclothazide, polythiazide, trichlormethazide, chlorthalidone, indapamide, metolazone, quinethazone, althiazide (CAS RN 5588-16-9, which may be prepared as disclosed in British Patent No. 902,658), benzthiazide (CAS RN 91-33-8, which may be prepared as disclosed in US3108097), buthiazide (which may be prepared as disclosed in British Patent Nos. 861, 367), and hydrochlorothiazide), loop diuretics (e.g. bumetanide, ethacrynic acid, furosemide, and torasemide), potassium sparing agents (e.g. amiloride, and triamterene (CAS Number 396-01-O)), and aldosterone antagonists (e.g. spironolactone (CAS Number 52-01-7), epirenone, and the like); β-adrenergic blockers such as Arniodarone (Cordarone, Pacerone), bunolol hydrochloride (CAS RN 31969-05-8, Parke-Davis), acebutolol (±N-[3-Acetyl-4-[2-hydroxy-3-](1 methylethyl)amino[propoxy]phenyl]-butanamide, or (\pm) -3'-Acetyl-4'-[2-hydroxy -3-(isopropylamino) propoxy] butyranilide), acebutolol hydrochloride (e.g. Sectral®, Wyeth-Ayerst), alprenolol hydrochloride (CAS RN 13707-88-5 see Netherlands Patent Application No. 6,605,692), atenolol (e.g. Tenormin®, AstraZeneca), carteolol hydrochloride (e.g. Cartrol® Filmtab®. Abbott), Celiprolol hydrochloride (CAS RN 57470-78-7, also see in US4034009). cetamolol hydrochloride (CAS RN 77590-95-5, see also US4059622), labetalol hydrochloride (e.g. Normodyne®, Schering), esmolol hydrochloride (e.g. Brevibloc®, Baxter), levobetaxolol hydrochloride (e.g. Betaxon™ Ophthalmic Suspension, Alcon), levobunolol hydrochloride (e.g. Betagan® Liquifilm® with C CAP® Compliance Cap, Allergan), nadolol (e.g. Nadolol, Mylan), practolol (CAS RN 6673-35-4, see also US3408387), propranolol hydrochloride (CAS RN 318-5 98-9), sotalol hydrochloride (e.g. Betapace AFTM, Berlex), timolol (2-Propanol, 1-[(1,1dimethylethyl)amino]-3-[[4-4(4-morpholinyl)-1,2,5-thiadiazol-3-yl]oxy]-, hemihydrate, (S)-, CAS RN 91524-16-2), timolol maleate (S)-I -[(1,1 -dimethylethyl) amino]-3-[[4- (4morpholinyl)-1,2,5-thiadiazol -3- yl] oxy]-2-propanol (Z)-2-butenedioate (1:1) salt, CAS RN 26921-17-5), bisoprolol (2-Propanol, I-[4-[[2-(l-methylethoxy)ethoxy]-methyl]phenoxyl]-3-[(l-10 meth-vlethylaminol-, (±), CAS RN 66722-44-9), bisoprolol fumarate (such as (±)-1-[4-[[2-(1-Methylethoxy) ethoxy]methyl]phenoxy]-3-[(l-methylethyl)amino]-2-propanol (E) -2butenedioate (2:1) (salt), e.g., Zebeta[™], Lederle Consumer), nebivalol (2H-l-Benzopyran-2methanol, αα'-[iminobis(methylene)]bis[6-fluoro-3,4-dihydro-, CAS RN 99200-09-6 see also U.S. Pat. No. 4,654,362), cicloprolol hydrochloride, such 2-Propanol, 1-[4-[2-15 (cyclopropylmethoxy)ethoxy]phenoxy]-3-[I-methylethyl)amino]-, hydrochloride, A.A.S. RN 63686-79-3), dexpropranolol hydrochloride (2-Propanol, I-[I-methylethy)-amino]-3-(Inaphthalenyloxy)-hydrochloride (CAS RN 13071-11-9), diacetolol hydrochloride (Acetamide, N-[3-acetyl-4-[2-hydroxy-3-[(l-methyl-ethyl)amino]propoxy] [phenyl]-, monohydrochloride CAS RN 69796-04-9), dilevalol hydrochloride (Benzamide, 2-hydroxy-5-[1-hydroxy-2-[1-20 methyl-3-phenylpropyl)amino ethyl]-, monohydrochloride, CAS RN 75659-08-4), exaprolol hydrochloride (2-Propanol, 1 -(2-cyclohexylphenoxy)-3 - [(1-methylethyl)amino] -. hydrochloride CAS RN 59333-90-3), flestolol sulfate (Benzoic acid, 2-fluro-,3-[[2-[aminocarbonyl)amino] - dimethylethyllamino]-2-hydroxypropyl ester, (+)- sulfate (1:1) (salt). 25 CAS RN 88844-73-9; metalol hydrochloride (Methanesulfonamide, N-[4-[1-hydroxy-2-(methylamino)propyl]phenyl]-, monohydrochloride CAS RN 7701-65-7), metoprolol 2-Propanol, 1-[4-(2- methoxyethyl)phenoxy]-3-[1-methylethyl)amino]-; CAS RN 37350-58-6), metoprolol tartrate (such as 2-Propanol, 1-[4-(2-methoxyethyl)phenoxy]-3-[(1methylethyl)amino]-, e.g., Lopressor®, Novartis), pamatolol sulfate (Carbamic acid, [2-[4-[2-30 hydroxy-3-[(1- methylethyl)amino]propoxyl]phenyl]-ethyl]-, methyl ester, (±) sulfate (salt) (2:1), CAS RN 59954-01-7), penbutolol sulfate (2-Propanol, I-(2-cyclopentylphenoxy)-3-[I,I- dimethyle-thyl)aminol 1, (S)-, sulfate (2:1) (salt), CAS RN 38363-32-5), practolol (Acetamide, N-[4-[2-hydroxy-3-[(1-methylethyl)amino]-propoxy[phenyl]-, CAS RN 6673-35-4;) tiprenolol hydrochloride (Propanol, 1-[(1-methylethyl)amino]-3-[2-(methylthio)-phenoxy]-, hydrochloride, (±), CAS RN 39832-43-4), tolamolol (Benzamide, 4-[2-[[2-hydroxy-3-(2-methylphenoxy)propyl] amino] ethoxyl]-, CAS RN 38103-61-6), bopindolol, indenolol, pindolol, propanolol, 5 tertatolol, and tilisolol, and the like; calcium channel blockers such as besylate salt of amlodipine (such as 3-ethyl-5-methyl-2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-3.5-pyridinedicarboxylate benzenesulphonate, e.g., Norvasc®, Pfizer), clentiazem maleate (1.5-Benzothiazepin-4(5H)-one, 3-(acetyloxy)-8-chloro-5-[2-(dimethylamino)ethyl]-2,3-dihydro-2-(4-methoxyphenyl)-(2S-cis)-, (Z)-2-butenedioate (1:1), see also US4567195), isradipine (3.5-10 Pyridinedicarboxylic acid, 4-(4-benzofurazanyl)-1,4-dihydro-2,6-dimethyl-, methyl 1methylethyl ester, (±)-4(4-benzofurazanyl)- 1,4-dihydro-2,6-dimethyl-3,5 pyridinedicarboxylate, see also US4466972); nimodipine (such as is isopropyl (2- methoxyethyl) 1, 4- dihydro -2,6- dimethyl -4- (3-nitrophenyl) -3,5- pyridine - dicarboxylate, e.g. Nimotop®, Bayer), felodipine (such as ethyl methyl 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5-15 pyridinedicarboxylate-, e.g. Plendil® Extended-Release, AstraZeneca LP), nilvadipine (3,5-Pyridinedicarboxylic acid, 2-cyano-l,4-dihydro-6-methyl-4-(3-nitrophenyl)-,3-methyl 5-(1methylethyl) ester, also see US3799934), nifedipine (such as 3, 5 -pyridinedicarboxylic acid,l,4dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, dimethyl ester, e.g., Procardia XL® Extended Release Tablets, Pfizer), diltiazem hydrochloride (such as 1,5-Benzothiazepin-4(5H)-one,3-(acetyloxy)-20 5[2-(dimethylamino)ethyl]-2,-3-dihydro-2(4-methoxyphenyl)-, monohydrochloride, (+)-cis., e.g., Tiazac®, Forest), verapamil hydrochloride (such as benzeneacetronitrile,
(alpha)-[[3-[[2-(3,4-(lydthylethyl)-(alpha)-(1)-(alpha) hydrochloride, e.g., Isoptin® SR, Knoll Labs), teludipine hydrochloride (3,5-25 Pyridinedicarboxylic acid, 2-[(dimethylamino)methyl]4-[2-[(IE)-3-(I,I-dimethylethoxy)-3-oxo-Ipropenyl]phenyl]-l,4-dihydro-6-methyl-, diethyl ester, monohydrochloride) CAS RN 108700-03-4), belfosdil (Phosphonic acid, [2-(2-phenoxy ethyl)- 1,3 -propane- diyl]bis-, tetrabutyl ester CAS RN 103486-79-9), fostedil (Phosphonic acid, [[4-(2-benzothiazolyl)phenyl]methyl]-, diethyl ester CAS RN 75889-62-2), aranidipine, azelnidipine, barnidipine, benidipine, bepridil, 30 cinaldipine, clevidipine, efonidipine, gallopamil, lacidipine, lemildipine, lercanidipine, monatepil maleate (1-Piperazinebutanamide, N-(6, 11 -dihydrodibenzo(b,e)thiepin- 11 -yl)4-(4- fluorophenyl)-, (+)-, (Z)-2-butenedioate (1:1) (±)-N-(6,1 l-Dihydrodibenzo(b,e)thiep- in-1 l-vl)-4-(p- fluorophenyl)-l-piperazinebutyramide maleate (1:1) CAS RN 132046-06-1), nicardipine, nisoldipine, nitrendipine, manidipine, pranidipine, and the like; T-channel calcium antagonists such as mibefradil; angiotensin converting enzyme (ACE) inhibitors such as benazepril, benazepril hydrochloride (such as 3-ffl-(ethoxycarbonyl)-3- phenyl-(1 S)-propyl]amino]-2,3 5 ,4,5-tetrahydro-2-oxo- 1 H - 1 -(3 S)-benzazepine- 1 -acetic acid monohydrochloride, e.g., Lotrel®, Novartis), captopril (such as 1-[(2S)-3-mercapto-2-methylpropionyl]-L-proline, e.g., Captopril, Mylan, CAS RN 62571-86-2 and others disclosed in US4046889), ceranapril (and others disclosed in US4452790), cetapril (alacepril, Dainippon disclosed in Eur. Therap. Res. 39:671 (1986); 40:543 (1986)), cilazapril (Hoffman-LaRoche) disclosed in J. Cardiovasc. 10 Pharmacol, 9:39 (1987), indalapril (delapril hydrochloride (2H-1,2,4- Benzothiadiazine-7sulfonamide, 3-bicyclo[2.2.1] hept-5-en-2-yl-6-chloro-3,4-dihydro-, 1,1- dioxide CAS RN 2259-96-3); disclosed in US4385051), enalapril (and others disclosed in US4374829), enalopril, enaloprilat, fosinopril, ((such as L-proline, 4-cyclohexyl-l-[[[2-methyl-l-(l-oxopropoxy) propoxy](4-phenylbutyl) phosphinyl]acetyl]-, sodium salt, e.g., Monopril, Bristol-Myers Squibb 15 and others disclosed in US4168267), fosinopril sodium (L- Proline, 4-cyclohexyl-l-[[(R)-[(IS)-2methyl-I-(I-ox- opropoxy)propox), imidapril, indolapril (Schering, disclosed in J. Cardiovasc. Pharmacol. 5:643, 655 (1983)), lisinopril (Merck), losinopril, moexipril, moexipril hydrochloride (3-Isoquinolinecarboxylic acid, 2-[(2S)-2-[[(IS)-1-(ethoxycarbonyl)-3-phenylpropyl]amino]-1oxopropyl]- 1, -2,3,4-tetrahydro-6,7-dimethoxy-, monohydrochloride, (3S)- CAS RN 82586-52-20 5), quinapril, quinaprilat, ramipril (Hoechsst) disclosed in EP 79022 and Curr. Ther. Res. 40:74 (1986), perindopril erbumine (such as 2S,3aS,7aS-1-[(S)-N-[(S)-1-Carboxybutyljalanyljhexahydro^-indolinecarboxylic acid, 1 -ethyl ester, compound with tertbutylamine (1:1), e.g., Accon®, Solvay), perindopril (Servier, disclosed in Eur, J. clin, 25 Pharmacol. 31:519 (1987)), quanipril (disclosed in US4344949), spirapril (Schering, disclosed in Acta. Pharmacol. Toxicol. 59 (Supp. 5): 173 (1986)), tenocapril, trandolapril, zofenopril (and others disclosed in US4316906), rentiapril (fentiapril, disclosed in Clin. Exp. Pharmacol. Physiol. 10:131 (1983)), pivopril, YS980, teprotide (Bradykinin potentiator BPP9a CAS RN 35115-60-7), BRL 36,378 (Smith Kline Beecham, see EP80822 and EP60668), MC-838 30 (Chugai, see CA. 102:72588v and Jap. J. Pharmacol. 40:373 (1986), CGS 14824 (Ciba-Geigy, 3-([l-ethoxycarbonyl-3-phenyl-(IS)-propyllamino)-2,3,4,5-tetrahydro-2-ox- o-l-(3S)-benzazepine-l acetic acid HCl, see U.K. Patent No. 2103614), CGS 16,617 (Ciba- Geigy, 3(S)-[[(IS)-5-amino-lcarboxypentyl]amino]-2,3,4,-5-tetrahydro-2-oxo-lH-l-benzazepine-1-ethanoic acid, see US4473575), Ru 44570 (Hoechst, see Arzneimittelforschung 34:1254 (1985)), R 31-2201 (Hoffman-LaRoche see FEBS Lett. 165:201 (1984)), CI925 (Pharmacologist 26:243, 266 (1984)), WY-44221 (Wyeth, see J. Med. Chem. 26:394 (1983)), and those disclosed in 5 US2003006922 (paragraph 28), US4337201, US4432971 (phosphonamidates); neutral endopeptidase inhibitors such as omapatrilat (Vanlev®), CGS 30440, cadoxatril and ecadotril, fasidotril (also known as aladotril or alatriopril), sampatrilat, mixanpril, and gemopatrilat, AVE7688, ER4030, and those disclosed in US5362727, US5366973, US5225401, US4722810, US5223516, US4749688, US5552397, US5504080, US5612359, US5525723, EP0599444, 10 EP0481522, EP0599444, EP0595610, EP0534363, EP534396, EP534492, EP0629627; endothelin antagonists such as tezosentan, A308165, and YM62899, and the like; vasodilators such as hydralazine (apresoline), clonidine (clonidine hydrochloride (1H-Imidazol- 2-amine, N-(2,6-dichlorophenyl)4,5-dihydro-, monohydrochloride CAS RN 4205-91-8), catapres, minoxidil (loniten), nicotinyl alcohol (roniacol), diltiazem hydrochloride (such as 1,5- Benzothiazepin-15 4(5H)-one,3-(acetyloxy)-5[2-(dimethylamino)ethyl]-2,-3-dihydro-2(4- methoxyphenyl)-, monohydrochloride, (+)-cis, e.g., Tiazac®, Forest), isosorbide dinitrate (such as 1,4:3,6dianhydro-D-glucitol 2,5-dinitrate e.g., Isordil® Titradose®, Wyeth- Ayerst), sosorbide mononitrate (such as 1,4:3,6-dianhydro-D-glucito-1,5-nitrate, an organic nitrate, e.g., Ismo®, Wyeth-Ayerst), nitroglycerin (such as 2,3 propanetriol trinitrate, e.g., Nitrostat® Parke- Davis), 20 verapamil hydrochloride (such as benzeneacetonitrile, (±)-(alpha)[3-[[2-(3,4 dimethoxypheny 1)ethyl]methylamino]propyl] -3,4-dimethoxy-(alpha)-(1-methylethyl) hydrochloride, e.g., Covera HS® Extended-Release, Searle), chromonar (which may be prepared as disclosed in US3282938), clonitate (Annalen 1870 155), droprenilamine (which may be prepared as disclosed 25 in DE2521113), lidoflazine (which may be prepared as disclosed in US3267104); prenylamine (which may be prepared as disclosed in US3152173), propatyl nitrate (which may be prepared as disclosed in French Patent No. 1,103,113), mioflazine hydrochloride (1 -Piperazineacetamide, 3-(aminocarbonyl)₄-[4,4-bis(4-fluorophenyl)butyl]-N-(2,6- dichlorophenyl)-, dihydrochloride CAS RN 83898-67-3), mixidine (Benzeneethanamine, 3,4- dimethoxy-N-(l-methyl-2-30 pyrrolidinylidene)- Pyrrolidine, 2-[(3,4-dimethoxyphenethyl)imino]- 1 -methyl- l-Methyl-2- [(3, 4-dimethoxyphenethyl)iminolpyrrolidine CAS RN 27737-38-8), molsidomine (1,2,3- Oxadiazolium, 5-[(ethoxycarbonyl)amino]-3-(4-morpholinyl)-, inner salt CAS RN 25717-80-0), isosorbide mononitrate (D-Glucitol, 1,4:3,6-dianhydro-, 5-nitrate CAS RN 16051-77-7), erythrityl tetranitrate (1,2,3,4-Butanetetrol, tetranitrate, (2R,3S)-rel-CAS RN 7297-25-8), clonitrate(1,2-Propanediol, 3-chloro-, dinitrate (7CI, 8CI, 9CI) CAS RN 2612-33-1), dipyridamole Ethanol, 2,2',2",2"'-[(4,8-di-l-piperidinylpyrimido[5,4-d]pyrimidine-2,6-5 diyl)dinitrilo|tetrakis- CAS RN 58-32-2), nicorandil (CAS RN 65141-46-0 3-), pyridinecarboxamide (N-[2-(nitrooxy)ethyl]-Nisoldipine3,5-Pyridinedicarboxylic acid, 1,4dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, methyl 2-methylpropyl ester CAS RN 63675-72-9), nifedipine3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, dimethyl ester CAS RN 21829-25-4), perhexiline maleate (Piperidine, 2-(2,2-dicyclohexylethyl)-, (2Z)-2-10 butenedioate (1:1) CAS RN 6724-53-4), exprended hydrochloride (2-Propanol, 1-I(1methylethyl)amino]-3-[2-(2-propenyloxy)phenoxy]-, hydrochloride CAS RN 6452-73-9), pentrinitrol (1,3-Propanediol, 2,2-bis[(nitrooxy)methyl]-, mononitrate (ester) CAS RN 1607-17-6), verapamil (Benzeneacetonitrile, α -[3-[[2-(3,4-dimethoxyphenyl)ethyl]- methylamino]propyl]-3, 4-dimethoxy-α-(1-methylethyl)- CAS RN 52-53-9) and the like; angiotensin II receptor 15 antagonists such as, aprosartan, zolasartan, olmesartan, pratosartan, FI6828K, RNH6270, candesartan (1 H-Benzimidazole-7-carboxylic acid, 2-ethoxy-l-[[2'-(lH-tetrazol-5-yl)[1,1'biphenyl[4-yf]methyl]- CAS RN 139481-59-7), candesartan cilexetil
((+/-)-l-(cyclohexylcarbonyloxy)ethyl-2-ethoxy-l-[[2'-(IH-tetrazol-5-yl)biphenyl-4-yl]-IH-benzimidazole carboxylate, CAS RN 145040-37-5, US5703110 and US5196444), eprosartan (3-[1-4-20 carboxyphenylmethyl)-2-n-butyl-imidazol-5-yl]-(2-thienylmethyl) propenoic acid, US5185351 and US5650650), irbesartan (2-n-butyl-3- [[2'-(lh-tetrazol-5-yl)biphenyl-4-yl]methyl] 1,3diazazspiro[4,4]non-l-en-4-one, US5270317 and US5352788), losartan (2-N-butyl-4-chloro-5hydroxymethyl-1-I(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)-methyllimidazole, potassium salt, US5138069, US5153197 and US5128355), tasosartan (5,8-dihydro-2,4-dimethyl-8-[(2'-(lH-25 tetrazol-5-yl)[l,r-biphenyl]4-yl)methyll-pyrido[2,3-d]pyrimidin-7(6H)-one, US5149699), telmisartan (4'-[(1,4-dimethyl-2'-propyl-(2,6'-bi-lH-benzimidazol)-r-yl)]-[1,1'-biphenyl]-2carboxylic acid, CAS RN 144701-48-4, US5591762), milfasartan, abitesartan, valsartan (Diovan® (Novartis), (S)-N-valeryl-N-[[2'-(lH-tetrazol-5-yl)biphenyl-4-yl)methyl]valine, US5399578), EXP-3137 (2-N-butyl-4-chloro-l-[(2'-(lH-tetrazol-5-yl)biphenyl-4-yl)-30 methyllimidazole-5-carboxylic acid, US5138069, US5153197 and US5128355), 3-(2'-(tetrazol- 5-yl)-l,r-biphen-4-yl)methyl-5,7-dimethyl-2-ethyl-3H-imidazo[4,5-b]pyridine, 4'[2-ethyl-4methyl-6-(5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-2-yl]-benzimidazol-l-yl]-methyl]-l,rbiphenyl]-2- carboxylic acid, 2-butyl-6-(1-methoxy-1-methylethyl)-2-[2'-)IH-tetrazol-5yl)biphenyl-4-ylmethyl] guinazolin-4(3H)-one, 3 - [2 '-carboxybiphenyl-4-yl)methyl] -2cyclopropyl-7-methyl- 3H-imidazo[4,5-b]pyridine, 2-butyl-4-chloro-l-[(2'-tetrazol-5-5 yl)biphenyl-4-yl)methyl]imidazole-carboxylic acid, 2-butyl-4-chloro-l-[[2'-(lH-tetrazol-5- yl) [1 , 1'-biphenyl]-4-vl]methyl]- 1 H-imidazole-5 -carboxylic acid- 1 -(ethoxycarbonyl-oxy)ethyl ester potassium salt, dipotassium 2-butyl-4-(methylthio)-1-[[2-[[[(propylamino)carbonyl]amino]sulfonyl](l,l'-biphenyl)-4-yl]methyl]-l H-imidazole-5 -carboxylate, methyl-2-[[4-butyl-2methyl-6-oxo-5-[[2'-(IH-tetrazol-5-yl)-[I,I '-biphenyl]-4-yl]methyl]-I-(6H)- pyrimidinyl]methyl]-10 3-thiophencarboxylate, 5-f(3,5-dibutyl-lH-l,2,4-triazol-l-yl)methyll-2-f2- (1 H-tetrazol-5ylphenyl)]pyridine, 6-butyl-2-(2-phenylethyl)-5 [[2'-(I H-tetrazol-5-yl)[1,1 '- biphenyl]-4methyl]pyrimidin-4-(3H)-one D,L lysine salt, 5-methyl-7-n-propyl-8-[[2'-(lH-tetrazol-5yl)biphenyl-4-yl]methyl]-[1,2,4]-triazolo[1,5-c]pyrimidin-2(3H)-one, 2,7-diethyl-5-[[2'-(5tetrazoly)biphenyl-4-yl]methyl]-5H-pyrazolo[1,5-b][1,2,4]triazole potassium salt, 2-[2- butyl-4,5-15 dihydro-4-oxo-3-[2'-(IH-tetrazol-5-vl)-4-biphenylmethyl]-3H-imidazol[4,5-c]pyridine-5ylmethyl]benzoic acid, ethyl ester, potassium salt, 3-methoxy-2,6-dimethyl-4- [[2'(1H-tetrazol-5yl)-l,l '-biphenyl-4-yl]methoxy]pyridine, 2-ethoxy-l-[[2'-(5-oxo-2,5-dihydro-1,2,4-oxadiazol-3 yl)biphenyl-4-yl]methyl] - 1 H-benzimidazole-7-carboxylic acid, 1 - [N-(2 '-(1 H- tetrazol-5vl)biphenyl-4-vl-methyl)-N-valerolylaminomethyl)cyclopentane- 1 -carboxylic acid. 7- methyl-20 2n-propyl-3-[[2' | H-tetrazol-5-yl)biphenyl-4-yl]methyl]-3H-imidazo[4,5-6]pyridine, 2- [5-[(2ethyl-5.7-dimethyl-3H-imidazo[4,5-b]pyridine-3-yl)methyll-2-quinolinyl]sodium benzoate, 2butyl-6-chloro-4-hydroxymethyl-5 -methyl-3 -[[2'-(I H-tetrazol-5 -yl)biphenyl-4yl]methyl]pyridine, 2- [[[2-butyl-1 - [(4-carboxyphenyl)methyl] - 1 H-imidazol-5 -25 yl]methyl]amino]benzoic acid tetrazol-5-yl)biphenyl-4-yl]methyl]pyrimidin-6-one, 4(S)- [4-(carboxymethyl)phenoxy]-N-[2(R)-[4-(2-sulfobenzamido)imidazol- 1 -yl]octanoyl]-L-proline, 1 - (2,6-dimethylphenyl)-4-butyl-1,3-dihydro-3-[[6-[2-(lH-tetrazol-5-yl)phenyl]-3pyridinyl]methyl]-2H-imidazol-2-one, 5,8-ethano-5,8-dimethyl-2-n-propyl-5,6,7,8-tetrahydro-1 - [[2'(lH-tetrazol-5-yl)biphenyl-4-yl]methyl]-lH,4H-l,3,4a,8a-tetrazacyclopentanaphthalene-9one, 4-[1-[2'-(1,2,3,4-tetrazol-5-yl)biphen-4-yl)methylamino]-5,6,7,8-tetrahydro-2-30 trifylguinazoline, 2-(2-chlorobenzoyl)imino-5-ethyl-3-[2'-(1H-tetrazole-5-yl)biphenyl-4- yl)methyl-1,3,4-thiadiazoline, 2-[5-ethyl-3-[2-(1H-tetrazole-5-yl)biphenyl-4-yl]methyl-1,3,4thiazoline-2-ylidenelaminocarbonyl-l-cyclopentencarboxylic acid dipotassium salt, and 2-butyl-4-[N-methyl-N-(3 -methylcrotonoyl)amino] - 1 - [[2 ' -(1 H-tetrazol-5 -yl)biphenyl-4yl]methyl]- 1 H- imidzole-5 -carboxylic acid 1-ethoxycarbonyloxyethyl ester, those disclosed in patent publications EP475206, EP497150, EP539086, EP539713, EP535463, EP535465, 5 EP542059, EP497121, EP535420, EP407342, EP415886, EP424317, EP435827, EP433983, EP475898, EP490820, EP528762, EP324377, EP323841, EP420237, EP500297, EP426021, EP480204, EP429257, EP430709, EP434249, EP446062, EP505954, EP524217, EP514197. EP514198, EP514193, EP514192, EP450566, EP468372, EP485929, EP503162, EP533058, 10 EP467207 EP399731, EP399732, EP412848, EP453210, EP456442, EP470794, EP470795, EP495626, EP495627, EP499414, EP499416, EP499415, EP511791, EP516392, EP520723, EP520724, EP539066, EP438869, EP505893, EP530702, EP400835, EP400974, EP401030, EP407102, EP411766, EP409332, EP412594, EP419048, EP480659, EP481614, EP490587, EP467715, EP479479, EP502725, EP503838, EP505098, EP505111 EP513,979 EP507594, 15 EP510812, EP511767, EP512675, EP512676, EP512870, EP517357, EP537937, EP534706, EP527534, EP540356, EP461040, EP540039, EP465368, EP498723, EP498722, EP498721, EP515265, EP503785, EP501892, EP519831, EP532410, EP498361, EP432737, EP504888, EP508393, EP508445, EP403159, EP403158, EP425211, EP427463, EP437103, EP481448, EP488532, EP501269, EP500409, EP540400, EP005528, EP028834, EP028833, EP411507, EP425921, EP430300, EP434038, EP442473, EP443568, EP445811, EP459136, EP483683, 20 EP518033, EP520423, EP531876, EP531874, EP392317, EP468470, EP470543, EP502314. EP529253, EP543263, EP540209, EP449699, EP465323, EP521768, EP415594, WO92/14468, WO93/08171, WO93/08169, WO91/00277, WO91/00281, WO91/14367, WO92/00067, WO92/00977, WO92/20342, WO93/04045, WO93/04046, WO91/15206, WO92/14714. 25 WO92/09600, WO92/16552, WO93/05025, WO93/03018, WO91/07404, WO92/02508, WO92/13853, WO91/19697, WO91/11909, WO91/12001, WO91/11999, WO91/15209, WO91/15479, WO92/20687, WO92/20662, WO92/20661, WO93/01177, WO91/14679, WO91/13063, WO92/13564, WO91/17148, WO91/18888, WO91/19715, WO92/02257, WO92/04335, WO92/05161, WO92/07852, WO92/15577, WO93/03033, WO91/16313, 30 WO92/00068, WO92/02510, WO92/09278, WO9210179, WO92/10180, WO92/10186, WO92/10181, WO92/10097, WO92/10183, WO92/10182, WO92/10187, WO92/10184, WO92/10188, WO92/10180, WO92/10185, WO92/20651, WO93/03722, WO93/06828, WO93/03040, WO92/19211, WO92/22533, WO92/06081, WO92/05784, WO93/00341, WO92/04343, WO92/04059, US5104877, US5187168, US5149699, US5185340, US4880804, US5138069, US4916129, US5153197, US5173494, US5137906, US5155126, US5140037, US5137902, US5157026, US5053329, US5132216, US5057522, US5066586, US5089626, 5 US5049565, US5087702, US5124335, US5102880, US5128327, US5151435, US5202322, US5187159, US5198438, US5182288, US5036048, US5140036, US5087634, US5196537, US5153347, US5191086, US5190942, US5177097, US5212177, US5208234, US5208235, US5212195, US5130439, US5045540, US5041152, and US5210204, and pharmaceutically 10 acceptable salts and esters thereof; α/β adrenergic blockers such as nipradilol, arotinolol, amosulalol, bretylium tosylate (CAS RN: 61-75-6), dihydroergtamine mesylate (such as ergotaman-3', 6',18-trione,9,-10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)-,(5'(α))-, monomethanesulfonate, e.g., DHE 45® Injection, Novartis), carvedilol (such as (±)-l-(Carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl] amino] -2-propanol, e.g., Coreg®, SmithKline Beecham), labetalol (such as 5-[l-hydroxy-2-[(l-methyl-3-phenylpropyl) amino] 15 ethylisalicylamide monohydrochloride, e.g., Normodyne®, Schering), bretylium tosylate (Benzenemethanaminium, 2-bromo-N-ethyl-N,N-dimethyl-, salt with 4-methylbenzenesulfonic acid (1:1) CAS RN 61-75-6), phentolamine mesylate (Phenol, 3-[[(4,5-dihydro-lH-imidazol-2yl)methyl](4-methylphenyl)amino]-, monomethanesulfonate (salt) CAS RN 65-28-1), solypertine tartrate (5H-l,3-Dioxolo[4,5-f]indole, 7-[2-[4-(2-methoxyphenyl)-l-20 piperazinyl]ethyl]-, (2R,3R)-2,3-dihydroxybutanedioate (1:1) CAS RN 5591-43-5), zolertine hydrochloride (Piperazine, 1-phenyl4-[2-(1H-tetrazol-5-yl)ethyl]-, monohydrochloride (8Cl, 9Cl) CAS RN 7241-94-3) and the like; α adrenergic receptor blockers, such as alfuzosin (CAS RN: 81403-68-1), terazosin, urapidil, prazosin (Minipress®), tamsulosin, bunazosin, trimazosin, 25 doxazosin, naftopidil, indoramin, WHP 164, XENOIO, fenspiride hydrochloride (which may be prepared as disclosed in US3399192), proroxan (CAS RN 33743-96-3), and labetalol hydrochloride and combinations thereof; a 2 agonists such as methyldopa, methyldopa HCL, lofexidine, tiamenidine, moxonidine, rilmenidine, guanobenz, and the like; aldosterone inhibitors, and the like; renin inhibitors including Aliskiren (SPPIOO; Novartis/Speedel); 30 angiopoietin-2-binding agents such as those disclosed in WO03/030833; anti-angina agents such as ranolazine (hydrochloride 1-Piperazineacetamide, N-(2,6-dimethylphenyl)-4-[2-hydroxy-3- (2-methoxyphenoxy)propyl]-, dihydrochloride CAS RN 95635- 56-6), betaxolol hydrochloride (2-Propanol, 1-[4-[2 (cyclopropylmethoxy)ethyl]phenoxy]-3-[(1- methylethyl)amino]-, hydrochloride CAS RN 63659-19-8), butoprozine hydrochloride (Methanone, [4-[3(dibutylamino)propoxy]phenyl](2-ethyl-3-indolizinyl)-, monohydrochloride CAS RN 62134-34-3), cinepazet maleatel-Piperazineacetic acid, 4-[l-oxo-3-(3,4,5- trimethoxyphenyl)-2-5 propenyll-, ethyl ester, (2Z)-2-butenedioate (1:1) CAS RN 50679-07-7), tosifen (Benzenesulfonamide, 4-methyl-N-[[[(IS)-l-methyl-2-phenylethyl]amino]carbonyl]- CAS RN 32295-184), verapamilhydrochloride (Benzeneacetonitrile, α-[3-[[2-(3,4dimethoxyphenyl)ethyl|methylamino|propyl]-3,4-dimethoxy-a-(1-methylethyl)-, monohydrochloride CAS RN 152-114), molsidomine (1,2,3-Oxadiazolium, 5-10 I(ethoxycarbonyl)aminol-3-(4-morpholinyl)-, inner salt CAS RN 25717-80-0), and ranolazine hydrochloride (1
-Piperazineacetamide, N-(2,6-dimethylphenyl)₄-[2-hydroxy-3-(2-methoxyphenoxy)propyl]-, dihydrochloride CAS RN 95635-56-6); tosifen (Benzenesulfonamide, 4methyl-N-[[[(IS)-l-methyl-2-phenylethyl]amino]carbonyl]- CAS RN 32295-184); adrenergic stimulants such as guanfacine hydrochloride (such as N-amidino-2-(2,6-dichlorophenyl) 15 acetamide hydrochloride, e.g., Tenex® Tablets available from Robins); methyldopahydrochlorothiazide (such as levo-3-(3,4-dihydroxyphenyl)-2-methylalanine) combined with Hydrochlorothiazide (such as 6-chloro-3,4-dihydro-2H -1,2,4-benzothiadiazine-7- sulfonamide 1,1-dioxide, e.g., the combination as, e.g., Aldoril® Tablets available from Merck), methyldopachlorothiazide (such as 6-chloro-2H-l, 2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide and 20 methyldopa as described above, e.g., Aldoclor®, Merck), clonidine hydrochloride (such as 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride and chlorthalidone (such as 2-chloro-5-(1-hydroxy-3-oxo-1-isoindolinyl) benzenesulfonamide), e.g., Combipres®, Boehringer Ingelheim), clonidine hydrochloride (such as 2-(2,6-dichlorophenylamino)-2-imidazoline 25 hydrochloride, e.g., Catapres®, Boehringer Ingelheim), clonidine (IH-Imidazol-2-amine, N-(2,6dichlorophenyl)4,5-dihydro-CAS RN 4205-90-7), Hyzaar (Merck; a combination of losartan and hydrochlorothiazide), Co-Diovan (Novartis; a combination of valsartan and hydrochlorothiazide, Lotrel (Novartis; a combination of benazepril and amlodipine) and Caduet (Pfizer; a combination of amlodipine and atorvastatin), and those agents disclosed in US20030069221. Agents for the Treatment of Respiratory Disorders 5 10 15 20 25 30 The GCRA peptides described herein can be used in combination therapy with one or more of the following agents useful in the treatment of respiratory and other disorders including but not limited to: (1) β-agonists including but not limited to: albuterol (PRO VENTIL®, S ALBUT AMOI®, VENTOLIN®), bambuterol, bitoterol, clenbuterol, fenoterol, formoterol, isoetharine (BRONKOSOL®, BRONKOMETER®), metaproterenol (ALUPENT®, METAPREL®), pirbuterol (MAXAIR®), reproterol, rimiterol, salmeterol, terbutaline (BRETHAIRE®, BRETHINE®, BRICANYL®), adrenalin, isoproterenol (ISUPREL®), epinephrine bitartrate (PRIMATENE®), ephedrine, orciprenline, fenoterol and isoetharine; (2) steroids, including but not limited to beclomethasone, beclomethasone dipropionate, betamethasone, budesonide, bunedoside, butixocort, dexamethasone, flunisolide, fluocortin, fluticasone, hydrocortisone, methyl prednisone, mometasone, predonisolone, predonisone, tipredane, tixocortal, triamcinolone, and triamcinolone acetonide; (3) β2-agonist-corticosteroid combinations [e.g., salmeterol-fluticasone (AD V AIR®), formoterol-budesonid (S YMBICORT®)]; (4) leukotriene D4 receptor antagonists/leukotriene antagonists/LTD4 antagonists (i.e., any compound that is capable of blocking, inhibiting, reducing or otherwise interrupting the interaction between leukotrienes and the Cys LTI receptor) including but not limited to: zafhiukast, montelukast, montelukast sodium (SINGULAIR®), pranlukast, iralukast, pobilukast, SKB-106,203 and compounds described as having LTD4 antagonizing activity described in U.S. Patent No. 5,565,473; (5) 5 -lipoxygenase inhibitors and/or leukotriene biosynthesis inhibitors [e.g., zileuton and BAY1005 (CA registry 128253-31-6)]; (6) histamine HI receptor antagonists/antihistamines (i.e., any compound that is capable of blocking, inhibiting, reducing or otherwise interrupting the interaction between histamine and its receptor) including but not limited to; astemizole, acrivastine, antazoline, azatadine, azelastine, astamizole. bromopheniramine, bromopheniramine maleate, carbinoxamine, carebastine, cetirizine, chlorpheniramine, chloropheniramine maleate, cimetidine clemastine, cyclizine, cyproheptadine, descarboethoxyloratadine, dexchlorpheniramine, dimethindene, diphenhydramine, diphenylpyraline, doxylamine succinate, doxylarnine, ebastine, efletirizine, epinastine, famotidine, fexofenadine, hydroxyzine, hydroxyzine, ketotifen, levocabastine, levocetirizine, levocetirizine, loratadine, meclizine, mepyramine, mequitazine, methdilazine, mianserin, mizolastine, noberastine, norasternizole, noraztemizole, phenindamine, pheniramine, picumast, promethazine, pynlamine, pyrilamine, ranitidine, temelastine, terfenadine, trimeprazine, tripelenamine, and triprolidine; (7) an anticholinergic including but not limited to: atropine, benztropine, biperiden, flutropium, hyoscyamine (e.g. Levsin®; Levbid®; Levsin/SL®, Anaspaz®, Levsinex timecaps®, NuLev®), ilutropium, ipratropium, ipratropium bromide, 5 methscopolamine, oxybutinin, rispenzepine, scopolamine, and tiotropium; (8) an anti-tussive including but not limited to: dextromethorphan, codeine, and hydromorphone; (9) a decongestant including but not limited to: pseudoephedrine and phenylpropanolamine; (10) an expectorant including but not limited to: guafenesin, guaicolsulfate, terpin, ammonium chloride, glycerol guaicolate, and iodinated glycerol; (11) a bronchodilator including but not limited to: 10 theophylline and aminophylline; (12) an anti-inflammatory including but not limited to: fluribiprofen, diclophenac, indomethacin, ketoprofen, S-ketroprophen, tenoxicam; (13) a PDE (phosphodiesterase) inhibitor including but not limited to those disclosed herein; (14) a recombinant humanized monoclonal antibody [e.g. xolair (also called omalizumab), rhuMab, and talizumab]; (15) a humanized lung surfactant including recombinant forms of surfactant proteins SP-B, SP-C or SP-D [e.g. SURFAXIN®, formerly known as dsc-104 (Discovery Laboratories)], 15 (16) agents that inhibit epithelial sodium channels (ENaC) such as amiloride and related compounds; (17) antimicrobial agents used to treat pulmonary infections such as acyclovir, amikacin, amoxicillin, doxycycline, trimethoprin sulfamethoxazole, amphotericin B, azithromycin, clarithromycin, roxithromycin, clarithromycin, cephalosporins(ceffoxitin, cefmetazole etc), ciprofloxacin, ethambutol, gentimycin, ganciclovir, imipenem, isoniazid, 20 itraconazole, penicillin, ribavirin, rifampin, rifabutin, amantadine, rimantidine, streptomycin, tobramycin, and vancomycin; (18) agents that activate chloride secretion through Ca++ dependent chloride channels (such as purinergic receptor (P2Y(2) agonists); (19) agents that decrease sputum viscosity, such as human recombinant DNase 1, (Pulmozyme®); (20) 25 nonsteroidal anti-inflammatory agents (acemetacin, acetaminophen, acetyl salicylic acid, alclofenac, alminoprofen, apazone, aspirin, benoxaprofen, bezpiperylon, bucloxic acid, carprofen, clidanac, diclofenac, diclofenac, diflunisal, diflusinal, etodolac, fenbufen, fenbufen, fenclofenac, fenclozic acid, fenoprofen, fentiazac, feprazone, flufenamic acid, flufenisal, flufenisal, fluprofen, flurbiprofen, flurbiprofen, furofenac, ibufenac, ibuprofen, indomethacin, 30 indomethacin, indoprofen, isoxepac, isoxicam, ketoprofen, ketoprofen, ketorolac, meclofenamic acid, meclofenamic acid, mefenamic acid, mefenamic acid, miroprofen, mofebutazone, nabumetone oxaprozin, naproxen, naproxen, niflumic acid, oxaprozin, oxpinac, oxyphenbutazone, phenacetin, phenylbutazone, phenylbutazone, piroxicam, piroxicam, pirprofen, pranoprofen, sudoxicam, tenoxican, sulfasalazine, sulindac, sulindac, suprofen, tiaprofenic acid, tiopinac, tioxaprofen, tolfenamic acid, tolmetin, tolmetin, zidometacin, zomepirac, and zomepirac); and (21) aerosolized antioxidant therapeutics such as S-Nitrosoglutathione. #### Anti-obesity agents 5 10 15 20 25 30 The GCRA peptides described herein can be used in combination therapy with an antiobesity agent. Suitable such agents include, but are not limited to: 1 lβ HSD-I (11-beta hydroxy steroid dehydrogenase type 1) inhibitors, such as BVT 3498, BVT 2733, 3-(1-adamantyl)-4ethyl-5-(ethylthio)- 4H-1,2,4-triazole, 3-(l-adamantyl)-5-(3,4,5-trimethoxyphenyl)-4-methyl-4H-1,2,4-triazole, 3- adamantanyl-4,5,6,7,8,9,10,11,12,3a- decahydro-1,2,4-triazolo[4,3-a][1 I]annulene, and those compounds disclosed in WO01/90091, WOO 1/90090, WOO 1/90092 and WO02/072084; 5HT antagonists such as those in WO03/037871, WO03/037887, and the like; SHTIa modulators such as carbidopa, benserazide and those disclosed in US6207699, WO03/031439, and the like; 5HT2c (serotonin receptor 2c) agonists, such as BVT933, DPCA37215, IK264, PNU 22394, WAY161503, R-1065, SB 243213 (Glaxo Smith Kline) and YM 348 and those disclosed in US3914250, WO00/77010, WO02/36596, WO02/48124, WO02/10169, WO01/66548, WO02/44152, WO02/51844, WO02/40456, and WO02/40457; 5HT6 receptor modulators, such as those in WO03/030901, WO03/035061, WO03/039547, and the like; acyl-estrogens, such as oleovl-estrone, disclosed in del Mar-Grasa, M. et al, Obesity Research, 9:202-9 (2001) and Japanese Patent Application No. JP 2000256190; anorectic bicyclic compounds such as 1426 (Aventis) and 1954 (Aventis), and the compounds disclosed in WO00/18749, WO01/32638, WO01/62746, WO01/62747, and WO03/015769; CB 1 (cannabinoid-1 receptor) antagonist/inverse agonists such as rimonabant (Acomplia: Sanofi), SR-147778 (Sanofi), SR-141716 (Sanofi), BAY 65-2520 (Bayer), and SLV 319 (Solvay), and those disclosed in patent publications US4973587, US5013837, US5081122, US5112820, US5292736, US5532237, US5624941, US6028084, US6509367, US6509367, WO96/33159, WO97/29079, WO98/31227, WO98/33765, WO98/37061, WO98/41519, WO98/43635, WO98/43636, WO99/02499, WO00/10967, WO00/10968, WO01/09120, WO01/58869, WO01/64632, WO01/64633, WO01/64634, WO01/70700, WO01/96330, WO02/076949, WO03/006007, WO03/007887, WO03/020217, WO03/026647, WO03/026648, WO03/027069, WO03/027076, WO03/027114, WO03/037332, WO03/040107, WO03/086940, WO03/084943 and EP658546; CCK-A (cholecystokinin-A) agonists, such as AR-R 15849, GI 181771 (GSK), JMV-180, A-71378, A-71623 and SR146131 (Sanofi), and those described in US5739106; CNTF (Ciliary neurotrophic factors), such as
GI-181771 (Glaxo-SmithKline), SRI 46131 (Sanofi Synthelabo), butabindide, PD 170,292, and PD 149164 (Pfizer); CNTF derivatives, such as Axokine® (Regeneron), and those disclosed in WO94/09134, WO98/22128, and WO99/43813; dipentidyl peptidase IV (DP-IV) inhibitors, such as isoleucine thiazolidide, valine pyrrolidide, NVP-DPP728, LAF237, P93/01, P 3298, TSL 225 (tryptophyl-1,2,3,4-tetrahydroisoquinoline-3-10 carboxylic acid: disclosed by Yamada et al. Bioorg. & Med. Chem. Lett. 8 (1998) 1537-1540). TMC-2A/2B/2C, CD26 inhibtors, FE 999011, P9310/K364, VIP 0177, SDZ 274-444, 2evanopyrrolidides and 4-cyanopyrrolidides as disclosed by Ashworth et al, Bioorg. & Med. Chem. Lett., Vol. 6, No. 22, pp 1163-1166 and 2745-2748 (1996) and the compounds disclosed patent publications. WO99/38501, WO99/46272, WO99/67279 (Probiodrug), WO99/67278 15 (Probiodrug), WO99/61431 (Probiodrug), WO02/083128, WO02/062764, WO03/000180, WO03/000181, WO03/000250, WO03/002530, WO03/002531, WO03/002553, WO03/002593, WO03/004498, WO03/004496, WO03/017936, WO03/024942, WO03/024965, WO03/033524, WO03/037327 and EP1258476; growth hormone secretagogue receptor agonists/antagonists, such as NN703, hexarelin, MK-0677 (Merck), SM-130686, CP-424391 (Pfizer), LY 444,711 20 (Eli Lilly), L-692,429 and L-163,255, and such as those disclosed in USSN 09/662448, US provisional application 60/203335, US6358951, US2002049196, US2002/022637, WO01/56592 and WO02/32888; H3 (histamine H3) antagonist/inverse agonists, such as thioperamide, 3-(IHimidazol-4- yl)propyl N-(4-pentenyl)carbamate), clobenpropit, iodophenpropit, imoproxifan. 25 GT2394 (Gliatech), and A331440, O-[3-(lH-imidazol-4-yl)propanol[carbamates (Kiec-Kononowicz, K. et al., Pharmazie, 55:349-55 (2000)), piperidine-containing histamine H3receptor antagonists (Lazewska, D. et al., Pharmazie, 56:927-32 (2001), benzophenone derivatives and related compounds (Sasse, A. et al., Arch. Pharm. (Weinheim) 334:45-52 (2001)). substituted N- phenylcarbamates (Reidemeister, S. et al., Pharmazie, 55:83-6 (2000)), and 30 proxifan derivatives (Sasse, A. et al., J. Med. Chem., 43:3335-43 (2000)) and histamine H3 receptor modulators such as those disclosed in WO02/15905, WO03/024928 and WO03/024929: leptin derivatives, such as those disclosed in US5552524, US5552523, US5552522, US5521283, WO96/23513, WO96/23514, WO96/23515, WO96/23516, WO96/23517, WO96/23518, WO96/23519, and WO96/23520; leptin, including recombinant human leptin (PEG-OB, Hoffman La Roche) and recombinant methionyl human leptin (Amgen); lipase inhibitors, such as tetrahydrolipstatin (orlistat/Xenical®), Triton WRI 339, RHC80267, lipstatin, teasaponin, 5 diethylumbelliferyl phosphate, FL-386, WAY-121898, Bay-N-3176, valilactone, esteracin, ebelactone A, ebelactone B, and RHC 80267, and those disclosed in patent publications WO01/77094, US4598089, US4452813, USUS5512565, US5391571, US5602151, US4405644, US4189438, and US4242453; lipid metabolism modulators such as maslinic acid, erythrodiol, 10 ursolic acid uvaol, betulinic acid, betulin, and the like and compounds disclosed in WO03/011267; Mc4r (melanocortin 4 receptor) agonists, such as CHIR86036 (Chiron), ME-10142, ME-10145, and HS-131 (Melacure), and those disclosed in PCT publication Nos. WO99/64002, WO00/74679, WOO 1/991752, WOO 1/25192, WOO 1/52880, WOO 1/74844, WOO 1/70708, WO01/70337, WO01/91752, WO02/059095, WO02/059107, WO02/059108, WO02/059117, WO02/06276, WO02/12166, WO02/11715, WO02/12178, WO02/15909, 15 WO02/38544, WO02/068387, WO02/068388, WO02/067869, WO02/081430, WO03/06604, WO03/007949, WO03/009847, WO03/009850, WO03/013509, and WO03/031410; Mc5r (melanocortin 5 receptor) modulators, such as those disclosed in WO97/19952, WO00/15826, WO00/15790, US20030092041; melanin-concentrating hormone 1 receptor (MCHR) antagonists, such as T-226296 (Takeda), SB 568849, SNP-7941 (Synaptic), and those disclosed 20 in patent publications WOO 1/21169, WO01/82925, WO01/87834, WO02/051809, WO02/06245, WO02/076929, WO02/076947, WO02/04433, WO02/51809, WO02/083134. WO02/094799, WO03/004027, WO03/13574, WO03/15769, WO03/028641, WO03/035624, WO03/033476, WO03/033480, JP13226269, and JP1437059; mGluR5 modulators such as those 25 disclosed in WO03/029210, WO03/047581, WO03/048137, WO03/051315, WO03/051833, WO03/053922, WO03/059904, and the like; serotoninergic agents, such as fenfluramine (such as Pondimin® (Benzeneethanamine, N-ethyl- alpha-methyl-3-(trifluoromethyl)-, hydrochloride), Robbins), dexfenfluramine (such as Redux® (Benzeneethanamine, N-ethyl-alpha-methyl-3-(trifluoromethyl)-, hydrochloride), Interneuron) and sibutramine ((Meridia®, Knoll/ReductilTM) 30 including racemic mixtures, as optically pure isomers (+) and (-), and pharmaceutically acceptable salts, solvents, hydrates, clathrates and prodrugs thereof including sibutramine hydrochloride monohydrate salts thereof, and those compounds disclosed in US4746680, US4806570, and US5436272, US20020006964, WOO 1/27068, and WOO 1/62341; NE (norepinephrine) transport inhibitors, such as GW 320659, despiramine, talsupram, and nomifensine; NPY 1 antagonists, such as BIBP3226, J-115814, BIBO 3304, LY-357897, CP-671906, GI-264879A, and those disclosed in US6001836, WO96/14307, WO01/23387, WO99/51600, WO01/85690, WO01/85098, WO01/85173, and WO01/89528; NPY5 (neuropeptide Y Y5) antagonists, such as 152,804, GW-569180A, GW-594884A, GW-587081X, GW-548118X, FR235208, FR226928, FR240662, FR252384, 1229U91, GI-264879A, CGP71683A, LY-377897, LY-366377, PD-160170, SR-120562A, SR-120819A, JCF-104, and 10 H409/22 and those compounds disclosed in patent publications US6140354, US6191160, US6218408, US6258837, US6313298, US6326375, US6329395, US6335345, US6337332, US6329395, US6340683, EP01010691, EP-01044970, WO97/19682, WO97/20820, WO97/20821, WO97/20822, WO97/20823, WO98/27063, WO00/107409, WO00/185714. WO00/185730, WO00/64880, WO00/68197, WO00/69849, WO/0113917, WO01/09120, WO01/14376, WO01/85714, WO01/85730, WO01/07409, WO01/02379, WO01/23388. 15 WO01/23389, WOO 1/44201, WO01/62737, WO01/62738, WO01/09120, WO02/20488, WO02/22592, WO02/48152, WO02/49648, WO02/051806, WO02/094789, WO03/009845, WO03/014083, WO03/022849, WO03/028726 and Norman et al, J. Med. Chem. 43:4288-4312 (2000); opioid antagonists, such as nalmefene (REVEX ®), 3-methoxynaltrexone, methylnaltrexone, naloxone, and naltrexone (e.g. PT901; Pain Therapeutics, Inc.) and those 20 disclosed in US20050004155 and WO00/21509; orexin antagonists, such as SB-334867-A and those disclosed in patent publications WO01/96302, WO01/68609, WO02/44172, WO02/51232, WO02/51838, WO02/089800, WO02/090355, WO03/023561, WO03/032991, and WO03/037847; PDE inhibitors (e.g. compounds which slow the degradation of cyclic AMP 25 (cAMP) and/or cyclic GMP (cGMP) by inhibition of the phosphodiesterases, which can lead to a relative increase in the intracellular concentration of cAMP and cGMP; possible PDE inhibitors are primarily those substances which are to be numbered among the class consisting of the PDE3 inhibitors, the class consisting of the PDE4 inhibitors and/or the class consisting of the PDE5 inhibitors, in particular those substances which can be designated as mixed types of PDE3/4 30 inhibitors or as mixed types of PDE3/4/5 inhibitors) such as those disclosed in patent publications DE1470341, DE2108438, DE2123328, DE2305339, DE2305575, DE2315801. DE2402908, DE2413935, DE2451417, DE2459090, DE2646469, DE2727481, DE2825048, DE2837161, DE2845220, DE2847621, DE2934747, DE3021792, DE3038166, DE3044568. EP000718, EP0008408, EP0010759, EP0059948, EP0075436, EP0096517, EPOI 12987, EPOI 16948, EP0150937, EP0158380, EP0161632, EP0161918, EP0167121, EP0199127, EP0220044, EP0247725, EP0258191, EP0272910, EP0272914, EP0294647, EP0300726, EP0335386, EP0357788, EP0389282, EP0406958, EP0426180, EP0428302, EP0435811, EP0470805, EP0482208, EP0490823, EP0506194, EP0511865, EP0527117, EP0626939, EP0664289, EP0671389. EP0685474. EP0685475. EP0685479. JP92234389. JP94329652. JP95010875. US4963561, US5141931, WO9117991, WO9200968, WO9212961, WO9307146, WO9315044, WO9315045, WO9318024, WO9319068, WO9319720, WO9319747, WO9319749, 10 WO9319751, WO9325517, WO9402465, WO9406423, WO9412461, WO9420455. WO9422852, WO9425437, WO9427947, WO9500516, WO9501980, WO9503794, WO9504045, WO9504046, WO9505386, WO9508534, WO9509623, WO9509624, WO9509627, WO9509836, WO9514667, WO9514680, WO9514681, WO9517392, WO9517399, WO9519362, WO9522520, WO9524381, WO9527692, WO9528926, 15 WO9535281, WO9535282, WO9600218, WO9601825, WO9602541, WO9611917, DE3142982, DE1116676, DE2162096, EP0293063, EP0463756, EP0482208, EP0579496, EP0667345 US6331543, US20050004222 (including those disclosed in formulas I- XIII and paragraphs 37-39, 85-0545 and 557-577). WO9307124, EP0163965, EP0393500, EP0510562, EP0553174, WO9501338 and WO9603399, as well as PDE5 inhibitors (such as RX-RA-69, 20 SCH-51866, KT-734, vesnarinone, zaprinast, SKF-96231, ER-21355, BF/GP-385, NM-702 and sildenafil (ViagraTM)). PDE4 inhibitors (such as etazolate, ICI63197, RP73401, imazolidinone (RO-20-1724), MEM 1414 (R1533/R1500; Pharmacia Roche), denbufylline, rolipram, oxagrelate, nitraquazone, Y-590, DH-6471, SKF-94120, motanizone, lixazinone, indolidan. 25 olprinone, atizoram, KS-506-G, dipamfylline, BMY-43351, atizoram, arofylline, filaminast, PDB-093, UCB-29646, CDP-840, SKF-107806, piclamilast, RS-17597, RS-25344-000, SB-207499, TIBENELAST, SB-210667, SB-211572, SB-211600, SB-212066, SB-212179, GW-3600, CDP-840, mopidamol, anagrelide, ibudilast, amrinone, pimobendan, cilostazol, quazinone and N-(3,5-dichloropyrid-4-yl)-3-cyclopropylmethoxy4-difluoromethoxybenzamide, PDE3 30 inhibitors (such as ICI153, 100, bemorandane (RWJ 22867), MCI-154, UD-CG 212, sulmazole, ampizone, cilostamide, carbazeran, piroximone, imazodan, CI-930, siguazodan, adibendan, saterinone, SKF-95654, SDZ-MKS-492, 349-U-85, emoradan, EMD-53998, EMD-57033, NSP-306, NSP-307, revizinone, NM-702, WIN-62582 and WIN-63291, enoximone and
milrinone, PDE3/4 inhibitors (such as benafentrine, trequinsin, ORG-30029, zardaverine, L-686398, SDZ-ISQ-844, ORG-20241, EMD-54622, and tolafentrine) and other PDE inhibitors (such as vinpocetin, papaverine, enprofylline, cilomilast, fenoximone, pentoxifylline, roflumilast, tadalafil(Cialis®), theophylline, and vardenafil(Levitra®); Neuropeptide Y2 (NPY2) agonists include but are not limited to: polypeptide YY and fragments and variants thereof (e.g. YY3-36 (PYY3-36)(N. Engl. J. Med. 349:941, 2003; IKPEAPGE DASPEELNRY YASLRHYLNL VTRORY (SEO ID NO:XXX)) and PYY agonists such as those disclosed in WO02/47712. WO03/026591, WO03/057235, and WO03/027637; serotonin reuptake inhibitors, such as, 10 paroxetine, fluoxetine (ProzacTM), fluvoxamine, sertraline, citalogram, and imipramine, and those disclosed in US6162805, US6365633, WO03/00663, WOO 1/27060, and WOO 1/162341; thyroid hormone \(\beta \) agonists, such as KB-2611 (KaroBioBMS), and those disclosed in WO02/15845, WO97/21993, WO99/00353, GB98/284425, U.S. Provisional Application No. 60/183,223, and Japanese Patent Application No. JP 2000256190; UCP-I (uncoupling protein-1), 15 2, or 3 activators, such as phytanic acid, 4-[(E)-2-(5, 6,7,8- tetrahydro-5,5,8,8-tetramethyl-2napthalenyl)-l-propenyl]benzoic acid (TTNPB), retinoic acid, and those disclosed in WO99/00123; β3 (beta adrenergic receptor 3) agonists, such as AJ9677/TAK677 (Dainippon/Takeda), L750355 (Merck), CP331648 (Pfizer), CL-316,243, SB 418790, BRL-37344, L-796568, BMS-196085, BRL-35135A, CGP12177A, BTA-243, GW 427353, 20 Trecadrine, Zeneca D7114, N-5984 (Nisshin Kyorin), LY-377604 (Lilly), SR 59119A, and those disclosed in US5541204, US5770615, US5491134, US5776983, US488064, US5705515, US5451677, WO94/18161, WO95/29159, WO97/46556, WO98/04526 and WO98/32753, WO01/74782, WO02/32897, WO03/014113, WO03/016276, WO03/016307, WO03/024948, 25 WO03/024953 and WO03/037881; noradrenergic agents including, but not limited to, diethylpropion (such as Tenuate® (1- propanone, 2-(diethylamino)-1-phenyl-, hydrochloride), Merrell), dextroamphetamine (also known as dextroamphetamine sulfate, dexamphetamine, dexedrine, Dexampex, Ferndex, Oxydess II, Robese, Spancap #1), mazindol ((or 5-(pchlorophenyl)-2,5-dihydro-3H- imidazo[2,l-a]isoindol-5-ol) such as Sanorex®, Novartis or 30 Mazanor®, Wyeth Ayerst), phenylpropanolamine (or Benzenemethanol, alpha-(l-aminoethyl)-, hydrochloride), phentermine ((or Phenol, 3-[[4,5-duhydro-lH-imidazol-2-yl)ethyl](4- methylpheny-l)aminol, monohydrochloride) such as Adipex-P®, Lemmon, FASTIN®, Smith-Kline Beecham and Ionamin®, Medeva), phendimetrazine ((or (2S,3S)-3,4-Dimethyl-2phenylmorpholine L-(+)- tartrate (1:1)) such as Metra® (Forest), Plegine® (Wyeth- Ay erst), Prelu-2® (Boehringer Ingelheim), and Statobex® (Lemmon), phendamine tartrate (such as Thephorin® (2,3,4,9- Tetrahydro-2-methyl-9-phenyl-lH-indenol[2,l-c]pyridine L-(+)-tartrate (1 5 :1)), Hoffmann-LaRoche), methamphetamine (such as Desoxyn®, Abbot ((S)-N, (alpha)dimethylbenzeneethanamine hydrochloride)), and phendimetrazine tartrate (such as Bontril® Slow-Release Capsules, Amarin (-3,4-Dimethyl-2-phenylmorpholine Tartrate); fatty acid oxidation upregulator/inducers such as Famoxin® (Genset); monamine oxidase inhibitors 10 including but not limited to befloxatone, moclobemide, brofaromine, phenoxathine, esuprone, befol, toloxatone, pirlindol, amiflamine, sercloremine, bazinaprine, lazabemide, milacemide, caroxazone and other certain compounds as disclosed by WO01/12176; and other anti-obesity agents such as 5HT-2 agonists, ACC (acetyl-CoA carboxylase) inhibitors such as those described in WO03/072197, alpha-lipoic acid (alpha-LA), AOD9604, appetite suppressants such as those 15 in WO03/40107, ATL-962 (Alizyme PLC), benzocaine, benzphetamine hydrochloride (Didrex), bladderwrack (focus vesiculosus), BRS3 (bombesin receptor subtype 3) agonists, bupropion, caffeine, CCK agonists, chitosan, chromium, conjugated linoleic acid, corticotropin-releasing hormone agonists, dehydroepiandrosterone, DGATI (diacylglycerol acyltransferase 1) inhibitors, DGAT2 (diacylglycerol acyltransferase 2) inhibitors, dicarboxylate transporter inhibitors, ephedra, exendin-4 (an inhibitor of glp-1) FAS (fatty acid synthase) inhibitors (such as Cerulenin 20 and C75), fat resorption inhibitors (such as those in WO03/053451, and the like), fatty acid transporter inhibitors, natural water soluble fibers (such as psyllium, plantago, guar, oat, pectin), galanin antagonists, galega (Goat's Rue, French Lilac), garcinia cambogia, germander (teucrium chamaedrys), ghrelin antibodies and ghrelin antagonists (such as those disclosed in 25 WO01/87335, and WO02/08250), polypeptide hormones and variants thereof which affect the islet cell secretion, such as the hormones of the secretin/gastric inhibitory polypeptide (GIP)/vasoactive intestinal polypeptide (VIP)/pituitary adenylate cyclase activating polypeptide (PACAP)/glucagon-like polypeptide II (GLP- II)/glicentin/glucagon gene family and/or those of the adrenomedullin/amylin/calcitonin gene related polypeptide (CGRP) gene family 30 includingGLP-1 (glucagon-like polypeptide 1) agonists (e.g. (1) exendin-4, (2) those GLP-I molecules described in US20050130891 including GLP-1(7-34), GLP-1(7-35), GLP-1(7-36) or GLP-I(7-37) in its C-terminally carboxylated or amidated form or as modified GLP-I polypeptides and modifications thereof including those described in paragraphs 17-44 of US20050130891, and derivatives derived from GLP-I-(7-34)COOH and the corresponding acid amide are employed which have the following general formula: R-NH- HAEGTFTSDVSYLEGQAAKEFIAWLVK-CONH2 wherein R=H or an organic compound 5 having from 1 to 10 carbon atoms. Preferably, R is the residue of a carboxylic acid. Particularly preferred are the following carboxylic acid residues: formyl, acetyl, propionyl, isopropionyl, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl.) and glp-1 (glucagon-like polypeptide-1), glucocorticoid antagonists, glucose transporter inhibitors, growth hormone 10 secretagogues (such as those disclosed and specifically described in US5536716), interleukin-6 (IL-6) and modulators thereof (as in WO03/057237, and the like), L- carnitine, Mc3r (melanocortin 3 receptor) agonists, MCH2R (melanin concentrating hormone 2R) agonist/antagonists, melanin concentrating hormone antagonists, melanocortin agonists (such as Melanotan II or those described in WO 99/64002 and WO 00/74679), nomame herba, phosphate transporter inhibitors, phytopharm compound 57 (CP 644,673), pyruvate, SCD-I (stearoyl-CoA 15 desaturase-1) inhibitors, T71 (Tularik, Inc., Boulder CO), Topiramate (Topimax®, indicated as an anti-convulsant which has been shown to increase weight loss), transcription factor modulators (such as those disclosed in WO03/026576), β-hydroxy steroid dehydrogenase-1 inhibitors (β -HSD-I), β-hydroxy-β-methylbutyrate, p57 (Pfizer), Zonisamide (ZonegranTM, indicated as an anti-epileptic which has been shown to lead to weight loss), and the agents 20 disclosed in US20030119428 paragraphs 20-26. Anti-Diabetic Agents 25 30 The GCRA peptides described herein can be used in therapeutic combination with one or more anti-diabetic agents, including but not limited to: PPARγ agonists such as glitazones (e.g., WAY-120,744, AD 5075, balaglitazone, ciglitazone, darglitazone (CP-86325, Pfizer), englitazone (CP-68722, Pfizer), isaglitazone (MIT/J&J), MCC-555 (Mitsibishi disclosed in US5594016), pioglitazone (such as such as Actos[™] pioglitazone; Takeda), rosiglitazone (Avandia[™];Smith Kline Beecham), rosiglitazone maleate, troglitazone (Rezulin®, disclosed in US4572912), rivoglitazone (CS-Ol 1, Sankyo), GL-262570 (Glaxo Welcome), BRL49653 (disclosed in WO98/05331), CLX-0921, 5-BTZD, GW-0207, LG-100641, JJT-501 (JPNT/P&U), L-895645 (Merck), R-119702 (Sankyo/Pfizer), NN-2344 (Dr. Reddy/NN), YM- 440 (Yamanouchi), LY-300512, LY-519818, R483 (Roche), T131 (Tularik), and the like and compounds disclosed in US4687777, US5002953, US5741803, US5965584, US6150383, US6150384, US6166042, US6166043, US6172090, US6211205, US6271243, US6288095, US6303640, US6329404, US5994554, W097/10813, WO97/27857, WO97/28115, WO97/28137,WO97/27847, WO00/76488, WO03/000685,WO03/027112,WO03/035602, 5 WO03/048130, WO03/055867, and pharmacoutically acceptable salts thereof; biguanides such as metformin hydrochloride (N,N-dimethylimidodicarbonimidic diamide hydrochloride, such as Glucophage™, Bristol-Myers Squibb); metformin hydrochloride with glyburide, such as GlucovanceTM, Bristol-Myers Squibb); buformin (Imidodicarbonimidic diamide, N-butyl-); 10 etoformine (I-Butyl-2-ethylbiguanide, Schering A. G.); other metformin salt forms (including where the salt is chosen from the group of, acetate, benzoate, citrate, ftimarate, embonate, chlorophenoxyacetate, glycolate, palmoate, aspartate, methanesulphonate, maleate, parachlorophenoxyisobutyrate, formate, lactate, succinate, sulphate, tartrate, cyclohexanecarboxylate, hexanoate, octanoate, decanoate, hexadecanoate, octodecanoate, benzenesulphonate, trimethoxybenzoate, paratoluenesulphonate, adamantanecarboxylate, 15 glycoxylate, glutarnate, pyrrolidonecarboxylate, naphthalenesulphonate, 1-glucosephosphate, nitrate, sulphite, dithionate and phosphate), and phenformin; protein tyrosine phosphatase- IB (PTP-IB) inhibitors, such as A-401,674, KR 61639, OC-060062, OC-83839, OC-297962, MC52445, MC52453, ISIS 113715, and those disclosed in WO99/585521, WO99/58518, WO99/58522, WO99/61435, WO03/032916, WO03/032982, WO03/041729, WO03/055883, 20 WO02/26707, WO02/26743, JP2002114768, and pharmaceutically acceptable salts and esters thereof; sulfonvlureas such as acetohexamide (e.g. Dymelor, Eli Lilly), carbutamide. chlorpropamide (e.g. Diabinese®, Pfizer), gliamilide (Pfizer), gliclazide (e.g. Diamcron, Servier Canada Inc), glimepiride (e.g. disclosed in US4379785, such as Amaryl, Aventis), glipentide, 25 glipizide (e.g. Glucotrol or
Glucotrol XL Extended Release, Pfizer), gliquidone, glisolamide, glyburide/glibenclamide (e.g. Micronase or Glynase Prestab, Pharmacia & Upjohn and Diabeta, Aventis), tolazamide (e.g. Tolinase), and tolbutamide (e.g. Orinase), and pharmaceutically acceptable salts and esters thereof; meglitinides such as repaglinide (e.g. Pranidin®, Novo Nordisk), KAD1229 (PF/Kissei), and nateglinide (e.g. Starlix®, Novartis), and pharmaceutically 30 acceptable salts and esters thereof; a glucoside hydrolase inhibitors (or glucoside inhibitors) such as a carbose (e.g. Precose™, Bayer disclosed in US4904769), miglitol (such as GLYSET™, Pharmacia & Upjohn disclosed in US4639436), camiglibose (Methyl 6-deoxy-6-[(2R,3R,4R,5S)-3,4,5-trihydroxy-2- (hydroxymethyl)piperidinol-alpha-D-glucopyranoside, Marion Merrell Dow), voglibose (Takeda), adiposine, emiglitate, pradimicin-Q, salbostatin, CKD-711, MDL-25,637, MDL-73,945, and MOR 14, and the compounds disclosed in US4062950, US4174439, US4254256, US4701559, US4639436, US5192772, US4634765, US5157116, US5504078, 5 US5091418, US5217877, US51091 and WOO 1/47528 (polyamines); α-amylase inhibitors such as tendamistat, trestatin, and A1-3688, and the compounds disclosed in US4451455, US4623714, and US4273765; SGLT2 inhibtors including those disclosed in US6414126 and US6515117; an aP2 inhibitor such as disclosed in US6548529; insulin secreatagogues such as 10 linogliride, A-4166, forskilin, dibutyrl cAMP, isobutylmethylxanthine (IBMX), and pharmaceutically acceptable salts and esters thereof; fatty acid oxidation inhibitors, such as clomoxir, and etomoxir, and pharmaceutically acceptable salts and esters thereof; A2 antagonists, such as midaglizole, isaglidole, deriglidole, idazoxan, earoxan, and fluparoxan, and pharmaceutically acceptable salts and esters thereof; insulin and related compounds (e.g. insulin mimetics) such as biota, LP-100, novarapid, insulin detemir, insulin lispro, insulin glargine, 15 insulin zinc suspension (lente and ultralente), Lys-Pro insulin, GLP-I (1-36) amide, GLP-I (73-7) (insulintropin, disclosed in US5614492), LY-315902 (Lilly), GLP-I (7-36)-NH2), AL-401 (Autoimmune), certain compositions as disclosed in US4579730, US4849405, US4963526, US5642868, US5763396, US5824638, US5843866, US6153632, US6191105, and WO 85/05029, and primate, rodent, or rabbit insulin including biologically active variants thereof 20 including allelic variants, more preferably human insulin available in recombinant form (sources of human insulin include pharmaceutically acceptable and sterile formulations such as those available from Eli Lilly (Indianapolis, Ind. 46285) as Humulin™ (human insulin rDNA origin), also see the THE PHYSICIAN'S DESK REFERENCE, 55.sup.th Ed. (2001) Medical 25 Economics, Thomson Healthcare (disclosing other suitable human insulins); nonthiazolidinediones such as JT-501 and farglitazar (GW-2570/GI-262579), and pharmaceutically acceptable salts and esters thereof; PPARa/y dual agonists such as AR-HO39242 (Aztrazeneca), GW-409544 (Glaxo-Wellcome), BVT-142, CLX-0940, GW-1536, GW-1929, GW-2433, KRP-297 (Kyorin Merck; 5-[(2,4-Dioxo thiazolidinyl)methyl] methoxy-N-[[4-30 (trifluoromethyl)phenyl] methyljbenzamide), L-796449, LR-90, MK-0767 (Merck/Kvorin/Banvu), SB 219994, muraglitazar (BMS), tesaglitzar (Astrazeneca), reglitazar (JTT-501) and those disclosed in WO99/16758, WO99/19313, WO99/20614, WO99/38850, WO00/23415, WO00/23417, WO00/23445, WO00/50414, WO01/00579, WO01/79150, WO02/062799, WO03/004458, WO03/016265, WO03/018010, WO03/033481, WO03/033450, WO03/033453, WO03/043985, WO 031053976, U.S. application Ser. No. 09/664,598, filed Sep. 18, 2000, Murakami et al. Diabetes 47, 1841-1847 (1998), and pharmaceutically acceptable salts and esters thereof; other insulin sensitizing drugs; VPAC2 receptor agonists; GLK modulators, such as those disclosed in WO03/015774; retinoid modulators such as those disclosed in WO03/000249; GSK 3B/GSK 3 inhibitors such as 4-[2-(2-bromophenyl)-4-(4-fluorophenyl-lHimidazol-5- yl]pyridine and those compounds disclosed in WO03/024447, WO03/037869, WO03/037877, WO03/037891, WO03/068773, EP1295884, EP1295885, and the like; glycogen 10 phosphorylase (HGLPa) inhibitors such as CP-368,296, CP-316,819, BAYR3401, and compounds disclosed in WOO 1/94300, WO02/20530, WO03/037864, and pharmaceutically acceptable salts or esters thereof; ATP consumption promotors such as those disclosed in WO03/007990; TRB3 inhibitors; vanilloid receptor ligands such as those disclosed in WO03/049702; hypoglycemic agents such as those disclosed in WO03/015781 and 15 WO03/040114; glycogen synthase kinase 3 inhibitors such as those disclosed in WO03/035663 agents such as those disclosed in WO99/51225, US20030134890, WO01/24786, and WO03/059870; insulin-responsive DNA binding protein-1 (IRDBP-I) as disclosed in WO03/057827, and the like; adenosine A2 antagonists such as those disclosed in WO03/035639, WO03/035640, and the like; PPARδ agonists such as GW 501516, GW 590735, and compounds 20 disclosed in JP10237049 and WO02/14291; dipeptidyl peptidase IV (DP-IV) inhibitors, such as isoleucine thiazolidide, NVP-DPP728A (1- [[[2-[(5-cvanopyridin-2yl)amino ethyl amino acetyl -2-cyano-(S)-pyrrolidine, disclosed by Hughes et al, Biochemistry, 38(36), 11597-11603, 1999), P32/98, NVP-LAF-237, P3298, TSL225 (tryptophyl-l,2,3,4-25 tetrahydro-isoquinoline-3-carboxylic acid, disclosed by Yamada et al, Bioorg. & Med. Chem. Lett. 8 (1998) 1537-1540), valine pyrrolidide, TMC-2A/2B/2C, CD-26 inhibitors, FE999011, P9310/K364, VIP 0177, DPP4, SDZ 274-444, 2-cyanopyrrolidides and 4-cyanopyrrolidides as disclosed by Ashworth et al, Bioorg. & Med. Chem. Lett., Vol. 6, No. 22, pp 1163-1166 and 2745-2748 (1996), and the compounds disclosed in US6395767, US6573287, US6395767 30 (compounds disclosed include BMS-477118, BMS-471211 and BMS 538,305), WO99/38501, WO99/46272, WO99/67279, WO99/67278, WO99/61431WO03/004498, WO03/004496, EP1258476, WO02/083128, WO02/062764, WO03/000250, WO03/002530, WO03/002531, WO03/002553, WO03/002593, WO03/000180, and WO03/000181; GLP-I agonists such as exendin-3 and exendin-4 (including the 39 aa polypeptide synthetic exendin-4 called Exenatide®), and compounds disclosed in US2003087821 and NZ 504256, and pharmaceutically acceptable salts and esters thereof; peptides including amlintide and Symlin® (pramlintide acetate); and glycokinase activators such as those disclosed in US2002103199 (fused heteroaromatic compounds) and WO02/48106 (isoindolin-1-one-substituted propionamide compounds). #### Phosphodiesterase inhibitors 10 15 20 25 30 The GCRA peptides described herein can be used in combination therapy with a phosphodiesterase inhibitor. PDE inhibitors are those compounds which slow the degradation of cyclic AMP (cAMP) and/or cyclic GMP (cGMP) by inhibition of the phosphodiesterases, which can lead to a relative increase in the intracellular concentration of c AMP and/or cGMP. Possible PDE inhibitors are primarily those substances which are to be numbered among the class consisting of the PDE3 inhibitors, the class consisting of the PDE4 inhibitors and/or the class consisting of the PDE5 inhibitors, in particular those substances which can be designated as mixed types of PDE3/4 inhibitors or as mixed types of PDE3/4/5 inhibitors. By way of example, those PDE inhibitors may be mentioned such as are described and/or claimed in the following patent applications and patents: DE1470341, DE2108438, DE2123328, DE2305339, DE2305575, DE2315801, DE2402908, DE2413935, DE2451417, DE2459090, DE2646469, DE2727481, DE2825048, DE2837161, DE2845220, DE2847621, DE2934747, DE3021792, DE3038166, DE3044568, EP000718, EP0008408, EP0010759, EP0059948, EP0075436, EP0096517, EPOI 12987, EPOI 16948, EP0150937, EP0158380, EP0161632, EP0161918, EP0167121, EP0199127, EP0220044, EP0247725, EP0258191, EP0272910, EP0272914, EP0294647, EP0300726, EP0335386, EP0357788, EP0389282, EP0406958, EP0426180, EP0428302, EP0435811, EP0470805, EP0482208, EP0490823, EP0506194, EP0511865, EP0527117, EP0626939, EP0664289, EP0671389, EP0685474, EP0685475, EP0685479, JP92234389, JP94329652, JP95010875, U.S. Pat. Nos. 4,963,561, 5,141,931, WO9117991, WO9200968, WO9212961, WO9307146, WO9315044, WO9315045, WO9318024, WO9319068. WO9319720, WO9319747. WO9319749, WO9319751, WO9325517, WO9402465, WO9406423, WO9412461, WO9420455, WO9422852, WO9425437, WO9427947, WO9500516, WO9501980, WO9503794, WO9504045, WO9504046, WO9505386, WO9508534, WO9509623, WO9509624, WO9509627, WO9509836, WO9514667, WO9514680, WO9514681, WO9517392, WO9517399, WO9519362, WO9522520, WO9524381, WO9527692, WO9528926, WO9535281, WO9535282, WO9600218, WO9601825, WO9602541, WO9611917, DE3142982, DE1116676, DE2162096. EP0293063, EP0463756, EP0482208, EP0579496, EP0667345 US6,331,543, US20050004222 (including those disclosed in formulas I-XIII and paragraphs 37-39, 85-0545 and 557-577) and WO9307124, EP0163965, EP0393500, EP0510562, EP0553174, WO9501338 and WO9603399. 10 PDE5 inhibitors which may be mentioned by way of example are RX-RA-69, SCH-51866, KT-734, vesnarinone, zaprinast, SKF-96231, ER-21355, BF/GP-385, NM-702 and sildenafil (Viagra®). PDE4 inhibitors which may be mentioned by way of example are RO-20-1724, MEM 1414 (R1533/R1500; Pharmacia Roche), DENBUFYLLINE, ROLIPRAM, OXAGRELATE, NITRAQUAZONE, Y-590, DH-6471, SKF-94120, MOTAPIZONE, LIXAZINONE, INDOLIDAN, OLPRINONE, ATIZORAM, KS-506-G, DIPAMFYLLINE, 15 BMY-43351, ATIZORAM, AROFYLLINE, FILAMINAST, PDB-093, UCB-29646, CDP-840, SKF-107806, PICLAMILAST, RS-17597, RS-25344-000, SB-207499, TIBENELAST, SB-210667, SB-211572, SB-211600, SB-212066, SB-212179, GW-3600, CDP-840, MOPIDAMOL, ANAGRELIDE, IBUDILAST, AMRINONE, PIMOBENDAN, CILOSTAZOL. QUAZINONE and N-(3.5-dichloropyrid-4-yl)-3-cyclopropylmethoxy4-difluoromethoxybenzamide, PDE3 20 inhibitors which may be mentioned by way of example are SULMAZOLE, AMPIZONE, CILOSTAMIDE, CARBAZERAN, PIROXIMONE. IMAZODAN. CI-930. SIGUAZODAN. ADIBENDAN,
SATERINONE, SKF-95654, SDZ-MKS-492, 349-U-85, EMORADAN, EMD-53998. EMD-57033, NSP-306, NSP-307, REVIZINONE, NM-702, WIN-62582 and WIN-25 63291, ENOXIMONE and MILRINONE. PDE3/4 inhibitors which may be mentioned by way of example are BENAFENTRINE. TREQUINSIN, ORG-30029, ZARDAVERINE, L-686398. SDZ-ISQ-844, ORG-20241, EMD-54622, and TOLAFENTRINE. Other PDE inhibitors include: cilomilast, pentoxifylline, roflumilast, tadalafil(Cialis®), theophylline, and vardenafil(Levitra®), zaprinast (PDE5 specific). ### Anti- Uterine Contractions Agents The GCRA peptides described herein can be used in combination therapy (for example, in order to decrease or inhibit uterine contractions) with a tocolytic agent including but not limited to beta-adrenergic agents, magnesium sulfate, prostaglandin inhibitors, and calcium channel blockers. # Anti-Neoplastic Agents 5 10 15 20 25 30 The GCRA peptides described herein can be used in combination therapy with an antineoplastic agents including but not limited to alkylating agents, epipodophyllotoxins, nitrosoureas, antimetabolites, vinca alkaloids, anthracycline antibiotics, nitrogen mustard agents, and the like. Particular anti-neoplastic agents may include tamoxifen, taxol, etoposide and 5-fluorouracil. The GCRA peptides described herein can be used in combination therapy (for example as in a chemotherapeutic composition) with an antiviral and monoclonal antibody therapies. Agents to treat Congestive Heart Failure The GCRA peptides described herein can be used in combination therapy (for example, in prevention/treatment of congestive heart failure or another method described herein) with the partial agonist of the nociceptin receptor ORLI described by Dooley et al. (The Journal of Pharmacology and Experimental Therapeutics, 283 (2): 735-741, 1997). The agonist is a hexapeptide having the amino acid sequence Ac- RYY (RK) (WI) (RK)-NH2 ("the Dooley polypeptide"), where the brackets show allowable variation of amino acid residue. Thus Dooley polypeptide can include but are not limited to KYYRWR, RYYRWR, KWRYYR, RYYRWK, RYYRWK and KYYRWK, wherein the amino acid residues are in the L-form unless otherwise specified. The GCRA peptides described herein can also be used in combination therapy with polypeptide conjugate modifications of the Dooley polypeptide described in WO0198324. #### DOSAGE Dosage levels of active ingredients in a pharmaceutical composition can also be varied so as to achieve a transient or sustained concentration of the compound in a subject, especially in and around the site of inflammation or disease area, and to result in the desired response. It is well within the skill of the art to start doses of the compound at levels lower than required to achieve the desired effect and to gradually increase the dosage until the desired effect is achieved. It will be understood that the specific dose level for any particular subject will depend on a variety of factors, including body weight, general health, diet, natural history of disease, route and scheduling of administration, combination with one or more other drugs, and severity of disease. 5 10 15 20 25 30 An effective dosage of the composition will typically be between about 1 µg and about 10 mg per kilogram body weight, preferably between about 10 µg to 5 mg of the compound per kilogram body weight. Adjustments in dosage will be made using methods that are routine in the art and will be based upon the particular composition being used and clinical considerations. The guanylate cyclase receptor agonists used in the methods described above may be administered orally, systemically or locally. Dosage forms include preparations for inhalation or injection, solutions, suspensions, emulsions, tablets, capsules, topical salves and lotions, transdermal compositions, other known peptide formulations and pegylated peptide analogs. Agonists may be administered as either the sole active agent or in combination with other drugs, *e.g.*, an inhibitor of cGMP-dependent phosphodiesterase and anti-inflammatory agent. In all cases, additional drugs should be administered at a dosage that is therapeutically effective using the existing art as a guide. Drugs may be administered in a single composition or sequentially. Dosage levels of the GCR agonist for use in methods of this invention typically are from about 0.001 mg to about 10,000 mg daily, preferably from about 0.005 mg to about 1,000 mg daily. On the basis of mg/kg daily dose, either given in single or divided doses, dosages typically range from about 0.001/75 mg/kg to about 10,000/75 mg/kg, preferably from about 0.005/75 mg/kg to about 1,000/75 mg/kg. The total daily dose of each inhibitor can be administered to the patient in a single dose, or in multiple subdoses. Typically, subdoses can be administered two to six times per day, preferably two to four times per day, and even more preferably two to three times per day. Doses can be in immediate release form or sustained release form sufficiently effective to obtain the desired control over the medical condition. The dosage regimen to prevent, treat, give relief from, or ameliorate a medical condition or disorder, or to otherwise protect against or treat a medical condition with the combinations and compositions of the present invention is selected in accordance with a variety of factors. These factors include, but are not limited to, the type, age, weight, sex, diet, and medical condition of the subject, the severity of the disease, the route of administration, pharmacological considerations such as the activity, efficacy, pharmacokinetics and toxicology profiles of the particular inhibitors employed, whether a drug delivery system is utilized, and whether the inhibitors are administered with other active ingredients. Thus, the dosage regimen actually employed may vary widely and therefore deviate from the preferred dosage regimen set forth above. # **EXAMPLES** #### **EXAMPLE 1: SYNTHESIS AND PURIFICATION OF GCRA PEPTIDES** The GCRA peptides were synthesized using standard methods for solid-phase peptide synthesis. Either a Boc/Bzl or Fmoc/tBu protecting group strategy was selected depending upon the scale of the peptide to be produced. In the case of smaller quantities, it is possible to get the desired product using an Fmoc/tBu protocol, but for larger quantities (1 g or more), Boc/Bzl is superior. In each case the GCRA peptide was started by either using a pre-loaded Wang (Fmoc) or Merrifield (Boc) or Pam (Boc) resin. For products with C-terminal Leu, Fmoc-Leu-Wang (D-1115) or Boc-Leu-Pam resin (D-1230) or Boc-Leu-Merrifield (D-1030) Thus, for peptides containing the C-terminal d-Leu, the resin was Fmoc-dLeu-Wang Resin (D-2535) and Boc-dLeu-Merrifield, Boc-dLeu-Pam-Resin (Bachem Product D-1230 and D-1590, respectively) (SP-332 and related analogs). For peptides produced as C-terminal amides, a resin with Ramage linker (Bachem Product D-2200) (Fmoc) or mBHA (Boc) (Bachem Product D-1210 was used and loaded with the C-terminal residue as the first synthetic step. #### Fmoc-tBu Overview 5 10 15 20 25 30 Each synthetic cycle consisted deprotection with 20% piperidine in DMF. Resin washes were accomplished with alternating DMF and IpOH to swell and shrink the resin, respectively. Peptide synthesis elongated the chain from the C-terminus to the N-terminus. Activation chemistry for each amino acid was with HBTU/DIEA in a 4 fold excess for 45 minutes. In automated chemistries, each amino acid was double coupled to maximize the coupling efficiency. To insure the correct position of disulfide bonds, the Cys residues were introduced as Cys(Acm) at positions 15 and 7. Cys(Trt) was positioned at Cys4 and Cys12. This protecting group strategy yields the correct topoisomer as the dominant product (75:25). (For enterotoxin analogs, a third disulfide bond protecting group (Mob) was utilized). For peptides containing C-terminal Aeea (aminoethyloxyethyloxyacetyl) groups, these were coupled to a Ramage amide linker using the same activation chemistry above by using an Fmoc-protected Aeea derivative. The Cys numbering in these cases remains the same and the positioning of the protecting groups as well. For the peptides containing the N-terminal extension of Aeea, the Cys residue numbering will be increased by three Cys4 becomes Cys7, Cys12 becomes Cys15; Cys7 becomes Cys10 and Cys 15 becomes Cys18. The latter pair is protected with Acm and the former pair keeps the Trt groups. 5 10 15 20 25 30 For analogs containing D-amino acid substitutions, these were introduced directly by incorporating the correctly protected derivative at the desired position using the same activation chemistry described in this document. For Fmoc strategies, Fmoc-dAsn(Trt)-OH, Fmoc-dAsn(Xan)-OH, Fmoc-dAsp(tBu)-OH, Fmoc-dGlu(tBu)-OH and for Boc strategies, Boc-dAsn(Xan)-OH, Boc-dAsn(Trt)-OH, Boc-dAsp(Chx), Boc-dAsp(Bzl)-OH, Boc-dGlu(Chx)-OH and Boc-dGlu(Bzl)-OH would be utilized. Each peptide is cleaved from the solid-phase support using a cleavage cocktail of TFA:H2O:Trisisopropylsilane (8.5:0.75:0.75) ml/g of resin for 2 hr at RT. The crude deprotected peptide is filtered to remove the spent resin beads and precipitated into ice-cold diethylether. Each disulfide bonds was introduced orthogonally. Briefly, the crude synthetic product was dissolved in water containing NH₄OH to increase the pH to 9. Following complete solubilization of the product, the disulfide bond was made between the Trt deprotected Cys residues by titration with H₂O₂. The monocyclic product was purified by RP-HPLC. The purified mono-cyclic product was subsequently treated with a solution of iodine to simultaneously remove the Acm protecting groups and introduce the second disulfide bond. For enterotoxin analogs, the Mob group was removed via treatment of the dicyclic product with TFA 85% containing 10% DMSO and 5% thioanisole for 2 hr at RT. Each product was then purified by RP-HPLC using a combination
buffer system of TEAP in H2O versus MeCN, followed by TFA in H2O versus MeCN. Highly pure fractions were combined and lyophilized. The final product was converted to an Acetate salt using either ion exchange with Acetate loaded Dow-Ex resin or using RP-HPLC using a base-wash step with NH₄OAc followed by 1% AcOH in water versus MeCN. It is also possible to prepare enterotoxin analogs using a random oxidation methodology using Cys(Trt) in Fmoc or Cys(MeB) in Boc. Following cleavage, the disulfide bonds can be formed using disulfide interchange redox pairs such as glutathione (red/ox) and/or cysteine/cystine. This process will yield a folded product that the disulfide pairs must be determined as there would be no way of knowing their position directly. #### **Boc-Bzl Process** 5 10 15 20 25 30 Peptide synthesis is initiated on a Merrifield or Pam pre-loaded resin or with mBHA for peptides produced as C-terminal amides. Each synthetic cycle consists of a deprotection step with 50% TFA in MeCL2. The resin is washed repetitively with MeCl2 and MeOH. The TFA salt formed is neutralized with a base wash of 10% TEA in MeCl2. The resin is washed with MeCl2 and MeOH and lastly with DMF prior to coupling steps. A colorimetric test is conducted to ensure deprotection. Each coupling is mediated with diisopropyl carbodiimide with HOBT to form the active ester. Each coupling is allowed to continue for 2 hr at RT or overnight on difficult couplings. Recouplings are conducted with either Uronium or Phosphonium reagents until a negative colorimetric test is obtained for free primary amines. The resin is then washed with DMF, MeCl2 and MeOH and prepared for the next solid-phase step. Cys protection utilizes Cys(Acm) at positions 7 and 15, and Cys(MeB) at Cys 4 and Cys12. Cleavage and simultaneous deprotection is accomplished by treatment with HF using anisole as a scavenger (9:1:1) ml:ml:g (resin) at 0°C for 60 min. The peptide is subsequently extracted from the resin and precipitated in ice cold ether. The introduction of disulfide bonds and purification follows the exact same protocol described above for the *Fmoc-produced* product. # EXAMPLE 2: IN VITRO PROTEOLYTIC STABILITY USING SIMULATED GASTRIC FLUID (SGF) DIGESTION The stability of SP-304 in the presence of simulated gastric fluid (SGF) was determined. SP-304 (final concentration of 8.5 mg/ml) was incubated in SGF (Proteose peptone (8.3 g/liter; Difco), D-Glucose (3.5 g/liter; Sigma), NaCl (2.05 g/liter; Sigma), KH ₂PO₄ (0.6 g/liter; Sigma), CaCl₂ (0.11 g/liter), KCl (0.37 g/liter; Sigma), Porcine bile (final 1 X concentration 0.05 g/liter; Sigma) in PBS, Lysozyme (final 1 X concentration 0.10 g/liter; Sigma) in PBS, Pepsin (final 1 X concentration 0.0133 g/liter; Sigma) in PBS). SGF was made on the day of the experiment and the pH was adjusted to 2.0 ± 0.1 using HCl or NaOH as necessary. After the pH adjustment, SGF is filter sterilized with $0.22~\mu m$ membrane filters. SP-304 (final concentration of 8.5~mg/ml) was incubated in SGF at 37° C for 0, 15, 30, 45, 60 and 120~min, respectively, in triplicate aliquots. Following incubations, samples were snap frozen in dry ice then stored in a - 80° C freezer until assayed in duplicate. 5 10 15 20 25 30 Figure 1A is a bar chart showing the biological activity of SP-304 after incubation with SGF for times as indicated. The activity at 0 min was taken as 100%. The data are an average of triplicates \pm SD for each data point. The data demonstrate that SP-304 is not sensitive to digestion with SGF. In addition, the data also suggest that the activity of SP-304 is not affected by exposure to the acidic pH of the SGF. These results were further confirmed by the HPLC analyses of the samples after digestion with SGF. Here, aliquots of samples from all digestions were analyzed using a previously developed method for analyzing SP-304 peptide using HPLC. Samples from the SGF digestions were diluted to give a final concentration 0.17 mg/mL of SP-304. Figure 1B shows HPLC chromatographs of SP-304 samples after incubation with SGF at indicated times. The major peak of SP-304 did not change following digestion with SGF, indicating that the peptide was resistant to SGF digestion. # EXAMPLE 3: IN VITRO PROTEOLYTIC STABILITY USING SIMULATED INTESTINAL FLUID (SIF) DIGESTION The stability of SP-304 was also evaluated after incubation with simulated intestinal fluid (SIF). SIF solution was prepared by the method as described in the United States Pharmacopoeia, 24th edition, p2236. The recipe to prepare SIF solution was as described below. The SIF solution contained NaCl (2.05 g/liter; Sigma), KH ₂PO₄ (0.6 g/liter; Sigma), CaCl₂ (0.11 g/liter), KCl (0.37 g/liter; Sigma), and Pacreatin 10 mg/ml. The pH was adjusted to 6 and the solution was filter sterilized. A solution of SP-304 (8.5 mg/ml) was incubated in SGF at 37°C for 0, 30, 60, 90, 120, 150 and 300 min respectively, in triplicate aliquots. Following incubations, samples were removed and snap frozen with dry ice and stored in a -80°C freezer until assayed in duplicate. Figure 2A is a bar chart showing the ability of SP-304, after incubation in SIF for times as indicated, to stimulate cGMP synthesis in T84 cells. The cGMP stimulation activity at 0 min was taken as 100%. The data are an average of 3 triplicates ± SD. The data indicated that the biological activity of SP-304 is reduced by 30% following digestion with SIF. This could be due to degradation of the peptide. Hence, samples after digestion with SIF were further analyzed by HPLC. The integrity of SP-340 peptide exposed to SIF was evaluated by HPLC by essentially using the method described for SGF digestion. Figure 2B is a schematic representation of the results of HPLC chromatographic analyses of SP-304 samples after incubation with heat-inactivated SIF for 300 min, and SIF for 120 min, respectively. The major peak of SP-304, which elutes at 16.2 min was converted into another peak at 9.4 min and a few minor peptide peaks. Thus, it was important to find out structures of the metabolites of SP-304 produced after digestion with SIF. SP-304 peptide was incubated with SIF for various times and the peptide digestion products were isolated and subjected to structure elucidation by MS analysis. 5 10 15 20 25 Figure 3 is a schematic representation of the possible metabolites of SP-304. The major degradation products involve N and D clipped from the N-terminus and L from the C-terminus of SP304. However, there was only 30% reduction in biological activity, implying that one or more of the degradation products were also biologically active. To address this possibility, several truncated peptides were synthesized and evaluated for their abilities to stimulate cGMP synthesis in T84 cells (Figure 4). Figure 4 shows data from the analyses of various peptides in the T84 cell cGMP stimulation assay (essentially as described in Shailubhai, *et al.*, Cancer Research 60, 5151-5157 (2000). Briefly, confluent monolayers of T-84 cells in 24-well plates were washed twice with 250 μl of DMEM containing 50 mM HEPES (pH 7.4) and pre-incubated at 37°C for 10 minutes with 250 μl of DMEM containing 50 mM HEPES (pH 7.4) and 1 mM isobutyl methylxanthine (IBMX). Monolayers of T84 cells were then incubated with 250 μl of DMEM containing 50 mM HEPES (pH 7.4) containing one of the peptides shown in the Figure 4 at a concentration of 1.0 μM for 30 min. After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of NaOH (0.1 N) to neutralize the pH, intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021; Cayman Chemical, Ann Arbor, MI). Samples were run in duplicates incubations and each sample was run as duplicates in ELISA test. The data suggest that the leucine (L) residue at the C-terminus of SP-304 contributes to the biological potency of the peptide. For example, there was considerable reduction in potency when L was deleted from SP-304, as in SP-338. Similarly, the peptides SP-327, SP-329 and SP-331, without L at the C-terminal, also showed 20-25% reduction in biological potency as compared to their counterpart peptides with L at the C-terminus, as in SP-326, SP-328 and SP-330 peptides. In addition, results also suggest that amino acid residues at the N-terminus might also be important for stability and/or potency of the peptides. Based on these results, several new peptides were synthesized with D-forms of amino acids replacing the corresponding L-forms at the C- and N-termini of the peptides. These peptides were evaluated for their abilities to stimulate cGMP synthesis in T84 cells as shown in Figure 5. The results presented in Figure 5 suggest that substitution of L-amino acids with D-amino acids at the C- and N-termini did not significantly alter their potency. Peptides SP-332, SP-333 and SP-335 showed comparable ability to stimulate cGMP synthesis in T84 cells. On the other hand, the substitution of L-leucine with D-leucine at the 6th position in SP-337 resulted in a complete loss in its ability to stimulate cGMP synthesis in T84 cells. These results suggest that the amino acid residues Asn, Asp and Glu at the N-terminus and Leu at the C-terminus can be replaced with their respective D- amino acid forms. However, the leucine at the 6th position can not be replaced with its D-form. Figure 7 (A-F) shows the stabilities of peptides SP-332, SP-333 and SP-304 when incubated with SIF for two hours. The results demonstrated that the peptide SP-333, which has D-Asn at the N-terminus and D-Leu at the C-terminus, was virtually completely resistant to digestion with SIF (Figure 7F), and remained virtually 100% biologically active after a two hour incubation in SIF (Figure 7A). The peptide SP-332 with D-Leu at the C-terminus showed some reduction in potency following the 120 min incubation with SIF
(Figure 7B). However, the HPLC analyses of SP-332 did not reveal any degradation of the peptide (Figure 7E), suggesting that these peptides are completely resistant to proteoysis by SIF. On the other hand, the peptide SP-304 lost about 30% of its potency following digestion with SIF for just one hour (Figure 7C). The HPLC analysis of SP-304 following SIF incubation confirmed its degradation (Figure 7D). These results suggest that the peptide SP-304 undergoes proteolysis following incubation with SIF, whereas substitution of L-Asn with D-Asn at the N-terminus plus the substitution of L-Leu with D-Leu at the C-terminus protects SP-333 against digestion with SIF. Thus, the peptide SP-333 appears more stable and potent as a drug candidate. #### **EXAMPLE 4: CYCLIC CGMP STIMULATION ASSAYS** 5 10 15 20 25 30 The ability of the GCRA peptide to bind to and activate the intestinal GC-C receptor was tested by using T 84 human colon carcinoma cell line. Human T84 colon carcinoma cells were obtained from the American Type Culture Collection. Cells were grown in a 1:1 mixture of Ham's F-12 medium and Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum, 100 U penicillin/ml, and 100 μ g/ml streptomycin. The cells were fed fresh medium every third day and split at a confluence of approximately 80%. Biological activity of the GCRA peptides was assayed as previously reported (Shailubhai, *et al.*, Cancer Research 60, 5151-5157 (2000)). Briefly, the confluent monolayers of T-84 cells in 24-well plates were washed twice with 250 μl of DMEM containing 50 mM HEPES (pH 7.4), pre-incubated at 37°C for 10 min with 250 μl of DMEM containing 50 mM HEPES (pH 7.4) and 1 mM isobutylmethylxanthine (IBMX), followed by incubation with GCRA peptides (0.1 nM to 10 .mu.M) for 30 min. The medium was aspirated, and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation, and neutralization with 0.1 N NaOH, the supernatant was used directly for measurements of cGMP using an ELISA kit (Caymen Chemical, Ann Arbor, Mich.). Figure 6 shows results from the experiments evaluating potency of peptides that are similar to the *E. coli* enterotoxin ST peptide in the cGMP stimulation assay (as above). Among these the peptides SP-353 and SP-354 were found to be quite potent to stimulate cGMP synthesis in T84 cells. Particularly, the peptide SP-353 that has Ser residue at the 6th position was found to be the most potent among the peptides tested. The peptide SP-355 that has D-Tyr at the C-terminus showed potency markedly less than the other peptides. # **EXAMPLE 5: PEGGYLATED PEPTIDES** An additional strategy to render peptides more resistant towards digestion by digestive proteases is to peggylate them at the N- and C-terminus. The peptide SP-333 was peggylated with the aminoethyloxy-ethyloxy-acetic acid (Aeea) group at the C-terminus (SP-347) or at the N-terminus (SP-350) or at both termini (SP-343). Cyclic GMP synthesis in T84 cells was measured by the method as described above. The peptides SP-347 and SP-350 showed potencies comparable to SP-333 in their abilities to stimulate cGMP synthesis in T84 cells. However, peptide SP-343 was considerably less potent as compared to the other peptides tested. The poor activity of SP-343 might be due to the considerable steric hindrance afforded by the large Aeea groups at both termini. # 5 EXAMPLE 6: COMBINATION OF GUANYLATE CYCLASE AGONISTS WITH PHOSPHODIESTERASE INHIBITORS Regulation of intracellular concentrations of cyclic nucleotides (*i.e.*, cAMP and cGMP) and thus, signaling via these second messengers, has been generally considered to be governed by their rates of production versus their rates of destruction within cells. Thus, levels of cGMP in tissues and organs can also be regulated by the levels of expression of cGMP-specific phosphodiesterases (cGMP-PDE), which are generally overexpressed in cancer and inflammatory diseases. Therefore, a combination consisting of an agonist of GC-C with an inhibitor of cGMP-PDE might produce synergistic effect on levels of cGMP in the target tissues and organs. 10 15 20 25 30 Sulindac Sulfone (SS) and Zaprinast (ZAP) are two of the known inhibitors of cGMP-PDE and have been shown to induce apoptosis in cancer cells via a cGMP-dependent mechanism. SS and ZAP in combination with SP304 or SP-333 was evaluated to see if these PDE inhibitors had any synergistic effect on intracellular accumulation of cGMP (Fig. 9-12). As the data shows, SS at concentration of 100 µM did not enhance intracellular accumulation of cGMP. However, the combination SS with SP304 stimulated cGMP production several fold more then the stimulation by SP304 used alone. This synergistic effect on cGMP levels was more pronounced when SP304 were used at 0.1 µM concentration (Fig 10). Similar observations were made when SP304 or SP333 were used in combination with ZAP (Fig 10, Fig 11 and Fig 12). These results suggest that the intracellular levels of cGMP are stabilized because SS inhibits cGMP-PDE that might be responsible for depletion of intracellular cGMP. Thus, the approach to use a combination of GC-C agonist with a cGMP-PDE inhibitor is attractive. For the results shown in Figure 9, cyclic GMP synthesis in T84 cells was assessed essentially as described in Shailubhai et al., Cancer Research 60, 5151-5157 (2000). Briefly, confluent monolayers of T-84 cells in 24-well plates were washed twice with 250 µl of DMEM containing 50 mM HEPES (pH 7.4) and pre-incubated at 37°C for 10 minutes with 250 µl of DMEM containing 50 mM HEPES (pH 7.4) and 1 mM isobutyl methylxanthine (IBMX). Monolayers of T84 cells were then incubated with 250 μ l of DMEM containing 50 mM HEPES (pH 7.4) containing SP-304 or PDE inhibitors either alone or in combinations, as indicated below in the following experimental sets: 1) Control; 2) SP-304 (0.1 μ M); 3) Sulindac Sulfone (100 μ M); 4) Zaprinast (100 μ M); 5) SP-304 (0.1 μ M) + Sulindac Sulfone (100 μ M); and 6) SP-304 (0.1 μ M) + Zaprinast (100 μ M). After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of NaOH (0.1 N) to neutralize the pH, intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021; Cayman Chemical, Ann Arbor, MI). Samples were run in duplicates incubations and each sample was run as duplicates in ELISA test. For the results shown in Figure 10, the method used was same as the one used for Fig. 9 except that the monolayers of T84 cells were incubated with 500 μl of DMEM containing 50 mM HEPES (pH 7.4) containing SP-304 (0.1 or 1.0 μM) or increasing concentrations of PDE inhibitors (0 to 750 μM) either alone or in combination with SP-304. After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of NaOH (0.1 N) to neutralize the pH, intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021; Cayman Chemical, Ann Arbor, MI). Samples were run as triplicates in ELISA test. For the results shown in Figure 11, the method used was same as the one used for Fig. 10 except that the monolayers of T84 cells were incubated with 500 μ l of DMEM containing 50 mM HEPES (pH 7.4) containing SP-3333 (0.1 or 1.0 μ M) or increasing concentrations of ZAP (0 to 500 μ M) either alone or in combination with SP-333. After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of NaOH (0.1 N) to neutralize the pH, intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021; Cayman Chemical, Ann Arbor, MI). Samples were run as triplicates in ELISA test. For the results shown in Figure 12, the method used was same as the one used for Fig. 10 except that the monolayers of T84 cells were incubated with 500 μ l of DMEM containing 50 mM HEPES (pH 7.4) containing SP-333 (0.1 μ M) or increasing concentrations of Sulindac Sulfone (0 to 500 μ M) either alone or in combination with SP-333. After the 30 min incubation, the medium was aspirated and the reaction was terminated by the addition of 3% perchloric acid. Following centrifugation and the addition of NaOH (0.1 N) to neutralize the pH, intracellular cGMP levels were determined in lysates using a cGMP ELISA kit (Cat. No. 581021; Cayman Chemical, Ann Arbor, MI). Samples were run as triplicates using the ELISA test. #### EXAMPLE 7: AN ORAL RANGE-FINDING TOXICITY STUDY IN CYNOMOLGUS MONKEYS. The objective of the study is to determine the toxicity of the GRCA peptides according to the invention following a single oral gavage administration to the cynomolgus monkey and to allow assessment of reversibility of any changes following a minimum 7-day observation/washout period. Each GRCA peptide according to the invention will be given at two different dose levels. # **Experimental Design** The test (e.g., the GRCA peptides according to the invention) and control/vehicle article will be administered in three phases separated by a minimum 7-day observation period. Each phase will consist of a single oral gavage administration to female cynomolgus monkeys as indicated in the tables below: #### Phase 1: 5 10 15 20 Eight non-naive female cynomolgus monkeys will be transferred from the ITR Spare Monkey colony and assigned to four dose groups as follows: | Group | Group | Study | Dose | Dose | Dose | Number of | |--------|-----------------|------------------|---------|---------------|---------|-----------| | Number | Designation | Day s | Level | Concentration | Volume | Animals | | | | | (mg/kg) | (mg/mL) | (mL/kg) | (Females) | | 1 | Control/Vehicle | 1 | 0 | 0 | 10 | 2 | | | | 4 | | | | | | 2 | Test
Peptides | 1 | 1 | 0.1 | 10 | 2 | | | | 4 | | | | | | | | 4 | | | | | Following completion of the Phase 1 dosing, all monkeys will be observed for 33 days. Upon completion of the observation period, all monkeys will be transferred back to the ITR Spare Monkey Colony. #### Phase 2: The same eight non-naïve female cynomolgus monkeys as previously used in Phase 1 will be transferred from the ITR Spare Monkey colony and assigned to four dose groups as follows: | Group | Group | Study | Dose | Dose | Dose | Number of | |--------|-----------------|-------|---------|---------------|---------|-----------| | Number | Designation | Day | Level | Concentration | Volume | Animals | | | | | (mg/kg) | (mg/mL) | (mL/kg) | (Females) | | 1 | Control/Vehicle | 1 | 10 | 1 | 10 | 2 | | 2 | Test Peptides | 1 | 10 | 1 | 10 | 2 | Following completion of the Phase 2 dosing, all monkeys will be observed for a minimum of 7 days. # **Route of Administration** 5 10 15 20 The oral route of administration has been chosen because it is a preferred human therapeutic route. # Preparation of Test and Control/Vehicle Articles The test and control/vehicle articles will be prepared fresh on the day of dosing in cold distilled water (maintained in an ice water bath). A sufficient amount of test article powder will be added to the appropriate amount of distilled water in order to achieve the desired concentration. The dose formulations will be mixed by simple inversion. # **Analysis of Test Article Concentration and Stability in the Dose Formulations** For possible confirmation of the concentration and stability of the test article in the formulations, representative samples will be taken from the middle of each concentration, including the control/vehicle article on the first day of dosing of each group, as indicated below. Samples will be collected immediately after preparation on Day 1 and again after dosing is completed on that day and will be stored frozen (approximately 80°C nominal) in 20 mL screw cap vials. Therefore, the remaining dose formulation vials will be returned to the Pharmacy Department as soon as possible after completion of dosing. Group 1: 1.5 mL in duplicate from the middle on Day 1 (pre-dose and post-dose). Group 2: 1.5 mL in duplicate from the middle on Day 1 (pre-dose and post-dose). Group 3: 1.5 mL in duplicate from the middle on Day 1 (pre-dose and post-dose). Group 4: 1.5 mL in duplicate from the middle on Day 1 (pre-dose and post-dose). The formulations will be maintained cold in an ice water bath during all sampling procedures. The formulations will be stirred continuously with a stir bar for a minimum of 15 minutes prior to sampling. The samples will be retained frozen (approximately -80°C nominal) at ITR until requested by the Sponsor to be shipped to a laboratory designated by the Sponsor for analysis. The samples can be discarded once it is determined by the analyst and Study Director that they are no longer needed. These samples' disposition will be recorded in the raw data. If analyzed, a Dose Formulation report will be prepared by the Principal Investigator (Formulation analysis) and will be provided to ITR for inclusion in the final report. # **Test System** 5 10 15 20 25 30 Species/Strain: Cynomolgus Monkey (Macaca Fasicularis) Source: orldwide Primates Inc., P.O. Box 971279 Miami, Florida, 33187, USA and Covance Research Products Inc. P.O. Box 549 Alice, Texas, 78333, USA Total No. of monkeys on study: 8 non-naive females Body Weight Range: 2-4 kg at onset of treatment Age Range at Start: Young adult at onset of treatment Acclimation Period: The animals will be transferred from ITR's spare monkey colony. They are therefore, considered to be fully acclimated to the laboratory environment. The actual age and body weight ranges will be noted in the final report. # Administration of the Test and Control/Vehicle Articles The test and control/vehicle articles will be administered by oral gavage administration using a gavage tube attached to a syringe in three Phases separated by a minimum 7-day observation/washout period. Each dosing session will consist of a single oral gavage administration. The gavage tube will be flushed with 3 mL of reverse osmosis water immediately following administration of the dose formulation in order to ensure that the entire dose volume has been delivered to the animal. The dose volume will be 10 mL/kg for all animals, including controls. The actual volume administered to each monkey on Day 1 of each Phase will be calculated using the Day -1 body weights of each Phase. Dosing formulations will be maintained cold during dose administration by placing them in an ice water bath. The dosing formulations must be placed on a stir plate for a minimum of 15 minutes prior to the start of dosing and maintained on the stir plate throughout the dosing procedure. The dosing formulations must be used within 2 hours of preparation. # **Clinical Observations** 5 10 15 20 25 Cage-side clinical signs (ill health, behavioral changes etc.) will be recorded as indicated below except on detailed clinical examination days, where the morning cage-side clinical signs will be replaced by a detailed clinical examination (DCE). During regular cage side clinical signs and detailed examinations, particular attention will be paid to stools with respect to amount of stools produced, description of stools, etc. Cage side clinical signs will be performed as follows: During the pretreatment period and during the 7-day (minimum) observation periods: Three times per day with a minimum of 3 hours between each occasion. On the dosing day of Phase 1: pre-dose, 2, 4, 6, 8 and 24 hours post-dosing On the dosing day of Phase 2: pre-dose, continuously for the first 4 hours post-dose and at 6, 8 and 24 hours post-dosing On the dosing day of Phase 3: pre-dose, continuously for the first 4 hours post-dose and at 6, 8 and 24 hours post-dosing A detailed clinical examination of each monkey will be performed once at the time of animal transfer and once weekly thereafter. Animals whose health status is judged to warrant additional evaluation will be examined by a Clinical Veterinarian, or a technician working under the supervision of the Clinical Veterinarian. Any veterinarian-recommended treatments will only be performed once agreement has been obtained from the Study Director. Where possible, the Sponsor will be consulted prior to administration of therapeutic drugs. Body weights will be recorded for all animals once daily from the day of transfer through to the end of the study. 5 10 15 20 25 Food consumption will be recorded for all animals once daily from the day of transfer through to the end of the study. Cages will be cleaned prior to the start of the daily food consumption to ensure no food cookies remain in the cage. Monkeys will be fed 7 cookies before 12pm and 7 cookies after 12pm. The sum of the total number of cookies given for the day will be recorded. The next morning, a visual check will be performed to see how many cookies are left in the cage. The number of whole cookies remaining in the food hopper or on the tray will be recorded. The number of whole cookies left will be subtracted from the total number of cookies given in order to calculate the number of cookies eaten. # **EXAMPLE 8: SUCKLING MOUSE MODEL OF INTESTINAL SECRETION (SUMI ASSAY)** The GCRA peptides described herein can be tested for their ability to increase intestinal secretion using a suckling mouse model of intestinal secretion. In this model a GCRA peptide is administered to suckling mice that are between seven and nine days old. After the mice are sacrificed, the gastrointestinal tract from the stomach to the cecum is dissected ("guts"). The remains ("carcass") as well as the guts are weighed and the ratio of guts to carcass weight is calculated. If the ratio is above 0.09, one can conclude that the test compound increases intestinal secretion. Controls for this assay may include wild-type SP-304, ST polypeptide and Zelnorm®. Phenylbenzoquinone-induced writhing model The PBQ-induced writhing model can be used to assess pain control activity of the GCRA peptide described herein. This model is described by Siegmund et al. (1957 Proc. Soc. Exp. Bio. Med. 95:729-731). Briefly, one hour after oral dosing with a test compound, e.g., a GCRA peptide, morphine or vehicle, 0.02% phenylbenzoquinone (PBQ) solution (12.5 mL/kg) is injected by intraperitoneal route into the mouse. The number of stretches and writhings are recorded from the 5^{th} to the 10^{th} minute after PBQ injection, and can also be counted between the 35^{th} and 40^{th} minute and between the 60^{th} and 65^{th} minute to provide a kinetic assessment. The results are expressed as the number of stretches and writhings (mean \pm SEM) and the percentage of variation of the nociceptive threshold calculated from the mean value of the vehicle-treated group. The statistical significance of any differences between the treated groups and the control group is determined by a Dunnett's test using the residual variance after a one-way analysis of variance (P< 0.05) using SigmaStat Software. ### EXAMPLE 9: PHARMACOKINETIC PROPERTY DETERMINATION OF GCRA PEPTIDES 5 10 15 20 25 30 Serum samples are extracted from the whole blood of exposed (mice dosed orally or intravenously with GCRA peptides (s) described herein) and control mice, then injected directly (10 mL) onto an in-line solid phase extraction (SPE) column (Waters Oasis HLB 25µm column, 2.0 x 15mm direct connect) without further processing. The sample on the SPE column is washed with a 5% methanol, 95% dH₂O solution (2.1 mL/min, 1.0 minute), then loaded onto an 0 analytical column using a valve switch that places the SPE column in an inverted flow path onto the analytical column (Waters Xterra MS C8 5µm IS column, 2.1 x 20mm). The sample is eluted from the analytical column with a reverse phase gradient (Mobile Phase A: 10 mM
ammonium hydroxide in dH₂O, Mobile Phase B: 10 mM ammonium hydroxide in 80% acetonitrile and 20% methanol; 20% B for the first 3 minutes then ramping to 95% B over 4 min. and holding for 2.5 min., all at a flow rate of 0.4 mL/min.). At 9.1 minutes, the gradient returns to the initial conditions of 20%B for 1 min. polypeptide is eluted from the analytical column and is detected by triple-quadrapole mass spectrometry (MRM, 764 (+2 charge state)>182 (+1 charge state) Da; cone voltage = 30V; collision = 20 eV; parent resolution = 2 Da at base peak; daughter resolution = 2 Da at base peak). Instrument response is converted into concentration units by comparison with a standard curve using known amounts of chemically synthesized polypeptide(s) prepared and injected in mouse plasma using the same procedure. Similarly, pharmacokinetic properties are determined in rats using LCMS methodology. Rat plasma samples containing the GCRA peptide are extracted using a Waters Oasis MAX 96 well solid phase extraction (SPE) plate. A 200 μ L volume of rat plasma is mixed with 200 μ L of 13 Cg, 15 N -labeled polypeptide in the well of a prepared SPE plate. The samples are drawn through the stationary phase with 15 mm Hg vacuum. All samples are rinsed with 200 μ L of 2% ammonium hydroxide in water followed by 200 μ L of 20% methanol in water. The samples are eluted with consecutive 100 μ L volumes of 5/20/75 formic acid/water/methanol and 100 μ L 5/15/80 formic acid/water/methanol. The samples are dried under nitrogen and resuspended in 100 μ L of 20% methanol in water. Samples are analyzed by a Waters Quattro Micro mass spectrometer coupled to a Waters 1525 binary pump with a Waters 2777 autosampler. A 40 μ L volume of each sample is injected onto a Thermo Hypersil GOLD C18 column (2.1x50 mm, 5 um). polypeptide is eluted by a gradient over 3 minutes with acetonitrile and water containing 0.05% trifluoroacetic acid. The Quattro Micro mass spectrometer is run in multiple reaction monitoring (MRM) mode using the mass transitions of, for example 764>182 or 682>136. Using this methodology, polypeptide is dosed orally and by IV to rats at 10 mg/kg. Pharmacokinetic properties including area under the curve and bioavailabilty are determined. 5 10 15 20 25 ## EXAMPLE 10: DIURESIS RELATED EXPERIMENTS EFFECT ON DIURESIS AND NATRIURESIS The effect of GCRA peptides described herein on diuresis and natriuresis can be determined using methodology similar to that described in WO06/001931 (examples 6 (p. 42) and 8 (p.45)). Briefly, the polypeptide/agonist described herein (180-pmol) is infused for 60 min into a group of 5 anesthetized mice or primates. Given an estimated rat plasma volume of 10 mL, the infusion rate is approximately 3 pmol/mL/min. Blood pressure, urine production, and sodium excretion are monitored for approximately 40 minutes prior to the infusion, during the infusion, and for approximately 50 minutes after the infusion to measure the effect of the GCRA peptides on diuresis and natriuresis. For comparison, a control group of five rats is infused with regular saline. Urine and sodium excretion can be assessed. Dose response can also be determined. polypeptide/GC-C agonist described herein is infused intravenously into mice or primates over 60 minutes. Urine is collected at 30 minute intervals up to 180 minutes after termination of polypeptide/GC-C agonist infusion, and urine volume, sodium excretion, and potassium excretion are determined for each collection interval. Blood pressure is monitored continuously. For each dose a dose-response relationship for urine volume, sodium and potassium excretion can be determined. Plasma concentration of the polypeptide/GC-agonist is also determined before and after iv infusion. Mouse or Primate Diuresis Experiment: Once an appropriate level of anesthesia has been achieved, a sterile polyurethane catheter is inserted into the urethra and secured using 1 - 2 drops of veterinary bond adhesive applied to urethra/catheter junction. Animals are then dosed with either vehicle or test article via the intravenous or intraperitoneal route. Animals are allowed to regain consciousness, and the volume of urine excreted over a 1-5 hour duration is recorded periodically for each rat. # **References:** 10 20 30 35 - 1. Currie, et al., Proc. Nat'l Acad. Sci. USA 89:947-951 (1992). - 2. Hamra, et al., Proc. Nat'l Acad. Sci. USA 90:10464-10468 (1993). - 3. Forte, L., Reg. Pept. 81:25-39 (1999). - 15 4. Schulz, et al., Cell 63:941-948 (1990). - 5. Guba, et al., Gastroenterology 111:1558-1568 (1996). - 6. Joo, et al., Am. J. Physiol. 274:G633-G644 (1998). - 7. Evan, et al., Nature (London) 411:342-348 (2001). - 8. Eastwood, G., J. Clin. Gastroenterol. 14:S29-33 (1992). - 25 9. Lipkin, M. Arch. Fr. Mal. Appl Dig. 61:691-693 (1972). - 10. Wong, et al., Gut 50:212-217 (2002). - 11. Potten, et al., Stem Cells 15:82-93. - 12. Basoglu, *et al.*, in: Proceedings of the Second FEPS Congress, June 29-July 4, 1999, Prague, Czech Republic., lf2.cuni.cz/physiolres/feps/basoglu - 13. Sindic, et al., J. Biol. Chem. March 11, 2002, manuscript M110627200 (in press). - 14. Askling, J., Dickman, P.W., Karlen, P., Brostrom, O., Lapidus, A., Lofberg, R., and Ekbom, A. Colorectal cancer rates among first-degree relatives of patients with inflammatory bowel disease: a population-based cohort study. *Lancet*, 357: 262-266, - 15. Provenzale, D. and Onken, J. Surveillance issues in inflammatory bowel disease: Ulcerative colitis. *J Clin Gastroenterol*, 32:99-105, 2001. 16. Ettorre, G.M, Pescatori, M., Panis, Y., Nemeth, J., Crescenzi, A., and Valleur, P. Mucosal changes in ileal pouches after restorative proctocolectomy for ulcerative and Crohn's colitis. Dis Colon Rectum, 43:1743-1748, 2000. - 5 - 17. Shinozaki M, Watanabe T, Kubota Y, Sawada T, Nagawa H, Muto T. High proliferative activity is associated with dysplasia in ulcerative colitis. Dis Colon Rectum, 43:S34-S39, 2000. - 18. Deschner, E. E., Winawer, S.J., Katz, S., Katzka, I., and Kahn, E. Proliferative defects in ulcerative colitis patients. Cancer Invest, 1:41-47, 1983. - 19. Wong, W.M., and Wright, N. A. Cell proliferation and gastrointestinal mucosa. J Clin Pathol, 52:321-333. - 20. Potten, C.S., Wilson, J.W., and Booth, C. Regulation and significance of apoptosis in the stem cells. Stem Cells, 15:82-93. - 21. Bhakdi, et al., Infect. Immun. 57:3512-3519 (1989). - 20 22. Hughes, et al., J. Biol. Chem. 272:30567-30576 (1997). - 23. Cermak, et al., Pflugers Arch. 43:571-577 (1996). - 24. Wu, et al., J. Biol. Chem. 272:14860-14866 (1997). - 25 - 25. Shailubhai et al., Cancer Research 60, 5151-5157 (2000) - 26. Shailubhai et al., Curr. Opin. Drug Disc. Dev. 5(2): 261-268, 2002. - 30 27. Collins, SM. <u>J Clin Gastroenterol</u>. 41 Suppl 1:S30-32 (2007) - 28. Ramamoorthy S et al., J Biol Chem. 282(16):11639-11647 (2007) # We claim: 5 10 15 20 25 30 1. A peptide consisting essentially of the amino acid sequence of any one of SEQ ID NO:2-54 and 57-98. - 2. A pharmaceutical composition in unit dose comprising a guanylate cyclase receptor agonist peptide having the sequence of any one of NO:2-54 and 56-94 present in a therapeutically effective amount and a pharmacetical carrier, excipient or diluent. - 3. The peptide of claim 1, wherein said peptide is SEQ ID NO: 8, 9, 10, 58 or 59. - 4. The pharmaceutical composition of claim 2, wherein said peptide is SEQ ID NO: 8, 9, 10, 58 or 59. - 5. The peptide of claim 1, wherein said peptide is SEQ ID NO: 45-54 and said peptide increases cGMP production in a cell and wherein said peptide is not SEQ ID NO:1. - 6. The pharmaceutical composition of claim 2, wherein said peptide is SEQ ID NO: 45-54, and said peptide increases cGMP production in a cell and wherein said peptide is not SEQ ID NO:1. - 7. The peptide of claim 1, wherein said peptide is SEQ ID NO: 87-98, and said peptide increases cGMP production in a cell and wherein said peptide is not SEQ ID NO:55 or 56. - 8. The pharmaceutical composition of claim 2, wherein said peptide is SEQ ID NO: 87-98, and said peptide increases cGMP production in a cell and wherein said peptide is not SEQ ID NO:55 or 56. - 9. The pharmaceutical composition of any one of claims claim 2, 4, 6, or 8, wherein the unit dose form is selected from the group consisting of a tablet, a capsule, a solution or inhalation formulation. - 10. A method for preventing or treating a condition selected from the group consisting of Ulcerative Colitis, Irritable bowel syndrome (IBS), non-ulcer dyspepsia chronic intestinal pseudo-obstruction, functional dyspepsia, colonic pseudo-obstruction, duodenogastric reflux, constipation associated with use of opiate pain killers, gastroesophageal reflux disease (GERD), post surgical constipation, gastroparesis, constipation associated with neuropathic disorders, heartburn, poor gastrointestinal motility, congestive heart failure, hypertension, benign prostatic hyperplasia (BPH), colon cancer, lung cancer, bladder cancer, liver cancer, salivary gland cancer or skin cancer, bronchitis, tissue inflammation, organ inflammation, respiratory inflammation, asthma, COPD comprising administering to a patient in need thereof, an effective dosage of a guanylate cyclase receptor agonist having the sequence of any one of NO:2-54 and 56-94. - 11. The method of claim 10, wherein said peptide is SEQ ID NO: 8, 9, 10, 58 or 59. - 12. A method of claim 11 or 12, further comprising administering an effective dose of inhibitor of a cGMP-specific phosphodiesterase. 5 10 15 20 25 - 13. The method of claim 12, further comprising administering to said patient an effective dose of an inhibitor of cGMP-dependent phosphodiesterase either concurrently or sequentially with said guanylate cyclase receptor agonist. - 14. The method of claim 12, wherein said cGMP-dependent phosphodiesterase inhibitor is selected from the group consisting of suldinac sulfone, zaprinast, and motapizone,
vardenifil, and suldenifil. - 15. The method of claim 12, futher comprising administering an effective does of at least one anti-inflammatory agent. - 16. The method of claim12, wherein an anti-inflammatory agent is a steroid or nonsteroid anti-inflammatory drug (NISAIDS). - The use of any one of the peptides having the sequence of any one of SEQ ID NO:2-54 and 56-94 in the manufacture of a medicament for the treatment of a human disease. - 18. The use of claim 17, wherein said peptide is SEQ ID NO: 8, 9, 10, 58 or 59. - 19. A method of increasing cGMP production in a cell comprising contacting said cell with a peptide selected from the group consisting of the amino acid sequence of SEQ ID NO:2-54 and 57-98. - 20. The method of claim 19, further comprising contacting said cell with a phosphodiesterase inhibitor. - 21. The method of claim 20, wherein said cGMP-dependent phosphodiesterase inhibitor is selected from the group consisting of suldinac sulfone, zaprinast, and motapizone, vardenifil, and suldenifil. 1/17 Fig. 1A Fig. 1B 3/17 Fig. 2B # 5/17 Fig. 3 Fig. 4 Fig. 7C Fig. 7D-2 XWC OF DAD SPECTRAL DATA: 218.0 TO 220.0 nm FROM SAMPLE 1 (M-SCAN #89608 CONTROL 120 MIN) OF 61.wiff Fig. 7E-2 Fig. 7F-1 119.0 Fig. 9 15/17 Fig. 10 Fig. 11 Fig. 12 17/17 Fig. 13 UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov # **BIB DATA SHEET** # **CONFIRMATION NO. 2133** | SERIAL NUM | IBER | FILING | | | CLASS | GR | OUP ART | UNIT | ATTO | DRNEY DOCKET | |--|---|-----------------------|---------------|--------------|---------------------------|------|-----------------|--------------|------|----------------------------| | 15/467,64 | 18 | DAT
03/23/2 | _ | | 424 | | 1676 | | SY | NO.
PA-009/C04US | | | | RUL | E | | | | | | | | | | APPLICANTS SYNERGY PHARMACEUTICALS, INC., New York, NY | | | | | | | | | | | INVENTORS Stephen COMISKEY, Doylestown, PA; Rong FENG, Langhorne, PA; John FOSS, Doylestown, PA; Kunwar SHAILUBHAI, Audubon, PA; | | | | | | | | | | | | This appl
wh
wh
wh
wh
and | ** CONTINUING DATA ********************************** | | | | | | | | | | | ** FOREIGN A | PPLIC <i>A</i> | TIONS ***** | ***** | ****** | • | | | | | | | ** IF REQUIRE
04/10/20 | | EIGN FILING | G LICENS | E GRA | NTED ** ** SMA | LL E | NTITY ** | | | | | | ditions met
/JIA-HAI LE | EE/ | Met at Allows | fter
ance | STATE OR
COUNTRY
PA | | HEETS
WINGS | TOT.
CLAI | MS | INDEPENDENT
CLAIMS
2 | | | Examiner's | Signature | Initials | | | | | '' | | | | ADDRESS COOLEY LLP ATTN: Patent Group 1299 Pennsylvania Avenue, NW Suite 700 Washington, DC 20004 UNITED STATES | | | | | | | | | | | | TITLE | | | | | | | | | | | | FORMUL | ATION | S OF GUAN | YLATE CY | 'CLASE | C AGONISTS | AND | METHOD | S OF U | SE | | | | ☐ All Fees | | | | | | | | | | | | 1.16 Fees (Filing) | | | | | | | | | | | FILING FEE
RECEIVED | FEES: Authority has been given in Paper No to charge/credit DEPOSIT ACCOUNT 1.17 Fees (Processing Ext. of time) | | | | | | | | | | | 930 | | for | | | | | □ 1.18 l | ees (Iss | sue) | | | | □ Other | | | | | | | | | | | | ☐ Credit | | | | | | | | | | # Application/Control No. Search Notes 15467648 Examiner JIA-HAI LEE | Application/Control No. | Applicant(s)/Patent Under Reexamination | | | |-------------------------|---|--|--| | 15467648 | COMISKEY ET AL. | | | | Examiner | Art Unit | | | | JIA-HAI LEE | 1676 | | | | CPC- SEARCHED | | | |---------------|------|----------| | Symbol | Date | Examiner | | CPC COMBINATION SETS - SEARCHED | | | | | |---------------------------------|--|--|--|--| | Symbol Date Examine | | | | | | | | | | | | | US CLASSIFICATION SEARCHE | ED . | | |-------|---------------------------|------|----------| | Class | Subclass | Date | Examiner | | | | | | $^{^{\}star}$ See search history printout included with this form or the SEARCH NOTES box below to determine the scope of the search. | SEARCH NOTES | | | |---|-----------|----------| | Search Notes | Date | Examiner | | EAST, Database: USPATFUL, USPGPUB, EPO, JPO, DERWENT, Search history enclosed | 7/31/2017 | JL | | STN, Databases: Biosis, Embase, Medline, Caplus, Search history enclosed | 7/31/2017 | JL | | PALM Inventor Search | 7/31/2017 | JL | | | INTERFERENCE SEARCH | | | |-------------------------|--|-----------|----------| | US Class/
CPC Symbol | US Subclass / CPC Group | Date | Examiner | | _ | EAST, Database: USPATFUL, | 7/31/2017 | JL | | | STN, Databases: Biosis, Embase, Medline, Caplus, Search history enclosed | 7/31/2017 | JL | | | PALM Inventor Search | 7/31/2017 | JL | | /J.L./
Examiner.Art Unit 1676 | | |----------------------------------|--| | | | U.S. Patent and Trademark Office Part of Paper No 0359270731 # Issue Classification | Application/Control No. | Applicant(s)/Patent Under Reexamination | |-------------------------|---| | | | 15467648 COMISKEY ET AL. Examiner Art Unit JIA-HAI LEE 1676 | СРС | | | | | |--------|----|--------|------|------------| | Symbol | | | Туре | Version | | A61K | 38 | / 10 | F | 2013-01-01 | | A61K | 47 | 7 38 | I | 2013-01-01 | | A61K | 47 | 12 | 1 | 2013-01-01 | | A61K | 45 | 7 06 | I | 2013-01-01 | | A61K | 9 | 7 0053 | 1 | 2013-01-01 | | C07K | 7 | / 08 | I | 2013-01-01 | | C07K | 7 | / 64 | I | 2013-01-01 | | A61K | 9 | / 1623 | I | 2013-01-01 | | A61K | 9 | / 1652 | I | 2013-01-01 | | A61K | 9 | / 1676 | I | 2013-01-01 | | A61K | 9 | / 4858 | I | 2013-01-01 | | A61K | 9 | 4866 | 1 | 2013-01-01 | CPC Combination Sets | | | | | | | |----------------------|------|-----|---------|---------|--|--| | Symbol | Туре | Set | Ranking | Version | /J.L./
Examiner.Art Unit 1676 | 07/31/2017 | Total Claims Allowed: | | |---|------------|-----------------------|-------------------| | (Assistant Examiner) | (Date) | | | | /SATYANARAYANA R GUDIBANDE/
Primary Examiner.Art Unit 1676 | 08/02/2017 | O.G. Print Claim(s) | O.G. Print Figure | | (Primary Examiner) | (Date) | 1 | none | U.S. Patent and Trademark Office Part of Paper No. 20170731 # Issue Classification | Application/Control No. | Applicant(s)/Patent Under Reexamination | |-------------------------|---| | 15467648 | COMISKEY ET AL. | | Examiner | Art Unit | | JIA-HAI LEE | 1676 | | US ORIGINAL CLASSIFICATION | | | | | INTERNATIONAL CLASSIFICATION | | | | | ON | | | | | |----------------------------|-------|------------|---------|-----------|------------------------------|---|---|---|---|----------------------|--|---|-----|---------| | | CLASS | | (| SUBCLASS | | | | | С | LAIMED | | N | ON- | CLAIMED | | | | | | | | Α | 6 | 1 | К | 38 / 10 (2006.01.01) | | | | | | CROSS REFERENCE(S) | | | | | | | | | | | | | | | | CLASS | SUB | CLASS (ONE | SUBCLAS | S PER BLO | CK) | /J.L./
Examiner.Art Unit 1676 | 07/31/2017 | Total Claims Allowed: | | | | |---|------------|-----------------------|-------------------|--|--| | (Assistant Examiner) | (Date) | | | | | | /SATYANARAYANA R GUDIBANDE/
Primary Examiner.Art Unit 1676 | 08/02/2017 | O.G. Print Claim(s) | O.G. Print Figure | | | | (Primary Examiner) | (Date) | 1 | none | | | # Issue Classification | | Application/Control No. | Applicant(s)/Patent Under Reexamination | | | | | | |---|-------------------------|---|--|--|--|--|--| |) | 15467648 | COMISKEY ET AL. | | | | | | | | Examiner | Art Unit | | | | | | | | JIA-HALLEF | 1676 | | | | | | | | ☐ Claims renumbered in the same order as presented by applicant ☐ CPA ☑ T.D. ☐ R.1.47 | | | | | | | | | | | | | | | |-------|---|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------| | Final | Original | 1 | 1 | | | | | | | | | | | | | | | | 2 | 2 | | | | | | | | | | | | | | | | 3 | 3 | | | | | | | | | | | | | | | | 4 | 4 | | | | | | | | | | | | | | | | 5 | 5 | | | | | | | | | | | | | | | | 6 | 6 | | | | | | | | | | | | | | | | 7 | 7 | | | | | | | | | | | | | | | | 8 | 8 | | | | | | | | | | | | | | | | 9 | 9 | | | | | | | | | | | | | | | | 10 | 10 | | | | | | | | | | | | | | | | 11 | 11 | | | | | | | | | | | | | | | | 12 | 12 | | | | | | | | | | | | | | | | 13 | 13 | | | | | | | | | | | | | | | | 14 | 14 | | | | | | | | | | | | | | | | 15 | 15 | | | | | | | | | | | | | | | | 16 | 16 | | | | | | | | | | | | | | | | /J.L./
Examiner.Art Unit 1676 | 07/31/2017 | Total Claims Allowed: | | | | |---|------------|-----------------------|-------------------|--|--| | (Assistant Examiner) | (Date) | | | | | | /SATYANARAYANA R GUDIBANDE/
Primary Examiner.Art Unit 1676 | 08/02/2017 | O.G. Print Claim(s) | O.G. Print Figure | | | | (Primary
Examiner) | (Date) | 1 | none | | | # **EAST Search History** # **EAST Search History (Prior Art)** | Ref
| Hits | Search Query | DBs | Default
Operator | Plurals | Time
Stamp | |----------|------|---|--|---------------------|---------|---------------------| | S1 | 14 | NDECELCVNVACTGCL | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | W ITH | ON | 2017/07/31
09:54 | | S2 | 2257 | (Guanylate with Cyclase with C) | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S3 | 9310 | chromatographic with purity | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S4 | 2 | S1 and S3 | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S5 | 50 | S2 and S3 | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S6 | 4 | S5 and @py<"2012" | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S7 | 130 | (Stephen near3
COMI SKEY).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S8 | 306 | (Rong near3 FENG).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S9 | 143 | (John near3 FOSS).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S10 | 254 | (Kunwar near3
SHAILUBHAI).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S11 | 0 | (SYNERGY near3
PHARMACEUTI CALS).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S12 | 718 | S7 or S8 or S9 or S10 | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | | S13 | 10 | S12 and (S1 or S3) | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/07/31
09:54 | # **EAST Search History (Interference)** | Ref
| Hits | Search Query | 1 | Default
Operator | Plurals | Time
Stamp | |----------|------|-----------------------------|--------------------|---------------------|---------|---------------------| | S14 | 14 | NDECELCVNVACTGCL | US-PGPUB;
USPAT | WITH | ON | 2017/07/31
09:54 | | S15 | 6279 | chromatographic with purity | US-PGPUB; | WITH | ON | 2017/07/31 | | L | | | USPAT | | | 09:54 | |-----|-----|---|--------------------|--------------|----|---------------------| | S16 | 2 | S14 and S15 | US-PGPUB;
USPAT | WITH | ON | 2017/07/31
09:54 | | S17 | 28 | (Stephen near3 COMISKEY).in. | US-PGPUB;
USPAT | WITH | ON | 2017/07/31
09:54 | | S18 | 82 | (Rong near3 FENG).in. | US-PGPUB;
USPAT | WITH | ON | 2017/07/31
09:54 | | S19 | 45 | (John near3 FOSS).in. | US-PGPUB;
USPAT | WITH | | 2017/07/31
09:54 | | S20 | 76 | (Kunwar near3 SHAILUBHAI).in. | US-PGPUB;
USPAT | WITH | | 2017/07/31
09:54 | | S21 | 0 | (SYNERGY near3
PHARMACEUTI CALS).in. | US-PGPUB;
USPAT | WITH | ON | 2017/07/31
09:54 | | S22 | 203 | S17 or S18 or S19 or S20 | US-PGPUB;
USPAT | WITH | ON | 2017/07/31
09:54 | | S23 | 0 | S22 and S14 | US-PGPUB;
USPAT | W ITH | ON | 2017/07/31
09:54 | | S24 | 10 | S22 and S15 | US-PGPUB;
USPAT | WITH | ON | 2017/07/31
09:54 | ## (FILE 'HOME' ENTERED AT 10:07:36 ON 31 JUL 2017) #### FILE 'REGISTRY' ENTERED AT 10:07:49 ON 31 JUL 2017 - L1 82 SEA SPE=ON ABB=ON PLU=ON NDECELCVNVACTGCL/SQSP - L2 80 SEA SPE=ON ABB=ON PLU=ON L1 AND SQL=16 # FILE 'CAPLUS, EMBASE, BIOSIS, MEDLINE' ENTERED AT 10:09:15 ON 31 JUL 2017 - L3 513 SEA SPE=ON ABB=ON PLU=ON (CHROMATOGRAPHIC PURITY) - L4 O SEA SPE=ON ABB=ON PLU=ON (LOW MOISTURE CARRIER) - L5 107 SEA SPE=ON ABB=ON PLU=ON L2 - L6 1 SEA SPE=ON ABB=ON PLU=ON L3 AND L5 - L7 30 SEA SPE=ON ABB=ON PLU=ON COMISKEY STEPHEN/AU - L8 133 SEA SPE=ON ABB=ON PLU=ON FENG RONG/AU - L9 47 SEA SPE=ON ABB=ON PLU=ON FOSS JOHN/AU - L10 147 SEA SPE=ON ABB=ON PLU=ON SHAILUBHAI KUNWAR/AU - L11 285 SEA SPE=ON ABB=ON PLU=ON L7 OR L8 OR L9 OR L10 - L12 25 SEA SPE=ON ABB=ON PLU=ON L11 AND L5 - L13 1 SEA SPE=ON ABB=ON PLU=ON L12 AND L3 - L14 1 SEA SPE=ON ABB=ON PLU=ON L6 OR L13 D L14 IBIB ABS HITSEQ U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. | Request | Application Number | 15/467,648 | | | |--|------------------------|----------------------------|--|--| | for | Filing Date | 03/23/2017 | | | | Continued Examination (RCE) | First Named Inventor | COMISKEY, Stephen | | | | Transmittal Address to: | Art Unit | 1676 | | | | Mail Stop RCE
Commissioner for Patents | Examiner Name | Jia-Hai LEE | | | | P.O. Box 1450
Alexandria, VA 22313-1450 | Attorney Docket Number | SYPA-009/C04US 321994-2341 | | | This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identified application. Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to any utility or plant application filed prior to June 8, 1995, to any international application that does not compy with the requirements of 35 U.S.C 371, or to any design application. See Instruction Sheet for RCEs (not to be submitted to the USPTO on page 2.) | submitted to the USPTO on page 2.) | FF | |---|-------------------------------------| | 1. Submission required under 37 CFR 1.114 Note: If the RCE is proper, any previously filed unentered amendments and amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs otherwise. If applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such amendment(s). | | | a. Previously submitted. If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked. | | | i. Consider the arguments in the Appeal Brief or Reply Brief previously filed on | | | ii. Other | | | b. Enclosed | | | i. Amendment/Reply iii. 🔀 Info | ormation Disclosure Statement (IDS) | | ii. Affidavit(s)/ Declaration(s) iv. Oth | er | | 2. Miscellaneous | | | Suspension of action on the above-identified application is requested under 37 CFR 1.103(c) for a | | | a period of months. (Period of suspension shall not exceed 3 months; Fee under 37 CFR 1.17(i) required) | | | b. Other | | | The RCE fee under 37 CFR 1.17(e) is required by 37 CFR 1.114 when the RCE is filed. The Director is hereby authorized to charge the following fees, any underpayment of fees, or credit any overpayments, to Deposit Account No. 50-1283. | | | i. RCE fee required under 37 CFR 1.17(e) | | | ii. Extension of time fee (37 CFR 1.136 and 1.17) | | | iii Other | | | | closed | | | | | c. Payment by credit card (Form PTO-2038 enclosed) | | | WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038. | | | SIGNATURE OF APPLICANT, ATTORNEY, OR AGE | | | Signature /Anne E Fleckenstein/ | Date November 8, 2017 | | Name (Print/Type) Anne E. Fleckenstein | Registration No. 62951 | | CERTIFICATE OF MAILING OR TRANSMISSION | | | I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Mail Stop RCE, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the U.S. Patent and Trademark Office on the date shown below. | | | | | | Signature | | This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. ### Instruction Sheet for RCEs (not to be submitted to the USPTO) # NOTES: An RCE is not a new application, and filing an RCE will not result in an application being accorded a new filing date. #### Filing Qualifications: The application must be a utility or plant application filed on or after June 8, 1995. The application cannot be a provisional application, a utility or plant application filed before June 8, 1995, an international application that does not comply with the requirements of 35 U.S.C. 371, a design application, or a patent under
reexamination. See 37 CFR 1.114(e). An international application does not comply with the requirements of 35 U.S.C. 371 until the requirements under 35 U.S.C. 371(c), including the requirement for the inventor's oath or declaration under 35 U.S.C. 371(c)(4), have been complied with. # Filing Requirements: **Prosecution in the application must be closed.** Prosecution is closed if the application is under appeal, or the last Office action is a final action, a notice of allowance, or an action that otherwise closes prosecution in the application (e.g., an Office action under *Ex parte Quayle*). See 37 CFR 1.114(b). A submission and a fee are required at the time the RCE is filed. If reply to an Office action under 35 U.S.C. 132 is outstanding (e.g., the application is under final rejection), the submission must meet the reply requirements of 37 CFR 1.111. If there is no outstanding Office action, the submission can be an information disclosure statement, an amendment, new arguments, or new evidence. See 37 CFR 1.114(c). The submission may be a previously filed amendment (e.g., an amendment after final rejection). # **WARNINGS:** ### **Request for Suspension of Action:** All RCE filing requirements must be met before suspension of action is granted. A request for a suspension of action under 37 C FR 1.103(c) does <u>not</u> satisfy the submission requirement and does not permit the filing of the required submission to be suspended. # Improper RCE will NOT toll Any Time Period: **Before Appeal** - If the RCE is improper (e.g., prosecution in the application is not closed or the submission or fee has not been filed) and the application is not under appeal, the time period set forth in the last Office action will continue to run and the application will be abandoned after the statutory time period has expired if a reply to the Office action is not timely filed. No additional time will be given to correct the improper RCE. **Under Appeal -** If the RCE is improper (e.g., the submission or the fee has not been filed) and the application is under appeal, the improper RCE is effective to withdraw the appeal. Withdrawal of the appeal results in the allowance or abandonment of the application depending on the status of the claims. If there are no allowed claims, the application is abandoned. If there is at least one allowed claim, the application will be passed to issue on the allowed claim(s). See MPEP 1215.01. See MPEP 706.07(h) for further information on the RCE practice. | Electronic Patent Application Fee Transmittal | | | | | | |---|---|-------------------|----------|--------|-------------------------| | Application Number: | 154 | 467648 | | | | | Filing Date: | 23- | Mar-2017 | | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | AND METHODS OF | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | | | Filer: | Anne Elizabeth Fleckenstein | | | | | | Attorney Docket Number: | SYI | PA-009C04US 32199 | 94-2341 | | | | Filed as Small Entity | | | | | | | Filing Fees for Utility under 35 USC 111(a) | | | | | | | Description | | Fee Code | Quantity | Amount | Sub-Total in
USD(\$) | | Basic Filing: | | | · | | | | Pages: | | | | | | | Claims: | | | | | | | Miscellaneous-Filing: | | | | | | | Petition: | | | | | | | Patent-Appeals-and-Interference: | | | | | | | Post-Allowance-and-Post-Issuance: | | | | | | | Extension-of-Time: | | | | | | | Description | Fee Code | Quantity | Amount | Sub-Total in
USD(\$) | |------------------|----------|-----------|--------|-------------------------| | Miscellaneous: | | | | | | RCE- 1st Request | 2801 | 1 | 600 | 600 | | | Tot | al in USD | (\$) | 600 | | | | | | | | Electronic Acknowledgement Receipt | | | | |--------------------------------------|---|--|--| | EFS ID: | 30849426 | | | | Application Number: | 15467648 | | | | International Application Number: | | | | | Confirmation Number: | 2133 | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | Customer Number: | 58249 | | | | Filer: | Anne Elizabeth Fleckenstein | | | | Filer Authorized By: | | | | | Attorney Docket Number: | SYPA-009C04US 321994-2341 | | | | Receipt Date: | 08-NOV-2017 | | | | Filing Date: | 23-MAR-2017 | | | | Time Stamp: | 14:44:00 | | | | Application Type: | Utility under 35 USC 111(a) | | | ## **Payment information:** | Submitted with Payment | yes | |--|-----------------------------| | Payment Type | DA | | Payment was successfully received in RAM | \$600 | | RAM confirmation Number | 110917INTEFSW00001060501283 | | Deposit Account | | | Authorized User | | The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: | File Listin | g: | | | | | |--------------------|---|---------------------------------------|--|---------------------|-------------------| | Document
Number | Document Description | File Name | File Size(Bytes)/
Message Digest | Multi
Part /.zip | Pages
(if appl | | | | | 349036 | | | | 1 | Information Disclosure Statement (IDS)
Form (SB08) | SYPA_009_C04US_SB08.pdf | b874abf8d0dcf595974b3e01ce2635479a7
42cc6 | no | 19 | | Warnings: | | | | 1 | | | Information: | | | | | | | This is not an U | SPTO supplied IDS fillable form | | | | | | | | | 113027 | | | | 2 | Transmittal Letter | SYPA-009_C04US_2017-11-08_
IDS.pdf | 0747cad82cfa9760d7ccd8e7b190a684bac
d48ad | no | 4 | | Warnings: | - | | 1 | | | | Information: | | | | | | | | | | 177717 | | | | 3 | Request for Continued Examination
(RCE) | SYPA-009_C04US_2017-11-08_
RCE.pdf | 35c997ca5f40ba2a4f07a0b3089b8e9382aa
6e4d | no | 2 | | Warnings: | - | | <u> </u> | | | | This is not a US | PTO supplied RCE SB30 form. | | | | | | Information: | | | | | | | | | | 30594 | | | | 4 | Fee Worksheet (SB06) | fee-info.pdf | 71ad34704123a476712d796c5a50b55d16
4a3ff4 | no | 2 | | Warnings: | | | | | | | Information: | | | | | | This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. #### New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. #### National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467,648 March 23, 2017 Filing Date INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 19 Attorney Docket Number Sheet of | U. S. PATENT DOCUMENTS | | | | | | |------------------------|--------------|---|--------------------------------|--|---| | Examiner
Initials* | Cite
No.1 | Document Number Number-Kind Code ² (ff known) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines, Where
Relevant Passages or Relevant
Figures Appear | | | 1. | 5,106,834 | 04-21-1992 | Bovy et al. | | | | 2. | 5,130,333 | 07-14-1992 | Pan et al. | | | | 3. | 5,489,670 | 02-06-1996 | Currie et al. | | | | 4. | 5,518,888 | 05-21-1996 | Waldman et al. | | | | 5. | 5,578,709 | 11-26-1996 | Woiszwillo et al. | | | | 6. | 5,601,990 | 02-11-1997 | Waldman et al. | | | | 7. | 5,721,238 | 02-24-1998 | Heiker et al. | | | | 8. | 5,731,159 | 03-24-1998 | Waldman et al. | | | | 9. | 5,817,624 | 10-06-1998 | Yang et al. | | | | 10. | 5,879,656 | 03-09-1999 | Waldman et al. | | | | 11. | 5,928,873 | 07-29-1999 | Waldman et al. | | | | 12. | 5,969,097 | 10-19-1999 | Wiegand et al. | | | | 13. | 6,060,037 | 05-09-2000 | Waldman et al. | | | | 14. | 6,235,782 | 05-22-2001 | Pamukcu et al. | | | | 15. | 7,041,786 | 05-09-2006 | Shailubhai et al. | | | | 16. | 7,067,748 | 07-20-2006 | Whitmore, Jr. et al. | | | | 17. | 7,375,083 | 05-20-2008 | Mickle et al. | | | | 18.
| 7,494,979 | 02-24-2009 | Currie et al. | | | | 19. | 7,799,897 | 09-21-2010 | Jacob et al. | | | | 20. | 7,879,802 | 02-01-2011 | Shailubhai et al. | | | | 21. | 8,034,782 | 10-11-2011 | Shailubhai | | | | 22. | 8,114,831 | 02-14-2012 | Shailubhai et al. | | | | 23. | 8,207,295 | 06-26-2012 | Shailubhai et al. | | | | 24. | 8,357,775 | 01-22-2013 | Shailubhai et al. | | | | 25. | 8,367,800 | 02-05-2013 | Shailubhai | | | | 26. | 8,497,348 | 07-30-2013 | Shailubhai et al. | | | | 27. | 8,569,246 | 10-29-2013 | Shailubhai | | | | 28. | 8,637,451 | 01-28-2014 | Shailubhai et al. | | | | 29. | 8,664,354 | 03-04-2014 | Shailubhai | | | Examiner | Date | | |-----------|------------|--| | | Date | | | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ¹Applicant's unique citation designation number (optional). ²See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁴Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ⁴Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467,648 March 23, 2017 Filing Date INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 2 19 Attorney Docket Number of Sheet | | U. S. PATENT DOCUMENTS | | | | | | |-----------------------|------------------------|---|--------------------------------|--|---|--| | Examiner
Initials* | Cite
No.1 | Document Number Number-Kind Code ² (^(f known) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines, Where
Relevant Passages or Relevant
Figures Appear | | | | 30. | 8,716,224 | 05-06-2014 | Shailubhai et al. | | | | | 31. | 8,901,075 | 12-02-2014 | Shailubhai et al. | | | | | 32. | 8,969,514 | 03-03-2015 | Shailubhai | | | | | 33. | 9,238,677 | 01-19-2016 | Shailubhai et al. | | | | | 34. | 9,266,926 | 02-23-2016 | Shailubhai et al. | | | | | 35. | 9,486,494 | 11-08-2016 | Shailubhai | | | | | 36. | 9,545,446 | 01-17-2016 | Riff et al. | | | | | 37. | 2002/0128176 A1 | 09-12-2002 | Forssmann et al. | | | | | 38. | 2002/0133168 A1 | 09-19-2002 | Smeldley et al. | | | | | 39. | 2002/0143015 A1 | 10-03-2002 | Fryburg et al. | | | | | 40. | 2003/0073628 A1 | 04-17-2003 | Shailubhai et al. | | | | | 41. | 2004/0015140 A1 | 01-22-2004 | Shields | | | | | 42. | 2005/0016244 A1 | 01-27-2005 | Hergemoller | | | | | 43. | 2005/0032684 A1 | 02-10-2005 | Cetin et al. | | | | | 44. | 2005/0107734 A1 | 05-19-2005 | Coroneo | | | | | 45. | 2005/0145351 A1 | 07-07-2005 | Schaible, et al. | | | | | 46. | 2005/0266047 A1 | 12-01-2005 | Tu et al | | | | | 47. | 2005/0267297 A1 | 12-01-2005 | Berlin | | | | | 48. | 2006/0086653 A1 | 04-27-2006 | St. Germain | | | | | 49. | 2006/0094658 A1 | 05-04-2006 | Currie | | | | | 50. | 2007/0101158 A1 | 05-03-2007 | Elliott | | | | | 51. | 2008/0137318 A1 | 06-12-2008 | Rangaraj et al. | | | | | 52. | 2008/0151257 A1 | 06-26-2008 | Yasuda et al. | | | | | 53. | 2009/0048175 A1 | 02-19-2009 | Shailubhai et al. | | | | | 54. | 2009/0192083 A1 | 07-30-2009 | Currie | | | | | 55. | 2009/0253634 A1 | 10-08-2009 | Currie et al. | | | | | 56. | 2010/0048489 A1 | 02-25-2010 | Fretzen | | | | | 57. | 2010/0069306 A1 | 03-18-2010 | Shailubhai et al. | | | | | 58. | 2010/0093635 A1 | 04-15-2010 | Shailubhai | | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. Applicant's unique citation designation number (optional). See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467,648 March 23, 2017 Filing Date INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 3 19 Attorney Docket Number Sheet of | | U. S. PATENT DOCUMENTS | | | | | |-----------------------|------------------------|---|--------------------------------|--|---| | Examiner
Initials* | Cite
No.1 | Document Number Number-Kind Code ^{2 (If known)} | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines, Where
Relevant Passages or Relevant
Figures Appear | | | 59. | 2010/0120694 A1 | 05-13-2010 | Shailubhai et al. | | | | 60. | 2010/0152118 A1 | 06-17-2010 | Shailubhai | | | | 61. | 2010/0221329 A1 | 09-02-2010 | Shailubhai et al. | | | | 62. | 2010/0221329 A1 | 09-02-2010 | Shailubhai et al. | | | | 63. | 2012/0196797 A1 | 08-02-2012 | Currie et al. | | | | 64. | 2012/0237593 A1 | 09-20-2012 | Comiskey et al. | | | | 65. | 2012/0289460 A1 | 11-15-2012 | Shailubhai | | | | 66. | 2013/0274204 A1 | 10-17-2013 | Shailubhai et al. | | | | 67. | 2014/0024605 A1 | 01-23-2014 | Shailubhai et al. | | | | 68. | 2014/0121169 A1 | 05-01-2014 | Shailubhai et al. | | | | 69. | 2014/0135274 A1 | 05-15-2014 | Shailubhai | | | | 70. | 2014/0187470 A1 | 07-03-2014 | Jacob et al. | | | | 71. | 2014/0287002 A1 | 09-25-2014 | Shailubhai | | | | 72. | 2014/0329738 A1 | 11-06-2014 | Shailubhai et al. | | | | 73. | 2015/0359749 A1 | 12-17-2015 | Shailubhai et al. | | | | 74. | 2015/0366935 A1 | 12-24-2015 | Comiskey et al. | | | | 75. | 2016/0367623 A1 | 12-22-2016 | Shailubhai | | | | 76. | 2017/0202903 A1 | 07-20-2017 | Comiskey et al. | | | | FOREIGN PATENT DOCUMENTS | | | | | | |-----------------------|--------------------------|---|--------------------------------|--|---|----------------| | Examiner
Initials* | Cite
No.1 | Foreign Patent Document Country Code ³ "Number ⁴ "Kind Code ⁵ (<i>if known</i>) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines,
Where Relevant Passages
or Relevant Figures Appear | Τ ⁶ | | | 77. | JP 2006-022115 A
(corresponds to WO
1999/061002 A1) | 01-26-2006 | BRISTOL MYERS SQUIBB CO. | , | | | | 78. | JP 2009-519343 A
(corresponds to WO
2007/070562 A2) |
05-14-2009 | | | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ¹Applicant's unique citation designation number (optional). ²See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁴Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ⁴Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai Attorney Docket Number 19 of 4 Sheet | | | | FOREIGN PATEN | T DOCUMENTS | | | |-----------------------|--------------------------|--|--------------------------------|--|---|----------| | Examiner
Initials* | Cite
No. ¹ | Foreign Patent Document Country Code ³ "Number ⁴ "Kind Code ⁵ (<i>if known</i>) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines,
Where Relevant Passages
or Relevant Figures Appear | Т° | | | 79. | JP 2009-537535 A
(corresponds to WO
2007/133796 A2) | 10-29-2009 | | | | | | 80. | JP 2010-519217 A
(corresponds to WO
2008/102264 A2) | 06-03-2010 | | | | | | 81. | WO 1988/005306 A1 | 07-28-1988 | THE GENERAL HOSPITAL CORPORATION | | | | | 82. | WO 1993/012068 A1 | 06-24-1993 | BRIGHAM AND WOMEN'S
HOSPITAL | | | | | 83. | WO 1999/026567 A1 | 06-03-1999 | OPTONOL LTD | | | | | 84. | WO 2001/025266 A1 | 04-12-2001 | PHARMACIA CORPORATION | | | | | 85. | WO 2002/062369 A2 | 08-15-2002 | PHARMACIA CORPORATION | | | | | 86. | WO 2002/078683 A1 | 10-10-2002 | SYNERGY PHARMACEUTICALS, INC. | | | | | 87. | WO 2002/098912 A3 | 12-12-2002 | CETIN | | | | | 88. | WO 2004/069165 A2 | 08-19-2004 | MICROBIA INC. | | | | | 89. | WO 2005/087797 A1 | 09-22-2005 | MICROBIA INC. | | | | | 90. | WO 2006/086653 A2 | 08-17-2006 | MICROBIA, INC. | | | | | 91. | WO 2007/022531 A2 | 02-22-2007 | MICROBIA INC. | | | | | 92. | WO 2007/070562 A2 | 06-21-2007 | HARKNESS PHARMACEUTICALS, INC. | | | | | 93. | WO 2007/101158 A2 | 09-07-2007 | MICROBIA, INC. | | | | | 94. | WO 2007/106468 A2 | 09-20-2007 | ENCYSIVE PHARMACEUTICALS, INC. | | | | | 95. | WO 2007/133796 A2 | 11-22-2007 | ENCYSIVE PHARMACEUTICALS, INC. | | | | | 96. | WO 2008/102264 A2 | 08-28-2008 | EURAND
PHARMACEUTICALS LIMITED | | | | | 97. | WO 2008/106429 A2 | 09-04-2008 | MICROBIA INC. ET AL. | | <u> </u> | | | 98. | WO 2008/137318 A1 | 11-13-2008 | IRONWOOD PHARMACEUTICALS, INC. | | | | | 5 / | | |-----------|------------|--| | Examiner | Date | | | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). 'See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 'Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 'For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 'Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 'Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467,648 March 23, 2017 Filing Date INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 5 19 Attorney Docket Number Sheet of | | FOREIGN PATENT DOCUMENTS | | | | | | |-----------------------|--------------------------|---|--------------------------------|--|---|----| | Examiner
Initials* | Cite
No.1 | Foreign Patent Document Country Code ³ "Number ⁴ "Kind Code ⁵ (<i>if known</i>) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines,
Where Relevant Passages
or Relevant Figures Appear | T⁵ | | | 99. | WO 2008/151257 A2 | 12-11-2008 | SYNERGY PHARMACEUTICALS INC. | | | | | 100. | WO 2009/149278 A1 | 12-10-2009 | SYNERGY PHARMACEUTICALS INC. | | | | | 101. | WO 2009/149279 A2 | 12-10-2009 | SYNERGY PHARMACEUTICALS INC. | | | | | 102. | WO 2010/009319 A2 | 01-21-2010 | SYNERGY PHARMACEUTICALS INC. | | | | | 103. | WO 2010/027404 A2 | 03-11-2010 | IRONWOOD PHARMACEUTICALS INC. | | | | | 104. | WO 2010/065751 A2 | 06-10-2010 | SYNERGY PHARMACEUTICALS INC. | | | | | 105. | WO 2011/020054 A1 | 02-17-2011 | IRONWOOD PHARMACEUTICALS INC. | | | | | 106. | WO 2012/037380 A2 | 03-22-2012 | SYNERGY
PHARMACEUTICALS INC. | | | | | 107. | WO 2013/138352 A1 | 09-19-2013 | SYNERGY
PHARMACEUTICALS INC. | | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ¹Applicant's unique citation designation number (optional). ²See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ³Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control
number. Substitute for form 1449A/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary) Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 6 | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | | 108. | Advisory Committee Briefing document for Merida [sibutramine hydrochloride monohydrate], Abbott, August 13, 2010 (205 pages) | | | | 109. | ALREFAI , "Cholesterol modulates human intestinal sodium-dependent bile acid transporter," Am. J. Physiol. Gastrointest. Liver Physiol. 288:G978-G985 (2005) | | | | 110. | ASKLING "Colorectal cancer rates among first degree relatives of patients with inflammatory bowel disease: A population-based cohort study" Lancet 357:262-266 (2001). | | | | 111. | BAKRE et al. "Expression and regulation of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) in human colonic epithelial cells: role in the induction of cellular refractoriness to the heat-stable enterotoxin peptide" J. Cell Biol. 77:159-167 (2000) | | | | 112. | BARBARA "A role for inflammation in irritable bowel syndrome": Gut, 51(Suppl. 1): 141-144 (2002) | | | | 113. | BASOGLU In: "Proceedings of the Second FEPS Congress, June 29-July 4, 1999, Prague, Czech Republic, If2.cuni.cz/physiolres/feps/basoglu.htm. (3 pages) | | | | 114. | BAXTER "The natriuretic peptides: An introduction" Basic Res. Cardiol. 99(2):71-75 (2004) | | | | 115. | BELTOWSKI "Guanlyin and related peptides" J. Physiol. Pharmacol 52(3):351-375 (2001) | | | | 116. | BERGERS "Extrinsic regulators of epithelial tumor progression: metalloproteinases" Cur. Opin. Gen. and Develop. 10:120-127 (2000) | | | | 117. | BHAKDI "Release of interleukin-1 beta associated with potent cytocidal action of staphylococcal alphatoxin on human monocytes" Infect. Immun. 57(11): 3512-3519 (1989). | | | | 118. | BROWN "A receptor-mediated pathway for cholesterol homeostasis" Sci. 232:34-47 (1986) | | | | 119. | BURNHAM "Polymers for delivering peptides and proteins" Am. J. Hosp. Pharm. 51:210-218 (1994) | | | | 120. | CALICETI "Synthesis and biopharmaceutical characterisation of new poly(hydroxethylaspartamide) copolymers as drug carriers" Biochimica et Biophysica Acta 1528:177-189 (2001) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 7 Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----------------| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 121. | CAMILLERI "Management of the irritable bowel syndrome" Gastroentrerol. 120:652-668 (2001) | | | | 122. | CARRITHERS , "Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues" Proc. Natl. Acad. Sci. USA 93:14827-14832. (1996) | | | | 123. | CERMAK "Natriuretic peptides increase a K+ conductance in rat mesangial cells" Pfugers Arch. Eur. J. Physiol. 431:571-577 (1996) | | | | 124. | CHENG "Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis" Cell, 63:827-834 (1990) | | | | 125. | CHINO "Topological isomers of human uroguanylin: interconversion between biologically active and inactive isomers" FEBS Letters 421:27-31 (1998) | | | | 126. | COHEN "Guanylin mRNA expression in human intestine and colorectal adenocarcinoma" Lab. Invest. 78:101-108 (1998) | | | | 127. | COLLINS "The relationship of enteric microbial infection and functional bowel disorders" J. Clin. Gastroenterol 41 Suppl. 1:S30-32 (2007) | | | | 128. | CUI "The permissive effect of zinc deficiency on uroguanylin and inducible nitric oxide synthase gene upregulation in rat intestine induced by interleukin 1α is rapidly reversed by zinc repletion. J. Nutri. 133(1):51-56 (2003) | | | | 129. | CURRIE , "Guanylin: An endogenous activator of intestinal guanylate cyclase," Proc. Natl. Acad. Sci. USA 89:947-951 (1992) | | | | 130. | Database BIOSIS (ONLINE), biosciences Information Service, Philadelphia, PA, U.S., April 2006, Refaat "SP304, an analog of uroguanylin, ameliorates inflammation in a model of experimental colitis" XP002540570, Database Accession No. PREV200600503788, 2 pages. | | | | 131. | De LUCA "Inflammation and insulin resistance" FEBS Letter 582:97-105 (2008). | | | | 132. | DELVAUX "Effect of alosetron on responses to colonic distension in patients with irritable bowel syndrome" Aliment Pharmacol. Ther 12:849-855 (1998) | | | | 133. | DENNIS "Off by a whisker" Nature 442:739-741 (2006) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 8 | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue | T ² | |-----------------------|--------------|--|----------------| | | 134. | number(s), publisher, city and/or country where published. DeSAUVAGE "Precursor structure, expression and tissue distribution of human guanylin" Proc. Natl. Acad. Sci USA 89:9089-9093 (1992). | | | | 135. | DESCHNER "Proliferative defects in ulcerative colitis patients" Can. Invest 1:41-47 (1983) | | | | 136. | DUNCAN "Drug-polymer Conjugates: Potential for improved chemotherapy" Anti-Can. Drugs 3:175-210 (1992) | | | | 137. | DUNFIELD "Energy parameters in polypeptides. 8.
Empirical potential energy algorithm for the conformational analysis of large molecules" J. Phys. Chem. 82:2609-2616 (1978) | | | | 138. | EASTWOOD "Epithelial renewal in premalignant conditions of the gastrointestinal tract: A review" J. Clin. Gastroenterol 14(1):S29-S33 (1992) | | | | 139. | ETTORRE "Mucosal changes in ileal pouches after restorative proctocolectomy for ulcerative and Crohn's colitis" Dis. Colon Rectum 43:1743-1748 (2000) | | | | 140. | European Application No. 02721604.3: Office Communication dated August 12, 2008 (3 pages) | | | | 141. | European Application No. 02721604.3: Response to European Patent Office Communication dated March 16, 2007 (5 pages) | | | | 142. | European Patent 1,379,224: CombiMab, Inc. Annex to Notice of Opposition dated April 22, 2010 (41 pages) | | | | 143. | European Patent 1,379,224: Opposition dated April 22, 2010 (19 pages) | | | | 144. | European Patent 1,379,224: Response to Communication from Opposition division dated October 8, 2010 (44 pages) | | | | 145. | European Patent 1,379,224: Written submission dated December 7, 2011 (6 pages) | | | | 146. | European Patent 1,379,224: Written submission dated November 18, 2011 by Ironwood (14 pages) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 9 | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----------------| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 147. | European Patent 1,379,224: Written submission dated November 22, 2011 (18 pages) | | | | 148. | European Patent 1,379,224: Written submission dated October 14, 2011 (7 pages) | | | | 149. | European Patent 1,379,224: Written submission dated October 14, 2011 by Ironwood (27 pages) | | | | 150. | European Patent 1,379,224: Written submission dated October 25, 2011(5 pages) | | | | 151. | European Patent 1,379,224: Written submission dated October 7, 2011 in response to the June 24, 2011 preliminary opinion of the Opposition Division (7 pages) | | | | 152. | European Patent 1,379,224: Summons to attend oral hearing dated June 24, 2011 (23 pages) | | | | 153. | European Patent Application No. 11825961.3, Extended European Search Report dated June 30, 2016, 6 pages. | | | | 154. | EVAN "Proliferation, cell cycle and apoptosis in cancer" Nature (London) 411:342-348 (2001) | | | | 155. | FAN "Structure and activity of uroguanylin and guanylin from the intestine and urine of rats" Am. J. Physiol. Endocrinol. Metab. 273:957-964 (1997) | | | | 156. | FIELD , "Ezetimibe interferes with cholesterol trafficking from the plasma membrane to the endoplasmic reticulum in CaCo-2 cells," Journal of Lipid Research, 48:1735-1745 (2007) | | | | 157. | FMC BioPolymer of Avicel PH Production Instruction, 21 pages (2005). | | | | 158. | FONTELES "Natruiretic and kalliuretic activities of guanylin and uroguanylin in isolated perfused rat kidney" Am. J. Physiol. Renal Physiol. 275: 191-197 (1998) | | | | 159. | FORTE, "Guanylin regulatory peptides: structures, biological activities mediated by cyclic GMP and pathobiology," Regul. Pept., 81.1-3: 25-39 (1999). | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 10 Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----------------| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 160. | FORTE, Jr., "Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics," Pharmacol. Ther. 104(2):137-162 (2004) | | | | 161. | GALI et al., "In Vivo Evaluation of an 111 In -Labeled ST-Peptide Analog for Specific-Targeting of Human Colon Cancers." Nuc. Med. Biol., 28.8: 903-909 (2001). | | | | 162. | GARCIA "Processing and characterization of human proguanylin expressed in Escherichia coli." J. Biol. Chem. 268:22397-22401 (1993). | | | | 163. | Genbank 1UYAA- Chain A, Solution Structure A – Form uroguanylin. March 15, 2010. 2 pages | | | | 164. | Genbank 1UYBA- Chain A, Solution Structure B – Form uroguanylin. March 15, 2010. 2 pages | | | | 165. | Genbank AAB18760.1 (rat, 1995) March 11, 2010. 2 pages | | | | 166. | Genbank AAB30324.1: Guca2B (human, 1994) March 11, 2010. 2 pages | | | | 167. | Genbank AAC50416.1; GUCA2B (human, 1994) March 11, 2010. 2 pages. | | | | 168. | Genbank: AAD09215.1 (mouse, 1996) March 11, 2010. 2 pages. | | | | 169. | Genbank: CAA98994.1 (guinea pig, 1996) March 11, 2010. 2 pages. | | | | 170. | Genbank: CAB0642.1 (pig, 1996) March 11, 2010. 2 pages. | | | | 171. | | | | | 172. | GREENBERG "Comparison of effects of uroguanylin, guanylin, and Escherichia coli heat-stable enterotoxin Sta in mouse intestine and kidney: evidence that uroguanylin is an intestinal natruiretic hormone" J. Invest. Med. 45(5):276-282 (1997) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary
depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 11 | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----------------| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 173. | GUBA et al., "Guanylin Strongly Stimulates Rat Duodenal HCO3-Secretion: Proposed Mechanism and Comparison With Other Secretagogues." Gastroenterology, 111.6: 1558-1568 (1996). | | | | 174. | GULCAN "Increased frequency of prediabetes in patients with irritable bowel syndrome" Am. J. Med. Sci 338:116-119 (2009) | | | | 175. | GULCAN "The predictive value of CRP levels on future severe renal disease in overweight and obese subjects without diabetes mellitus and hypertension. Am. J. Med. Sci 334:444-451 (2007). | | | | 176. | GURA, "Systems for Identifying New Drugs Are Often Faulty," Science 278:1041-1042 (1997) | | | | 177. | HAMMAN et al., "Oral Delivery of Peptide Drugs." Biodrugs, 19.3: 165-177 (2005). | | | | 178. | HAMRA et al., "Uroguanylin: Structure and Activity of a Second Endogenous Peptide That Stimulates Intestinal Guanylate Cyclase." PNAS, 90.22: 10464-10468 (1993). | | | | 179. | HARRIS et al., "Drug Evaluation: Linaclotide, a New Direction in the Treatment of Irritable Bowel Syndrome and Chronic Constipation." Curr. Opin. Mol. Ther., 9.4: 403-410 (2007). | | | | 180. | HESS , "GCAP-II: isolation and characterization of the circulating form of human uroguanylin," FEBS Letters 374:34-38 (1995) | | | | 181. | HIDAKA "Dual Function of the Propeptide of Prouroguanylin in the Folding of the Mature Peptide" J. Biol. Chem. 275:25155-25162 (2000) | | | | 182. | HIDAKA "In Vitro Disulfide-Coupled Folding of Guanylyl Cyclase-Activating Peptide and Its Precursor Protein" Biochem. 37:8498-8507 (1998) | | | | 183. | HILL , "Analysis of the human guanylin gene and the processing and cellular localization of the peptide" Proc. Natl. Acad. Sci USA 92:2046-2050 (1995) | | | | 184. | HILL et al., "A New Human Guanylate Cyclase-Activating Peptide (GCAP-II, Uroguanylin): Precursor cDNA and Colonic Expression." Biochim. Biophys. Acta., 1253: 146-149 (1995). | | | | 185. | HINDS "Synthesis and Characterization of Poly (ethylene glycol) – Insulin Conjugates" Bioconjug. Chem. 11:195-201 (2000). | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 12 Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----------------| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 186. | HOWARD "Obesity and dyslipidemia" Endocrinol. Metab. Clin. N. Am. 32:855-867 (2003) | | | | 187. | http://www.merckmanuals.com/home/childrens_health_issues/hereditary_metabolic_disorders/disorders_of _Lipid_metabolism.html: last updated 2009; last visited 09/25/2012 (1 page) | | | | 188. | http:www.nlm.nih.gov/medlineplus/obesity.html: 1999-2011; last visited 09/25/2012 (6 pages) | | | | 189. | HUDSON "Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation" Free Rad. Biol. Med. 30:1441-1461 (2001) | | | | 190. | Huff , "Inhibition of the Apical Sodium-Dependent Bile Acid Transporter Reduces LDL Cholesterol and ApoB by Enhanced Plasma Clearance of LDL ApoB," Arterioscler. Thromb. Vasc. Biol 22:1884-1891 (2002) | | | | 191. | HUGHES "Intracellular K+ suppresses the activation of apoptosis in lymphocytes" J. Biol. Chem 272(48):30567-30576 (1997) | | | | 192. | HUI , "Developmental and Physiological Regulation of Intestinal Lipid Absorption. III. Intestinal transporters and cholesterol absorption," Am. J. Physiol. Gastrointest. Liver Physiol. 294:G839-G843 (2008) | | | | 193. | International Preliminary Report on Patentability, PCT Appl. No. PCT/US2011/051805, 17 pages (December 15, 2012) | | | | 194. | International Preliminary Report on Patentability, PCT Appl. No. PCT/US2013/030551, 7 pages (September 16, 2014) | | | | 195. | International Search Report in International Application No. PCT/US2009/046287, 5 pages (November 10, 2009) | | | | 196. | International Search Report in International Application No. PCT/US2009/046288, 9 pages (December 9, 2009) | | | | 197. | International Search Report, PCT Appl. No. PCT/US2011/051805, 6 pages (June 21, 2012) | | | | 198. | International Search Report, PCT Appl. No. PCT/US2013/030551, 5 pages (June 18, 2013) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 13 | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----------------| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of
the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 199. | JOO et al., "Regulation of Intestinal CI and HCO3 Secretion by Uroguanylin." Am. J. Physio., 274.4: G633-G644 (1998). | | | | 200. | KELLAND "Of mice and men': values and liabilities of the athymic nude mouse model in anticancer drug development" Eur. J. Cancer 40(6):827-836 (2004). | | | | 201. | KITA :Characterization of human uroguanylin: A member of the guanylin peptide family" Am. J. Physiol. 266:F342-8 (1994) | | | | 202. | KLODT , "Synthesis, biological activity and isomerism of guanylate cyclase C-activating peptides guanylin and uroguanylin," J. Pep. Res. 50(2):222-230 (1997). | | | | 203. | KRAUSE "The guanylin and uroguanylin peptide hormones and their receptors" Acta Anat. 160:213-231 (1997) | | | | 204. | LAI and TOPP, "Solid-State Chemical Stability of Proteins and Peptides", Journal of Pharmaceutical Sciences, MiniReview, 88(5): 489-500 (1999). | | | | 205. | LAM "Serotonin and energy balance: molecular mechanisms and implications for type 2 diabetes" Expert Rev. Mol. Med. 9:1-24 (2007) | | | | 206. | LEISTER "Human colorectal cancer: High frequency of deletions at chromosome 1p35" Can. Res. 50:7232-7235 (1990). | | | | 207. | LI "Purification, cDNA sequence and tissue distribution of rat uroguanylin" Reg. Pep. 68:45-56 (1997) | | | | 208. | LI and CHIANG, "Bile Acid Signaling in Liver Metabolism and Diseases", Journal of Lipids, Hindawi
Publishing Corporation, 2012:1-9, Article ID 754067 (2011) | | | | 209. | LIPKIN "Gastric cell regeneration" Arch. Fr. Mal. Appl. Dig. (Paris) 61(10-11):691-693 (1972) | | | | 210. | LORENZ "Uroguanylin knockout mice have increased blood pressure and impaired natriuretic response to enteral NaCl load" J. Clin. Invest. 112(8):1244-1254 (2003) | | | | 211. | MacFARLANE and MacFARLANE, "Factors affecting fermentation reactions in the large bowel," Proc. Nutr. Soc. 52(2):367-373 (1993) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary) Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 14 Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----------------| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 212. | MAGERT "Porcine guanylin and uroguanylin: cDNA sequences, deduced amino acid sequences, and biological activity of the chemically synthesized peptides' Biochem. Biophys. Res. Comm. 259:141-148 (1999) | | | | 213. | MAHATO et al., "Emerging Trends in Oral Delivery of Peptide and Protein Drugs." Crit. Rev. Therapeutic Drug Carrier Sys., 20.2-3: 153-214 (2003). | | | | 214. | MARX et al., "One Peptide, Two Topologies: Structure and Interconversion Dynamics of Human
Uroguanylin Isomers." J. Pept. Res., 52: 229-240 (1998). | | | | 215. | MIHRANYAN et al., "Moisture sorption by cellulose powders of varying crystallinity", International Journal of Pharmaceutics, 269(2): 433-442 (2004). | | | | 216. | MIYAZATO "Uroguanylin gene expression in the alimentary tract and extra-gastrointestinal tissues" FEBS Letters, 398:170-174 (1996). | | | | 217. | MIYAZATO "Cloning and characterization of a cDNA encoding a precursor for human uroguanylin" Biochem Biophys Res. Comm. 219:644-648 (1996) | | | | 218. | MOON "Effects of age, ambient temperature, and heat-stable Escherichia coli enterotoxin of intestinal transit in infant mice" Infect. Immun. 25(1):127-132 (1979). | | | | 219. | MULLER-LISSNER "Safety, tolerability, and efficacy of tegaserod over 13 months in patients with chronic constipation" Am. J. Gastroenterol. 101:2558-2569 (2006) | | | | 220. | NAKAZATO "Tissue distribution, cellular source, and structural analysis of rat immunoreactive uroguanylin" Endocrinol. 139:5247-5254 (1998) | | | | 221. | NATHAN "Copolymers of lysine and polyethylene glycol: a new family of functionalized drug carriers" Bioconjug Chem. 4(1):54-62 (1993) | | | | 222. | NEMETHY "Energy parameters in polypeptides. 9. Updating of geometrical parameters non-bonded interactions, and hydrogen bond interactions for the naturally occurring amino acids" J. Phys. Chem. 87:1883-1887 (1983). | | | | 223. | NIKIFOROVICH "Computation molecular modeling in peptide design" Int. J. Pep. Prot. Res. 44:513-531 (1994) | | | | 224. | NIKIFOROVICH "Topographical requirements for δ-selective opioid peptides" Biopolymers, 31:942-955 (1991) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary) Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 15 | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----------------| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 225. | NYBURG "Some uses of best molecular fit routine" Acta Crystallographica B30 (Part I):251-253 (1974) | | | | 226. | OHBAYASHI, "Effects of uroguanylin and guanylin against antigen-induced bronchoconstriction and airway microvascular leakage in sensitized guinea-pigs" Life Sci., 62(20:1883-1844 (1998) | | | | 227. | PCT/US2009/066600, International Preliminary Report on Patentability dated August 2, 2011, 8 pages. | | | | 228. | PERKINS "Uroguanylin is expressed by enterochromaffin cells in the rat gastrointestinal tract" Gastroenterol 113:1007-1014 (1997) | | | | 229. | PETERSON "Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development" Eur. J. Cancer 40:837-844 (2004) | | | | 230. | PITARI "Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells", Proc. Natl. Acad. Sci. USA 98(14):7546-7851 (2001) | | | |
231. | POTTEN "Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium" Stem Cells 15:82-93 (2001) | | | | 232. | PROVENZALE "Surveillance issues in inflammatory bowel disease: ulcerative colitis" J. Clin. Gastroenterol 32:99-105 (2001) | | | | 233. | PubChem, CID 469, http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=469#x27, (last visited 10/18/14). 19 pages | | | | 234. | RAMAMOORTHY "Phosphorylation of threonine residue 276 is required for acute regulation of serotonin transporter by cyclic GMP" J. Biol. Chem. 282(16):11639-11647 (2007) | | | | 235. | REDDY and RAO "Lipid metabolism and liver inflammation II fatty liver disease and fatty acid oxidation" Am. J. Physiol. Gastrointest. Liver Physiol. 290:G852-G858 (2006) | | | | 236. | REFAAT et al., "Sp304, an analog of uroguanylin, ameliorates inflammation in a model of experimental colitis", Digestive Disease Week Conference, Abstract, May, 2006. | | | | 237. | Remington, JP "Remington's Pharmaceutical Sciences" Mack Pub. Co. 16th edition (1980) 7 pages. | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 16 19 **Attorney Docket Number** of | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----------------| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 238. | ROBERTS "Chemistry of peptide and protein PEGylation" Adv. Drug. Deliv. Rev. 54:459-476 (2002) | | | | 239. | ROLFE and Milla, "Nitric oxide stimulates cyclic guanosine monophosphate production and electrogenic secretion in Caco-2 colonocytes," Clin. Sci. (Lond). 96(2):165-170 (1999) | | | | 240. | SAMUEL "Absorption of bile acids from the large bowel in man" J. Clin. Invest. 47:2070-2978 (1968). | | | | 241. | SCHULZ et al., "Guanylyl Cyclase is a Heat-Stable Enterotoxin Receptor." Cell, 63.5: 941-948 (1990). | | | | 242. | SCHULZ et al., "Side Chain Contributions to the Interconversion of the Topological Isomers of Guanylin-
Like Peptides." J. Peptide Sci., 11.6: 319-330 (2005). | | | | 243. | SCIAKY "Mapping of guanylin to murine chromosome 4 and human chromosome 1p34p35" Genomics 26:427-429 (1995) | | | | 244. | SELLERS "heat-stable enterotoxin of Escherichia coli stimulates a non-CFTR-mediated duodenal bicarbonate secretory pathway" Am J. Physiol. Gastrointest. Liver Physiol. 288:G654-G663 (2005) | | | | 245. | SHAILUBHAI "Gaunilib, an antagonist of guanylate C, is a new class of oral drug candidate that ameliorates inflammation in models of experimental colitis" [Abstract]: In Charon's and colitis foundation of America (2007) 1 page. | | | | 246. | SHAILUBHAI "Guanilib, an agonist of Guanylate C, is a new class of oral drug candidate for Gl disorders and colon cancer" [abstract] in GTCbio, 2008. 1 page. | | | | 247. | SHAILUBHAI "Guanylate cyclase-C agonists as a new class of drug candidates for GI motility and inflammatory bowel disease" [Abstract] 2009 (1 page) | | | | 248. | SHAILUBHAI "Guanylin Peptides: New class of oral drug candidates" [Abstract]: In World Congress 2008 (2 pages) | | | | 249. | SHAILUBHAI "Inflammatory bowel disease" February 2008: S5 2007 IBD Abstract: Oral Presentation (1 page) | | | | 250. | SHAILUBHAI "Phase II Clinical Evaluation of SP-304, a Guanylate Cyclase-C Agonist, for Treatment of Chronic Constipation," Am. J. Gastroenterol. 105(Suppl. 1):S487-S488 (2010) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 17 19 **Attorney Docket Number** of | | | NON PATENT LITERATURE DOCUMENTS | | | | | | |-------------------------|------|---|--|--|--|--|--| | Examiner Cite Initials* | | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | | | | | | | | 251. | SHAILUBHAI "SP-304 to treat GI disorders- effects of a single, oral dose of SP-304 in safety, tolerability, pharmacokinetics and pharmacodynamics in healthy volunteers" [Abstract]: in Digestive Disease Week, | | | | | | | | 252. | SHAILUBHAI "Therapeutic applications of guanylate cyclase-c receptor agonists" Curr. Opin. Drug Disc. Devel. 5(2):261-268 (2002) | | | | | | | | 253. | SHAILUBHAI et al., "Uroguanylin Treatment Suppresses Polyp Formation in the ApcMin/+ Mouse and Induces Apoptosis in Human Colon Adenocarcinoma Cells via Cyclic GMP." Cancer Res., 60: 5151-5157 (2000). | | | | | | | | 254. | SHINOZAKI "High proliferative activity is associated with dysplasia in ulcerative colitis" Dis. Colon Rectum 43:S34-S39 (2000) | | | | | | | | 255. | SINDICE "Guanylin, Uroguanylin, and Heat-stable Enterotoxin Activate Guanylate Cyclase C and/or a Pertussis Toxin-sensitive G Protein in Human Proximal Tubule Cells". J. Biol. Chem. 277:17758-17764 (2002) | | | | | | | | 256. | SPRANGER "Inflammatory cytokines and the risk to develop Type 2 Diabetes: Results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-Potsdam study" Diabetes, 52:812-817 (2003). | | | | | | | | 257. | St. John's Providence Health Center; Preventing Obesity, http://www.stjohnprovidence.org/healthInfoLib/swArticle.aspx?85.P07863; last visited 09/25/2012 (2 pages) | | | | | | | | 258. | TAKADA,"Alteration of a Single Amino Acid in Peroxisome Proliferator-Activated Receptor-a (PPARa) Generates a PPARd Phenotype" Mol. Endocrinol. 14(5)":733-740 (2000) | | | | | | | | 259. | TALLEY "Medical costs in community subjects with irritable bowel syndrome" Gastroenterol. 109:1736-1741 (1995) | | | | | | | | 260. | THOMAS, "Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism
and physiological consequences," GUT 55:1321-1331 (2006) | | | | | | | | 261. | TIAN "STa peptide analogs for probing guanylyl cyclase C" Biopolymers (Pept. Sci). 90(5):713-723 (2008) | | | | | | | | 262. | TILG "Inflammatory mechanisms in the regulation of insulin resistance" Mol. Med. 14:222-231 (2008) | | | | | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filing Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai **Attorney Docket Number** 19 of 18 | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----------------| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | | 263. | VAANDRAGER, "Structure and Function of the Heat-Stable Enterotoxin Receptor/Guanylyl Cyclase C." Mol. Cell. Biochem., 230.1-2: 73-83 (2002). | | | | 264. | VARIYAM, "Luminal bacteria and proteases together decrease adherence of Entamoeba histolytica trophozoites to Chinese hamster ovary epithelial cells: A novel host defense against an enteric pathogen," GUT 39(4):521-527 (1996) | | | | 265. | VENKATAKRISHNAN "Exaggerated activation of nuclear factor-B and altered I B-processing in cystic fibrosis bronchial epithelial cells. Am. J. Resp. Cell Mol. Biol. 23(3):396-403 (2000) | | | | 266. | VERONESE "Bioconjugation in pharmaceutical chemistry" Farmaco, 54:497-516 (1999) | | | | 267. | VERONESE "PEGylation, successful approach to drug delivery" Drug. Disc. Today. 10(21):1451-1458 (2005). | | | | 268. | VERONESE "Peptide and protein PEGylation: a review of problems and solutions" Biomaterial, 22:405-417 (2001). | | | | 269. | WALDMAN "Heterogeneity of guanylyl cylcase C expressed by human colorectal cancer cell lines in vitro" Can. Epidemiol. Biomarkers & Prevention 7:505-514 (1998) | | | | 270. | WEBER "Activation of NF-κB in airway epithelial cells is dependent on CFTR trafficking and Cl channel function" Am. J. Physiol. Lung Cell Mol. Biol. 281(1):L71-78 (2001). | | | | 271. | WELSH "Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis" Cell 73:1251-1254 (1993). | | | | 272. | WHITAKER "The uroguanulin gene (Buca1b) is linked to guanylin (Guca2) on mouse chromosome 4" Genomics 45:348-354 (2002) | | | | 273. | WONG "Cell proliferation in gastrointestinal mucosa" J. Clin. Pathol. 52:321-333 (1999) | | | | 274. | Wong "Histogenesis of human colorectal adenomas and hyperplastic polyps: the role of cell proliferation and crypt fission" Gut 50:212-217 (2002) | | | | 275. | Written Opinion of the International Searching Authority, PCT Appl. No. PCT/US2011/051805, 5 pages (June 21, 2012) | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known | Substitute for form 1449A/PTO | | | | Complete if Known | | | |-----------------------------------|-----------------|------|-------|------------------------|----------------------------|--| | | | | | Application Number | 15/467,648 | | | l ,, | NFORMATION DISC | ח וי | CLIDE | Filing Date | March 23, 2017 | | | STATEMENT BY APPLICANT | | | | First Named Inventor | COMISKEY, Stephen | | | | | | | Art Unit | 1676 | | | (Use as many sheets as necessary) | | |) | Examiner Name | LEE, Jia-Hai | | | Sheet | 19 | of | 19 | Attorney Docket Number | SYPA-009/C04US 321994-2341 | | | | NON PATENT LITERATURE DOCUMENTS | | | | | | | |-----------------------|--|--|----------------|--|--|--|--| | Examiner
Initials* | r Cite No.1 Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), arti | | T ² | | | | | | | 276. | Written Opinion of the International Searching Authority, PCT Appl. No. PCT/US2013/030551, 6 pages (June 18, 2013) | | | | | | | | 277. | WU "Atrial natriuretic peptide induces apoptosis in neonatal rat cardia myocytes" J. Biol. Chem. 272(23):14860-14866 (1997) | | | | | | | | 278. | ZHANG "Gene expression profiles in normal and cancer cells" Science 276:1268-1272 (1997) | | | | | | | | 279. | ZIMMERMAN "Influence of local interactions on protein structure. I. Conformational energy studies of N-acetyl-N-methylamides of pro-X and X-pro dipeptides" Biopolymers, 16:811-843 (1977) | | | | | | | Examiner | Date | | |-----------|------------|--| | Signature | Considered | | *EXAMINER: Initial if reference considered,
whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Docket No.: SYPA-009/C04US 321994-2341 (PATENT) ### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE First Inventor: Stephen COMISKEY Confirmation No.: 2133 Application No.: 15/467,648 Group Art Unit: 1676 Filed: March 23, 2017 Examiner: LEE, Jia-Hai For: FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE Via EFS Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450 # INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. §§ 1.56, 1.97, AND 1.98 In accordance with the duty of disclosure set forth in 37 C.F.R. §1.56, Applicant hereby submits the following information in conformance with 37 C.F.R. §§1.97 and 1.98. It is respectfully requested that the information be expressly considered during the prosecution of this application, and the references be made of record therein and appear among the "References Cited" on any patent to issue therefrom. - [] Pursuant to 37 C.F.R. §1.98, copies of non-US patent documents, Cite Nos., cited in the attached Form used in lieu of PTO/SB/08 are enclosed. - [X] Copies of the publications listed on the attached Form used in lieu of PTO/SB/08 are <u>not</u> being provided pursuant to 37 C.F.R. §1.98(d) because the publications were previously cited by or submitted to the Office in <u>prior Applications Serial No(s)</u>. 14/845,644 (U.S. Patent No. 9,610,321), 14/661,299 and 13/421,769 (U.S. Patent No. 9,616,097) to which the above-identified application claims priority under 35 U.S.C. §120. - [X]No copies of any U.S. patents or U.S. patent application publications listed on the attached Form used in lieu of PTO/SB/08 are being provided pursuant to 37 C.F.R. §1.98. **Application No.:** 15/467,648 **Docket No.:** SYPA-009/C04US 321994-2341 | | | $Publication(s)\ listed\ on\ the\ attached\ Form\ used\ in\ lieu\ of\ PTO/SB/08\ were\ cited\ in\ a$ foreign search or examination report corresponding to application serial no. and mailed on . | |----|------|---| | | | Enclosed is a copy of a non-English publication(s) Pursuant to §609 of the M.P.E.P., Applicant submits the attached foreign search or examination report, which cites such non-English language publication(s). | | | [] | Enclosed is a copy of a non-English publication(s) English language publication (copy enclosed) claims priority from this non-English publication. | | | [] | Enclosed is an explanation of non-English publication(s) for which an English translation is not available. | | | [] | Enclosed is an English translation of non-English publication(s) cited in the attached Form used in lieu of PTO/SB/08. | | | [] | Enclosed is a copy of pending patent Application Serial No | | | | ordance with <u>37 C.F.R. §1.97(b)</u> , no additional fee for submission of this Information attement is required, as it is filed within any one of the following time periods: | | | [] | within three months from the filing date of this national application other than a CPA under 37 C.F.R. § 1.53(d); | | | [] | within three months from the date of entry of the national stage as set forth in 37 C.F.R. §1.491 in this international application; | | | [] | before the mailing date of a first office action on the merits; or | | | [X] | before the mailing of a first office action after the filing of a request for continued examination under 37 C.F.R. § 1.114. | | | | ordance with 37 C.F.R. §1.97(c), this Information Disclosure Statement is filed after cified in 37 C.F.R. § 1.97(b), but before the mailing of any of the following: | | | [] | a final action under 37 C.F.R. §1.113; | | | [] | a notice of allowance under 37 C.F.R. §1.311; or | | | [] | an action that otherwise closes prosecution in this application. | | In | acco | ordance with 37 C.F.R. §1.97(c) also enclosed is: | | [] | | Fee under 37 C.F.R. §1.17(p) in the amount of \$180.00; | | [] | | Fee under 37 C.F.R. §1.17(p) in the amount of \$90.00; | | [] | | Fee under 37 C.F.R. §1.17(p) in the amount of \$45.00; or | | [] | | Statement as specified in 37 C.F.R. §1.97(e): | | | | | **Application No.:** 15/467,648 **Docket No.:** SYPA-009/C04US 321994-2341 П Each item of information contained in the Information Disclosure Statement cited herein was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing date of the Information Disclosure Statement; or []No item of information contained in the Information Disclosure Statement submitted herewith was cited in any communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the undersigned, having made a reasonable inquiry, no item of information contained in the Information Disclosure Statement was known to any individual designated in 37 C.F.R. §1.56(c) more than three months prior to the filing date of the Information Disclosure Statement. In accordance with 37 C.F.R. §1.97(d), this Information Disclosure Statement is filed after the period specified in 37 C.F.R. § 1.97(c), but with or before the payment of the issue fee. In accordance with 37 C.F.R. §1.97(d) also enclosed is: []Fee under 37 C.F.R. §1.17(p) in the amount of \$180.00; П Fee under 37 C.F.R. §1.17(p) in the amount of \$90.00; or П Fee under 37 C.F.R. §1.17(p) in the amount of \$45.00; and Statement as specified in 37 C.F.R. §1.97(e): Each item of information contained in the Information Disclosure Statement cited herein was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing date of the Information Disclosure Statement; or П No item of information contained in the Information Disclosure Statement submitted herewith was cited in any communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the undersigned, having made a reasonable inquiry, no item of information contained in the Information Disclosure Statement was known to any individual designated in 37 C.F.R. §1.56(c) more than three months prior to the filing date of the Information Disclosure Statement. In accordance with 37 C.F.R. § 1.704(d), Applicant notes that to our knowledge each item of information contained in the information disclosure statement: was first cited in any communication from a patent office in a counterpart foreign or international application or from the Office, and this communication was not received by any individual designated in § 1.56(c) more than thirty days prior to the [] is a communication that was issued by a patent office in a counterpart foreign or international application or from the Office, and this communication was not filing of the information disclosure statement. **Application No.:** 15/467,648 **Docket No.:** SYPA-009/C04US 321994-2341 received by any individual designated in § 1.56(c) more than thirty days prior to the filing of the information disclosure statement. In accordance with 37 C.F.R. § 1.97(g), this Information Disclosure Statement shall not be construed as to mean that a search has been made. In accordance with 37 C.F.R. § 1.97(h), the filing of this Information Disclosure Statement shall not be construed to be an admission that the information cited in the statement is, or is considered to be material to patentability as defined by 37 C.F.R § 1.56(b). Remarks It is respectfully requested that the Examiner consider the above-noted information and return an initialed copy of the attached Form used in lieu of PTO/SB/08 to the undersigned. The Director is hereby requested and authorized to charge any deficiency or credit any overpayment in the fees filed, asserted to be filed or which should have been filed herewith to our Deposit Account No. 50-1283 which the undersigned is authorized to draw. The Examiner is invited to contact the undersigned by telephone if it is felt that a telephone interview would advance the prosecution of the present application. Dated: November 8, 2017 Respectfully submitted. COOLEY LLP **COOLEY LLP** ATTN: IP Docketing Department 1299 Pennsylvania Avenue NW, Suite 700 Washington, DC 20004 By: /Anne E Fleckenstein/ Anne E. Fleckenstein Reg. No. 62,951 Tel: (202) 842-7800 Fax: (202) 842-7899 4 150390510 v1 0388 15/467,648 - GAU: 1676 PTO/SB/08a (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March
23, 2017 INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT 1676 Art Unit (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 19 Attorney Docket Number Sheet of | | U. S. PATENT DOCUMENTS | | | | | | | |-----------------------|------------------------|--|--------------------------------|--|---|--|--| | Examiner
Initials* | Cite
No.1 | Document Number Number-Kind Code ^{2 (f known)} | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines, Where
Relevant Passages or Relevant
Figures Appear | | | | /J.L/ | 1. | 5,106,834 | 04-21-1992 | Bovy et al. | | | | | /J.L/ | 2. | 5,130,333 | 07-14-1992 | Pan et al. | | | | | /J.L/ | 3. | 5,489,670 | 02-06-1996 | Currie et al. | | | | | /J.L/ | 4. | 5,518,888 | 05-21-1996 | Waldman et al. | | | | | /J.L/ | 5. | 5,578,709 | 11-26-1996 | Woiszwillo et al. | | | | | /J.L/ | 6. | 5,601,990 | 02-11-1997 | Waldman et al. | | | | | /J.L/ | 7. | 5,721,238 | 02-24-1998 | Heiker et al. | | | | | /J.L/ | 8. | 5,731,159 | 03-24-1998 | Waldman et al. | | | | | /J.L/ | 9. | 5,817,624 | 10-06-1998 | Yang et al. | | | | | /J.L/ | 10. | 5,879,656 | 03-09-1999 | Waldman et al. | | | | | /J.L/ | 11. | 5,928,873 | 07-29-1999 | Waldman et al. | | | | | /J.L/ | 12. | 5,969,097 | 10-19-1999 | Wiegand et al. | | | | | /J.L/ | 13. | 6,060,037 | 05-09-2000 | Waldman et al. | | | | | /J.L/ | 14. | 6,235,782 | 05-22-2001 | Pamukcu et al. | | | | | /J.L/ | 15. | 7,041,786 | 05-09-2006 | Shailubhai et al. | | | | | /J.L/ | 16. | 7,067,748 | 07-20-2006 | Whitmore, Jr. et al. | | | | | /J.L/ | 17. | 7,375,083 | 05-20-2008 | Mickle et al. | | | | | /J.L/ | 18. | 7,494,979 | 02-24-2009 | Currie et al. | | | | | /J.L/ | 19. | 7,799,897 | 09-21-2010 | Jacob et al. | | | | | /J.L/ | 20. | 7,879,802 | 02-01-2011 | Shailubhai et al. | | | | | /J.L/ | 21. | 8,034,782 | 10-11-2011 | Shailubhai | | | | | /J.L/ | 22. | 8,114,831 | 02-14-2012 | Shailubhai et al. | | | | | /J.L/ | 23. | 8,207,295 | 06-26-2012 | Shailubhai et al. | | | | | /J.L/ | 24. | 8,357,775 | 01-22-2013 | Shailubhai et al. | | | | | /J.L/ | 25. | 8,367,800 | 02-05-2013 | Shailubhai | | | | | /J.L/ | 26. | 8,497,348 | 07-30-2013 | Shailubhai et al. | | | | | /J.L/ | 27. | 8,569,246 | 10-29-2013 | Shailubhai | | | | | /J.L/ | 28. | 8,637,451 | 01-28-2014 | Shailubhai et al. | | | | | /J.L/ | 29. | 8,664,354 | 03-04-2014 | Shailubhai | | | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| |-----------------------|----------|------|--------------------|------------| *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. Applicant's unique citation designation number (optional). See Kinds Codes of USPTO Patent Documents at www.uspio.gov or MPEP 901.04. Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 15/467,648 - GAU: 1676 PTO/SB/08a (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT 1676 Art Unit (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 2 19 Attorney Docket Number Sheet of | | | | U. S. PATENT | DOCUMENTS | | |-----------------------|--------------|--|--------------------------------|--|---| | Examiner
Initials* | Cite
No.1 | Document Number Number-Kind Code ^{2 (f known)} | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines, Where
Relevant Passages or Relevant
Figures Appear | | /J.L/ | 30. | 8,716,224 | 05-06-2014 | Shailubhai et al. | | | /J.L/ | 31. | 8,901,075 | 12-02-2014 | Shailubhai et al. | | | /J.L/ | 32. | 8,969,514 | 03-03-2015 | Shailubhai | | | /J.L/ | 33. | 9,238,677 | 01-19-2016 | Shailubhai et al. | | | /J.L/ | 34. | 9,266,926 | 02-23-2016 | Shailubhai et al. | | | /J.L/ | 35. | 9,486,494 | 11-08-2016 | Shailubhai | | | /J.L/ | 36. | 9,545,446 | 01-17-2016 | Riff et al. | | | /J.L/ | 37. | 2002/0128176 A1 | 09-12-2002 | Forssmann et al. | | | /J.L/ | 38. | 2002/0133168 A1 | 09-19-2002 | Smeldley et al. | | | /J.L/ | 39. | 2002/0143015 A1 | 10-03-2002 | Fryburg et al. | | | /J.L/ | 40. | 2003/0073628 A1 | 04-17-2003 | Shailubhai et al. | | | /J.L/ | 41. | 2004/0015140 A1 | 01-22-2004 | Shields | | | /J.L/ | 42. | 2005/0016244 A1 | 01-27-2005 | Hergemoller | | | /J.L/ | 43. | 2005/0032684 A1 | 02-10-2005 | Cetin et al. | | | /J.L/ | 44. | 2005/0107734 A1 | 05-19-2005 | Coroneo | | | /J.L/ | 45. | 2005/0145351 A1 | 07-07-2005 | Schaible, et al. | | | /J.L/ | 46. | 2005/0266047 A1 | 12-01-2005 | Tu et al | | | /J.L/ | 47. | 2005/0267297 A1 | 12-01-2005 | Berlin | | | /J.L/ | 48. | 2006/0086653 A1 | 04-27-2006 | St. Germain | | | /J.L/ | 49. | 2006/0094658 A1 | 05-04-2006 | Currie | | | /J.L/ | 50. | 2007/0101158 A1 | 05-03-2007 | Elliott | | | /J.L/ | 51. | 2008/0137318 A1 | 06-12-2008 | Rangaraj et al. | | | /J.L/ | 52. | 2008/0151257 A1 | 06-26-2008 | Yasuda et al. | | | /J.L/ | 53. | 2009/0048175 A1 | 02-19-2009 | Shailubhai et al. | | | /J.L/ | 54. | 2009/0192083 A1 | 07-30-2009 | Currie | | | /J.L/ | 55. | 2009/0253634 A1 | 10-08-2009 | Currie et al. | | | /J.L/ | 56. | 2010/0048489 A1 | 02-25-2010 | Fretzen | | | /J.L/ | 57. | 2010/0069306 A1 | 03-18-2010 | Shailubhai et al. | | | /J.L/ | 58. | 2010/0093635 A1 | 04-15-2010 | Shailubhai | | | Examiner Signature /JIA-HAI LEE/ | Date
Considered | 12/19/2017 | |----------------------------------|--------------------|------------| |----------------------------------|--------------------|------------| *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. Applicant's unique citation designation number (optional). See Kinds Codes of USPTO Patent Documents at www.uspio.gov or MPEP 901.04. Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Receipt date: 11/08/2017 15/467,648 - GAU: 1676 PTO/SB/08a (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT 1676
Art Unit (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 3 19 Attorney Docket Number Sheet of | | | | U. S. PATENT | DOCUMENTS | | |-----------------------|--------------|--|--------------------------------|--|---| | Examiner
Initials* | Cite
No.1 | Document Number Number-Kind Code ^{2 (f known)} | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines, Where
Relevant Passages or Relevant
Figures Appear | | /J.L/ | 59. | 2010/0120694 A1 | 05-13-2010 | Shailubhai et al. | | | /J.L/ | 60. | 2010/0152118 A1 | 06-17-2010 | Shailubhai | | | /J.L/ | 61. | 2010/0221329 A1 | 09-02-2010 | Shailubhai et al. | | | /J.L/ | 62. | 2010/0221329 A1 | 09-02-2010 | Shailubhai et al. | | | /J.L/ | 63. | 2012/0196797 A1 | 08-02-2012 | Currie et al. | | | /J.L/ | 64. | 2012/0237593 A1 | 09-20-2012 | Comiskey et al. | | | /J.L/ | 65. | 2012/0289460 A1 | 11-15-2012 | Shailubhai | | | /J.L/ | 66. | 2013/0274204 A1 | 10-17-2013 | Shailubhai et al. | | | /J.L/ | 67. | 2014/0024605 A1 | 01-23-2014 | Shailubhai et al. | | | /J.L/ | 68. | 2014/0121169 A1 | 05-01-2014 | Shailubhai et al. | | | /J.L/ | 69. | 2014/0135274 A1 | 05-15-2014 | Shailubhai | | | /J.L/ | 70. | 2014/0187470 A1 | 07-03-2014 | Jacob et al. | | | /J.L/ | 71. | 2014/0287002 A1 | 09-25-2014 | Shailubhai | | | /J.L/ | 72. | 2014/0329738 A1 | 11-06-2014 | Shailubhai et al. | | | /J.L/ | 73. | 2015/0359749 A1 | 12-17-2015 | Shailubhai et al. | | | /J.L/ | 74. | 2015/0366935 A1 | 12-24-2015 | Comiskey et al. | | | /J.L/ | 75. | 2016/0367623 A1 | 12-22-2016 | Shailubhai | | | /J.L/ | 76. | 2017/0202903 A1 | 07-20-2017 | Comiskey et al. | | | | FOREIGN PATENT DOCUMENTS | | | | | | |-----------------------|--------------------------|---|--------------------------------|--|--|----| | Examiner
Initials* | Cite
No.1 | Foreign Patent Document Country Code ³ "Number ⁴ "Kind Code ⁵ (if known) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Colurnns, Lines,
Where Relevant Passages
or Relevant Figures Appear | T€ | | /J.L/ | 77. | JP 2006-022115 A
(corresponds to WO
1999/061002 A1) | 01-26-2006 | BRISTOL MYERS SQUIBB CO. | | | | /J.L/ | 78. | JP 2009-519343 A
(corresponds to WO
2007/070562 A2) | 05-14-2009 | | | | | Examiner /JIA-HAI LEE/ Signature | Date
Considered | 12/19/2017 | |----------------------------------|--------------------|------------| |----------------------------------|--------------------|------------| ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. Applicant's unique citation designation number (optional). See Kinds Codes of USPTO Patent Documents at www.uspio.gov or MPEP 901.04. Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 15/467,648 - GAU: 1676 PTO/SB/08a (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT 1676 Art Unit (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 4 19 Attorney Docket Number Sheet of | | | | FOREIGN PATEN | T DOCUMENTS | | | |-----------------------|--------------|---|--------------------------------|--|---|----| | Examiner
Initials* | Cite
No.1 | Foreign Patent Document Country Code ³ "Number ⁴ "Kind Code ⁵ (if known) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines,
Where Relevant Passages
or Relevant Figures Appear | T⁵ | | /J.L/ | 79. | JP 2009-537535 A
(corresponds to WO
2007/133796 A2) | 10-29-2009 | | | | | /J.L/ | 80. | JP 2010-519217 A
(corresponds to WO
2008/102264 A2) | 06-03-2010 | | | | | /J.L/ | 81. | WO 1988/005306 A1 | 07-28-1988 | THE GENERAL HOSPITAL CORPORATION | | | | /J.L/ | 82. | WO 1993/012068 A1 | 06-24-1993 | BRIGHAM AND WOMEN'S
HOSPITAL | | | | /J.L/ | 83. | WO 1999/026567 A1 | 06-03-1999 | OPTONOL LTD | | | | /J.L/ | 84. | WO 2001/025266 A1 | 04-12-2001 | PHARMACIA CORPORATION | | | | /J.L/ | 85. | WO 2002/062369 A2 | 08-15-2002 | PHARMACIA CORPORATION | | | | /J.L/ | 86. | WO 2002/078683 A1 | 10-10-2002 | SYNERGY
PHARMACEUTICALS, INC. | | | | /J.L/ | 87. | WO 2002/098912 A3 | 12-12-2002 | CETIN | | | | /J.L/ | 88. | WO 2004/069165 A2 | 08-19-2004 | MICROBIA INC. | | | | /J.L/ | 89. | WO 2005/087797 A1 | 09-22-2005 | MICROBIA INC. | | | | /J.L/ | 90. | WO 2006/086653 A2 | 08-17-2006 | MICROBIA, INC. | | | | /J.L/ | 91. | WO 2007/022531 A2 | 02-22-2007 | MICROBIA INC. | | | | /J.L/ | 92. | WO 2007/070562 A2 | 06-21-2007 | HARKNESS
PHARMACEUTICALS, INC. | | | | /J.L/ | 93. | WO 2007/101158 A2 | 09-07-2007 | MICROBIA, INC. | | | | /J.L/ | 94. | WO 2007/106468 A2 | 09-20-2007 | ENCYSIVE PHARMACEUTICALS, INC. | | | | /J.L/ | 95. | WO 2007/133796 A2 | 11-22-2007 | ENCYSIVE PHARMACEUTICALS, INC. | | | | /J.L/ | 96. | WO 2008/102264 A2 | 08-28-2008 | EURAND PHARMACEUTICALS LIMITED | | | | /J.L/ | 97. | WO 2008/106429 A2 | 09-04-2008 | MICROBIA INC. ET AL. | | | | /J.L/ | 98. | WO 2008/137318 A1 | 11-13-2008 | IRONWOOD PHARMACEUTICALS, INC. | | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. Applicant's unique citation designation number (optional). See Kinds Codes of USPTO Patent Documents at www.uspio.gov or MPEP 901.04. Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Sheet 15/467,648 - GAU: 1676 PTO/SB/08a (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT 1676 Art Unit (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 5 19 Attorney Docket Number of | | | | FOREIGN PATEN | T DOCUMENTS | | | |-----------------------|--------------
---|--------------------------------|--|---|----------------| | Examiner
Initials* | Cite
No.1 | Foreign Patent Document Country Code ³ "Number ⁴ "Kind Code ⁵ (if known) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines,
Where Relevant Passages
or Relevant Figures Appear | T [©] | | /J.L/ | 99. | WO 2008/151257 A2 | 12-11-2008 | SYNERGY
PHARMACEUTICALS INC. | | | | /J.L/ | 100. | WO 2009/149278 A1 | 12-10-2009 | SYNERGY PHARMACEUTICALS INC. | | | | /J.L/ | 101. | WO 2009/149279 A2 | 12-10-2009 | SYNERGY PHARMACEUTICALS INC. | | | | /J.L/ | 102. | WO 2010/009319 A2 | 01-21-2010 | SYNERGY PHARMACEUTICALS INC. | | | | /J.L/ | 103. | WO 2010/027404 A2 | 03-11-2010 | IRONWOOD PHARMACEUTICALS INC. | | | | /J.L/ | 104. | WO 2010/065751 A2 | 06-10-2010 | SYNERGY PHARMACEUTICALS INC. | | | | /J.L/ | 105. | WO 2011/020054 A1 | 02-17-2011 | IRONWOOD PHARMACEUTICALS INC. | | | | /J.L/ | 106. | WO 2012/037380 A2 | 03-22-2012 | SYNERGY PHARMACEUTICALS INC. | | | | /J.L/ | 107. | WO 2013/138352 A1 | 09-19-2013 | SYNERGY PHARMACEUTICALS INC. | | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Cons | e
sidered | 12/19/2017 | |-----------------------|----------|------|--------------|--------------|------------| *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. Applicant's unique citation designation number (optional). See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 6 19 Attorney Docket Number Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 108. | Advisory Committee Briefing document for Merida [sibutramine hydrochloride monohydrate], Abbott, August 13, 2010 (205 pages) | | | /J.L/ | 109. | ALREFAI , "Cholesterol modulates human intestinal sodium-dependent bile acid transporter," Am. J. Physiol. Gastrointest. Liver Physiol. 288:G978-G985 (2005) | | | /J.L/ | 110. | ASKLING "Colorectal cancer rates among first degree relatives of patients with inflammatory bowel disease: A population-based cohort study" Lancet 357:262-266 (2001). | | | /J.L/ | 111. | BAKRE et al. "Expression and regulation of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) in human colonic epithelial cells: role in the induction of cellular refractoriness to the heat-stable enterotoxin peptide" J. Cell Biol. 77:159-167 (2000) | | | /J.L/ | 112. | BARBARA "A role for inflammation in irritable bowel syndrome": Gut, 51(Suppl. 1): 141-144 (2002) | | | /J.L/ | 113. | BASOGLU In: "Proceedings of the Second FEPS Congress, June 29-July 4, 1999, Prague, Czech Republic, If2.cuni.cz/physiolres/feps/basoglu.htm. (3 pages) | | | /J.L/ | 114. | BAXTER "The natriuretic peptides: An introduction" Basic Res. Cardiol. 99(2):71-75 (2004) | | | /J.L/ | 115. | BELTOWSKI "Guanlyin and related peptides" J. Physiol. Pharmacol 52(3):351-375 (2001) | | | /J.L/ | 116. | BERGERS "Extrinsic regulators of epithelial tumor progression: metalloproteinases" Cur. Opin. Gen. and Develop. 10:120-127 (2000) | | | /J.L/ | 117. | BHAKDI "Release of interleukin-1 beta associated with potent cytocidal action of staphylococcal alphatoxin on human monocytes" Infect. Immun. 57(11): 3512-3519 (1989). | | | /J.L/ | 118. | BROWN "A receptor-mediated pathway for cholesterol homeostasis" Sci. 232:34-47 (1986) | | | /J.L/ | 119. | BURNHAM "Polymers for delivering peptides and proteins" Am. J. Hosp. Pharm. 51:210-218 (1994) | | | /J.L/ | 120. | CALICETI "Synthesis and biopharmaceutical characterisation of new poly(hydroxethylaspartamide) copolymers as drug carriers" Biochimica et Biophysica Acta 1528:177-189 (2001) | | | Examiner | /JIA-HAI LEE/ | Date
Capaidared | 12/19/2017 | |-----------|----------------|--------------------|------------| | Signature | /OIR IRI IIII/ | Considered | 12/13/2017 | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 19 Attorney Docket Number Sheet | | | NON PATENT LITERATURE DOCUMENTS | | | | | |-----------------------|--------------|---|--|--|--|--| | Examiner
Initials* | Cite
No.1 | nclude name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the tem (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | | | | | | /J.L/ | 121. | CAMILLERI "Management of the irritable bowel syndrome" Gastroentrerol. 120:652-668 (2001) | | | | | | /J.L/ | 122. | CARRITHERS , "Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues" Proc. Natl. Acad. Sci. USA 93:14827-14832. (1996) | | | | | | /J.L/ | 123. | CERMAK "Natriuretic peptides increase a K+conductance in rat mesangial cells" Pfugers Arch. Eur. J. Physiol. 431:571-577 (1996) | | | | | | /J.L/ | 124. | CHENG "Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis" Cell, 63:827-834 (1990) | | | | | | /J.L/ | 125. | CHINO "Topological isomers of human uroguanylin: interconversion between biologically active and inactive isomers" FEBS Letters 421:27-31
(1998) | | | | | | /J.L/ | 126. | COHEN "Guanylin mRNA expression in human intestine and colorectal adenocarcinoma" Lab. Invest. 78:101-108 (1998) | | | | | | /J.L/ | 127. | COLLINS "The relationship of enteric microbial infection and functional bowel disorders" J. Clin. Gastroenterol 41 Suppl. 1:S30-32 (2007) | | | | | | /J.L/ | 128. | CUI "The permissive effect of zinc deficiency on uroguanylin and inducible nitric oxide synthase gene upregulation in rat intestine induced by interleukin 1α is rapidly reversed by zinc repletion. J. Nutri. 133(1):51-56 (2003) | | | | | | /J.L/ | 129. | CURRIE , "Guanylin: An endogenous activator of intestinal guanylate cyclase," Proc. Natl. Acad. Sci. USA 89:947-951 (1992) | | | | | | /J.L/ | 130. | Database BIOSIS (ONLINE), biosciences Information Service, Philadelphia, PA, U.S., April 2006, Refaat "SP304, an analog of uroguanylin, ameliorates inflammation in a model of experimental colitis" XP002540570, Database Accession No. PREV200600503788, 2 pages. | | | | | | /J.L/ | 131. | De LUCA "Inflammation and insulin resistance" FEBS Letter 582:97-105 (2008). | | | | | | /J.L/ | 132. | DELVAUX "Effect of alosetron on responses to colonic distension in patients with irritable bowel syndrome" Aliment Pharmacol. Ther 12:849-855 (1998) | | | | | | /J.L/ | 133. | DENNIS "Off by a whisker" Nature 442:739-741 (2006) | | | | | *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016, OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. | Substitute for form 1449A/PTO | | | | Complete if Known | | | |--|---|----|----|------------------------|----------------------------|--| | | | | | Application Number | 15/467,648 | | | INFORMATION DISCLOSURE | | | | Filing Date | March 23, 2017 | | | | | | | First Named Inventor | COMISKEY, Stephen | | | STATEMENT BY APPLICANT (Use as many sheets as necessary) | | | | Art Unit | 1676 | | | | | | | Examiner Name | LEE, Jia-Hai | | | Sheet | 8 | of | 19 | Attorney Docket Number | SYPA-009/C04US 321994-2341 | | | | | NON PATENT LITERATURE DOCUMENTS | | | | |-----------------------|--------------|---|--|--|--| | Examiner
Initials* | Cite
No.1 | | | | | | /J.L/ | 134. | DeSAUVAGE "Precursor structure, expression and tissue distribution of human guanylin" Proc. Natl. Acad. Sci USA 89:9089-9093 (1992). | | | | | /J.L/ | 135. | DESCHNER "Proliferative defects in ulcerative colitis patients" Can. Invest 1:41-47 (1983) | | | | | /J.L/ | 136. | DUNCAN "Drug-polymer Conjugates: Potential for improved chemotherapy" Anti-Can. Drugs 3:175-210 (1992) | | | | | /J.L/ | 137. | DUNFIELD "Energy parameters in polypeptides. 8. Empirical potential energy algorithm for the conformational analysis of large molecules" J. Phys. Chem. 82:2609-2616 (1978) | | | | | /J.L/ | 138. | EASTWOOD "Epithelial renewal in premalignant conditions of the gastrointestinal tract: A review" J. Clin. Gastroenterol 14(1):S29-S33 (1992) | | | | | /J.L/ | 139. | ETTORRE "Mucosal changes in ileal pouches after restorative proctocolectomy for ulcerative and Crohn' colitis" Dis. Colon Rectum 43:1743-1748 (2000) | | | | | /J.L/ | 140. | European Application No. 02721604.3: Office Communication dated August 12, 2008 (3 pages) | | | | | /J.L/ | 14 1. | European Application No. 02721604.3: Response to European Patent Office Communication dated March 16, 2007 (5 pages) | | | | | /J.L/ | 142. | European Patent 1,379,224: CombiMab, Inc. Annex to Notice of Opposition dated April 22, 2010 (41 pages) | | | | | /J.L/ | 143. | European Patent 1,379,224: Opposition dated April 22, 2010 (19 pages) | | | | | /J.L/ | 144. | European Patent 1,379,224: Response to Communication from Opposition division dated October 8, 2010 | | | | | /J.L/ | 145. | European Patent 1,379,224: Written submission dated December 7, 2011 (6 pages) | | | | | /J.L/ | 146. | European Patent 1,379,224: Written submission dated November 18, 2011 by Ironwood (14 pages) | | | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| | Signature | | | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 9 Sheet 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467.648 Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 Attorney Docket Number 19 of | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----------------| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T ² | | /J.L/ | 147. | European Patent 1,379,224: Written submission dated November 22, 2011 (18 pages) | | | /J.L/ | 148. | European Patent 1,379,224: Written submission dated October 14, 2011 (7 pages) | | | /J.L/ | 149. | European Patent 1,379,224: Written submission dated October 14, 2011 by Ironwood (27 pages) | | | /J.L/ | 150. | European Patent 1,379,224: Written submission dated October 25, 2011(5 pages) | | | /J.L/ | 1 51. | European Patent 1,379,224: Written submission dated October 7, 2011 in response to the June 24, 2011 preliminary opinion of the Opposition Division (7 pages) | | | /J.L/ | 152. | European Patent 1,379,224: Summons to attend oral hearing dated June 24, 2011 (23 pages) | | | /J.L/ | 153. | European Patent Application No. 11825961.3, Extended European Search Report dated June 30, 2016, 6 pages. | | | /J.L/ | 154. | EVAN "Proliferation, cell cycle and apoptosis in cancer" Nature (London) 411:342-348 (2001) | | | /J.L/ | 155. | FAN "Structure and activity of uroguanylin and guanylin from the intestine and urine of rats" Am. J. Physiol. Endocrinol. Metab. 273:957-964 (1997) | | | /J.L/ | 156. | FIELD , "Ezetimibe interferes with cholesterol trafficking from the plasma membrane to the endoplasmic reticulum in CaCo-2 cells," Journal of Lipid Research, 48:1735-1745 (2007) | | | /J.L/ | 157. | FMC BioPolymer of Avicel PH Production Instruction, 21 pages (2005). | | | /J.L/ | 158. | FONTELES "Natruiretic and kalliuretic activities of guanylin and uroguanylin in isolated perfused rat kidney" Am. J. Physiol. Renal Physiol. 275: 191-197 (1998) | | | /J.L/ | 159. | FORTE, "Guanylin regulatory peptides: structures, biological activities mediated by cyclic GMP and
pathobiology," Regul. Pept., 81.1-3: 25-39 (1999). | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| | Oignature | | | Othalacica | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. Sheet 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467,648 Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 10 19 Attorney Docket Number of | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 160. | FORTE, Jr., "Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics," Pharmacol. Ther. 104(2):137-162 (2004) | | | /J.L/ | 161. | GALI et al., "In Vivo Evaluation of an 111 In -Labeled ST-Peptide Analog for Specific-Targeting of Human Colon Cancers." Nuc. Med. Biol., 28.8: 903-909 (2001). | | | /J.L/ | 162. | GARCIA "Processing and characterization of human proguanylin expressed in Escherichia coli." J. Biol. Chem. 268:22397-22401 (1993). | | | /J.L/ | 163. | Genbank 1UYAA- Chain A, Solution Structure A – Form uroguanylin. March 15, 2010. 2 pages | | | /J.L/ | 164. | Genbank 1UYBA- Chain A, Solution Structure B – Form uroguanylin. March 15, 2010. 2 pages | | | /J.L/ | 165. | Genbank AAB18760.1 (rat, 1995) March 11, 2010. 2 pages | | | /J.L/ | 166. | Genbank AAB30324.1: Guca2B (human, 1994) March 11, 2010. 2 pages | | | /J.L/ | 167. | Genbank AAC50416.1; GUCA2B (human, 1994) March 11, 2010. 2 pages. | | | /J.L/ | 168. | Genbank: AAD09215.1 (mouse, 1996) March 11, 2010. 2 pages. | | | /J.L/ | 169. | Genbank: CAA98994.1 (guinea pig, 1996) March 11, 2010. 2 pages. | | | /J.L/ | 170. | Genbank: CAB0642.1 (pig, 1996) March 11, 2010. 2 pages. | | | /J.L/ | 171. | Genbank: PRF.738946 (opossum, 1993) March 15, 2010. 1 page. | | | /J.L/ | 172. | GREENBERG "Comparison of effects of uroguanylin, guanylin, and Escherichia coli heat-stable enterotoxin Sta in mouse intestine and kidney: evidence that uroguanylin is an intestinal natruiretic hormone" J. Invest. Med. 45(5):276-282 (1997) | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| | Signature | | | Considered | | 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 11 19 Attorney Docket Number Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 173. | GUBA et al., "Guanylin Strongly Stimulates Rat Duodenal HCO3-Secretion: Proposed Mechanism and Comparison With Other Secretagogues." Gastroenterology, 111.6: 1558-1568 (1996). | | | /J.L/ | 174. | GULCAN "Increased frequency of prediabetes in patients with irritable bowel syndrome" Am. J. Med. Sci 338:116-119 (2009) | | | /J.L/ | 175. | GULCAN "The predictive value of CRP levels on future severe renal disease in overweight and obese subjects without diabetes mellitus and hypertension. Am. J. Med. Sci 334:444-451 (2007). | | | /J.L/ | 176. | GURA, "Systems for Identifying New Drugs Are Often Faulty," Science 278:1041-1042 (1997) | | | /J.L/ | 177. | HAMMAN et al., "Oral Delivery of Peptide Drugs." Biodrugs, 19.3: 165-177 (2005). | | | /J.L/ | 178. | HAMRA et al., "Uroguanylin: Structure and Activity of a Second Endogenous Peptide That Stimulates Intestinal Guanylate Cyclase." PNAS, 90.22: 10464-10468 (1993). | | | /J.L/ | 179. | HARRIS et al., "Drug Evaluation: Linaclotide, a New Direction in the Treatment of Irritable Bowel Syndrome and Chronic Constipation." Curr. Opin. Mol. Ther., 9.4: 403-410 (2007). | | | /J.L/ | 180. | HESS , "GCAP-II: isolation and characterization of the circulating form of human uroguanylin," FEBS Letters 374:34-38 (1995) | | | /J.L/ | 181. | HIDAKA "Dual Function of the Propeptide of Prouroguanylin in the Folding of the Mature Peptide" J. Biol. Chem. 275:25155-25162 (2000) | | | /J.L/ | 182. | HIDAKA "In Vitro Disulfide-Coupled Folding of Guanylyl Cyclase-Activating Peptide and Its Precursor Protein" Biochem. 37:8498-8507 (1998) | | | /J.L/ | 183. | HILL , "Analysis of the human guanylin gene and the processing and cellular localization of the peptide" Proc. Natl. Acad. Sci USA 92:2046-2050 (1995) | | | /J.L/ | 184. | HILL et al., "A New Human Guanylate Cyclase-Activating Peptide (GCAP-II, Uroguanylin): Precursor cDNA and Colonic Expression." Biochim. Biophys. Acta., 1253: 146-149 (1995). | | | /J.L/ | 185. | HINDS "Synthesis and Characterization of Poly (ethylene glycol) – Insulin Conjugates" Bioconjug. Chem. 11:195-201 (2000). | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| | Oignature | | | Considered | , , | Sheet 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467.648 Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 12 19 Attorney Docket Number | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 186. | HOWARD "Obesity and dyslipidemia" Endocrinol. Metab. Clin. N. Am. 32:855-867 (2003) | | | /J.L/ | 187. | http://www.merckmanuals.com/home/childrens_health_issues/hereditary_metabolic_disorders/disorders_of _Lipid_metabolism.html: last updated 2009; last visited 09/25/2012 (1 page) | | | /J.L/ | 188. | http:www.nlm.nih.gov/medlineplus/obesity.html: 1999-2011; last visited 09/25/2012 (6 pages) | | | /J.L/ | 189. | HUDSON "Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation" Free Rad. Biol. Med. 30:1441-1461
(2001) | | | /J.L/ | 190. | Huff , "Inhibition of the Apical Sodium-Dependent Bile Acid Transporter Reduces LDL Cholesterol and ApoB by Enhanced Plasma Clearance of LDL ApoB," Arterioscler. Thromb. Vasc. Biol 22:1884-1891 (2002) | | | /J.L/ | 191. | HUGHES "Intracellular K+ suppresses the activation of apoptosis in lymphocytes" J. Biol. Chem 272(48):30567-30576 (1997) | | | /J.L/ | 192. | HUI , "Developmental and Physiological Regulation of Intestinal Lipid Absorption. III. Intestinal transporters and cholesterol absorption," Am. J. Physiol. Gastrointest. Liver Physiol. 294:G839-G843 (2008) | | | /J.L/ | 193. | International Preliminary Report on Patentability, PCT Appl. No. PCT/US2011/051805, 17 pages (December 15, 2012) | | | /J.L/ | 194. | International Preliminary Report on Patentability, PCT Appl. No. PCT/US2013/030551, 7 pages (September 16, 2014) | | | /J.L/ | 195. | International Search Report in International Application No. PCT/US2009/046287, 5 pages (November 10, 2009) | | | /J.L/ | 196. | International Search Report in International Application No. PCT/US2009/046288, 9 pages (December 9, 2009) | | | /J.L/ | 197. | International Search Report, PCT Appl. No. PCT/US2011/051805, 6 pages (June 21, 2012) | | | /J.L/ | 198. | International Search Report, PCT Appl. No. PCT/US2013/030551, 5 pages (June 18, 2013) | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467.648 Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 13 19 Attorney Docket Number Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 199. | JOO et al., "Regulation of Intestinal CI and HCO3 Secretion by Uroguanylin." Am. J. Physio., 274.4: G633-G644 (1998). | | | /J.L/ | 200. | KELLAND "Of mice and men': values and liabilities of the athymic nude mouse model in anticancer drug development" Eur. J. Cancer 40(6):827-836 (2004). | | | /J.L/ | 201. | KITA: Characterization of human uroguanylin: A member of the guanylin peptide family" Am. J. Physiol. 266:F342-8 (1994) | | | /J.L/ | 202. | KLODT , "Synthesis, biological activity and isomerism of guanylate cyclase C-activating peptides guanylin and uroguanylin," J. Pep. Res. 50(2):222-230 (1997). | | | /J.L/ | 203. | KRAUSE "The guanylin and uroguanylin peptide hormones and their receptors" Acta Anat. 160:213-231 (1997) | | | /J.L/ | 204. | LAI and TOPP, "Solid-State Chemical Stability of Proteins and Peptides", Journal of Pharmaceutical Sciences, MiniReview, 88(5): 489-500 (1999). | | | /J.L/ | 205. | LAM "Serotonin and energy balance: molecular mechanisms and implications for type 2 diabetes" Expert Rev. Mol. Med. 9:1-24 (2007) | | | /J.L/ | 206. | LEISTER "Human colorectal cancer: High frequency of deletions at chromosome 1p35" Can. Res. 50:7232-7235 (1990). | | | /J.L/ | 207. | LI "Purification, cDNA sequence and tissue distribution of rat uroguanylin" Reg. Pep. 68:45-56 (1997) | | | /J.L/ | 208. | LI and CHIANG, "Bile Acid Signaling in Liver Metabolism and Diseases", Journal of Lipids, Hindawi
Publishing Corporation, 2012:1-9, Article ID 754067 (2011) | | | /J.L/ | 209. | LIPKIN "Gastric cell regeneration" Arch. Fr. Mal. Appl. Dig. (Paris) 61(10-11):691-693 (1972) | | | /J.L/ | 210. | LORENZ "Uroguanylin knockout mice have increased blood pressure and impaired natriuretic response to enteral NaCl load" J. Clin. Invest. 112(8):1244-1254 (2003) | | | /J.L/ | 211. | MacFARLANE and MacFARLANE, "Factors affecting fermentation reactions in the large bowel," Proc. Nutr. Soc. 52(2):367-373 (1993) | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| | Signature | | | Considered | | 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467.648 Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 14 19 Attorney Docket Number of Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 212. | MAGERT "Porcine guanylin and uroguanylin: cDNA sequences, deduced amino acid sequences, and biological activity of the chemically synthesized peptides' Biochem. Biophys. Res. Comm. 259:141-148 (1999) | | | /J.L/ | 213. | MAHATO et al., "Emerging Trends in Oral Delivery of Peptide and Protein Drugs." Crit. Rev. Therapeutic Drug Carrier Sys., 20.2-3: 153-214 (2003). | | | /J.L/ | 214. | MARX et al., "One Peptide, Two Topologies: Structure and Interconversion Dynamics of Human Uroguanylin Isomers." J. Pept. Res., 52: 229-240 (1998). | | | /J.L/ | 215. | MIHRANYAN et al., "Moisture sorption by cellulose powders of varying crystallinity", International Journal of Pharmaceutics, 269(2): 433-442 (2004). | | | /J.L/ | 216. | MIYAZATO "Uroguanylin gene expression in the alimentary tract and extra-gastrointestinal tissues" FEBS Letters, 398:170-174 (1996). | | | /J.L/ | 217. | MIYAZATO "Cloning and characterization of a cDNA encoding a precursor for human uroguanylin" Biochem Biophys Res. Comm. 219:644-648 (1996) | | | /J.L/ | 218. | MOON "Effects of age, ambient temperature, and heat-stable Escherichia coli enterotoxin of intestinal transit in infant mice" Infect. Immun. 25(1):127-132 (1979). | | | /J.L/ | 219. | MULLER-LISSNER "Safety, tolerability, and efficacy of tegaserod over 13 months in patients with chronic constipation" Am. J. Gastroenterol. 101:2558-2569 (2006) | | | /J.L/ | 220. | NAKAZATO "Tissue distribution, cellular source, and structural analysis of rat immunoreactive uroguanylin" Endocrinol. 139:5247-5254 (1998) | | | /J.L/ | 221. | NATHAN "Copolymers of lysine and polyethylene glycol: a new family of functionalized drug carriers" Bioconjug Chem. 4(1):54-62 (1993) | | | /J.L/ | 222. | NEMETHY "Energy parameters in polypeptides. 9. Updating of geometrical parameters non-bonded interactions, and hydrogen bond interactions for the naturally occurring amino acids" J. Phys. Chem. 87:1883-1887 (1983). | | | /J.L/ | 223. | NIKIFOROVICH "Computation molecular modeling in peptide design" Int. J. Pep. Prot. Res. 44:513-531 (1994) | | | /J.L/ | 224. | NIKIFOROVICH "Topographical requirements for δ-selective opioid peptides" Biopolymers, 31:942-955 (1991) | | 19 of 15 Sheet 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 SYPA-009/C04US 321994-2341 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Substitute for form 1449A/PTO Complete if Known Application Number 15/467,648 Filling Date March 23, 2017 First Named Inventor COMISKEY, Stephen Art Unit 1676 Examiner Name LEE, Jia-Hai Attorney Docket Number | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 225. | NYBURG "Some uses of best molecular fit routine" Acta Crystallographica B30 (Part I):251-253 (1974) | | | /J.L/ | 226. | OHBAYASHI, "Effects of uroguanylin and guanylin against antigen-induced bronchoconstriction and airway microvascular leakage in sensitized guinea-pigs" Life Sci., 62(20:1883-1844 (1998)
 | | /J.L/ | 227. | PCT/US2009/066600, International Preliminary Report on Patentability dated August 2, 2011, 8 pages. | | | /J.L/ | 228. | PERKINS "Uroguanylin is expressed by enterochromaffin cells in the rat gastrointestinal tract" Gastroenterol 113:1007-1014 (1997) | | | /J.L/ | 229. | PETERSON "Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development" Eur. J. Cancer 40:837-844 (2004) | | | /J.L/ | 230. | PITARI "Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells", Proc. Natl. Acad. Sci. USA 98(14):7546-7851 (2001) | | | /J.L/ | 231. | POTTEN "Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium" Stem Cells 15:82-93 (2001) | | | /J.L/ | 232. | PROVENZALE "Surveillance issues in inflammatory bowel disease: ulcerative colitis" J. Clin. Gastroenterol 32:99-105 (2001) | | | /J.L/ | 233. | PubChem, CID 469, http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=469#x27, (last visited 10/18/14). 19 pages | | | /J.L/ | 234. | RAMAMOORTHY "Phosphorylation of threonine residue 276 is required for acute regulation of serotonin transporter by cyclic GMP" J. Biol. Chem. 282(16):11639-11647 (2007) | | | /J.L/ | 235. | REDDY and RAO "Lipid metabolism and liver inflammation II fatty liver disease and fatty acid oxidation" Am. J. Physiol. Gastrointest. Liver Physiol. 290:G852-G858 (2006) | | | /J.L/ | 236. | REFAAT et al., "Sp304, an analog of uroguanylin, ameliorates inflammation in a model of experimental colitis", Digestive Disease Week Conference, Abstract, May, 2006. | | | /J.L/ | 237. | Remington, JP "Remington's Pharmaceutical Sciences" Mack Pub. Co. 16th edition (1980) 7 pages. | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| | Olginature | | | Considered | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467.648 Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 16 19 Attorney Docket Number Sheet | | | NON PATENT LITERATURE DOCUMENTS | | | | |-----------------------|--------------|---|--|--|--| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | | | | | /J.L/ | 238. | ROBERTS "Chemistry of peptide and protein PEGylation" Adv. Drug. Deliv. Rev. 54:459-476 (2002) | | | | | /J.L/ | 239. | ROLFE and Milla, "Nitric oxide stimulates cyclic guanosine monophosphate production and electrogenic secretion in Caco-2 colonocytes," Clin. Sci. (Lond). 96(2):165-170 (1999) | | | | | /J.L/ | 240. | SAMUEL "Absorption of bile acids from the large bowel in man" J. Clin. Invest. 47:2070-2978 (1968). | | | | | /J.L/ | 241. | SCHULZ et al., "Guanylyl Cyclase is a Heat-Stable Enterotoxin Receptor." Cell, 63.5: 941-948 (1990). | | | | | /J.L/ | 242. | SCHULZ et al., "Side Chain Contributions to the Interconversion of the Topological Isomers of Guanylin-Like Peptides." J. Peptide Sci., 11.6: 319-330 (2005). | | | | | /J.L/ | 243. | SCIAKY "Mapping of guanylin to murine chromosome 4 and human chromosome 1p34p35" Genomics 26:427-429 (1995) | | | | | /J.L/ | 244. | SELLERS "heat-stable enterotoxin of Escherichia coli stimulates a non-CFTR-mediated duodenal bicarbonate secretory pathway" Am J. Physiol. Gastrointest. Liver Physiol. 288:G654-G663 (2005) | | | | | /J.L/ | 245. | SHAILUBHAI "Gaunilib, an antagonist of guanylate C, is a new class of oral drug candidate that ameliorates inflammation in models of experimental colitis" [Abstract]: In Charon's and colitis foundation of America (2007) 1 page. | | | | | /J.L/ | 246. | SHAILUBHAI "Guanilib, an agonist of Guanylate C, is a new class of oral drug candidate for Gl disorders and colon cancer" [abstract] in GTCbio, 2008. 1 page. | | | | | /J.L/ | 247. | SHAILUBHAI "Guanylate cyclase-C agonists as a new class of drug candidates for GI motility and inflammatory bowel disease" [Abstract] 2009 (1 page) | | | | | /J.L/ | 248. | SHAILUBHAI "Guanylin Peptides: New class of oral drug candidates" [Abstract]: In World Congress 2008 (2 pages) | | | | | /J.L/ | 249. | SHAILUBHAI "Inflammatory bowel disease" February 2008: S5 2007 IBD Abstract: Oral Presentation (1 page) | | | | | /J.L/ | 250. | SHAILUBHAI "Phase II Clinical Evaluation of SP-304, a Guanylate Cyclase-C Agonist, for Treatment of Chronic Constipation," Am. J. Gastroenterol. 105(Suppl. 1):S487-S488 (2010) | | | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | |-----------------------|----------|------|--------------------|------------| 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467.648 Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 17 19 Attorney Docket Number Sheet | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------|---|----| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 251. | SHAILUBHAI "SP-304 to treat GI disorders- effects of a single, oral dose of SP-304 in safety, tolerability, pharmacokinetics and pharmacodynamics in healthy volunteers" [Abstract]: in Digestive Disease Week, (2009) 1 page. | | | /J.L/ | 252. | SHAILUBHAI "Therapeutic applications of guanylate cyclase-c receptor agonists" Curr. Opin. Drug Disc. Devel. 5(2):261-268 (2002) | | | /J.L/ | 253. | SHAILUBHAI et al., "Uroguanylin Treatment Suppresses Polyp Formation in the ApcMin/+ Mouse and Induces Apoptosis in Human Colon Adenocarcinoma Cells via Cyclic GMP." Cancer Res., 60: 5151-5157 (2000). | | | /J.L/ | 254. | SHINOZAKI "High proliferative activity is associated with dysplasia in ulcerative colitis" Dis. Colon Rectum 43:S34-S39 (2000) | | | /J.L/ | 255. | SINDICE "Guanylin, Uroguanylin, and Heat-stable Enterotoxin Activate Guanylate Cyclase C and/or a Pertussis Toxin-sensitive G Protein in Human Proximal Tubule Cells". J. Biol. Chem. 277:17758-17764 (2002) | | | /J.L/ | 256. | SPRANGER "Inflammatory cytokines and the risk to develop Type 2 Diabetes: Results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-Potsdam study" Diabetes, 52:812-817 (2003). | | | /J.L/ | 257. | St. John's Providence Health Center; Preventing Obesity, http://www.stjohnprovidence.org/healthInfoLib/swArticle.aspx?85.P07863; last visited 09/25/2012 (2 pages) | | | /J.L/ | 258. | TAKADA,"Alteration of a Single Amino Acid in Peroxisome Proliferator-Activated Receptor-a (PPARa)
Generates a PPARd Phenotype" Mol. Endocrinol. 14(5)":733-740 (2000) | | | /J.L/ | 259. | TALLEY "Medical costs in community subjects with irritable bowel syndrome" Gastroenterol. 109:1736-1741 (1995) | | | /J.L/ | 260. | THOMAS , "Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism and
physiological consequences," GUT 55:1321-1331 (2006) | | | /J.L/ | 261. | TIAN "STa peptide analogs for probing guanylyl cyclase C" Biopolymers (Pept. Sci). 90(5):713-723 (2008) | | | /J.L/ | 262. | TILG "Inflammatory mechanisms in the regulation of insulin resistance" Mol. Med. 14:222-231 (2008) | | | Examiner | /JIA-HAI | LEE/ | Date | 12/19/2017 | |-----------|--------------|------|------------|------------| | Signature | , 0 === ==== | | Considered | 12/13/2017 | 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. | Su | bstitute for form 1449A/PTO | | | Complete if Known | | | |-------|-----------------------------|---------|------|------------------------|----------------------------|--| | | | | | Application Number | 15/467,648 | | | l 18 | NFORMATION DISC | וופט וי | DE | Filing Date | March 23, 2017 | | | | | | | First Named Inventor | COMISKEY, Stephen | | | 3 | STATEMENT BY AP | | IN I | Art Unit | 1676 | | | | (Use as many sheets as nec | essary) | | Examiner Name | LEE, Jia-Hai | | | Sheet | 18 | of 19 | 9 | Attorney Docket Number | SYPA-009/C04US 321994-2341 | | | | | NON PATENT LITERATURE DOCUMENTS | | |-----------------------|--------------------------|---|----| | Examiner
Initials* | Cite
No. ¹ | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | /J.L/ | 263. | VAANDRAGER, "Structure and Function of the Heat-Stable Enterotoxin Receptor/Guanylyl Cyclase C." Mol. Cell. Biochem., 230.1-2: 73-83 (2002). | | | /J.L/ | 264. | VARIYAM, "Luminal bacteria and proteases together decrease adherence of Entamoeba histolytica trophozoites to Chinese hamster ovary epithelial cells: A novel host defense against an enteric pathogen," GUT 39(4):521-527 (1996) | | | /J.L/ | 265. | VENKATAKRISHNAN "Exaggerated activation of nuclear factor-B and altered I B-processing in cystic fibrosis bronchial epithelial cells. Am. J. Resp. Cell Mol. Biol. 23(3):396-403 (2000) | | | /J.L/ | 266. | VERONESE "Bioconjugation in pharmaceutical chemistry" Farmaco, 54:497-516 (1999) | | | /J.L/ | 267. | VERONESE "PEGylation, successful approach to drug delivery" Drug. Disc. Today. 10(21):1451-1458 (2005). | | | /J.L/ | 268. | VERONESE "Peptide and protein PEGylation: a review of problems and solutions" Biomaterial, 22:405-417 (2001). | | | /J.L/ | 269. | WALDMAN "Heterogeneity of guanylyl cylcase C expressed by human colorectal cancer cell lines in vitro" Can. Epidemiol. Biomarkers & Prevention 7:505-514 (1998) | | | /J.L/ | 270. | WEBER "Activation of NF-кВ in airway epithelial cells is dependent on CFTR trafficking and CI channel function" Am. J. Physiol. Lung Cell Mol. Biol. 281(1):L71-78 (2001). | | | /J.L/ | 271. | WELSH "Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis" Cell 73:1251-1254 (1993). | | | /J.L/ | 272. | WHITAKER "The uroguanulin gene (Buca1b) is linked to guanylin (Guca2) on mouse chromosome 4" Genomics 45:348-354 (2002) | | | /J.L/ | 273. | WONG "Cell proliferation in gastrointestinal mucosa" J. Clin. Pathol. 52:321-333 (1999) | | | /J.L/ | 274. | Wong "Histogenesis of human colorectal adenomas and hyperplastic polyps: the role of cell proliferation and crypt fission" Gut 50:212-217 (2002) | | | /J.L/ | 275. | Written Opinion of the International Searching Authority, PCT Appl. No. PCT/US2011/051805, 5 pages (June 21, 2012) | | | Examiner | /JIA-HAI LEE | / | 12/19/2017 | |-----------|--------------|------------|------------| | Signature | , | Considered | , | 15/467,648 - GAU: 1676 PTO/SB/08b (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO **Application Number** 15/467.648 Filing Date March 23, 2017 INFORMATION DISCLOSURE COMISKEY, Stephen First Named Inventor STATEMENT BY APPLICANT Art Unit 1676 (Use as many sheets as necessary) **Examiner Name** LEE, Jia-Hai SYPA-009/C04US 321994-2341 19 19 Attorney Docket Number of Sheet | | NON PATENT LITERATURE DOCUMENTS | | | | | | |-----------------------|---------------------------------|---|----|--|--|--| | Examiner
Initials* | Cite
No.1 | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. | T² | | | | | /J.L/ | 276. | Written Opinion of the International Searching Authority, PCT Appl. No. PCT/US2013/030551, 6 pages (June 18, 2013) | | | | | | /J.L/ | 277. | WU "Atrial natriuretic peptide induces apoptosis in neonatal rat cardia myocytes" J. Biol. Chem. 272(23):14860-14866 (1997) | | | | | | /J.L/ | 278. | ZHANG "Gene expression profiles in normal and cancer cells" Science 276:1268-1272 (1997) | | | | | | /J.L/ | 279. | ZIMMERMAN "Influence of local interactions on protein structure. I. Conformational energy studies of Nacetyl-N-methylamides of pro-X and X-pro dipeptides" Biopolymers, 16:811-843 (1977) | | | | | | Examiner
Signature | /JIA-HAI | LEE/ | Date
Considered | 12/19/2017 | | |-----------------------|----------|------|--------------------|------------|--| | | Application/Control No. | Applicant(s)/Patent Under Reexamination | |--------------|-------------------------|---| | Search Notes | 15/467,648 | COMISKEY et al. | | | Examiner | Art Unit | | | JIA-HAI LEE | 1676 | | CPC - Sea | rched* | | | |-------------------|---------------------------|------|----------| | Symbol | | Date | Examiner | | | | | | | CPC Comb | pination Sets - Searched* | | | | | omation Sets - Searched | | | | Symbol | | Date | Examiner | | | | | | | | | | | | US Classif | ication - Searched* | | | | Class | Subclass | Date | Examiner | | | | | | ^{*} See search history printout included with this form or the SEARCH NOTES box below to determine the scope of the search. | Search Notes | | | |---|------------|----------| | Search Notes | Date | Examiner | | EAST, Database: USPATFUL, USPGPUB, EPO, JPO, DERWENT, Search history enclosed | 12/19/2017 | JL | | PALM Inventor Search | 12/19/2017 | JL | | Interference Search | | | | | | | |------------------------|---------------------------|------------|----------|--|--|--| | US Class/CPC
Symbol | US Subclass/CPC Group | Date | Examiner | | | | | | EAST, Database: USPATFUL, | 12/19/2017 | JL | | | | | | PALM Inventor Search | 12/19/2017 | JL | | | | | /J.L./ Examiner.Art Unit 1676 | |-------------------------------| | | | | | | #### UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov #### NOTICE OF ALLOWANCE AND FEE(S) DUE 58249 75 90 01/08/2018 EXAMINER COOLEY LLP ATTN: Patent Group 1299 Pennsylvania Avenue, NW Suite 700 Washington, DISTRICT OF COLUMBIA 20004 ART UNIT PAPER NUMBER LEE, ЛА-НАІ 1676 DATE MAILED: 01/08/2018 | APPLICATION NO. | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. | |-----------------|-------------|----------------------|---------------------|------------------| | 15/467,648 | 03/23/2017 | Stephen COMISKEY | SYPA-009C04US | 2133 | TITLE OF INVENTION: FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | APPLN. TYPE | ENTITY STATUS | ISSUE FEE DUE | PUBLICATION FEE DUE | PREV. PAID ISSUE FEE | TOTAL FEE(S) DUE | DATE DUE | |-------------|---------------|---------------|---------------------|----------------------|------------------|------------| | REGULAR | SMALL | \$480 | \$0.00 | \$0.00 | \$480 | 04/09/2018 | THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308. THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE. #### HOW TO REPLY TO THIS NOTICE: I. Review the ENTITY STATUS shown above. If the ENTITY STATUS is shown as SMALL or MICRO, verify whether entitlement to that entity status still applies. If the ENTITY STATUS is the same as shown above,
pay the TOTAL FEE(S) DUE shown above. If the ENTITY STATUS is changed from that shown above, on PART B - FEE(S) TRANSMITTAL, complete section number 5 titled "Change in Entity Status (from status indicated above)". For purposes of this notice, small entity fees are 1/2 the amount of undiscounted fees, and micro entity fees are 1/2 the amount of small entity fees. II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B. III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary. IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due. #### PART B - FEE(S) TRANSMITTAL Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE **Commissioner for Patents** P.O. Box 1450 Alexandria, Virginia 22313-1450 or Fax (571)-273-2885 INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications. Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address) papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission. 58249 7590 01/08/2018 Certificate of Mailing or Transmission COOLEY LLP I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope ATTN: Patent Group addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below. 1299 Pennsylvania Avenue, NW Suite 700 (Depositor's name Washington, DISTRICT OF COLUMBIA 20004 (Signatur (Date APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO. 15/467,648 03/23/2017 Stephen COMISKEY SYPA-009C04US 2133 321994-2341 TITLE OF INVENTION: FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE APPLN. TYPE ENTITY STATUS ISSUE FEE DUE PUBLICATION FEE DUE PREV. PAID ISSUE FEE TOTAL FEE(S) DUE DATE DUE REGULAR **SMALL** \$480 \$0.00 \$0.00 \$480 04/09/2018 EXAMINER ART UNIT CLASS-SUBCLASS **LEE, ЛА-НАІ** 1676 424-451000 1. Change of correspondence address or indication of "Fee Address" (37 2. For printing on the patent front page, list CFR 1.363). (1) The names of up to 3 registered patent attorneys or agents OR, alternatively, ☐ Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached. (2) The name of a single firm (having as a member a registered attorney or agent) and the names of up to 2 registered patent attorneys or agents. If no name is ☐ "Fee Address" indication (or "Fee Address" Indication form PTO/ listed, no name will be printed. SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required. 3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type) PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment. (A) NAME OF ASSIGNEE (B) RESIDENCE: (CITY and STATE OR COUNTRY) Please check the appropriate assignee category or categories (will not be printed on the patent) : \square Individual \square Corporation or other private group entity \square Government 4a. The following fee(s) are submitted: 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) A check is enclosed. ☐ Publication Fee (No small entity discount permitted) ☐ Payment by credit card. Form PTO-2038 is attached. Advance Order - # of Copies The director is hereby authorized to charge the required fee(s), any deficiency, or credits any overpayment, to Deposit Account Number (enclose an extra copy of this form). 5. Change in Entity Status (from status indicated above) NOTE: Absent a valid certification of Micro Entity Status (see forms PTO/SB/15A and 15B), issue ☐ Applicant certifying micro entity status. See 37 CFR 1.29 fee payment in the micro entity amount will not be accepted at the risk of application abandonment. NOTE: If the application was previously under micro entity status, checking this box will be taken Applicant asserting small entity status. See 37 CFR 1.27 to be a notification of loss of entitlement to micro entity status. NOTE: Checking this box will be taken to be a notification of loss of entitlement to small or micro Applicant changing to regular undiscounted fee status. entity status, as applicable. NOTE: This form must be signed in accordance with 37 CFR 1.31 and 1.33. See 37 CFR 1.4 for signature requirements and certifications. Authorized Signature Typed or printed name Date Registration No. Washington, DISTRICT OF COLUMBIA 20004 ### United States Patent and Trademark Office # UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov DATE MAILED: 01/08/2018 | APPLICATION NO. | FILING DATE | ATTORNEY DOCKET NO. | CONFIRMATION NO. | | |-------------------|----------------|---------------------|------------------------------|--------------| | 15/467,648 | 03/23/2017 | Stephen COMISKEY | SYPA-009C04US
321994-2341 | 2133 | | 58249 7. | 590 01/08/2018 | | EXAM | IINER | | COOLEY LLP | | | LEE, J | A-HAI | | ATTN: Patent Gro | oup | | | | | 1299 Pennsylvania | | | ART UNIT | PAPER NUMBER | | Suite 700 | • | | 1676 | | #### OMB Clearance and PRA Burden Statement for PTOL-85 Part B The Paperwork Reduction Act (PRA) of 1995 requires Federal agencies to obtain Office of Management and Budget approval before requesting most types of information from the public. When OMB approves an agency request to collect information from the public, OMB (i) provides a valid OMB Control Number and expiration date for the agency to display on the instrument that will be used to collect the information and (ii) requires the agency to inform the public about the OMB Control Number's legal significance in accordance with 5 CFR 1320.5(b). The information collected by PTOL-85 Part B is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. #### **Privacy Act Statement** The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b) (2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent. The information provided by you in this form will be subject to the following routine uses: - 1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act. - 2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to
opposing counsel in the course of settlement negotiations. - 3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m). - 5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty. - 6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)). - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent. - 9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation. | Notice of Allowability 15/467,643 | |---| | The MAILING DATE of this communication appears on the cover sheet with the correspondence address—NII claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included nerewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiativ of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1309. A declaration (s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on A declaration (s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on A needstion was made by the applicant in response to a restriction requirement set forth during the interview on; the restriction requirement and election have been incorporated into this action. A needstion was made by the applicant in response to a restriction requirement set forth during the interview on; the restriction requirement and election have been incorporated into this action. | | All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. In not included interevith for previously malled), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308. 1. ☐ This communication is responsive to 11/8/2017. ☐ A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on 2. ☐ An election was made by the applicant in response to a restriction requirement set forth during the interview on; the restriction requirement and election have been incorporated into this action. 3. ☑ The allowed claim(s) is/are 1-16. As a result of the allowed claim(s), you may be eligible to benefit from the Patent Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see http://www.uspto.gov/patents/init_events/pp/findex.jsp or send an inquiry to PPHreedback@uspto.gov. 4. ☐ Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). Certified copies: a) ☐ All b) ☐ Some *c) ☐ None of the: 1. ☐ Certified copies of the priority documents have been received. 2. ☐ Certified copies of the priority documents have been received in Application No 3. ☐ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). *Certified copies not received: Applicant has THREE MONTHS FROM THE *MAILING DATE* of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. ☐ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. ☐ including changes required by | | 1. ☑ This communication is responsive to 11/8/2017. ☐ A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on 2. ☐ An election was made by the applicant in response to a restriction requirement set forth during the interview on; the restriction requirement and election have been incorporated into this action. 3. ☑ The allowed claim(s) is/are 1_16. As a result of the allowed claim(s), you may be eligible to benefit from the Patent Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see http://www.uspto.gov/patents/init_events/pph/index.jsp or send an inquiry to PPHfeedback@uspto.gov. 4. ☐ Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). Certified copies: a) ☐ All b D ☐ Some *c) ☐ None of the: 1. ☐ Certified copies of the priority documents have been received. 2. ☐ Certified copies of the priority documents have been received in Application No 3. ☐ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. ☐ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. ☐ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheets) should be labeled as such in the header according to 37 CFR 1.121(d). 6. ☐ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Exami | | A declaration(s)/affidavit(s) under 37 CFR 1.130(b) was/were filed on 2 | | restriction requirement and election have been incorporated into this action. 3. The allowed claim(s) is/are 1-15. As a result of the allowed claim(s), you may be eligible to benefit from the Patent
Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see http://www.uspto.gov/patents/init_events/pph/index.jsp or send an inquiry to PPHfeedback@uspto.gov. 4. Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). Certifled copies: a) All b) Some *c) None of the: 1. Certifled copies of the priority documents have been received. 2. Certifled copies of the priority documents have been received in Application No. 3. Copies of the certifled copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). * Certifled copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. CORRECTED DRAWINGS (as "replacement sheets") must be submitted. Including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). Attachment(s) 1. Notice of References Cited (PTO-892) | | Highway program at a participating intellectual property office for the corresponding application. For more information, please see http://www.uspto.gov/patents/init_events/pph/index.jsp or send an inquiry to PPHfeedback@uspto.gov. 4. □ Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). Certified copies: a) □ All b) □ Some *c) □ None of the: 1. □ Certified copies of the priority documents have been received. 2. □ Certified copies of the priority documents have been received in Application No 3. □ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILLING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. □ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. □ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. □ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. | | Certified copies: a) | | a) □ All b) □ Some *c) □ None of the: 1. □ Certified copies of the priority documents have been received. 2. □ Certified copies of the priority documents have been received in Application No 3. □ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. □ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. □ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. □ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. | | 1. ☐ Certified copies of the priority documents have been received. 2. ☐ Certified copies of the priority documents have been received in Application No 3. ☐ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. ☐ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. ☐ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. ☐ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. **Attachment(s)** 1. ☐ Notice of References Cited (PTO-892) | | 2. ☐ Certified copies of the priority documents have been received in Application No 3. ☐ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. ☐ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. ☐ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. ☐ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. | | 3. ☐ Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. ☐ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. ☐ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. ☐ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. | | International Bureau (PCT Rule 17.2(a)). * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. ☐ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. ☐ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. ☐ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. | | * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. □ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. □ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. □ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. **Attachment(s)** 1. □ Notice of References Cited (PTO-892) 5. ▼ Examiner's Amendment/Comment | | Applicant has THREE MONTHS FROM THE "MAILING DATE" of
this communication to file areply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. CORRECTED DRAWINGS (as "replacement sheets") must be submitted. including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date ldentifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. Attachment(s) 1. Notice of References Cited (PTO-892) | | noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 5. □ CORRECTED DRAWINGS (as "replacement sheets") must be submitted. □ including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. □ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. Attachment(s) 1. □ Notice of References Cited (PTO-892) | | including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. □ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. Attachment(s) 1. □ Notice of References Cited (PTO-892) 5. ☑ Examiner's Amendment/Comment | | Paper No./Mail Date Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. □ DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. Attachment(s) 1. □ Notice of References Cited (PTO-892) 5. ☑ Examiner's Amendment/Comment | | sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d). 6. DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. Attachment(s) 1. Notice of References Cited (PTO-892) 5. Examiner's Amendment/Comment | | attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL. Attachment(s) 1. □ Notice of References Cited (PTO-892) 5. ☑ Examiner's Amendment/Comment | | 1. ☐ Notice of References Cited (PTO-892) 5. ☑ Examiner's Amendment/Comment | | | | | | Paper No./Mail Date 11/08/2017 | | 3. Examiner's Comment Regarding Requirement for Deposit 7. Other of Biological Material | | 4. ☐ Interview Summary (PTO-413), Paper No./Mail Date | | /J.L/ /SATYANARAYANA R GUDIBANDE/ Primary Examiner, Art Unit 1676 | | | | | U.S. Patent and Trademark Office PTOL-37 (Rev. 08-13) **Notice of Allowability** Part of Paper No./Mail Date 20171219 #### DETAILED ACTION #### Notice of Pre-AIA or AIA Status The present application is being examined under the pre-AIA first to invent provisions. #### Continued Examination Under 37 CFR 1.114 A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after allowance or after an Office action under *Ex Parte Quayle*, 25 USPQ 74, 453 O.G. 213 (Comm'r Pat. 1935). Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, prosecution in this application has been reopened pursuant to 37 CFR 1.114. Applicant's submission filed on 11/08/2017 has been entered. #### Information Disclosure Statement The information disclosure statement (IDS) submitted on 11/08/2017 is in compliance with the provisions of 37 CFR 1.97. Accordingly, the information disclosure statement has been considered by the examiner. #### Examiner's Comment Applicant filed RCE for consideration of new references. The references do not teach or suggest the previously allowed claims. #### Reasons for Allowance The following is an examiner's statement of reasons for allowance: The closest prior art reference Shailubhai et al. (Digestive Disease Week. San Diego: 2008) taught the use of a per unit dose of a [4, 12; 7, 15] bicyclic peptide consisting of SEQ ID NO: 1 (named SP-304) in a clinical trial, but the reference did not teach or suggest the composition further comprising an inert low moisture carrier and a lubricant, and wherein the peptide has a chromatographic purity of no less than 91 % after storage for at least three months as claimed. The other closest reference Shailubhai et al. (WO 2008/151257 A2) suggest the use of SP-304 to treat gastrointestinal disorders comprising irritable bowel syndrome (IBS) and constipation (p5, line 8-21). Shailubhai et al. further suggest the oral composition comprising a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch and/or a lubricant such as magnesium stearate or Sterotes (p41, line 19-30). However, Shailubhai et al. did not teach the composition consisting of SP-304, an inert low moisture carrier and a lubricant, and wherein the peptide has a chromatographic purity of no less than 91 % after storage for at least three months as claimed. Since applicant filed terminal disclaimers against the previously issued patents US 9,610,321B2 and US 9,616,097 B2 as well as the co-pending application No. 15/467,631, this instant application is allowable. Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance." Any inquiry concerning this communication or earlier communications from the examiner should be directed to JIA-HAI LEE whose telephone number is (571)270-1691. The examiner can normally be reached on Mon-Fri 9:00-6:00. Examiner interviews are available via telephone, in-person, and video conferencing using a USPTO supplied web-based collaboration tool. To schedule an interview, applicant is encouraged to use the USPTO Automated Interview Request (AIR) at http://www.uspto.gov/interviewpractice. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kartheinz R Skowronek can be reached on 571-272-9047. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000. /J.L/ Examiner, Art Unit 1676 19-December-2017 /SATYANARAYANA R GUDIBANDE/ Primary Examiner, Art Unit 1676 | | Application/Control No. | Applicant(s)/Patent Under Reexamination | |----------------------|-------------------------|---| | Issue Classification | 15/467,648 | COMISKEY et al. | | | Examiner | Art Unit | | | JIA-HAI LEE | 1676 | | СРС | CPC | | | | | | | |--------|--------|----|---|------|------|------------|--| | Symbol | Symbol | | | | Туре | Version | | | A61K | 1 | 38 | 1 | 10 | F | 2013-01-01 | | | A61K | 1 | 47 | / | 38 | I | 2013-01-01 | | | A61K | 1 | 47 | 1 | 12 | ı | 2013-01-01 | | | A61K | 1 | 45 | / | 06 | I | 2013-01-01 | | | A61K | 1 | 9 | 1 | 0053 | I | 2013-01-01 | | | C07K | 1 | 7 | 1 | 08 | ı | 2013-01-01 | | | C07K | 1 | 7 | 1 | 64 | ı | 2013-01-01 | | | A61K | 1 | 9 | 1 | 1623 | ı | 2013-01-01 | | | A61K | 1 | 9 | 1 | 1652 | ı | 2013-01-01 | | | A61K | 1 | 9 | 1 | 1676 | ı | 2013-01-01 | | | A61K | 1 | 9 | 1 | 4858 | ı | 2013-01-01 | | | A61K | 1 | 9 | 1 | 4866 | I | 2013-01-01 | | | CPC Combination Sets | | | | | | | | | |----------------------|---|--|---|------|-----|---------|---------|--| | Symbol | | | | Type | Set | Ranking | Version | | | | 1 | | 1 | | | | | | | /J.L./ Examiner.Art Unit 1676 | 19 December 2017 | Total Claims | s Allowed: | |--|------------------|---------------------|-------------------| | (Assistant Examiner) | (Date) | 16 | 3 | | /SATYANARAYANA R GUDIBANDE/ Primary Examiner.Art Unit 1676 | 22 December 2017 | O.G. Print Claim(s) | O.G. Print Figure | | (Primary Examiner) | (Date) | 1 |
none | U.S. Patent and Trademark Office Part of Paper No.: 20171219 | | Application/Control No. | Applicant(s)/Patent Under Reexamination | |----------------------|-------------------------|---| | Issue Classification | 15/467,648 | COMISKEY et al. | | | Examiner | Art Unit | | | JIA-HAI LEE | 1676 | | INTERNATIONAL CL | INTERNATIONAL CLASSIFICATION | | | | | | | | | |-------------------|------------------------------|---|----|-------------|--------|-----------|-------|-----|--| | CLAIMED | | | | | | | | | | | A61K | | 1 | 10 | | | 1 | / | | | | | | | | | | | | | | | NON-CLAIMED | | | | | | | | | | | | | 1 | | | | | / | | | | | | | | | | | | | | | US ORIGINAL CLASS | SIFICATION | | | | | | | | | | | CLASS | | | | | | SUBCL | ASS | CROSS REFERENCE | S(S) | | | | | | | | | | CLASS | | | 9 | UBCLASS (OI | NE SUE | CLASS PER | BLOC | ;K) | | | | | | | | | | | | | | /J.L./ Examiner.Art Unit 1676 | 19 December 2017 | Total Claims | s Allowed: | |--|------------------|---------------------|-------------------| | (Assistant Examiner) | (Date) | 16 | 3 | | /SATYANARAYANA R GUDIBANDE/ Primary Examiner.Art Unit 1676 | 22 December 2017 | O.G. Print Claim(s) | O.G. Print Figure | | (Primary Examiner) | (Date) | 1 | none | U.S. Patent and Trademark Office Part of Paper No.: 20171219 | | Application/Control No. | Applicant(s)/Patent Under Reexamination | |----------------------|-------------------------|---| | Issue Classification | 15/467,648 | COMISKEY et al. | | | Examiner | Art Unit | | | JIA-HAI LEE | 1676 | | | ☐ Claims renumbered in the same order as presented by applicant ☐ CPA ☑ T.D. ☐ R.1.47 | | | | | | | | | | | | | | | |-------|---|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------| | CLAIM | S | | | | | | | | | | | | | | | | Final | Original | 1 | 1 | 10 | 10 | | | | | | | | | | | | | | 2 | 2 | 11 | 11 | | | | | | | | | | | | | | 3 | 3 | 12 | 12 | | | | | | | | | | | | | | 4 | 4 | 13 | 13 | | | | | | | | | | | | | | 5 | 5 | 14 | 14 | | | | | | | | | | | | | | 6 | 6 | 15 | 15 | | | | | | | | | | | | | | 7 | 7 | 16 | 16 | | | | | | | | | | | | | | 8 | 8 | | | | | | | | | | | | | | | | 9 | 9 | | | | | | | | | | | | | | | | /J.L./ Examiner.Art Unit 1676 | 19 December 2017 | Total Claim | s Allowed: | |--|------------------|---------------------|-------------------| | (Assistant Examiner) | (Date) | 16 | 3 | | /SATYANARAYANA R GUDIBANDE/ Primary Examiner.Art Unit 1676 | 22 December 2017 | O.G. Print Claim(s) | O.G. Print Figure | | (Primary Examiner) | (Date) | 1 | none | U.S. Patent and Trademark Office Part of Paper No.: 20171219 #### **EAST Search History** #### **EAST Search History (Prior Art)** | Ref
| Hits | Search Query | DBs | Default
Operator | Plurals | Time
Stamp | |----------|------|----------------------------------|--|---------------------|---------|---------------------| | S1 | 15 | NDECELCVNVACTGCL | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S2 | 2344 | (Guanylate with Cyclase with C) | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S3 | 9660 | chromatographic with purity | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S4 | 2 | S1 and S3 | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S5 | 51 | S2 and S3 | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S6 | 4 | S5 and @py<"2012" | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S7 | 130 | (Stephen near3
COMISKEY).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S8 | 312 | (Rong near3 FENG).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S9 | 144 | (John near3 FOSS).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S10 | 268 | (Kunwar near3
SHAILUBHAI).in. | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S11 | 0 | | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S12 | 739 | S7 or S8 or S9 or S10 | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S13 | 10 | S12 and (S1 or S3) | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:42 | | S14 | 9660 | chromatographic with
purity | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:45 | | S15 | 2 | S1 and S14 | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT;
IBM_TDB | WITH | ON | 2017/12/19
13:45 | | S16 | 51 | S2 and S14 | US-PGPUB; USPAT; USOCR;
FPRS; EPO; JPO; DERWENT; | WITH | ON | 2017/12/19
13:46 | #### **EAST Search History (Interference)** | Ref
| Hits | Search Query | DBs | Default
Operator | Plurals | Time
Stamp | |----------|------|--|--------------------|---------------------|---------|---------------------| | S17 | 15 | NDECELCVNVACTGCL | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S18 | 6473 | chromatographic with purity | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S19 | 2 | S17 and S18 | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S20 | 28 | (Stephen near3 COMISKEY).in. | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S21 | 83 | (Rong near3 FENG).in. | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S22 | 46 | (John near3 FOSS).in. | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S23 | 78 | (Kunwar near3 SHAILUBHAI).in. | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S24 | 0 | (SYNERGY near3
PHARMACEUTICALS).in. | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S25 | 207 | S20 or S21 or S22 or S23 | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S26 | 0 | S25 and S17 | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | | S27 | 10 | S25 and S18 | US-PGPUB;
USPAT | WITH | ON | 2017/12/19
13:42 | 12/19/2017 2:09:08 PM C:\Users\jlee24\Documents\EAST\Workspaces\15 467648.wsp #### PART B - FEE(S) TRANSMITTAL #### Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE **Commissioner for Patents** P.O. Box 1450 Alexandria, Virginia 22313-1450 or Fax (571)-273-2885 INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications. Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must | CURRENT CORRESPONDE | ENCE ADDRESS (Note: Use BI | ock 1 for any change of address) | p | apers. Each additions
ave its own certificate | ıl paper, | such as an assignmen | t or formal drawing, must | | | |---|---|---|--|---|------------------------------------|---|--|--|--| | 58249
COOLEY LLP
ATTN: Patent G
1299 Pennsylvan | - | /2018 | S | hereby certify that the
tates Postal Service velderessed to the Mai | iis Fee(s
with suff
l Stop I | icient postage for first | deposited with the United
class mail in an envelope
above, or being facsimile | | | | Suite 700 Washington DIS | STRICT OF COLU | MRIA 20004 | | | | | (Depositor's name) | | | | washington, Dic | order or cobe. | MIM 20004 | | | | ······ | (Signature) | | | | | | | L | · · · · · · · · · · · · · · · · · · · | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (Date) | | | | APPLICATION NO. | FILING DATE | | FIRST NAMED INVENT | OR | ATTO | RNEY DOCKET NO. | CONFIRMATION NO. | | | | 15/467,648 | 03/23/2017 | | Stephen COMISKEY | 7 | | PA-009C04US | 2133 | | | | TITLE OF INVENTION | : FORMULATIONS OF | GUANYLATE CYCLA | SE C AGONISTS AND | METHODS OF US | | 321994-2341 | | | | | APPLN. TYPE | ENTITY STATUS | ISSUE FEE DUE | PUBLICATION FEE DU | JE PREV. PAID ISSU | JE FEE | TOTAL FEE(S) DUE | DATE DUE | | | | REGULAR | SMALL | \$480 | \$0.00 | \$0.00 | | \$480 | 04/09/2018 | | | | | | | | | | | | | | | EXAM | INER | ART UNIT | CLASS-SUBCLASS | 7 | | | | | | | LEE, JI. | A-HAI | 1676 | 424-451000 | | | | | | | | Change of corresponde
CFR 1.363). Change of correspondent | ondence address (or Cha | |
(1) The names of up
or agents OR, altern | e patent front page, li
o to 3 registered pater
atively,
ngle firm (having as | nt attorn | eys
2 Ivor Elrifi | . Kozakiewicz | | | | Address form PTO/SE "Fee Address" indi SB/47; Rev 03-02 or r Number is required. | 8/122) attached. ication (or "Fee Address nore recent) attached. U | " Indication form PTO/
se of a Customer | registered attorney | or agent) and the nam
attorneys or agents. If | ies of ur | o to 🧠 | | | | | | | \ TO BE PRINTED ON | | • • • | | | | | | | PLEASE NOTE: Unle
as set forth in 37 CFR | ss an assignee is identific
3.11. Completion of th | ed below, no assignee data
is form is NOT a substitu | a will appear on the pater
te for filing an assignme | it. It an assignee is ide
int. | entified t | pelow, the document ha | s been filed for recordation | | | | (A) NAME OF ASSIG | GNEE | | (B) RESIDENCE: (CI | TY and STATE OR | COUNT | RY) | | | | | SYNERGY PHAR | MACEUTICALS, 1 | NC. | NEW YORK, NEW YORK | | | | | | | | Please check the appropri | iate assignee category or | categories (will not be p | rinted on the patent): | Individual @ Corpo | oration o | or other private group e | entity Government | | | | 4a. The following fee(s) | are submitted: | . 4 | b. Payment of Fee(s): (1 | Please first reapply a | any prev | iously paid issue fee: | shown above) | | | | SIssue Fee | | | A check is enclose | d. | | | | | | | ☐ Publication Fee (N | o small entity discount | permitted) | Payment by credit | card. Form PTO-203 | 8 is attac | hed. | | | | | Advance Order - # | of Copies | | The director is here overpayment, to De | eby authorized to char
eposit Account Numb | ge the re
er <u>50-1</u> | equired fee(s), any defi
283(enclose an | iciency, or credits any extra copy of this form). | | | | Applicant asserting | tus (from status indicate
ng micro entity status. Se
g small entity status. See
g to regular undiscounte | e 37 CFR 1.29 | fee payment in the mic
NOTE: If the applicat
to be a notification of | cro entity amount will
ion was previously un
loss of entitlement to
box will be taken to b | l not be a
ider mica
micro e | accepted at the risk of a
ro entity status, checking
tity status. | o/SB/15A and 15B), issue
application abandonment.
ing this box will be taken
lement to small or micro | | | | NOTE: This form must b | e signed in accordance v | with 37 CFR 1.31 and 1.3 | 3. See 37 CFR 1.4 for s | | | | | | | | Authorized Signature | /Anne E Fleck | enstein/ | | Date <u>Janua</u> | iry 31, | 2018 | | | | | Typed or printed name | e <u>Anne F. Fleckenstei</u> | n | | Registration 1 | No. <u>62</u> | ,951 | | | | | | | | D0-f2 | | | | • | | | Page 2 of 3 PTOL-85 Part B (10-13) Approved for use through 10/31/2013. OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE | Electronic Patent Application Fee Transmittal | | | | | | | | |---|---|---------------------|-----------------|--------|-------------------------|--|--| | Application Number: | 154 | 467648 | | | | | | | Filing Date: | 23-Mar-2017 | | | | | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | | | | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | | | | | Filer: | An | ne Elizabeth Flecke | nstein/virginia | melton | | | | | Attorney Docket Number: | SYI | PA-009C04US 3219 | 94-2341 | | | | | | Filed as Small Entity | | | | | | | | | Filing Fees for Utility under 35 USC 111(a) | | | | | | | | | Description | | Fee Code | Quantity | Amount | Sub-Total in
USD(\$) | | | | Basic Filing: | | | | | | | | | Pages: | | | | | | | | | Claims: | | | | | | | | | Miscellaneous-Filing: | | | | | | | | | Petition: | | | | | | | | | Patent-Appeals-and-Interference: | | | | | | | | | Post-Allowance-and-Post-Issuance: | | | | | | | | | UTILITY APPL ISSUE FEE | | 2501 | 1 | 480 | 480 | | | | Description | Fee Code | Quantity | Amount | Sub-Total in
USD(\$) | |--------------------|----------|-----------|--------|-------------------------| | Extension-of-Time: | | | | | | Miscellaneous: | | | | | | | Tot | al in USD | (\$) | 480 | | | | | | | | Electronic Ac | knowledgement Receipt | |--------------------------------------|---| | EFS ID: | 31663206 | | Application Number: | 15467648 | | International Application Number: | | | Confirmation Number: | 2133 | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | Customer Number: | 58249 | | Filer: | Anne Elizabeth Fleckenstein | | Filer Authorized By: | | | Attorney Docket Number: | SYPA-009C04US 321994-2341 | | Receipt Date: | 31-JAN-2018 | | Filing Date: | 23-MAR-2017 | | Time Stamp: | 16:59:11 | | Application Type: | Utility under 35 USC 111(a) | ## **Payment information:** | yes | |-----------------------------| | DA | | \$480 | | 020118INTEFSW00003927501283 | | | | | | | The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: | File Listing: | | | | | | |--------------------|-----------------------------|---------------------------------------|--|---------------------|---------------------| | Document
Number | Document Description | File Name | File Size(Bytes)/
Message Digest | Multi
Part /.zip | Pages
(if appl.) | | | | | 116194 | | | | 1 | Issue Fee Payment (PTO-85B) | SYPA-009_C04US_IF_Transmitt
al.pdf | 3de6272c15dc47b3e43be1bf9fef075acc76
2ca7 | no | 1 | | Warnings: | | -! | 1 | | | | Information: | | | | | | | | | | 30830 | | | | 2 | Fee Worksheet (SB06) | fee-info.pdf | 19587f6081f12dcf409c0250932cc345c816
4d54 | no | 2 | | Warnings: | | - | | | | | Information: | | | | | | This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. Total Files Size (in bytes): #### **New Applications Under 35 U.S.C. 111** If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. #### National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. #### New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application. 147024 #### Applicant(s)/Patent Under Reexamination Application/Control No. 15/467,648 COMISKEY ET AL. Notice of References Cited Art Unit Examiner Page 1 of 1 JIA-HAI LEE 1676 #### **U.S. PATENT DOCUMENTS** | * | | Document Number
Country Code-Number-Kind Code | Date
MM-YYYY | Name | CPC Classification | US Classification | |---|---|--|-----------------|-------------------|--------------------|-------------------| | * | Α | US-9,610,321 B2 | 04-2017 | Comiskey; Stephen | A61K9/1623 | 1/1 | | * | В | US-9,616,097 B2 | 04-2017 | Comiskey; Stephen | A61K9/1623 | 1/1 | | | С | US- | | | | | | | D | US- | | | | | | | Е | US- | | | | | | | F | US- | | | | | | | G | US- | | | | | | | Н | US- | | | | | | | Ι | US- | | | | | | | J | US- | | | | | | | К | US- | | | | | | | L | US- | | | | | | | М | US- | | | | | #### FOREIGN PATENT DOCUMENTS | Char
to do | g ç (s) a
cumen | | Document Number Country Code-Number-Kind Code | Date
MM-YYYY | Country | Name | CPC Classification | |---------------|---------------------------|--------|---|-----------------|---------|-------------------|--------------------| | /K.N | | ,
N | WO2008151257A2 | 12-2008 | De WO | Shailubhai et al. | | | 8/28 | /201 <i>7</i> | 0 | | | | | | | | | Р | | | | | | | | | Q | | | | | | | | | R | | | | | | | | | s | | | | | | | | | Т | | | | | | #### **NON-PATENT DOCUMENTS** | | Non I Main Boomen's | | | | | | |---|---------------------|--|--|--|--|--| | * | | Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) | | | | | | | U | Shailubhai, K.; Gerson, W.; Talluto, C.; Jacob, G. Digestive Disease Week. San Diego: 2008. A randomized, double-blind, placebo-controlled, single-, ascending-, oral-dose safety, tolerability and pharmacokinetic study of SP-304 in healthy adult human male and female volunteers. | | | | | | | V | | | | | | | | w | | | | | | | | х | | | | | | *A copy of this reference is not being furnished with this
Office action. (See MPEP § 707.05(a).) Dates in MM-YYYY format are publication dates. Classifications may be US or foreign. 15/467,648 - GAU: 1676 PTO/SB/08a (07-09) Approved for use through 07/31/2016. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 15/467,648 **Application Number** Filing Date March 23, 2017 INFORMATION DISCLOSURE First Named Inventor COMISKEY, Stephen STATEMENT BY APPLICANT 1676 Art Unit (Use as many sheets as necessary) LEE, Jia-Hai **Examiner Name** SYPA-009/C04US 321994-2341 2 19 Attorney Docket Number Sheet of | | | | U. S. PATENT DOCUMENTS | | | | |-----------|-----------------------|--------------|---|--------------------------------|--|---| | | Examiner
Initials* | Cite
No.1 | Document Number Number-Kind Code ² (if known) | Publication Date
MM-DD-YYYY | Name of Patentee or
Applicant of Cited Document | Pages, Columns, Lines, Where
Relevant Passages or Relevant
Figures Appear | | | /J.L/ | 30. | 8,716,224 | 05-06-2014 | Shailubhai et al. | i igairos rappodi | | | /J.L/ | 31. | 8,901,075 | 12-02-2014 | Shailubhai et al. | | | | /J.L/ | 32. | 8,969,514 | 03-03-2015 | Shailubhai | | | | /J.L/ | 33. | 9,238,677 | 01-19-2016 | Shailubhai et al. | | | | /J.L/ | 34. | 9,266,926 | 02-23-2016 | Shailubhai et al. | | | Change(s) | a 7 64.1/ | 35. | 9,486,494 | 11-08-2016 | Shailubhai | | | to docume | "/J.L/ | 36. | 9,545,446 01/2017 | \$4.47.2646 | Riff et al. | | | 2/20/201 | | 37. | 2002/0128176 A1 | 09-12-2002 | Forssmann et al. | | | | /J.L/ | 38. | 2002/0133168 A1 | 09-19-2002 | Smeldley et al. | | | | /J.L/ | 39. | 2002/0143015 A1 | 10-03-2002 | Fryburg et al. | | | | /J.L/ | 40. | 2003/0073628 A1 | 04-17-2003 | Shailubhai et al. | | | | /J.L/ | 41. | 2004/0015140 A1 | 01-22-2004 | Shields | | | | /J.L/ | 42. | 2005/0016244 A1 | 01-27-2005 | Hergemoller | | | | /J.L/ | 43. | 2005/0032684 A1 | 02-10-2005 | Cetin et al. | | | | /J.L/ | 44. | 2005/0107734 A1 | 05-19-2005 | Coroneo | | | | /J.L/ | 45. | 2005/0145351 A1 | 07-07-2005 | Schaible, et al. | | | | /J.L/ | 46. | 2005/0266047 A1 | 12-01-2005 | Tu et al | | | | /J.L/ | 47. | 2005/0267297 A1 | 12-01-2005 | Berlin | | | | /J.L/ | 48. | 2006/0086653 A1 | 04-27-2006 | St. Germain | | | | /J.L/ | 49. | 2006/0094658 A1 | 05-04-2006 | Currie | | | | /J.L/ | 50. | 2007/0101158 A1 | 05-03-2007 | Elliott | | | | /J.L/ | 51. | 2008/0137318 A1 | 06-12-2008 | Rangaraj et al. | | | | /J.L/ | 52. | 2008/0151257 A1 | 06-26-2008 | Yasuda et al. | | | | /J.L/ | 53. | 2009/0048175 A1 | 02-19-2009 | Shailubhai et al. | | | | /J.L/ | 54. | 2009/0192083 A1 | 07-30-2009 | Currie | | | | /J.L/ | 55. | 2009/0253634 A1 | 10-08-2009 | Currie et al. | | | | /J.L/ | 56. | 2010/0048489 A1 | 02-25-2010 | Fretzen | | | | /J.L/ | 57. | 2010/0069306 A1 | 03-18-2010 | Shailubhai et al. | | | | /J.L/ | 58. | 2010/0093635 A1 | 04-15-2010 | Shailubhai | | ^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. Applicant's unique citation designation number (optional). See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. #### UNITED STATES PATENT AND TRADEMARK OFFICE 02/28/2018 UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov | APPLICATION NO. | ISSUE DATE | PATENT NO. | ATTORNEY DOCKET NO. | CONFIRMATION NO. | |-----------------|------------|------------|---------------------------|------------------| | 15/467,648 | 03/20/2018 | 9919024 | SYPA-009C04US 321994-2341 | 2133 | 58249 7590 COOLEY LLP ATTN: Patent Group 1299 Pennsylvania Avenue, NW Suite 700 Washington, DC 20004 #### **ISSUE NOTIFICATION** The projected patent number and issue date are specified above. #### Determination of Patent Term Adjustment under 35 U.S.C. 154 (b) (application filed on or after May 29, 2000) The Patent Term Adjustment is 0 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page. If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA. Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov). Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200. APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants): Stephen COMISKEY, Doylestown, PA; SYNERGY PHARMACEUTICALS, INC., New York, NY Rong FENG, Langhorne, PA; John FOSS, Doylestown, PA; Kunwar SHAILUBHAI, Audubon, PA; The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The USA offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to encourage and facilitate business investment. To learn more about why the USA is the best country in the world to develop technology, manufacture products, and grow your business, visit <u>SelectUSA.gov</u>. IR103 (Rev. 10/09) 0429 | AO 120 | (Rev. 08/10) | | | T | | | |---|---|---|-------------------------------|---------------------------------|--|-------------------| | TO: | Mail Stop 8 Director of the U.S. Patent and Tradem Office P.O. Box 1450 Alexandria, VA 22313–1450 | | | FILING O | REPORT ON TH
R DETERMINAT
REGARDING A P
TRADEMARK | ION OF AN | | In | | ith 35 U.S.C. § 290 and/or 1 led in the U.S. District Cou _ Trademarks or X Patents | irt for the | District of New Jerse | ey on the following | : | | DOCKE
2:21-cv | T NO.
–10057–SRC–J | DATE FILED
ISA 4/26/2021 | | U.S. DISTRICT COU
NEWARK, NJ | JRT . | | | PLAINTIFF BAUSCH HEALTH IRELAND LIMITED | | | | DEFENDANT
MSN LABORATORI | ES PRIVATE LTI | Э. | | | TENT OR
EMARK NO. | DATE OF PATENT
OR TRADEMARK | | HOLDER OF F | ATENT OR TRAI | DEMARK | | 1 US 9,919,024 B2 Mar. 20, 2018 | | | SYNERGY PH | HARMACEUTICA | LS, INC. | | | 2 US 9,925,231 B2 Mar. 27, 2018 | | | SYNERGY PHARMACEUTICALS, INC. | | | | | 3 US 10,011,637 B2 Jul. 3, 2018 | | | SYNERGY PI | HARMACEUTICA | LS, INC. | | | 4 | | | | | | | | 5 | | | | | | | | | T 1 | | C 11 ! | | <u> </u> | | | DATE | | ne above—entitled case, the INCLUDED BY | e following | g patent(s)/ trademark(s | s) have been includ | ed: | | | NCLODED | | _ Amendm | ent Answer | Cross Bill | Other Pleading | | | TENT OR
EMARK NO. | DATE OF PATENT
OR TRADEMARK | | HOLDER OF F | ATENT OR TRAI | DEMARK | | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | | In the | above—entitled case, the fo | allowing d | ecision has been rende | red or judgement is | gued: | | DECISIO | ON/JUDGEME | | onowing di | ecision has been rende | rea or juagement is | sucu. | | CLEDY | | | DV) DEDI | ITV CI EDV | | DATE | | CLERK
Wil | lliam T. Walsh | | | JTY CLERK
oy Dunbar | | DATE
4/26/2021 | Copy 1—Upon initiation of action, mail this copy to Director Copy 3—Upon termination of action, mail this copy to Director Copy 2—Upon filing document adding patent(s), mail this copy to Director Copy 4—Case file copy AO 120 (Rev. 08/10) ## Mail Stop 8 ## REPORT ON THE | | Maii Stop 8
(.S. Patent and Trademai
P.O. Box 1450
adria, VA 22313-1450 | rk Office | FILING OR DETERMINAT
ACTION REGARDING A P
TRADEMARK | ION OF AN | |
--|--|---|---|---|--| | filed in the U.S. Dis | , | for the | | has been
on the following | | | DOCKET NO.
21-611-1-75 | DATE FILED
4/29/2021 | U.S. DI | STRICT COURT
for the District of Delaware | | | | PLAINTIFF BAUSCH HEALTH IRE and SALIX PHARMACE | | | DEFENDANT
MYLAN LABORATORIES LTD., AGILA SI
MYLAN API US LLC, MYLAN INC., VIATF
MYLAN PHARMACEUTICALS INC 8 VI | RIS INC. and | | | PATENT OR
TRADEMARK NO. | DATE OF PATENT
OR TRADEMARK | | HOLDER OF PATENT OR TRADE | MARK | | | 1 7,041,786 | 5/9/2006 | Sau | sch Health Ireland Limited and Salix Pha | irmaceuticals, Inc. | | | 2 7,799,897 | 9/21/2010 | Saus | sch Health Ireland Limited and Salix Pha | irmaceuticals, Inc. | | | 3 8,637,451 | 1/28/2014 | Saus | Bausch Health Ireland Limited and Salix Pharmaceuticals, Inc. | | | | 4 9,610,321 | 4/4/2017 | Bausch Health Ireland Limited and Salix Pharmaceuticals, Inc. | | | | | 5 9,616,097 4/11/2017 (| | | sch Health Ireland Limited and Salix Pha | irmaceuticals, Inc. | | | | In the above—entitled case, | the following | patent(s)/ trademark(s) have been included: | | | | DATE INCLUDED | ENCLUDED BY | Amendment | ☐ Answer ☐ Cross Bill ☐ G | Other Pleading | | | PATENT OR TRADEMARK NO. | DATE OF PATENT
OR TRADEMARK | | HOLDER OF PATENT OR TRADE | *************************************** | | | , , | | | | | | | 2 | | | | | | | 3 | | | *************************************** | | | | * | | | | | | | 5 | | | | | | | In the abo | ve-entitled case, the following | ing decision h | is been rendered or judgement issued: | | | | DECISION/JUDGEMENT | oluntary Diam | 3184 | | | | | CLERK | | BY) DEPUTY | CLERK | TE. | | | John A Cervio | | | <u> </u> | -6-2021 | | Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy 1age 2 of 2 AO (20 (Rev. 08/10) TO: #### Mail Stop 8 Director of the U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450 #### REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK | 1100.000 | marany transmission | | IRA | i/eniana | |---|--|-------------------|--|--| | In Compliane
filed in the U.S. Dis | | | 1116 you are hereby advised that
District of Delaware | a court action has been
on the following | | Trademarks or | Patents. () the paten | it action involve | s 35 U.S.C. § 292.): | | | DOCKET NO.
21- 611- LPS | DATE FILED
4/29/2021 | U.S. Di | STRICT COURT for the District | of Delaware | | PLAINTIFF BAUSCH HEALTH IREI and SALIX PHARMACE | | | MYLAN API US LLC, MYLAI | D., AGILA SPECIALTIES INC.,
VINC., VIATRIS INC. and
SINC a VIATRIS COMPANY | | PATENT OR
TRADEMARK NO. | DATE OF PATENT
OR TRADEMARK | 8 | HOLDER OF PATEN | T OR TRADEMARK | | 1 9,919,024 | 3/20/2018 | Saus | ch Health Ireland Limited a | nd Salix Pharmaceuticals, Inc. | | 2 9,925,231 | 3/27/2018 | 8au: | sch Health Ireland Limited a | nd Salix Pharmaceuticals, Inc. | | 3 10,011,637 | 7/3/2018 | 8au: | ich Health Ireland Limited a | nd Salix Pharmaceuticals, Inc. | | 4 | | | | | | S | | | | | | DATE INCLUDED | INCLUDED BY | | patent(s)/ trademark(s) have been | | | PATENT OR | DATE OF PATENT | Amendment
r | Coss E | | | TRADEMARK NO. | OR TRADEMARK | | HOLDER OF PATEN | I OR TRADEMARK | | i | | | | | | 2 | | | | *************************************** | | 3 | | | | | | 4 | | | | | | 3 | | | | | | In the above | re-entitled case, the follow | wing decision be | s been rendered or judgement issi | 144i: | | DECISION/IUDGEMENT | ······································ | | | | | | | | | | | | | | | | | CLERK | | (BY) DEPUTY | CLERK | DATE | | | | Come have seen | an impages COM M | | Copy 1—Upon initiation of action, mail this copy to Director — Copy 3—Upon termination of action, mail this copy to Director Copy 2—Upon filing document adding patent(s), mail this copy to Director — Copy 4—Case file copy #### IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE BAUSCH HEALTH IRELAND LIMITED, and SALIX PHARMACEUTICALS, INC. Plaintiffs, ٧. MYLAN LABORATORIES LTD., AGILA SPECIALTIES INC., MYLAN API US LLC, MYLAN INC., VIATRIS INC. and MYLAN PHARMACEUTICALS INC. — a VIATRIS COMPANY, Defendants. C.A. No. 1:21-cy-00611-LPS #### NOTICE OF VOLUNTARY DISMISSAL WITHOUT PREJUDICE Plaintiffs Bausch Health Ireland Limited and Salix Pharmaceuticals, Inc., pursuant to Fed. R. Civ. P. 41(a)(1)(A)(i), hereby voluntarily dismiss this action, without prejudice. #### GIBBONS P.C. OF COUNSEL: Bryan C. Diner Justin J. Hasford FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, LLP 901 New York Avenue, NW Washington, DC 20001-4413 Tel: (202) 408-4000 Dated: May 5, 2021 By: /s/ Christopher Viceconte Christopher Viceconte (No. 5568) Jennifer M. Rutter (No. 6200) 300 Delaware Avenue, Suite 1015 Wilmington, Delaware 19801 Tel: (302) 518-6322 Fax: (302) 397-2050 cviceconte@gibbonslaw.com jrutter@gibbonslaw.com Attorneys for Plaintiffs Bausch Health Ireland Limited and Salix Pharmaceuticals, Inc. PTO/A6A/81A (92-15) Approved for use through 03/31/2021, GMS 0851-0035 U.S. Peters and Trademark Office; U.S. DEPARTMENT OF COMMERCE index the Paranesist Reduction Art of 1966 no persons are required to special for a Collection of Information orders it displays a collection for the control number Datami Microchae 9,919,024 PATENT - POWER OF ATTORNEY losue Date March 20, 2018 First Named Inventor Stephen Comiskey REVOCATION OF POWER OF ATTORNEY Tirth Formulations of Guanylate Cyclase C WITH A NEW POWER OF ATTORNEY Agonists and Methods of Use AND **CHANGE OF CORRESPONDENCE ADDRESS** Aftomey Docket No. 376464-2005US5 (00112) Thereby revoke all previous powers of attorney given in the above identified patent A Power of Attorney is submitted herewith, hereby appoint Practitioner(s) associated with the Customer Number identified in the box at right as my/our 🔀 stromey(s) or agent(s) with respect to the parem identified above, and to transact all business in the United 162421 States Patent and Trademark Office connected therewith: thereby appoint Practitioner(s) named below as my/our attorney(s) or agent(s) with respect to the patent identified above, and to transact all business in the United States Patent and Trademark Ciffice connected therewith Please recognite or change the correspondence address for the above-identified patent to: $oldsymbol{X}$ The address associated with the above-identified Customer Number. The address associated with the Customer Number identified in the box or right: OR Firm or individusi Name Address Patent owner. Statement under 37 CFR \$/AIA/96) subpilited herewith or filed c Signature Oate Name Telephone Bausch Health Ireland Limited MOTE: Signatures of all the applicants of patent owners of the entire interest or their representative(s) are required. If more than one signature is required, submit multiple forms, check the box below, and identify the total number of forms submitted in the blank below. forms are submitted State Email City Country Yelaphone Lam the: Applicant This codestion of information is required by 37 CFR 1.31, 1.32, and 1.33. The information is required to obtain or retain a benefit by the public, which is to optiste (and by the USPTO to process) the Sie of a patent or reasonination proceeding. Confidentially is governed by 3\$ U.S.C. 122 and 37 CFR 1.14. This collection is estimated to sake 3 minutes to complete, including gathering, preparing, and submitting the completed application functor that USPEC. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form analys suggestions for reducing this burden, should be sent to the Exief Information Officer, U.S. Perent and Trademark Office, U.S. Department of Commerce, P.O. Box \$450, Alexandria, VA 22313-1450, DO NOT SEND FEES ON COMPLETED FORMS TO THIS ADDRESS. SERIO TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. If you need estistance in completing the form, call \$-800-810-8189 and select option 2. #### Privacy Act Statement The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent. The information provided by you in this form will be subject to the following routine uses: - The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the
Freedom of Information Act. - A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a count, magistrate, or administrative tribunal, including disclosures to opposing counset in the course of settlement negotiations. - 3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552s(m). - A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World intellectual Property Organization, pursuant to the Patent Cooperation Treaty. - A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)). - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent. - A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation. U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. STATEMENT UNDER 37 CFR 3.73(c) Applicant/Patent Owner: Synergy Pharmaceuticals Inc. Application No./Patent No.: 15/467,648 / 9,919,024 Filed/Issue Date: March 23, 2017 / March 20, 2018 Titled: FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE _{, a} corporation Bausch Health Ireland Limited (Name of Assignee) (Type of Assignee, e.g., corporation, partnership, university, government agency, etc.) states that, for the patent application/patent identified above, it is (choose one of options 1, 2, 3 or 4 below): 1. The assignee of the entire right, title, and interest. 2. An assignee of less than the entire right, title, and interest (check applicable box): The extent (by percentage) of its ownership interest is %. Additional Statement(s) by the owners holding the balance of the interest must be submitted to account for 100% of the ownership interest. There are unspecified percentages of ownership. The other parties, including inventors, who together own the entire right, title and interest are: Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest. 3. The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made). The other parties, including inventors, who together own the entire right, title, and interest are: Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest. 4. The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entirety (a complete transfer of ownership interest was made). The certified document(s) showing the transfer is attached. The interest identified in option 1, 2 or 3 above (not option 4) is evidenced by either (choose **one** of options A or B below): A. An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel , Frame , or for which a copy thereof is attached. B. 🖊 A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows: 1. From: S Comiskey, R Feng, J Foss, K Shailubhai To: Synergy Pharmaceuticals Inc. The document was recorded in the United States Patent and Trademark Office at _{Beel} 041833 , Frame 0927 _____, or for which a copy thereof is attached. 2. From: Synergy Pharmaceuticals Inc. ____ _{To:} Bausch Health Ireland Limited The document was recorded in the United States Patent and Trademark Office at ___, Frame 0105 , or for which a copy thereof is attached. [Page 1 of 2] This collection of information is required by 37 CFR 3.73(b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. **SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.** | | | <u>STATEME</u> | NT UNDER 37 CFR 3.7 | (<mark>3(c)</mark> | | |---|---|---|--|--|--| | 3 From: | | | To: | | | | 3. 1 10111 | | |
United States Patent and Trac | | | | | | | , or for which a copy | | | | 4 From: | | | | | | | 4.110111 | | |
United States Patent and Tra | | | | | | | , or for which a copy | | | | 5. From: | | | | | | | _ | | | United States Patent and Trac | | | | | Reel | , Frame | , or for which a copy | thereof is attached. | | | 6. From: _ | | | To: | | | | The document was recorded in the United States Patent and Trademark Office at | | | | | | | | Reel | , Frame | , or for which a copy | thereof is attached. | | | | Additional document | s in the chain of title are | e listed on a supplemental she | eet(s). | | | | | | | | | | | | | mentary evidence of the chair
tted for recordation pursuant t | n of title from the original owner to the to 37 CFR 3.11. | | | [NO
Div | OTE: A separate coprision in accordance | by (i.e., a true copy of the with 37 CFR Part 3, to | ne original assignment docum record the assignment in the | ent(s)) must be submitted to Assignment records of the USPTO. See MPEP 302.08] | | | | | | | | | | | • , | s supplied below) is aut | horized to act on behalf of the | <u> </u> | | | | jos J. Silva/ | | | August 24, 2021 | | | Signature | | | | Date | | | Domingos | | | | 64197 | | | Printed or | Printed or Typed Name | | | Title or Registration Number | | [Page 2 of 2] #### Privacy Act Statement The **Privacy Act of 1974 (P.L. 93-579)** requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent. The information provided by you in this form will be subject to the following routine uses: - The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act. - 2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations. - 3. A record in this system of records may be disclosed, as a routine use, to
a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record. - 4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m). - 5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty. - 6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)). - 7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (*i.e.*, GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals. - 8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent. - 9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation. | Electronic Ack | knowledgement Receipt | | | |--------------------------------------|---|--|--| | EFS ID: | 43587069 | | | | Application Number: | 15467648 | | | | International Application Number: | | | | | Confirmation Number: | 2133 | | | | Title of Invention: | FORMULATIONS OF GUANYLATE CYCLASE C AGONISTS AND METHODS OF USE | | | | First Named Inventor/Applicant Name: | Stephen COMISKEY | | | | Customer Number: | 58249 | | | | Filer: | Domingos J. Silva/Catherine Rose | | | | Filer Authorized By: | Domingos J. Silva | | | | Attorney Docket Number: | SYPA-009C04US 321994-2341 | | | | Receipt Date: | 24-AUG-2021 | | | | Filing Date: | 23-MAR-2017 | | | | Time Stamp: | 13:58:10 | | | | Application Type: | Utility under 35 USC 111(a) | | | ## **Payment information:** | Submitted with Payment | no | |------------------------|----| |------------------------|----| ### File Listing: | Document
Number | Document Description | File Name File Size(Bytes)/ Message Digest | | Multi
Part /.zip | Pages
(if appl.) | |--------------------|----------------------|--|--|---------------------|---------------------| | | | | 240832 | | | | 1 | Power of Attorney | 376464-2005US5_POA.pdf | 0ef516dedce9e4b2608d7ccf117047343376
9771 | no | 2 | | Warnings: | Warnings: 0439 | | | | .39 | | Information: | | | | | | |--------------|--|---------------------------------------|--|-------|---| | | | | 3852679 | | | | 2 | Assignee showing of ownership per 37
CFR 3.73 | 376464-2005US5_Statement_3
73c.pdf | e906becbe7e708eee9431f91d500abda724
84028 | no | 3 | | Warnings: | | | | | | | Information: | | | | | | | | | Total Files Size (in bytes) | 40 | 93511 | | This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. #### New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. #### National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. #### New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application. #### UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov | APPLICATION NUMBER | FILING OR 371(C) DATE | FIRST NAMED APPLICANT ATTY.DOCKET NO./TITLE | | REQUEST ID | |--------------------|-----------------------|---|------------------------|------------| | 15/467,648 | 03/23/2017 | Stephen COMISKEY | 376464-2005US5 (00112) | 146408 | #### Acknowledgement of Loss of Entitlement to Entity Status Discount The entity status change request below filed through Private PAIR on 08/26/2021 has been accepted. #### **CERTIFICATIONS:** #### **Change of Entity Status:** X Applicant changing to regular undiscounted fee status. NOTE: Checking this box will be taken to be notification of loss of entitlement to small or micro entity status, as applicable. This portion must be completed by the signatory or signatories making the entity status change in accordance with 37 CFR 1.4(d)(4). | Signature: | /Domingos J. Silva/ | | |----------------------|---------------------|--| | Name: | DOMINGOS J. SILVA | | | Registration Number: | 64197 | | #### United States Patent and Trademark Office UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS PO. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE 15/467,648 03/23/2017 Stephen COMISKEY 376464-2005US5 (00112) CONFIRMATION NO. 2133 POA ACCEPTANCE LETTER *OC00000128020762* Date Mailed: 08/27/2021 162421 SAUL EWING ARNSTEIN & LEHR LLP (Bausch Health) Attn: Patent Docket Clerk, Centre Square West, 1500 Market Street, 38th Floor Philadelphia, PA 19102-2186 #### NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY This is in response to the Power of Attorney filed 08/24/2021. The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33. Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101. | /tlulu/ | | |---------|--| | | | #### United States Patent and Trademark Office UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Vinginia 22313-1450 www.uspto.gov APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE SYPA-009C04US 15/467,648 03/23/2017 Stephen COMISKEY 321994-2341 58249 COOLEY LLP ATTN: IP Docketing Department 1299 Pennsylvania Avenue, NW Suite 700 Washington, DC 20004 **POWER OF ATTORNEY NOTICE** Date Mailed: 08/27/2021 **CONFIRMATION NO. 2133** #### NOTICE REGARDING CHANGE OF POWER OF ATTORNEY This is in response to the Power of Attorney filed 08/24/2021. • The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33). Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101. | /tlulu/ | |---------| |---------|