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Learning a Fixed-Length Fingerprint Representation
Joshua J. Engelsma, Kai Cao, and Anil K. Jain, Life Fellow, IEEE

Abstract—We present DeepPrint, a deep network, which learns to extract fixed-length fingerprint representations of only 200 bytes.
DeepPrint incorporates fingerprint domain knowledge, including alignment and minutiae detection, into the deep network architecture
to maximize the discriminative power of its representation. The compact, DeepPrint representation has several advantages over the
prevailing variable length minutiae representation which (i) requires computationally expensive graph matching techniques, (ii) is
difficult to secure using strong encryption schemes (e.g. homomorphic encryption), and (iii) has low discriminative power in poor quality
fingerprints where minutiae extraction is unreliable. We benchmark DeepPrint against two top performing COTS SDKs (Verifinger and
Innovatrics) from the NIST and FVC evaluations. Coupled with a re-ranking scheme, the DeepPrint rank-1 search accuracy on the
NIST SD4 dataset against a gallery of 1.1 million fingerprints is comparable to the top COTS matcher, but it is significantly faster
(DeepPrint: 98.80% in 0.3 seconds vs. COTS A: 98.85% in 27 seconds). To the best of our knowledge, the DeepPrint representation
is the most compact and discriminative fixed-length fingerprint representation reported in the academic literature.

Index Terms—Fingerprint Matching, Minutiae Representation, Fixed-Length Representation, Representation Learning, Deep
Networks, Large-scale Search, Domain Knowledge in Deep Networks

F

1 INTRODUCTION

O VER 100 years ago, the pioneering giant of modern day fin-
gerprint recognition, Sir Francis Galton, astutely commented

on fingerprints in his 1892 book titled “Finger Prints”:

“They have the unique merit of retaining all their
peculiarities unchanged throughout life, and afford in
consequence an incomparably surer criterion of identity
than any other bodily feature.” [1]

Galton went on to describe fingerprint minutiae, the small details
woven throughout the papillary ridges on each of our fingers,
which Galton believed provided uniqueness and permanence prop-
erties for accurately identifying individuals. Over the 100 years
since Galton’s ground breaking scientific observations, fingerprint
recognition systems have become ubiquitous and can be found in a
plethora of different domains [2] such as forensics [3], healthcare,
mobile device security [4], mobile payments [4], border cross-
ing [5], and national ID [6]. To date, virtually all of these systems
continue to rely upon the location and orientation of minutiae
within fingerprint images for recognition (Fig. 1).

Although automated fingerprint recognition systems based
on minutiae representations (i.e. handcrafted features) have seen
tremendous success over the years, they have several limitations.

• Minutiae-based representations are of variable length,
since the number of extracted minutiae (Table 1) varies
amongst different fingerprint images even of the same
finger (Fig. 2 (a)). Variations in the number of minutiae
originate from a user’s interaction with the fingerprint
reader (placement position and applied pressure) and con-
dition of the finger (dry, wet, cuts, bruises, etc.). This
variation in the number of minutiae causes two main
problems: (i) pairwise fingerprint comparison is compu-
tationally demanding and varies with number of minutiae
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(a) Level-1 features (b) Level-2 features

Fig. 1. The most popular fingerprint representation consists of (a) global
level-1 features (ridge flow, core, and delta) and (b) local level-2 features,
called minutiae points, together with their descriptors (e.g., texture in
local minutiae neighborhoods). The fingerprint image illustrated here is
a rolled impression from the NIST SD4 database [7]. The number of
minutiae in NIST4 rolled fingerprint images range all the way from 12 to
196.

and (ii) matching in the encrypted domain, a necessity for
user privacy protection, is computationally expensive, and
results in loss of accuracy [9].

• In the context of global population registration, fingerprint
recognition can be viewed as a 75 billion class problem
(≈ 7.5 billion living persons, assuming nearly all with
10 fingers) with large intra-class variability and large
inter-class similarity (Fig. 2). This necessitates extremely
discriminative yet compact representations that are com-
plementary and at least as discriminative as the traditional
minutiae-based representation. For example, India’s civil
registration system, Aadhaar, now has a database of ≈ 1.3
billion residents who are enrolled based on their 10 finger-
prints, 2 irises, and face image [6].

• Reliable minutiae extraction in low quality fingerprints
(due to noise, distortion, finger condition) is problematic,
causing false rejects in the recognition system (Fig. 2 (a)).
See also NIST fingerprint evaluation FpVTE 2012 [10].
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Fig. 2. Failures of the COTS A minutiae-based matcher (minutiae anno-
tated with COTS A). The genuine pair (two impressions from the same
finger) in (a) was falsely rejected at 0.1% FAR (score of 9) due to heavy
non-linear distortion and moist fingers. The imposter pair (impressions
from two different fingers) in (b) was falsely accepted at 0.1% FAR (score
of 38) due to the similar minutiae distribution in these two fingerprint
images (the score threshold for COTS A @ FAR = 0.1% is 34). In
contrast, DeepPrint is able to correctly match the genuine pair in (a)
and reject the imposter pair in (b). These slap fingerprint impressions
come from public domain FVC 2004 DB1 A database [8]. The number
of minutiae in FVC 2004 DB1 A images range from 11 to 87.

TABLE 1
Comparison of variable length minutiae representation with fixed-length

DeepPrint representation

Matcher
(Min, Max)

# of Minutiae1
(Min, Max)

Template Size (kB)

COTS A (12, 196) (1.5, 23.7)

COTS B (12, 225) (0.6, 5.3)

Proposed N.A.2 0.2†

1 Statistics from NIST SD4 and FVC 2004 DB1.
2 Template is not explicitly comprised of minutiae.
† Template size is fixed at 200 bytes, irrespective of
the number of minutiae (192 bytes for the features
and 8 bytes for 2 decompression scalars).

To overcome the limitations of minutiae-based matchers, we
present a reformulation of the fingerprint recognition problem. In
particular, rather than extracting varying length minutiae-sets for
matching (i.e. handcrafted features), we design a deep network
embedded with fingerprint domain knowledge, called DeepPrint,
to learn a fixed-length representation of 200 bytes which discrim-
inates between fingerprint images from different fingers (Fig. 4).
Our work follows the trajectory of state-of-the-art automated

Fig. 3. Fixed-length, 192-dimensional fingerprint representations ex-
tracted by DeepPrint (shown as 16 × 12 feature maps) from the same
four fingerprints shown in Figure 2. Unlike COTS A, we correctly classify
the pair in (a) as a genuine pair, and the pair in (b) as an imposter pair.
The score threshold of DeepPrint @ FAR = 0.1% is 0.76

face recognition systems which have almost entirely abandoned
traditional handcrafted features in favor of deep features extracted
by deep networks with remarkable success [11], [12], [13]. How-
ever, unlike deep network based face recognition systems, we do
not completely abandon handcrafted features. Instead, we aim to
integrate handcrafted fingerprint features (minutiae 1) into the deep
network architecture to exploit the benefits of both deep networks
and traditional, domain knowledge inspired features.

While prevailing minutiae-matchers require expensive graph
matching algorithms for fingerprint comparison, the 200 byte
representations extracted by DeepPrint can be compared using
simple distance metrics such as the cosine similarity, requiring
only d multiplications and d− 1 additions, where d is the dimen-
sionality of the representation (for DeepPrint, d = 192)2. Another
significant advantage of this fixed-length representation is that it
can be matched in the encrypted domain using fully homomorphic
encryption [14], [15], [16], [17]. Finally, since DeepPrint is able
to encode features that go beyond fingerprint minutiae, it is able to
match poor quality fingerprints when reliable minutiae extraction
is not possible (Figs. 2 and 3).

To arrive at a compact and discriminative representation of
only 200 bytes, the DeepPrint architecture is embedded with

1. Note that we do not require explicitly storing minutiae in our final
template. Rather, we aim to guide DeepPrint to extract features related to
minutiae during training of the network.

2. The DeepPrint representation is originally 768 bytes (192 features and 4
bytes per float value). We compress the 768 bytes to 200 by scaling the floats
to integer values between [0,255] and saving the two compression parameters
with the features. This loss in precision (which saves significant disk storage
space) very minimally effects matching accuracy.

ASSA ABLOY Ex 1036 - Page 2 
ASSA ABLOY AB, et al. v. CPC Patent Technologies Pty Ltd. 

IPR2022-01093 - U.S. Patent No. 8,620,039
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Fig. 4. Flow diagram of DeepPrint: (i) a query fingerprint is aligned via a Localization Network which has been trained end-to-end with the Base-
Network and Feature Extraction Networks (no reference points are needed for alignment); (ii) the aligned fingerprint proceeds to the Base-Network
which is followed by two branches; (iii) the first branch extracts a 96-dimensional texture-based representation; (iv) the second branch extracts a
96-dimensional minutiae-based representation, guided by a side-task of minutiae detection (via a minutiae map which does not have to be extracted
during testing); (v) the texture-based representation and minutiae-based representation are concatenated into a 192-dimensional representation of
768 bytes (192 features and 4 bytes per float). The 768 byte template is compressed into a 200 byte fixed-length representation by truncating floating
point value features into integer value features, and saving the scaling and shifting values (8 bytes) used to truncate from floating point values to
integers. The 200 byte DeepPrint representations can be used both for authentication and large-scale fingerprint search. The minutiae-map can be
used to further improve system accuracy and interpretability by re-ranking candidates retrieved by the fixed-length representation.

fingerprint domain knowledge via an automatic alignment module
and a multi-task learning objective which requires minutiae-
detection (in the form of a minutiae-map) as a side task to
representation learning. More specifically, DeepPrint automati-
cally aligns an input fingerprint and subsequently extracts both a
texture representation and a minutiae-based representation (both
with 96 features). The 192-dimensional concatenation of these
two representations, followed by compression from floating point
features to integer value features comprises a 200 byte fixed-length
representation (192 bytes for the feature vector and 4 bytes for
storing the 2 compression parameters). As a final step, we utilize
Product Quantization [18] to further compress the DeepPrint
representations stored in the gallery, significantly reducing the
computational requirements and time for large-scale fingerprint
search.

Detecting minutiae (in the form of a minutiae-map) as a side-
task to representation learning has several key benefits:

• We guide our representation to incorporate domain in-
spired features pertaining to minutiae by sharing pa-
rameters between the minutiae-map output task and the
representation learning task in the multi-task learning
framework.

• Since minutiae representations are the most popular for
fingerprint recognition, we posit that our method for
guiding the DeepPrint feature extraction via its minutiae-
map side-task falls in line with the goal of “Explainable
AI” [19].

• Given a probe fingerprint, we first use its DeepPrint
representation to find the top k candidates and then re-
rank the top k candidates using the minutiae-map provided
by DeepPrint 3. This optional re-ranking add-on further
improves both accuracy and interpretability.

3. The 128× 128× 6 DeepPrint minutiae-map can be easily converted into
a minutiae-set with n minutia: {(x1, y1, θ1), ..., (xn, yn, θn)} and passed to
any minutia-matcher (e.g., COTS A, COTS B, or [20]).

The primary benefit of the 200 byte representation extracted
by DeepPrint comes into play when performing mega-scale search
against millions or even billions of identities (e.g., India’s Aad-
haar [6] and the FBI’s Next Generation Identification (NGI)
databases [3]). To highlight the significance of this benefit, we
benchmark the search performance of DeepPrint against the latest
version SDKs (as of July, 2019) of two top performers in the NIST
FpVTE 2012 (Innovatrics4 v7.2.1.40 and Verifinger5 v10.06) on
the NIST SD4 [7] and NIST SD14 [21] databases augmented with
a gallery of nearly 1.1 million rolled fingerprints. Our empirical
results demonstrate that DeepPrint is competitive with these two
state-of-the-art COTS matchers in accuracy while requiring only a
fraction of the search time. Furthermore, a given DeepPrint fixed-
length representation can also be matched in the encrypted domain
via homomorphic encryption with minor loss to recognition accu-
racy as shown in [14] for face recognition.

More concisely, the primary contributions of this work are:

• A customized deep network (Fig. 4), called DeepPrint,
which utilizes fingerprint domain knowledge (alignment
and minutiae detection) to learn and extract a discrimina-
tive fixed-length fingerprint representation.

• Demonstrating in a manner similar to [29] that Product
Quantization can be used to compress DeepPrint fin-
gerprint representations, enabling even faster mega-scale
search (51 ms search time against a gallery of 1.1 million
fingerprints vs. 27,000 ms for a COTS with comparable
accuracy).

• Demonstrating with a two-stage search scheme similar
to [29] that candidates retrieved by DeepPrint represen-
tations can be re-ranked using a minutiae-matcher in
conjunction with the DeepPrint minutiae-map. This further

4. https://www.innovatrics.com/
5. https://www.neurotechnology.com/
6. We note that Verifinger v10.0 performs significantly better than earlier

versions of the SDK often used in the literature.
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TABLE 2
Published Studies on Fixed-Length Fingerprint Representations

Algorithm Description HR @ PR = 1.0%1

(NIST SD4)2
HR @ PR = 1.0%

(NIST SD14)3
Template Size

(bytes)
Gallery

Size4

Jain et al. [22], [23] Fingercode: Global representation
extracted using Gabor Filters N.A. N.A. 640 N.A.

Cappelli et al. [24]
MCC: Local descriptors via

3D cylindrical structures
comprised of the minutiae-set representation

93.2% 91.0% 1,913 2,700

Cao and Jain [25]
Inception v3: Global deep
representation extracted via
Alignment and Inception v3

98.65% 98.93% 8,192 250,000

Song and Feng [26]
PDC: Deep representations extracted at

different resolutions and aggregated
into global representation

93.3% N.A. N.A. 2,000

Song et al. [27]
MDC: Deep representations extracted

from minutiae and aggregated into
global representation

99.2% 99.6% 1,200 2,700

Li et al. [28]

Finger Patches: Local deep
representations aggregated into
global representation via global

average pooling

99.83% 99.89% 1,024 2,700

Proposed
DeepPrint: Global deep representation

extracted via multi-task CNN
with built-in fingerprint alignment

99.75% 99.93% 200† 1,100,000

1 In some baselines we estimated the data points from a Figure (specific data points were not reported in the paper).
2 Only 2,000 fingerprints are included in the gallery to enable comparison with previous works. (HR = Hit Rate, PR = Penetration Rate)
3 Only last 2,700 pairs (2,700 probes; 2,700 gallery) are used to enable comparison with previous works.
4 Largest gallery size used in the paper.
† The DeepPrint representation can be further compressed to only 64 bytes using product quantization with minor loss in accuracy.

improves system interpretability and accuracy and demon-
strates that the DeepPrint features are complementary to
the traditional minutiae representation.

• Benchmarking DeepPrint against two state-of-the-art
COTS matchers (Innovatrics and Verifinger) on NIST
SD4 and NIST SD14 against a gallery of 1.1 million
fingerprints. Empirical results demonstrate that DeepPrint
is comparable to COTS matchers in accuracy at a signifi-
cantly faster search speed.

• Benchmarking the authentication performance of Deep-
Print on the NIST SD4 and NIST SD14 rolled-fingerprints
databases and the FVC 2004 DB1 A slap fingerprint
database [8]. Again, DeepPrint shows comparable perfor-
mance against the two COTS matchers, demonstrating the
generalization ability of DeepPrint to both rolled and slap
fingerprint databases.

• Demonstrating that homomorphic encryption can be used
to match DeepPrint templates in the encrypted domain, in
real time (1.26 ms), with minimal loss to matching accu-
racy as shown for fixed-length face representations [14].

• An interpretability visualization which demonstrates our
ability to guide DeepPrint to look at minutiae-related
features.

2 PRIOR WORK

Several early works [22], [23], [24] presented fixed-length fin-
gerprint representations using traditional image processing tech-
niques. In [22], [23], Jain et al. extracted a global fixed-length
representation of 640 bytes, called Fingercode, using a set of
Gabor Filters. Cappelli et al. introduced a fixed-length minutiae
descriptor, called Minutiae Cylinder Code (MCC), using 3D

cylindrical structures computed with minutiae points [24]. While
both of these representations demonstrated success at the time
they were proposed, their accuracy is now significantly inferior to
state-of-the-art COTS matchers

Following the seminal contributions of [22], [23] and [24],
the past 10 years of research on fixed-length fingerprint repre-
sentations [31], [32], [33], [34], [35], [36], [37], [38], [39] has
not produced a representation competitive in terms of fingerprint
recognition accuracy with the traditional minutiae-based represen-
tation. However, recent studies [25], [26], [27], [28] have utilized
deep networks to extract highly discriminative fixed-length finger-
print representations. More specifically, (i) Cao and Jain [25] used
global alignment and Inception v3 to learn fixed-length fingerprint
representations. (ii) Song and Feng [26] used deep networks to
extract representations at various resolutions which were then
aggregated into a global fixed-length representation. (iii) Song et
al. [27] further learned fixed-length minutiae descriptors which
were aggregated into a global fixed-length representation via an
aggregation network. Finally, (v) Li et al. [28] extracted local
descriptors from predefined “fingerprint classes” which were then
aggregated into a global fixed-length representation through global
average pooling.

While these efforts show tremendous promise, each method
has some limitations. In particular, (i) the algorithms proposed
in [25] and [26] both required computationally demanding global
alignment as a preprocessing step, and the accuracy is inferior to
state-of-the-art COTS matchers. (ii) The representations extracted
in [27] require the arduous process of minutiae-detection, patch
extraction, patch-level inference, and an aggregation network
to build a single global feature representation. (iii) While the
algorithm in [28] obtains high performance on rolled fingerprints

ASSA ABLOY Ex 1036 - Page 4 
ASSA ABLOY AB, et al. v. CPC Patent Technologies Pty Ltd. 

IPR2022-01093 - U.S. Patent No. 8,620,039
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Fig. 5. Fingerprint impressions from one subject in the DeepPrint training dataset [30]. Impressions were captured longitudinally, resulting in the
variability across impressions (contrast and intensity from environmental conditions; distortion and alignment from user placement). Importantly,
training with longitudinal data enables learning compact representations which are invariant to the typical noise observed across fingerprint
impressions over time, a necessity in any fingerprint recognition system.

(with small gallery size), the accuracy was not reported for slap
fingerprints. Since [28] aggregates local descriptors by averaging
them together, it is unlikely that the approach would work well
when areas of the fingerprint are occluded or missing (often times
the case in slap fingerprint databases like FVC 2004 DB1 A),
and (v) all of the algorithms, suffer from lack of interpretability
compared to traditional minutiae representations.

In addition, existing studies targeting deep, fixed-length finger-
print representations all lack an extensive, large-scale evaluation
of the deep features. Indeed, one of the primary motivations for
fixed-length fingerprint representations is to perform orders of
magnitude faster large scale search. However, with the exception
of Cao and Jain [25], who evaluate against a database of 250K
fingerprints, the next largest gallery size used in any of the
aforementioned studies is only 2,700.

As an addendum, deep networks have also been used to
improve specific sub-modules of fingerprint recognition systems
such as segmentation [40], [41], [42], [43], orientation field
estimation [44], [45], [46], minutiae extraction [47], [48], [49],
and minutiae descriptor extraction [50]. However, these works all
still operate within the conventional paradigm of extracting an
unordered, variable length set of minutiae for fingerprint matching.

3 DEEPPRINT

In the following section, we (i) provide a high-level overview and
intuition of DeepPrint, (ii) present how we incorporate automatic
alignment into DeepPrint, and (iii) demonstrate how the accuracy
and interpretability of DeepPrint is improved through the injection
of fingerprint domain knowledge.

3.1 Overview

A high level overview of DeepPrint is provided in Figure 4
with pseudocode in Algorithm 1. DeepPrint is trained with a
longitudinal database (Fig. 5) comprised of 455K rolled fingerprint
images stemming from 38,291 unique fingers [30]. Longitudinal
fingerprint databases consist of fingerprints from distinct subjects
captured over time (Fig. 5) [30]. It is necessary to train DeepPrint
with a large, longitudinal database so that it can learn compact,
fixed-length representations which are invariant to the differences
introduced during fingerprint image acquisition at different times
and in different environments (humidity, temperature, user interac-
tion with the reader, and finger injuries). The primary task during
training is to predict the finger identity label c ∈ [0, 38291]
(encoded as a one-hot vector) of each of the 455K training

Algorithm 1 Extract DeepPrint Representation
1: L(If ): Shallow localization network, outputs x, y, θ
2: A: Affine matrix composed with parameters x, y, θ
3: G(If , A): Bilinear grid sampler, outputs aligned fingerprint
4: S(It): Inception v4 stem
5: E(x): Shared minutiae parameters
6: M(x): Minutia representation branch
7: D(x): Minutiae map estimation
8: T (x): Texture representation branch
9:

10: Input: Unaligned 448× 448 fingerprint image If
11: A← (x, y, θ)← L(If )
12: It ← G(If , A)
13: Fmap ← S(It)
14: Mmap ← E(Fmap)
15: R1 ←M(Mmap)
16: H ← D(Mmap)
17: R2 ← T (Fmap)
18: R← R1 ⊕R2

19: Output: Fingerprint representation R ∈ R192 and minutiae-
map H . (H can be optionally utilized for (i) visualization and
(ii) fusion of DeepPrint scores obtained via R with minutiae-
matching scores.)

fingerprint images (≈ 12 fingerprint impressions / finger). The last
fully connected layer is taken as the representation for fingerprint
comparison during authentication and search.

The input to DeepPrint is a 448× 448 7 grayscale fingerprint
image, If , which is first passed through the alignment module
(Fig. 4). The alignment module consists of a localization network,
L, and a grid sampler, G [51]. After applying the localization
network and grid sampler to If , an aligned fingerprint It is passed
to the base-network, S.

The base-network is the stem of the Inception v4 architecture
(Inception v4 minus Inception modules). Following the base-
network are two different branches (Fig. 4) comprised primarily of
the three Inception modules (A, B, and C) described in [52]. The
first branch, T (x), completes the Inception v4 architecture 8 as

7. Fingerprint images in our training dataset vary in size from≈ 512 × 512
to ≈ 800 × 800. As a pre-processing step, we do a center cropping (using
Gaussian filtering, dilation and erosion, and thresholding) to all images to
≈ 448 × 448. This size is sufficient to cover most of the rolled fingerprint
area without extraneous background pixels.

8. We selected Inception v4 after evaluating numerous other architectures
such as: ResNet, Inception v3, Inception ResNet, and MobileNet.
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