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234 I NFORMATIO N STRUCTURES 

2.2. LINEAR LISTS 

2.2 .1. Stacks, Queues, and Deques 

Usually t here is much more structural information present in t he data than , 
actually want to represent directly in a computer. In each "playing card" n . 
of the preceding section, for example, we have a NEXT field to specify what card • 
beneath it in the pile, but there is no direct way to find what card, if an_ 
is above a given card, or to find which pile a given card is in. Of course, there • 
much information possessed by any real deck of playing cards which has be, . 
totally suppressed from the computer representation: t he details of the de i 
on the back of t he cards, the relation of the cards to other objects in the roor: 
where the game is being played, the molecules which compose the cards, etc. I· 
is conceivable that such structural information would be relevant in certair. 
computer applications, but obviously we never want to store all of the structure 
present in every situation. Indeed, for most card-playing situat ions we would 
not need all of the facts retained in our earlier example; thus the TAG field, which 
tells whether a card is face up or face down, will often be unnecessary. 

It is therefore clear t hat we must decide in each case how much structure to 
represent in our tables, and how accessible to make each piece of information. 
To make t his decision, we need to know what operations are to be performed on 
the data. For each problem considered in this chapter, we therefore consider not 
only the data structure but also the class of operations to be done on the data; the 
design of computer representations depends on the desired function of the data 
as well as on its intrinsic properties. Such an emphasis on "function" as weH as 
"form" is basic to design problems in general. 

In order to illustrate this point further, let us consider a simple example 
which arises in computer hardware design. A computer memory is often classified 
as a "random access memory," i.e., MIX's main memory ; or as a "read only 
memory, " i.e., one which is to contain essentially constant information; or a 
"secondary bulk memory," like MIX's disk units, which cannot be accessed at 
high speed although large quantit ies of information can be stored; or an "asso
ciative memory," more properly called a "content-addressed memory," i. e., one 
for which information is addressed by values stored with it rather than by its 
location ; and so on. Note that the intended function of each kind of memory is 
so important that it enters into the name of the particular memory type; all of 
these devices are "memory " units, but the purposes to which they are put 
profoundly influence their design and their cost. 

A linear list is a set of n ~ 0 nodes X[l], X[2], ... , X[n] whose structural 
properties essentially involve only the linear (one-dimensional) relative positions 
of the nodes: the facts that, if n > 0, X[l] is the first node; when 1 < k < n, 
the kth node x[lc] is preceded by X[k - 1] and followed by X[k + 1] ; and x[n] 
is the last node. 

The operations we might want to perform on linear lists include, for example, 
the fo llowing. 

- l 
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i) Gain access to the kth node of the list to examine and/ or to change 
the contents of its fields. 

ii) Insert a new node just before the kth node. 
iii) Delete the kth node. 
iv) Combine two or more linear lists into a single list. 
v) Spli t a linear li st into two or more lists. 

vi) Make a copy of a linear list. 
vi i) Determine the number of nodes in a list. 

viii) Sort the nodes of the list into ascending order based on certain fields 
of the nodes. 

ix) Search t he list for the occurrence of a node with a part icular value in 
some field. 

In operations (i), (ii), and (iii ) the special cases k = l and k = n are of principal 
importance since the first and last items of a linear list may be easier to get at 
·han a general element is. We will not discuss operations (viii) and (ix) in t his 
·hapter, since t hese topics are the subj ects of Chapters 5 and 6, respectively. 

A computer application rarely calls for all nine of t he above operations in 
· heir full generality, so we find t here are many ways to represent linear lists 
lepending on the class of operations which are to be done most frequently. It 

i.:; difficult to design a single representation method for linear lists in which 
all of these operations are efficient; for example, the ability to gain access to 
he kth node of a long list for random k is comparatively hard to do if at the 

, ame time we are inserting and deleting items in the middle of the list . There
:ore we distinguish between types of linear lists depending on the principal 

perations to be performed, just as we have noted that computer memories 
re distinguished by their intended applications. 

Linear lists in which insertions, deletions, and accesses to values occur almost 
Jways at the fi rst or t he last node are very frequently encountered, and we give 
· hem special names : 

A stack is a linear li st for whi ch all insertions and deletions (and usually all 
accesses) are made at one end of the list. 

A queue is a linear list for whi ch all insertions are made at one end of t he list; 
all deletions (and usually all accesses) are made· at the other end. 

A deque ( "double-ended queue") is a linear list for which all insertions and 
deletions (and usually all accesses) are made at t he ends of the list. 

A deque is therefore more general than a stack or a queue; it has some properties 
.n common with a deck of cards, and it is pronounced the same way. We also 
Jistinguish output-restricted or input-restricted deques, in which deletions or in
,ertions, respectively, are allowed to take place at only one end. 

In some disciplines the word "queue" has been used in a much broader sense 
·o describe any kind of list that is subj ect to insertions and deletions; the special 
a es identified above are then called various "queuing disciplines." Only the 
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240 INFORMATION ST RUCTURES 2.2.2 

2.2.2. Sequential Allocation 

The simplest and most natural way to keep a linear list inside a computer is to 
put the list items in sequential locations, one node after the other. We thus will 
have 

LOC(X[j + l]} = LOC(X[j]) +c, 

where c is the number of words per node. ( sually c = 1. When c > 1, it is 
sometimes more convenient to split a single list into c "parallel" lists, so that 
the kth word of node X[jl is stored a fixed distance from t he location of the 
first word of X[j l. We will continually assume, however, that adjacent groups 
of c words form a single node.) In general, 

LOC (X [j ]) = Lo + cj, 

where L0 is a constant called the base address, the location of an artificially 
assumed node X[ 0 l. 

This technique for representing a linear list is so obvious and well-known 
t hat there seems to be no need to dwell on it at any length. But we will be 
seeing many other "more sophisticated " methods of representation later on in 
t his chapter, and it is a good idea to examine t he simple case first to see just how 
far we can go wi th it. It is important to understand the limitations as well as 
the power of the use of sequential allocation. 

Sequential allocation is quite convenient for dealing with a stack. We simply 
have a variable T called t he stack pointer. When t he stack is empty, we let 
T = 0 .. To place a new element Yon top of the stack, we set 

T - T + l ; X[Tl f-Y. (2) 

And when the stack is not empty, we can set Y equal to the top node and delete 
that node by reversing t he actions of (2) : 

Y f- X[T]; Tf-T - 1. (3) 

(Inside a computer it is usually most efficient to maintain the value cT instead 
of T, because of (1) . Such modifications are easily made, so we will continue our 
discussion as though c = 1.) 

The representation of a queue or a more general deque is a litt le trickier. An 
obvious solution is to keep two pointers, say F and R (for the front and rear of 
the queue), with F = R = 0 when the queue is empty. Then inserting an ele
ment at the rear of the queue would be 

X(R] f-Y. (4) 

Removing the front node (F points just below the front) would be 

F-F + l ; Yf-X[F] ; if F = R, then set Ff-Rf--0. (5) 

But note what can happen: If R always stays ahead of F (so there is always at 
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