
Volume 1 / Fundamental Algorithms

THE ART OF

H Stanford University COMPUTER PROGRAMMING
· SECOND EDITION

Reading, Massachusetts
ISHING COMPANY Menlo Park, California · London · Amsterdam · Don Mills, Ontario · Sydney

ASSA ABLOY Ex. 1020 - Page 1
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

This book is in the
ADDISON-WESLEY SERIES IN

COMPUTER SCIENCE AND INFORMATION PROCESSING '

RICHARD s. VARGA and MICHAEL A, HARRISON, Editors

COPYRIGHT @ 1973, 1968 BY ADDISON-WESLEY PUBLISHING COMPANY, INC. ALL RIGHTS

RESERVED. NO PART OF" THIS PUBLICATION MAY BE REPRODUCED, STORED IN A RE·

TRIEVAL SYSTEM, OR TRANSMITTED, I N ANY FORM OR BY ANY MEANS, ELECTRONIC,

MECHANICAL, PHOTOCOPYING, RECORDING, OR OTHERWI SE, WITHOUT THE PRIOR WRlT·

TEN PERMISSION OF THE PUBLISHER. PRINTED I N THE UNITED STATES OF AMERICA.

PUBLI SH ED SIMULTANEOUSLY IN CANADA. LIBRARY OF CONGRESS CATALOG CARD NO.

73-1830.

ISBN 0-20 1-03809-9
CDEFGH IJ-MA-79876.

He
pub/is

recipe

Now we ca

if you

The process of preparing
not only because it can
because it can be an aes
This book is the first v<
signed to train the reade

The following chap1
puter programming; th
perience. The prerequi
time and practice before
puter. The reader shou:

a) Some idea of how a
the electronics, rath
machine's memory a
language will be he!

b) An ab ility to put t r
computer can "uncle
t hey have not yet lE
no more and no !es:
first tries to use a cc

c) Some knowledge ol
looping (performin g
and the u e of inde}

d) A little knowledge o
"bits," "float ing po
are given brief defin

* or she. Masculine pronO\
Occasional chauvinistic com1

ASSA ABLOY Ex. 1020 - Page 2
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

234 I NFORMATIO N STRUCTURES

2.2. LINEAR LISTS

2.2 .1. Stacks, Queues, and Deques

Usually t here is much more structural information present in t he data than ,
actually want to represent directly in a computer. In each "playing card" n .
of the preceding section, for example, we have a NEXT field to specify what card •
beneath it in the pile, but there is no direct way to find what card, if an_
is above a given card, or to find which pile a given card is in. Of course, there •
much information possessed by any real deck of playing cards which has be, .
totally suppressed from the computer representation: t he details of the de i
on the back of t he cards, the relation of the cards to other objects in the roor:
where the game is being played, the molecules which compose the cards, etc. I·
is conceivable that such structural information would be relevant in certair.
computer applications, but obviously we never want to store all of the structure
present in every situation. Indeed, for most card-playing situat ions we would
not need all of the facts retained in our earlier example; thus the TAG field, which
tells whether a card is face up or face down, will often be unnecessary.

It is therefore clear t hat we must decide in each case how much structure to
represent in our tables, and how accessible to make each piece of information.
To make t his decision, we need to know what operations are to be performed on
the data. For each problem considered in this chapter, we therefore consider not
only the data structure but also the class of operations to be done on the data; the
design of computer representations depends on the desired function of the data
as well as on its intrinsic properties. Such an emphasis on "function" as weH as
"form" is basic to design problems in general.

In order to illustrate this point further, let us consider a simple example
which arises in computer hardware design. A computer memory is often classified
as a "random access memory," i.e., MIX's main memory ; or as a "read only
memory, " i.e., one which is to contain essentially constant information; or a
"secondary bulk memory," like MIX's disk units, which cannot be accessed at
high speed although large quantit ies of information can be stored; or an "asso
ciative memory," more properly called a "content-addressed memory," i. e., one
for which information is addressed by values stored with it rather than by its
location ; and so on. Note that the intended function of each kind of memory is
so important that it enters into the name of the particular memory type; all of
these devices are "memory " units, but the purposes to which they are put
profoundly influence their design and their cost.

A linear list is a set of n ~ 0 nodes X[l], X[2], ... , X[n] whose structural
properties essentially involve only the linear (one-dimensional) relative positions
of the nodes: the facts that, if n > 0, X[l] is the first node; when 1 < k < n,
the kth node x[lc] is preceded by X[k - 1] and followed by X[k + 1] ; and x[n]
is the last node.

The operations we might want to perform on linear lists include, for example,
the fo llowing.

- l

i) Gain acce to the i
the content of it fi

ii) In ert a new node j 1

iii) Delete the kth node
iv) Combine two or mo
y) plit a linear li t in

vi) ake a copy of a li
vii) Determine the nun:
·iii) Sort the nodes of t

of the nodes.
ix) Search the list for

some field.

operations (i) , (ii), and (i
portance since the first a

a general element is.
pter, since these topics :

computer applicatio1
eir full generality, so we
pending on the class of c

- difficult to design a sin
of these operations are

e kth node of a long list
e time we are inserting

re we distinguish betwe
erations to be perform<

!e distinguished by their
Linear lists in which in

ways at the first or the 1:
em special names:

A stack is a linear list
accesses) are mac

A qiieue is a linear list
all deletions (anc

A deque ("double-end
deletions (and u

. deque is therefore more
m common with a deck,
.fu tinguish output-restrict
ertions, respectively, an

In some disciplines tl
o describe any kind of Ii

cases identified above a1

ASSA ABLOY Ex. 1020 - Page 3
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.2

ion present in the data than we
ir. In each "playing card" node
~EXT field to specify what card is
¥ay to find what card, if any,
n card is in. Of course, there is
f playing cards which has been
ation: the details of the design
ds to other objects in the room
hich compose the cards, etc. It
1 would be relevant in certain
·ant to store all of the structure
rd-playing situations we would
:1,mple; thus the TAG field, which
ll often be unnecessary.
wh case how much structure to
1ake each piece of information.
~rations are to be performed on
1apter, we therefore consider n ot
ions to be done on the data; the
he desired function of the data
phasis on "function" as well a

us consider a simple example
;mter memory is often classified

memory; or as a "read only
.ly constant information · or a
, which cannot be acces~ed a
on can be stored ; or an "asso
t-addressed memory," i. e., one
red with it rather t han by i
tion of each kind of memory ·
9articular memory type; all o
·poses to which they are pu

2], ... , X[n] whose structu r
dimensional) relative position:.
first node; when 1 < k < n

Jllowed by X[k + l] ; and x[

near lists include, for example

2.2. 1 STACKS, QUEUES, AND DEQUES 235

i) Gain access to the kth node of the list to examine and/ or to change
the contents of its fields.

ii) Insert a new node just before the kth node.
iii) Delete the kth node.
iv) Combine two or more linear lists into a single list.
v) Spli t a linear li st into two or more lists.

vi) Make a copy of a linear list.
vi i) Determine the number of nodes in a list.

viii) Sort the nodes of the list into ascending order based on certain fields
of the nodes.

ix) Search t he list for the occurrence of a node with a part icular value in
some field.

In operations (i), (ii), and (iii) the special cases k = l and k = n are of principal
importance since the first and last items of a linear list may be easier to get at
·han a general element is. We will not discuss operations (viii) and (ix) in t his
·hapter, since t hese topics are the subj ects of Chapters 5 and 6, respectively.

A computer application rarely calls for all nine of t he above operations in
· heir full generality, so we find t here are many ways to represent linear lists
lepending on the class of operations which are to be done most frequently. It

i.:; difficult to design a single representation method for linear lists in which
all of these operations are efficient; for example, the ability to gain access to
he kth node of a long list for random k is comparatively hard to do if at the

, ame time we are inserting and deleting items in the middle of the list . There
:ore we distinguish between types of linear lists depending on the principal

perations to be performed, just as we have noted that computer memories
re distinguished by their intended applications.

Linear lists in which insertions, deletions, and accesses to values occur almost
Jways at the fi rst or t he last node are very frequently encountered, and we give
· hem special names :

A stack is a linear li st for whi ch all insertions and deletions (and usually all
accesses) are made at one end of the list.

A queue is a linear list for whi ch all insertions are made at one end of t he list;
all deletions (and usually all accesses) are made· at the other end.

A deque ("double-ended queue") is a linear list for which all insertions and
deletions (and usually all accesses) are made at t he ends of the list.

A deque is therefore more general than a stack or a queue; it has some properties
.n common with a deck of cards, and it is pronounced the same way. We also
Jistinguish output-restricted or input-restricted deques, in which deletions or in
,ertions, respectively, are allowed to take place at only one end.

In some disciplines the word "queue" has been used in a much broader sense
·o describe any kind of list that is subj ect to insertions and deletions; the special
a es identified above are then called various "queuing disciplines." Only the

ASSA ABLOY Ex. 1020 - Page 4
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

240 INFORMATION ST RUCTURES 2.2.2

2.2.2. Sequential Allocation

The simplest and most natural way to keep a linear list inside a computer is to
put the list items in sequential locations, one node after the other. We thus will
have

LOC(X[j + l]} = LOC(X[j]) +c,

where c is the number of words per node. (sually c = 1. When c > 1, it is
sometimes more convenient to split a single list into c "parallel" lists, so that
the kth word of node X[jl is stored a fixed distance from t he location of the
first word of X[j l. We will continually assume, however, that adjacent groups
of c words form a single node.) In general,

LOC (X [j]) = Lo + cj,

where L0 is a constant called the base address, the location of an artificially
assumed node X[0 l.

This technique for representing a linear list is so obvious and well-known
t hat there seems to be no need to dwell on it at any length. But we will be
seeing many other "more sophisticated " methods of representation later on in
t his chapter, and it is a good idea to examine t he simple case first to see just how
far we can go wi th it. It is important to understand the limitations as well as
the power of the use of sequential allocation.

Sequential allocation is quite convenient for dealing with a stack. We simply
have a variable T called t he stack pointer. When t he stack is empty, we let
T = 0 .. To place a new element Yon top of the stack, we set

T - T + l ; X[Tl f-Y. (2)

And when the stack is not empty, we can set Y equal to the top node and delete
that node by reversing t he actions of (2) :

Y f- X[T]; Tf-T - 1. (3)

(Inside a computer it is usually most efficient to maintain the value cT instead
of T, because of (1) . Such modifications are easily made, so we will continue our
discussion as though c = 1.)

The representation of a queue or a more general deque is a litt le trickier. An
obvious solution is to keep two pointers, say F and R (for the front and rear of
the queue), with F = R = 0 when the queue is empty. Then inserting an ele
ment at the rear of the queue would be

X(R] f-Y. (4)

Removing the front node (F points just below the front) would be

F-F + l ; Yf-X[F] ; if F = R, then set Ff-Rf--0. (5)

But note what can happen: If R always stays ahead of F (so there is always at

- one node in the queue)
infinitum, and thi i ter

_ . 5) i therefore to be u 1

. quite regularly (for ex
queue).
To circumvent the prol

-· e M nodes X[l] , . .. , X[M
J· Then the above proce

if R = M then

if F = M then

circular queuing actio1
- ·u ion of input-ou tput

T he above discussion
-- 1mcd

1

nothing could go
eue, we assumed that th
ode onto a stack or queL
rly the method (6), (,
hods (2) , (3), (-!) , (5) al

hi n any given computm
ve actions must be re\\

..at these restrictions are

x = Y (insert into stack)

: = x (delete from stack)

x = Y (insert into queue

-: = x (delete from queue

Herc we assume that X[l l
. t ; OVERFLOW and UNDER I
he initial setting F = R •

e (6a) and (7a); we she
The reader is urged 1

of this simple queuing m
The next question is,

In the case of UNDERFLOV
u ually a meaningful cor
govern the flow of a pro

ASSA ABLOY Ex. 1020 - Page 5
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

