

T h e G r o u p o f T h r e e

2013

Arrays and Pointers
Class Notes

Comp 2401

CPC EX 2046 - Page 001
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Introduction To Arrays:

In C programming, one of the frequently problem is to handle similar types of data. For example: if the
user wants to store marks of 500 students, this can be done by creating 500 variables individually but,
this is rather tedious and impracticable. These types of problem can be handled in C programming using
arrays.

An array in C Programing can be defined as number of memory locations, each of which can store the
same data type and which can be references through the same variable name. It is a collective name
given to a group of similar quantities. These similar quantities could be marks of 500 students, number
of chairs in university, salaries of 300 employees or ages of 250 students. Thus we can say array is a
sequence of data item of homogeneous values (same type). These values could be all integers, floats or
characters etc.

We have two types of arrays:

1. One-dimensional arrays.
2. Multidimensional arrays.

One Dimensional Arrays:

A one-dimensional array is a structured collection of components (often called array elements) that can
be accessed individually by specifying the position of a component with a single index value. Arrays must
be declared before they can be used in the program. Here is the declaration syntax of one dimensional
array:

 data_type array_name[array_size];

Here “data_type” is the type of the array we want to define, “array_name” is the name given to the
array and “array_size” is the size of the array that we want to assign to the array. The array size is always
mentioned inside the “[]”.

For example:
Int age[5];

int age [5];

Here int is

the data

type

Age is the

name of the

array

[5] is the size of

the array

CPC EX 2046 - Page 002
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The following will be the result of the above declarations:

 age[0] age[1] age[2] age[3] age[4]

Initializing Arrays

Initializing of array is very simple in c programming. The initializing values are enclosed within the curly
braces in the declaration and placed following an equal sign after the array name. Here is an example
which declares and initializes an array of five elements of type int. Array can also be initialized after
declaration. Look at the following code, which demonstrate the declaration and initialization of an array.

int age[5]={2,3,4,5,6};

It is not necessary to define the size of arrays during initialization e.g.

int age[]={2,3,4,5,6};

In this case, the compiler determines the size of array by calculating the number of elements of an array.

 age[0] age[1] age[2] age[3] age[4]

2 3 4 5 6

Accessing array elements

In C programming, arrays can be accessed and treated like variables in C.

For example:

 scanf("%d",&age[2]);
//statement to insert value in the third element of array age[]

 printf("%d",age[2]);
//statement to print third element of an array.

Arrays can be accessed and updated using its index.An array of n elements, has indices ranging from 0 to
n-1. An element can be updated simply by assigning

A[i] = x;
A great care must be taken in dealing with arrays. Unlike in Java, where array index out of bounds
exception is thrown when indices go out of the 0..n-1 range, C arrays may not display any warnings if out
of bounds indices are accessed. Instead,compiler may access the elements out of bounds, thus leading
to critical run time errors.

CPC EX 2046 - Page 003
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Example of array in C programming

/* C program to find the sum marks of n students using arrays */

#include <stdio.h>

int main(){

 int i,n;
 int marks[n];
 int sum=0;

 printf("Enter number of students: ");
 scanf("%d",&n);

 for(i=0;i<n;i++){
 printf("Enter marks of student%d: ",i+1);
 scanf("%d",&marks[i]); //saving the marks in array
 sum+=marks[i];
 }

 printf("Sum of marks = %d",sum);

return 0;

}

Output :

Enter number of students: (input by user)3
Enter marks of student1: (input by user) 10
Enter marks of student2: (input by user) 29
Enter marks of student3: (input by user) 11

Sum of marks = 50

Important thing to remember in C arrays

Suppose, you declared the array of 10 students. For example: students[10]. You can use array members
from student[0] to student[9]. But, what if you want to use element student[10], student[100] etc. In
this case the compiler may not show error using these elements but, may cause fatal error during
program execution.

CPC EX 2046 - Page 004
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Multidimensional Arrays:

C programming language allows the user to create arrays of arrays known as multidimensional arrays.
To access a particular element from the array we have to use two subscripts one for row number and
other for column number. The notation is of the form array [i] [j] where i stands for row subscripts and j
stands for column subscripts. The array holds i*j elements. Suppose there is a multidimensional array
array[i][j][k][m]. Then this array can hold i*j*k*m numbers of data. In the same way, the array of any
dimension can be initialized in C programming. For example :

int smarks[3][4];

Here, smarks is an array of two dimension, which is an example of multidimensional array. This array has
3 rows and 4columns. For better understanding of multidimensional arrays, array elements of above
example can be as below:

 Col 1 Col 2 Col 3 Col 4

Row 1 smakrs[0][0] smarks[0][1] smarks[0][2] smarks[0][3]

Row 2 smarks[1][0] smarks[1][1] smarks[1][2] smarks[1][3]

Row 3 smarks[2][0] smarks[2][1] smarks[2][2] smarks[2][3]

Make sure that you remember to put each subscript in its own, correct pair of brackets. All three
examples below are wrong.

 int a2[5, 7]; /* XXX WRONG */

 a2[i, j] = 0; /* XXX WRONG */

 a2[j][i] = 0; /* XXX WRONG */

would do anything remotely like what you wanted

Initialization of Multidimensional Arrays

In C, multidimensional arrays can be initialized in different number of ways.

int smarks[2][3]={{1,2,3}, {-1,-2,-3}};
 OR
int smarks[][3]={{1,2,3}, {-1,-2,-3}};
 OR
int smarks[2][3]={1,2,3,-1,-2,-3};

CPC EX 2046 - Page 005
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

