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Introduction 

This paper is devoted to a refinement of the well
known technique of hashing, which allows retrieval of 
an item in a static table with a single probe. Let I be a 
given set of identifiers; if we wish to know whether an 
identifier w belongs to I, it is common practice to use 
an identifier-to-address function h to store the elements 
of I in a hash table and then to use the same function h 
to retrieve w in the table. In general, several probes 
are necessary to locate w in the table or to be convinced 
that w is not there (i.e. w E /). 

However, if h transforms the identifiers in I into 
unique addresses, a single probe is sufficient. Such a 
transformation will be called a perfect hashing function . 
In [4] Knuth defines an "amusing puzzle," to find a 
perfect hashing function for a given set I. He points 
out that a slight modification of I may change h 
completely so that the tedious calculations to find h 
become useless and everything has to be started over 
from scratch. 

Here we show how the problem of finding a perfect 
hashing function for a given set I can be mechanized. 
We claim that the use of perfect hashing functions can 
be useful in many applications. 

As a very simple example, let us consider an 
Assembler/370 program dealing with a lot of dates, in 
which the month is abbreviated to the first three 
characters. A fast routine is to be designed to recognize 
the month, to check if it is correctly spelled, and to 
point to some related information. Since the set is so 
small, a linear search is usually preferred. The month 
abbreviations are stored in the table TABLE in the 
last three bytes of a full word, with the first byte set to 
zero; the month to be searched for is right adjusted in 
the full word MONTH, located at the end of TABLE, 
i.e. MONTH equals TABLE + 48. 

Figure 1 gives a possible piece of coding, where, 
on the right, we have written the units of time (see 
Knuth [3]) relative to each instruction. C is the number 
of times the loop is executed. Assuming C = 6.5, we 
have a total score of 34. We remark that it is useless 
to unroll the loop because we wish to know explicitly 
the index in the table for further use. 

Now, according to the theory developed in Section 
3, we can set up a perfect hash table with an appropri
ate perfect hashing function (Table I) and use the 
piece of coding given in Figure 2. 

The perfect hashing function is performed by the 
four instructions in the shaded area. Summing up the 
units of time we get a total score of 26, an improvement 
of about 24 percent over the linear search. 

As an example, let us suppose that MONTH con
tains 'FEB'. In register 3 we load the characters 'EB' 
corresponding to the decimal number 50626; adding 9 
and multiplying by 28 = 256 we get 12962560; dividing 
by 23, in register 2 we find the remainder 13, so that 
the last shift gives 6 in register 3. In fact, 'FEB' is the 
month at location 6 in TABLE. 
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Fig. 1. 

L 1 ,~1ONTH 2 
LA 2,LOOP 1 
LA 3,4 1 
LNR 3,3 1 

LOOP LA 3, 4 (3) C 
C 1 ,TABLI: (3) 2C 
BNER 2 C 
C 3,=F'48' 2 
BE FAILURE 1 

Fig. 2. 

L 1 ,MONTH 2 
LA 3 I 1 1 
N 3,=X'FFFF' 2 
SR 2,2 1 
LA=3 9(3 1 
SLA= 3 8 2 
o=2 =F'23' 10 
SRDA= 2 33 2 
SLA 3,2 2 
C 1,TABLE (3) 2 
BNE FAILURE 1 

Table I. 

TABLE MAR 
+1 OCT 
+2 JUN 
+3 SEP 
+4 AUG 
+5 JAN 
+6 FEB 
+7 APR 
+8 DEC 
+9 NOV 
+10 JUL 
+11 MAY 

We have developed direct methods to derive per
fect hashing functions for small sets, say with at most 
10-12 elements, and we have extended our results to 
larger sets. 

In Section 1 we give some general definitions and a 
more formal approach to the problem; in Section 2 we 
present the "quotient reduction" method for construct
ing perfect hashing functions. Section 3 is devoted to 
the "remainder reduction" method, and, finally, in 
Section 4, we extend our results to larger sets. 

1. General Considerations 

Essentially we are interested in functions defined 
on sets of identifiers. However, because of the repre
sentation of characters in the computer memory, we 
may consider functions on integers without any loss of 
generality. 

Let N denote the set {O, 1, 2, 3, ... } of natural 
numbers and Z the set of integers; for n, n ', m E Z, 
"n mod m" is the remainder (~O) of the integer 
division of n by m, and n = n' (modulo m) is the 
congruence relation defined by: n mod m = n' mod m. 
Furthermore, if n < m, [n, m] is the interval {n, n + 
1, ... , m - 1, m}, the length of which ism - n + 1. 

842 

Zm denotes the set of residues modulo m, i.e. the 
interval [O, m - 1]; Gm is the set of integers q such 
that O < q < Im I and q is prime to m; the number of 
the elements in Gm is <f,(m), the Euler totient function 
applied to m. Occasionally we use the group structure 
of Zm and Gm imposed by addition and multiplication 
modulo m, respectively. Finally, Lx J and f x 1 denote the 
floor and ceiling functions applied to the (real) number 
X. 

Given a set / = {w1 , w 2 , ••• , wn} of natural 
numbers and w E N, we consider the problem of 
determining in a practical way whether w E /. Usually 
the elements of / are stored in a table with m (~n) 
locations, and w is to be searched for in the table. Two 
reviews of a variety of techniques usable for this 
purpose can be found in [4] and [7]. 

One of the most efficient techniques is hashing 
(see also [2] and [5]). The method consists in using a 
hashing function h:N - Zm and storing an element W; 

E / at location h(w;) in the table. The same function h 
is then used to check whether a given w E N is present 
in the table. Since several elements in / can hash to 
the same address, different methods have been devel
oped to store and locate colliding elements. Therefore 
in general more than one probe (i.e. access to the 
table) is necessary to verify that w E / or to be 
convinced that w ft. /. The average number of probes 
can be made close to 1 at the cost of having sparse 
tables, that is, tables with a loading factor n/m much 
less than 1. 

The set / may be static, that is, it does not change 
during the execution of a program. In this case, the 
distribution of the elements of/ can be used to design 
a hashing function h which improves on the usual 
performance of hashing. 

The best situation is given by a function h such that 
h on / is injective and max h(I) = n - 1. The first 
condition assures that a single probe is sufficient to 
retrieve an element, and the second assures that the 
table is full. Given the set/, we are going to show that 
it is possible to construct a function h ( depending on /) 
which satisfies the first condition and allows us to use 
a table with a loading factor very close to 1. 

A perfect hashing function (phf for short) for / is a 
function h: N - N such that h on/ is injective, min 
h(I) = 0, and max h(I) = m - 1 for some m ~ n (m is 
the length of the table). A minimal perfect hashing 
function for/ is one for which m = n. 

The elements in / are assumed to be in ascending 
order; thus the set/ is determined by its first element 
w 1 and the ordered set of its 1st-differences 6; = W;+1 

- w; for every i E [l, n - 1]. Obviously any difference 
wi - w; can be expressed in terms of the differences 6;. 

2. Quotient Reduction Method 

The first, and perhaps the only, previous systematic 
attempt to construct perfect hashing functions is given 
in [1]. However, if we consider the set / = {l, 3, 8, 

Communications 
of 
the ACM 

November 1977 
Volume 20 
Number 11 

ASSA ABLOY Ex. 1022 - Page 2 
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd. 

IPR2022-01093 - U.S. Patent No. 8,620,039
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


14, 17, 23}, given there as an example, the function 
h(w) = l(w + 3)/5J is a far simpler minimal perfect 
hashing function for I than the function described by 
Greniewski and Turski. 

This example illustrates the first method we pre
sent, the quotient reduction method. Given a finite set 
I C N, the method consists in translating the set I and 
then taking the integer quotients by some divisor N E 
N: ('v'wEI) more formally, h(w) = l(w + s)/NJ for 
some integers depending on I. A function of this form 
will be called a quotient reduction perfect hashing 
function. 

The translation term s can be decomposed s = qN 
+ s' for some integers q ands' (0 :s; s' < N). The term 
qN allows us to have h(w 1) = 0, while s' is used to 
adjust the elements of I to different intervals [kN, (k 
+ l)N - 1] so that 

h(w;) =I- h(w1) (2.1) 

for every i, j E [1, n] and i =I=- j. 
The perfect hashing functions generated by this 

method are very simple and work well for uniformly 
distributed sets. Furthermore the results obtained will 
be used later to develop more general techniques. 

Algorithm Q (Quotient reduction): Given a set / as above, this 
algorithm finds the best quotient reduction phf for/. 

(a) [find upper bound for NJ N0+-min{l(w1-w,-1)/(i-i-l)J I i, 
jE[l, n-1) andj>i+l}; 

(b) [initialize A] A+-[1, N 0] (at the end of step (c) the set A will 
contain all the possible values for N); 

(c) [scan/] Vi,jE[l, n-1) such thatj>i and 8,+8;SN0 do: 
(cl) [initialize D] d+-8,+81-l; D+-[l, d] (at the end of step 

( c3) the set D will contain all the values N satisfying (2 .1) 
relative to i and j); 

(c2) [find 0' and 0"] m+-(w1+l)-w;+ 1 ; M+-w1+ 1 -(w,+l); 
0'+-[m/N0l; 0''+-[m/(d+l)l; 

(c3) [determine D] '1'0EZ (0's(Js(J''), do: D+-DU[fm/01, LM/0J]; 
(c4) [update A] A+-AnD; 

(d) [find NJ N+-maxA (N is taken as large as possible in order to 
get the smallest table); 

(e) [initialize J] J+-ZN (at the end of step (f) the set J will contain 
the integerss(Oss<N) satisfying (2.1) for every dj); 

(f) [determine J] ViE[l, n-1) such that 81<N, do: J+-J n 
{(t-w;+1)mod N I Ost<S,}; 

(g) [a smaller N, if necessary] if J=0, drop N from A and go to 
step (d); 

(h) [choose best t] let t be any element in J minimizing (w,+t)mod 
N (this condition assures that the table is of minimal length); 

(i) [finds] s+-t-Nl(w, +t)/NJ. 

Now let us show that this algorithm is correct. 
First we prove that N 0 is an upper bound for N. By 

(2.1), for j > i + l we have h(w1) - h(w;) > j - i - l; 
hence (w1 + s) > (w; + s) + (j - i - l)N, and so: 

N :s; l(w1 - W; - 1)/(j - i - l)J (2.2) 

for i, j E [l, n] andj > i + l. 
As an example throughout this section, let us 

consider the set I= {17, 138, 173, 294, 306, 472, 
540, 551, 618}. We compute N 0 by means of Table II, 
which contains the differences of the elements in I. On 
each row we have circled the least difference w 1 - w;, 
and on the right we have computed l(w; - W; - 1)/(j 
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Table II. 

L77/1J =77 

L14 5;2J =n 

L256/3J =85 

L323/4J =80 

L412;5J =82 

L4 79/GJ =79 

L600;1J =85 

- i - l)J. Thus we have N 0 = 72 and, by step (b), a= 
[l, 72]. 

Now, before explaining step (c), we have to analyze 
the role played by the set J. So let us suppose that N 
has already been found and consider steps (e) and (f). 
For every w; E /, an admissible increment for W; is any 
integer t for which condition (2 .1) is satisfied for j = i 
+ 1: 

l(wi+1 + t)/NJ =I=- l(w; + t)/NJ. (2.3) 

In other words, an admissible increment for W; is any 
translation value which adjusts w; and W;+ 1 to two 
different intervals [kN, (k + l)N - 1]. Clearly a 
quotient reduction phf for I can be found if and only if 
there exists an admissible increment which works for 
every w; E /. 

The set of all the admissible increments for W; is 
given by J*(w;) = {u - wi+ 1 + kN IO :s; u < 8; and k E 
Z}. In fact, let t = u - wi+ 1 + kN; then we have W; + t 
= w; + u - wH 1 + kN = u - 8; + kN and wH1 + t = 
W;+ 1 + u - W;+ 1 + kN = u + kN, and relation (2.3) 
holds if and only if O :s; u < 8;. 

We can ignore the term kN in the expression for 
J*(w;) and define the set J(w;) of the reduced admissible 
increments for w;: 

J(w;) = {(t - W;+ 1)mod NI 0 :s; t < 8;}. (2.4) 

Obviously, if 8; 2: N, J(w;) = ZN and no computation 
is necessary. Thus steps (e) and (f) determine the set J 
= nf,:-l J(w;) correctly, and, as we remarked above, 
there exists a quotient reduction phf for I if and only if 
J =I=- 0. 

In our example, let us suppose N = 64 (:572 = 
N 0). In Table II we put in a box the 1st differences less 
than 64. It is: 

1(138) = {(t - 173)mod 64 J O :s; t < 35} = [19, 53], 
1(294) = {(t - 306)mod 64 I O :s; t < 12} = [14, 25], 
1(540) = {(t - 551)mod 64 I O :s; t < 11} = [25, 35], 

and J = {25}. The reader can verify that for N = 65 
and N = 63, J = 0 and J = [16, 21], respectively. 
Thus there exist quotient reduction phf's for N = 63 
and N = 64, but not for N = 65. 

Now, looking at the thing from the other side, we 
can determine the set a of possible values of N for 
which the associated set J is nonempty. We can prove 
that if J =I=- 0 (relative to N) then 'v'w;, w1 E I (i < j) 
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there exists a multiple of N in the interval Tu = [mu, 
Mu], where mu = (wj + 1) - wi+1 and Mu = wJ+1 - (w; 
+ 1). In fact, by (2.4), J(wi) n J (wj) =f- 0 if and only if 
there exist two elements a EA = {wi+1 - t I O :5 t < 
6;} and b EB = {wHl - t I 0 :5 t < 6j} such that a = b 
(modulo N). This means that the set of all the differ
ences between the elements in B and the elements in 
A must contain a multiple of N. But this set is just Tu, 
because its limits are the cross-differences of the limits 
of Band A. 

The converse is not true because J can be empty 
although the J(wi)'s are not pairwise disjoint. Thus 
maxA is a better approximation to N than N 0 , but A 
may contain elements which do not correspond to any 
quotient reduction phf for I. Actually step (c) can be 
eliminated; however, as shown by the example below, 
when N is smaller than N 0 , step (c) can save a lot of 
computations relative to the J(w;)'s. 

Now, if we call Du the set of positive integers with 
a multiple in the interval Tu, we have to choose N in 
the set A = [l, N 0] n ni<j Du. By definition, it is Du = 
U1s11sm

0 
ffmu/01, LMu/0J]; however, we can remark 

that: 
'(a) since N :s; N 0 , the useful lower limit for 0 is 0' = 

rmu/Nol; 
(b) the length of the interval Tu is d = wJ+1 - (w; + 1) 

- (wj + 1) + wi+ 1 + 1 = 6; + 61 - 1; so every 
integer in [l, d] has a multiple in Tu. This implies 
that (i) every couple (i, j) for which d = 6; + 6j -
1 2:: N 0 can be ignored in the computation of A, 
and (ii) the upper limit for 0 is 0'' = [mu/(d + 1)]. 

So we have Tu = [l, d] U U6'sl/slf' [[mu/01, LMu/0]], 
and step ( c) determines the set A correctly. 

In our example we have to consider the following 
intervals: 

T24 = [122, 167] for which d = 46, 0' = 2, 0" = 3; 
T27 = [368,412] for which d = 45, 0' = 6, 0" = 8; 
T 47 = [235, 256] for which d = 22, 0' = 4, 0" = 11; 

so: 
[1, 55] U [61, 72]; 
[1, 51] U [53, 58] U [62, 68]; 
[l, 25] U [27, 28] U [30, 32] U [34, 36] 

U [40, 42] U [47, 51] U [59, 64]; 
[1, 25] U [27, 28] U [30, 32] U [34, 36] 

U [40, 42] U [47, 51] U [62, 64]. 
Now, every N E A can possibly determine one or 

more quotient reduction phf's. It is possible to show 
that if N > N' the table length for N is not longer than 
any table length for N'. Hence we choose N as large as 
possible (steps (d) and (g)). In our example, for N = 
64 = max A, it is J = {25}. 

Finally, let us come to steps (h) and (i). Up to this 
moment, we have found N and the set J of the reduced 
admissible increments relative to N. Every t E J 
determines a quotient reduction phf for/; in order to 
have h(w1) = 0, the translation value St is given by St = 

t - [(w1 + t)/N]. Since we are looking for the shortest 
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table, h(wn) is to be as smalll as possible. This occurs 
when w1 + St (which is non-negative and less than N) 
takes its nearest value to 0. However, since w1 + t = 
w1 + St (modulo N), the quantity (w1 + t)mod N is to 
be as small as possible, and this condition determines 
the value t of the "best" redm:ed admissible increment. 

In our example, it is s = t = 25, and the best 
quotient reduction phf is h(w) = L(w + 25)/64J. It is 
not minimal, as shown by the! following table: 

w 17 138 173 294 306 472 540 551 618 
h(w) 0 2 3 4 5 7 8 9 10 

Now, let us consider a possible improvement of the 
quotient reduction method. Obviously, in order to 
have an (almost) full table for a given set/, we should 
have N = (wn - w 1)/(n - 1). However, if the elements 
in I are not uniformly distributed, N can be consider
ably smaller than this best value; so the table is sparse. 
Often it is possible to obtain shorter tables introducing 
the concept of a cut. A cut consists in translating all 
the elements in I larger than a certain value (the cut 
value) before performing the quotient reduction. Since 
the cut value can be identified with some Wt E /, the 
index t will be called the cut point and the perfect 
hashing function h is defined by: 

h(w;) = [(wi + s)/N], 
h(w;) = [(w; + s + r)/N], 

for some integer r. 

Vi :s; t, 
Vi> t, 

(2.5) 

The problem consists in finding the cut value (or, 
equivalently, the cut point) and the integer r for which 
the table may be of minimal length. In order to satisfy 
condition (2.3), the integer r should produce an admis
sible increment common to all the elements in I. An 
obvious approach is to try successively all the elements 
w1 , w2 , ••• , Wn-I as possible cut values. This leads to 
the following Algorithm C. An important point in this 
algorithm is the evaluation of N; we ignore the differ
ences of elements in I on opposite sides of the cut 
point. Actually the values of these differences will be 
determined only when the integer r is known. 

Algorithm C (Quotient reduction with a cut). Given a set /, this 
algorithm determines the cut point t and the integer r, allowing us to 
obtain the best cut reduction phf of the form (2.5). 

(a) [initialize t] ,-1; 
(b) [upper bound for N,] N0-min {l(wJ-w,-1)/(j-i-l)Jl(i,jE[l, t] 

or i,jE[t+ 1, n]) andj>i+ l} (ignore couples w,, WJ such that i:5t<j); 
(c) [find A] evaluate A as in steps (b) and (c) of Algorithm Q; 
(d) [find N,] N,-maxA; 
(e) [admissible increments] h-nl:l {(v-wi+,) mod N,I0:5v< 61}; 

la-nf.:;'t-, {(v-wi+,) mod N,I0:5v<61}; 

(f) [a smaller N,, if necessary] if either h or la is empty, drop N, 
from A and go to step (d); 

(g) [lower bound for 6;] 60-min {(j-i-1) N,+1-wJ+w,+6,li:5t<j}; 
(h) [finds', 6;] perform the following steps: 

(hl) p-min {pE[l, N,]1(-w,-p) mod N,Eh}; 
(h2) lets' be the element in h corresponding to the value of p; 
(h3) 6;-min {62:60 l 3j"Ela such that 6=w1+1+j"+p (moduloN,)}; 

(i) [determiner, s] r,~;-61; s1~-s'-N,L(w 1+l·')/N,J; 
(j) [length of the table] L,~(w.+s1+r,)/N,J-1; 
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(k) [loop on t] t+-t+ 1 and go to step (b) if t<n; 
(I) [table of minimal length] let zany index for which Lz is minimal 

and outputs,, N,, w,, rz. 

Now let us show that this algorithm is correct. For 
fixed t, we consider the set I1 = {w;j 1 :5 i :5 t} U {w; + 
rlt < i :5 n}; then the function (2.5) relative to I is 
equivalent to a quotient reduction phf for I1• However, 
the 1st differences of I1 equal the 1st differences of I, 
except for 8; = 81 + r. Thus the determination of r is 
equivalent to the evaluation of 8;, and the most impor
tant steps of the algorithm are (g) and (h). 

Step (g) determines a lower bound for 8; by apply
ing relation (2 .2) to the set of differences w i - w; (i :5 

t < j). By steps (hl) and (h2) we have p = -w1 - s' + 
k'N, and by (h3), 8; =w1+1 + j" + p + k" N = 81 + j" 
- s' + kN, where k = k' + k"; hence, for every w; E 

Ii (i > t), w;+I + s' = W;+1 + 8; - 81 + s' = W;+1 + j" + 
kN. This proves thats' is a reduced admissible incre
ment for w;. Since 8; ~ 80 , s' is a reduced admissible 
increment for every element in ft. Actually p has been 
defined in such a way that s' is the "best" reduced 
admissible increment. Thus Algorithm C determines 
the best cut reduction phf (2 .5) correctly. 

The run time of Algorithm C, however, is exceed
ingly high, at least of order Kn 3 , where K is the largest 
value of 0" - 0' + 1 (step (c3)). If we content 
ourselves with a near-to-optimal function of the form 
(2.5), we can find a far better algorithm. In fact, N is 
usually very close to N 0 , and, by construction, a cut 
adjusts w1 and w1+ 1 to two consecutive intervals [kN, 
(k + 1) N - l]. Thus we may assume that the value 
(wn - w 1 - 81)/N0 + 3 approximates the length of the 
table obtained using t as a cut point. This leads to the 
following: 

Algorithm S (Simplified quotient reduction with a cut). Given a set 
I, this algorithm first determines the cut point t corresponding to a 
nearly optimal perfect hashing function of the form (2.5) and then 
finds the other parameters of the function. 

(a) [initialize t] t+---1; 
(b) [upper bound for N] N'/ +- min {l(wJ-w,-1)/(j-i-l)Jf(i, jE[l, 

t] or i,jE[t+l, n]) andj>i+l}; 
(c) [approximate length of the table] L1--(w.-w,-6,)/N'/; 
(d) [loop on t] let t+-t+l and go to step (b) if t<n; 
(e) [shortest table] let z be any index for which Lz is minimal; 
(f) [initialize N] N+-N~+ 1; 
(g) [decrement N] N+-N-1; 
(h) [admissible increments] h+-nf;;;/ {(v-wH,) mod Nf0sv<6,}; 

JR+-nr;;;J+1 {(v-wi+,) mod NI 0sv<6i}; 
(i) [lower bound for 6;] 60+-min{(j-i-l) N+l-wJ+w,+6zfisz<j}; 
(j) [finds', 6;] perform the following steps: 

(jl) p+-min {pE[l, N]l(-wz-p) mod NEh}; 
(j2) lets' be the element in h corresponding to the value of p; 
(j3) 6;+-min {62e:60 f 3j"EJR such that 6=Wz+1+j"+p (moduloN)}; 

(k) [determiner, s] r--8;-6z; s+-s'-NL(w,+s')/NJ; 
(I) [output results] outputs, N, w,, r. 

Let us apply Algorithm S to our example; we get: 

1 2 3 4 5 6 7 8 
72 72 72 72 72 77 83 78 

6.67 7.86 6.67 8.18 6.04 6.92 7.11 6.85 

845 

so z = 5. Considering the differences in the shaded 
area of Table II, we obtain 80 = 131. Now we have h 
= 1(138) n 1(294) = [54, 65] and 18 = 1(472) n 1(540) 
n 1(551) = [30, 31]; sop = min {p E [l, 72]1 (-306 -
p) mod 72 E [54, 65]} = 61, ands' = 65. Hence 8~ = 
min {8 2:: 131 I 3j" E [30, 31] such that 8 = 4 72 + j" + 
61 (modulo 72)}, and it is simple to see that 8 = 59 or 
8 = 60 (modulo 72). However, 131 = 59 (modulo 
72); so 8~ = 131, r = -35, s = -7. The perfect 
hashing function obtained is minimal and can be imple
mented by the two Fortran statements: 

IF(W.GT.306) W = W - 35 
H = (W - 7)/72 

where Hand Ware INTEGER variables. 

We conclude this section with three remarks: 
(i) The programmer has to consider the fact that if w 

> wn (and h(w) > m), w is compared to s·omething 
outside the table. Thus some care has to be taken 
when allocating the table or an extra comparison 
between h(w) and rn must be introduced. 

(ii) It is possible to consider cut reduction phf's with 
more than one cut. An algorithm similar to Algo
rithm S is easily devised to get a near-to-optimal 
function of this new type. 

(iii) All the functions considered in this section are 
monotonic. 

3. Remainder Reduction Method 

As we have remarked, the quotient reduction 
method works well when the set I is uniformly distrib
uted. However, this is not always the case, especially 
when the elements in I are derived from identifiers 
coded in EBCDIC. In fact, the collating sequence for 
letters and digits contains three large gaps - between I 
and J, Rand S, and Zand 0. 

When the set I is not uniformly distributed, we can 
scramble its elements to get a more uniform distribu
tion and try to apply a quotient reduction phf to the 
scrambled set. To scramble the elements of I in a 1-1 
manner, we take the moduli of the elements in I by 
some appropriate integer divisor M. This method will 
be called the remainder reduction method. 

In order that the scrambled set IM= {w; mod Mlw; 
EI} C ZM be of interest to us, we should have: 

w; =I:- wi (modulo M), Vi, j E [l, n] and i =I= j. (3.1) 

If D is the set of divisors of some difference w i - w; (j 
> i), condition (3 .1) is verified if and only if M ft. D. 
In what follows, we suppose M ft. D if not otherwise 
stated. 

We are interested in obtaining remainder reduction 
perfect hashing function of the form: 

h(w) = l((d + wq) mod M)/NJ. (3.2) 

In order to do this, the values d, q, N, and M must be 
suitably chosen. In particular, to chose N and d, we 
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