
Programming
Techniques

R. L. Rivest, S.L. Graham
Editors

Perfect Hashing
Functions: A Single
Probe Retrieving
Method for Static Sets
Renzo Sprugnoli
Istituto di Elaborazione della Informazione
del Consiglio Nazionale delle Ricerche

A refinement of hashing which allows retrieval of
an item in a static table with a single probe is
considered. Given a set I of identifiers, two methods
are presented for building, in a mechanical way,
perfect hashing functions, i.e. functions transforming
the elements of I into unique addresses. The first
method, the "quotient reduction" method, is shown to
be complete in the sense that for every set I the
smallest table in which the elements of I can be stored
and from which they can be retrieved by using a
perfect hashing function constructed by this method
can be found. However, for nonuniformly distributed
sets, this method can give rather sparse tables. The
second method, the "remainder reduction" method, is
not complete in the above sense, but it seems to give
minimal (or almost minimal) tables for every kind of
set. The two techniques are applicable directly to
small sets. Some methods to extend these results to
larger sets are also presented. A rough comparison
with ordinary hashing is given which shows that this
method can be used conveniently in several practical
applications.

Key Words and Phrases: hashing, hashing
methods, hash coding, direct addressing, identifier-to
address transformations, perfect hashing functions,
perfect hash coding, reduction, scatter storage,
searching

CR Categories: 3.7, 3.74, 4.34

Copyright© 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
t~is material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per
mission of the Association for Computing Machinery.

Author's address: Istituto di Elaborazione della Informazione
del Consiglio Nazionale delle Ricerche, Via S. Maria 46, 156100
Pisa, Italy.

841

Introduction

This paper is devoted to a refinement of the well
known technique of hashing, which allows retrieval of
an item in a static table with a single probe. Let I be a
given set of identifiers; if we wish to know whether an
identifier w belongs to I, it is common practice to use
an identifier-to-address function h to store the elements
of I in a hash table and then to use the same function h
to retrieve w in the table. In general, several probes
are necessary to locate w in the table or to be convinced
that w is not there (i.e. w E /).

However, if h transforms the identifiers in I into
unique addresses, a single probe is sufficient. Such a
transformation will be called a perfect hashing function .
In [4] Knuth defines an "amusing puzzle," to find a
perfect hashing function for a given set I. He points
out that a slight modification of I may change h
completely so that the tedious calculations to find h
become useless and everything has to be started over
from scratch.

Here we show how the problem of finding a perfect
hashing function for a given set I can be mechanized.
We claim that the use of perfect hashing functions can
be useful in many applications.

As a very simple example, let us consider an
Assembler/370 program dealing with a lot of dates, in
which the month is abbreviated to the first three
characters. A fast routine is to be designed to recognize
the month, to check if it is correctly spelled, and to
point to some related information. Since the set is so
small, a linear search is usually preferred. The month
abbreviations are stored in the table TABLE in the
last three bytes of a full word, with the first byte set to
zero; the month to be searched for is right adjusted in
the full word MONTH, located at the end of TABLE,
i.e. MONTH equals TABLE + 48.

Figure 1 gives a possible piece of coding, where,
on the right, we have written the units of time (see
Knuth [3]) relative to each instruction. C is the number
of times the loop is executed. Assuming C = 6.5, we
have a total score of 34. We remark that it is useless
to unroll the loop because we wish to know explicitly
the index in the table for further use.

Now, according to the theory developed in Section
3, we can set up a perfect hash table with an appropri
ate perfect hashing function (Table I) and use the
piece of coding given in Figure 2.

The perfect hashing function is performed by the
four instructions in the shaded area. Summing up the
units of time we get a total score of 26, an improvement
of about 24 percent over the linear search.

As an example, let us suppose that MONTH con
tains 'FEB'. In register 3 we load the characters 'EB'
corresponding to the decimal number 50626; adding 9
and multiplying by 28 = 256 we get 12962560; dividing
by 23, in register 2 we find the remainder 13, so that
the last shift gives 6 in register 3. In fact, 'FEB' is the
month at location 6 in TABLE.

Communications
of
the ACM

November 1977
Volume 20
Number 11

ASSA ABLOY Ex. 1022 - Page 1
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Fig. 1.

L 1 ,~1ONTH 2
LA 2,LOOP 1
LA 3,4 1
LNR 3,3 1

LOOP LA 3, 4 (3) C
C 1 ,TABLI: (3) 2C
BNER 2 C
C 3,=F'48' 2
BE FAILURE 1

Fig. 2.

L 1 ,MONTH 2
LA 3 I 1 1
N 3,=X'FFFF' 2
SR 2,2 1
LA=3 9(3 1
SLA= 3 8 2
o=2 =F'23' 10
SRDA= 2 33 2
SLA 3,2 2
C 1,TABLE (3) 2
BNE FAILURE 1

Table I.

TABLE MAR
+1 OCT
+2 JUN
+3 SEP
+4 AUG
+5 JAN
+6 FEB
+7 APR
+8 DEC
+9 NOV
+10 JUL
+11 MAY

We have developed direct methods to derive per
fect hashing functions for small sets, say with at most
10-12 elements, and we have extended our results to
larger sets.

In Section 1 we give some general definitions and a
more formal approach to the problem; in Section 2 we
present the "quotient reduction" method for construct
ing perfect hashing functions. Section 3 is devoted to
the "remainder reduction" method, and, finally, in
Section 4, we extend our results to larger sets.

1. General Considerations

Essentially we are interested in functions defined
on sets of identifiers. However, because of the repre
sentation of characters in the computer memory, we
may consider functions on integers without any loss of
generality.

Let N denote the set {O, 1, 2, 3, ... } of natural
numbers and Z the set of integers; for n, n ', m E Z,
"n mod m" is the remainder (~O) of the integer
division of n by m, and n = n' (modulo m) is the
congruence relation defined by: n mod m = n' mod m.
Furthermore, if n < m, [n, m] is the interval {n, n +
1, ... , m - 1, m}, the length of which ism - n + 1.

842

Zm denotes the set of residues modulo m, i.e. the
interval [O, m - 1]; Gm is the set of integers q such
that O < q < Im I and q is prime to m; the number of
the elements in Gm is <f,(m), the Euler totient function
applied to m. Occasionally we use the group structure
of Zm and Gm imposed by addition and multiplication
modulo m, respectively. Finally, Lx J and f x 1 denote the
floor and ceiling functions applied to the (real) number
X.

Given a set / = {w1 , w 2 , ••• , wn} of natural
numbers and w E N, we consider the problem of
determining in a practical way whether w E /. Usually
the elements of / are stored in a table with m (~n)
locations, and w is to be searched for in the table. Two
reviews of a variety of techniques usable for this
purpose can be found in [4] and [7].

One of the most efficient techniques is hashing
(see also [2] and [5]). The method consists in using a
hashing function h:N - Zm and storing an element W;

E / at location h(w;) in the table. The same function h
is then used to check whether a given w E N is present
in the table. Since several elements in / can hash to
the same address, different methods have been devel
oped to store and locate colliding elements. Therefore
in general more than one probe (i.e. access to the
table) is necessary to verify that w E / or to be
convinced that w ft. /. The average number of probes
can be made close to 1 at the cost of having sparse
tables, that is, tables with a loading factor n/m much
less than 1.

The set / may be static, that is, it does not change
during the execution of a program. In this case, the
distribution of the elements of/ can be used to design
a hashing function h which improves on the usual
performance of hashing.

The best situation is given by a function h such that
h on / is injective and max h(I) = n - 1. The first
condition assures that a single probe is sufficient to
retrieve an element, and the second assures that the
table is full. Given the set/, we are going to show that
it is possible to construct a function h (depending on /)
which satisfies the first condition and allows us to use
a table with a loading factor very close to 1.

A perfect hashing function (phf for short) for / is a
function h: N - N such that h on/ is injective, min
h(I) = 0, and max h(I) = m - 1 for some m ~ n (m is
the length of the table). A minimal perfect hashing
function for/ is one for which m = n.

The elements in / are assumed to be in ascending
order; thus the set/ is determined by its first element
w 1 and the ordered set of its 1st-differences 6; = W;+1

- w; for every i E [l, n - 1]. Obviously any difference
wi - w; can be expressed in terms of the differences 6;.

2. Quotient Reduction Method

The first, and perhaps the only, previous systematic
attempt to construct perfect hashing functions is given
in [1]. However, if we consider the set / = {l, 3, 8,

Communications
of
the ACM

November 1977
Volume 20
Number 11

ASSA ABLOY Ex. 1022 - Page 2
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

14, 17, 23}, given there as an example, the function
h(w) = l(w + 3)/5J is a far simpler minimal perfect
hashing function for I than the function described by
Greniewski and Turski.

This example illustrates the first method we pre
sent, the quotient reduction method. Given a finite set
I C N, the method consists in translating the set I and
then taking the integer quotients by some divisor N E
N: ('v'wEI) more formally, h(w) = l(w + s)/NJ for
some integers depending on I. A function of this form
will be called a quotient reduction perfect hashing
function.

The translation term s can be decomposed s = qN
+ s' for some integers q ands' (0 :s; s' < N). The term
qN allows us to have h(w 1) = 0, while s' is used to
adjust the elements of I to different intervals [kN, (k
+ l)N - 1] so that

h(w;) =I- h(w1) (2.1)

for every i, j E [1, n] and i =I=- j.
The perfect hashing functions generated by this

method are very simple and work well for uniformly
distributed sets. Furthermore the results obtained will
be used later to develop more general techniques.

Algorithm Q (Quotient reduction): Given a set / as above, this
algorithm finds the best quotient reduction phf for/.

(a) [find upper bound for NJ N0+-min{l(w1-w,-1)/(i-i-l)J I i,
jE[l, n-1) andj>i+l};

(b) [initialize A] A+-[1, N 0] (at the end of step (c) the set A will
contain all the possible values for N);

(c) [scan/] Vi,jE[l, n-1) such thatj>i and 8,+8;SN0 do:
(cl) [initialize D] d+-8,+81-l; D+-[l, d] (at the end of step

(c3) the set D will contain all the values N satisfying (2 .1)
relative to i and j);

(c2) [find 0' and 0"] m+-(w1+l)-w;+ 1 ; M+-w1+ 1 -(w,+l);
0'+-[m/N0l; 0''+-[m/(d+l)l;

(c3) [determine D] '1'0EZ (0's(Js(J''), do: D+-DU[fm/01, LM/0J];
(c4) [update A] A+-AnD;

(d) [find NJ N+-maxA (N is taken as large as possible in order to
get the smallest table);

(e) [initialize J] J+-ZN (at the end of step (f) the set J will contain
the integerss(Oss<N) satisfying (2.1) for every dj);

(f) [determine J] ViE[l, n-1) such that 81<N, do: J+-J n
{(t-w;+1)mod N I Ost<S,};

(g) [a smaller N, if necessary] if J=0, drop N from A and go to
step (d);

(h) [choose best t] let t be any element in J minimizing (w,+t)mod
N (this condition assures that the table is of minimal length);

(i) [finds] s+-t-Nl(w, +t)/NJ.

Now let us show that this algorithm is correct.
First we prove that N 0 is an upper bound for N. By

(2.1), for j > i + l we have h(w1) - h(w;) > j - i - l;
hence (w1 + s) > (w; + s) + (j - i - l)N, and so:

N :s; l(w1 - W; - 1)/(j - i - l)J (2.2)

for i, j E [l, n] andj > i + l.
As an example throughout this section, let us

consider the set I= {17, 138, 173, 294, 306, 472,
540, 551, 618}. We compute N 0 by means of Table II,
which contains the differences of the elements in I. On
each row we have circled the least difference w 1 - w;,
and on the right we have computed l(w; - W; - 1)/(j

843

Table II.

L77/1J =77

L14 5;2J =n

L256/3J =85

L323/4J =80

L412;5J =82

L4 79/GJ =79

L600;1J =85

- i - l)J. Thus we have N 0 = 72 and, by step (b), a=
[l, 72].

Now, before explaining step (c), we have to analyze
the role played by the set J. So let us suppose that N
has already been found and consider steps (e) and (f).
For every w; E /, an admissible increment for W; is any
integer t for which condition (2 .1) is satisfied for j = i
+ 1:

l(wi+1 + t)/NJ =I=- l(w; + t)/NJ. (2.3)

In other words, an admissible increment for W; is any
translation value which adjusts w; and W;+ 1 to two
different intervals [kN, (k + l)N - 1]. Clearly a
quotient reduction phf for I can be found if and only if
there exists an admissible increment which works for
every w; E /.

The set of all the admissible increments for W; is
given by J*(w;) = {u - wi+ 1 + kN IO :s; u < 8; and k E
Z}. In fact, let t = u - wi+ 1 + kN; then we have W; + t
= w; + u - wH 1 + kN = u - 8; + kN and wH1 + t =
W;+ 1 + u - W;+ 1 + kN = u + kN, and relation (2.3)
holds if and only if O :s; u < 8;.

We can ignore the term kN in the expression for
J*(w;) and define the set J(w;) of the reduced admissible
increments for w;:

J(w;) = {(t - W;+ 1)mod NI 0 :s; t < 8;}. (2.4)

Obviously, if 8; 2: N, J(w;) = ZN and no computation
is necessary. Thus steps (e) and (f) determine the set J
= nf,:-l J(w;) correctly, and, as we remarked above,
there exists a quotient reduction phf for I if and only if
J =I=- 0.

In our example, let us suppose N = 64 (:572 =
N 0). In Table II we put in a box the 1st differences less
than 64. It is:

1(138) = {(t - 173)mod 64 J O :s; t < 35} = [19, 53],
1(294) = {(t - 306)mod 64 I O :s; t < 12} = [14, 25],
1(540) = {(t - 551)mod 64 I O :s; t < 11} = [25, 35],

and J = {25}. The reader can verify that for N = 65
and N = 63, J = 0 and J = [16, 21], respectively.
Thus there exist quotient reduction phf's for N = 63
and N = 64, but not for N = 65.

Now, looking at the thing from the other side, we
can determine the set a of possible values of N for
which the associated set J is nonempty. We can prove
that if J =I=- 0 (relative to N) then 'v'w;, w1 E I (i < j)

Communications
of
the ACM

November 1977
Volume 20
Number 11

ASSA ABLOY Ex. 1022 - Page 3
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

there exists a multiple of N in the interval Tu = [mu,
Mu], where mu = (wj + 1) - wi+1 and Mu = wJ+1 - (w;
+ 1). In fact, by (2.4), J(wi) n J (wj) =f- 0 if and only if
there exist two elements a EA = {wi+1 - t I O :5 t <
6;} and b EB = {wHl - t I 0 :5 t < 6j} such that a = b
(modulo N). This means that the set of all the differ
ences between the elements in B and the elements in
A must contain a multiple of N. But this set is just Tu,
because its limits are the cross-differences of the limits
of Band A.

The converse is not true because J can be empty
although the J(wi)'s are not pairwise disjoint. Thus
maxA is a better approximation to N than N 0 , but A
may contain elements which do not correspond to any
quotient reduction phf for I. Actually step (c) can be
eliminated; however, as shown by the example below,
when N is smaller than N 0 , step (c) can save a lot of
computations relative to the J(w;)'s.

Now, if we call Du the set of positive integers with
a multiple in the interval Tu, we have to choose N in
the set A = [l, N 0] n ni<j Du. By definition, it is Du =
U1s11sm

0
ffmu/01, LMu/0J]; however, we can remark

that:
'(a) since N :s; N 0 , the useful lower limit for 0 is 0' =

rmu/Nol;
(b) the length of the interval Tu is d = wJ+1 - (w; + 1)

- (wj + 1) + wi+ 1 + 1 = 6; + 61 - 1; so every
integer in [l, d] has a multiple in Tu. This implies
that (i) every couple (i, j) for which d = 6; + 6j -
1 2:: N 0 can be ignored in the computation of A,
and (ii) the upper limit for 0 is 0'' = [mu/(d + 1)].

So we have Tu = [l, d] U U6'sl/slf' [[mu/01, LMu/0]],
and step (c) determines the set A correctly.

In our example we have to consider the following
intervals:

T24 = [122, 167] for which d = 46, 0' = 2, 0" = 3;
T27 = [368,412] for which d = 45, 0' = 6, 0" = 8;
T 47 = [235, 256] for which d = 22, 0' = 4, 0" = 11;

so:
[1, 55] U [61, 72];
[1, 51] U [53, 58] U [62, 68];
[l, 25] U [27, 28] U [30, 32] U [34, 36]

U [40, 42] U [47, 51] U [59, 64];
[1, 25] U [27, 28] U [30, 32] U [34, 36]

U [40, 42] U [47, 51] U [62, 64].
Now, every N E A can possibly determine one or

more quotient reduction phf's. It is possible to show
that if N > N' the table length for N is not longer than
any table length for N'. Hence we choose N as large as
possible (steps (d) and (g)). In our example, for N =
64 = max A, it is J = {25}.

Finally, let us come to steps (h) and (i). Up to this
moment, we have found N and the set J of the reduced
admissible increments relative to N. Every t E J
determines a quotient reduction phf for/; in order to
have h(w1) = 0, the translation value St is given by St =

t - [(w1 + t)/N]. Since we are looking for the shortest

844

table, h(wn) is to be as smalll as possible. This occurs
when w1 + St (which is non-negative and less than N)
takes its nearest value to 0. However, since w1 + t =
w1 + St (modulo N), the quantity (w1 + t)mod N is to
be as small as possible, and this condition determines
the value t of the "best" redm:ed admissible increment.

In our example, it is s = t = 25, and the best
quotient reduction phf is h(w) = L(w + 25)/64J. It is
not minimal, as shown by the! following table:

w 17 138 173 294 306 472 540 551 618
h(w) 0 2 3 4 5 7 8 9 10

Now, let us consider a possible improvement of the
quotient reduction method. Obviously, in order to
have an (almost) full table for a given set/, we should
have N = (wn - w 1)/(n - 1). However, if the elements
in I are not uniformly distributed, N can be consider
ably smaller than this best value; so the table is sparse.
Often it is possible to obtain shorter tables introducing
the concept of a cut. A cut consists in translating all
the elements in I larger than a certain value (the cut
value) before performing the quotient reduction. Since
the cut value can be identified with some Wt E /, the
index t will be called the cut point and the perfect
hashing function h is defined by:

h(w;) = [(wi + s)/N],
h(w;) = [(w; + s + r)/N],

for some integer r.

Vi :s; t,
Vi> t,

(2.5)

The problem consists in finding the cut value (or,
equivalently, the cut point) and the integer r for which
the table may be of minimal length. In order to satisfy
condition (2.3), the integer r should produce an admis
sible increment common to all the elements in I. An
obvious approach is to try successively all the elements
w1 , w2 , ••• , Wn-I as possible cut values. This leads to
the following Algorithm C. An important point in this
algorithm is the evaluation of N; we ignore the differ
ences of elements in I on opposite sides of the cut
point. Actually the values of these differences will be
determined only when the integer r is known.

Algorithm C (Quotient reduction with a cut). Given a set /, this
algorithm determines the cut point t and the integer r, allowing us to
obtain the best cut reduction phf of the form (2.5).

(a) [initialize t] ,-1;
(b) [upper bound for N,] N0-min {l(wJ-w,-1)/(j-i-l)Jl(i,jE[l, t]

or i,jE[t+ 1, n]) andj>i+ l} (ignore couples w,, WJ such that i:5t<j);
(c) [find A] evaluate A as in steps (b) and (c) of Algorithm Q;
(d) [find N,] N,-maxA;
(e) [admissible increments] h-nl:l {(v-wi+,) mod N,I0:5v< 61};

la-nf.:;'t-, {(v-wi+,) mod N,I0:5v<61};

(f) [a smaller N,, if necessary] if either h or la is empty, drop N,
from A and go to step (d);

(g) [lower bound for 6;] 60-min {(j-i-1) N,+1-wJ+w,+6,li:5t<j};
(h) [finds', 6;] perform the following steps:

(hl) p-min {pE[l, N,]1(-w,-p) mod N,Eh};
(h2) lets' be the element in h corresponding to the value of p;
(h3) 6;-min {62:60 l 3j"Ela such that 6=w1+1+j"+p (moduloN,)};

(i) [determiner, s] r,~;-61; s1~-s'-N,L(w 1+l·')/N,J;
(j) [length of the table] L,~(w.+s1+r,)/N,J-1;

Communications
of
the ACM

November 1977
Volume 20
Number 11

ASSA ABLOY Ex. 1022 - Page 4
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(k) [loop on t] t+-t+ 1 and go to step (b) if t<n;
(I) [table of minimal length] let zany index for which Lz is minimal

and outputs,, N,, w,, rz.

Now let us show that this algorithm is correct. For
fixed t, we consider the set I1 = {w;j 1 :5 i :5 t} U {w; +
rlt < i :5 n}; then the function (2.5) relative to I is
equivalent to a quotient reduction phf for I1• However,
the 1st differences of I1 equal the 1st differences of I,
except for 8; = 81 + r. Thus the determination of r is
equivalent to the evaluation of 8;, and the most impor
tant steps of the algorithm are (g) and (h).

Step (g) determines a lower bound for 8; by apply
ing relation (2 .2) to the set of differences w i - w; (i :5

t < j). By steps (hl) and (h2) we have p = -w1 - s' +
k'N, and by (h3), 8; =w1+1 + j" + p + k" N = 81 + j"
- s' + kN, where k = k' + k"; hence, for every w; E

Ii (i > t), w;+I + s' = W;+1 + 8; - 81 + s' = W;+1 + j" +
kN. This proves thats' is a reduced admissible incre
ment for w;. Since 8; ~ 80 , s' is a reduced admissible
increment for every element in ft. Actually p has been
defined in such a way that s' is the "best" reduced
admissible increment. Thus Algorithm C determines
the best cut reduction phf (2 .5) correctly.

The run time of Algorithm C, however, is exceed
ingly high, at least of order Kn 3 , where K is the largest
value of 0" - 0' + 1 (step (c3)). If we content
ourselves with a near-to-optimal function of the form
(2.5), we can find a far better algorithm. In fact, N is
usually very close to N 0 , and, by construction, a cut
adjusts w1 and w1+ 1 to two consecutive intervals [kN,
(k + 1) N - l]. Thus we may assume that the value
(wn - w 1 - 81)/N0 + 3 approximates the length of the
table obtained using t as a cut point. This leads to the
following:

Algorithm S (Simplified quotient reduction with a cut). Given a set
I, this algorithm first determines the cut point t corresponding to a
nearly optimal perfect hashing function of the form (2.5) and then
finds the other parameters of the function.

(a) [initialize t] t+---1;
(b) [upper bound for N] N'/ +- min {l(wJ-w,-1)/(j-i-l)Jf(i, jE[l,

t] or i,jE[t+l, n]) andj>i+l};
(c) [approximate length of the table] L1--(w.-w,-6,)/N'/;
(d) [loop on t] let t+-t+l and go to step (b) if t<n;
(e) [shortest table] let z be any index for which Lz is minimal;
(f) [initialize N] N+-N~+ 1;
(g) [decrement N] N+-N-1;
(h) [admissible increments] h+-nf;;;/ {(v-wH,) mod Nf0sv<6,};

JR+-nr;;;J+1 {(v-wi+,) mod NI 0sv<6i};
(i) [lower bound for 6;] 60+-min{(j-i-l) N+l-wJ+w,+6zfisz<j};
(j) [finds', 6;] perform the following steps:

(jl) p+-min {pE[l, N]l(-wz-p) mod NEh};
(j2) lets' be the element in h corresponding to the value of p;
(j3) 6;+-min {62e:60 f 3j"EJR such that 6=Wz+1+j"+p (moduloN)};

(k) [determiner, s] r--8;-6z; s+-s'-NL(w,+s')/NJ;
(I) [output results] outputs, N, w,, r.

Let us apply Algorithm S to our example; we get:

1 2 3 4 5 6 7 8
72 72 72 72 72 77 83 78

6.67 7.86 6.67 8.18 6.04 6.92 7.11 6.85

845

so z = 5. Considering the differences in the shaded
area of Table II, we obtain 80 = 131. Now we have h
= 1(138) n 1(294) = [54, 65] and 18 = 1(472) n 1(540)
n 1(551) = [30, 31]; sop = min {p E [l, 72]1 (-306 -
p) mod 72 E [54, 65]} = 61, ands' = 65. Hence 8~ =
min {8 2:: 131 I 3j" E [30, 31] such that 8 = 4 72 + j" +
61 (modulo 72)}, and it is simple to see that 8 = 59 or
8 = 60 (modulo 72). However, 131 = 59 (modulo
72); so 8~ = 131, r = -35, s = -7. The perfect
hashing function obtained is minimal and can be imple
mented by the two Fortran statements:

IF(W.GT.306) W = W - 35
H = (W - 7)/72

where Hand Ware INTEGER variables.

We conclude this section with three remarks:
(i) The programmer has to consider the fact that if w

> wn (and h(w) > m), w is compared to s·omething
outside the table. Thus some care has to be taken
when allocating the table or an extra comparison
between h(w) and rn must be introduced.

(ii) It is possible to consider cut reduction phf's with
more than one cut. An algorithm similar to Algo
rithm S is easily devised to get a near-to-optimal
function of this new type.

(iii) All the functions considered in this section are
monotonic.

3. Remainder Reduction Method

As we have remarked, the quotient reduction
method works well when the set I is uniformly distrib
uted. However, this is not always the case, especially
when the elements in I are derived from identifiers
coded in EBCDIC. In fact, the collating sequence for
letters and digits contains three large gaps - between I
and J, Rand S, and Zand 0.

When the set I is not uniformly distributed, we can
scramble its elements to get a more uniform distribu
tion and try to apply a quotient reduction phf to the
scrambled set. To scramble the elements of I in a 1-1
manner, we take the moduli of the elements in I by
some appropriate integer divisor M. This method will
be called the remainder reduction method.

In order that the scrambled set IM= {w; mod Mlw;
EI} C ZM be of interest to us, we should have:

w; =I:- wi (modulo M), Vi, j E [l, n] and i =I= j. (3.1)

If D is the set of divisors of some difference w i - w; (j
> i), condition (3 .1) is verified if and only if M ft. D.
In what follows, we suppose M ft. D if not otherwise
stated.

We are interested in obtaining remainder reduction
perfect hashing function of the form:

h(w) = l((d + wq) mod M)/NJ. (3.2)

In order to do this, the values d, q, N, and M must be
suitably chosen. In particular, to chose N and d, we

Communications
of
the ACM

November 1977
Volume 20
Number 11

ASSA ABLOY Ex. 1022 - Page 5
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

