
Volume 3 I Sorting and Searching

H lanford University

THE ART OF

COMPUTER PROGRAMMING

Reading, Massachusetts
ISHINO COMPANY Menlo Park, California · London · Amsterdam · Don Mills, Ontario · Sydney

ASSA ABLOY Ex. 1021 - Page 1
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

This book is in the
ADDISON-WESLEY SERIES IN

COMPUTER SCIENCE AND INFORMATION PROCESSING

Consulting Editors

RICHARD s. VARGA and MICHAEL A. HARRISON

Second printing, March 1975

Copyright© 1973 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1973
by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada. Library of Congress Catalog Card
No. 67-26020.

ISBN 0-201-03803-X
BCDEFGH IJ-M A-79B76

This book forms a nat
Chapter 2, because it
basic structural ideas.
book is only for those E

tion of general-purpos(
But in fact the area o
discussing a wide vari(

How are good algc
How can given alg
How can the effici,
How can a persor
same application?
In what senses car
How does the the,
How can external
with large data ha

Indeed, I believe that
somewhere in the cont

This volume comp
is concerned with sor1
been divided chiefly in
also are supplementar:
tations (Section 5.1)
Chapter 6 deals with
fil es; this is subdivided
of keys, or by digital
problem of secondary :

ASSA ABLOY Ex. 1021 - Page 2
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

506 SEARCHING 6.4

6.4 HASHING

So far we have considered search methods based on comparing the given argu
ment K to the keys in the table, or using its digits to govern a branching process.
A third possibility is to avoid all this rummaging around by doing some arith
metical calculation on K, computing a function f (K) which is the location of K
and the associated data in the table.

For example, let's consider again the set of 31 English words which we have
subj ected to various search strategies in Section 6.2.2 and 6.3. Table 1 shows
a short MIX program which transforms each of the 31 keys into a unique number
f(K) between -10 and 30. If we compare this method to the MIX programs for
the other methods we have considered (e.g., binary search, optimal tree search,
trie memory, digital tree search), we find that it is superior from the standpoint
of both space and speed, except that binary search uses slightly less space. In
fact, the average time for a successful search, using the program of Table 1
with the frequency data of Fig. 12, is only about 17.Su, and only 41 table loca
tions are needed to store the 31 keys.

Unfortunately it isn't very easy to discover such functions f(K). There
are 41 31 ~ 1050 possible functions from a 31-element set into a 41-element set,
and only 41 • 40 • • • · • 11 = 41 !/10! ~ 104 3 of them will give distinct values
for each argument; thus only about one of every 10 million functions will be
suitable.

Functions which avoid duplicate values are surprisingly rare, even with a
fairly large table. For example, the famous "birthday paradox" asserts that if
23 or more people are present in a room, chances are good that two of them

Table 1

TRANSFORMING A SET OF KEYS INTO UNIQUE ADDRESSES

0 Cil E-<
:,; Cil

0:: D 0 > 0:: z 0:: Ul E-< Cil ::, >< D e: < < Cil Cil
< < < < < '° '° '° ~ ::c ::c ::c ::c

Instruction

LDlN K(l: 1) - 1 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 6 - 6 -8 -8 - 8 - 8
LD2 K(2:2) - 1 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 6 - 6 - 8 - 8 - 8 - 8
INCl -8,2 - 9 6 10 13 14 - 5 14 18 2 5 - 15 - 15 - 11 - 11
JlP *+2 - 9 6 10 13 14 - 5 14 18 2 5 - 15 - 15 - 11 - 11
INCl 16,2 7 16 2 2 10 10
LD2 K(3:3) 7 6 10 13 14 16 14 18 2 5 2 2 10 10
J2Z 9F 7 6 10 13 14 16 14 18 2 5 2 2 10 10
INCl -28,2 - 18 - 13 9 - 7 - 7 - 22 - 1
JlP 9F -18 - 13 9 - 7 - 7 - 22 - 1
INCl 11,2 - 3 3 23 20 - 7 35
LDA K(4:4) - 3 3 23 20 -7 35
JAZ 9F - 3 3 23 20 - 7 35
DECl -5,2 9 15
JlN 9F 9 15
INCl 10 19 25

9H LDA K 7 - 3 3 13 14 16 9 18 23 19 - 7 25 10
CMPA TABLE,l 7 - 3 3 13 14 16 9 18 23 19 - 7 25 10
JNE FAILURE 7 - 3 3 13 14 16 9 18 23 19 -7 25 10

G.4

will have the same montl
dom function which map
no two keys map into t i
Skeptics who doubt this r
large parties they atten<
unpublished work of H.
Essays (1939), 45. See a
Mecmuasi 4 (1939), 145·
Theory (New York: Wile)

On the other hand, tb
niewski and W. Turski, C
a suitable function can b
amusing to solve a puzzl,

Of course this methc
must be known in advan<
making it necessary to s1
more versatile method if
keys to yield the same ,
ambiguity after f(K) has

These considerations
known as hashing or sea
chop something up or to
off some aspects of the k
searching. We compute
where the search begins.

The birthday parad,
Ki ~ Ki which hash to

Ul E-<
H z Ul E-< D
::c H H H H z

- 8 - 9 -9 -9 - 9 - 15
- 8 -9 -9 - 9 -9 - 15
-7 -17 -2 5 6 - 7
- 7 - 17 -2 5 6 -7
18 -1 29 25
18 -1 29 5 6 25
18 -1 29 5 6 25
12 20
12 20

12 - 1 29 5 6 20
12 - 1 29 5 6 20
12 - 1 29 5 6 20

ASSA ABLOY Ex. 1021 - Page 3
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

6.4

~omparing the given argu
overn a branching process.
mnd by doing some arith
which is the location of K

glish words which we have
2 and 6.3. T able 1 shows
mys into a unique number
>d to the MIX programs for
~arch, optimal tree search,
Jerior from the standpoint
ses slightly less space. In
; the program of Table 1
:u, and only 41 tabl e loca-

:h functions f(K) . There
set into a 41-element set,

1 will give distinct values
million functions will be

risingly rare, even with a
y paradox" asserts that if
·e good that two of them

QUE ADDRESSES

- 6
- 6

2
2

2
2

-7
-7
?3
?3
l3

l3
l3
l3

:s
0
g;

- 6
- 6

5
5

5
5

- 7
- 7
20
20
20
9
9

19
19
19
19

0
<
:i:

-8
- 15
- 15

2
2
2

- 22
- 22

- 7
- 7
- 7

- 7
- 7
- 7

-8
- 15
- 15

2
2
2

- 1
- 1
35
35
35
15
15
25
25
25
25

w
:i:

-8
-8

- 11
- 11

10
10
10

10
10
10

0::
w
:i:

- 8
- 8

- 11
- 11

JO
10
10

6.4 HASHDIG 507

will have the same month and day of birth! In other words, if we select a ran
dom function which maps 23 keys into a table of size 365, the probability that
no two keys map into the same location is only 0.4927 (less than one-half) .
Skeptics who doubt this result should try to find the birthday mates at the next
large parties they attend. [The birthday paradox apparently originated in
unpublished work of H. Davenport; cf. W.W. R. Ball, Math. R ecreations and
Essays (1939), 45. See also R. von Mises, j stanbul Universitesi Fen Fakultesi
Mecmuasi 4 (1939), 145- 163, and W. Feller, An Introduction to Probability
Theory (New York: Wiley, 1950), Section 2.3.]

On the other hand, the approach used in Table 1 is fairly flexible [cf. M. Gre
niewski and W. Turski, CACM 6 (1963), 322-323], and for a medium-sized table
a suitable function can be found after about a day's work. In fact it is rather
amusing to solve a puzzle like this.

Of course this method has a serious fl aw, since the contents of the table
must be knowri in advance; adding one more key will probably ruin everything,
making it necessary to start over almost from scratch. We can obtain a much
more versatile method if we give up the idea of uniqueness, permitting different
keys to yield the same value f(K), and using a special method to resolve any
ambiguity after f(K) has been computed.

These considerations lead to a popular class of search methods commonly
knqwn as hashing or scatter storage techniques. The verb "to hash" means to
chop something up or to make a mess out of it; the idea in hashing is to chop
off some aspects of the key and to use this partial information as the basis for
searching. We compute a hash function h(K) and use this value as the address
where the search begins.

The birthday paradox tells us that there wi ll probably be distinct keys
K i ~ K i which hash to the same value h(K i) = h(K;). Such an occurrence is

:i:
r,-, (I) u :i:

(I) r,-, < w ... (I) ... r,-, ::, ... z (I) r,-, 0 11. z 0:: :i: :i: :i: 0 < iii ... 0
:i: z 0 0 0 r,-, r,-, r,-, r,-, ~ ~ ><

Contents of rll after executing the instruction, given a particular key K

- 8 - 9 - 9 - 9 -9 - 15 - 16 - 16 - 16 - 23 - 23 - 23 -23 - 26 - 26 -26 -28
- 8 -9 - 9 -9 - 9 -15 - 16 - 16 - 16 - 23 -23 - 23 - 23 -26 -26 - 26 - 28
- 7 - 17 - 2 5 6 -7 - 18 - 9 -5 -23 -23 -23 - 15 -33 -26 -25 - 20
- 7 - 17 - 2 5 6 -7 - 18 - 9 -5 -23 -23 - 23 - 15 -33 -26 - 25 -20
18 - 1 29 25 4 22 30 17 - 16 -2 0 12
18 - 1 29 5 6 25 4 22 30 17 - 16 -2 0 12
18 - 1 29 5 6 25 4 22 30 1 1 17 - 16 - 2 0 12
12 20 - 26 -22 - 18 -22 -21 -5 8
12 20 -26 -22 - 18 - 22 - 21 -5 8

-14 -6 2 11 -1 29
-14 -6 2 11 - 1 29
-14 -6 2 11 - 1 29
- 10 - 2 -5 11
- 10 - 2 -5 11

21
12 - 1 29 5 6 20 4 22 30 -10 - 6 - 2 17 11 -5 21 8
12 - 1 29 5 6 20 4 22 30 - 10 -6 - 2 17 11 -5 21 8
12 - 1 29 5 6 20 4 22 30 - 10 -6 -2 17 11 -5 21 8

ASSA ABLOY Ex. 1021 - Page 4
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

508 SEARCHING 6.4

called a collision, and several interesting approaches have been devised to
handle the collision problem. In order to use a scatter table, a programmer
must make two almost independent decisions: He must choose a hash function
h(K), and he must select a method for collision resolution. We shall now con
sider these two aspects of the problem in turn.

Hash functions . To make things more explicit, let us assume throughout this
section that our hash function h takes on at most M different values, with

0 _::; h(K) < M, (1)

for all keys K. The keys in actual files that arise in practice usually have a great
deal of redundancy; we must be careful to find a hash function that breaks up
clusters of almost identical keys, in order to reduce the number of collisions.

It is theoretically impossible to define a hash function that creates random
data from the nonrandom data in actual fi les. But in practice it is not difficult
to produce a pretty good imitation of random data, by using simple arithmetic
as we have discussed in Chapter 3. And in fact we can often do even better,
by exploiting the nonrandom properties of actual data to construct a hash
function that leads to fewer collisions than truly random keys would produce.

Consider, for example, the case of 10-digit keys on a decimal computer.
One hash function that suggests itself is to let M = 1000, say, and to let h(K)
be three digits chosen from somewhere near the middle of the 20-digit product
K X K. This would seem to yield a fairly good spread of values between 000
and 999, with low probability of collisions. Experiments with actual data show,
in fact, that this "middle square" method isn't bad, provided that the keys
do not have a lot of leading or trailing zeros; but it turns out that there are
safer and saner ways to proceed, just as we found in Chapter 3 that the middle
flquare method is not an especially good random number generator.

Extensive tests on typical files have shown that two major types of hash
functions work quite well. One of these is based on division, and the other is
based on multiplication.

The division method is particularly easy; we simply use the remainder
modulo M:

h(K) = K mod M. (2)

In this case, some values of l'vl are obviously much better than others. For
example, if M is an even number, h(K) will be even when K is even and odd
when K is odd, and this will lead to a substanti al bias in many files. It would
be even worse to let M be a power of the radix of the computer, since K mod M
would then be simply the least significant digits of K (independent of the other
digits). Similarly we can argue that M probably shouldn't be a multiple of 3
either; for if the keys are alphabetic, two keys which differ from each other
only by permutation of letters would then differ in numeric value by a multiple
of 3. (This occurs because 10n mod 3 = 4n mod 3 = 1.) In general, we want
to avoid values of M which divide r k ± a, where k and a are small numbers and
r is the radix of the alphabetic character set (usually r = 64, 256, or 100),

6.-!

since a remainder modulo
position of the key digits
a prime number such that
has been found to be quit

For example, on the I
h(K) by the sequence

LDX
ENTA
DIV

The multiplicative hf
harder to describe becaw
instead of with integers.
usually 10 10 or 23 0 for M

if we imagine the radix p
choose some integer const

h

In this case we usually h
h(K) consists of the leadi1

In MIX code, if we let .
hash function is

LDA K
MUL A
ENTA 0
SLB m

Now h(K) appears in reg
shift instructions, this se
on many machines multir

In a sense this metho
could for example take 1

the reciprocal of a constai
that (5) is almost a "midi
ence: We shall see that rr
good properties.

One of the nice featm
was lost in (5); we could
after (5) has finished. Th
algorithm can be used to
that K = (A'(AK modi
tents of register X just b

ASSA ABLOY Ex. 1021 - Page 5
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

