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506 SEARCHING 6.4 

6.4 HASHING 

So far we have considered search methods based on comparing the given argu
ment K to the keys in the table, or using its digits to govern a branching process. 
A third possibility is to avoid all this rummaging around by doing some arith
metical calculation on K, computing a function f (K) which is the location of K 
and the associated data in the table. 

For example, let's consider again the set of 31 English words which we have 
subj ected to various search strategies in Section 6.2.2 and 6.3. Table 1 shows 
a short MIX program which transforms each of the 31 keys into a unique number 
f(K) between -10 and 30. If we compare this method to the MIX programs for 
the other methods we have considered (e.g., binary search, optimal tree search, 
trie memory, digital tree search), we find that it is superior from the standpoint 
of both space and speed, except that binary search uses slightly less space. In 
fact, the average time for a successful search, using the program of Table 1 
with the frequency data of Fig. 12, is only about 17.Su, and only 41 table loca
tions are needed to store the 31 keys. 

Unfortunately it isn't very easy to discover such functions f(K). There 
are 41 31 ~ 1050 possible functions from a 31-element set into a 41-element set, 
and only 41 • 40 • • • · • 11 = 41 !/10! ~ 104 3 of them will give distinct values 
for each argument; thus only about one of every 10 million functions will be 
suitable. 

Functions which avoid duplicate values are surprisingly rare, even with a 
fairly large table. For example, the famous "birthday paradox" asserts that if 
23 or more people are present in a room, chances are good that two of them 

Table 1 

TRANSFORMING A SET OF KEYS INTO UNIQUE ADDRESSES 

0 Cil E-< 
:,; Cil 

0:: D 0 > 0:: z 0:: Ul E-< Cil ::, >< D e: < < Cil Cil 
< < < < < '° '° '° ~ ::c ::c ::c ::c 

Instruction 

LDlN K(l: 1 ) - 1 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 6 - 6 -8 -8 - 8 - 8 
LD2 K(2:2) - 1 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 6 - 6 - 8 - 8 - 8 - 8 
INCl -8,2 - 9 6 10 13 14 - 5 14 18 2 5 - 15 - 15 - 11 - 11 
JlP *+2 - 9 6 10 13 14 - 5 14 18 2 5 - 15 - 15 - 11 - 11 
INCl 16,2 7 16 2 2 10 10 
LD2 K(3:3) 7 6 10 13 14 16 14 18 2 5 2 2 10 10 
J2Z 9F 7 6 10 13 14 16 14 18 2 5 2 2 10 10 
INCl -28,2 - 18 - 13 9 - 7 - 7 - 22 - 1 
JlP 9F -18 - 13 9 - 7 - 7 - 22 - 1 
INCl 11,2 - 3 3 23 20 - 7 35 
LDA K(4:4) - 3 3 23 20 -7 35 
JAZ 9F - 3 3 23 20 - 7 35 
DECl -5,2 9 15 
JlN 9F 9 15 
INCl 10 19 25 

9H LDA K 7 - 3 3 13 14 16 9 18 23 19 - 7 25 10 
CMPA TABLE,l 7 - 3 3 13 14 16 9 18 23 19 - 7 25 10 
JNE FAILURE 7 - 3 3 13 14 16 9 18 23 19 -7 25 10 
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will have the same month and day of birth! In other words, if we select a ran
dom function which maps 23 keys into a table of size 365, the probability that 
no two keys map into the same location is only 0.4927 (less than one-half) . 
Skeptics who doubt this result should try to find the birthday mates at the next 
large parties they attend. [The birthday paradox apparently originated in 
unpublished work of H. Davenport; cf. W.W. R. Ball, Math. R ecreations and 
Essays (1939), 45. See also R. von Mises, j stanbul Universitesi Fen Fakultesi 
Mecmuasi 4 (1939), 145- 163, and W. Feller, An Introduction to Probability 
Theory (New York: Wiley, 1950), Section 2.3.] 

On the other hand, the approach used in Table 1 is fairly flexible [cf. M. Gre
niewski and W. Turski, CACM 6 (1963), 322-323], and for a medium-sized table 
a suitable function can be found after about a day's work. In fact it is rather 
amusing to solve a puzzle like this. 

Of course this method has a serious fl aw, since the contents of the table 
must be knowri in advance; adding one more key will probably ruin everything, 
making it necessary to start over almost from scratch. We can obtain a much 
more versatile method if we give up the idea of uniqueness, permitting different 
keys to yield the same value f(K), and using a special method to resolve any 
ambiguity after f(K) has been computed. 

These considerations lead to a popular class of search methods commonly 
knqwn as hashing or scatter storage techniques. The verb "to hash" means to 
chop something up or to make a mess out of it; the idea in hashing is to chop 
off some aspects of the key and to use this partial information as the basis for 
searching. We compute a hash function h(K) and use this value as the address 
where the search begins. 

The birthday paradox tells us that there wi ll probably be distinct keys 
K i ~ K i which hash to the same value h(K i) = h(K;). Such an occurrence is 

:i: 
r,-, (I) u :i: 

(I) r,-, < w ... (I) ... r,-, ::, ... z (I) r,-, 0 11. z 0:: :i: :i: :i: 0 < iii ... 0 
:i: ... ... ... ... z 0 0 0 r,-, r,-, r,-, r,-, ~ ~ >< 

Contents of rll after executing the instruction, given a particular key K 

- 8 - 9 - 9 - 9 -9 - 15 - 16 - 16 - 16 - 23 - 23 - 23 -23 - 26 - 26 -26 -28 
- 8 -9 - 9 -9 - 9 -15 - 16 - 16 - 16 - 23 -23 - 23 - 23 -26 -26 - 26 - 28 
- 7 - 17 - 2 5 6 -7 - 18 - 9 -5 -23 -23 -23 - 15 -33 -26 -25 - 20 
- 7 - 17 - 2 5 6 -7 - 18 - 9 -5 -23 -23 - 23 - 15 -33 -26 - 25 -20 
18 - 1 29 25 4 22 30 17 - 16 -2 0 12 
18 - 1 29 5 6 25 4 22 30 17 - 16 -2 0 12 
18 - 1 29 5 6 25 4 22 30 1 1 17 - 16 - 2 0 12 
12 20 - 26 -22 - 18 -22 -21 -5 8 
12 20 -26 -22 - 18 - 22 - 21 -5 8 

-14 -6 2 11 -1 29 
-14 -6 2 11 - 1 29 
-14 -6 2 11 - 1 29 
- 10 - 2 -5 11 
- 10 - 2 -5 11 

21 
12 - 1 29 5 6 20 4 22 30 -10 - 6 - 2 17 11 -5 21 8 
12 - 1 29 5 6 20 4 22 30 - 10 -6 - 2 17 11 -5 21 8 
12 - 1 29 5 6 20 4 22 30 - 10 -6 -2 17 11 -5 21 8 
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508 SEARCHING 6.4 

called a collision, and several interesting approaches have been devised to 
handle the collision problem. In order to use a scatter table, a programmer 
must make two almost independent decisions: He must choose a hash function 
h(K), and he must select a method for collision resolution. We shall now con
sider these two aspects of the problem in turn. 

Hash functions . To make things more explicit, let us assume throughout this 
section that our hash function h takes on at most M different values, with 

0 _::; h(K) < M, (1) 

for all keys K. The keys in actual files that arise in practice usually have a great 
deal of redundancy; we must be careful to find a hash function that breaks up 
clusters of almost identical keys, in order to reduce the number of collisions. 

It is theoretically impossible to define a hash function that creates random 
data from the nonrandom data in actual fi les. But in practice it is not difficult 
to produce a pretty good imitation of random data, by using simple arithmetic 
as we have discussed in Chapter 3. And in fact we can often do even better, 
by exploiting the nonrandom properties of actual data to construct a hash 
function that leads to fewer collisions than truly random keys would produce. 

Consider, for example, the case of 10-digit keys on a decimal computer. 
One hash function that suggests itself is to let M = 1000, say, and to let h(K) 
be three digits chosen from somewhere near the middle of the 20-digit product 
K X K. This would seem to yield a fairly good spread of values between 000 
and 999, with low probability of collisions. Experiments with actual data show, 
in fact, that this "middle square" method isn't bad, provided that the keys 
do not have a lot of leading or trailing zeros; but it turns out that there are 
safer and saner ways to proceed, just as we found in Chapter 3 that the middle 
flquare method is not an especially good random number generator. 

Extensive tests on typical files have shown that two major types of hash 
functions work quite well. One of these is based on division, and the other is 
based on multiplication. 

The division method is particularly easy; we simply use the remainder 
modulo M: 

h(K ) = K mod M. (2) 

In this case, some values of l'vl are obviously much better than others. For 
example, if M is an even number, h(K) will be even when K is even and odd 
when K is odd, and this will lead to a substanti al bias in many files. It would 
be even worse to let M be a power of the radix of the computer, since K mod M 
would then be simply the least significant digits of K (independent of the other 
digits). Similarly we can argue that M probably shouldn't be a multiple of 3 
either; for if the keys are alphabetic, two keys which differ from each other 
only by permutation of letters would then differ in numeric value by a multiple 
of 3. (This occurs because 10n mod 3 = 4n mod 3 = 1.) In general, we want 
to avoid values of M which divide r k ± a, where k and a are small numbers and 
r is the radix of the alphabetic character set (usually r = 64, 256, or 100), 
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