
ALGORITHMS+

DATA STRUCTURES=

PROGRAMS

NIKLAUS WIRTH

Eidgenossische Technische Hochschule
Zurich, Switzerland

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, N.J.

ASSA ABLOY Ex. 1019 - Page 1
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

l lhm, JJ of Otl/l t SI 010/oglng /11 Publication Data

W111 111, N IKI. AUS.

Algori thms + data structures = programs.

0 lbliography : p.
I ncludcs index.
I. Electronic digital computers- Programming.

2. D ata structures (Computer science) 3. Algorithms.
J . Title.
QA76.6.W56 001.6'42 75- 11599
JSBN 0-13-022418-9

© 1976
by PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey

All rights reserved. No part of this
book may be reproduced in any form
or by any means without permission
in writing from the publisher.

10 9 8 7 6

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY., LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA (PTE.) LTD., Singapore

To Nani

ASSA ABLOY Ex. 1019 - Page 2
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

....
0

y
" en

.:::;
l!J lJJ

"' ...:

- "' "' "' "Cl
5
~ ..
...

"Cl
ij

Cl)

C:
0 z

"'

t,
en

SEC. 1.10 REPRESENTATION OF ARRAY, RECORD, AND SET STRUCTURES

var s,t: course;
trialset: selection;

begin s := 1;

end

while --i(s in remaining) do s : = s+ 1;
session : = [s]; trialset : = remaining - conflict [s];
for t : = 1 to N do

if t in trialset then
begin if c01ifiict[t] * session = [] then

session : = session + [t]
end

29

(1.30)

Evidently, this solution for selecting "suitable" sessions will not generate a
timetable which is necessarily optimal in any specific sense. In unfortunate
cases the number of sessions may be as large as that of courses, even if simul
taneous scheduling were feasible.

1.10. REPRESENTATION OF ARRAY, RECORD,

AND SET STRUCTURES

The essence of the use of abstractions in programming is that a program
may be conceived, understood, and verified on the basis of the laws governing
the abstractions and that it is not necessary to have further insight and knowl
edge about the ways in which the abstractions are implemented and repre
sented in a particular computer. Nevertheless, it is helpful for a successful
programmer to have an understanding of widely used techniques for repre
senting the basic concepts of programming abstractions, such as the funda
mental 3ata structures. It is helpful in the sense that it might enable the
programmer to make sensible decisions about program and data design in
the light not only of the abstract properties of structures, but also of their
realizations on actual computers, taking into account a computer's particular
capabilities and limitations.

The problem of data representation is that of mapping the abstract
structure into a computer store. Computer stores are-in a first approxima
tion-arrays of individual storage cells called words. The indiceso f the
words are called addresses.

var store: array[address] of word (1.31)

The cardinalities of the types address and word vary from one computer
to another. A particular problem is the great variability of the cardinality
of the word. Its logarithm is called the wordsize, because it is the number of
bits that a storage cell consists of.

ASSA ABLOY Ex. 1019 - Page 3
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

30 FUNDAM ENTAL DATA STRUCTURES CHAP. 1

1.10.1. Representation of Arrays

A representation of an array structure is a mapping of the (abstract)
array with components of type T onto the store which is an array with
components of type word.

The array should be mapped in such a way that the computation of
addresses of array components is as simple (and therefore efficient) as possi
ble. The address or store index i of the jth array component is computed by
the linear mapping function

i = i 0 + j * S (l.32)

where i0 is the address of the first component, and sis the number of words
that a component "occupies." Since the word is by definition the smallest
individually accessible unit of store, it is evidently highly desirable that s

be a whole number, the simplest case beings = 1. Ifs is not a whole number
(and this is the normal case), thens is usually rounded up to the next larger
integer [sl . Each array component then occupies [sl words, whereby [sl - s
words are left unused (see Figs. 1.5 and 1.6). Rounding up of the number of

store

: i_,,,,.------ abstract
~~~~~~~~~ array 
..,.,,,..,.,....,.,.,....,..'444,.,_._c.<,U'""'"'"' 
~~~~~~~~~ 

Fig. 1.5 Mapping an array onto a store.

fsl = 3 ~ • •23

::::::::::::::::: unused Fig. 1.6 Padded representation of a
record.

words needed to the next whole number is called padding. The storage utiliza
tion factor u is the quotient of the minimal amounts of storage needed to
represent a structure and of the amounts actually used:

(1.33)

Since an implementor will have to aim for a storage utilization as close to

SEC. 1.10 REPRESENTATION OF ARRAY, RECORD, AND SET STRUCTURES 31

1 as possible, and since accessing parts of words is a cumbersome and
relatively inefficient process, he will have to compromise. Following are the
considerations to be made:

1. Padding will decrease storage utilization.
2. Omission of padding may necessitate inefficient partial word access.
3. Partial word access may cause the code (compiled program) to expand

and therefore to counteract the gain obtained by omission of padding.

In fact, considerations 2 and 3 are usually so dominant that compilers will
always use padding automatically. We notice that the utilization factor will
always be u > 0.5, if s > 0.5. However, if s < 0.5, the utilization factor
may be significantly increased by putting more than one array component
into each word. This technique is called packing. If n components are packed
into a word, the utilization factor is (see Fig. 1.7)

n•s u- --- [n•sl
(1.34)

~padding

L-.__.JL...-__.JL...-__.JL...-__.JL-----''-----'~

Fig. 1.7 Packing six components into one word.

Access to the ith component of a packed array involves the computation
of the word address j in which the desired component is located and involves
the computation of the respective component position k within the word.

j = i div n (1.35)
k = i mod n = i- j*n

In IJlOSt programming languages the programmer is given no control
over the representation of the abstract data structures. However, it should
be possible to indicate the desirability of packing at least in those cases in
which more than one component would fit into a single word, i.e., when a
gain of storage economy by a factor of 2 and more could be achieved. ~e
introduce the convention to indicate the desirability of packing by prefixmg
the symbol array (or record) in the declaration by the symbol packed.

EXAMPLE
type a/fa = packed array [l . . n] of char

This feature is particularly valuable on computers with large words and
relatively convenient accessibility of partial fields of words. The essential
property of this prefix is that it does in no way change the meaning (or cor
rectness) of a program. This means that the choice of an alternative rep_re
sentation can be easily indicated with the implied guarantee that the meanmg
of the program remains unaffected.

ASSA ABLOY Ex. 1019 - Page 4
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

264 DYNAMIC INFORMATION STRUCTURES

if pl f .lh then
begin {RL} p2 := plj.left; plf.lh := false;

plj.left := p2f.right; p2f.right := pl;
pf.right := p2f.left; p2f .left := p; p := p2

end
end else
begin h := h- 1; if h =I=- 0 then pf.rh := true
end

end else
begin pf .count := p f .count + l; h := O
end

end {search}

CHAP. 4

Note that the actions to be taken for node re-arrangement very strongly
resemble those developed in the balanced tree search algorithm (4.63). From
(4.87) it is evident that all four cases can be implemented by simple pointer
rotations: single rotations in the LL and RR cases, double rotations in the
LR and RL cases. In fact, procedure (4.87) appears slightly simpler than
(4.63). Clearly, the hedge-tree scheme emerges as an alternative to the AVL
balance criterion. A performance comparison is therefore both possible and
desirable.

We refrain from involved mathematical analysis and concentrate on
some basic differences. It can be proven that the A VL-balanced trees are a
subset of the hedge-trees. Hence, the class of the latter is larger. It follows
that their path length is on the average larger than in the AVL case. Note in
this connection the "worst-case" tree (4) in Fig. 4.53. On the other band, node
re-arrangement will be called for less frequently. The balanced tree will
therefore be preferred in those applications in which key retrievals are much
more frequent than insertions (or deletions); if this quotient is moderate, the
hedge-tree scheme may be preferred.

It is very difficult to say where the borderline lies. It strongly depends not
only on th_e quotient between the frequencies of retrieval and structural
change, but also on the characteristics of an implementation. This is parti
cularly the case if the node records have a densely packed representation and
consequently access to fields involves part word selection. Boolean fields
(/h, rh in the case of hedge-trees) may be bandied more efficiently on many
implementations than three-valued fields (bal in the case of balanced tree).

4.6. KEY TRANSFORMATIONS (HASHING)

The general problem addressed in the last section and used to develop
solutions demonstrating dynamic data allocation techniques is the following:

Given a set S of items characterized by a key value upon which
an ordering relation is defined, how is S to be organized so that

SEC. 4.6 KEY TRANSFORMATIONS (HASHING)

retrieval of an item with a given key k involves as little effort as
possible.

265

Clearly, in a computer store each item is ultimately accessed by specifying
a storage address a. Hence, the stated problem is essentially one of finding an
appropriate mapping Hof keys (K) into addresses (A):

H: K-A

In Sect. 4.5 this mapping was implemented in the form of various list
and tree search algorithms based on different underlying data organizations.
Here we present yet another approach that is basically simple and very
efficient in many cases. The fact that it also bas some disadvantages will be
discussed subsequently.

The data organization used in this technique is the array structure. H
is therefore a mapping transforming keys into array indices, which is the
reason for the term key transformation that is generally used for this technique.
It should be noted that we shall not need to rely on any dynamic allocation
procedures because the array is one of the fundamental, static structures.
This paragraph is thus somewhat misplaced under the chapter heading of
dynamic information structures, but since it is often used in problem areas
where tree structures are comparable competitors, this seems to be an appro
priate place for its presentation.

The fundamental difficulty in using a key transformation is that the set
of possible key values is very much larger than the set of available store
addresses (array indices). A typical example is the use of alphabetical words
with, say, up to 10 letters as keys for the identification of individuals in a
set of, say, up to a thousand persons. Hence, there are 26 10 possible keys,
which are to be mapped onto 103 possible indices. The function His therefore
obviously_ a many-to-one function. Given a key k, the first step in a retrieval
(search) operation is to compute its associated index h = H(k), and the second
-evidently necess~ry-step is to verify whether or not the item with the key
k is indeed identified by h in the array (table) T, i.e., to check whether
T[H(k)].key = k. We are immediately confronted with two questions:

1. What kind of function H should be used?
2. How do we cope with the situation that H does not yield the location of

the desired item?

The answer to question 2 is that some method must be used to yield an alter
native location, say index h', and, if this is still not the location of the wanted
item, yet a third index h ", and so on. The case in which a key other than the
qesired one is at the identified location is called a collision; the task of gen
erating alternative indices is termed collision handling. In the following we
shall discuss the choice of a transformation function and methods of collision
handling.

ASSA ABLOY Ex. 1019 - Page 5
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01093 - U.S. Patent No. 8,620,039
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

