
Password Hardening Based on Keystroke Dynamics

Fabian Monrose Michael K. Reiter Susanne Wetzel

Bell Labs, Lucent Technologies
Murray Hill, NJ, USA

{fabian,reiter,sgwetzel}©research.bell-labs.corn

Abstract

We present a novel approach to improvmg the security of
passwords In our approach, the legitimate user's typmg
patterns (e.g , durations of keystrokes, and latencies between
keystrokes) are combmed with the user's password to gen
erate a hardened password that is convincingly more secure
than conventional passwords against both onhne and offimc
attackers. In add1t1on, out scheme automatically adapts to
gradual changes in a user's typmg patterns while rnaintam
ing the same hardened password across multiple logms, for
use m file encryption or other applications requiring a long
term secret key Usmg empirical data and a prototype im
plementation of our scheme, we grve evidence that our ap
proach is viable 111 practice, m terms of ease of use, improved
secunty, and performance

1 Introduction

Textual passwords have been the primary means of authcn
ticatmg users to computers smce the mtrodm::tfon of access
controls m computer systems Passwords remain the domi
nant user authentication technology today, despite the fact
that they have been shown to be a fairly weak mechanism
for authenticatmg users Studies have shown that users tend
to choose passwords that can be broken by an exhaustive
search of a relatively small subset of all possible passwords.
In one case study of 14,000 Umx passwords, almost. 25%
of the passwords were found by searchmg for words from a
carefully formed "dict10nary'' of only 3 x 106 words [10] (see
also (21, 4, 27, 29]) Th1s high success rate is not unusual
despite the fact that there are roughly 2 x 1014 8-character
passwords consisting of digits and upper and lower case let
ters alone

In thJS paper, we propose a technique for improving the
security of password-based applications by mcorporatmg bio
metric mformation into the password Spec,fica.lly, our tech
nique generates a hardened passwm·d based on hoth the pass
word characters and the user's typmg patterns when typing
the password. This hardened password can be tested for
logm purposes or used as a cryptographic key for file en
cryptwn, virtual private network access, etc. An attacker
wl10 nbtams a.II stored system mformation for password ver-
1ficat10n (the analog of the /etc/passvd file 111 a typical Unix
environment) is faced with a convincmgly more drllicult task

Permission to make d1gn:al or hard copies of ,all or part of this work for
personal or classroom use rs granted without fee provided that
copies are not made or d1.stnbuted for profit or commercial advpnt
-age and that copies bear this notice and the full c1tat1on on the hrst page
To copy otherwise, 10 rnpubhsh, to post oo servers or to
redistribute to bsts, requires pnor spec1f1e perm1Ht0n and/or a tee
CCS '99 11 /99 Srngapore
l;l 1999 ACM 1-58113-148•8/99/0010 $5 00

73

to exhaustively search for the hardened password than in a
traditional password scheme Moreover, an attacker who
learns the user's textual password (e g., by ohservi11g it be
mg typed) must type it like the legitimate user to log mto
an account protected by our scheme

There are several challenges to realizing this goal. The
first is to identify features of a user's typmg patterns (e.g,
latencies between keystrokes, or duration of keystrokes) that
the user reliably repeats (approx1mat.ely) when typmg her
password The second is to use these features when the
user types her password to generate the correct hardened
password At the same time, however, the attacker who cap
tures system rnformat1on used to generate or venfy hardened
passwords should be unable to determine wh\ch features are
relevant to generating a user's hardened password, since re
vealmg this mformation could reveal mformation about the
characters related to that password feature. For example,
suppose the attacker learns that the latency between the
first and second keystrokes 1s a feature that is reliably re
peated by the user and thus is used to generate her hardened
password Then this may reveal infonnat10n about the first
and second characters of the text pass"'urd, smce due to
keyboard dynanucs, some digraphs are more amenable to
reliable latency repetitions than others.

Our approach effectively hides information about which
of a user's features are relevant to generating her hardened
password, even from an attacker that ca1itures all system
information. At the same time, 1t employs novel techniques
to impose an additional (multiplicative) work factor on the
attacker who attempts to exhaustively search the password
space. Using empirical data, we evaluate both this work
factor and the reliability with which legitimate users can
generate their hardened passwords Our empirical studies
demonstrate various chokes of parameters that yield both
increased security and sufficient ease of use

Our scheme 1s very attractive for use in practice. Unhke
other b,ometnc aut,hentication procedures (e.g., fingerprint
recognition, retma or irJS scans}, our approach is unmtru
sive and works with off-the-shelf keyboards. Our scheme
mitially is as secure as a "normal" password scheme and
then adapts to the user's typmg patterns over time, grad
ually hardening the password with biornetr,c mforurntiun
Moreover, while fully able to adapt to gradual changes m
user typmg patterns, our scheme can be used to generate
the same hardened password indefimtely, despite changes in
the user's typing patterns. Therefore, the hardened pass
word can be used, e.g , to encrypt files, without needing to
decrypt and re-encrypt files with a new hardened password
on each logm.

The main)imitation of our scheme is that a user whose
typmg patterns change substantially between consecutive in
stances of typing her pass'\\-Ord may be unable to generate

ASSA ABLOY Ex. 1015 - Page 1
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01089 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

her cqrrect hardened password and thus, e g , might be un
able to log in The most common c1rcumstance m which this
could happen 1s if the user attempts to log III usmg a different
style keyboard than her regular one, which can cause a dra
matic change m the user's typing patterns. In hght of this,
app1icat1011s for which our scheme 1s ideally smted are access
to v1rtual private networks from laptop computers, and file
or disk encrypt10n on laptop computers Laptops provide a
smgle, persistently available keyboard at which the user can
type her password, which 1s the ideal situat10n for repeated
generat10n of her hardened password Moreover, with the
nsmg rate of laptop thefts (cg, see [22]), these apphcat10ns
demand secunty better than that provided by traditmnal
passwords

2 Related work

The motivatwn for usmg keystroke features to harden pass
words comes from years of research vahdatmg the hypoth
esis that user keystroke features both are highly repeat
able and different between users (e g, [6, 28, 14, 15, 1, 9,
20, 24]). Pnor work has anticipated utilizing keystroke in
formation m the user login process (e g, [9]), and indeed
products 1mplementmg this are bemg marketed today (e g,
see http:/ /wwv. biopassword. com/) All such pnor schemes
work by stormg a model of user keystroke behav10r m the
system, and then comparing user keystroke behavior during
password entry to this model Thus, while they are useful to
defend agamst an onhne attacker who attempts to log into
the system directly, they provide no additional protection
against an offime attacker who captures system information
related to user authentication and then conducts an offime
d1ct10nary attack to find the password (e.g, to then decrypt
files encrypted under the password). On the contrary, the
captured model of the legitimate user's keystroke behav10r
can leak mformat10n about the password to such an attacker,
as discussed in Section 1 Thns, our work improves on these
schemes m two ways. First, our method is the first to offer
stronger secunty against both onlme and offime attackers.
Second, our scheme is the first to generate a repeatable se
cret based on the password and keystroke dynamics that 1s
stronger than the password itself and that can be used in
apphcatmns other than login, such a.s file encryptmn

The only work of which we are aware that previously
proposed generatmg a repeatable key based on biometric
mformat1on 1s (3] In this scheme, a user carries a portable
storage device containing (1) error correct mg parameters to
decode readmgs of the bmmetnc (e.g , an ms scan) with a
limited number of errors to a "canomcal" readmg for that
user, and (ii) a one-way hash of that canonical readmg for
vcrificat10n purposes Moreover, they further proposed a
scheme in which the canomcal b10metnc readmg for that
user 1s hashed together with a password Their techmques,
however, are inappropriate for our goals because the stored
error correcting parameters, if captured, reveal information
about the canonical form of the biometnc for the user. For
this rea.son, their approach requires a biometnc with sub
stantial entropy. e g , they considered iris scans offering an
estimated 173 bits of entropy, so that the remaming entropy
after exposure of the error correcting parameters (they esti
mated 147 bits of remaming entropy) was still sufficiently
large for their application. In our case, the measurable
keystroke features for an 8-character password·are relatively
few (at most 15 on standard keyboards), and indeed in our
scheme, the password's entropy will generally dominate the
entropy available from keystroke features. Thus, exposing

74

error-correcting param.eters 111 our setting would substan
tially dimmish the available entropy from keystroke features,
almost to the pomt of negatmg then utility Moreover, ex
posing information about the keystroke features can, in turn,
expose mformation about the password itself (as discussed
in Sect10n I) This makes the careful ut1hzat10n of keystroke
features critical m our settmg, whereas in their settmg, the
b10metncs they considered were presumed mdependent of
the password chosen.

Our method to harden user passwords has conceptual
similarities to password "saltmg" for user logm Salting 1s
a method m which the user's password is prepended with a
random number (the "salt") of s bits 111 length before hash
ing the password and comparmg the result to a prev10usly
stored value [21, 16] As a result, the search space of an
attacker is mcreased by a factor of 2' 1f the attacker does
not have access to the salts. However, the correct salt either
must be stored m the system or found by exhaustive search
at logm time Intmtively, the scheme that we propose in
this paper can be used to improve this approach, by deter
mming some or all of the salt bits using the user's typmg
features. In addition, an advantage of our approach over
saltmg is that our scheme can be effective agamst an onlme
attacker who learns the leg1t1mate user's pa.ssword (e.g , by
observing the user type it) and who then attempts to log in
as that user.

Finally, we note that several other research efforts on
password security have focused on detecting the unautho
rized modification of system information related to password
authentication (e g , the attacker adds a new account with
a password 1t knows, or changes the password of an exist
mg account) (13, 12, 8] Here we do not focus on this threat
model, though our hardened passwords can be directly com
bined with these techniques to provide secunty agamst this
attacker, as well

3 Preliminaries

The hardened passwords generated m our scheme have many
potential uses, including user logm, file encryption, and au
thentication to virtual pnvate networks However, for con
creteness of exposit10n, m the rest of this paper we focus on
the generation and use of hardened passwords for the pur
poses of user login Extending our discussion to these other
applications is straightforward.

We assume a computer system with a set A of user ac
counts Access to each user account is regulated by a login
program that challenges the user for an account name and
password. Using the user's. mput and some stored informa
tion for the account a that the user 1s trying to access, the
logm program e,ther accepts or re1ects the attempt to log
into a. Like m computer systems today, the· characters that
the user types mto the password field are a factor in the
determination to accept or reJect the logm. For the rest of
this paper, we denote by pwd. the correct strmg of char
acters for the password field when logging mto account a.
That is, pwd. denotes the correct text pa.~sword as typically
used m computer systems today.

In our architecture, typmg pwd. is necessary but not
sufficient to access a. Rather, the logm program combines
the characters typed in the password field with keystroke
features to form a hardened password that is tested to de
termine whether login is successful. The correct hardened
password for account a is denoted hpwd". The login pro
gram will fail to generate hpwd" 1f either somethmg other
than pwda is entered m the password field or if the user's

ASSA ABLOY Ex. 1015 - Page 2
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01089 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

typmg patterns sigmficantly differ from the typmg patterns
displayed m previous successful logins to the account Here
we present our scheme m a way that mamtams hpwda con
stant across log1ns 1 even despite gradual shifts 1n the uscr 1s
typmg patterns, so that hpwd" can also be used for longer
term purposes (e g, file encrypt10n) However, our scheme
can be easily tuned to change hpwda after each successful
logm, 1£ dcsued

3.1 Features

In order to generate hpwd" from pwd" and the (leg1t1mate)
user's typmg patterns, the logm program measures a set
of features whenever a user types a password Empmcally
we w,II examme the use of keystroke durat10n and latency
between keystrokes as features of interest, but other fea
tures (e g, force of keystrokes) could be used if they can be
measured by the logm program. Abstractly, we represent
a feature by a funct10n ,j, A x N -+ nt+ where ,j,(a,£) 1s
the measurement of that feature durmg the t-th (successful
or unsuccessful) logm attempt to account a For example,
if the feature ,j, denotes the latency between the first and
second keystrokes, then ,j,(a, 6) is that latency on the sixth
attempt to log mto a Let m denote the number of features
that are measured durmg logms, and let c/>1, .. , <Pm denote
the1r respective funct10ns.

Central to our scheme is the not10n of a distinguishing
feature. For each feature cf,,, let t, E nt+ be a fixed parameter
of the system Also, let µ 0 , and a 0 , be the mean and stan
dard deviat10n of the measurements cf,,(a,ji), ,cp,(a,1h)
where Jt, . ,Jh are the last h successful logins to the ac
count a and h E N is a fixed parameter of the system We
say that cf,, 1s a distmguishmg feature for the account (af
ter these last h successful logins) if \µa, - t,\ > k<Ta, where
k E nt+ is a parameter of the system. If cf,, 1s a distinguish
ing feature for the account a, then either t, > µa, + kaa,,
i e., the user consistently measures below t, on this feature,
or t 1 < µa1 - ka01 , 1.e , the user consistently measures above
t, on th1s feature

3.2 Security goals

In our login architecture, the system stores informat10n per
account that 1s accessed by the logm program to venfy at
tempts to log m. This mformat1on 1s necessarily based on
pwda and hpwd

0
, but w11l not include either of these values

themselves This is snnilar to Umx systems, for example,
where the /etc/passwd file contains the salt for that pass
word and the result of encrypting a fixed strmg with a key
generated from the password and salt In our logm archi
tecture, the 1ufonnat10n stored per account will be more
extensive but will still be relatively small

The pnmary attacker with which we are concerned is an
"offiine" attacker who captures this mformation stored in
the system, and then uses this 1nfonnat10n 1n an offiine effort
to find hpwd. (and pwd.) A first and basic requirement is
that any such attack be at least as difficult as exhaustively
searchmg for pwda m a traditional Unix setting where the
attacker has /etc/passwd. In particular, 1f the user chooses
pwda to be difficult for an attacker to find using a dictionary
attack, then hpwda will be at least as secure m our scheme

A more ambit10us goal of our scheme 1s to mcrease the
work that the attacker must undertake by a considerable
amount even if pwd" 1s chosen poorly, i.e , in a way that
is susceptible to a dictionary attack. The amount of add1-
t10nal work that the attacker must undertake m our scheme
generally grows with the number of distmguishmg features

75

for the account (when the attacker captured the system m
formation) On one extreme, 1f there are no d1stmgmshmg
features for the account, then the attacker can find pwd.
and hpwd m roughly the same amount of time as the at
tacker wo~ld take to find pwda in a traditional Umx settmg.
On the other extreme, 1£ all m features are distingmshing
for the account, then the attacker's task can be slowed by a
mult1phcat1ve factor up to 2m. In Section 7, we describe an
empmcal analysis that sheds light on what this slowdown
factor 1s likely to be in practice. In addit10n, we show how
our scheme can be combined with saltmg teclnnques, and
so the slowdown factor that our scheme achieves 1s over and
above any benefits that salting offers.

A second attacker that we defend agamst with our scheme
is an "online" attacker who learns pwda (e g., by observmg
1t being typed in) and then attempts to log in using 1t Our
scheme makes this no easier and typically harder for this
attacker to succeed in logging m.

4 Overview

In this section we give an overview of our techmque for
generatmg hpwda from pwda and user keystroke features
When the account a 1s initialized, the mitiahzat10n pro
gram chooses the value of hpwda at random from Zq, where
q is a fixed, sufficiently large pnme number, e.g, a q of
length 160 bits should suffice The initializat10n program
then creates 2m shares {s~,s!}1:Si:Sm of hpwda using a se
cret sharmg scheme such that for any b E {O, 1} m, the shares

{s:<•lh:;;,:;;m can be used to reconstruct hpwda (Here, ?.(i)
is the 1-th bit of b.) These shares are arranged m an m
struct10n table".

< t, '2:. t,

1 s'f. 81
2 sg s~

m s::. SI
m

The initialization program encrypts each element of both
columns {i.e , the "< t," and "2: t," columns) with pwda
This (encrypted) table is stored in the system. In the £-th
login attempt to a, the login program uses the entered pass
word text pwd' to decrypt the elements of the table, winch
will result in the previously stored values only if pwd. =
pwd'. For each feature </,,, the value of ¢,(a, e) indicates
which of the two values in the i-th row should be used in
the reconstruct10n to find hpwda: if ,j,,(a, £) < t,, then the
value in the first column is used, and otherw,se the value in
the second column 1s used. In the first logms after initial
ization, the value m either the first or second column works
equally well However, as distmgmshing features cf,, for this
account develop over time, the login program perturbs the
value in the second column of row i 1f /la, < t, and perturbs
the value m the first column of row i otherwise. So, the
reconstruction to find hpwda m the future will succeed only
when future measurements of features are consistent with
the user's prev10us dJStinguished features.

In this way, our scheme helps defend agamst an onlme at
tacker who learns (or tnes to guess) pwda and then attempts
to log mto a using 1t. Unless this attacker can mimic the
legitimate user's keystroke behavior for the account's distm
guishmg features, the attacker will fat! m logging into the
account Moreover, numerous prior studies have shown that

ASSA ABLOY Ex. 1015 - Page 3
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01089 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

keystroke dynamics tend to differ sigrnficantly from user to
user (see Sect10n 2), and so typically the onhne attacker will
fail m his attempts to log mto a Thus, the secunty analysis
in the rest of this paper will focus on the offime attacker

Not any secret sharing scheme satisfymg the properties
descnbed above will suffice for our technique, since to de
fend against an offiine attacker, the shares must be of a form
that does not easily reveal if a guessed password pwd' suc
cessfully decrypts the table. In the followmg sections, we
present mstances of our techrnque using two different shar
mg schemes

Our scheme can be easily combmed with saltmg to fur
ther improve secunty A natural place to include a salt 1s 111

the val1dat10n of hpwda just after reconstructmg 1t For ex
ample, when hpwda 1s generated durmg a logm, 1t could be
prepended with a salt before hashmg 1t and testmg agamst
a prev10usly stored brush value The salt can be stored as
1s typically done today, or may not be stored so that the
system must exhaustively search for 1t [16] In this case,
the extra salt results in an additional work factor that the
offime attacker must overcome.

5 An instance using polynomials

In this sect10n, we descnbe an instance of the techmque of
Section 4 using Shamlf's secret sharmg scheme (25] In this
scheme, hpwd" is shared by choosmg a random polynomial
la E Zq(x] of degree m - 1 such that la(O) = hpwd" The
shares are pomts on this polynomial. \Ve present the method
m two steps, by first describmg a simpler vanation and then
extendmg 1t m Sect10n 5.4 to be more secure agamst an
offime attack

5.1 Stored data structures and initialization

Let G be a pseudorandom funct10n family [23) such that
for any key Kand any mput x, GK(x) is a pseudorandom
element of zz.1 In practice, a likely implementation of G
would be GK(x) = F(K,x) where F 1s a one-way function,
e.g., SHA-1 [26] There are two data structures stored m
the system per account.

• An instruction table that contains "instructions" regard
mg how feature measurements are to be used to generate
hpwda. More specifically, tins mstruction table contams an
entry of the form <i,Oia,,/3a,> for each feature¢,,. Here,

O:'ai = Y2i . Gpwda (2i) mod q

/3a, = Y!, · Gpwd
0

(2i + 1) mod q

and Y2,, y~, are elements of z; Imtially (1 e , when the
user first chooses pwda), all 2m values {y2,, Y!,}i:,;,:,;m are
chosen such that all the pomts {(2i, Y2,), (2i+l, y~,) }i:,;,:,;m
lie on a single, random polynomial la E Zq[x] of degree
m - 1 such that la (0) = hpwda

• An encrypted, constant-size history file that contains the
measurements for all features over the last h successful
logms to a for some fixed parameter h. More specifi
cally, if smce the last time pwd" was changed, the logm

1That 1s, a polynom1ally-bounded adversary not knowmg K can~
not distinguish between GK(x) and a randomly chosen element of Z~,
even 1f he 1s first allowed to exam me GK (i:) for many i: 1s of his chmce
and is allowed to even pick x (as long as 1t 1s different from every X
he prevwusly asked about)

76

attempts J1, . , Jt to a were successful, then this file con
tams </>,(a,J) for each 1 $ i $ m and J E {Jt-h+I, ,Jt}
In addition, enough redundancy is added to this file so
that when 1t 1s decrypted with the key under which ,t
was previously encrypted, the fact that the file decrypted
successfully can be recogmzed

This file is initialized with all values set to 0, and then is
encrypted with hpwd" usmg a symmetric cipher The size
of this file should remain constant over time (e g , must
be padded out when necessary), so that its size yields no
informat10n about how many successful logms there have
been.

5.2 Logging in

The login program takes the followmg steps whenever the
user attempts to log mto a Suppose that this is the £-th
attempt to log mto a, and let pwd' denote the sequence of
characters that the user typed. The logm program takes the
followmg steps.

1. For each¢,,, the logm program uses pwd' to "decrypt" Ola,

if </>,(a,£) < t,, and uses pwd' to "decrypt" f3a, otherwise
Specifically, 1t assigns

The login program now holds m points {(x,, y,)}1:5,:,;m

2 The logm program sets

m

hpwd' = LY• · A, mod q
i=l

where

1s the standard Lagrange coefficient for mterpolat10n (e.g ,
see [19, p. 526]) It then decrypts the history file usmg
hpwd'. If this decrypt10n yield~ a properly-formed plain
text history file, then the logm is deemed successful (If
the logm were deemed unsuccessful, then the login proce
dure would halt here.)

3. The login program updates the data 111 the history file,
computes the standard deviation aa, and mean µa, for
each feature ¢,, over the last h successful logms to a, en
crypts the new history file with hpwd' (i.e , hpwda), and
overwrites the old history file with this new encrypted
history file 2

4 The login program generates a new random polynomial
la E z.[x) of degree m - 1 such that la(O) = hpwd'

5 For each c:hstinguishmg feature</>,, i e., lµa, - t,I > kaa,,
the logm program chooses new random values y2., y~, E
z; subject to the following constraints·

µa, < t, ~ la(2i) = Y~, A la(2i + 1) 'f' Y!,
µa, c'.'. t, ~ la(2i) 'f' Y~, A fa(2i + 1) = Y!,

2 For maximum security, this and the previous step should be per
formed without writing the plamtext history file to disk Rather, the
login program should hold the plamtcxt history in volatile storage
only

ASSA ABLOY Ex. 1015 - Page 4
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01089 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

For all other features cf;, -1 e , those for which lµa, - t, I '.'::
ka "" or all features 1f there have been fewer than h suc
cessful logms to this account smce m1tiahzat1on (see Sec
tion 3 1)-the logm program sets y2, = la (2,) and y,;, =
la(2, + 1)

6 The logm program replaces the mstruct1on table with a
new table with an entry of the form <z, a~n fi~i> for each
feature qi,. Here,

a~l Y~i Gpwd' (2i) mod q

fJ:, v!, Gpwd' (2, + 1) mod q

where yi,, y,;, are the new values generated m the prev10us
step

Step 4 above is particularly noteworthy for two reasons
F1rst, due to th1s step, the polynomial fa 1s changed to a
new random polynomial during each successful logm This
ensures that an attacker v1ewmg the mstruction table at
two d1fferent times w11l gam no informat10n about wh1ch
features switched from distmguishmg to non-d1stmgmshmg
and vice-versa during the mtenm logins. That 1s, each time
the attacker views an instruction table for an account, either
all values will be the same since the la.st time (1f there were
no successful logms smce the attacker last saw the table)
or all values will be different. Second, though generated
randomly, la IS chosen so that la(0) = hpwda This ensures
that hpwda remams constant across multiple logms

Step 5 1s also noteworthy, since 1t shows that whether
each feature 1s du~t1ngu1sh1ng 1s recornputed 1n each success~
fol logm So, a feature that was previously d1stmgu1shmg
can become undistmgmshmg and vice-versa This 1s the
mechanism that enables our scheme to naturally adapt to
gradual changes in the user's typing patterns over time

5.3 Security

Consider the "offhne" attacker who obtams account a's his
tory file and 111struct10n table, and attempts to find the value
of hpwd" Presummg that the encrypt10n of the history file
using hpwda 1s secure, since the values y~ 1 , y!1 are effectively
encrypted under pwda, and smce pwda is presumably chosen
from a much smaller space than hpwda, the easiest way to
find hpwda 1s to first find pwda Thus, to argue the bene
fits of this scheme, we have to show two tlnngs First, we
have to show that findmg pwda is not made easier m our
scheme than 1t 1s III a typical environment where access is
determmed by testmg the hash of the password agamst a
prev10usly stored hash value. Second, we have to show that
the cost to the attacker of findmg hpwda is generally greater
by a sigmficant mult1phcative factor

That searching for pwda 1s not made easier in our scheme
1s clear The attacker has available only the instrnction table
and the encrypted history file. Since there 1s a row m the
instrnct10n table for each feature (not JUSt those that are
d1stingmshing for a), and since the contents of each row
are pseudorandon1 values, the rows reveal no n1fonnation
about pwd" And, all other data available to the attacker 1s
encrypted with hpwda

The more mterestmg security consideration in this scheme
is how much security it achieves over a traditwnal password
scheme. Suppose that the attacker captured the history file
and instruction table after f 2: h successful logms to a, and
let d be the number of distmguishing features for tlus ac
count in the l-th logm When guessmg a password pwd',
the attacker can decrypt each field <>a, and (1a, usmg pwd'

77

to yield pomts (2i, yg,) and (2i + 1, !),;,), respectively, for
1 $ i $ m Note that !)2, = y~, and !),;, = y,;,, where y~,, y,;,
are as generated in Step 5, if and (with overwhelmmg prob
ab1hty) only 1f pwd' -= pwda, Therefore, there exists a bit

strmg b E {0, l}m such that {(Zi + b(i),11!;'))},c",c"m mter
polates to a polynomial j with j (0) = hpwda, 1f and only
1f pwd' = pwd

0
• Consequently, one approach that the at

tacker can take is to enumerate through all b E {0, l}m and,
for each j thus computed, see if f(O) == hpwd" (1 e , 1f f (0)
will decrypt the history file). This approach slows down the
attacker's search for hpwda (and pwda) by a mult1phcat1ve
factor of 2m In practice, the slowdown that the attacker
suffers may be substantially less because user typmg pat
terns are not random. In Sectmn 7, we use empirical data
to quantify the degree of security achieved against this form
of attack, and show that 1t 1s nevertheless substantial

However, the attacker has potentially more powerful at
tacks agamst tlus scheme using the 2m pomts {(2i, 11~,), (2,+
l,j),;,)},<,<m, due to the following contrast On the one
hand, 1Cpwd' #- pwda, then with overwhelmmg probab1hty,
no m + 1 pomts will lie on a single degree m - 1 polynomial,
i e , each subset of m points interpolates to a different poly
nonual with a d1fferent y-intercept (not equal to hpwdal· On
the other hand, 1f pwd' = pwda, then there are 2m - d :C: m
pomts that all he on a polynomial f of degree m - 1 (and
f(0) = hpwda), 111 particular if d < m, then there are at
least m + 1 points that all lie on some such I- Asymp
totically (1.e, as m grows arbitrarily large), it is known
that the second case can be distmgmshed from the first 111

O(m2
) time if d '.':: (2-v'2)m:::; .585m usmg error-correctmg

techniques [7]. These techmques do not directly break our
scheme, smce our analysis in Section 7 suggests that for
many reasonable values of k, d will typically be too large
relative to m for these techniques to succeed (unless the at
tacker captures the account mformation before the account
1s used). Moreover, typically m will be too small in our sce
nario for these techniques to offer benefit over the exhaustive
approach above. However, because these techniques might
be improved with apphcation-specific knowledge-e g , that
111 the second case, at least one of (2,, j)i,) and (2i + 1, 11!,)
hes on f-1t is prudent to look for schemes that confound
the use of error-correcting techniques. This 1s the goal of
Section 5 4

5.4 A variation using exponentiation

In this section we present a mmor variation of the scheme
presented m Sections 5 1-5.2, to which we refer as the "ongi
nal" scheme below. The scheme of this sect10n is more secure
m several ways that will be described below.

Let p be a large pnme such that computmg discrete loga
nthms modulo p 1s computationally intractable (e g., choose
p of length 1024 bits) and such that q divides p - l. Also,
let g be an element of order q m z; The main concep
tual differences m this variation are that hpwd

0
1s defined to

be gf.(O) mod p, and rather than storing C>a, and f3a, in the
mstruction table, the values

')'a, == ga., mod p

om = g 13a• mod p

are stored mstead. Intuitively, since the attacker cannot
compute ruscrete logarithms modulo p, this hides y2,, v!,
from him even if he guesses pwda.

There arc a number of reasons to prefer this vanatlon
to the ongmal III practice. First, this modified instruc-

ASSA ABLOY Ex. 1015 - Page 5
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01089 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

