
380 IEEE TRANSACTIONS C/N SYSTEMS. MAN, AND CYBERNETICS, VOL . 20. NO. 2, MARCH/APRIL 1990

A Fault-Tolerant Architecture for an
Automatic Vision-Guided Vehicle

MANSUR R. KABUKA, MEMBER, IEEE, SURJADI HARJADI STUDENT MEMBER, IEEE,
AND AKMAL YOUNIS

Abstract —A fault-tolerant architecture for an automatic navigation
system is presented. The system employs a mixed type of architecture in
which the speed advantages of both pipelined and parallel architectures
are exploited to achieve real-time navigation. The fault-tolerant archi-
tecture is presented using two reconfiguration strategies. To evaluate the
proposed architecture, its reliability, availability, and safety are investi-
gated using Markov models. In addition, the feasibility of implementing
the proposed architecture is studied.

1. INTRODUCTION

THE study of automatic guided vehicles (AGV) has
received a great deal of attention in the past decade

due in part to the increasingly complex modern trans-
portation problem and to the vast area of related applica-
tions that involve monotonous and tedious tasks or haz-
ardous environments.

In fact, AGV's can be considered one of the key factors
in flexible manufacturing systems. These systems are used
to maximize the throughput by attempting to equalize the
workload among their various components. This can be
achieved by premeditated task planning and devising of
efficient navigation methods for the autonomous trans-
porters. These methods should be flexible, inexpensive,
and easily modifiable. Initial efforts in obtaining these
methods for robot navigation included the use of buried
wires [1] and painted lines [2], [3]. The buried-wire method
is still the most popular among the Japanese manufactur-
ers of mobile robots [4].

Research has concentrated lately on navigation with
little or no a priori knowledge of the surrounding environ-
ment. Since the knowledge about the environment is
minimal, the system must depend on its sensing mecha-
nisms for navigation. Most of the current research has
relied upon visual sensors [5]—[13], ultrasonic rangefinders
[14], tactile sensors [15]—[18], and laser rangefinders
[19]—[21]. These systems are usually designed with the aim
of being completely autonomous. However, most mobile
robots are still inept in this regard, the limitations defined
finally by their sensing capabilities. Realistic implementa-
tion of completely autonomous robots capable of navigat-

Manuscript received February 24, 1988; revised August 8, 1989.
The authors are with the Department of Electrical and Computer

Engineering, University of Miami, P. O. Box 248294, Coral Gables, FL
33124.

IEEE Log Number 8932019.

ing any unknown environment has yet to be achieved,
although great advancements have been made. On the
contrary, if the environment is controllable a likely situ-
ation in indoor industrial settings—the situation is simpli-
fied and practical solutions could be implemented.

In a controlled environment, the AGV usually navi-
gates by correlating the information previously stored
about the environment with the information it gathers
along its way. One way of providing this information is in
the use of marks and patterns that can be discretely
placed within the environment. The AGV determines its
position relative to these marks and subsequently locates
itself in the environment. Some of the marks already
developed include laser-detected corner cubes [19] and
retroreflective "spot marks" [22].

Artificial intelligence also has been used for purposes
of path planning and navigation [23], [24]. If the environ-
ment is assumed to be known completely, algorithmic
methods can be employed to plan the path as a one-time
off-line operation [25]—[27]. Although this can prove to be
fast for path-planning execution, it does not account for
the possibility of the path being blocked due to temporary
reasons. In such a situation, the AGV's should have the
ability to revise, during navigation, their previously
planned paths so as to obtain optimal or suboptimal
solutions [28]-[30].

To increase the efficiency and minimize the chance of
accidents, an AGV system must be designed with a maxi-
mum regard towards reliability, availability, and safety. In
this paper, a fault-tolerant architecture is proposed for
the implementation of the AGV presented in [29] and [30]
to attain these properties. No matter how well designed
the system is, its circuit components may fail at a crucial
moment. This can prove to be hazardous not only to the
AGV but also to its environment. In a less serious condi-
tion, the AGV can lose its way and wander until rescued,
with the consequence of wasting both time and efficiency.
Moreover, the interruption of material flow caused by
malfunction can seriously disrupt the whole system's op-
eration. Under more serious circumstances, the AGV can
collide with another AGV, causing massive destruction
that could have been avoided with the use of a fault-
tolerant AGV. On the other hand, a fault-tolerant AGV
will continue its work uninterrupted and thus inflict a
positive influence on overall productivity.

0018-9472/90/0300-0380$01.00 ©1990 IEEE

AHM, Exh. 1007, p. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

KABLIKA et at.: A FAULT-TOLERANT ARCHITECTURE FOR AN AUFOSIA1 I(' VISION-GUIDED VEIIR LF 381

The navigation system, presented in [29] and [30], is
briefly described in Section II. The fault-tolerant architec-
ture of the system is presented in Section III. An evalua-
tion of the proposed architecture is investigated in Sec-
tion IV, in which reliability, availability, and safety are
discussed using Markov models. In Section V, a feasibility
study of the proposed architecture is conducted to illus-
trate that it could be implemented to perform the re-
quired real-time navigation of the AGV. Also, this feasi-
bility study could be considered, in a wider context, useful
for implementing any application in which the transfor-
mation of a path network map into an interconnected
graph is needed.

II. AGV SYSTEM DESCRIPTION

The AGV goes through three different phases to
achieve real-time navigation.

a)

b)

Path network learning: During this phase a scaled
map of the path network is presented to the system
via a camera. The system automatically extracts
information, such as location and number of inci-
dent edges of a node, node adjacency, edge path
direction trace, and edge length, using image pro-
cessing techniques. Information, such as width and
height of an edge, whether an edge is directed or
not, and the maximum load an edge can support, is
input to the system interactively and stored in the
path network database. The learning process is not
entirely carried out in an interactive mode due to
the fact that it would have been time consuming and
prone to human errors.
Automatic path scheduling: In this phase, the infor-
mation in the path network database is used to
generate a path that could be traced by the AGV to
navigate from the source node to the destination
note. The requested navigation could be specified to
the system in one of three possible alternatives:

1) initial, destination nodes;
2) initial, destination, and part of the path cross-

ing nodes;
3) initial, destination, and all the path crossing

nodes.

c) Real-time navigation: During real-time navigation,
the AGV extracts information about the environ-
ment and confirms it with the previously planned
path. For the purpose of guidance, a finite-state
machine is designed to control the navigation of the
AGV. The AGV identifies nodes by decoding a bar
code attached to each node and detects its current
position by monitoring a painted line on the floor. If
an unexpected node is reached, or a path is found
blocked by an obstacle, a double heuristic search
technique is used to generate a new path, to guide
the system back to the required destination.

For the AGV to perform the previously mentioned
tasks, it utilizes a multiple instruction multiple data stream
(MIMD) architecture in which three parallel paths are
identified.

I) Node/edge pipelined unit (NPU): This path consists
of four image-processing pipelined modules used for
segmentation, smoothing, thinning, and node/edge
extraction. The NPU first transforms the input im-
age of the path network into a graph of intercon-
nected segments whose widths are one pixel in each
direction. This graph is processed to extract infor-
mation about network nodes and their interconnect-
ing edges. The extracted information is stored in
order to be used for automatic path planning.

2) Bar-code pipelined unit (BPU): When the AGV navi-
gates along a path, it decodes the bar codes of the
nodes it encounters using the BPU. The decoded
information is compared with the stored informa-
tion about the path in order for the AGV to deter-
mine if it is on the right path.

3) Obstacle avoidance unit (OAU): This unit is used for
detecting unexpected obstacles using an ultrasonic
rangefinder. For the occasion that an obstacle is
detected, by observing both a discontinuity in the
painted line and a shorter range than the expected
distance to the next node, the authors developed an
algorithm in which the AGV attempts to maneuver
around it, if possible, or else backtracks to the last
reached node and a new path is replanned. Ultra-
sonic obstacle avoidance has been chosen because it
is inexpensive, easy to implement, and gives the
required range information. The range data ob-
tained is considered of acceptable resolution be-
cause it is used for detection, not for recognition.

III. AGV FAULT-TOLERANT ARCHITECTURE

Since the AGV consists of three parallel paths, each of
which uses a pipelined architecture as shown in Fig. 1, it
is difficult to apply fault-tolerance design techniques to
the system as a whole. Hence a modular approach is used
in which each of the three parallel paths is designed
independently.

In this paper, the issue of fault tolerance is addressed
for the NPU, due to its inherent complexity as compared
to the BPU and OAU, but the concept could similarly be
applied to these units. Two architectures arc presented
for achieving fault tolerance in the NPU. Although both
architectures are able to recover from two faults only,
their concept of operation could easily be extended to
include any number of faults in.

In the first architecture, shown in Fig. 2, a direct
replacement strategy is employed to reconfigure the sys-
tem after fault detection and location. In this strategy,
one of the spares is downloaded with the state and
program of the faulty processor in order to replace it
when normal operations are resumed after recovery. While

AHM, Exh. 1007, p. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

382 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, vol.. 20, NO. 2, MARCI I /APRIL 1990

Ultraeonla

FlongeFinder

Picture

Input

Unit

Coneole

Segnen tat ion

Module

Hord

Di.k

Smoothing

Module

Obetocle

Pooicio ce

Module

Thinning

Module

Node/Edge

E t tl

Module

Bar -Code

2 t ct

A Decoder

Mos ter

Processor

Arbiter

Arbiter

Common

Plenary

odule I

Common

Memory

Module II

RGV
Steering
Controller

Interproceesor

Interrupt

Network

Electric

Compiles

Moto,

Sensors

Fig. 1. AGV system architecture.

Motor,

SVC

Flu

IM

ES1

PIPI

SPF12

SPN I

BI

Fl

PIP2

82

SPPIk

SPP02

Switch In

IDI

SPP01

bk

PIPk

SPP0k

Switch_O t

102
SPI2

SPI I

Selection
Generator

M I B2 I Bk

SP I

Sof twore

Sul tc her

852
SP2

SP:r
SP0I

Fig. 2. Direct replacement architecture.

in the second architecture, shown in Fig. 3, a rippling
replacement strategy is employed in which a faulty pro-
cessor is replaced by its successor in the pipeline, and that
successor is in turn replaced by its successor, and so on,
until the last processor in the pipeline is replaced by one
of the spare processors. Hence the reconfiguration pro-
cess results in a shift-of-functions operation that starts at

the faulty processor and ends up at one of the spare
processors.

In both architectures, each module of the NPU is
assumed to consist of a number of similar processors
connected in a pipeline, with the total number of proces-
sors in all four modules equal to k. Both architectures
employ the concept of standby sparing by having two

AHM, Exh. 1007, p. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

KABUKA el A FAULT-TOLERANT ARCIIITE(TURE FOR AN AUTOMATIC VISION-GUIDED VEIIIUI F 353

SVC

PIU

IM

ESI

PIP'

31

12

32 - f3k

P1Pk

[51

S

ID2

Bypass
Generator

Ell ' B21 6k

Sof luore

Switcher

er1O , y

Fig. 3. Rippling replacement architecture.

spare processors ready to be substituted for faulty proces-
sors, once one or two faults have been detected and
located. They differ mainly in the reconfiguration strat-
egy, by which a faulty processor is replaced by one of the
spare processors.

Moreover, to achieve their respective strategies, they
use a combined hardware/software switching mechanism,
which is initiated when a fault is detected. The hardware
portion is responsible for establishing proper physical
links between the spare processors and the nonfaulty
processors, while the software portion is responsible for
downloading the states and programs needed for each
architecture so as to get the spare processor functioning
in the pipeline.

A. Direct Replacement Architecture

The direct replacement architecture proposed for the
NPU is shown in Fig. 2, where the following basic units
are identified.

a) State verification controller (SVC): This unit is re-
sponsible for scanning and testing the pipelined
processors to globally detect any faults. On the
other hand, faults are detected locally within each
processor running its own self-diagnostics; when a
fault is detected, it alters an internal register con-
taining its order (state) in the pipeline. When one or
two faults are detected by the SVC, it generates the
codes of the faulty processors on its output lines
(ID,, ID2) and activates the corresponding enable
lines (ES„ ES2). These signals are used in turn by
the other units in the system to initiate the switching
mechanism. Each of the ID codes has s bits, where
s is given by flog 2 k1, so that each pipelined proces-
sor is given a unique identifying code.

121
ES_ 1

SSPI_I
SSP! 2

SSP

102
ES_2

SSP' 1
SSPI_2

SSP!

ES2

5P2

0 EN

2

V

0 EN

2

Select

X

Fig. 4 Switch in basic design.

511 _2

b) Switch,,,: This logic control unit establishes proper
links from the outputs of the pipelined nonfaulty
processors preceding the faulty ones, to the inputs
of the spare processors (SPIT, SPI2). The basic logic
design of this unit is shown in Fig. 4.

c) Switch„„,: This logic control unit establishes proper
links from the outputs of the spare processors (SPO,,
SPO2) back to inputs of the nonfaulty pipelined
processors succeeding the faulty ones. The basic
logic design of this unit is shown in Fig. 5. In this
design, when one of the demultiplexer (DEMUX's)
is disabled, all its outputs are equal to 0. Also, the
shown oa gate symbols represent banks of cnt gates.

AHM, Exh. 1007, p. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

384 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, voi.. 20, NO. 2. MAR('H/APRII, 1990

101
ES

SP0

102
ES

SP0_2

E5_1

I0_"

=5_2

10_2

EN Se le

0
Input

V

c t

EN Select

0
I put

V

Fig. 5. Switch„„, basic design.

Enable

DECODER

I rpu t

SPPD I

 SPPO_2

__D— 5PPO_k

Ennble

DECODER

Input

D I

Fig. 6. Selection bypass) generator basic design.

d) Selection generator: This combinational logic unit is
used to generate selection signals (R, where i =
0,1, . . .,k), which are used in turn by the steering
logic at the input of each pipelined processor to
reroute the tokens intended for the faulty processor g)
to the spare processor. The steering logic is simply a
MUX that is set to appropriately control the flow of
information through the pipeline before and after
the reconfiguration process. The basic design of this
unit is shown in Fig. 6.

e) Spare processors: These processors are identical to
the processors used in the pipeline. Whenever one
or two faults arc detected, they can be used to
replace the faulty processors.

f) Pipeline input unit (PIU): This unit controls the in-
puts to the pipeline, depending on the state of the

BI

57

HE

system. In normal operation, it supplies image infor-
mation to the pipelined processors, while during
recovery from one or two faults, it prohibits the
input from the image memory (IM) to the system.
Software switcher: This unit is responsible for down-
loading spare processors with the states and pro-
grams of faulty processors in order to take over their
role in the pipeline after recovery. It mainly consists
of a general-purpose processor and an attached
memory. The processor is interrupted by the recov-
ery signal (R) issued by SVC once recovery from a
fault is required. The interrupt service routine (ISR)
performs the necessary downloading. The attached
memory stores a duplicate of the programs of all
pipeline processors. Also, it contains a look-up table
for storing the starting and ending addresses of each

AHM, Exh. 1007, p. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

