
Fault Tolerant Distributed Architectures for in-Vehicular Networks
Author(s): Syed Misbahuddin and Nizar Al-Holou
Source: SAE Transactions, Vol. 110, Section 7: JOURNAL OF PASSENGER CARS:
ELECTRONIC AND ELECTRICAL SYSTEMS (2001), pp. 277-281
Published by: SAE International
Stable URL: https://www.jstor.org/stable/44718335
Accessed: 04-11-2021 13:20 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

SAE International is collaborating with JSTOR to digitize, preserve and extend access to SAE
Transactions

I NIT E.IR NATION AIL

D
JSTOR

AHM, Exh. 1005, p. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2001-01 -0673

Fault Tolerant Distributed Architectures
for in-Vehicular Networks

Copyright© 2001 Society of Automotive Engineers, Inc.

ABSTRACT

The increasing trend of automotive electronics mandates
the introduction of multiple processors in automotive
electronics. The automotive electronic systems have to
operate in harsh environments having a high
temperature range, high humidity, unpredictable
vibrations and rapid voltage variation. In such
environment, the automotive electronic systems become
vulnerable to intermittent and transient failures.
Depending upon the importance of the tasks performed
by the processor, a processor's failure inside automotive
electronic system may lead to serious consequences.
Fault tolerant computing techniques are used to keep the
computer systems running in spite of one or more
processors' failures. The concept of fault tolerant is well
known in many applications such as airplanes, industry,
and military. However, the question of fault tolerant
design has drawn little attention in automotive
electronics. In this paper, various fault tolerant
architectures for automotive applications have been
proposed. In these schemes, fault tolerant is achieved by
assigning the task of a failing processor to another
processor in the system. In this way, the automotive
electronic system may continue to function with multiple
processors' failure.

I.INTRODUCTION

Electronics has been introduced into the automobiles to
provide efficient implementation of all automotive
functions. In the initial electronics implementation, a
single processor called electronic control unit provides
complete vehicular control. In order to improve the
existing features and as well as to introduce new
features, more processors are being introduced in the
automotive electronic systems. When multiple
processors are used in an automobile system, their
failures may lead to the unavailability of the feature
associated with the failing processor. Depending upon

Syed Misbahuddin
King Fahd University of Petroleum and Minerals Saudi Arabia

277

Nizar AI-Holou
University of Detroit Mercy

the importance of the failing processor, the automotive
system may come to a complete halt. In the current state
of the art, there is no fault tolerant architecture available
in automobiles [18]. Because of cost and space
restrictions associated with automotive electronics,
special fault tolerant methods should be developed. In
this paper, various fault tolerant distributed processing
architectures for automotive applications have been
proposed. In these proposed schemes, software
hardware based approaches have been proposed to
address the fault tolerant issues in automobiles. In
section II, single bus based architecture is out-lined along
with fault tolerant algorithm for detecting faults in
processors. Section Ill extends the idea of single bus
based scheme to hierarchical distributed architecture. In
section IV a multi-network scheme is presented. Finally,
conclusion is discussed in section V.

II. SINGLE BUS BASED FAULT TOLERANT
DISTRIBUTED PROCESSING ARCHITECTURE

Single vehicle wide networks provide many advantages
such as economical multiplexing, flexibility in adding or
removing control nodes and single communication
protocols [1]. In a single bus-multiplexing network, all
intelligent nodes are connected to the system bus
through interfaces. In this section, a single bus based
fault tolerant distributed processing architecture is
proposed. This architecture allows a vehicular system to
function in spite of multiple processor's failures. The fault
tolerant is achieved by assigning the tasks of the failed
processor to a functioning processor, which will continue
its original tasks in addition to assigned tasks of the failed
processor

ARCHITECTURAL FEATURES OF THE SINGLE BUS
BASED ARCHITECTURE

The proposed system consists of n processing nodes (P1,

P2, ••• P" ,) m sensor groups (SG,, SGrSGm) and k

AHM, Exh. 1005, p. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

actuator groups (ACG1, ACG2 ••• ACGk) as shown in
Figure 1. The sensor and actuator groups consist of
smart sensor and actuators [2]. All processors are
connected to the bus via network interface logic, which is
subjected to the random errors [3]. The processing
power of a processor becomes unavailable when
processor and/or interface logic becomes faulty. This
scheme uses a central controller unit (CCU). The central
control monitors the performance of all processors
connected to the automotive multiplexing bus. When
detecting of a processing node's failure, the CCU
executes a fault tolerant algorithm that assign the tasks

µC µC

MUX MUX

Central
controller
mt(CCU)

Code Memory

of the failed processor to the another processor.

Figure 1: Block diagram of single bus based fault tolerant distributed
processing architecture

In this proposed architecture, each processor is
interfaced with two port memory modules. One port of
each memory module is connected to its own processor
and second port is to the main bus. Dual port memory
allows any processor in the system to access any other
processor's memory via the multiplexing bus without
involving the processor. This feature of dual memory is
conducive in implementing the proposed fault tolerant
scheme discussed later. In this system, the code
memory module shown in Figure 1 holds the segment of
significant program codes for all processors.

FAULT DIAGNOSTIC ALGORITHM FOR THE
PROPOSED SINGLE BUS BASED ARCHITECTURE

The proposed single bus based scheme will allow an
automotive system to function in case of one or more
processors' failures. In order to implement this scheme,
the central controller unit (CCU) performs a supervisory
action. During its supervisory action, the CCU identifies
the faulty processor in the system and takes the
appropriate actions to keep the system running. The
CCU uses a variable called processor index (PINDX),
which points to an ith processor at a given instant of time.
The CCU sends a diagnostic message periodically to all
processors in the system indicated by PINDX. If a
processor is not faulty, it will respond to the CCU's

278

diagnostic message by sending an acknowledgment
message to the CCU. If the CCU does not receive this
acknowledgment message within a predefined interval of
time then, it will mark that processor as faulty processor
and will assign the tasks of the faulty processor to
another processor performing frivolous tasks in the
system. The CCU can transfer the critical program code
of the faulty processor to the assigned processor's
memory by accessing the faulty processor's memory via
multiplexing bus. Alternatively, the assigned processor
may directly execute the critical code of the faulty
processor by reading it from the code memory of the
faulty processor. For the first option, the assigned
processor's memory will be partitioned into two parts in
such a way that half of it will hold the critical program
code of the faulty processor and the other half will hold
the program code of the assigned processor. The
assigned processor will continue performing its original
tasks in addition to this new assignment on a time
sharing basis. The assigned processor can access the
sensors and actuators related to the faulty processor via
the serial bus. The fault diagnostic algorithm executed by
the central controller is summarized in the flow chart
shown in Figure 2.

Begin

No •
Send message to a

processor pointed by PINDX

Yes

ACK v,s--+ PINDX=PINDX+1

No

Mark processor as
faulty

Send message to a
processor PJ to perform,____ ___ ___.,

the tasks of faulty
processor

Figure 2 Fault diagnostic algorithm performed by the central controller
unit

In the proposed scheme, it is assumed that each
processor has the potential of executing the task
performed by other processor. Therefore, no redundant
processors are needed to implement the fault tolerant

AHM, Exh. 1005, p. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

scheme. On the other hand, normal working processors
are used to execute the faulty processor's tasks. This
approach is cost effective in the sense that the fault
tolerant capability is achieved by software and a limited
hardware. The failure of the CCU will be catastrophic for
the operation of the whole system because in this
situation failure in any processor will not be detected. In
order to avoid this problem, a single line called the
central controller's active line (CCA) can be used as
proposed in [4]. As long as the CCU is not faulty, an
active high signal will be available on the CCA.
Whenever this active high signal becomes low, a
watchdog timer will become active. If the high logic level
does not appear on the CCA within a defined time
period, the watchdog timer will interrupt any of the
processors in the system to takeover the responsibilities
of the CCU. The assigned processor will continue its
original assignment on a time-sharing basis

Ill. DEVELOPMENT OF A HIERARCHICAL
DISTRIBUTED PROCESSING SYSTEM (HOPS)

In single bus based fault tolerant distributed system
discussed in section II, all processors in the system are
connected to one global bus. In this situation, the global
bus becomes congested when the data traffic increases.
Global bus then becomes the bottleneck tor the whole
system and its failure will bring the whole system to a
halt. To overcome this problem, a hierarchical distributed
processing system is proposed in this section in which
the concepts of global and local buses have been used.
This scheme is based upon the classification of
automotive system into functional subsystems. The
automotive electronic systems can be divided into
functional subsystems according to their physical
locations and functions as follows [5]:

1. Vehicle Drive Control Group (VDCG): This group
may include the engine control, transmission control,
cruise control, suspension control, steering control,
throttle control, traction control, tour wheel steering
control and knock control.

2. Intelligent and Security Group (ISG): This group may
include the air bag control, automatic collision
avoidance and notifier system, ABS, engine
immobilizer control and lojack system.

3. Intelligent Transportation System Group (ITSG): This
group provides support for the intelligent
transportation System (ITS). The ITSG may include
the navigation computer and ITS support control [6].

4. Body Control Group (BCG): this group may include
the instrument cluster control, trip computer, climate
controller, tachometer and fuel gauge control.

THE ARCHITECTURAL FEATURES OF HOPS

Based on the classification of the automotive electronic
system, a hierarchical distributed processing system has

279

been proposed and discussed in this section. The
proposed system consists of a global bus, a central
controller unit (CCU), a code memory module and N
functional subgroups (G,-GN) as shown in Figure 3. Each
subgroup also contains one special purpose processor
called coordinator processor (GP). The purpose of the
coordinator processor is to provide communication facility
between processors located in different subgroups. Also,
the coordinator processor in each group can provide the
performance history of all processors inside the

Global Bus

Central
Controller

corresponding subgroup.

Figure 3: Architecture of proposed hierarchical distributed processing
architecture

A subgroup G consists of a smart sensor group, a smart
actuator group, a number of homogenous processing
elements and a local bus as shown in Figure 4. All
processors within a subgroup communicate with each
other through the local bus. The processors in different
subgroups can also communicate with each other

~~~Ill~ TT T T Localbu, 

through the global bus. 

SSM = Smart sensor module 
SAM = Smart actuator module 
P = Processor 

111 SAM, 

Figure 4: Architecture of a typical subgroup in the proposed 
hierarchical distributed architecture 

FAULT DIAGNOSTIC ALGORITHM IN THE HOPS 

In automobiles, if a processor in a significant subsystem 
fails then the whole automotive system may fail. In order 
to avoid complete failure of the system, there should be a 
fault diagnostic and fault tolerant algorithm tor the 
system. In this section, a fault diagnostic algorithm is 
presented for the proposed HOPS. The central controller 
unit (CCU) implements this algorithm shown in Figure 5. 
In order to implement the fault diagnostic algorithm, the 
CCU sends diagnostic messages periodically to all 

AHM, Exh. 1005, p. 4f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


processors in each subgroup. The CCU points out a 
subgroup by using a variable called GINDX. The variable 
PINDX points to a processor in a group pointed by 
GINDX. At the beginning of the algorithm, the variable 
G/NDX is initialized to point to the first group in the 
system. The algorithm tests whether GINDX is greater 
than NG, total number of groups in the system. If G/NDX 
is found greater or equal to NG, the GINDX is initialized 
to point to the first subgroup. On the other hand, if 
GINDX is not equal to NG, then the variable PINDX is 
initialized to "O." In this case, PINDX points out to the 
very first processor in the subgroup pointed by GINDX. 
A diagnostic message is sent to the processor pointed 
out by PINDX in a subgroup indicated by GINDX. Before 
sending the diagnostic message, the CCU checks 
whether PINDX has become greater than NP, which is 
the number of processor in a group pointed by G/NDX. If 
so, the CCU will reset PINDX to "O" and the pointer 
GINDX is incremented and control is transferred to 
another group. If CCU has not sent messages to all 
processor in a subgroup, then it will send the diagnostic 
message to the processor pointed by PINDX in the 
subgroup. CCU will anticipate an acknowledgment 
message from the processor within a specified interval of 
time. If an acknowledgment is not received from a 
processor within certain interval of time, the CCU 
assumes that the processor is faulty. In case of a 
processor's failure, the CCU assigns the tasks of the 
faulty processors to another processor in the same 
subgroup. The assigned processor continues its original 
assignment on a time sharing basis. 

GINDX=GINDX+1 

Initialize PINDX in the group 
pointed by GINDX 

Transfer code to 
assigned processor 

PINDX in the group 
,--------, pointed by GINDX 

is incremented 

Send message to 
processor pointed by 

PINDX in group 
pointed by GINOX 

Yo 

Figure 5: Fault diagnostic algorithm performed by the control unit in 
HOPS 

280 

IV. DEVELOPMENT OF A MULTIPLE NETWORK 
DISTRIBUTED PROCESSING SYSTEM (MNDPS) 
FOR AUTOMOTIVE APPLICATIONS 

The global bus in the hierarchical distributed system 
discussed in section Ill may pose the same limitation as 
indicated in single bus based architecture. That is, a 
failure in the global bus may lead to system's 
malfunctioning. To avoid this situation, a multiple network 
distributed processing system (MNDPS) is proposed in 
this section. Different groups of an automobile system 
may need different bus speeds. In order to accommodate 
this need, multiple buses can be introduced in 
automobiles. These buses are connected with each other 
through bridges. Figure 6 shows the proposed multiple 
network scheme for automotive applications. Each sub 
network consists of necessary processors, smart sensors 
and smart actuators. A coordinator processor (CP) is 
included in each sub network. Processors within a sub 
network communicate with each through local bus. For 
the communication among various sub-networks, the 
processors can use coordinator processors and bridges. 
Because of the multiple bus characteristics, individual 
sub networks can contain individual protocols. In this 
scheme, no global bus has been used. This feature 
eliminates the bottleneck of global bus failure in the 
proposed HOPS. In the proposed MNDPS a central 
controller unit (CCU) is attached to one of the sub 
networks. This sub network is called as supervisory sub 
network (SSN). The SSN contains a code memory which 
holds the critical program codes of all processors. The 
CCU sends diagnostic messages to all processors in the 
whole system. If a processor is found malfunctioning in a 
sub network, the CCU can assign the task of the faulty 
processor to any other processor in the same sub 
network. The assigned processor continues its original 
assignment on a time sharing basis. The critical program 
code of the faulty processor is transferred to the 
assigned processor. The fault diagnostic algorithm 
proposed for HOPS can be applied for MNDPS without 
major changes. 

AHM, Exh. 1005, p. 5f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


