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Abstract — This paper describes an innovative solution to 
perform mouse functionality (“navigation”) and image 
reconstruction (“scanning”). The application uses a recursive 
block-matching motion estimation algorithm and an optical or 
capacitive sensor. Results show this solution provides 
integrated mouse and scanner functionality at a very low cost. 

Index Terms — Capacitive finger sensor, image 
reconstruction, motion estimation, optical mouse, scanner.  

 

I. INTRODUCTION 
ODAY, an optical CMOS sensor with resolution of tens of 
pixels for each dimension can be integrated on a chip with 
processing logic at a very low cost. A capacitive sensor, 

used to scan fingerprints, is also affordable, if we use a ‘stripe’ 
version able to capture a small part of the finger image. The 
sensor can be as small as 256 pixels by 2 lines; this 
compactness makes it ideal for applications where power 
consumption, component dimensions and cost must be 
minimized.  

Ideal target applications are navigation/mouse and/or a 
portable scanner. We can also use the fingerprint sensor for 
non-critical security features; for example, to gain access to a 
consumer device, or simply to recall preferred personal 
settings. The user would move the sensor on a surface (see fig. 
1) and by processing the input images, we are able to extract 
the movement occurred and/or to reconstruct the underlying 
global image.  

 

To be able to reconstruct accurately a complete image from 
such small snapshots, or to estimate the motion imposed to the 
sensor we need a reconstruction algorithm. Simply stacking 
input images will not produce satisfactory scanning results, 
and will not give any information about navigation, as fig. 2 
demonstrates. 

 

II. STATE OF THE ART REVIEW 
This paper describes an innovative application using a 

spatial-temporal block-matching motion estimator to 
reconstruct bigger images starting from a small optical or 
capacitive sensor output, and to provide mouse functionality. 
Exactly the same algorithm is able to achieve both functions. 
Applications range from optical mice to user identification for 
small PDA’s or mobile phones. This double integrated 
functionality is very novel in the art, as we target applications 
that are, if at all present today, implemented without a unified 
approach. Example for optical mouse can be found in [1]. We 
will therefore review the state of the art of the two single 
applications; keeping in mind we also have the advantage of 
offering an integrated approach.  
 
 

T 

Typical movement for scanning
Typical movement for navigation  

 
Fig. 1:  Application example. User moves finger upon capacitive 
sensor, or slides optical sensor on an image or surface 
 

 
Fig. 2: Example of fingerprint scanning. By simply stacking the sensor 
output images (on the right), we have an unacceptable result  
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A. Optical mouse state of the art 
Nowadays optical mouse navigation functionality is based 

mainly on edge detection and/or phase correlation, algorithms 
much more complex than the proposed one. Complexity of the 
processing involved for finding out the motion limits the frame 
rate to around 1000 frames per second, especially in wireless 
mice, where power consumption is very important. Having a 
high number of pictures per unit time is beneficial to be able to 
follow hi-speed motion, for example when we use the mouse 
to play games. It also helps when scanning a document or a 
picture, as it makes the process less tedious by being able to 
make it more quickly.  

Correlation between hi-speed motion detection and high me 
rate is simply explained: there is an intrinsic threshold to 
respect to be able to estimate motion between two frames, 
whatever the technology used. This limit is the maximum 
displacement occurred between the frames, e.g. P pixels in 
each direction. Let’s assume this as a constant. To find out 
maximum detectable speed, we must multiply the displacement 
by the number of times we are able to measure it in a second. 
This is given by the frame rate, F. Having a higher frame rate 
F means covering a wider displacement per unit time, P*F, 
which grants the ability to follow faster motion. 

 

B. Fingerprint sensor state of the art 
Capacitive sensors are composed by a bi-dimensional array 

of capacitors laid out on a silicon surface in order to be able to 
capture finger’s ridges and valleys. Ridges are the pieces of 
skin in relief; valleys are the remainders of it. Vicinity of 
finger’s skin modifies the capacitance of each of such devices. 
The varied capacitance can be sensed in terms of different 
voltage resulting from applying a fixed electrical charge. After 
A/D conversion of this physical measure, the detection gives 
an array of values (one for each capacitor) that can be seen as 
a picture of the finger just scanned. Each pixel is 
monochromatically encoded into 8 bits: 0 if totally on a ridge, 
255 if totally on a valley. We therefore have a picture 
composed of 8-bit pixels, the same output of a monochromatic 
optical sensor. 

State of the art capacitive fingerprint sensors are ‘complete 
image’ sensors, with large cost in term of silicon area. A 
typical array [2] is composed by 256x360 sensing elements, 
with a pixel pitch of 50 µm. This geometry leads to an area of 
around one squared inch, enough to capture the entire 
fingerprint at once. Such a device has some distinctive 
drawbacks: cost (silicon area is huge), power consumption and 
physical size. The latter is important if this sensor has to be 
used into miniaturized terminals, like a Personal Digital 
Assistant (PDA) or a mobile phone, where area as well as cost 
and power consumption are key factors.  

To overcome these disadvantages, instead of capturing a 
whole fingerprint at once, in our approach we scan it by letting 
the finger slip over a ‘stripe’ sensor. The difference in this case 
is sensor size: the horizontal dimension stays the same, but it 
will be only a few lines high, ideally only two. Therefore the 
sensor area is reduced by a factor of (360/2) = 180, with 
evident benefits in terms of area and power consumption. To 

date, this is a very high lines reduction ratio. References [3]-
[6] can be made to other devices that were able to reduce the 
size by factors of 11 at most, i.e. using 32 lines. Using a stripe 
sensor, of course, we have to introduce the step of 
reconstructing the whole fingerprint starting from the partial 
images taken. The algorithm we propose performs this task. 
Once this function is present in the device, it can also be used 
as mouse output, just reusing displacement information and 
discarding the reconstructed image. 

 

III. MOTION ESTIMATION 
 
The algorithm we present is based on spatial/temporal 

recursive motion estimation. Motion estimation is a very much 
known technique in the digital video-processing field, where it 
is used to exploit temporal redundancy (i.e. similarities among 
different pictures) during video compression. Another use is 
for interpolation of missing information, for example for frame 
rate up conversion.  

Various types of motion estimations have been proposed in 
literature [7], [8]. The most successful have been pixel-by-
pixel motion estimation (where each single pixel is estimated 
by its own) and block-matching motion estimation, where a bi-
dimensional array of pixels is estimated at once, to decrease 
computational complexity.  

 

A. Block-matching motion estimation 
 

The basic principle of block matching motion estimation 
(see fig. 3) is to use two images A and B. We select an area C 
inside first picture A that needs to be ‘motion estimated’ on the 
other and we look for an area D inside picture B that is as 
similar as possible to area C. The position of each area C, D is 
identified by the position of its upper-left pixel. The difference 
in position of these two pixels in the respective pictures is 
called motion vector (E), and it is the expression of the motion 
that area C underwent between the two images. The motion 

vector can also be imagined as the vector joining the 
projection of upper-left C pixel into B (C’) and upper-left D 

FRAME n 
(current frame under 

prediction)

FRAME n-1 
(predictor 

frame)

E
CC’

D

A
B

 
Fig. 3:  Block-matching motion estimation technique 
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pixel. The area D is often called the predictor, as we are trying 
to ‘predict’ area C from D.  
 
 

Ideally, we could test all the D areas that we can extract 
from the B frame, to provide a matching as accurate as 
possible. This approach is called Full Search. This generally 
provides very good estimations, but at the expense of great 
computational complexity. For example, to perform an 
estimation of an X by Y area from an N by M frame, we would 
require to test (M-X+1)(N-Y+1) areas, each X*Y pixels wide.  
Moreover, normally matches need sub-pixel accuracy, i.e. 
movements of ½ or ¼ of pixel or even less need to be tested. 
The formula above would be multiplied by, respectively, a 
factor of 4 and 16. Each test usually consists in computing the 
Mean Absolute Error (MAE) function:  

 

MAE = 
YX *

1 Σ |p(i,j) – q(i, j)|         (1) 

 
With i = 0 to X-1, and j = 0 to Y-1; p(i,j) is a pixel from area 

C , position i,j; q is the pixel in the same position from area D. 
If areas are perfectly identical, MAE = 0. In general, the lower 
the MAE, the more similar we can assume areas C and D are. 
The inner part of (1) is often called Sum of Absolute 
Differences, SAD. One MAE is then the average of X*Y SAD 
values 

 

B. Reduced-complexity block-matching motion estimation 
 

In literature [7]-[13] there are other approaches that try to 
decrease the computational complexity by a focusing on the 
selection of candidate predictors. One among the most 
successful is the spatial-temporal approach [14]-[16]. It 
exploits the principle that when estimating a sequence of video 
images, results of successive estimations are not independent, 
but they instead tend to be strongly correlated. This is true 
spatially and temporally. Temporally means that if we perform 

an estimation of picture N over N-1, and then of picture N+1 
from N, the results will be highly correlated, i.e. the vectors 
will be similar. Spatially means that, in case we have more 
than one area C that we want to estimate in picture A, results 
of areas C1, C2, Cn are usually similar, at least if the blocks 
are neighbors. We will call motion vectors that are taken from 
estimations of different parts of the same picture “spatial 
vectors”; vectors that are taken from estimations of parts of 
different pictures will be referenced as “temporal vectors”. 

Algorithms following this approach exploit the correlation 
among motion vectors to decrease the number of matches and 
increase consistency of the results. It has to be noted that these 
algorithms have been developed for TV (one PAL image is 
720x576 pixels) sequences digital compression. In this 
application motion estimation is performed on 16x16 pixels 
blocks, so there are a lot of vectors to be taken as spatial-
temporal references (1620 for each frame). The algorithm will 
test a certain amount of such temporal and spatial vectors as 
the starting point of the estimation. A second ‘refine’ phase 
will test small variations of the first phase winner in order to 
see if a better match is available in some neighboring position 
(see fig. 4). 

 

IV. PROPOSED ALGORITHM 

 
In our application, however, there is not plenty of such 

vectors among which to select the best starting point for new 
estimations. Pictures used for estimations are very limited in 
dimensions: 2 lines by 256 columns for capacitive ‘stripe’ 
sensor, or 20 by 20 for the optical one. We choose this 
dimension for the optical sensor as it yields a similar number 
of pixels per frame as the capacitive one, even if aspect ratio is 
different. Another constraint comes from the application 
target, which is to estimate a single global motion, not a 
plurality of local motions. The net result of the above 
constraints is that we can inherit only one vector per previous 
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Fig. 4: Spatial/temporal recursive block-matching motion 
estimation 
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Fig. 5: Recursive motion estimation applied to capacitive stripe (or 
optical) sensor output: we have only one vector per frame, but high 
frame rate 
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picture, and no vectors from previous estimations of current 
picture, as shown fig. 5. It is a theoretical challenge to prove 
that a recursive algorithm can work also in this ‘depleted’ 
environment (1 temporal and no spatial vectors per frame). 
 

Obviously, the correlation between previous motion vectors 
and the current estimation to be performed is inversely 
proportional to the temporal distance between the current 
frame and the one from which vectors are taken. The high 
frame rate, anyway, makes us infer that we could use temporal 
vectors from more pictures in the past, not only the preceding 
one.  

We modified the core of the spatial-temporal approach to 
suit application’s conditions better, becoming a temporal-only 
approach. We added test of linear combinations of previous-
frames temporal vectors as potential ‘seeds’ to overcome the 
scarcity of candidates. In particular, considering the underlying 
physics of the application, ‘physically sound’ candidates have 
been generated, such as constant speed, constant acceleration, 
and so on. After having tested these candidates, an ‘update’ 
phase of the algorithm would refine the best among the vectors 
tested so far to see if the prediction could be bettered. A patent 
application for this technique has been filed [17].  

Note that in this case the goal of the estimation is not to 
generate a ‘prediction’ for the current image, but rather to 
compute the shift between the two images to stitch them 
together appropriately. In some respect, this application is 
more difficult than the prediction in video encoding. Even a 
small percentage of errors would be very visible in the 
reconstructed image or movement, whereas a single sub-
optimal block prediction is not critical in video compression, 
as it is concealed by encoding the block as intra, i.e. without 
prediction. 
 

V. SIMULATIVE RESULTS 
 
We developed a bit-accurate fixed-point algorithmic model 

and we created a simulation test bench to assess the 
performances. The verification environment comprised two 
different tests, one for the optical sensor, and another for the 
capacitive one. In both cases, inputs of the complete chain 
were full pictures taken with high-resolution sensors. We used 
fingerprint samples captured using a conventional 256 by 360 
sensor, and optical images taken with a Megapixel CMOS 
sensor. 

These images formed the input to a ‘strip images generator’. 
This program takes as input the big image, and a motion 
trajectory, and extracts from the full picture the equivalent 
stream of samples a small optical or stripe capacitive sensor 
would generate, if passed on the big image with the specified 
motion. Trajectories are defined as a sequence of points, or by 
a mathematical formula. In particular, thanks to an internal 
interpolation feature, movements can be programmed to be of 
any fractional amount, for example 0.12 pixels per frame, to 
better test fast and slow motion on the sensor.  

These images were then given as input to the reconstruction 
motion estimator, which would then work on them, compute 

the relative movement among successive frames and then 
stitch them one over the other according to the results of the 

estimation, as shown in. fig. 6. We could then compare the 
estimated with the original movement given in input to the 
strip image generator, and compute the percentage of correct 
or wrong estimations. 

 

FRAME 0

FRAME 1

FRAME 2

FRAME 3

MV0

MV1
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OVERALL IMAGE
RECONSTRUCTION

 
Fig. 6: Method for stitching sensor output images together to 
obtain the reconstructed picture 

 
Fig. 7: Result of fingerprint reconstruction for 0.37 pixels/frame 
vertical motion, no horizontal motion. Starting image is 
particularly dark. White central lines show where picture would 
stop if reconstruction was perfect. Surrounding lines show +/- 
10% stretching error marks 
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Results have demonstrated the validity of the algorithm, with 
both optical and capacitive sensors, for mouse and scanner 
application. Reconstructed fingerprints match in height and 
width very accurately the original ones, and trajectory of 
estimated motion follows very closely the original one. Fig. 7 
through 9 show several fingerprints with different 
characteristics (bright, dark, noisy, smeared) scanned with a 
range of different speeds in horizontal and vertical directions. 

To avoid stretching or compressing the fingerprint is a 
particularly important feature in order to be able to recognize 
correctly the owner of the fingerprint via automatic matching 
algorithms.  

 
Results are also good when the optical sensor is used. About 

scanning function, even starting from very small (20 pixels by 
20 pixels) input images, results are acceptable, as shown in fig. 
10. A small drift is visible in scanning intersections, because 
estimation errors add up, so even a very small percentage of 
errors can lead to an imperfect crossing. This problem appears 
because we need thousands (2704 theoretical minimum) of 
sensor images to obtain a 1024x1024 resolution image. During 
all these estimations, even a very small percentage of errors 
lead to a visible artifact. Applying additional matches can 
solve the problem when crossing parts of the reconstructed 

image already acquired to better center them. This is a topic 
for future research. Another obvious solution is to increase the 
sensor resolution to reduce the number of input images 
necessary to cover one full picture. 

 

 

 
Fig. 8 Result of reconstruction for 0.6 pixels/frame vertical and 
0.37 pixels/frame horizontal motion, starting from a smeared 
image. Grey area on the right is due to padding of the sequence 
generator, to be able to generate horizontally moving images. 

 

 
Fig. 9: Result of reconstruction for 0.89 pixels/frame vertical 
motion on a dark, noisy fingerprint image 

 

 
Fig. 10: Results of simulation of scanning a printed paper with 
the optical sensor and the combining the pictures with the 
proposed algorithm 
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