Password Hardening Based on Keystroke Dynamics

Fabian Monrose

Michael K. Reiter

Susanne Wetzel

Bell Labs, Lucent Technologies
Murray Hill, NJ, USA
{fabian,reiter,sgwetzel}@research.bell-labs.com

Abstract

We present a novel approach to improving the security of
passwords In our approach, the legitimate user’s typing
patterns (e.g , durations of keystrokes, and latencies between
keystrokes) are combined with the user’s password to gen-
erate a hardened password that is convincingly more secure
than conventional passwords against both online and offine
attackers. In addition, our scheme antomatically adapts to
gradual changes in a nser's typing patterns while maintain-
ing the same hardened password across multiple logns, for
use m file encryption or other applications requiring a long-
term secret key Using empirical data and a prototype im-
plementation of our scheme, we give evidence that our ap-
proach 1s viable m practice, i terms of ease of use, improved
secuntv, and performance

1 iIntroduction

Textual passwords have been the primary means of authen-
ticating users to computers since the mtroduction of access
controls 1n computer systems Passwords remain the domi-
nant user anthentication technology today, despite the fact
that they have been shown to be a farly weak mechamsm
for authenticating users Studies have shown that users tend
t0 choose passwords that can be broken by an exhaustive
search of a relatively small subset of all possible passwords.
In one case study of 14,000 Umx passwords, almost 25%
of the passwords were found by searchng for words from a
carefully formed “dictionary” of only 3 x 10° words {10] (see
also {21, 4, 27, 29]) This high success rate 1s not unusual
despate the fact that therc are roughly 2 x 10'? 8-character
passwords consisting of digits and upper and lower case let-
ters alone

In this paper, we propose a technique for improving the
security of password-based applications by mcorporating bio-
metnic mformation into the password Spectfically, our tech-
nique generates a hardened password based on both the pass-
word characters and the user’s typing patterns when typing
the password. This hardened password can be tested for
login purposes or used as a cryptographic key for file en-
cryption, virtual private network access, etc. An attacker
who obtams all stored system information for password ver-
tfication (the analog of the /etc/passwd file in a typical Unix
environment) is faced with a convincingly more difficult task

Permission to make digital or hard coples of all or part of this work for
personal or classroom use s granted without fee provided that

copies are not made or distnbuted for profit or commercial advent

-age and that copies bear this notice and the full eitation on the first page
To copy otherwise, to sepublish, to post on servers or 10

redistribute to hsts, requires prior specific permission and/or a tee

CCS ‘99 11/99 Singapore

© 1999 ACM 1-58113-149-8/98/0010 §5 Q0

73

DOCKET
A L M

A R

to exhaustively search for the hardened password than in a
traditional password scheme Moreover, an attacker who
learns the user’s textual password (e g., by observing it be-
g typed) must type it like the legitimate user to log mto
an account protected by our scheme

There are several challenges to realizing this goal. The
first 15 to wdentify features of a user’s typing patterns (e.g ,
latencies between keystrokes, or duration of keystrokes) that
the user reliably repeats (approxmately) when typing her
password The second is to use these features when the
user types her password to generate the correct hardened
password At the same time, however, the attacker who cap-
tures system mformation used to generate or venfy hardened
passwords shonld be unable to determine which features are
relevant to generating a user’s hardened password, since re-
vealing this information could reveal mformation about the
characters related to that password feature. For example,
suppose the attacker learns that the latency between the
first and second keystrokes 1s a feature that is reliably re-
peated by the user and thus is used to generate her hardened
password Then this may reveal information about the first
and second characters of the text password, simce due to
keyboard dynamics, some digraphs are more amenable to
rehable latency repetitions than others.

Our approach effectively hides information about which
of a user’s features are relevant to generating her hardened
password, even from an attacker that captures all system
information. At the same time, 1t employs novel techniques
to unpose an additional {multiplicative) work factor on the
attacker who attempts to exhaustively search the password
space. Using empirical data, we evaluate both this work
factor and the reliabihity with which legitimate users can
generate their hardened passwords Our empincal studies
demonstrate various choices of parameters that yield both
increased security and sufficient ease of use

Qur scheme 15 very attractive for use in practice. Unlike
other biometric authentication procedures (e.g., fingerprint
recognition, retma or irs scans), our approach is unmtru-
sive and works with off-the-shelf keyboards. Our scheme
mitially is as secure as a “normal” password scheme and
then adapts to the user's typmg patterns over time, grad-
ually hardening the password with biometric information
Moreover, while fully able to adapt to gradual changes in
user typing patterns, our scheme can be used to gencrate
the same hardened password indefimtely, despite changes in
the user’s typing patterns. Therefore, the hardened pass-
word can be used, e.g, to encrypt files, without needing to
decrypt and re-encrypt files with a new hardened password
on each login.

The main limitation of our scheme is that a user whose
typmng patterns change substantially between consecutive in-
stances of typing her password may be unable to generate

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

her correct hardened password and thus, e g , mught be un-
able to login The most common circumstance in which this
could happen 1s if the user attempts to log 1n using a, different
style keyhoard than her regular one, which can cause a dra-
matic change m the user’s typing patterns. In Light of this,
applications for which our scheme is 1deally suited are access
to virtual private networks from laptop computers, and fiie
or disk encryption on laptop computers Laptops provide a
single, persistently available keyboard at which the user can
type her password, which 15 the ideal situation for repeated
generation of her hardened password Moreover, with the
nising rate of laptop thefts (e g, sce [22]), these apphcations
demand secunty better than that provided by traditional
passwords

2 Related work

The motivation for using keystroke features to harden pass-
words comes from years of research validating the hypoth-
ests that user keystroke features both are highly repeat-
able and different between users (e g, [6, 28, 14, 15, 1, 9,
20, 24]). Pnor work has anticipated utilizing keystroke in-
formation 1 the user login process {e g, [9]), and indeed
preducts implementing this are bemg marketed today (e g,
see http://www.biopassword.com/) All such prior schemes
work by stormg a model of user keystroke behavior in the
system, and then comparing user keystroke behavior during
password entty to this model Thus, while they are useful to
defend against an onhne attacker who attempts to log into
the system directly, they provide no additional protection
against an offline attacker who captures system information
related to user anthentication and then conducts an offline
cictionary attack to find the password (e.g , to then decrypt
files encrypted under the password). On the contrary, the
captured model of the legitimate user's keystroke behavior
can leak information about the password to such an attacker,
as discussed in Section 1 Thus, our work improves on these
schemes i two ways. First, our method is the first to offer
stronger security agamnst both online and offhne attackers.
Second, our scheme is the first to generate a repeatable se-
cret based on the password and keystroke dynamics that 18
stronger than the password itself and that can be used in
apphcations other than login, such as file encryption

The only work of which we are aware that previously
proposed generating a repeatable key based on biometric
information 1s [3] In this scheme, a user carnes a portable
storage device containing (1) error correcting parameters to
decode readings of the biometrnic (e.g , an ins scan) with a
limited number of errors to a “canonical” reading for that
user, and (i1) a one-way hash of that canonical reading for
verification purposes Moreover, they further proposed a
scheme in which the canomical biometric reading for that
user 15 hashed together with a password Their techniques,
however, are inappropnate for our goals because the stored
error correcting parameters, if captured, reveal information
about the canonical form of the biometric for the user. For
this reason, their approach requires a hometnc with sub-
stantial entropy. e g, they considered iris scans offering an
estimated 173 bits of entropy, so that the remaining entropy
after exposure of the error correcting parameters {they esti-
mated 147 bits of remaining entropy) was still suficiently
large for their application. In our case, the measurable
keystroke features for an 8-character password are relatively
few (at most 15 on standard keyboards), and indeed in our
scheme, the password’s entropy will generally dominate the
entropy avallable from keystroke features. Thus, exposing

DOCKET

_ ARM

error-correcting parameters m our setting would substan-
tially diminish the available entropy from keystroke features,
almost to the pont of negating thenr utility Moreover, ex-
posing information about the keystroke features can, in turn,
expose mformation about the password itself (as discussed
in Section 1} This makes the careful utilization of keystroke
features critical 1n our setting, whereas in their setting, the
biometrics they considered were presumed independent of
the password chosen.

Our method to harder user passwords has conceptual
similanties to password 'sa.ltmg for user login Salting 1s
a method i which the user’s password is prepended with a
random number (the “salt”)} of s bits mn length before hash-
ing the password and comparmg the result to a previously
stored value [21, 16] As a result, the search space of an
attacker is mcreased by a factor of 2° if the attacker does
not have access to the salts. However, the correct salt either
must be stored 1 the system or found by exhaustive search
at login time Intuitively, the scheme that we propose in
this paper can be used to improve this approach, by deter-
miming some or all of the salt bits using the user’s typing
features. In addition, an advantage of our approach over
salting is that our scheme can be effective against an onhne
attacker who learns the legtimate user’s password {e.g, by
observing the user type it) and who then attempts to log in
as that user.

Finally, we note that several other research efforts on
password security have focused on detecting the unautho-
rized modification of system informaton related to password
authentication (e g, the attacker adds a new account with
a password 1t knows, or changes the password of an exist-
g account) [13, 12, 8] Here we do not focus on this threat
model, though our hardened passwords can be directly com-
bined with these techniques to provide security aganst this
attacker, as well

3 Preliminaries

The hardened passwords generated in our scheme have many
potential uses, mcluding user login, file encryption, and au-
thentication to virtual private networks However, for con-
creteness of exposition, 11 the rest of this paper we focus on
the generation and use of hardened passwords for the pur-
poses of user login Extending our discussion to these other
applications is straightforward.

We assume a computer system with a set A of user ac-
counts Access to each user account is regulated by a login
program that challenges the user for an account name and
password. Using the user’s mput and some stored informa-
tion for the account o that the user 15 trying to access, the
login program erther accepts or rejects the attempt to log
into a. Like in computer systems today, the characters that
the user types mto the password field are a factor in the
determination to accept or reject the login. For the rest of
this paper, we denote by pwd, the correct string of char-
acters for the password field when logging into account a.
That is, pwd, denotes the correct text password as typically
used in computer systems today.

In our architecture, typing pwd, 15 necessary but not
sufficient to access a. Rather, the login program combines
the characters typed in the password field with keystroke
features to form a hardened password that is tested to de-
termine whether login is successful. The correct hardened
password for account a is denoted hpwd,. The login pro-
gram will fail to generate hpwd, if exther something other
than pwd, is entered in the password field or if the user’s

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

typing patterns sigmficantly differ from the typing patterns
displayed 1 previous successful logins to the account Here
we present our scheme in a way that maintams hpwd, con-
stant across logins, even despite gradual shifts 1n the user’s
typing patterns, so that hpwd, can also be used for longer-
term purposes (e g, file encryption) However, our scheme
can be easily tuned to change hpwd, after each successful
login, 1f desired

3.1 Features

In order to generate hpwd, from pwd, and the (legitimate)
user’s typing patterns, the login program measures a set
of features whenever a user types a password Empirically
we will examie the use of keystroke duration and latency
between keystrokes as features of interest, but other fea-
tures {e g, force of keystrokes) could be used if they can be
measured by the login program. Abstractly, we represent
a feature by a function ¢ A x N = R where o(e,£) 15
the measurement of that feature during the #-th (successful
or unsuccessful) login attempt to account ¢ For example,
if the feature ¢ denotes the latency between the first and
second keystrokes, then ¢{a,®) is that latency on the sixth
attempt to log into @ Let m denote the number of features
that are measured during logins, and let ¢1, .., ¢, denote
their regpective functions.

Central to our scheme 15 the notion of a distangusshang
feature. For each feature ¢, let t, € R be a fixed parameter
of the system Also, let p22. and a,. be the mean and stan-
dard deviation of the measurements ¢.(a,j1), ,¢.(a,7)
where 71, ., are the last k successful logins to the ac-
count a and h € N is a fixed parameter of the system We
say that ¢, 15 a distinguishing feature for the account {af-
ter these last h successful logins) if |fa. — %] > koa, where
k € Rt is a parameter of the system. If ¢, 15 a distinguish-
ing feature for the account a, then either ¢, > pa, + koa.,
ie.; the user consistently measures below ¢, on this feature,
or t, < Ma, — k@,,, 1€, the user consistently measures above
t, on this feature

3.2 Security goals

In our login architecture, the system stores information per
account that 18 accessed by the login program to verify at-
tempts to log in. This information 1s necessarily based on
pwd, and hpwd_, but will not include either of these values
themselves This is sumilar to Unix systems, for example,
where the /etc/passwd file contains the salt for that pass-
word and the result of encrypting a fixed string with a key
generated from the password and salt In our logm archi-
tecture, the mformation stored per account will be more
extensrve but will still be relatively small

The primary attacker with which we are concerned is an
“offline” attacker who captures this mmformation stored in
the system, and then uses this information in an offtine effort
to find hpwd, (and pwd,} A first and basic requirement is
that any such attack be at least as difficult as exhaustively
searching for pwd, 1 a traditional Unix setting where the
attacker has /etc/passwd. In particular, if the user chooses
pwd_ to be difficult for an attacker to find using a dictionary
attack, then hpwd, wiil be at least as secure m our scheme

A more ambitious goal of our scheme 1s to mcrease the
work that the attacker must undertake by a considerable
amount even if pwd, 1s chosen poorly, i.e, In a way that
is susceptible to a dictionary attack. The amount of adds-
tronal work that the attacker must undertake in our scheme
generally grows with the pumber of distingnishing features

(?C KE

A R

T
M

75

for the account (when the attacker captured the system -
formation) On one extreme, if there are no distinguishing
features for the account, then the attacker can find pwd,
and hpwd, 1 roughly the same amount of tune as the at-
tacker would take to find pwd, in a tradational Umx setting.
On the other extreme, if all m features are distinguishing
for the account, then the attacker’s task can be slowed by a
multiphcative factor up to 2™. In Section 7, we describe an
empincal analysis that sheds light on what this slowdown
factor 18 hkely to be in practice. In addition, we show how
our scheme can be combined with salting techmgques, and
so the slowdown factor that our scheme achieves 1s over and
ahove any benefits that salting offers.

A second attacker that we defend agamst with our scheme
is an “online” attacker who learns pwd, (e g., by observing
1t being typed in} and then attempts to log in using it Our
scheme makes this no easier and typically harder for thas
attacker to succeed in logging n.

4 Qvuerview

In this section we give an overview of our techmque for
generating hpwd, from pwd, and user keystroke features
When the account o 18 initialized, the initiahzation pro-
gram chooses the value of hpwd,, at random from Z,, where
q is a fixed, sufficiently large prime number, eg, a g of
length 160 bits should suffice The initialization program
then creates 2m shares {sl,s!}1<,<m of hpwd, using a se-
cret sharing scheme such that for any b € {0, 1}™, the shares

{s"}1c.cm can be used to reconstruct hpwd, (Here, b(i)
is the 1-th bit of b.) These shares are arranged 1» an “mn-

struction table”.

<t =1,
1 55 st
2 59 sk
m Sm_| Sm

The initialization program encrypts each element of both
columns (i.e, the “< #,” and “> t,” columns) with pwd,
This (encrypted) table is stored in the system. In the £-th
login attempt to @, the login program uses the entered pass-
word text pwd’ to decrypt the elements of the table, which
will result in the previously stored values only if pwd, =
pwd’. For each feature ¢,, the value of ¢.(e,£) indicates
which of the two values in the i-th row should be used in
the reconstruction to find hpwd,: if ¢.(a,f) < t., then the
value in the first column is used, and otherwise the value in
the second column 15 used. In the first logins after initial-
ization, the value i either the first or second column works
equally well However, 2s distingmshing features ¢, for this
account develop over time, the login program perturbs the
value in the second column of row z 1if e, < ¢, and perturbs
the value m the first column of row : otherwise. So, the
reconstruction to find hpwd, in the future will succeed only
when future measurements of features are consistent with
the user’s previous distinguished features.

In this way, our scheme helps defend against an online at-
tacker who learns (or tries to guess) pwd, and then attempts
to log wmto @ using 1t. Unless this attacker can mimic the
legitimate user’s keystroke behavior for the account’s distn-
guishing features, the attacker will fail 1n logging into the
account Moreover, numerous prior stuches have shown that

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

OCKET
L M

keystroke dynamics tend to differ significantly from user to
user (see Section 2), and so typically the onhne attacker wall
fail 10 his attempts to log into @ Thus, the secunty analysis
in the rest of this paper will focus on the offline attacker

Not any secret sharing scheme satisfying the properties
described above will suffice for our technique, since to de-
fend against an offine attacker, the shares must be of a form
that does not easily reveal if a guessed password pwd’ suc-
cessfully decrypts the table. In the following sections, we
present mstances of our techmque using two different shar-
ing schemes

Our scheme can be easily combined with salting to fur-
ther improve security A natural place to include a salt 1s m
the vahidation of hpwd, just after reconstructing 1t For ex-
ample, when hpwd, is generated during a login, 1t could be
prepended with a salt before hashing 1t and testing against
a previcusly stored hash value The salt can be stored as
15 typically done today, or may not be stored so that the
system must exhaustively search for 1t [16] In this case,
the extra salt results in an additional work factor that the
offline attacker must overcome.

5 An instance using polynomials

In this section, we describe an instance of the techmque of
Section 4 using Shamur’s secret sharing scheme [25] In this
scheme, hpwd_ is shared by chaosing a random pelyromial
Fa € Z]z] of degree m — 1 such that f,(0) = hpwd, The
shares are points on this polynomial. We present the method
i two steps, by first describmg a stmpler vanation and then
extendimg 1t 1 Section 5.4 to be more secure agamst an
offiine attack

5.1 Stored data structures and initialization

Let G be a pseadorandom function family {23} such that
for any key K and any mput z, Gx(z) is a psendorandom
element of Z;.l In practice, a likely implementation of G
would be Gk (z) = F(K,z) where F 1s a one-way function,
e.g., SHA-1 [26] There are two data structures stored 1n
the system per account.

s An mnstruction table that contains “instructions” regard-
mg how feature measurements are to be used to generate
hpwd,. Maore specifically, this instruction table contains an
entry of the form <3, cvs., Ba.> for each feature ¢,. Here,

Car = Yon - Gowd, (2¢) mod g
Bar = Yau Gowa, (20 +1) mod g

and y2,,yl, are elements of Z; Imtially (e, when the
user first chooses pwd,), all 2m values {y2,, 43, }1<.cm are
chosen such that all the points {(22,43,}, (2i+1, vz,) }i<i<m
lie on a single, random pelynomial f, € Zgxz] of degrec
m — 1 such that f,(0) = hpwd,,

* An encrypted, constant-size hastory file that contains the
measurements for all features over the last h successful
logins to a for some fixed parameter h. More specifi-
cally, if since the last tume pwd, was changed, the login

*That 1s, a polynomally-bounded adversary not knowing K can-
not distinguish between G i (z) and a randomly chosen element of Z;,
even 1If he 1s first allowed to examine G g (£) for many £'s of his choice
and is allowed to even pick x (as long as 1t 15 different from every &
he previously asked about)

A R

attempts 71, .,Jr to a were successful, then this file con-
tamns ¢, (a,7) foreach1 < i <mand 3 € {gr—ay1, 2}
In addition, enough redundancy is added fo this file so
that when 1t 18 decrypted with the key under which 1t
was previously encrypted, the fact that the file decrypted
successfully can be recognized

This file is initialized with all values set to 0, and then is
encrypted with hpwd, using a symmetric cipher The size
of this file should remain constant over time (e g , must
be padded out when necessary), so that its size yields no
information about how many successful logins there have
been.

5.2 Logging in

The login program takes the folowing steps whenever the
user attempts to log into @ Suppose that this is the £-th
attempt to log mto @, and let pwd’ denote the sequence of
characters that the user typed. The login program takes the
following steps.

1. For each ¢, the logmin program uses pwd’ to “decrypt” «a.
if ¢, (2, £) < t,, and uses pwd’ to “decrypt” [B.. otherwise
Speafically, 1t assigns

(20, Qar Gower(20)" ' modq) if ¢(a,0) <t
(2t 4+ 1, Bar Gonar (26 +1)7 " mod g}
if ¢u{a,f) >t

(#,10) =

The login program now holds m points {(z., %) }i<i<m

2 The login program scts

hpwd' = Z:yl - A mod ¢

=1

Ay = H L

-
1< Emaz T F

where

1s the standard Lagrange coefficient for interpolation (e.g ,
see [19, p. 526]) It then decrypts the history file using
hpwd'. If this decryption yields a properly-formed plain-
text history file, then the logim is deemed successfut (If
the login were deemed unsuccessful, then the login proce-
dure would halt here.)

3. The login program updates the data in the history file,
computes the standard deviation o,, and mean o, for
each feature ¢, over the last h successful logins to a, en-
crypts the new history file with hpwd’ (i.e, hpwd,), and
overwrites the old lstory file with this new encrypted
history file ®

4 The login program generates a new random polynomial
Ja € Zy[x] of degree m — 1 such that f.(0) = hpwd’

5 For each distinguishing feature ¢,, i e., ltar — &} > koas,
the login program chooses new random values y,,, ¥, €
Z, subject to the following constraints:

fla <t = fu(20) = Yo A fu(2i+1) £ ys,
frar 28 = fa(2) Fym A fol2i+1) =y,

2For maximum secunty, this and the previous step should be per-
formed without writing the plamtext history file to disk Rather, the
login program should hold the plaintext history in volatile storage
only

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

For all other features ¢»—1 e, those for which {u., — .| <
k&, or all features if there have been fewer than 71 suc-
cessful logns to this account since mutiahization (see Sec-
tion 3 1)—the login program sets yl, = fo(2t) and ¢!, =
fa(2e+ 1)

6 The login program replaces the nstruction table with a
new table with an entry of the form <1,al,, 85,> for each
feature ¢,. Here,

3 Gows (21) mod g
Yor Gowr (22 4-1) mod g

i
aﬂ'l
’
Bor =
where 30,, 41, are the new vatues generated in the previous

step

Step 4 above is particularly noteworthy for two reasons
Furst, due to this step, the polynomial f, 18 changed to a
new random polynomial during each successful login This
ensures that an attacker viewing the mstruction table at
two different times will gam no information about which
features switched from distinguishing to non-distingwmishing
and vice-versa during the interim logins. That 1s, each time
the attacker views an instruction table for an account, either
all valucs will be the same since the last time (if there were
no successful logis since the attacker last saw the table)}
or all values will be different. Second, though generated
randomly, f. 1s chosen so that f,(0) = hpwd, This ensures
that hpwd, remains constant across multiple logins

Step 5 15 aiso noteworthy, since 1t shows that whether
each feature 13 distinguishing s recomputed in each success-
ful login So, a feature that was previously distinguishing
can become undistingmshing and vice-versa This 15 the
mechanism that enables our scheme to naturally adapt to
gradual changes in the user’s typing patterns over time

5.3 Security

Consider the “offime” attacker who obtams account a’s ns-
tory file and mstruction table, and attempts to find the value
of hpwd, Presurmng that the encryption of the history file
using hpwd, s secure, smce the values y2,, yo, are effectively
encrypted under pwd,, and since pwd,, is presumably chosen
from a much smaller space than hpwd_, the casiest way to
find hpwd, 15 to first find pwd, Thus, to argue the bene-
fits of this scheme, we have to show two things First, we
have to show that finding pwd, is not made easier i our
scheme than it 15 1n a typical environment where access is
determined by testing the hash of the password agamnst a
previcusly stored hash value. Second, we have to show that
the cost to the attacker of finding hpwd, is generally greater
by a significant multiplhicative factor

That searching for pwd, 1s not made easier in our scheme
1s clear The attacker has available only the instruction table
and the encrypted history file. Since there 1s a row in the
instruction table for each feature (not just those that are
distinguishing for), and since the contents of each row
are pseudorandom values, the rows reveal no mformation
about pwd, And, all other data available to the attacker 1s
encrypted with hpwd,

The more interesting secunty consideration in this scheme

is how much secunity it achieves over a traditional password
scheme. Suppose that the attacker captured the history file
and instruction table after € > h successful logins to a, and
let d be the number of distinguishing features for tlus ac-
count in the £th login When guessing a password pwd’,
the attacker can decrypt each field oy, and ., using pwd’

(?C KE

A R

T
M

77

to yield pomts (24,48,) and (2 + 1,9,,), respectively, for
1< <m Note that §2, = 3, and 92, = v5,, where v,,, v,
are as generated in Step 5, if and (with overwhelming prob-
ablity) only if pwd’ = pwd,. Therefore, there exists a bt
string b € {0,1}™ such that {(2i + b(2), 523")}1 <o miter-
polates to a polvnomial f with f{0) = hpwd,, if and only
if pwd’ = pwd,. Consequently, one approach that the at-
tacker can take is 0 enumerate through all b € {0,1}™ and,
for each f thus computed, see if £(0) = hpwd, (1 e, 1f f(0)
will deerypt the history file). This approach slows down the
attacker’s search for hpwd, {and pwd_) by a multiphcative
factor of 2™ In practice, the slowdown that the attacker
suffers may be substantially less because user typing pat-
terns are not random. In Section 7, we use empirical data
to quantify the degree of security achieved against this form
of attack, and show that 1t 1s nevercheless substantial

However, the attacker has potentially more powerful at-
tacks agamst this scheme using the 2m pomts {{24, §2,), (2¢+
I, §a.)}i<e<m, due to the following contrast On the one
hand, if pwd’ # pwd,, then with overwhelimng probability,
no m-+1 powmts will lie on a single degree m —1 polynomual,
i e, each subset of 1n points interpolates to a different poly-
nomal with a different y-intercept (not equal to hpwd,}. On
the other band, if pwd’ = pwd,, then there are 2m —d > m
ponts that all ie on a polynomial f of degree m — 1 (and
§(0) = hpwd_), m particular if d < m, then there are at
least m + 1 points that all lie on some such f. Asymp-
totically (1.2, as m grows arbitrarily large}, 1t is known
that the second case can be distmguwished from the first n
O(m?) time it d < (2—v/2)m = .585m using error-correcting
techniques [7]. These techmgues do not directly break our
scheme, since our analysis in Section 7 suggests that for
many reasonable values of &, d will typically be too large
relative to m for these techniques to succeed (unless the at-
tacker capiures the account wformation before the account
1s used). Moreover, typically m will be too small in our sce-
nario for these techniques to offer benefit over the exhaustive
approach above. However, because these techniques might
be unproved with apphcation-specific knowledge-—e g , that
m the second case, at least one of (22,4, and (2i + 1,%.,)
hes on f—it is prudent te look for schemes that confound
the use of error-correcting techniques. This 18 the goal of
Section 5 4

5.4 A variation using exponentiation

In this section we present a munor varzation of the scheme
presented in Sections 5 1-5.2, to which we refer as the “ongi-
nal” scheme below. The scheme of this section is more secure
m several ways that will be described below.

Let p be a large prime such that computing discrete loga-
nithms modulo p 15 computationally intractable (e g., choose
p of length 1024 bits) and such that ¢ divides p — 1. Also,
let ¢ be an element of order ¢ i Z; The main concep-
tual differences 1 this variation are that hpwd 1s defined to
be g+ mod p, and rather than storing cv, and fFq, in the
mstruction table, the values
= g¢g"* modp

= gﬂdi

Yaz

dg. mod p

are stored instead. Intuitively, since the attacker cannot
compute discrete logarithms medulo p, this hides o, yl,
from him even if he guesses pwd, .

There are a number of reasons to prefer this vanation
to the onginal mm practice. First, this modified instruc-

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

