
Timing Analysis of Keystrokes and Timing Attacks on SSH
�

Dawn Xiaodong Song David Wagner Xuqing Tian
University of California, Berkeley

Abstract

SSH is designed to provide a secure channel between
two hosts. Despite the encryption and authentication
mechanisms it uses, SSH has two weakness: First, the
transmitted packets are padded only to an eight-byte
boundary (if a block cipher is in use), which reveals the
approximate size of the original data. Second, in inter-
active mode, every individual keystroke that a user types
is sent to the remote machine in a separate IP packet im-
mediately after the key is pressed, which leaks the inter-
keystroke timing information of users’ typing. In this
paper, we show how these seemingly minor weaknesses
result in serious security risks.

First we show that even very simple statistical tech-
niques suffice to reveal sensitive information such as the
length of users’ passwords or even root passwords. More
importantly, we further show that by using more ad-
vanced statistical techniques on timing information col-
lected from the network, the eavesdropper can learn sig-
nificant information about what users type in SSH ses-
sions. In particular, we perform a statistical study of
users’ typing patterns and show that these patterns re-
veal information about the keys typed. By developing a
Hidden Markov Model and our key sequence prediction
algorithm, we can predict key sequences from the inter-
keystroke timings. We further develop an attacker sys-
tem, Herbivore , which tries to learn users’ passwords by
monitoringSSH sessions. By collecting timing informa-
tion on the network, Herbivore can speed up exhaustive
search for passwords by a factor of 50. We also propose
some countermeasures.

In general our results apply not only to SSH, but also
to a general class of protocols for encrypting interactive
traffic. We show that timing leaks open a new set of
security risks, and hence caution must be taken when
designing this type of protocol.

�
This research was supported in part by the Defense Advanced Re-

search Projects Agency under DARPA contract N6601-99-28913 (un-
der supervision of the Space and Naval Warfare Systems Center San
Diego) and by the National Science foundation under grants FD99-
79852 and CCR-0093337.

1 Introduction

Just a few years ago, people commonly used astonish-
ingly insecure networking applications such as tel-
net, rlogin, or ftp, which simply pass all confi-
dential information, including users’ passwords, in the
clear over the network. This situation was aggravated
through broadcast-based networks that were commonly
used (e.g., Ethernet) which allowed a malicious user to
eavesdrop on the network and to collect all communi-
cated information [CB94, GS96].

Fortunately, many users and system administrators have
become aware of this issue and have taken counter-
measures. To curb eavesdroppers, security researchers
designed the Secure Shell (SSH), which offers an en-
crypted channel between the two hosts and strong au-
thentication of both the remote host and the user [Ylö96,
SSL01, YKS

�

00b]. Today, SSH is quite popular, and it
has largely replaced telnet and rlogin.

Many users believe that they are secure against eaves-
droppers if they use SSH. Unfortunately, in this paper
we show that despite state-of-the-art encryption tech-
niques and advanced password authentication protocols
[YKS

�

00a], SSH connections can still leak significant
information about sensitive data such as users’ pass-
words. This problem is particularly serious because it
means users may have a false confidence of security
when they use SSH.

In particular we identify that two seemingly minor weak-
nesses of SSH lead to serious security risks. First, the
transmitted packets are padded only to an eight-byte
boundary (if a block cipher is in use). Therefore an
eavesdropper can easily learn the approximate length of
the original data. Second, in interactive mode, every
individual keystroke that a user types is sent to the re-
mote machine in a separate IP packet immediately af-
ter the key is pressed (except for some meta keys such
Shift or Ctrl). We show in the paper that this prop-
erty can enable the eavesdropper to learn the exact length
of users’ passwords. More importantly, as we have veri-
fied, the time it takes the operating system to send out the
packet after the key press is in general negligible com-
paring to the inter-keystroke timing. Hence an eaves-

ASSA ABLOY Ex. 1008 - Page 1
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01045 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

dropper can learn the precise inter-keystroke timings of
users’ typing from the arrival times of packets.

Experience shows that users’ typing follows stable pat-
terns1. Many researchers have proposed to use the du-
ration of key strokes and latencies between key strokes
as a biometric for user authentication [GLPS80, UW85,
LW88, LWU89, JG90, BSH90, MR97, RLCM98,
MRW99]. A more challenging question which has not
yet been addressed in the literature is whether we can
use timing information about key strokes to infer the key
sequences being typed. If we can, can we estimate quan-
titatively how many bits of information are revealed by
the timing information? Experience seems to indicate
that the timing information of keystrokes reveals some
information about the key sequences being typed. For
example, we might have all experienced that the elapsed
time between typing the two letters “er” can be much
smaller than between typing “qz”. This observation is
particularly relevant to security. Since as we show the
attacker can get precise inter-keystroke timings of users’
typing in a SSH session by recording the packet arrival
times, if the attacker can infer what users type from the
inter-keystroke timings, then he could learn what users
type in a SSH session from the packet arrival times.

In this paper we study users’ keyboard dynamics and
show that the timing information of keystrokes does leak
information about the key sequences typed. Through
more detailed analysis we show that the timing informa-
tion leaks about 1 bit of information about the content
per keystroke pair. Because the entropy of passwords
is only 4–8 bits per character, this 1 bit per keystroke
pair information can reveal significant information about
the content typed. In order to use inter-keystroke tim-
ings to infer keystroke sequences, we build a Hidden
Markov Model and develop a n-Viterbi algorithm for the
keystroke sequence inference. To evaluate the effective-
ness of the attack, we further build an attacker system,
Herbivore, which monitors the network and collects tim-
ing information about keystrokes of users’ passwords.
Herbivore then uses our key sequence prediction algo-
rithm for password prediction. Our experiments show
that, for passwords that are chosen uniformly at random
with length of 7 to 8 characters, Herbivore can reduce the
cost of password cracking by a factor of 50 and hence
speed up exhaustive search dramatically. We also pro-
pose some countermeasures to mitigate the problem.

We emphasize that the attacks described in this paper are
a general issue for any protocol that encrypts interactive
traffic. For concreteness, we study primarily SSH, but
these issues affect not only SSH 1 and SSH 2, but also

1In this paper we only consider users who are familiar with key-
board typing and use touch typing.

any other protocol for encrypting typed data.

The outline of this paper is as follows. In Section 2
we discuss in more details about the vulnerabilities
of SSH and various simple techniques an attacker can
use to learn sensitive information such as the length
of users’ passwords and the inter-keystroke timings of
users’ passwords typed. In Section 3 we present our
statistical study on users’ typing patterns and show that
inter-keystroke timings reveal about 1 bit of information
per keystroke pair. In Section 4 we describe how we can
infer key sequences using a Hidden Markov Model and
a n-Viterbi algorithm. In Section 5 we describe the de-
sign, development and evaluation of an attacker system,
Herbivore, which learns users’ passwords by monitoring
SSH sessions. We propose countermeasures to prevent
these attacks in Section 7, and conclude in Section 8.

2 Eavesdropping SSH

The Secure Shell SSH [SSL01, YKS
�

00b] is used to en-
crypt the communication link between a local host and a
remote machine. Despite the use of strong cryptographic
algorithms, SSH still leaks information in two ways:

First, the transmitted packets are padded only to an
eight-byte boundary (if a block cipher is in use),
which leaks the approximate size of the original
data.

Second, in interactive mode, every individual
keystroke that a user types is sent to the remote
machine in a separate IP packet immediately after
the key is pressed (except for some meta keys such
Shift or Ctrl). Because the time it takes the op-
erating system to send out the packet after the key
press is in general negligible comparing to the inter-
keystroke timing (as we have verified), this also
enables an eavesdropper to learn the precise inter-
keystroke timings of users’ typing from the arrival
times of packets.

The first weakness poses some obvious security risks.
For example, when one logs into a remote site R in
SSH, all the characters of the initial login password
are batched up, padded to an eight-byte boundary if a
block cipher is in use, encrypted, and transmitted to R.
Due to the way padding is done, an eavesdropper can
learn one bit of information on the initial login pass-
word, namely, whether it is at least 7 characters long
or not. The second weakness can lead to some potential
anonymity risks since, as many researchers have found
previously, inter-keystroke timings can reveal the iden-

ASSA ABLOY Ex. 1008 - Page 2
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01045 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SSH
Server B

Client
Host A "s"

20

"u"

20

20 20

20

28

Return

"Password: "

20 20 20 20 20

"i" "a""J""u""l" Return

20

N

Prompt
time

time

Figure 1: The traffic signature associated with running SU in a SSH session. The numbers in the figure are the size
(in bytes) of the corresponding packet payloads.

tity of the user [GLPS80, UW85, LW88, LWU89, JG90,
BSH90, MR97, RLCM98, MRW99].

In this section, we show that several simple and practical
attacks exploiting these two weaknesses. In particular,
an attacker can identify which transmitted packets corre-
spond to keystrokes of sensitive data such as passwords
in a SSH session. Using this information, the attacker
can easily find out the exact length of users’ passwords
and even the precise inter-keystroke timings of the typed
passwords. Learning the exact length of users’ pass-
words allows eavesdroppers to target users with short
passwords. Learning the inter-keystroke timing infor-
mation of the typed passwords allows eavesdroppers to
infer the content of the passwords as we will show in
Section 3 and 4.

Traffic Signature Attack We can often exploit prop-
erties of applications to identify which packets corre-
spond to the typing of a password. Consider, for in-
stance, the SU command. Assume the user has already
established a SSH connection from local host A to re-
mote host B. When the user types the command SU
in the established SSH connection A � B, we obtain a
peculiar traffic signature as shown in Figure 1. If the
SSH session uses SSH 1.x2 and a block cipher such
as DES for the encryption [NBS77, NIS99], as is com-
mon, then the local host A sends three 20-byte pack-
ets: “s”, “u”, “Return”. The remote host B echoes the
“s” and “u” in two 20-byte packets and sends a 28-byte
packet for the “Password: ” prompt. Then A sends 20-
byte packets, one for each of the password characters,
without receiving any echo data packets. B then sends
some final packets containing the root prompt if SU suc-
ceeds, otherwise some failure messages. Thus by check-
ing the traffic against this “su” signature, the attacker
can identify when the user issues the SU command and

2The attack also works when ssh 2.x is in use. Only the packet
sizes are slightly different.

hence learn which packets correspond to the password
keystrokes. Note that similar techniques can be used to
identify when users type passwords to authenticate to
other applications such as PGP [Zim95] in a SSH ses-
sion.

Multi-User Attack Even more powerful attacks exist
when the attacker also has an account on the remote
machine where the user is logging into through SSH.
For example, the process status command ps can list
all the processes running on a system. This allows the
attacker to observe each command that any user is run-
ning. Again, if the user is running any command that re-
quires a password input (such as su or pgp) the attacker
can identify the packets corresponding to the password
keystrokes.

Nested SSH Attack Assume the user has already es-
tablished a SSH session between the local host A and
remote host B. Then the user wants to open another SSH
session from B to another remote host C as shown in Fig-
ure 2. In this case, the user’s password for C is transmit-
ted, one keystroke at a time, across the SSH-encrypted
link A � B from the user to B, even though the SSH
client on machine B patiently waits for all characters of
the password before it sends them all in one packet to
host C for authentication (as designed in the SSH proto-
col [YKS

�

00a]). It is easy to identify such a nested SSH
connection using techniques developed by Zhang and
Paxson [ZP00b, ZP00a]. Hence in this case the eaves-
dropper can easily identify the packets corresponding to
the user’s password on link A � B, and from this learn
the length and the inter-keystroke timings of the users’
password on host C.

ASSA ABLOY Ex. 1008 - Page 3
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01045 - U.S. Patent No. 9,269,208

-
,I A j~ ,U jl ~ jl -l

'
,, ,, ,,

-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Adversary

CA

B

eavesdrop

pa
ss

wor
d SSH2

SSH1

password

Figure 2: The nested SSH attack.

3 Statistical Analysis of Inter-keystroke
Timings

As a first study towards inferring key sequences from
timing information, we develop techniques for statistical
analysis of the inter-keystroke timings. In this section,
we first describe how we collect training data and show
some simple timing characteristics of character pairs.
We then show how we model the inter-keystroke timing
of a given character pair as a Gaussian distribution. We
then describe how to estimate quantitatively the amount
of information about the character pair that one can learn
using the inter-keystroke timing information. Denote the
set of character pairs of interest as Q, and let

�
Q

�
denote

the cardinality of the set Q.

3.1 Data Collection

The two keystrokes of a pair of characters � ka � kb � gen-
erates four events: the press of ka, the release of ka, the
press of kb, and the release of kb. However, because
only key presses (not key releases) trigger packet trans-
mission, an eavesdropper can only learn timing informa-
tion about the key-press events. Since the main focus of
our study is in the scenario where an adversary learns
timing information on keystrokes by simply monitoring
the network, we focus only on key-press events. The
time difference between two key presses is called the la-
tency between the two keystrokes. We also use the term
inter-keystroke timing to refer to the latency between two
keystrokes.

In order to characterize how much information is leaked
by inter-keystroke timings, we have performed a number
of empirical tests to measure the typing patterns of real
users. Because passwords are probably the most sen-
sitive data that a user will ever type, we focus only on
information revealed about passwords (rather than other
forms of interactive traffic).

Our focus on passwords creates many challenges. Pass-
words are entered very differently from other text: pass-
words are typed frequently enough that, for many users,
the keystroke pattern is memorized and often typed al-
most without conscious thought. Furthermore, well-
chosen passwords should be random and have little or
no structure (for instance, they should not be based on
dictionary words). As a consequence, naive measure-
ments of keystroke timings will not be representative of
how users type passwords unless great care is taken in
the design of the experimental methodology.

Our experimental methodology is carefully designed to
address these issues. Due to security and privacy consid-
erations, we chose not to gather data on real passwords;
therefore, we have chosen a data collection procedure
intended to mimic how users type real passwords. A
conservative method is to pick a random password for
the user (where each character of the password is cho-
sen uniformly at random from a set of 10 letter keys and
5 number keys, independently of all other characters in
the password), have the user practice typing this pass-
word many times without collecting any measurements,
and then measure inter-keystroke timing information on
this password once the user has had a chance to practice
it at length.

However, we found that, when the goal is to try to
identify potentially relevant timing properties (rather
than verify conjectured properties), this conservative ap-
proach is inefficient. In particular, users typically type
passwords in groups of 3–4 characters, with fairly long
pauses between each group. This distorts the digraph
statistics for the pair of characters that spans the group
boundary and artificially inflates the variance of our
measurements. As a result we would need to collect
a great deal of data for many random passwords be-
fore this effect would average out. In addition, it takes
quite a while for users to become familiar with long ran-
dom passwords. This makes the conservative approach a
rather blunt tool for understanding inter-keystroke statis-
tics.

Fortunately, there is a less costly way to gather inter-
keystroke timing statistics: we gather training data on
each pair of characters � ka � kb � as typed in isolation. We
pick a character pair and ask the user to type this pair 30–
40 times, returning to the home row each time between
repetitions. For each user, we repeat this for many pos-
sible pairs (142 pairs, in our experiments) and we gather
data on inter-keystroke timings for each such pair. We
collected the latency of each character pair measurement
and computed the mean value and the standard devia-
tion. In our experience, this gives better results.

ASSA ABLOY Ex. 1008 - Page 4
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01045 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

0 100 200 300
0

5

10

15

Inter−keystroke Timing for v−o (milliseconds)

F
re

qu
en

cy

0 100 200 300
0

5

10

15

Inter−keystroke Timing for v−b (milliseconds)

F
re

qu
en

cy

Figure 3: The distribution of inter-keystroke timings for two sample character pairs.

As an example, Figure 3 shows the latency histogram
of two sample character pairs. The left model corre-
sponds to the latency between the pair � v, o � , and the
right model corresponds to � v, b � . We can see that the
latency between � v, o � is clearly shorter than the la-
tency between � v, b � , and the latency distributions of
these two sample character pairs are almost entirely non-
overlapping.

The optimized data collection approach gives us a more
efficient way to study fine-grained details of inter-
keystroke statistics without requiring collecting an enor-
mous amount of data. We used data collected in this way
to quickly identify plausible conjectures, develop poten-
tial attacks, and to train our attack models. As far as
we are aware, collecting data on keystroke pairs in iso-
lation does not seem to bias the data in any obvious way.
Nonetheless, we also validate all our results using the
conservative measurement method (see Section 5).

3.2 Simple Timing Characteristics

Next, we divide the test character pairs into five cate-
gories, based on whether they are typed using the same
hand, the same finger, and whether they involve a num-
ber key:

� Two letter keys typed with alternating hands, i.e.,

one with left hand and one with right hand;

� Two characters containing one letter key and one
number key typed with alternating hands;

� Two letter keys, both typed with the same hand but
with two different fingers;

� Two letter keys typed with the same finger of the
same hand;

� Two characters containing one letter key and one
number key, both typed with the same hand.

Figure 4 shows the histogram of latency distribution of
character pairs for each category. We split the whole la-
tency range into six bins as shown in the x-axis. Within
each category, we put each character pair into the cor-
responding bin if its mean latency value is within the
range of the bin. Each bar in the histogram of a cate-
gory represents the ratio of the number of character pairs
in the associated bin over the total number of character
pairs in the category.3 We can see that all the character
pairs that are typed using two different hands take less
than 150 milliseconds, while pairs typed using the same
hand and particularly the same finger take substantially
longer. Character pairs that alternate between one letter
key and one number key, but are typed using the same

3Hence the sum of all bars within one category is 1.

ASSA ABLOY Ex. 1008 - Page 5
ASSA ABLOY AB v. CPC Patent Technologies Pty Ltd.

IPR2022-01045 - U.S. Patent No. 9,269,208
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

