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a continuous-time signal to a discrete-time signal. After processing the discrete-time
signal using a discrete-time system, we can then convert back to continuoustime.

In the following discussion, wefirst introduce and develop the concept of sam-
pling and the process of reconstructing a continuous-time signal from its samples.
Wethen explore the processing of continuous-time signals that have been converted

to discrete-time signals through sampling. Next we consider theae conceptto time-domain sampling, specifically sampling in the frequency domaix. Finally, we develop
the concept and someapplications of sampling applied to discrete-time signals.

8.1 REPRESENTATION OF A CONTINUOUS-TIME SIGNAL

BY ITS SAMPLES: THE SAMPLING THEOREM

In general, we could not expect that in the absence of any additional conditions or
information, a signal could be uniquely specified by a sequence of equally spaced
samples. For example, in Figure 8.1 we illustrate three different continuous-time
signals, all of which haveidentical values at integer multiples of T, thatis,

-x,(KT) = x,(kT) = x3(kT)

X3(t) x, (t) —*x,(t)

 
Figure 8.1 Three continuous-time signals with identical values at integer mul-
tiples of T.

In general, there are an infinite number of signals that can generate a given set of
samples. As we will see, however, if a signal is bandlimited and if the samples are
taken sufficiently close together, in relation to the highest frequency present in the
signal, then the samples uniquely specify the signal and we can reconstructit perfectly.
Thebasic result was suggested in Section 7.4 in the context of pulse amplitude modu-
lation. Specifically, if a bandlimited signal x(t) is amplitude-modulated with a periodic
pulse train, corresponding to extracting equally spaced time segments, it can be
recovered exactly by lowpassfiltering if the fundamental frequency of the modulating
pulse train is greater than twice the highest frequency present in x(t). Furthermore,
the ability to recover x(t) is independentof the time duration of the individual pulses.
Thus, as suggested by Figures 8.2 and 8.3 as this duration becomesarbitrarily small,
pulse amplitude modulationis, in effect, representing x(t) by instantaneous samples
equally spaced in time. In the pulse-amplitude-modulation system in Figure 8.2, we

514 Sampling Chap. 8
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Figure 8.2 Pulse amplitude modulation. As A — 0,p(t) approachesan impulse
train. :

have scaled the amplitude of the pulse train to be inversely proportional to the pulse
width A, In anypractical pulse-amplitude-modulation system,it is particularly impor-
tant as A becomes small to maintain a constant time-average power in the modulated
signal. Asillustrated in Figure 8.3, as A approaches zero the modulated signal then
becomesan impulse train for which the individual impulses have values corresponding
to instantaneous samples of x(t) at time instants spaced T seconds apart.

8.1.1 Impulse-Train Sampling

In a manneridentical to that used to analyze the more general case of pulse ampli-
tude modulation, let us consider the specific case of impulse-train sampling depicted
in Figure 8.3. The impulse train p(t) is referred to as the samplingfunction, the period
T as the sampling period, and the fundamental frequency of p(t), w, = 22/T, as the
sampling frequency. In the time domain we have

X(t) = xp) (8.1a)
where

p(t) = DELC —nT) (8.1b)
x,(t) is an impulse train with the amplitudes of the impulses equal to the samples
of x(t)at intervals spaced by 7,thatis,

Sec. 8.1 Representation of a Continuous-Time Signal by Its Samples 515
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p(t)

x(t) x, (t)

 
Figure 8.3. Pulse amplitude modulation with an impulsetrain.

x0) = ¥2 x(nT) d(t — nT)

From the modulation property [Sec. 4.8],

X,(@) = LIX@) * Po)
and from Example 4.15,

: 2x S&S
P@) =F Ls O(@ — ka,)k=-00

so that

X,(@) = $S. X(@ — ko,)

(8.2)

(8.3)

(8.4)

(8.5)

That is, X,(@) is a periodic function of frequency consisting of a sum of shifted
replicas of X(q@), scaled by 1/7 as illustrated in Figure 8.4. In Figure 8.4(c),
Oy < (@, — My) or equivalently @, > 2m,,, and thus there is no overlap between
the shifted replicas of X(@), whereas in Figure 8.4(d) with w, < 2@,,, there is
overlap. For the case illustrated in Figure 8.4(c), X(@) is faithfully reproduced at
integer multiples of the sampling frequency. Consequently, if @, > 2@,,, x(t) can be
recovered exactly from x,(t) by means of a lowpassfilter with gain T and a cutoff

516 Sampling Chap. 8
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X(w)

 
(d) (wy, -— wy)

Figure 8.4 Effect in the frequency domain of sampling in the time domain: (a)
spectrum of original signal; (b) spectrum of sampling function; (c) spectrum of
sampled signal with a, > 2@.4; (d) spectrum of sampled signal with a; < 2mm.

frequency greater than w,, and less than w, — @,, as indicated in Figure 8.5. This
basic result, referred to as the sampling theorem, can be stated as follows:t

{This important and elegant theorem was available for many years in a variety of forms in
the mathematics literature. See, for example, J. M. Whittaker, “Interpolatory Function Theory,”
Cambridge Tracts in Mathematics and Mathematical Physics, no. 33 (Cambridge, 1935), chap. 4.
It did not appear explicitly in the literature of communication theory until the publication in 1949 of
the classic paper by Shannon entitled “Communication in the Presence of Noise” (Proceedings of the
IRE, January, 1949, pp. 10-21). However, H. Nyquist in 1928 and D. Gaborin 1946 hadpointed out,
based on the use of Fourier Series, that 2TW numbersare sufficient to represent a function of time
duration T and highest frequency W. [H. Nyquist, “Certain Topics in Telegraph Transmission
Theory,” AIEE Transactions, 1946, p. 617; D. Gabor, “Theory of Communication,” Journal of IEE
93, no. 26 (1946): 429.]

Sec. 8.1 Representation of a Continuous-Time Signal by Its Samples 517.
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Figure 8.5 Exact recovery of a continuous-time signal from its samples using
an ideal lowpass filter.
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Sampling Theorem:
Let x(t) be a bandlimited signal with X(@) = 0 for |@| > @y. Then x(t)

is uniquely determined by its samples x(mT), n = 0, +1, +2,...if

@, > 20,4
where

2n
QO, =F

Given these samples, we can reconstruct x(t) by generating a periodic
impulse train in which successive impulses have amplitudes that are successive
sample values. This impulse train is then processed through an ideal lowpass
filter with gain T and cutoff frequency greater than m,, and less than
(@, — @,). The resulting output signal will exactly equal x(t).

 
The sampling frequency a,is also referred to as the Nyquist frequency. The frequency
2@,,, which, under the sampling theorem, must be exceeded by the sampling
frequency, is commonlyreferred to as the Nyquistrate.

8.7.2 Sampling with a Zero-Order Hold

The sampling theorem establishes the fact that a bandlimited signal is uniquely repre-
sented by its samples, and is motivated on the basis of impulse-train sampling. In
practice, narrow large-amplitude pulses, which approximate impulses, are relatively
difficult to generate and transmit, and it is often more convenient to generate the
sampled signal in a form referred to as a zero-order hold. Such a system samples x(t)
at a given sampling instant and holdsthat value until the succeeding samplinginstant,
as illustrated in Figure 8.6. Reconstruction ofx(¢) from the output of a zero-order hold

7 “XN4frere ; x a
x(t) Zero-order Xo (t)

hold

Figure 8.6 Sampling utilizing a zero-order hold.

can again be carried out by lowpassfiltering. However, in this case, the required filter
no longer has constant gain in the passband. To develop the required filter charac-
teristic, we first note that the output x,(t) of the zero-order hold can in principle be
generated by impulse-train sampling followed by an LTI system with a rectangular
impulse responseas depicted in Figure 8.7. To reconstruct x(t) from x,(t), we consider
processing x,(t) with an LTI system with impulse response ,(t) and frequency
response H,(q@). The cascade of this system with the system of Figure 8.7 is shown in
Figure 8.8, where we wish to specify H,(@) so that r(t) = x(t). Comparing the system
in Figure 8.8 with that in Figure 8.5, we see that r(t)=x(t) if the cascade combination
of h,(t) and A,(t) is the ideal lowpass filter H(@) used in Figure 8.5. Since, from

\ det as { Fano\ os » \
Sec. 8.1 Representation of a Continuous-Time Signal by Its Samples 519
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Xo (t) 
x(t)

 
Xq (t)

 
Figure 8.7 Zero-order hold as impulse train sampling followed by convolution
with a rectangular pulse.

x(t) r(t) 
Figure 8.8 Cascade of the representation of a zero-order hold (Figure 8.7) with
a reconstructionfilter.
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Example 4.10 and the time-shifting property 4.6.3

Hoa) = eter{28OT/?)) (8.6)
This requires that

__eTH(@)

H(@) =eee (8.7)@

For example with the cutoff frequency of H(w) as @,/2, the ideal magnitude and
phase for the reconstruction filter following a zero-order hold is that shown in
Figure 8.9,

| H, (co) |

Ws

2 Qi

Figure 8.9 Magnitude and phase forre-
construction filter for zero-order hold.

 
In manysituations the zero-order hold is considered to be an adequate approxi-

mation to the original signal without any additional lowpassfiltering and in essence
represents a possible, although admittedly very coarse, interpolation between the
sample values. In the next section we explore in more detail the general concept
of interpreting the reconstruction of a signal from its samples as a process ofinter-
polation.

8.2 RECONSTRUCTION OF A SIGNAL FROM ITS SAMPLES

USING INTERPOLATION

Interpolation is a commonly used procedure for reconstructing a function either
approximately or exactly from samples. One simple interpolation procedure is the
zero-order hold discussed in Section 8.1. Another simple and useful form of inter-
polation is Jinear interpolation, whereby adjacent sample points are connected by
a straight line as illustrated in Figure 8.10. In more complicated interpolation for-

Sec. 8.2 Reconstruction of a Signal from Its Samples Using Interpolation 521
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Figure 8.10 Linear interpolation between sample points. The dashed curve
represents the original signal and the solid curve the linear interpolation.

mulas, sample points may be connected by higher-order polynomials or other mathe-
matical functions.

Aswe haveseen in Section 8.1, for a bandlimited signal, if the sampling instants
are sufficiently close, then the signal can be reconstructed exactly, i.e., through the
use of a lowpassfilter exact interpolation can be carried out between the sample
points. The interpretation of the recon tion of x(t) as a process of interpolation
becomes evident when weconsiderthe effect in the time domain of the lowpassfilter
in Figure 8.5. In particular, the output x,(¢) is

x,(t) = x,(0) * ACO

or with x,(t) given by eq. (8.2), .

x,(t) = 3x(nT)A(t — nT) (8.8)

Equation (8.8) represents an interpolation formula since it describes how to fit a
continuous curve between the sample points. For the ideal lowpass filter H(@) in
Figure 8.5, A(t) is given by ,

ts eosh(t) = Te sine (2+) (8.9)
so that

x)= 3 x(nT)T2 sinc(ey (8.10)
The reconstruction according to eq. (8.10) with w, = @,/2 is illustrated in Figure
8.11.

Interpolation using the sinc function as in eq. (8.10) is commonly referred to
as bandlimited interpolation, since it implements exact reconstruction if x(t) is band-
limited and the sampling frequencysatisfies the conditions of the sampling theorem.
Since a very good approximation to an ideal lowpassfilter is relatively difficult to
implement, in many casesit is preferable to use a less accurate but simpler filter (or
equivalently interpolating function) A(t). For example, as we previously indicated, the
zero-order hold can be viewed as a form of interpolation between sample values in
which the interpolating function A(t) is the impulse response /,(t) depicted in Figure
8.7. In that sense, with x,(¢) in Figure 8.7 corresponding to the approximationto x(f),
the system /,(t) represents an approximation to the ideal lowpassfilter required for
the exact interpolation. Figure 8.12 shows the magnitudeofthe transfer function of
the zero-order-hold interpolating filter, superimposed on the desired transfer func-
tion ofthe exact interpolatingfilter. Both from Figure 8.12 and from Figure8.7 wesee

522 Sampling Chap. 8
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x(t)

(a)

 
(b)

Figure 8.11 Ideal bandlimited interpo-
lation using the sinc function.

 
 
 

 
Ideal interpolating

filter

Zero-order
hold

—@; Ws

2

Ww,

2

Figure 8.12 Transfer function for the zero-order hold and for the ideal inter-
polatingfilter.

that the zero-order hold is a very rough approximation, although in somecasesitis
sufficient. For example, if, in a given application, there is additional lowpassfiltering
that is naturally applied, this will tend to improve the overall interpolation. This
is illustrated in the case of pictures in Figure 8.13. Figure 8.13(a) showsa picture with
“impulse” sampling(i.e., sampling with spatially narrow pulses). Figure 8.13(b) is the
result of applying a two-dimensional zero-order hold to Figure 8.13(a) with a resulting
mosaic effect when viewed at close range. However, the humanvisual system inherently

Sec. 8.2 Reconstruction of a Signal from Its Samples Using Interpolation 523
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(a) 7

 
(b)

Figure 8.13. (a) The original pictures of Figs. 2.2 and 4.2 with impulse sam-
pling; (b) zero-order hold applied to the pictures in (a). The visual system
naturally introduces lowpassfiltering with a cutoff frequency that increases with
distance. Thus, when viewed at a distance, the discontinuities in the mosaic in
Figure 8.13(b) are not resolved; (c) result of applying a zero-order hold after
impulse sampling with one-half the horizontal and vertical spacing used in (a)
and (b).
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(c)  
Figure 8.13 (cont.)

imposes lowpassfiltering, and consequently when viewed at a distance, the discon-
tinuities in the mosaic are not resolved. In Figure 8.13(c) a zero-order hold is again
used, but here the sample spacing in each direction is half that in Figure 8.13(a). With
normal viewing, considerable lowpassfiltering is naturally applied although, partic-
ularly with a magnifying glass, the mosaic effect is still somewhat evident.

Another approximate form of interpolation often used is linear interpolation,
for which the reconstructed signal is continuous, althoughits derivative is not. Linear
interpolation, sometimes referred to as a first-order hold, wasillustrated in Figure
8.10 and can also be viewed as an interpolation in the form of Figure 8.5 and eq.
(8.8) with A(t) triangular,as illustrated in Figure 8.14. The associated transfer function
H(q@)is also shown in Figure 8.14 and is given by

_ 1 fsin (@7T/2) 7?H(o) = 7| (8.11)
The transfer function ofthefirst-order hold in Figure 8.14 is shown superimposed on
the transfer function for the ideal interpolating filter. Figure 8.15 corresponds to the
same pictures as in Figure 8.13 but withafirst-order hold applied to the sampled
picture.

Sec. 8.2 Reconstruction of a Signal from Its Samples Using Interpolation 525
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x_(t) 

 
h(t)

 

 
 
 
 

 

Ideal interpolating
filter

First-order
hold

—w Ws 0 w, WO, W

Figure 8.14 Linear interpolation (first-order hold) as impulse-train sampling
followed by convolution with a triangular impulse response.
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Figure 8.15 Figure 8.13 with a first-order hold applied to the sampled pictures.

8.3 THE EFFECT OF UNDERSAMPLING: ALIASING

In the discussion in previous sections, it was assumed that the sampling frequency
was sufficiently high so that the conditions of the sampling frequency were met. As
wasillustrated in Figure 8.4, with w, > 2@,,, the spectrum of the sampled signal
consists of exact replications of the spectrum of x(t), and this forms the basis for the
sampling theorem. When @, < 2@,,, X(@), the spectrum of x(t), is no longer repli-
cated in X,(@) and thus is no longer recoverable by lowpassfiltering. This effect, in
which the individual terms in eq. (8.5) overlap, is referred to as aliasing, and in this
section we explore its effect and consequences,

Clearly, if the system of Figure 8.5 is applied to a signal with wm, < 2@,,, the
reconstructed signal x,(t) will no longer be equal to x(t). However, as explored in
Problem 8.4 the original signal and the signal x,(t) which is reconstructed using
bandlimited interpolation will always be equal at the sampling instants; that is,
for any choice of @,,

x,(nT) = x(nT), n=0, +1, +2,... (8.12)

Someinsight into the relationship between x(t) and x,(t) when @, < 2@,, is
provided by considering in more detail the comparatively simple case of a sinusoidal
signal. Thus, let x(t) be given by

x(t) = COS Wot (8.13)
with Fourier transform X(q@) as indicated in Figure 8.16(a). In this figure, we have
graphically distinguished the impulse at @, from that at —q@, for convenience as
the discussion proceeds. Let us consider X,(@), the spectrum of the sampled signal
and focusin particular on the effect ofa change in the frequency w, with the sampling
frequency @,fixed. In Figure 8.16(b) — (e) weillustrate X,(@) for several values of

Sec. 8.3 The Effect of Undersampling: Aliasing 527
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