
1 SAMSUNG 1046

This Electronic Copy of Copyrighted Material Was Made andDelivered to the Government UnderLicensefrom Copyright
Clearance Center, Inc. - No Further Reproduction is Permitted

Evaluation of Design Alternatives for a Multiprocessor
Microprocessor

Basem A. Nayfeh, Lance Hammond and Kunle Olukotun
Computer Systems Laboratory

Stanford University
Stanford, CA 94305-4070

{ bnayfeh, lance, kunle} @ogun.stanford.edu

Abstract

In the future, advanced integrated circuit processing and packaging
technology will allow for several design options for multiprocessor
microprocessors. In this paper we consider three architectures:
shared-primary cache, shared-secondary cache, and shared-mem-
ory. We evaluate these three architectures using a complete system
simulation environment which models the CPU, memory hierarchy
and V/O devices in sufficient detail to boot and run a commercial

operating system. Within our simulation environment, we measure
performanceusing representative hand and compiler generated par-
allel applications, and a multiprogramming workload. Our results
show that when applications exhibit fine-grained sharing, both
shared-primary and shared-secondary architectures perform simi-
larly whenthe full costs of sharing the primary cacheare included.

1 Introduction

With the use of advanced integrated circuit (IC) processing and
packaging technology several options for the design of high-perfor-
mance microprocessors are available. A design option that is
becoming increasingly attractive is a multiprocessor architecture.
Multiprocessors offer high performance on single applications by
exploiting loop-level parallelism and provide high throughput and
low interactive response time on multiprogramming workloads
[2][15]. With the multiprocessor design option, a small number of
processors are interconnected on a single die or on a multichip
module (MCM)substrate. The abundance of wires available on-

chip or on-MCM makeit possible to construct interprocessor com-
munication mechanisms which have much lowerlatency and higher
bandwidth than a single bus-based multiprocessor architecture.
Given the multiprocessor communication implementation options
available for improving interprocessor communication perfor-
mance,it is important to understand which mechanism provides the
best overall performance on important application classes. The
objective of this paper is to characterize the benefits and costs of
realistic implementations of two proposed cache-sharing mecha-
nisms that exploit the increased wire density: shared level-1 (1)

cache and shared level-2 (L2) cache. To provide a point of refer-
ence, the performance of these architectures is compared to that of a
conventional single bus-based shared-memory multiprocessor. All
three architectures are simulated using a complete system simula-
tion environment which models the CPU, memory hierarchy and
VO devices in sufficient detail to boot and run the Silicon Graphics
IRIX 5.3 operating system. Within our simulation environment, we
evaluate the performance of the three architectures using represen-
tative hand and compiler generated parallel applications, and a mul-
tiprogramming workload. Both kernel and user level references are
includedin our results.

Wepresent twosets of results. One set with a simple CPU model
that does not include latency hiding or the true latencies of the
shared-L1 architecture, and a second set with a very detailed and
completely accurate CPU model. The results from the simple CPU
model are used to classify the parallel applications into three broad
classes: applications with a high degree of interprocessor communi-
cation, applications with a moderate degree of interprocessor com-
munication and applications with little or no interprocessor
communication. For applications in the first class we find that the
shared-L1 architecture usually outperforms the other two architec-
tures substantially. For applications in the second class the shared-
LI architecture performs less than 10% better than the other archi-
tectures. Finally, for applications in the third class, contrary to con-
ventional wisdom, the performance of the shared-L1is still slightly
better than the other architectures. The second set of results include

the effects of dynamic scheduling, speculative execution and non-
blocking memory references. These results show that when the
additional latencies associated with sharing the Ll cache are
includedin the simulation model, the performance advantageof the
shared-L1 architecture can diminish substantially.

Therest of this paper is organized as follows. Section 2 introduces
the three multiprocessor architectures and the architectural assump-
tions used throughout the paper. Section 3 describes the simulation
environment and benchmark applications that are used to study
these architectures. Simulation results of the performance of the
three multiprocessor architectures are presented in Section 4. In
Section 5 we discuss related work and we conclude the paper in
Section 6.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication andits date appear, and notice is given that —
copying is by permission of ACM,Inc. To copy otherwise, to republish, to

post on servers,or to redistribute to lists, requires prior specific permission
and/ora fee.

ISCA '96 5/96 PA, USA
© 1996 ACM 0-89791-786-3/96/0005...$3.50

67

1 SAMSUNG 1046f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2

2 Three Multiprocessor Architectures

The distinguishing characteristic of shared-memory multiprocessor -
architectures is the level of the memory hierarchy at which the
CPUsare interconnected. In general, a multiprocessor architecture
whose interconnectis closer to the CPUs in the memory hierarchy
will be able to exploit fine-grained parallelism more efficiently than
a multiprocessor architecture whose interconnect is further away
from the CPUs in the memory hierarchy. Conversely, the perfor-
mance of the closely interconnected multiprocessor will tend to be
worse than the loosely interconnected multiprocessor when the
CPUs are executing independent applications. With this in mind,
the challenge in the design of a small-scale multiprocessor micro-
processor is to achieve good performance on fine-grained parallel
applications without sacrificing the performance of independent
parallel jobs. To develop insight about the most appropriate level
for connecting the CPUs in a multiprocessor microprocessor we
will compare the performance of three multiprocessor architec-
tures: shared-L1 cache, shared-L2 cache, and a conventional single-
bus shared main memory. We will see that these architectures are
natural ways to connect multiple processors using different levels of
the electronic packaging hierarchy. Before we discuss the features
that distinguish the three multiprocessor architectures, we will dis-
cuss the characteristics of the CPU, which is used with all three

memory architectures.

2.1 CPU

This study uses a 2-way issue processor that includes the support
for dynamic scheduling, speculative execution, and non-blocking
caches that one would expect to find in a modern microprocessor
design. The processor executes instructions using a collection of
fully pipelined functional units whose latencies are shown in
Table 1. The load latency of the CPUis specific to the multiproces-
sor architecture. To eliminate structural hazards there are two cop-
ies of every functional unit except for the memory data port.

1 2ALU SP Add/Sub

 Multiply 2 SP Multiply

Divide SP Divide

Branch DP Add/Sub

 Load DP Multiply

 Store DP Divide

Table 1 CPU functional unit latencies.

Other characteristics of the processor are 16 Kbyte two-way set
associative instruction and data caches, a 32 entry centralized win-
dow instruction issue scheme and a 32 entry reorder buffer to main-
tain precise interrupts and recover from mispredicted branches.
Branches are predicted with a 1024 entry branchtarget buffer. The
non-blocking L1 data cache supports up to four outstanding misses.

68

The CPU is modeled using the MXSsimulator [4] which is capable
of modeling modern microarchitectures in detail. In this simulator
the MIPS-2 instruction set is executed using a decoupled pipeline
consisting of fetch, execute and graduate stages. In the fetch stage
up to two instructions are fetched from the cache and placed into
the instruction window. Every cycle up to two instructions from the
window whose data dependencies have been satisfied move to the
execute stage. After execution, instructions are removed from the
instruction window and wait in the reorder buffer until they can
graduate,i.¢., update the permanent machinestate in program order.

2.2 Shared-L1 Cache Multiprocessor

By the end of the century it will be possible to place multiple pro-
cessors on a single die. A natural way to interconnect these proces-
sors will be at the first level cache as illustrated in Figure 1. The
figure shows four CPUsthat share a common, 4-way banked write-
back L1 cache through a crossbar switching mechanism. This archi-
tecture is similar to the M-machine [8]. The primary advantage of
this architecture compared to other multiprocessor architectures is
that it provides the lowest latency interprocessor communication
possible using a shared-memory address space. Low latency inter-
processor communication makes it possible to achieve high perfor-
mance on parallel applications with fine-grained parallelism.
Parallel application performance is also improved by processors
that prefetch shared data into the cache for each other, eliminating
cache misses for processorsthat use the data later. Other advantages
of a shared-L1 cache are that it eliminates the complex cache-
coherence logic usually associated with cache-coherent multipro-
cessors and implicitly provides a sequentially consistent memory
without sacrificing performance. This makes the hardware imple-
mentation simpler and programmingeasier.

There are some disadvantages to the shared-L1 cache architecture.
The access tune of L1 cache is increased by the time required to
pass through the crossbar between the processors and cache. We
assume that the added overhead of the crossbar switching mecha-
nisms and cache bank arbitration logic would makethetotal latency
of the L1 cache three cycles, even though the cache banks would be
pipelined to allow single-cycle accesses. However,all of the mem-
ory references performed by the processors will enter the shared-
memory, so there is some probability of extra delays due to bank
conflicts between memory references from different processors. A
third disadvantage is the converse of the shared-data advantage:
processors working with different data can conflict in the shared

cache, causing the miss rate to increase.

Given the clock rates and complexity of the CPU-cacheinterface of
future microprocessors a single die implementation of the shared-
L1 cacheis essential in order to maintain a low L1 cachelatency. If
chip boundaries were crossed, either the L1 latency would be
increased to five or more cycles or the clock rate of the processors
would be severely degraded. Either of these would have a signifi-
cant impact on processor performance. The major drawback to the
single die implementation today would be the large area and high
cost of the die. However, the increasing density of integrated circuit
technology will soon makeit possible to put four processors on a
chip with a reasonable die area. We estimate the die area required
for four processors of the complexity of the DEC Alpha 21064A [6]
(a dualissue statically scheduled superscalar processor with 32 KB

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3

128 bit system bus

16K L1 16K L1 16K L1 16K L1

2-Way 2-Way 2-Way 2-Way

128 bit L2 bus

2 MBLevel 2 Cache

2-way Associative

Figure 1. Shared primary cache multiprocessor.

of on-chip cache) and the crossbar interconnect to be 320 mm? in
0.35 micron technology. This is the area of the largest microproces-
sor chips produced today. In a 0.25 micron CMOStechnology,that
will be available by the end of 1997, the area is reduced to 160

mm”, whichis a medium-sized chip.

The L2 cache and main memories are uniprocessor-like in this sys-
tem since they are not involved in interprocessor communication.
This makes them relatively simple. They are designed with low
latencies and heavy pipelining. The degiee of pipelining is prima-
rily limited by the 128 bit L2 bus and the 32-byte cacheline size
that we assume. The transfer time of two cycles sets the lower
bounds on L2 cache occupancy. For the purposes of this paper we
assume memory latencies and bandwidths that could be attained in
a 200 MHz microprocessor with commodity SRAM L2 cache
memory and multibanked DRAM main memory: an L2 with 10-
cycle latency and 2-cycle occupancy (no overhead), and a main
memory with a 50-cycle latency and a 6-cycle occupancy [7]. No
cache-coherence mechanisms between the four processors on the
chip are requiredat these levels of the memory hierarchy, since they
are below the level of sharing. Only logic to keep the L2 cache
coherent with other, completely separate processors on the system
busis required.

2.3 Shared-L2 Cache Multiprocessor

The second multiprocessor architecture we consider shares data
through the L2 cache instead of the L1 cache. A possible implemen-
tation of this schemeis illustrated in Figure 2. Here four processors
and the shared-L2 cacheinterface are separate dies whichare inter-
connected using MCM packaging [16]. The four processors and
their associated write-through L1 caches are completely indepen-
dent. This eliminatesthe extra access time of the shared-L1 cache,
returning the latency of the L1 cache to 1 cycle. However, the
shared-L2 cache interface increases the L2 cache latency from 10
cycles to 14 cycles. These extra cycles are due to crossbar overhead
and the delay for additional chip boundary crossings [17].

69

BWRBRBRERARREABRABRABERBRRALRBABEBREABDELADABRIEGD

16K L1 16K L141 16K L1 16K L1
2-Way 2-Way 2-Way 2-Way

MCM
64-bit processor

rtwanethee4
512K 2-Wayy 512K 2-Wayg512K 2-Wayg 512K 2-Wa

L2 Bank L2 Bank L2 Bank L2 Bank

Figure 2, Shared secondary cache multiprocessor.

 FEELETEDT

a
4

128 bit Vowad
system bus

,4s

The write-back L2 cache has four independent banks to increaseits
bandwidth and enable it to support four independent access
streams. To reduce the pin countof the crossbar chip, which must
support interfaces to the four processors as well as the four cache
banks, the L2 cache datapath is 64 bits instead of 128 bits used in
the shared-L1 cache architecture. This does have the side effect of

increasing the occupancy of the L2 cache from two to four cycles
for a 32-byte cache line transfer. Since we assume L2 cache is
designed to supply the critical-word-first, this does not have a sig-
nificant performance impact. While the additional latency of the
crossbar will reduce L2 cache performance comparedto the shared-
L1 case, only memory accesses that miss in the L1 cache will have
to contend with the reduced-performance L2 cache. For the pur-
poses of sharing, the 14 cycle communication latency will allow
relatively fine-grained communication on multiprocessor programs
but this latency is still much greater than the three cycle sharing
latency of the shared-L1 cachearchitecture.

The shared-L2 architecture implemented with separate chipsresults
in a large number of interchip wires in the system. However, the
performance critical path between a processor and its L1 cache
remains on chip. The less-frequently used path between the L1 and
L2 caches is more tolerant of a few cycles of additional overhead
from crossing die boundaries since it is already 10 cycles long.
Thus, a system in which smaller dies are packaged on an MCM
may have a performance thatis close to a shared-L2 cache imple-
mented on a single die while potentially being less expensive to
build, Figure 2 shows that the four processor dies and the crossbar
die are packaged on an MCM,while the four separate 64 bit datap-
ath interfaces to the cache banks would go off of the MCM to sepa-
trate SRAMs. Even with the narrower L2 cache datapaths the

crossbar chip will still require several hundred signal pins for the
interfaces to the processors and cache banks. This high pin countis
only feasible today using chips with area pads that are packaged
using MCM technology[17].

The main memory for this architecture is identical to the main
memory from the shared-L1 case, since the system below the L2
cacheis essentially a uniprocessor memory hierarchy. For the pur-
poses of this paper we assume 50 cycles of latency and 6 cycles of
occupancyper access. With this configuration, some hardware must
also be installed to keep the L1 caches coherent, at least for shared

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4

regions of memory. The simplest way to do this is to assume that
the L1 cache uses a write-through policy for shared data and that
there is a directory entry associated with each L2 cache line. When
there is a change to a cacheline caused by write or a replacement
all processors caching the line must receive invalidates or updates
[17]. This implementation of cache-coherency saves a considerable
amount of snooping control logic on the processors. If this control
logic could be eliminated the processors could be made simpler
than current microprocessors which support snoopy cache coher-
ence.

2.4 Shared-Memory Multiprocessor

The final architecture we consider is a traditional bus-based multi-

processor. The processors and their individual L1 caches runat full,
single-cycle cache speeds. This is much like the shared-L2 system.
In addition, each processor has its own separate bank of L2 cache
that it can access at the full speed of the SRAMs, muchlike the

shared-L1 system (latency = 10 cycles, occupancy = 2 cycles).

512K 2-Way§ 512K 2-Wayf512K 2-Way{ 512K 2-Wa
L2 La L2 L2

|asstcw]vase4
16K Li 16K L1 16K L1 16K L1

2-Way 2-Way 2-Way2-Way

128 bit system bus

Figure 3. shared-memory multiprocessor.

However, in order to communicate each processor must access
main memory through the shared system bus, with its high latencies
(still, latency = 50 cycles, occupancy = 6 cycles). This will tend to
limit the degree of communication that is possible — each
exchange will take 50 or more cycles. Even with systems designed
to support cache-to-cache sharing of shared data, the typical times
seen will still have a latency of approximately 50 cycles since all
three of the other processors on the bus must check their cache tags
for a match, agree which processor should sourcethe data, and then
recover the necessary data from the correct cache. Since this will
usually require accesses to the off-chip L2 caches controlled by the
other processors while these caches are busy with local cachetraf-
fic, and because we must wait for the slowest processor’s response
in order to ensure coherency, typical times will often be comparable
to memory access times in bus-based systems[7][9].

This architecture represents the capabilities and limitations of cur-
rentprinted circuit board based systems.It is worth noting that the
processors must support full snoopy cache coherence of both their

70

L1 and L2 caches. This level of support is included in the latest
designs from most leading manufacturers of microprocessors.

Shared-L1 Level 1 Cache

Level 2 Cache

Main

Latency Occupancy

Shared-L2 Level 1 Cache

Level 2 Cache

Main

Shared-Mem.|Level 1 Cache

Level 2 Cache

Main

Cache-to-Cache

Table 2 A summary of the ideal memory latencies of three
multiprocessor architectures in CPU clock cycles (1 cycle = 5 ns).

Table 2 shows the contention-free access latencies for the three

multiprocessor architectures. A common theme is the increased
access timeto the level of the memory hierarchy at which the pro-
cessors communicate. A direct result of this is that the further away
from the processor communication takes place, the less impactit
will have on uniprocessor performance.

3 Methodology

Accurately evaluating the performance of the three multiprocessor
architectures requires a way of simulating the environment in which
we would expect these architectures to be used in real systems. In
this section we describe the simulation environmentand the appli-
cations used in this study.

3.1 Simulation Environment

To generate the parallel memory references we use the SimOS sim-
ulation environment [20]. SimOS models the CPUs, memory hier-
archy and I/O devices of uniprocessor and multiprocessor systems
in sufficient detail to boot and run a commercial operating system.
SimOS uses the MIPS-2 instruction set and runs the Silicon Graph-
ics IRIX 5.3 operating system which has been tuned for multipro-
cessor performance. Because SimOS actually simulates the
operating system it can generate all the memory references made by
the operating system and the applications. This feature is particu-
larly important for the study of multiprogramming workloads
where the time spent executing kernel code makesup a significant
fraction of the non-idle execution time.

A unique feature of SimOS that makesstudies such as this feasible
is that SimOS supports multiple CPU simulators that use a common
instruction set architecture. This allows trade-offs to be made

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5

between the simulation speed and accuracy. The fastest CPU simu-
lator, called Embra, uses binary-to-binary translation techniques
and is used for booting the operating system and positioning the
workload so we can focus on interesting regions of the execution
time. The medium performance CPU simulator, called Mipsy, is
two orders of magnitude slower than Embra. Mipsy is an instruc-
tion set simulator that models all instructions with a one cycle result
latency and a one cycle repeat rate. Mipsy interprets all user and
privileged instructions and feeds memoryreferences to the memory
system simulator. The slowest, most detailed CPU simulator is
MXS, which supports dynamic scheduling, speculative execution
and non-blocking memory references. MXS is over four orders of
magnitude slower than Embra.

The cache and memory system componentof our simulator is com-
pletely event-driven and interfaces to the SimOS processor model
which drives it. Processor memory references cause threads to be
generated which keep track of the state of each memory reference
and the resource usage in the memory system. A call-back mecha-
nism is used to inform the processorof the status of all outstanding
teferences, and to inform the processor when a reference com-
pletes. These mechanisms allow for very detailed cache and mem-
ory system models, which include cycle accurate measures of
contention and resource usage throughout the system.

3.2 Applications

We would expect a multiprocessor microprocessor architecture to
be used in both high-performance workstations and servers. There-
fore, we have chosen workloads that realistically represent the
behavior of these computing environments. The parallel applica-
tions we use fall into three classes: hand parallelized scientific and
engineering applications, compiler parallelized scientific and engi-
neering applications and a multiprogramming workload.

To simulate each application we first boot the operating system
using the fastest CPU simulator and then checkpoint the system
immediately before the application begins execution. The check-
point saves the internal state of CPU and main memory and pro-
vides a common starting point for simulating the three
architectures. Checkpoints also help to reduce the total simulation
time by eliminating the OS boottime.

3.2.1 Hand-Parallelized Applications

Mostparallel applications are ones which have been developed for
conventional multiprocessors. The majority of these applications
come from scientific and engineering computing environments and
are usually floating point intensive. In selecting applications we
have attempted to include applications with both fine- and coarse-
grained data sharing behavior.

Eqntott is an integer program from the SPEC92 benchmark suite
{27] that translates logic equations into truth tables. To parallelize
this benchmark, we modified a single routine — the bit vector com-
parison that is responsible for about 90% of the computation in the
benchmark. Mostof the program runs on one master processor, but
when the comparison routine is reached the bit vector is divided up
among the four processors so that each processor can check a quar-
ter of the vector in parallel. The amount of work per vectoris small
so that the parallelism in this benchmarkis fine-grained.

71

MP3D[14] is a 3-dimensional particle simulator application andis
oneof the original SPLASH benchmarks described in [22]. MP3D
places heavy demands on the memory system because it was writ-
ten with vector rather than parallel processors in mind. The commu-
nication volumeis large, and the communication patterns are very
unstructured and read-write in nature. As such, it is not considered

to be a well-tuned parallel application, but could serve as an exam-
ple of how applicationsinitially written for vector machines per-
form as they are ported to shared-memory multiprocessors. In our
experiments we simulated MP3D with 35,000 particles and 20 time
steps.

Ocean is a well written and highly optimized parallel application
that is part of the SPLASH2 benchmarksuite [26]. Ocean simulates
the influence of eddy and boundary currents on the large-scale flow
in the ocean using a multigrid solver method. The ocean is divided
into a n x n grid and each processor is assigned a square sub-grid.
Each processor communicates with its neighbors at the boundaries
of the subgrid. Each processor’s working setis basically the size of
the processor’s partition of a grid, and is mostly disjoint from the
working sets of the other processors. Forthe results in this paper we
use an input data set that has 130 x 130 grid points.

Volpack is a graphics application that implements a parallel volume
tendering algorithm using a very efficient technique called shear-
warp factorization [12]. The parallel algorithm uses a image based
task decomposition in which each processor computes a portion of
the final image in parallel. There are three steps to the parallel algo-
rithm. In the first step a lookup table is computed in parallel for
shading the voxels (volume elements), in the second step each pro-
cessor computes a portion of the intermediate image by selecting
tasks from a task queue. Each task entails computing voxels of con-
tiguous scan lines that intersect the portion of the assigned portion
ofthe intermediate image.In the last step, the intermediate imageis
warpedin parallel. To minimize load imbalance, the algorithm uses
dynamic task stealing among the processors. The application uses a
128? voxel medical data set with a task size of two scanlines. The

small task size is selected to maximize processor data sharing and
minimize synchronization time.

3.2.2 Compiler Parallelized Applications

Recent advancesin parallel compiler technology have extended the
range of applications that can be successfully parallelized [1].
These advances include algorithms for interprocedural analysis of
data dependencies, array privatization and C pointer analysis. Inter-
procedural analysis allows the compiler to find parallelism over
wide regions of the program and array privatization makes it possi-
ble to parallelize loops that use arrays as temporary work areas in
the body of the loop. Array privatization make these loops parallel
by giving each parallel loop an independent copy of the array. A
significant amount of data dependence analysis is required for a
compiler to perform array privatization. Aliases occur since C pro-
grams use pointers and pointers can refer to the same object. Such
aliases prevent parallelization and without further information the
compiler must assumeall pointers are aliases of each other. Using C
pointer analysis, the compiler is able to identify the pointer aliases

that actually occur in the program. This greatly increases the poten-
tial for parallelization

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

