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Abstract: Multi-standard software-definable radios which are capable of operation according to a
variety of different mobile radio standards represent an extremely powerful tool for evolution towards
future third-generation cellular systems. This is particularly the case in Europe where the emergence of
advanced UMTS air-interfaces needs to be accompanied with some degree of backward compatibility
with the well-established GSM/DCSsystems. This paper examines a number of the architectural issues
and trade-offs involved in the design ofwideband multi-standard GSM/UMTSdigital radios andpresents
an examination ofthefiltering and ADC technology requirementsfor their implementation.

This work has been undertaken in the context of the FIRST project (Flexible Integrated Radio System
Technology) as part ofthe ACTS mobile line.

1. Introduction

The ability to process signals corresponding to a wide range of frequency bands and channel
bandwidthsis a critical feature of 3rd generation cellular multi-standard radios and impacts heavily
on the design of both analogue and digital segments of the radio. In Europe, cellular frequency bands
are concentrated in the neighbourhoodsof 1 and 2 GHz, while channel bandwidths can vary from 200
kHz (GSM/DCS)to around 1.6 MHz (DECT, FRAMES mode-! UMTSproposal) and even upto 6.4
MHz and beyond (FRAMESmode-2 and other wideband UMTSproposals) [1]. A primitive approach
for the implementation of a multi-standard radio is characterized by the use of distinct transceiver
chains, each optimized to support one of the above radio standards. However, such a “stacked-radio”
or “velcro” approach is inflexible and increasingly infeasible for the support of more than two
standards. It should however be noted that depending on the frequency coverage of the radio, some
degree of duplication in the RF components(e.g. preselect filter, PA, LNA...) may be inevitable.

A more advanced approach involves the use of a single wideband transceiver whichis sufficiently
flexible for the support of multiple standards [2]. One possible option involves the use of
programmable analogue selectivity whereby the bandwidth of the analogue segment of the
transceiver is adapted to accommodate a single channel of the target air-interface. The
programmability of the analogue filtering may be at a coarse level, followed by fine digital channel-
selection filtering. In this paper, however, we focus on the more challenging option of using fixed
analogue selectivity whereby the fixed bandwidth of the analogue front-end equals the width of the
widest channel of interest. This latter option is also of interest in the context of advanced base
stations capable of digitizing entire operator frequency bands. The implications of this approach with
respect to current and emerging technologies in the context of wideband multi-standard GSM/UMTS
receivers are investigated.

2. Characteristics of Wideband Receivers

An important feature of a wideband muli-standard radio is that the passband B, of the analoguefront-
end needs to be sufficiently large to accommodate the air-interface with the widest channel
bandwidth. This implies that, unlike traditional narrowbanddesigns, the latter stages of the receiver
and the ADC can be potentially exposed to a large numberof carriers when processing signals from
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narrowband standards. The situation may be readily quantified for the case of a GSM/UMTS
wideband receiver. The large channel bandwidths of the proposed UMTSair-interfaces (>1.6 MHz)
imply that the dynamic range ofthe receiver needs to cope with the multiple GSM carriers as well as
possible blocking signals (caused by sources external to the network) which can be present within the
bandwidth B, . The powerlevels of these blockers are detailed in the GSM specifications 5.05 [3] and
are summarized in Table (1). The figures are relative to a wanted carrier at +3dB above the receiver

sensitivity level (-100 dBm for DCS mobiles and —104 dBm for other radio types).

Blocker Offset df DCS-MS DCS-BTS GSM-MS GSM-BTS
MHz [dBc] [dBc] [dBo] [dBc]

0.6 - 0.8
0.8-1.6
1.6 - 3.0

Table (1) - GSM/DCSblocker specifications.

 
The abovespecifications are used in the following sections in order to evaluate the filterimg and ADC
requirements of wideband GSM/UMTSreceivers.

2.1. AnalogueFiltering

The objective offiltering in the analogue domainis not only to isolate the channelofinterest but also
to suppress adjacent channels which mayalias as co-channel interferers duc to the ADC sampling
action. Thesituation is depicted in Figure (1) for a GSM receiver with an analogue passband of B, =
1.6 Mhz.

Spectrum Rejected by Rejected by

 
 

 
 

 
 

prior to ADC digitalfiltering analogfilters @ Baseband Sampling> oe
oF _ ret Po bg

71...88 dB e@ Passband Subsampling
Ps Fo=IF =F /254...85 dB

N a Fg = ADC sampling rateBlocking ~
signals IF = Intermediate frequency

Py = Powerof wanted signal    
 

 
 

    1 co Pg= Powerof blocker
Anti-aljas P \
filter x _

NN StopbandWanted attenuation A
widebanda~

a signal NL

 
Figure (1): Rejection of blocking signals

The diagram applies irrespective of whether the receiver architecture deploys baseband or passband
digitization (sce Section 3). While blocking signals which appcar outside the analoguc pass/transition
bands must be rejected by analogue filtering, those appearing within the analogue passband can be
rejected by digital filtering following analogue-to-digital conversion. The extent of stopband
attenuation is determined by the amountof tolerable co-channel interference caused by the aliasing of
large blockers. Co-channel interference poweris typically specified to be at a level of about 10 to 20
dB below that of the wanted signal depending on the modulation scheme (SNReo.cxanver, > 9 dB for
GSM). Consequently, depending on the radio type and the sampling rate uscd, the required stopband
attenuation is given by:

A = Paap — Pra + SNRco-CHANNEL-dB = [54...88] + [10...20] = 64...108 dB qd)

The above values represent the combined effect of all analoguefilters. The large values of stopband
attenuation, in conjunction with wide passbands, demand very steep transitions in the frequency
response, therefore requiring additional stages of filtering compared with narrowband designs. Apart
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from size and cost issues, an increase in the numberof stages also contributes to the receiver noise
figure and non-linearities. Filter complexity may be traded off against power consumption and DSP
load (for digital decimation and channelselection) via an increase in the ADC samplingrate F,.

2.2. Analogue to Digital Conversion

Asin the case of analoguefiltering, the ADC requirements for a GSM/UMTSmulti-standard radio
are heavily influenced by the GSM blocker specifications. Two scenarios considered for the
evaluation of ADC parameters are depicted in Figure (2) below:
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Figure (2): Scenarios for evaluation of ADC requirements.

In the first scenario, a large CW carrier at an offset frequency of of (see Table 1) is considered to
cause blocking of the wanted carrier (at 3dB above sensitivity) [3]. Since df S$ B, for a wideband
receiver, the ADC is exposed to the full amplitude of the blocker, 1.e. the dynamic range of the ADC
needs to simultancously accommodate the blocker (as well as other adjacent-channel carricrs) and
provide adequate signal-to-noise ratio within the bandwidth of the wanted carrier. The ADC full-scale
range X,, needs to be sufficiently high to prevent clipping when the signals add in phase and may be
written as:

Xp = {2Pp (2)

where the sinusoidal blocker is assumed dominant and no allowance is made for headroom. The

required numberof bits 6 (or quantization step-size A) can then be found for a specific value of
quantization SVRo- (followingdigital filtering) where:

   AN 2xB P o» PE FE.Pop =——-x 22 3a SNRop =—- = 3x 27? x=x 5 3b
Or 12° O# Ga) OF Por XxX? 2xB. GP)

The last ratio in Equation (3b) represents the processing gain which results from digital filtering
under the assumption of a white quantization noise spectrum [4]. To ensure that the quantization
noise poweris negligible compared to that of interferers and other sources of thermal and device
noise, a value of SVRox= 20 dB may be assumed. The spurious-free dynamic range SFDRis defined
as the ratio of X,, to the rms amplitude of the largest spurious component over the entire Nyquist
band. SI/’DR represents all sources of noise and distortion (including integral and differential non-
linearities, sampling jitter etc.) caused by the ADC. Assuming that the largest spurious component
falls within the bandwidth of the wanted carrier and assuming a total SNR of 20 dB, the SkFDR may
be computed as:

 xXSF,DR; = 20 lo, = | +20 dBFS (relative to full-scale) (4)2B.

In the second scenario, two large carriers at an offset of 800 kHz are considered to cause intermod
products which fall within the bandwidth of the wantedcarrier [3]. If B, is sufficiently large to pass
the two large carriers, this scenario dictates the two-tone linearity requirements of the ADC. The two-
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tone SFDRis defined here as the ratio of the amplitude sum of the two large carriers (nominally equal
to full scale X,, ) over that of the third-order intermod component. Again assuming a 20 dB margin:

2x.,/2P,SEDR, = 20og, +20 dBFS (relative to full-scale) (5)2P.

The ADC parameter values required for receivers intended for two different UMTS channel
bandwidths of 1.6 MHz and 6.4 MHzare presented in Tables (2a) and (2b) where 5, = 200 kHz.

POCSMOBILETT
pOcsBTsS18
PGSMMOBILEJ12-713

GSM BTS 15 - 16 p05
e Analogue channel bandwidth B, = 1.6 MHz as specified in the FRAMES mode-1 proposal.
e Sampling Frequency F, = (2x2B,)= 6.4 MHz .
 

The ADC dynamic rangeis dictated by the GSM blocker at an offset of 0.8 MHz from the wanted
carrier. Note that SFDR; figures are not quoted since one of the intermodtest carriers (1.6 MHz away
from the wantedcarrier) falls outside the analogue passband.

pOcsBTS218
Pp|988

GSM BTS 14-15 P08|
e Analogue channel bandwidth B, = 6.4 MHz as specified in the FRAMES mode-2 proposal.
e Sampling FrequencyF, = (2x2B,) = 25.6 MHz .
 

The ADC dynamic range is now dictated by the blocker at an offset of 3 MHz from the wanted
carrier. Note that despite an increase in the blocker level, the quantization resolution requirements
have fallen compared to Table (2a). This is due to the increased processing gain resulting from the
higher sampling rate (see Equation 3). The SFDR figures are not subject to any processing gain and
have accordingly increased. The current state of the art in commercially available ADCs (6=11,
SFDR=80 dB and F,=40 MHz) falls significantly short of the values presented above for GSM base
stations but approaches those required for DCS radios. It should be emphasized that the analysis
presented here involves worst-case test scenarios. It has been argued, based on experience in
commercial systems that a moderate relaxation in the stringent GSM blocking specifications may be
feasible without a significant impact on system performance [5]. Furthermore, measures such as
frequency hopping, adaptive beamforming, and improved detection algorithms may somewhat
alleviate the demands on the ADC.

3. Survey of Receiver Architectures with Fixed Analogue Bandwidth

Having considered the filtering and ADC requirements, the merits of a number of receiver
architectures for wideband multi-standard radios will be examined in this section. Figure (3)
illustrates four different architectures, showing the path from antennato the digital demodulation unit
(includes decimation, low-pass channel selection filtering and complex phase rotation for carrier
synchronisation). Several methods for sampling at IF followed by digital down-conversion are listed
as types A, B, C. The architecture of type D employs analogue quadrature down-conversion and
sampling at baseband, usually known as direct down-conversion. For a multi-standard terminal
capable of processing standards like DCS or UMTSland mobile segments 3/6, the entire frequency
bandpresentat the preselect filter is about 500 MHz wide spanning from 1710 to 2170 MHz.
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Figure (3): Alternative analogue front-end architectures

Architecture A (double IF with digital subsampling). This approach was described in [2]. See also
Figure (4) for a spectral representation of the signals in the receiver chain. Sampling is performed at
an appropriate //’, and the down-conversion processis realized completely via DSP. Subsampling in

the second Nyquist zone given by therelation F,=(4/3)x/F, implies a sampling rate F, which is less
than twice the highest frequency component in the sampled signal. The presclect filter rejects the
image frequencies of the first mixer. The transition bandwidth ofthe preselect filler can be made
broad if JI’; is chosen to be sufficiently large (i.e. at least a couple of hundred MHz). The bandpass

(BP) and anti-alias (AA) filters at J7"; and IJ’, respectively are designed for bandwidth B, (eg. By =
1.6 MHz). The BP filter rejects the image frequencies of the second mixer and requiresa transition
bandwidth of (2x/F2) — Bg = (3/2)xF, — Bg. The AA filter suppresses the components which can be
aliased due to sampling and requires a transition bandwidth of F,/2 — Bz. A high F, relaxes the
required steepness of the analogue BP and AA [filter frequency responses, bul places additional
demands on the ADC and the subsequent DSP. This important trade-off between the analogue and
digital domains needs to be carefully considered, particularly with respect to the expected radio
channel conditions and the typical levels of interferers and blockers. The choice of /F’ is more or less
independent of LF, and can be optimized with respect to implementation of the BP filter. A drawback
of architecture A, is that two analogue filters with demanding requirements (see Section 2) and two
analogue mixers contributing to intermodulation distortions are required. Furthermore, F, and JF, are
related according to the subsampling equation. Finally, apart from the subsampling, the architecture
is very similar to that of conventional receivers.

Architecture B (single LF with digital subsampling). This is similar to architecture A with the
difference that only a single intermediate frequency JF; is employed. This allows a reduction in the
analogue component count as well as a reduction in nonlinear distortions. However, according to the
subsampling equation F,, = (4/3)x/F, from architecture A, /F; is a direct function of F, and thusit is
difficult (in comparision to architecture A) to achieve a compromise between a high JJ’; (to ease
analogue filtering, particularly image rejection) and a low JF, (to ease ADC and DSP complexity and
improve attenuation of nearby blocking signals). However, since the preselect filter cannot achieve a
steep frequency response, a low JF, design is not really feasible, and a high JF, will cause infeasible
DSP requirements. Consequently, architecture B seems unrealistic.
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Architecture C (single IF with extreme subsampling). The concept of extreme subsampling implies
the use of a sampling rate F, which is considerably lower than JF. This corresponds to subsampling
in the Mth Nyquist zone (i.e. F, = [4/(2M-1)|x/F\) where M>>1. An important implication is that
extreme subsampling requires a fast ADC with a broad bandwidth (such ADC technology is now
becoming available, eg. bandwidth of 450 MHz for F, =20 MHz from Analog Devices). This
technology is in contrast to that of conventional ADCs where the bandwidth is usually limited to
2xF,. Architecture C is similar to architecture A with respect to the two separate design tradeoffs for
iF, and #: High JF, to widen the preselect transition bandwidth, low /F| to ease AA. High F, to
widen AA andto achieve high stopbandattenuation, low F, to ease ADC and DSP.As an advantage,
the analogue componentcountis reducedto that of architecture B. However, the requirements on the
stopbandattenuation of the analoguefilter(s) are similar for architectures A,B and C.
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Figure (4): Spectral representation of signals in doublc-IF recciver (type A).

Architecture D (sampling at baseband). Sampling performed at baseband is an alternative to
passband subsampling and represents a traditional approach. Sampling can be preceded by either
direct- (zero IF), single-IF or double-IF downconversion stages. The main advantage of this
architecture is that the AA filtering operation can be performed at baseband (instead of passband)
with an analogue low-passfilter (ALPF)transition bandwidth of F, — Bg (instead of F,/2 — Bg). Filter
requirements are thus relaxed. The analogue componentcount is reduced, particularly for zero-IF. A
drawback is the need for an analogue quadrature down-converter which introduces the associated
problems of gain/phase mismatch in the I and Q branches. This problem could be significant when
dealing with multi-level modulation schemes proposed for pico-cellular modes of UMTS.

From a conceptual point of view, the use of analogue down-conversion may be argued to be
contradictory to the spirit of an ideal softwarc-dcfinable digital radio. However, from a practical point
of view, architecture D can be seen to provide a number of advantages in the context of multi-
standard radios. The most important advantage is that programmable analogue selectivity can be
readily implemented through the use of tunable active low-pass AA filters (bandpass IF
implementations using SAW technology is unrealistic). In addition to alleviating the dynamic range
problemsof the ADC,this approach would allow a reduction in the sampling rate F, in accordanceto
the channel bandwidth of the target standard, hence achieving significant savings in power
consumption.
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4. Digital Carrier Synchronisation and Related Tradeoffs

For a multi-standard terminal capable of processing standards like DCS or UMTS,the entire
frequency band can be about 500 MHz wide. According to the GSM specifications, the transmit
frequency must be generated with an error less than 90 Hz (0.1 ppm) and this demandstheability to
generate around five million distinct frequencics. In order to enable a simple and cost-cffective
synthesizer design, it is possible to increase the frequency quantization step-size by several orders of
magnitude, if complex phase rotation is performed at baseband in the digital segment of the
transceiver (depicted in Figure 3). A total frequency error F, representing all imperfections due to
control algorithms and Doppler shifts would require passband extensions of 2x|F;| for analogue AA
filtering and 4x|F;| for digital low-passfiltering respectively. Frequency errors of the order of some
percentage of B, are not critical and thus the quantization step-size of the local oscillator can be
increased to 10...100 kHz, thereby allowing considerable simplifications compared to the case of
analogue carrier control.

5. Conclusions

The concept of fixed-bandwidth analogue selectivity for the design of wideband multi-standard
GSM/UMTSdigital radios was presented and the implications of this approach with regards to
current and emergingfiltering and ADC technologies were examined. Also the merits of a numberof
receiver architectures for the implementation of such radios were discussed. It was seen that the
performance of current ADC technology falls significantly short of that required for widcband
GSM/DCSbasestations, although the issue is less severe for the case of mobiles. From the receiver
architectures considered, it was seen that while double-IF subsampling is readily feasible, the more
compact single-IF subsampling architecture is only feasible with extreme subsampling and is the
preferred option once fast ADC technology becomes available (the same applies to subsampling
directly at RF). Bascband sampling architectures arc most suitable for implementation of
programmable-bandwidth multi-standard radios.

Acknowledgements: The contributions by our colleagues in the FIRST project are gratefully
acknowledged.
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