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High-Rate Codes That Are Linear in Space and Time
Babak Hassibi and Bertrand M. Hochwald

Abstract—Multiple-antenna systems that operate at high rates
require simple yet effective space–time transmission schemes to
handle the large traffic volume in real time. At rates of tens of
bits per second per hertz, Vertical Bell Labs Layered Space–Time
(V-BLAST), where every antenna transmits its own independent
substream of data, has been shown to have good performance
and simple encoding and decoding. Yet V-BLAST suffers from
its inability to work with fewer receive antennas than transmit
antennas—this deficiency is especially important for modern
cellular systems, where a base station typically has more antennas
than the mobile handsets. Furthermore, because V-BLAST
transmits independent data streams on its antennas there is no
built-in spatial coding to guard against deep fades from any given
transmit antenna. On the other hand, there are many previously
proposed space–time codes that have good fading resistance and
simple decoding, but these codes generally have poor performance
at high data rates or with many antennas. We propose a high-rate
coding scheme that can handle any configuration of transmit and
receive antennas and that subsumes both V-BLAST and many
proposed space–time block codes as special cases. The scheme
transmits substreams of data in linear combinations over space
and time. The codes are designed to optimize the mutual infor-
mation between the transmitted and received signals. Because of
their linear structure, the codes retain the decoding simplicity of
V-BLAST, and because of their information-theoretic optimality,
they possess many coding advantages. We give examples of the
codes and show that their performance is generally superior
to earlier proposed methods over a wide range of rates and
signal-to-noise ratios (SNRs).

Index Terms—Bell Labs Layered Space–Time (BLAST), fading
channels, multiple antennas, receive diversity, space–time codes,
transmit diversity, wireless communications.

I. INTRODUCTION AND MODEL

I T is widely acknowledged that reliable fixed and mobile
wireless transmission of video, data, and speech at high rates

will be an important part of future telecommunications systems.
One way to get high rates on a scattering-rich wireless channel is
to use multiple transmit and/or receive antennas. In [1], [2], the-
oretical and experimental evidence demonstrates that channel
capacity grows linearly as the number of transmit and receive
antennas grow simultaneously.

Early uses of multiple transmit antennas in a scattering en-
vironment achieve reliability through “diversity,” where redun-
dant information is sent or received on two or more antennas
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in the hope that at least one path from the transmitter reaches
the receiver [3]–[6]. To keep the transmitter and receiver com-
plexity low, linear processing is often preferred [3]. To achieve
the high data rates promised in [2], however, new approaches
for space–time transmission are needed. One such approach is
presented in [7], [8] where a practical scheme, called V-BLAST
(Vertical Bell Labs Layered Space–Time), encodes and decodes
rates of tens of bits per second per hertz (b/s/Hz) with 8 transmit
and 12 receive antennas. The V-BLAST architecture breaks the
original data stream into substreams that are transmitted on the
individual antennas. The receiver decodes the substreams using
a sequence of nulling and canceling steps.

Since then there has been considerable work on a variety
of space–time transmission schemes and performance mea-
sures [9] such as the space–time trellis codes of [10] and the
space–time block codes of [11], [12] for the known channel
and [13]–[17] for the unknown channel.

At very high rates and with a large number of antennas, many
of these space–time codes suffer from complexity or perfor-
mance difficulties. The number of states in the trellis codes of
[10] grows exponentially with either the rate or the number of
transmit antennas. The block codes of [11], [12] suffer from rate
and performance loss as the number of antennas grow, and the
codes of [14]–[16] suffer from decoding complexity if the rate is
too high. Although V-BLAST can handle high data rates with
reasonable complexity, the decoding scheme presented in [7]
does not work with fewer receive than transmit antennas.

We present a space–time transmission scheme that has many
of the coding and diversity advantages of previously designed
codes, but also has the decoding simplicity of V-BLAST at high
data rates. The codes work with arbitrary numbers of transmit
and receive antennas.

The codes break the data stream into substreams that are dis-
persed in linear combinations over space and time. We refer
to them simply as linear dispersion codes (LD codes). The LD
codes

1) subsume, as special cases, both V-BLAST [7] and the
block codes of [12];

2) generally outperform both;
3) can be used for any number of transmit and receive an-

tennas;
4) are very simple to encode;
5) can be decoded in a variety of ways including simple

linear-algebraic techniques such as

a) successive nulling and canceling (V-BLAST [7],
square-root V-BLAST [18]),

b) sphere decoding [19], [20];

6) are designed with the numbers of both the transmitand
receive antennas in mind;

0018-9448/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Purdue University Fort Wayne. Downloaded on March 03,2023 at 00:51:01 UTC from IEEE Xplore.  Restrictions apply. 

Smart Mobile Technologies LLC, Exhibit 2013 
Page 1 of 21

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


HASSIBI AND HOCHWALD: HIGH-RATE CODES THAT ARE LINEAR IN SPACE AND TIME 1805

7) satisfy the following information-theoretic optimality cri-
terion:

— the codes are designed to maximize the mutual infor-
mation between the transmit and receive signals.

We briefly summarize the general structure of the LD
codes. Suppose that there aretransmit antennas, receive
antennas, and an interval of symbols available to us during
which the propagation channel is constant and known to the
receiver. The transmitted signal can then be written as a
matrix that governs the transmission over the antennas
during the interval. We assume that the data sequence has been
broken into substreams (for the moment we do not specify

) and that are the complex symbols chosen from
an arbitrary, say -PSK or -QAM, constellation. We call a
rate linear dispersion code one for which
obeys

(1)

where the real scalars are determined by

The design of LD codes depends crucially on the choices
of the parameters , and the dispersion matrices .
To choose the we propose to optimize a nonlinear
information-theoretic criterion: namely, the mutual information
between the transmitted signals and the received
signal. We argue that this criterion is very important for
achieving high spectral efficiency with multiple antennas.
We also show how the information-theoretic optimization has
implications for performance measures such as pairwise error
probability. Section IV has several examples of LD codes and
performance comparisons with existing schemes.

We now present the multiple-antenna model considered in
this paper.

A. The Multiple-Antenna Model

In a narrow-band, flat-fading, multiple-antenna communica-
tion system with transmit and receive antennas, the trans-
mitted and received signals are related by

(2)

where denotes the vector of complex received signals
during any given channel use, denotes the vector of
complex transmitted signals, denotes the channel
matrix, and the additive noise is (zero-mean,
unit-variance, complex-Gaussian) distributed that is spatially
and temporally white. The channel matrix and transmitted
vector are assumed to have unit variance entries, implying that

and

Since the random quantities, , and are independent, the
normalization in (2) ensures that is the signal-to-noise
ratio (SNR) at each receive antenna, independently of. We

often (but not always) assume that the channel matrixalso
has independent entries.

The entries of the channel matrix are assumed to be known
to the receiver but not to the transmitter. This assumption is rea-
sonable if training or pilot signals are sent to learn the channel,
which is then constant for some coherence interval. The coher-
ence interval of the channel should be large compared to[21].
When the channel is known at the receiver, the resulting channel
capacity (often referred to as theperfect-knowledgecapacity) is
[2], [1]

(3)
where the expectation is taken over the distribution of
the random matrix .1 The capacity-achieving is a
zero-mean complex Gaussian vector with covariance matrix

, where is the maximizing covariance
matrix in (3). When the distribution on is rotationally
invariant, i.e., when for any unitary
matrices and (as is the case when has independent

entries), the optimizing covariance is ,
and (3) becomes

(4)

This expectation can sometimes be computed in closed form
(see, for example, [22]).

When the channel is constant for at leastchannel uses we
may write

so that defining

and

(where the superscriptdenotes “transpose”), we obtain

It is generally more convenient to write this equation in its trans-
posed form

(5)

where we have omitted the transpose notation fromand
simply redefined this matrix to have dimension . The
matrix is the received signal, is the
transmitted signal, and is the additive
noise. In , , and , time runs vertically and space runs
horizontally. We are concerned with designing the signal matrix

obeying the power constraint .

1Equation (3) actually slightly generalizes [2], [1], which assume thatH has
independentCN (0; 1) entries.
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We note that, in general, the number of matrices
needed in a codebook can be quite large. If the rate in bits per
channel use is denoted, then the number of matrices is .
For example, with transmit and receive antennas
the channel capacity at 20 dB (with distributed

) is more than 12 bits per channel use. Even with a relatively
small block size of , we need matrices at
rate . The huge size of the constellations generally rules
out the possibility of decoding at the receiver using exhaustive
search.

The LD codes that we present easily generate the very large
constellations that are needed. Moreover, because of their struc-
ture, they also allow efficient real-time decoding. In the next sec-
tion, we briefly describe and analyze some existing space–time
codes so that we may motivate the LD codes and explain how
they are different.

II. I NFORMATION-THEORETIC ANALYSIS OF SOME

SPACE–TIME CODES

Since the capacity of the multiple-antenna channel can easily
be calculated, we may ask how well a space–time code performs
by comparing the maximum mutual information that it can sup-
port to the actual channel capacity. The distribution for the

matrix that achieves (4) is independent entries,
but we cannot easily use this by itself as a guideline for con-
structing and decoding a (random) constellation of ma-
trices because of the sheer number of matrices involved. There-
fore, a constellation of matrices that has sufficient structure for
efficient encoding and decoding is generally needed. One such
structure is that of anorthogonal design, originally proposed in
[11] and later generalized in [12].

A. Mutual Information Attainable With Orthogonal Designs

An orthogonal design is introduced by Alamouti in [11] for
and has the structure

(6)

The complex scalars and are drawn from a particular
( -PSK or -QAM) constellation, but we may simply assume
that they are random variables such that .
We show that this particular structure can be used to achieve ca-
pacity when there is one receive antenna butnot when there is
more than one. Portions of our argument may also be found in
[23], [24].

1) One Receive Antenna ( ): With , (5) be-
comes

This can be rewritten as

(7)

It readily follows that

(8)

We effectively have an equivalent matrix channelin (7) that
is a scaled unitary matrix. Maximum-likelihood decoding of
and is, therefore, decoupled [11].

We may ask how much mutual information the orthogonal
design structure (6) can attain? To answer this question we need
to compute the mutual information between the transmitted and
received vectorsand in the equivalent channel model (7) and
compare it with the capacity of an , multiple-
antenna system.

Since has the power constraint , the maximum
mutual information in (7) is simply the channel capacity that is
obtained with the structured channel matrix. If we denote this
maximum mutual information by , using (3) we obtain

where the factor in front of the expectation normalizes for the
two channel uses spanned by the orthogonal design. Since, sub-
ject to a trace constraint, the determinant of any positive-definite
matrix is maximized when its eigenvalues are all equal, it is easy
to see that the maximizing covariance matrix is , so
that we obtain

(9)

The expression on the right symbolically denotes the capacity
attained by a system with transmit antennas and
receive antennas at SNR. This equation implies that the or-
thogonal design (6) can achieve the full channel capacity of the

, system, and there is no loss incurred by as-
suming the structure (6) as opposed to a general transmit ma-
trix .

2) Two or More Receive Antennas ( ): With
receive antennas, (5) becomes

which can be reorganized as

(10)

We now readily see

(11)

As with , maximum-likelihood estimation of and
is decoupled. However, unlike with , the orthogonal

design structure prohibits us from achieving channel capacity.
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Fig. 1. Maximum mutual information achieved by2� 2orthogonal design (6) compared to actual channel capacity for theM = 2,N = 2 system. Solid line:
maximum mutual information for2� 2orthogonal design. Dashed line: capacity of theM = 2,N = 2 system.

To see this, we compare the maximum mutual information be-
tween and in (10) with , the actual
channel capacity for the system.

As before, the maximum mutual information in (10) is simply
the channel capacity for the structured channel matrix. De-
noting this maximum mutual information by , we ob-
tain

(12)

The last equation implies that the orthogonal design (6) is re-
strictive anddoes notallow us to achieve the full channel ca-
pacity of the , system, but rather the capacity of
an , system at twice the SNR. Thus, when

we take a loss with the structure (6). The amount of this loss is
substantial at high SNR and is depicted in Fig. 1 which shows
the actual channel capacity compared to the maximum mutual
information obtained by the orthogonal design (6).

For receive antennas, the analysis is similar and is
omitted. We simply state that for transmit antennas
and receive antennas the orthogonal design allows us
to attain only , rather than the full

.
3) Other Orthogonal Designs:The preceding subsection

focuses on the orthogonal design but there are also
orthogonal designs for . The complex orthogonal
designs for are no longer “full-rate” (see [12]) and
therefore generally perform poorly in the maximum mutual
information they can achieve, even when . We give an
example of these nonsquare orthogonal designs [12], [25].

For , we have, for example, the rateorthogonal
design

(13)

The factor ensures that . It can
be shown that maximum-likelihood estimation of the variables

is decoupled. Again using an argument similar to
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Fig. 2. Maximum mutual information achieved by4� 3 orthogonal design (13) compared to actual channel capacity. Solid lines: maximum mutual information
of 4� 3 orthogonal design forN = 1; 2; 3 receive antennas. Dashed lines: capacity ofM = 3,N = 1; 2; 3 systems.

the one presented for , it is straightforward to show
that the maximum mutual information attainable with (13) with

receive antennas is which is
(much) less than the true channel capacity . We
omit the proof and refer instead to Fig. 2 which shows the actual
channel capacity compared to the maximum mutual information
obtained by the orthogonal design (13).

B. Mutual Information Attainable With V-BLAST

We showed in Section II-A that, even though orthogonal de-
signs allow efficient maximum-likelihood decoding and yield
“full-diversity” (the appearance of the sum of the in the
mutual information formulas attests to this), orthogonal designs
generally cannot achieve high spectral efficiencies in a mul-
tiple-antenna system, no matter how much coding is added to
the transmitted signal constellation. This is especially true when
the system has more than one receive antenna. An examination
of the model (10) (and its counterparts for other orthogonal de-
signs) reveals that the orthogonal design does not allow enough
“degrees of freedom”—there are only two unknowns in (10) but
four equations.

We can conclude that orthogonal designs are not suitable for
very-high-rate communications. On the other hand, a scheme
that is proven to be suitable for high spectral efficiencies is
V-BLAST [7]. In V-BLAST each transmit antenna during each
channel use sends an independent signal (often referred to as a

substream). Thus, over a block ofchannel uses, the
transmit matrix takes on the form

...
...

...
...

(14)

where each is an independent symbol drawn from a complex
constellation. Since the transmitted symbols are not dispersed in
time, is arbitrary. (We could, for example, take .)

When (the number of receive antennas is at least as
large as the number of transmit antennas), there exist efficient
schemes for decoding the V-BLAST matrices. These are based
on “successive nulling and canceling” [7], and its more efficient
variants [18], as well as more recently on sphere decoding [19].
All these decoding schemes essentially solve a well-conditioned
system of linear equations. Successive nulling and canceling
provides a fast approximate solution to the maximum-likeli-
hood decoding problem with the benefit of cubic complexity
in the number of transmit antennas . Sphere decoding, on
the other hand, finds the exact maximum-likelihood estimate
and benefits from avoiding an explicit exhaustive search. Recent
work [20] has shown analytically that for a wide range of SNRs,
the expected computational complexity of sphere decoding is
also roughly cubic in the number of transmit antennas.
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