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Abstract 
This paper is an answer to the question: "What is unique and conceptually different about 

mobile computing?" The paper begins by describing a set of constraints intrinsic to mobile 
computing, and examining the impact of these constraints on the design of distributed systems. 
Next, it summarizes the key results of the Coda and Odyssey systems. Finally, it describes the 
research opportunities in five important topics relevant to mobile computing: caching metrics, 
semantic callbacks and validators, resource revocation, analysis of adaptation, and global 
estimation from local observations. 

1. Introduction 

What is really different about mobile computing? The 
computers are smaller and bits travel by wireless rather 
than Ethernet. How can this possibly make any difference? 
Isn't a mobile system merely a special case of a distributed 
system? Are there any new and deep issues to be 
investigated, or is mobile computing just the latest fad? 

This paper is my attempt to answer these questions. The 
paper is in three parts: a characterization of the essence of 
mobile computing; a brief summary of results obtained by 
my research group in the context of the Coda and Odyssey 
systems; and a guided tour of fertile research topics 
awaiting investigation. Think of this paper as a report from 
the front by an implementor of mobile information systems 
to more theoretically-inclined computers sci~ntists. 

1.1. Constraints of Mobility 
Mobile computing is characterized by four constraints: 

• Mobile elements are resource-poor relative to static 
elements. 
For a given cost and level of technology, 
considerations of weight, power, size and 
ergonomics will exact a penalty in computational 
resources such as processor speed, memory size, 
and disk capacity. While mobile elements will 
improve in absolute ability, they will always be 
resource-poor relative to static elements. 
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• Mobility is inherently hazardous. 
A Wall Street stockbroker is more likely to be 
mugged on the streets of Manhattan and have his 
laptop stolen than to have his workstation in a 
locked office be physically subverted. In addition to 
security concerns, portable computers are more 
vulnerable to loss or damage. 

• Mobile connectivity is highly variable in 
performance and reliability. 
Some buildings may offer reliable, high-bandwidth 
wireless connectivity while others may only offer 
low-bandwidth connectivity. Outdoors, a mobile 
client may have to rely on a low-bandwidth wireless 
network with gaps in coverage. 

• Mobile elements rely on a finite energy source. 
While battery technology will undoubtedly improve 
over time, the need to be sensitive to power 
consumption will not diminish. Concern for power 
consumption must span many levels of hardware 
and software to be fully effective. 

These constraints are not artifacts of current technology, 
but are intrinsic to mobility. Together, they complicate the 
design of mobile information systems and require us to 
rethink traditional approaches to information access. 

1.2. The Need for Adaptation 
Mobility exacerbates the tension between autonomy and 

interdependence that is characteristic of all distributed 
systems. The relative resource poverty of mobile elements 
as well as their lower trust and robustness argues for 
reliance on static servers. But the need to cope with 
unreliable and low-performance networks, as well as the 
need to be sensitive to power consumption argues for self­
reliance. 

Any viable approach to mobile computing must strike a 
balance between these competing concerns. This balance 
cannot be a static one; as the circumstances of a mobile 
client change, it must react and dynamically reassign the 
responsibilities of client and server. In other words, mobile 
clients must be adaptive. 
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1.3. Taxonomy of Adaptation Strategies 
The range of strategies for adaptation is delimited by two 

extremes, as shown in Figure 1. At one extreme, 
adaptation is entirely the responsibility of individual 
applications. While this laissez-faire approach avoids the 
need for system support, it lacks a central arbitrator to 
resolve incompatible resource demands of different 
applications and to enforce limits on resource usage. It 
also makes applications more difficult to write, and fails to 
amortize the development cost of support for adaptation. 

Application-aware 
(collaboration) 

------~------,,.-- --.. 

Laissez-faire 
(no system support) 

Application-transparent 
(no changes to appbcabons) 

Figure 1: Range of Adaptation Strategies 

The other extreme of application-transparent adaptation 
places entire responsibility for adaptation on the system. 
This approach is attractive because it is backward 
compatible with existing applications: they continue to 
work when mobile without any modifications. The system 
provides the focal point for resource arbitration and 
control. The drawback of this approach is that there may 
situations where the adaptation performed by the system is 
inadequate or even counterproductive. 

Between these two extremes lies a spectrum of 
possibilities that we collectively refer to as 
application-aware adaptation. By supporting a 
collaborative partnership between applications and the 
system, this approach permits applications to determine 
how best to adapt, but preserves the ability of the system to 
monitor resources and enforce allocation decisions. 

1.4. The Extended Client-Server Model 
Another way to characterize the impact of mobile 

computing constraints is to examine their effect on the 
classic client-server model. In this model, a small number 
of trusted server sites constitute the true home of data. 
Efficient and safe access to this data is possible from a 
much larger number of untrusted client sites. Techniques 
such as caching and read-ahead can be used to provide 
good performance, while end-to-end authentication and 
encrypted transmission can be used to preserve security. 

This model has proved to be especially valuable for 
scalability [16]. In effect, tbe client-server model 
decomposes a large distributed system into a small nucleus 
that changes relatively slowly, and a much larger and less 
static periphery of clients. From the perspectives of 
security and system administration, the scale of the system 
appears to be that of the nucleus. But from the perspectives 
of performance and availability, a user at the periphery 
receives almost standalone service. 
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Local Remote 

Figure 2: Temporary Blurring of Roles 

Coping with the constraints of mobility requires us to 
rethink this model. The distinction between clients and 
servers may have to be temporarily blurred, resulting in the 
extended client-server model shown in Figure 2. The 
resource limitations of clients may require certain 
operations normally performed on clients to sometimes be 
performed on resource-rich servers. Conversely, the need 
to cope with uncertain connectivity requires clients to 
sometimes emulate the functions of a server. These are, of 
course, short-term deviations from the classic client-server 
model for purposes of performance and availability. From 
the longer-term perspective of system administration and 
security, the roles of servers and clients remain unchanged. 

2. Summary of Coda and Odyssey Results 

We have been exploring application-transparent 
adaptation since about 1990. Our research vehicle has been 
the Coda File System, a descendant of AFS [2]. Coda has 
been in active use for five years, and has proved to be a 
valuable testbed [13]. Coda clients are in regular use over 
a wide range of networks such as 10 Mb/s Ethernet, 2 Mb/s 
radio, and 9600 baud modems. 

Since the research contributions of Coda have already 
been extensively documented in the literature, we only 
provide a high-level summary of the key results here: 

Disconnected operation 
Coda has demonstrated that disconnected operation is 
feasible, effective, and usable in a distributed Unix 
file system [3, 4, 17]. The key mechanims for 
supporting disconnected operation include hoarding 
(user-assisted cache management), update logging 
with extensive optimizations while disconnected, and 
reintegration upon reconnection. 

Optimistic replication 
Coda was one of the earliest systems to demonstrate 
that an optimistic replica control strategy can be used 
for serious and practical mobile computing [6]. It 
incorporates several novel mechanisms to render this 
approach viable. These include log-based directory 
resolution [5], application-specific file resolution [7], 
and mechanisms for conflict detection, containment 
and manual repair. 

Support for weak connectivity 
Coda has shown that weak connectivity can be 
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exploited to alleviate the limitations of disconnected 
operation [12]. The mechanisms needed to 
accomplish this include adaptive transport protocols, 
a rapid cache validation mechanism, a trickle 
reintegration mechanism for propagating updates, and 
model-based cache miss handling for usability. 

Isolation-only transactions 
In the context of Coda, a new abstraction called 
isolation-only transaction has been developed to cope 
with the detection and handling of read-write conflicts 
during disconnected operation [9]. This abstraction 
selectively incorporates concepts from database 
transactions, while making minimal demands of 
resource-poor mobile clients and preserving upward 
compatibility with Unix applications. 

Server replication 
Coda has shown how server replication can be used to 
complement disconnected operation [15]. Although 
this is not particularly relevant to mobility, it is an 
important result in distributed systems because it 
clarifies the relationship between first-class (i.e., 
server) replicas and second-class replicas (i.e., client 
caches). It also represents one of the first 
demonstrations of optimistic replication applied to a 
distributed system with the client-server model. 

More recently, we have begun exploration of application­
aware adaptation in Odyssey, a platform for mobile 
computing. An preliminary prototype of Odyssey has been 
built [14, 18], and a more complete prototype is under 
development. The early evidence is promising, but it is far 
too early for definitive results. 

3. Fertile Topics for Exploration 

We now turn to the discussion of promising research 
topics in mobile computing. By its very nature, this section 
of the paper is highly speculative and will raise far more 
questions than it answers. Further, this is a selective list: it 
is certainly not intended to be complete. Rather, my goal is 
to give the reader a tantalizing glimpse of the rich problem 
space defined by mobile computing. 

In choosing the five topics discussed below, I have 
followed two guidelines. First, these problems are more 
likely to be solved by rigor and analysis than by 
implementation and experience. Second, each of these 
problems is real, not contrived. Good solutions and 
insights to these problems will strongly impact the mobile 
computing systems of the future. 

Each topic is presented in two parts: a brief discussion 
that lays out the problem space of the topic, followed by a 
sample of open questions pertaining to it. Again, my aim 
in posing these questions is not to be exhaustive but to 
offer food for thought. 

3 

3.1. Caching Metrics 
Caching plays a key role in mobile computing because of 

its ability to alleviate the performance and availability 
limitations of weakly-connected and disconnected 
operation. But evaluating alternative caching strategies for 
mobile computing is problematic. 

Today, the only metric of cache quality is the miss ratio. 
The underlying assumption of this metric is that all cache 
misses are equivalent (that is, all cache misses exact 
roughly the same penalty from the user). This assumption 
is valid when the cache and primary copies are strongly 
connected, because the performance penalty resulting from 
a cache miss is small and, to a first approximation, 
independent of file length. But the assumption is unlikely 
to be valid during disconnected or weakly-connected 
operation. 

The miss ratio also fails to take into account the timing of 
misses. For example, a user may react differently to a 
cache miss occurring within the first few minutes of 
disconnection than to one occurring near the end of the 
disconnection. As another example, the periodic spin­
down of disks to save power in mobile computers makes it 
cheaper to service a certain number of page faults if they 
are clustered together than if they are widely spaced. 

To be useful, new caching metrics must satisfy two 
important criteria. First, they should be consistent with 
qualitative perceptions of performance and availability 
experienced by users in mobile computing. Second, they 
should be cheap and easy to monitor. The challenge is to 
develop such metrics and demonstrate their applicability to 
mobile computing. Initial work toward this end is being 
done by Ebling [1]. 

3.1.1. Some Open Questions 

• What is an appropriate set of caching metrics for 
mobile computing? 

• Under what circumstances does one use each 
metric? 

• How does one efficiently monitor these metrics? 

• What are the implications of these alternative 
metrics for caching algorithms? 

3.2. Semantic Callbacks and Validators 
Preserving cache coherence under conditions of weak 

connectivity can be expensive. Large communication 
latency increases the cost of validation of cached objects. 
Intermittent failures increase the frequency of validation, 
since it must be performed each time communication is 
restored. A lazy approach that only validates on demand 
could reduce validation frequency; but this approach would 
worsen consistency because it increases the likelihood of 
stale objects being accessed while disconnected. The cost 
of cache coherence is exacerbated in systems like Coda that 
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use ant1c1patory caching for availability, because the 
number of objects cached (resident set size) is much larger 
than the number of objects in current use (working set 
size). 

The Coda solution is to maintain cache coherence at 
multiple levels of granularity and to use callbacks [11]. 
Clients and servers maintain version information on 
individual objects as well as entire subtrees of them. Rapid 
cache validation is possible by comparing version stamps 
on the subtrees. Once established, validity can be 
maintained through callbacks. This approach to cache 
coherence trades precision of invalidation for speed of 
validation. It preserves correctness while dramatically 
reducing the cost of cache coherence under conditions of 
weak connectivity. Usage measurements from Coda 
confirm that these potential gains are indeed achievable in 
practice [12]. 

The idea of maintaining coherence at multiple 
granularities can be generalized to a variety of data types 
and applications in the following way: 

• a client caches data satisfying some predicate P 
from a server. 

• the server remembers a predicate Q that is much 
cheaper to compute, and possesses the property Q 
implies P. In other words, as long as Q is true, the 
cached data it corresponds to is guaranteed to be 
valid. But if Q is false, nothing can be inferred 
about that data. 

• On each update, the server re-evaluates Q. If Q 
becomes false, the server notifies the client that its 
cached data might be stale. 

• Prior to its next access, the client must contact the 
server and obtain fresh data satisfying P. 

We refer to Q as a semantic callback for P, because the 
interpretation of P and Q depends on the specifics of the 
data and application. For example, P would be an SQL 
select statement if one is caching data from a relational 
database. Or it could be a piece of code that performs a 
pattern match for a particular individual's face from a 
database of images. Q must conform to P: a simpler 
select statement in the first case, and a piece of code 
that performs a much less accurate pattern match in the 
second case. In Coda, P corresponds to the version number 
of an object being equal to a specific value (x), while Q 
corresponds to the version number of the encapsulating 
volume being unchanged since the last time the version 
number of the object was confirmed to be x. 

Semantic validation can be extended to domains beyond 
mobile computing. It will be especially valuable in 
geographically widespread distributed systems, where the 
timing difference between local and remote actions is too 
large to ignore even when communication occurs at the 
speed of light. The predicate Q in such cases serves as an 
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inexpensive validator for cached data satisfying some 
complex criteria. 

Consider the example of a transcontinental distributed 
system in the United States. Even at the speed of light, 
communication from one coast to the other takes about 16 
milliseconds. A round trip RPC will take over 30 
milliseconds. During this time, a client with a 100 MIP 
processor can execute over 3 million instructions! Since 
processor speed can be expected to increase over time, the 
lost computational opportunity represented by this scenario 
will only worsen. 

Over time, the synchronous model implicit in the use of 
RPC will become increasingly untenable. Eventually, very 
wide-area distributed systems will have to be structured 
around an asynchronous model. At what scale and 
timeframe this shift will occur depends on two factors: the 
substantially simpler design, implementation, and 
debugging inherent in the synchronous model, and the 
considerably higher performance (and hence usability) of 
the asynchronous model. 

One promising asynchronous model is obtained by 
combining the idea of cheap but conservative validation 
with the style of programming characterized by optimistic 
concurrency control [8]. The resulting approach bears 
some resemblance to the use of hints in distributed 
systems [19], and is best illustrated by an example. 

Consider remote control of a robot explorer on the 
surface of Mars. Since light takes many minutes to travel 
from earth to Mars, and emergencies of various kinds may 
arise on Mars, the robot must be capable of reacting on its 
own. At the same time, the exploration is to be directed 
live by a human controller on earth - a classic command 
and control problem. 

This example characterizes a distributed system in which 
communication latency is large enough that a synchronous 
design paradigm will not work. The knowledge of the 
robot's status will always be obsolete on earth. But, since 
emergencies are rare, this knowledge will usually differ 
from current reality in one of two benign ways. Either the 
differences are in attributes irrelevant to the task at hand, or 
the differences can be predicted with adequate accuracy by 
methods such as dead reckoning. Suppose the robot's state 
is P, as characterized in a transmission to earth. Based on 
some properties, Q, of this state, a command is issued to 
the robot. For this command to be meaningful when it 
reaches the robot, Q must still be true. This can be verified 
by transmitting Q along with the command, and having the 
robot validate Q upon receipt. For this approach to be 
feasible, both transmitting and evaluating Q must be cheap. 

There are, of course, numerous detailed questions to be 
answered regarding this approach. But it does offer an 
intriguing way of combining correctness with performance 
in very wide-area distributed systems. 
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3.2.1. Some Open Questions 

• Under what circumstances are semantic callbacks 
most useful? When are they not useful? 

• What forms can P and Q take for data types and 
applications in common use? How does one 
estimate their relative costs in those cases? 

• Can P and Q really be arbitrary code? Are there 
restrictions necessary for efficiency and 
practicality? 

• How does one derive Q from P quickly? Are there 
restrictions on P that make this simpler? 

• How does one trade off the relative cost and benefit 
of P and Q? Is the tradeoff space discrete or 
continuous? Can this tradeoff be made adaptive? 

3.3. Algorithms for Resource Revocation 
Application-aware adaptation complicates the problem of 

resource management. In principle, the system owns all 
resources. At any time, it may revoke resources that it has 
temporarily delegated to an applicaton. Alas, reality is 
never that simple. A variety of factors complicate the 
problem. 

First, some applications are more important than others. 
Any acceptable revocation strategy must be sensitive to 
these differences. Second, the cost of revoking the same 
resource may be different to different applications. For 
example, reducing the bandwidth available to one 
application may result in its substantially increasing the 
amount of processing it does to compensate. A similar 
reduction in bandwidth for another application may result 
in a much smaller increase in processing. A good 
revocation strategy must take into account these differential 
impacts. Third, there may be dependencies between 
processes that should be taken into account during 
revocation. For example, two processes may have a 
producer-consumer relationship. Revoking resources from 
one process may cause the other to stall. More complex 
dependencies involving multiple processes are also 
possible. Unless revocation takes these dependencies into 
account, hazards such as deadlocks may occur. 

Revocation of resources from applications is not common 
in current systems. Classical operating systems research 
has focused on resource allocation issues rather than 
resource revocation. As a result there is currently little 
codified knowledge about safe and efficient techniques for 
revocation. This deficiency will have to be remedied as 
application-aware adaptation becomes more widely used. 

3.3.1. Some open questions 

• How does one formulate the resource revocation 
problem? 

• How does one characterize the differential impact of 
revocation on different applications? 
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• What strategies does one use if multiple resources 
must be simultaneously revoked? 

• How does one distinguish between resources whose 
revocation is easy to recover from and those it is 
expensive or impossible to recover from? 

• How does one handle deadlocks during revocation? 

3.4. Analysis of Adaptation 
How does one compare the adaptive capabilities of two 

mobile clients? The primary figure of merit is agility, or 
the ability of a client to promptly respond to perturbations. 
Since it is possible for a client to be more agile with respect 
to some variables (such as bandwidth) than others (such as 
battery power), agility should be viewed as a composite 
metric. 

A system that is highly agile may suffer from instability. 
Such a system consumes almost all its resources reacting to 
minor perturbations, hence performing little useful 
computation. The ideal mobile client is obviously one that 
is highly agile but very stable with respect to all variables 
of interest. 

Control theory is a domain that might have useful 
insights to offer in refining these ideas and quantifying 
them. Historically, control theory has focused on hardware 
systems. But there is no conceptual reason why it cannot 
be extended to software systems. Only careful 
investigation can tell, of course, whether the relevance is 
direct and useful or merely superficial. 

3.4.1. Some open questions 

• What are the right metrics of agility? 

• Are there systematic techniques to improve the 
agility of a system? 

• How does one decide when a mobile system is 
"agile enough"? 

• What are the right metrics of system stability? 

• Can one develop design guidelines to ensure 
stability? 

• Can one analytically derive the agility and stability 
properties of an adaptive system without building it 
first? 

3.5. Global Estimation from Local Observations 
Adaptation requires a mobile client to sense changes in 

its environment, make inferences about the cause of these 
changes, and then react appropriately. These imply the 
ability to make global estimates based on local 
observations. 

To detect changes, the client must rely on local 
observations. For example, it can measure quantities such 
as local signal strength, packet rate, average round-trip 
times, and dispersion in round-trip times. But interpreting 
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