
Fundamental Challenges in Mobile Computing
M.Satyanarayanan

School of Computer Science
Carnegie Mellon University

Abstract
This paper is an answer to the question: "What is unique and conceptually different about

mobile computing?" The paper begins by describing a set of constraints intrinsic to mobile
computing, and examining the impact of these constraints on the design of distributed systems.
Next, it summarizes the key results of the Coda and Odyssey systems. Finally, it describes the
research opportunities in five important topics relevant to mobile computing: caching metrics,
semantic callbacks and validators, resource revocation, analysis of adaptation, and global
estimation from local observations.

1. Introduction

What is really different about mobile computing? The
computers are smaller and bits travel by wireless rather
than Ethernet. How can this possibly make any difference?
Isn't a mobile system merely a special case of a distributed
system? Are there any new and deep issues to be
investigated, or is mobile computing just the latest fad?

This paper is my attempt to answer these questions. The
paper is in three parts: a characterization of the essence of
mobile computing; a brief summary of results obtained by
my research group in the context of the Coda and Odyssey
systems; and a guided tour of fertile research topics
awaiting investigation. Think of this paper as a report from
the front by an implementor of mobile information systems
to more theoretically-inclined computers sci~ntists.

1.1. Constraints of Mobility
Mobile computing is characterized by four constraints:

• Mobile elements are resource-poor relative to static
elements.
For a given cost and level of technology,
considerations of weight, power, size and
ergonomics will exact a penalty in computational
resources such as processor speed, memory size,
and disk capacity. While mobile elements will
improve in absolute ability, they will always be
resource-poor relative to static elements.

This research was supported by the Air Force Materiel Command
(AFMC) and ARPA under contract number Fl96828-93-C-0193.
Additional support was provided by the IBM Corp. and Intel Corp. The
views and conclusions contained here are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either express or implied, of AFMC, ARPA, IBM, Intel,
CMU, or the U.S. Government.

PermiBBion to make digital/hard copies of all or part of this material for
personal or claBB~l!l use is granted without fee provided that the copies
are not made or d1stnbuted for profit or commercial advantage the copy­
ri.,gllt notice, the title of the publication and its date appear, and notice is
11ven that copyright is by permiaaion of the ACM. Inc. To copy otherwise
to republish, to post on servers or to redistribute to lists, requires specific •
permiuion and/or fee.
PODC'96, Philadelphia PA, USA
o 1996 ACM 0-89791-800-2/96/05 .. $3.50

1

• Mobility is inherently hazardous.
A Wall Street stockbroker is more likely to be
mugged on the streets of Manhattan and have his
laptop stolen than to have his workstation in a
locked office be physically subverted. In addition to
security concerns, portable computers are more
vulnerable to loss or damage.

• Mobile connectivity is highly variable in
performance and reliability.
Some buildings may offer reliable, high-bandwidth
wireless connectivity while others may only offer
low-bandwidth connectivity. Outdoors, a mobile
client may have to rely on a low-bandwidth wireless
network with gaps in coverage.

• Mobile elements rely on a finite energy source.
While battery technology will undoubtedly improve
over time, the need to be sensitive to power
consumption will not diminish. Concern for power
consumption must span many levels of hardware
and software to be fully effective.

These constraints are not artifacts of current technology,
but are intrinsic to mobility. Together, they complicate the
design of mobile information systems and require us to
rethink traditional approaches to information access.

1.2. The Need for Adaptation
Mobility exacerbates the tension between autonomy and

interdependence that is characteristic of all distributed
systems. The relative resource poverty of mobile elements
as well as their lower trust and robustness argues for
reliance on static servers. But the need to cope with
unreliable and low-performance networks, as well as the
need to be sensitive to power consumption argues for self­
reliance.

Any viable approach to mobile computing must strike a
balance between these competing concerns. This balance
cannot be a static one; as the circumstances of a mobile
client change, it must react and dynamically reassign the
responsibilities of client and server. In other words, mobile
clients must be adaptive.

Smart Mobile Technologies LLC, Exhibit 2012
Page 1 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1.3. Taxonomy of Adaptation Strategies
The range of strategies for adaptation is delimited by two

extremes, as shown in Figure 1. At one extreme,
adaptation is entirely the responsibility of individual
applications. While this laissez-faire approach avoids the
need for system support, it lacks a central arbitrator to
resolve incompatible resource demands of different
applications and to enforce limits on resource usage. It
also makes applications more difficult to write, and fails to
amortize the development cost of support for adaptation.

Application-aware
(collaboration)

------~------,,.-- --..

Laissez-faire
(no system support)

Application-transparent
(no changes to appbcabons)

Figure 1: Range of Adaptation Strategies

The other extreme of application-transparent adaptation
places entire responsibility for adaptation on the system.
This approach is attractive because it is backward
compatible with existing applications: they continue to
work when mobile without any modifications. The system
provides the focal point for resource arbitration and
control. The drawback of this approach is that there may
situations where the adaptation performed by the system is
inadequate or even counterproductive.

Between these two extremes lies a spectrum of
possibilities that we collectively refer to as
application-aware adaptation. By supporting a
collaborative partnership between applications and the
system, this approach permits applications to determine
how best to adapt, but preserves the ability of the system to
monitor resources and enforce allocation decisions.

1.4. The Extended Client-Server Model
Another way to characterize the impact of mobile

computing constraints is to examine their effect on the
classic client-server model. In this model, a small number
of trusted server sites constitute the true home of data.
Efficient and safe access to this data is possible from a
much larger number of untrusted client sites. Techniques
such as caching and read-ahead can be used to provide
good performance, while end-to-end authentication and
encrypted transmission can be used to preserve security.

This model has proved to be especially valuable for
scalability [16]. In effect, tbe client-server model
decomposes a large distributed system into a small nucleus
that changes relatively slowly, and a much larger and less
static periphery of clients. From the perspectives of
security and system administration, the scale of the system
appears to be that of the nucleus. But from the perspectives
of performance and availability, a user at the periphery
receives almost standalone service.

2

Local Remote

Figure 2: Temporary Blurring of Roles

Coping with the constraints of mobility requires us to
rethink this model. The distinction between clients and
servers may have to be temporarily blurred, resulting in the
extended client-server model shown in Figure 2. The
resource limitations of clients may require certain
operations normally performed on clients to sometimes be
performed on resource-rich servers. Conversely, the need
to cope with uncertain connectivity requires clients to
sometimes emulate the functions of a server. These are, of
course, short-term deviations from the classic client-server
model for purposes of performance and availability. From
the longer-term perspective of system administration and
security, the roles of servers and clients remain unchanged.

2. Summary of Coda and Odyssey Results

We have been exploring application-transparent
adaptation since about 1990. Our research vehicle has been
the Coda File System, a descendant of AFS [2]. Coda has
been in active use for five years, and has proved to be a
valuable testbed [13]. Coda clients are in regular use over
a wide range of networks such as 10 Mb/s Ethernet, 2 Mb/s
radio, and 9600 baud modems.

Since the research contributions of Coda have already
been extensively documented in the literature, we only
provide a high-level summary of the key results here:

Disconnected operation
Coda has demonstrated that disconnected operation is
feasible, effective, and usable in a distributed Unix
file system [3, 4, 17]. The key mechanims for
supporting disconnected operation include hoarding
(user-assisted cache management), update logging
with extensive optimizations while disconnected, and
reintegration upon reconnection.

Optimistic replication
Coda was one of the earliest systems to demonstrate
that an optimistic replica control strategy can be used
for serious and practical mobile computing [6]. It
incorporates several novel mechanisms to render this
approach viable. These include log-based directory
resolution [5], application-specific file resolution [7],
and mechanisms for conflict detection, containment
and manual repair.

Support for weak connectivity
Coda has shown that weak connectivity can be

Smart Mobile Technologies LLC, Exhibit 2012
Page 2 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

exploited to alleviate the limitations of disconnected
operation [12]. The mechanisms needed to
accomplish this include adaptive transport protocols,
a rapid cache validation mechanism, a trickle
reintegration mechanism for propagating updates, and
model-based cache miss handling for usability.

Isolation-only transactions
In the context of Coda, a new abstraction called
isolation-only transaction has been developed to cope
with the detection and handling of read-write conflicts
during disconnected operation [9]. This abstraction
selectively incorporates concepts from database
transactions, while making minimal demands of
resource-poor mobile clients and preserving upward
compatibility with Unix applications.

Server replication
Coda has shown how server replication can be used to
complement disconnected operation [15]. Although
this is not particularly relevant to mobility, it is an
important result in distributed systems because it
clarifies the relationship between first-class (i.e.,
server) replicas and second-class replicas (i.e., client
caches). It also represents one of the first
demonstrations of optimistic replication applied to a
distributed system with the client-server model.

More recently, we have begun exploration of application­
aware adaptation in Odyssey, a platform for mobile
computing. An preliminary prototype of Odyssey has been
built [14, 18], and a more complete prototype is under
development. The early evidence is promising, but it is far
too early for definitive results.

3. Fertile Topics for Exploration

We now turn to the discussion of promising research
topics in mobile computing. By its very nature, this section
of the paper is highly speculative and will raise far more
questions than it answers. Further, this is a selective list: it
is certainly not intended to be complete. Rather, my goal is
to give the reader a tantalizing glimpse of the rich problem
space defined by mobile computing.

In choosing the five topics discussed below, I have
followed two guidelines. First, these problems are more
likely to be solved by rigor and analysis than by
implementation and experience. Second, each of these
problems is real, not contrived. Good solutions and
insights to these problems will strongly impact the mobile
computing systems of the future.

Each topic is presented in two parts: a brief discussion
that lays out the problem space of the topic, followed by a
sample of open questions pertaining to it. Again, my aim
in posing these questions is not to be exhaustive but to
offer food for thought.

3

3.1. Caching Metrics
Caching plays a key role in mobile computing because of

its ability to alleviate the performance and availability
limitations of weakly-connected and disconnected
operation. But evaluating alternative caching strategies for
mobile computing is problematic.

Today, the only metric of cache quality is the miss ratio.
The underlying assumption of this metric is that all cache
misses are equivalent (that is, all cache misses exact
roughly the same penalty from the user). This assumption
is valid when the cache and primary copies are strongly
connected, because the performance penalty resulting from
a cache miss is small and, to a first approximation,
independent of file length. But the assumption is unlikely
to be valid during disconnected or weakly-connected
operation.

The miss ratio also fails to take into account the timing of
misses. For example, a user may react differently to a
cache miss occurring within the first few minutes of
disconnection than to one occurring near the end of the
disconnection. As another example, the periodic spin­
down of disks to save power in mobile computers makes it
cheaper to service a certain number of page faults if they
are clustered together than if they are widely spaced.

To be useful, new caching metrics must satisfy two
important criteria. First, they should be consistent with
qualitative perceptions of performance and availability
experienced by users in mobile computing. Second, they
should be cheap and easy to monitor. The challenge is to
develop such metrics and demonstrate their applicability to
mobile computing. Initial work toward this end is being
done by Ebling [1].

3.1.1. Some Open Questions

• What is an appropriate set of caching metrics for
mobile computing?

• Under what circumstances does one use each
metric?

• How does one efficiently monitor these metrics?

• What are the implications of these alternative
metrics for caching algorithms?

3.2. Semantic Callbacks and Validators
Preserving cache coherence under conditions of weak

connectivity can be expensive. Large communication
latency increases the cost of validation of cached objects.
Intermittent failures increase the frequency of validation,
since it must be performed each time communication is
restored. A lazy approach that only validates on demand
could reduce validation frequency; but this approach would
worsen consistency because it increases the likelihood of
stale objects being accessed while disconnected. The cost
of cache coherence is exacerbated in systems like Coda that

Smart Mobile Technologies LLC, Exhibit 2012
Page 3 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

use ant1c1patory caching for availability, because the
number of objects cached (resident set size) is much larger
than the number of objects in current use (working set
size).

The Coda solution is to maintain cache coherence at
multiple levels of granularity and to use callbacks [11].
Clients and servers maintain version information on
individual objects as well as entire subtrees of them. Rapid
cache validation is possible by comparing version stamps
on the subtrees. Once established, validity can be
maintained through callbacks. This approach to cache
coherence trades precision of invalidation for speed of
validation. It preserves correctness while dramatically
reducing the cost of cache coherence under conditions of
weak connectivity. Usage measurements from Coda
confirm that these potential gains are indeed achievable in
practice [12].

The idea of maintaining coherence at multiple
granularities can be generalized to a variety of data types
and applications in the following way:

• a client caches data satisfying some predicate P
from a server.

• the server remembers a predicate Q that is much
cheaper to compute, and possesses the property Q
implies P. In other words, as long as Q is true, the
cached data it corresponds to is guaranteed to be
valid. But if Q is false, nothing can be inferred
about that data.

• On each update, the server re-evaluates Q. If Q
becomes false, the server notifies the client that its
cached data might be stale.

• Prior to its next access, the client must contact the
server and obtain fresh data satisfying P.

We refer to Q as a semantic callback for P, because the
interpretation of P and Q depends on the specifics of the
data and application. For example, P would be an SQL
select statement if one is caching data from a relational
database. Or it could be a piece of code that performs a
pattern match for a particular individual's face from a
database of images. Q must conform to P: a simpler
select statement in the first case, and a piece of code
that performs a much less accurate pattern match in the
second case. In Coda, P corresponds to the version number
of an object being equal to a specific value (x), while Q
corresponds to the version number of the encapsulating
volume being unchanged since the last time the version
number of the object was confirmed to be x.

Semantic validation can be extended to domains beyond
mobile computing. It will be especially valuable in
geographically widespread distributed systems, where the
timing difference between local and remote actions is too
large to ignore even when communication occurs at the
speed of light. The predicate Q in such cases serves as an

4

inexpensive validator for cached data satisfying some
complex criteria.

Consider the example of a transcontinental distributed
system in the United States. Even at the speed of light,
communication from one coast to the other takes about 16
milliseconds. A round trip RPC will take over 30
milliseconds. During this time, a client with a 100 MIP
processor can execute over 3 million instructions! Since
processor speed can be expected to increase over time, the
lost computational opportunity represented by this scenario
will only worsen.

Over time, the synchronous model implicit in the use of
RPC will become increasingly untenable. Eventually, very
wide-area distributed systems will have to be structured
around an asynchronous model. At what scale and
timeframe this shift will occur depends on two factors: the
substantially simpler design, implementation, and
debugging inherent in the synchronous model, and the
considerably higher performance (and hence usability) of
the asynchronous model.

One promising asynchronous model is obtained by
combining the idea of cheap but conservative validation
with the style of programming characterized by optimistic
concurrency control [8]. The resulting approach bears
some resemblance to the use of hints in distributed
systems [19], and is best illustrated by an example.

Consider remote control of a robot explorer on the
surface of Mars. Since light takes many minutes to travel
from earth to Mars, and emergencies of various kinds may
arise on Mars, the robot must be capable of reacting on its
own. At the same time, the exploration is to be directed
live by a human controller on earth - a classic command
and control problem.

This example characterizes a distributed system in which
communication latency is large enough that a synchronous
design paradigm will not work. The knowledge of the
robot's status will always be obsolete on earth. But, since
emergencies are rare, this knowledge will usually differ
from current reality in one of two benign ways. Either the
differences are in attributes irrelevant to the task at hand, or
the differences can be predicted with adequate accuracy by
methods such as dead reckoning. Suppose the robot's state
is P, as characterized in a transmission to earth. Based on
some properties, Q, of this state, a command is issued to
the robot. For this command to be meaningful when it
reaches the robot, Q must still be true. This can be verified
by transmitting Q along with the command, and having the
robot validate Q upon receipt. For this approach to be
feasible, both transmitting and evaluating Q must be cheap.

There are, of course, numerous detailed questions to be
answered regarding this approach. But it does offer an
intriguing way of combining correctness with performance
in very wide-area distributed systems.

Smart Mobile Technologies LLC, Exhibit 2012
Page 4 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3.2.1. Some Open Questions

• Under what circumstances are semantic callbacks
most useful? When are they not useful?

• What forms can P and Q take for data types and
applications in common use? How does one
estimate their relative costs in those cases?

• Can P and Q really be arbitrary code? Are there
restrictions necessary for efficiency and
practicality?

• How does one derive Q from P quickly? Are there
restrictions on P that make this simpler?

• How does one trade off the relative cost and benefit
of P and Q? Is the tradeoff space discrete or
continuous? Can this tradeoff be made adaptive?

3.3. Algorithms for Resource Revocation
Application-aware adaptation complicates the problem of

resource management. In principle, the system owns all
resources. At any time, it may revoke resources that it has
temporarily delegated to an applicaton. Alas, reality is
never that simple. A variety of factors complicate the
problem.

First, some applications are more important than others.
Any acceptable revocation strategy must be sensitive to
these differences. Second, the cost of revoking the same
resource may be different to different applications. For
example, reducing the bandwidth available to one
application may result in its substantially increasing the
amount of processing it does to compensate. A similar
reduction in bandwidth for another application may result
in a much smaller increase in processing. A good
revocation strategy must take into account these differential
impacts. Third, there may be dependencies between
processes that should be taken into account during
revocation. For example, two processes may have a
producer-consumer relationship. Revoking resources from
one process may cause the other to stall. More complex
dependencies involving multiple processes are also
possible. Unless revocation takes these dependencies into
account, hazards such as deadlocks may occur.

Revocation of resources from applications is not common
in current systems. Classical operating systems research
has focused on resource allocation issues rather than
resource revocation. As a result there is currently little
codified knowledge about safe and efficient techniques for
revocation. This deficiency will have to be remedied as
application-aware adaptation becomes more widely used.

3.3.1. Some open questions

• How does one formulate the resource revocation
problem?

• How does one characterize the differential impact of
revocation on different applications?

5

• What strategies does one use if multiple resources
must be simultaneously revoked?

• How does one distinguish between resources whose
revocation is easy to recover from and those it is
expensive or impossible to recover from?

• How does one handle deadlocks during revocation?

3.4. Analysis of Adaptation
How does one compare the adaptive capabilities of two

mobile clients? The primary figure of merit is agility, or
the ability of a client to promptly respond to perturbations.
Since it is possible for a client to be more agile with respect
to some variables (such as bandwidth) than others (such as
battery power), agility should be viewed as a composite
metric.

A system that is highly agile may suffer from instability.
Such a system consumes almost all its resources reacting to
minor perturbations, hence performing little useful
computation. The ideal mobile client is obviously one that
is highly agile but very stable with respect to all variables
of interest.

Control theory is a domain that might have useful
insights to offer in refining these ideas and quantifying
them. Historically, control theory has focused on hardware
systems. But there is no conceptual reason why it cannot
be extended to software systems. Only careful
investigation can tell, of course, whether the relevance is
direct and useful or merely superficial.

3.4.1. Some open questions

• What are the right metrics of agility?

• Are there systematic techniques to improve the
agility of a system?

• How does one decide when a mobile system is
"agile enough"?

• What are the right metrics of system stability?

• Can one develop design guidelines to ensure
stability?

• Can one analytically derive the agility and stability
properties of an adaptive system without building it
first?

3.5. Global Estimation from Local Observations
Adaptation requires a mobile client to sense changes in

its environment, make inferences about the cause of these
changes, and then react appropriately. These imply the
ability to make global estimates based on local
observations.

To detect changes, the client must rely on local
observations. For example, it can measure quantities such
as local signal strength, packet rate, average round-trip
times, and dispersion in round-trip times. But interpreting

Smart Mobile Technologies LLC, Exhibit 2012
Page 5 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

