UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

SAMSUNG ELECTRONICS CO., LTD, MICRON TECHNOLOGY, INC., MICRON SEMICONDUCTOR PRODUCTS, INC., and MICRON TECHNOLOGY TEXAS LLC Petitioner,

v.

NETLIST, INC., Patent Owner.

Case No. IPR2022-00996 Patent No. 11,016,918

PATENT OWNER'S UPDATED EXHIBIT LIST

Mail Stop "PATENT BOARD" Patent Trial and Appeal Board U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

DOCKET

A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

UPDATED EXHIBIT LIST

Exhibit No.	Document
EX2001	Declaration of Dr. Sunil P. Khatri
EX2002	U.S. 8,301,833
EX2003	Belloni, M. et al., A 4-Output Single-Inductor DC-DC Buck Converter with Self-Boosted Switch Drivers and 1.2A Total Output Current, ISSCC 2008, Session 24.6
EX2004	Ma, Dongsheng et al., Single-Inductor Multiple-Output Switching Converters With Time-Multiplexing Control in Discontinuous Conduction Mode, IEEE J. of Solid-State Circuits, 38(1) (Jan. 2003)
EX2005	U.S. 6,067,2451
EX2006	Micron Technical Note, TN-47-05 DDR2 Power Solutions for Notebooks Overview (2004)
EX2007	Texas Instruments, LP29996-N, LP2296A DDR Termination Regulator (Nov. 2002-Revised Dec. 2016)
EX2008	National Semiconductor, LP2996 DDR Termination Regulator (June 2006), downloaded from <u>https://datasheet.octopart.com/LP2996MR-NOPB-Texas-Instruments-datasheet-7837571.pdf</u> (last visited 09/08/2022)
EX2009	National Semiconductor, LP2997 DDR-II Termination Regulator (June 2006), downloaded from <u>https://www.jameco.com/Jameco/Products/ProdDS/843930.pdf</u> (last visited 09/08/2022)
EX2010	National Semiconductor, LP2998 DDR-II and DDR-I Termination Regulator (Dec. 12, 2007), downloaded from <u>https://www.semiee.com/file/backup/INTERSIL-LP2998.pdf</u> (last visited 09/08/2022)
EX2011	Bergveld, H. J., <i>Battery Management Systems Design by Modeling</i> , Royal Philips Electronics N.V. (2001)

Exhibit No.	Document
EX2012	Romo, Joaquin, <i>DDR Memories: Comparison and overview</i> , NXP technical note, downloaded from <u>https://www.nxp.com/docs/en/supporting-</u> <u>information/BeyondBits2article17.pdf</u> (last access 09/08/2022). As downloaded the file shows the following meta data: <u>Created: 6/8/2007 9:56:44 AM</u> Modified: 8/2/2007 2:56:29 PM
EX2013	JEDEC Standard No. 21-C, PC133 SDRAM Unbuffered SO-DIMM Reference Design Specification Rev. 1.02 (2001)
EX2014	Qimonda HYB39SC256[80/16]0FE, HYI39SC256[80/16]OFF datasheet (June 2007), downloaded from <u>https://pdf.dzsc.com/200810211/200809251204372352.pdf</u> (last visited 09/08/2022)
EX2015	Siemens HYS64/72V2200GU-8/-10, HYS64/72V4220GU-8/-10 datasheet (June 1998), downloaded from <u>https://cdn.datasheetspdf.com/pdf-down/P/C/6/PC66-222-</u> <u>920_SiemensSemiconductorGroup.pdf</u> (last visited 09/08/2022)
EX2016	EURESYS, PCI Bus Variation Technical Note (2006), downloaded from <u>PCI Bus Variation - Technology Note (euresys.com)</u> (last accessed 09/08/2022)
EX2017	Qimonda HY[B/I]39S256[40/80/16]0FT(L) etc. datasheet (September 2007), downloaded from https://cms.nacsemi.com/content/AuthDatasheets/QMDAS00628- 1.pdf (last visited 09/08/2022)
EX2018	Transcend, <i>What is the difference between SDRAM, DDR1, DDR2, DDR3 and DDR4?</i> Downloaded from <u>https://www.transcend-info.com/support/faq-296#:~:text=DDR3</u> (last visited 09/08/2022)
EX2019	Transcend company profile, <u>https://us.transcend-</u> <u>info.com/about/company</u> (last visited 09/08/2022)
EX2020	Brown, M., Power Supply Cookbook, Newnes (2d.) (2001)

Exhibit No.	Document
EX2021	Texas Instruments, <i>Low Dropout Operation in a Buck Converter</i> (SLUA928A, December 2018 — revised March. 2019), downloaded from <u>Low Dropout Operation in a Buck Converter (Rev. A)</u> (last visited 09/08/2022)
EX2022	Electronic Design, <i>Simple Soft-Start Circuitry Provides Long Startup Times</i> (June 22, 1998), downloaded from https://www.electronicdesign.com/power-management/article/21801244/simple-softstart-circuitry-provides-long-startup-times (last visited 09/08/2022)
EX2023	Micron Technical Note, TN-04-30, <i>Various Methods of DRAM</i> <i>Refresh</i> (1999), downloaded from <u>DT30 (reactivemicro.com)</u> (last visited 09/08/2022)
EX2024	Schmid, Patrick, <i>Understanding Hard Drive Performance</i> (March 5, 2007), downloaded from https://www.tomshardware.com/reviews/understanding-hard-drive- performance,1557-5.html (last visited 09/08/2022)
EX2025	Micron, 256Mb SDR SDRAM datasheet (1999), downloaded from https://www.micron.com/- /media/client/global/documents/products/data- sheet/dram/256mb_sdr.pdf (last visited 09/08/2022)
EX2026	Micron, 256Mb SDR SDRAM datasheet (1999), downloaded from <u>https://www.micron.com/-</u> /media/client/global/documents/products/data- <u>sheet/dram/64mb_x4x8x16_sdram.pdf</u> (last visited 09/08/2022)
EX2027	Transcend, DDR2 SO-DIMM datasheet
EX2028	Micron Technical Note TN-41-13, <i>DDR3 Point-to-Point Design</i> <i>Support Introduction</i> (2013), downloaded from <u>https://www.micron.com/-</u> /media/client/global/documents/products/technical- <u>note/dram/tn4113_ddr3_point_to_point_design.pdf</u> (last visited 09/08/2022)

Exhibit No.	Document
EX2029	PCI Technology Overview (Feb. 2003)
	downloaded from <u>https://web.archive.org/web/20040721012143/http://www.cs.unc.edu/</u> Research/stc/FAQs/pci-overview.pdf (<u>Wayback Machine</u> (archive.org)) (last visited 09/08/2022)
EX2030	Deposition transcripts of Dr. Andrew Wolfe with errata (March 16-17, 2023)
EX2031	Declaration of Dr. William Henry Mangione-Smith
EX2032	Markman Order, <i>Netlist, Inc. v. Samsung Electronics Co., Ltd.</i> , Civ. Action 2:21-cv-00463-JRG, Dkt. 114 (E.D. Tex. filed Dec. 14, 2022)
EX2033	Samsung's Objections to Claim Construction Memorandum Order, <i>Netlist, Inc. v. Samsung Electronics Co., Ltd.</i> , Civ. Action 2:21-cv- 00463-JRG, Dkt. 136 (E.D. Tex. filed Dec. 29, 2022)
EX2034	Bruce Jacob et al., Memory Systems: Cache, DRAM, Disk (2008)
EX2035	Netlist Presentation (excerpt)
EX2036	AgigA Tech et al., "NVDIMM Hands on Lab," Flash Memory Summit 2014 (Aug. 5-6, 2014), downloaded from <u>https://www.snia.org/sites/default/files/FMS%20NVDIMM%20Demo</u> <u>%20SIG%20HOL%20Aug'14%20final.pdf</u> .
EX2037	Intel, <i>Power Supply Design Guide for Desktop Platform Form</i> <i>Factors</i> , Rev. 1.1 (March, 2007), downloaded from <u>https://web.archive.org/web/20100601215705/http://www.formfactors</u> <u>.org/developer%5Cspecs%5CPSU_DG_rev_1_1.pdf</u>
EX2038	Intel, <i>ATX12V, Power Supply Design Guide</i> , Version 2.2 (March 2005), downloaded from https://web.archive.org/web/20070403181612/http://www.formfactors .org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
EX2039	IDT, IDTAMB0480 Product Brief ("Advanced Memory Buffer for Fully Buffered DIMM Modules) (April 2006), downloaded from <u>https://pdf1.alldatasheet.com/datasheet-</u> pdf/view/199557/IDT/IDTAMB0480.html
EX2040	Ganesh, B. et. al., Fully-Buffer DIMM Memory Architectures: Understanding Mechanisms, Overheads and Scaling, HPCA2007

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.