
Pad++: A Zooming Graphical Interface
for Exploring Alternate Interface Physics

Benjamin B. Bederson*

Bell Communications Research

445 South Street - MRE 2D-336
Morristown, NJ 07960
(bederson@bellcore.tom)

KEYWORDS

Interactive user interfaces, multiscale interfaces, zooming
interfaces, authoring, information navigation, hypertext,
information visualization, information physics.

ABSTRACT

We describe the current status of Pad++, a zooming graphical
interface that we are exploring as an alternative to tradhional
window and icon-based approaches to interface design. We
discuss the motivation for Pad++, describe the implementa-
tion, and present prototype applications. In addition, we intro-
duce an informational physics strategy for interface design
and briefly compare it with metaphor-based design strategies.

INTRODUCTION

If interface designers are to move beyond windows, icons,
menus, and pointers to explore a larger space of interface pos-
sibilities, new interaction techniques must go beyond the
desktop metaphor, While several groups are exploring virtual
3D worlds [4][8], we have developed a 2D interface based on
zooming. With our system, Pad++, graphical data objects of
any size can be created, and zooming is a fundamental inter-
action technique.

There are numerous benefits to metaphor-based approaches,
but they also lead designers to employ computation primarily
to mimic mechanisms of older mdla, While there are impor-
tant cognitive, cultural, and engineering reasons to exploit
earlier successful representations, this approach has the
potential of underutilizing the mechanisms of new media,

For the last few years we have been exploring a different
strategy for interface design to help focus on novel mecha-
nisms enabled by computation rather than on mimicking
mechanisms of older media. Informally the strategy consists

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1994 ACM 0-89791 -857-3/94/001 1....$3.50

James D. Hollun

Computer Science Department

Universi~ of New Mexico
Albuquerque, NM8713 1

(hollan@cs.unm.edu)

of viewing interface design as the development of a physics
of appearance and behavior for collections of informational
objects.

For example, an effective informational physics might
arrange for useful representations to be a natural product of
normal activity. Consider how this is at times the case for the
physics of the world. Some materials record their use and in
doing so influence future use in positive ways. Used books
crack open at often referenced places. Frequently consulted
papers are at the top of piles on our desks. Use dog-ears the
comers and stains the surface of index cards and catalogs. All
these provide representational cues as a natural product of
interaction but the physics of older media limit what can be
recorded and the ways it can influence future use.

Following an informational physics strategy has lead us to
explore history-enriched digital objects [11] [12]. Recording
on objects (e.g. reports, forms, source-code, manual pages,
email, spreadsheets) the interaction events that comprise their
use makes it possible on future occasions, when the objects
are used again, to display graphical abstractions of the
accrued histories as parts of the objects themselves. For
example, we depict on source code its copy history so that a
developer can see that a particular section of code has been
copied and perhaps be led to correct a bug not only in the
piece of code behg viewed but also in the code from which it
was derived.

This informational physics strategy has also lead us to explore
new physics for interacting with graphical data. In collabora-
tion with Ken Perlin, we have designed a successor to Pad
[17] which is an graphical interface based on zooming. This
system, Pad++, will be the basis for exploration of novel
interfaces for information visualization and browsing in a
number of complex information-intensive domains. The sys-
tem is being designed to operate on platforms ranging from

*This author hasmoved to the University of New Mexico, Comput-
er science Department, Albuquerque, NM 87131, bcder-
son@cs.unm.edu.

November 2-4, 1994 UIST ’94 17

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

high-end graphics workstations to PDAs and Set-top boxes.
Here we describe the motivation behind the Pad++ develop-
ment, report the status of the current implementation, and
present some prototype applications.

MOTIVATION

It is a truism of modem life that there is much more informat-
ion available than we can readily and effectively access. The
situation is further complicated by the fact that we are on the
threshold of a vast increase in the availability of information

because of new network and computational technologies. It is
somewhat paradoxical that while we continuously process
massive amounts of perceptual data as we experience the
world, we have perceptual access to very little of the informa-
tion that resides within our computing systems or that is
reachable via network connections. In addhion, this informa-
tion, unlike the world around us, is rarely presented in ways
that reflect either its rich stxucture or dynamic character.

We envision a much richer world of dynamic persistent infor-
mational entities that operate according to multiple physics
specifically designed to provide cognitively facile access. The
physics need to be designed to exploit semantic relationships
explicit and implicit in information-intensive tasks and in our
interaction with these new kinds of computationally -based
work materials.

One physics central to Pad++ supports viewing information at
different scales and attempts to tap into our natural spatial
ways of thinking. The information presentation problem
addressed is how to provide effective access to a large body of
information on a,much smaller display. Fumas [9] explored
degree of interest fi.mctions to determine the information visi-
ble at various distances from a central focal area. There is
much to recommend the general approach of providing a cen-
tral focus area of detail surrounded by a periphery that places
tie detail in a larger context.

With Pad++ we have moved beyond the simple binary choice
of presenting or eliding particular information. We can also
determine the scale of the information and, perhaps most
importantly, the details of how it is rendered can be based on
various semantic and task considerations that we describe
below. This provides semantic task-based filtering of informat-
ion that is similar to the early work at MCC on HITS[13] and
the recent work of moveable filters at Xerox [3][18].

The ability to make it easier and more intuitive to find specific
information in large dataspaces is one of the central motiva-
tions for Pad++. The traditional approach is to filter or recom-
mend a subset of the data, hopefully producing a small
enough dataset for the user to effectively navigate. Two recent
examples of work of this nature are latent semantic indexing
[5] and a video recommender service based on shared ratings
with other viewers [10].

Pad++ is complementary to these filtering approaches in that
it is a useful substrate to structure information. In concert
with recommending mechanisms, Pad++ could be used to
layout the rated information in a way to make the most highly

rated information largest and most obvious, while placing
related but lower rated information nearby and smaller.

DESCRIPTION

Pad++ is a general-purpose substrate for exploring visualiza-
tions of graphical data with a zooming interface. While Pad++
is not an application itself, it directly supports creation and
manipulation of multiscale graphical objects, and navigation
through the object space. It is implemented as a widget for
Tcl/Tk [16] (described in a later section) which provides a
simple mechanism for creating zooming-based applications
with an interpreted language. The standard objects that Pad++
supports are colored text, text files, hypertext, graphics, and
images.

We have written a simple drawing application using Pad++
that supports interactive drawing and manipulation of objects
as well loading of predefine or programmatically created
objects. This application produced all the figures depicted in
this paper.

The basic user interface for Pad++ uses a three button mouse.
The left button is mode dependent. For the drawing applica-
tion shown in this paper, the left button might select and move
objects, draw graphical objects, specify where to enter text,
etc. The middle button zooms in and the right button zooms
out. Pad++ always zooms around the current cursor position -
thus the user can control the zooming dynamically by moving
the mouse while zooming. For systems with a two button
mouse, we have experimented with various mechanisms for
mapping zooming in and out to a single button. Typically, this
involves having the first motion of the mouse after the button
press determine the direction of the zooming.

Pad++ is a natural substrate for representing abstraction of
objects using what we term semuntic zooming. It is natural to
see the details of an object when zoomed in and viewing it up
close. When zoomed out, however, instead of simply seeing a
scaled down version of the object, it is potentially more effec-
tive to see a different representation of it. Perlin [17]
described a prototype zooming calendar with this notion, We
foresee two ways to describe this type of object. The first is to
have different objects, each of which is visible at different,
non-overlapping, zooms. This method is supported with the -
minsize and -maxsize options described in the TcVI’k Section.
The second, and prefemed method, is to describe a procedural
object that renders itself differently depending on its viewing
size or other characteristics. It is possible to prototype proce-
dural objects with Tcl as described below,

RECENT ADVANCES

Our focus in the current implementation has been to provide
smooth zooming in a system that works with very large graph-
ical datasets. The nature of the Pad++ interface requires con-
sistent high frame-rate interactions, even as the dataspace
becomes large and the scene gets complicated. In many appli-
cations, speed is irrtportan~ but not critical to functionality. In
Pad++, however, the interface paradigm is inherently based
on interaction. The searching strategy is to visually explore

18 UIST ’94 Marina del Rey, California

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 1: Sequence of snapshots (from left to right and top to bottom) as the view is
zoomed in to a hand-drawn picture.

the dataspace, so it is essential that interactive thrne rates be
maintained,

IMPLEMENTATION

We implemented Pad++ in C++. It runs on either of two
graphics systems: the Silicon Graphics computers graphics
language facilities (GL); and standard X. The X version runs
on SGI’S, Suns, PC’s running Llnux, and should be trivially
portable to other standard UnixR system. Pad++ is imple-
mented as a widget for Tcl/Tk which allows applications to be

written in the interpreted Tcl language. All Pad++ features are
accessible through Tcl making it unnecessary to write any
new C code.

EFFICIENCY

In order to keep the animation frame-rate up as the dataspace

size and complexity increases, we implemented several stan-
dard efficiency methods, which taken together create a power-
ful system. We have successfully loaded over 600,000 objects
and maintained interactive rates.

Briefly, the implemented efficiency methods include:

●

●

●

●

e

Spatial Indexing: Create a hierarchy of objects based on
bounding boxes to quickly index to visible objects.

Restructuring: Automatically restructure the hierarchy
of objects to maintain a balanced tree which is necessary
for the fastest indexing.

Spatial Level-Of-Detail: Render only the detail needed,
do not render what can not be seen.

Clipping: Only render the portions of objects that are
actually visible.

Refinement: Render fast with low resolution while navi-

November 2-4, 1994 UIST ’94 19

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

gating and refine the image when still.

● Adaptive Render Scheduling Keep the zooming rate
constant even as the frame rate changes.

One challenge in navigating through any large dataspace is
maintaining a sense of relationship between what you are
looking at and where it is with respect to the rest of the data

(i.e., balancing local detail and global context). The rough
animation or jumpy zooming as implemented in the original
Pad [17] can be disorienting and thus not provide the most
effective support for the cognitive and perceptual processing
required for interactive information visualization and naviga-
tion.

An important interactive interface issue when accessing
external information sources is how to give the user access to
them without incurring substantial start-up costs while the
database is parsed and loaded. In Pad++ this is accomplished
with parallel lazy loading: only load the portion of the data-
base that is visible in the current view. As the user navigates
through the database and looks at new areas, those portions of
the database are loaded. This lazy loading is accomplished in
the background so the user can continue to interact with
Pad++. When the loading is complete, items appear in the
appropriate place.

An associated concept is that of ephemeral objeets. Objects in
Pad++ which are representations of data on disk can be
labeled ephemeral. These objects are automatically deleted if
they have not been viewed in several minutes, thus freeing
system resources. When they are viewed again, they are
loaded again in parallel as described above.

HYPERTEXT

In traditional window-based systems, there is no graphical
depiction of the relationship among windows even when
there is a strong semantic relationship. This problem typically
comes up with hypertext. In many hypertext systems, clicking
on a hyperlink brings up a new window (or alternatively
replaces the contents of the existing window). While there is
an important relationship between these windows @rent and
child), this relationship is not represented.

We have begun experimenting with multiscale layouts of
hypertext where we graphically represent the parent-child
relationships between links. When a hyperlink is selected, the
linked data is loaded to the side and made smaller, and the
view is animated to center the new data.

The user interface for accessing hypertext in Pad++ is quite
simple. The normal navigation techniques are available, and
in addition, clicking on a hyperlink loads in the associated
data as described above, and shift-clicking anywhere on a
hypertext object animates the view back to that object’s par-
ent.

Pad++ can read in hypertext files written in the Hypertext
Markup Language (HTML), the language used to describe
objects in the well-known hypertext system, MOSAIC (from

the NCSA at the University of Illinois). While we do not yet
follow links across the network, we can effectively use Pad++
as an alternative viewer to MOSAIC within our file system.
Figure 2 shows a snapshot with one of the author’s home-
page loaded and several links followed.

INTERFACE TO TCIJTK

Pad++ is built as a new widget for Tk which provides for sim-
ple access to all of its features through Tel, an interpreted
scripting language. Tcl and Tk [16] are an increasingly popu-
lar combination of scripting language and Motif-like library
for creating ~aphical user interfaces and applications without
writing any C code. The Tel interface to Pad++ is designed to
be very similar to the interface to the Tk Canvas widget -
which provides a surface for drawing structured graphics.

While Pad++ does not implement everything in the Tk Can-
vas yet, it adds many extra features - notably those supporting
multiscale objects and zooming. In addition, it supports
images, text files, and hypertext, as well as several navigation
tools including content-based search. As with the Canvas,
Pad++ supports many different types of structured graphics,

and new graphical widgets can be added by writing C code.
Significantly, all interactions with Pad++ are available
through Tel.

Since Tcl is interpreted and thus slower than compiled code, it
is important to understand what its role is in a real-time ani-
mation system such as Pad++. There are three classes of
things that one can do with Pad++, and the importance of
speed varies:

● Create objects: Slow - Tel is fine

● Handle events: Medium - Small amount of Tel is ok

@Render scene: Fast - C++ only

Because all rendering is done in C++, and typically only a
few lines of Tcl are written to handle each event, Pad++ main-
tains interactive rates despite its link to Tel. Tel is quite good,
however, for reading and parsing input files, and creating and
laying out graphical multiscale objects.

The Tel interfaee to Pad++ is, as previously mentioned, quite
similar to that of the Tk canvas, and is summarized here to
give a feel for what it is like to program Pad++. Every object
is assigned a unique integer id, In addition, the user may asso-
ciate an arbitrary list of text tags with each object, Every com-
mand can be directed to either a specific objeet id or to a tag,
in which case it will apply to all objects that share that tag -
implicitly grouping objects. Each Pad++ widget has its own
name. All Pad++ commands start with the name of the wid-
ge~ and in the examples that follow, the name of the widget is
. pad.

Examples:

● A red rectangle with a black outline is created whose cor-
ners are at the points (O, O) and (2, 1):

pad create rectangle O 0 2 1 -f ill red

-outline black

e Putitem number 5 at the Iccation (3, 3), make the object

20 UIST ’94 Marina del Rey, California

gating andrefine the image whenstill.

* Adaptive Render Scheduling: Keep the zoomingrate
constant even as the frame rate changes.

Onechallenge in navigating through any large dataspace is
maintaining a sense of relationship between what you are
looking at and where it is with respect to the rest of the data
(i.e., balancing local detail and global context). The rough
animation or jumpy zooming as implementedin the original
Pad [17] can be disorienting and thus not provide the most
effective support for the cognitive and perceptual processing
required for interactive information visualization and naviga-
tion.

An important interactive interface issue when accessing
external information sources is how to give the user access to
them without incurring substantial start-up costs while the
database is parsed and loaded. In Pad++ this is accomplished
with parallel lazy loading: only load the portion of the data-
basethat is visible in the current view. As the user navigates
through the database and looks at new areas, those portions of
the database are loaded. This lazy loading is accomplished in
the background so the user can continue to interact with
Pad++. When the loading is complete, items appear in the
appropriate place.

Anassociated conceptis that of ephemeral objects. Objects in
Pad++ which are representations of data on disk can be
labeled ephemeral. These objects are automatically deleted if
they have not been viewed in several minutes, thus freeing
system resources. When they are viewed again, they are
loaded again in parallel as described above.

HYPERTEXT

In traditional window-based systems, there is no graphical
depiction of the relationship among windows even when
there is a strong semantic relationship. This problem typically
comesup with hypertext. In many hypertext systems, clicking
on a hyperlink brings up a new window(oralternatively
replaces the contents of the existing window). While thereis
an importantrelationship between these windows(parent and
child), this relationship is not represented.

We have begun experimenting with multiscale layouts of
hypertext where we graphically represent the parent-child
relationships between links. When a hyperlink is selected, the
linked data is loaded to the side and made smaller, and the
view is animated to center the new data.

The user interface for accessing hypertext in Pad++ is quite
simple. The normal navigation techniques are available, and
in addition, clicking on a hyperlink loads in the associated
data as described above, and shift-clicking anywhere on a
hypertext object animates the view back to that object’s par-
ent.

Pad++ can read in hypertextfiles written in the Hypertext
Markup Language (HTML), the language used to describe
objects in the well-known hypertext system, MOSAIC (from

the NCSA at the University of Illinois). While we do not yet
follow links across the network, we can effectively use Pad++
as an alternative viewer to MOSAICwithin our file system.
Figure 2 shows a snapshot with one of the author’s home-
page loaded andseverallinks followed.

INTERFACE TO TCL/TK

Pad++ is built as a new widget for Tk which provides for sim-
ple accessto all of its features through Tcl, an interpreted
scripting language. Tcl and Tk [16] are an increasingly popu-
lar combination of scripting language and Motif-like library
for creating graphical user interfaces and applications without
writing any C code. The Tclinterface to Pad++ is designed to
be very similar to the interface to the Tk Canvas widget-
which provides a surface for drawing structured graphics.

While Pad++ does not implement everything in the Tk Can-
vas yet, it adds many extra features - notably those supporting
multiscale objects and zooming. In addition, it supports
images,textfiles, and hypertext, as well as several navigation
tools including content-based search. As with the Canvas,
Pad++ supports many different types of structured graphics,
and new graphical widgets can be added by writing C code.
Significantly, all interactions with Pad++ are available
through Tel.

Since Tclis interpreted and thus slower than compiled code,it
is important to understand whatits role is in a real-time ani-
mation system such as Pad++. There are three classes of
things that one can do with Pad++, and the importance of
speed varies:

Tclis fine

¢ Handle events: Medium - Small amount of Tel is ok

* Create objects: Slow -

© Render scene: Fast - C++ only

Becauseall rendering is done in C++, and typically only a
few lines of Tcl are written to handle each event, Pad++ main-
tains interactive rates despite its link to Tcl. Tcl is quite good,
however, for reading and parsing inputfiles, and creating and
laying out graphical multiscale objects.

The Tcl interface to Pad++ is, as previously mentioned, quite
similar to that of the Tk canvas, and is summarized here to

give a feel for whatit is like to program Pad++. Every object
is assigned a unique integerid. In addition, the user may asso-
ciate an arbitrary list of text tags with each object. Every com-
mand can be directed to either a specific objectid or to a tag,
in whichcaseit will apply to all objects that share that tag -
implicitly grouping objects. Each Pad++ widget has its own
name. Ali Pad++ commandsstart with the name of the wid-

get, and in the examplesthat follow, the nameof the widgetis
-pad.

Examples:

* A red rectangle with a black outline is created whose cor-
ners are at the points (0, 0) and (2, 1):

.pad create rectangle 0 0 2 1 -fill red
-outline black

* Put item number5 at the location (3, 3), make the object

20 UIST “94 Marina del Rey,California

Samsung Exhibit 1009, Page 4 of 10
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 2: Hypertext. Links are followed and placed on the surface to the side, and made smaller.

November 2-4, 1994 UIST ’94 21

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

