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Abstract

Contrary to popular belief, using the Internet is not anonymous at all. Since
the Internet is a packet-switching network, every IP packet must carry the IP
addresses of both communication endpoints. Consequently, anyone capable
of observing at least one packet of a communication relationship can tell who
is communicating with whom. The problem with this lack of anonymity is
that it limits the privacy protection of Internet users. Today, privacy issues
in the Internet are usually addressed by legislations that require operators of
servers to clearly state their privacy practices and by encrypting the applica-
tion data exchanged between two communicating parties. In general, privacy
practices are difficult to enforce and encrypting the application data does not
hide the IP addresses in the IP packets. However, learning the endpoints of
communications relationships often reveals a lot of information about indi-
vidual Internet users’ preferences, habits, and problems; for instance when
accessing web sites that provide medical information, religious sites, or the
web site of a credit institution. These privacy issues can only be solved by
enabling anonymous Internet communication.

In this thesis, we work on the problem of achieving anonymous Internet
access for low-latency applications such as web browsing. With anonymous
Internet access, we mean that a client can connect to and communicate with
a server such that the server does not learn the client’s IP address and an at-
tacker interested in learning who is communicating with whom cannot find
out the IP addresses of both client and server. Unlike encryption, anonymity
cannot be “produced” by the communication endpoints themselves, but must
be provided by a third party infrastructure. The concept of mix networks is
widely considered to be the most promising approach for such an infrastruc-
ture, and consequently, we focus on mix networks in these thesis.

The main contribution of our work is MorphMix, which fulfils the princi-
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pal goal of this thesis: to develop a practical mix network that enables anony-
mous low-latency Internet access for a large number of users. With practical,
we mean that (1) everybody owning a state-of-the-art computer connected to
the Internet can use the system, (2) the performance it offers is good enough
such that users won’t turn away from it, (3) it provides good protection from
attacks by a realistic adversary, and (4) it scales well and can handle a large
number of users.

We first analyse traditional mix networks that strictly separate between
the mix network infrastructure and clients that access servers through the mix
network. The conclusion is that traditional mix networks are not well suited
to achieve our principal goal for various reasons. To overcome their limita-
tions, we propose MorphMix, which presents a novel way of operating and
organising a mix network. In contrast to traditional mix networks, MorphMix
does no longer distinguish between clients and the mix network. Rather, the
clients themselves build the mix network infrastructure in a peer-to-peer fash-
ion. After describing the basic functionality of MorphMix, we give detailed
analyses to show that MorphMix scales very well and provides good protec-
tion from a realistic adversary. To analyse the performance MorphMix offers
to its users, we have implemented a simulator. The simulation results show
that the expected performance of MorphMix is indeed good enough to attract
users, and that the requirements to use MorphMix are modest. We have also
specified the complete MorphMix protocol and have implemented a proto-
type. The main conclusion of our work is that with respect to our principal
goal, MorphMix overcomes the limitations of traditional mix networks and is
the first practical system that enables anonymous low-latency Internet access
for a large number of users.
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Zusammenfassung

Entgegen der weit verbreiteten Meinung ist die Benutzung des Internets nicht
anonym. Weil das Internet ein paketvermittelndes Netwerk ist, muss jedes
[P-Paket die IP-Adressen beider Kommunikationsendpunkte enthalten. Folg-
lich kann jeder, der mindestens ein Paket einer Kommunikationsbeziehung
beobachtet, sagen, wer mit wem kommuniziert. Dieses Problem der fehlen-
den Anonymitét fithrt dazu, dass der erreichbare Schutz der Privatsphére von
Internetbenutzern limitiert wird. Derzeit wird die Privatsphire im Internet
iiblicherweise so geschiitzt, dass Gesetze erlassen werden, welche die Be-
treiber von Servern verpflichten, ihre Praktiken im Umgang mit vertraulichen
Benutzerdaten publik zu machen. Zusétzlich kénnen die Anwendungsdaten,
die zwischen den Kommunikationspartnern iibertragen werden, mittels Ver-
schliisselung geschiitzt werden. Im Allgemeinen ist es jedoch schwierig zu
iiberpriifen, ob die Betreiber ihre publizierten Praktiken einhalten, und trotz
Verschliisselung der Anwendungsdaten sind die IP-Adressen der Kommu-
nikationspartner immer noch in den IP-Paketen sichtbar. Die Information,
wer mit wem kommuniziert, liefert jedoch hiufig bereits Erkenntnisse iiber
die Vorlieben, Gewohnheiten und Probleme von individuellen Internetbenut-
zern, zum Beispiel wenn Daten von einem Webserver mit medizinischen oder
religiésen Inhalten heruntergeladen werden oder wenn der Webserver eines
Kreditinstituts kontaktiert wird. Solche Probleme betreffend des Schutzes
der Privatsphiire kénnen nur durch anonyme Internetkommunikation geldst
werden.

In dieser Arbeit beschiftigen wir uns mit dem Problem der Anonymisie-
rung zeitkritischer Internetanwendungen wie Web-Browsing. Unter Anony-
misierung verstehen wir, dass ein Client eine Verbindung zu einem Server
aufbauen und mit diesem kommunizieren kann, ohne dass der Server die
IP-Adresse des Clients erfahrt. Dariiber hinaus darf ein Angreifer, der er-
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fahren mochte, wer mit wem kommuniziert, nicht zugleich beide IP-Adressen
von Client und Server herausfinden. Im Gegensatz zu Verschliisselung kann
Anonymitit nicht von den Kommunikationspartnern selbst “erzeugt” wer-
den, sondern muss von einer Infrastruktur, welche von Dritten betrieben wird,
gewiahrleistet werden. In der Forschungsgemeinde wird angenommen, dass
das Konzept der Mix-Netzwerke am besten geeignet ist, eine solche Infra-
struktur bereit zu stellen. Folglich beschrinken wir uns in dieser Arbeit auf
Mix-Netzwerke.

Der Hauptbeitrag dieser Arbeit ist das System MorphMix, welches unser
Hauptziel erfiillt: ein praktikables Mix-Netwerk zu entwickeln, welches den
anonymen Internetzugang fiir eine grosse Zahl von Benutzern ermdglicht.
Unter praktikabel verstehen wir, dass (1) jeder, der einen zeitgemissen Com-
puter besitzt, von dem System Gebrauch machen kann, dass (2) die Perfor-
manz des Systems fiir anwenderfreundliche Nutzung ausreicht, dass es (3)
guten Schutz vor Attacken eines realistischen Angreifers bietet und dass es
(4) gut skaliert und viele Benutzer gleichzeitig unterstiitzen kann.

Wir analysieren zuerst traditionelle Mix-Netzwerke welche strikt zwi-
schen der Mix-Netzwerk Infrastruktur und den Clients, die mit Servern durch
das Mix-Netzwerk kommunizieren, unterscheiden. Es wird gezeigt, dass sich
traditionelle Mix-Netzwerke nicht gut eignen, um unser Hauptziel zu errei-
chen. Deshalb schlagen wir das System MorphMix vor, welches eine neue
Art des Betriebs und der Organisation eines Mix-Netzwerks darstellt. Im
Gegensatz zu traditionellen Mix-Netzwerken unterscheidet MorphMix nicht
zwischen Clients und dem Mix-Netzwerk. Vielmehr bilden die Clients selbst
die Mix-Netzwerk Infrastruktur auf Peer-to-Peer Basis. Nach der Beschrei-
bung der grundlegenden Funktionalitit von MorphMix liefern wir detaillierte
Analysen, welche zeigen, dass MorphMix sehr gut skaliert und guten Schutz
vor einem realistischen Angreifer bietet. Um die Performanz von MorphMix
zu analysieren, haben wir einen MorphMix Simulator implementiert. Die
Simulationsresultate zeigen, dass die erwartete Performanz die Benutzerzu-
friedenheit gewihrleisten kann, und dass die Hardwareanforderungen von
MorphMix von jedem zeitgeméissen Computer erfiillt werden kdnnen. Des
Weiteren haben wir das vollstindige MorphMix-Protokoll spezifiziert und
einen Prototypen implementiert. Insgesamt wird gezeigt, dass MorphMix
unter Beriicksichtigung unseres Hauptziels signifikante Vorteile im Vergle-
ich zu traditionellen Mix-Netzwerken aufweist und das erste praktikable Sys-
tem darstellt, welches die Anonymisierung zeitkritischer Internetanwendun-
gen fiir eine grosse Benutzerbasis ermoglicht.
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Chapter 1

Introduction

Until the early 1990s, the Internet was mainly an academic research network
where security and privacy issues were of little importance. However, driven
by the huge popularity of the World Wide Web (WWW) due to graphical web
browsers, the Internet has become a platform used by hundreds of millions of
people everyday for activities that often have been shifted from the physical
to the online world.

Soon, it was recognised that especially the growth of e-commerce calls
for some security mechanisms. There is no universal definition of computer
or network security because it always depends on what must be protected, but
in the Internet context, security often means secure communication, which
can be defined as follows':

Definition 1 Secure Communication between two parties A and B is defined
as a communication relationship with the following three properties:
o Confidentiality: data exchanged between A and B cannot be read by
an eavesdropper
o Integrity: data exchanged between A and B cannot be altered (acci-
dentally or intentionally) in transit in a way that is not detectable by
the recipient
o Authentication: 4 (or B) can be sure she is indeed communicating
with B (or 4)

1Other security properties include availability and non-repudiation, which are less important
for secure communication.
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2 1 Introduction

Applied to an e-commerce scenario, a customer should be sure she is
indeed communicating with the e-store she intends to and transmitting the
payment information from the user to the e-store should be protected from
modification or observation by third parties. Using the secure socket layer
(SSL) protocol [51] or its successor, the transport layer security (TLS) pro-
tocol [33], together with X.509 digital certificates [60] solves these problems
and brings confidentiality, authenticity, and integrity to the Internet. Another
protocol for secure communication is IPSec [66], which “patches” the IP pro-
tocol [40] with security mechanisms to enable, for example, virtual private
networks (VPNs) [108]. To put it briefly, regarding e-commerce and other
business transactions in the Internet and leaving out mobile and ad-hoc net-
working scenarios, the basic security problems are well understood, solved,
and widely accepted and deployed.

Beyond security, there is privacy. Applied to the Internet context, privacy
can be defined as follows [54]:

Definition 2 Privacy refers fo the ability of an individual to control the in-
Jormation about herself. This does not necessarily mean that no information
is revealed to anyone. Rather, a system that respects the privacy of its users
allows them to select what information about them is revealed, and to whom.

Unlike security, mechanisms to bring more privacy to the Internet are
not yet widely deployed. One proposal is the World Wide Web Consortium
(W3C)’s Platform for Privacy Preferences (P3P) project [93]. Its goal is to
clarify a web site’s privacy practices to its users. When a web site or e-
shop is contacted, the user is informed of the privacy practices of that site.
The user can accept these practices, reject them and ask for an alternative
proposal, or send another proposal herself. If an agreement between user and
web site is reached, the communication continues, otherwise it is terminated.
However, P3P only specifies the protocol for exchanging structured data to
reach an agreement, but it cannot do anything to enforce the privacy practices
a web site has proposed: even if an e-shop has promised not to give away
information about the user to third parties, there is no way for the user to
check if the e-shop complies with the rules.

This thesis is primarily about anonymity, which is closely related to pri-
vacy. We introduce the term anonymity more formally in Section 1.5, but for
now, anonymity can be defined as follows [54]:

Definition 3 Anonymity means privacy of identity. A system that offers
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1.1 Invading Privacy at the Application Level 3

anonymity is one where the user gets control who learns her identity. In the
Internet context, identity not only means the true name of the user, but also
her e-mail or IP address.

For completeness, we also introduce the term pseudonymity, which is a
special case of anonymity:

Definition 4 Pseudonymity enhances anonymity with pseudonymous iden-
tities. Such identities are also called nyms [13] and make it possible for an
Internet user to have an identity while her true name is kept secret. There are
nyms that are completely unrelated to the individual’s real identity (for in-
stance a self-chosen alias) and other nyms that make it possible to unambigu-
ously uncover its owner’s identity if certain conditions are met (for instance
if a court order has been issued).

In the remainder of this chapter, we first discuss common practices in use
today, which invade the privacy of Internet users. We also point out possibili-
ties and limitations for a user to protect herself from such invasions and show
that anonymous Internet access is one way to overcome these limitations. We
discuss benefits and drawbacks of anonymity and finally, we state the main
goal of our work and describe our contributions.

1.1 Invading Privacy at the Application Level

One way to invade the privacy of Internet users is to do so at the applica-
tion level. A prominent example is tracking users as they navigate through
the WWW, which is possible by combining several mechanisms of how web
browsers access web pages using the hypertext transfer protocol (HTTP) [8,
45] and its secure version HTTPS [105]. We briefly describe these mecha-
nisms below:

o The HTTP referer’ ficld in the header of HTTP requests field tells a
web server or an eavesdropper the uniform resource locator (URL) of
the web object the user has downloaded before. For instance, if a web
site is accessed from the results page of a search engine, it contains the
entire search string the user entered.

2Note that referer (for referrer) was spelt incorrectly in the original standard and made it
into the first implementations of the HTTP protocol. For backward compatibility, the misspelled
word is still used in newer implementations of the protocol as of today.
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4 1 Introduction

e Cookies [69] were originally invented to create a session over several
HTTP request/reply pairs, thereby allowing a web server to track a user
as she navigates through different web pages at the same site. A cookie
is a small piece of information that a web server sends to the browser
within an HTTP reply. If a page at the same site is requested later using
the same browser, the cookie is sent to the web server as part of the
HTTP request, which allows the web server to recognise subsequent
visits by the same user. If a user ever registers at the web site, the
server can associate her identity with the pages she has visited and form
a profile of her browsing interests.

¢ Embedded objects of a web page are automatically downloaded by
the web browser from their respective servers. Embedded objects must
not reside on the same server as the page containing them, but can
be locates on any server. One type of embedded objects are banners
for advertisement, and many institutions allow third parties to place
banners on their web pages in return for monetary compensation.

Combining HTTP referers, cookies, and embedded objects (usually in
the form of banners) make it possible for a third party to track users across
different web sites and accumulate detailed profiles. To do so, a company C
interested in collecting data about users places banners on several web pages
at different sites. If a user downloads a page containing a banner from C,
the browser automatically requests the banner form C’s web server. Since the
browser also includes the HTTP referer in the request, C learns the URL of
the page the user is downloading. When sending the HTTP reply containing
the banner, C’s web server includes a cookie, which is stored in the user’s
browser. If the user later visits the same or another web site that contains a
banner from C, the browser includes this cookie in the HTTP requests to fetch
the banner, which allows C to recognise the user.

While this does not seem to be a significant loss of privacy at first glance,
it gets much more serious when looking at a real example. We visit Health-
Central.com, a site providing medical information, and enter “cancer” in the
search form on their entry page, which results in an HTTP request sent to the
web server that contains the following fields:

GET /search.asp?query=cancer HTTP/1.1
Host: search.healthcentral.com
Referer: http://www.healthcentral.com/home/home.cfim
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1.1 Invading Privacy at the Application Level 5

It tells the server identified with search.healthcentral.com (Host field) to
execute the script search.asp with parameter “cancer” (GET field). Note the
referer, i.e. the URL of the page that was just downloaded is also passed
to the server (Referer field). The server replies by sending an HTML page
containing the search results. The page contains several embedded objects
that are fetched automatically by the browser. One of the embedded objects
happens to be a banner, which is downloaded by the browser using an HTTP
request that contains the following fields:

GET /adi/N2552.healthcentral/B1106194.4 HTTP/1.1
Host: ad.doubleclick.net
Referer: http:/search.healthcentral.com/search.asp?query=cancer

Apparently, the object is requested from the server ad.doubleclick.net
(Host field), which belongs to the company DoubleClick. Since the object
is requested from the result page of the search for “cancer”, the Referer filed
corresponds to the URL of the result page and therefore contains the search
string entered by the user. This means that DoubleClick knows a user has re-
quested information about “cancer” at HealthCentral.com. The HTTP reply
to the request above contains the following field.:

Set-Cookie: id=800000255¢¢5216; path=/; domain=.doubleclick.net; expires=Fri, 02
Jun 2006 11:18:21 GMT

This sets a cookie in the user’s browser that only expires after three years.
Now we assume that later, the user uses her favourite search engine HotBot>
to get information about “chemotherapy”. The result page again contains a
banner from DoubleClick, and the request issued by the browser contains the
following fields:

GET /adi/hb.In/r;kw=chemotherapy HTTP/1.1

Host: In.doubleclick.net

Referer: http://www.hotbot.com/default.asp?prov=Inktomi&query=chemotherapy
Cookie: 1d=800000255cc5216

Since the request goes to doubleclick.net (Host field), the browser auto-
matically includes the cookie (Cookie field) it received earlier. In addition,
the Referer field contains again the search string and in this case, the keyword
is even included in the GET field. As aresult, DoubleClick knows that search-
ing for “chemotherapy” with HotBot has been performed by the same user (or

3ht:t:p ://www.hotbot .com
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6 1 Introduction

at least the same web browser) that requested information about “cancer” at
HealthCentral.com before.

So combining HTTP referers, cookies, and banners allows a third party
to track users across different web sites. Regarding the enormous number of
pages containing DoubleClick banners, it can be expected that the company
has accumulated extensive profiles about vast amounts of web users. Note
that if a user ever enters personal information such as her name into a form,
clicks on the submit button, and the resulting page contains a DoubleClick
banner, then DoubleClick can associate all activitics of that user with her
identity. Note also that not even a visible embedded object in the form of a
banner is needed because so called web bugs, which are usually 1 by 1 pixel
gif images, are often embedded in pages for the same purpose. If the web bug
is requested from DoubleClick, the effect is the same as when using a banner.
Since web bugs have the same colour as the background and are downloaded
very quickly, they can hardly be noticed by the user without analysing the
page source.

We do not accuse DoubleClick of any unlawful activities, but their prac-
tices show what’s possible in today’s Internet. There is not much to say
against personalised advertisements embedded in web pages as long as no
efforts are made to associate user profiles with their identity. However, in
the case of DoubleClick, it has never been entirely clear what their prac-
tices are*. In the USA, state and federal lawsuits that charged the company
with violating the privacy of Internet surfers were raised and finally settled in
May 2002. The settlement requires the company to purge certain data files
of personally identifiably information, including names, addresses, telephone
numbers, and e-mail addresses. Among other provisions, the settlement re-
quires DoubleClick to obtain permission from Internet surfers before it can
tie personally identifiable information with their web surfing history>.

It is quite simple to defeat being tracked by DoubleClick or others em-
ploying similar methods: all popular browsers allow to completely disable
cookies, but this implies some web pages cannot be accessed anymore be-
cause they don’t work without cookies. Another simple method is to limit
the lifetime of cookies to the current session, which means all cookies are
deleted when the browser is closed. It is also possible to prompt the user for
every cookie that is received, but since so many sites try to store a cookie in

‘http://www.junkbusters.com/new.html#DCLK provides more details about the
history of DoubleClick
5ht:t:p ://news.com.com/2100-1023-919895.html
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1.2 Invading Privacy at the Network Level 7

the browser, this is not very practical. Junkbuster® or its successor Privoxy’

are freely available tools that allow cookies being received from and sent to
explicitly specified sites, but block all others. In addition, they can be used
to block certain requests. For instance blocking every request that contains
“doubleclick” should effectively protect from being tracked by DoubleClick.

1.2 Invading Privacy at the Network Level

Besides invading the privacy of Internet users at the application level as de-
scribed in the previous section, it can also be done at the network level. Every
IP packet exchanged between a user’s computer and another host contains the
IP addresses of both communication endpoints. Although an IP address does
often not directly identify a person, the knowledge to associate an IP address
used at a certain time with a particular individual is virtually always avail-
able. If a user accesses a server through the Internet, there are various cases
how the communication relationship between the user and the server can be
uncovered:

e The system administrator of a company or of a department of a uni-
versity can find out who has been assigned what IP address at what
time. This is possible by checking the appropriate logs and derive what
user has been logged onto what computer. If the computers do not
use static but dynamic IP addresses using the dynamic host configura-
tion protocol (DHCP) [38], the logs of the DHCP server inform about
what computer was assigned what IP address at what time. As a result,
the system administrator can easily learn who has been communicating
with what server.

e A home user connected to the Internet using a dial-up connection often
gets assigned a dynamic IP address from a pool of addresses available
to the user’s Internet Service Provider (ISP). The ISP knows what user
was using what IP address at what time and therefore knows all com-
munication relationships of all its subscribers.

e The server or any entity that gets access to packets exchanged between
the user and the server sees the IP addresses of the communicating
parties. Accessing packets is for instance possible for every ISP be-

(’http ://www.junkbuster.com
"Thttp://www.privoxy.org
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8 1 Introduction

tween user and server, the FBI using their Carnivore diagnostic tool®,
or any other eavesdropper. Assuming cooperation of the user’s system
administrator or her access ISP, it is possible to learn what user is com-
municating with what server. With the growing popularity of access
technologies such as (A)DSL or Cable that allow home users being
connected to the Internet permanently, more and more people have an
own public static IP address, which means identifying the user is much
casier and possible without cooperation of the system administrator or
the access ISP.

Defending against this kind of invasion of privacy is much more difficult
than in the previous section where the user could protect herself by control-
ling the usage of cookies. The main problem is that IP addresses are one
fundamental component of the network layer to transport data in the Internet
and not just an application layer feature like cookies. In particular, the user
cannot simply choose not to include her IP address in the packets she sends
and receives.

One can argue that encrypting the application data carried in IP packets
helps to increase the privacy of web users. This is certainly true, but only
while a packet is in transit between user and server. The server still sees both
the data and the user’s IP address. But more importantly, there are many sit-
uations where even knowing only the identities of the communicating parties
is too much and this is where anonymity comes into play. For instance, when
sitting at your work place and browsing a site offering jobs, you do not want
your employer to know what site you are accessing. Connecting to medical
sites (e.g. www.healthcentral.com), pornographic sites, your favourite reli-
gious site, or the web site of a credit institution already may reveal significant
information about your personal preferences and problems. Anonymity can
be considered as the ultimate form of privacy and is extremely difficult to
achieve in the Internet.

1.3 Why do we need Anonymity

It is a legitimate question to ask why we need anonymity in the Internet at
all. At least, the Internet has become very popular during the second half
of the 1990s although it was never built with privacy or anonymity in mind
and did not offer such measures at all. Don’t Internet users care about their

8ht:t:p ://www.fbi.gov/hg/lab/carnivore/carnivore.htm
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1.3 Why do we need Anonymity 9

privacy? According to a Forrester Research survey of online users in 1999,
67% said they were “extremely” or “very” concerned about releasing personal
information over the Internet®. An Arthur Andersen survey in 2000 found that
94% of 365 Internet users expressed some level of concern for their privacy '°.
So it seems Internet users definitely care about privacy. But then, why are they
giving away so much personal information?

An explanation could be that most people are simply not aware of how
easy it is to accumulate information about them in the Internet. Indeed, com-
paring Internet applications with their counterparts in the real world shows
that their online versions offer usually much less privacy, as the following
examples show:

e A notice-board as used at schools, work places, or public buildings can
be considered as the physical world equivalent of a newsgroup. Al-
though much less powerful than their counterparts in the Internet be-
cause far fewer people will ever read a notice, they have the advantage
that the lifetime of notices is usually limited. When a notice is removed
from the board, it will soon be forgotten. With newsgroups, every sin-
gle posting will be stored for a very long time and can easily be found
using search engines.

¢ Sending an e-mail message discloses the identities of both sender and
recipient. In addition, the content is easily accessible to any mail server
or eavesdropper on the path from sender to recipient unless it is en-
crypted. Although tools for encrypting are readily available, they are
often cumbersome to use and require both communicating parties to
have them installed on their computers. In addition, encrypting e-mail
messages only hides the content but not the addresses of sender and
recipient. Letters, on the other hand, usually hide the content from out-
siders. Of course it is possible to open an envelope, read the content,
close the envelope again, and send it to the recipient without anybody
noticing this. But this is a time-consuming process and can hardly be
done with every single letter. With e-mail messages, this is much sim-
pler because they are processed electronically. In addition, one can
casily send anonymous letters simply by omitting the sender address.
Note that with e-mail messages, this is also possible, for instance by
sending e-mail messages only using anonymous e-mail accounts as of-

9ht:t:p ://www.fdic.gov/news/conferences/transcript.html
10ht:t:p ://www.privacydigest.com/2000/09/30
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10 1 Introduction

fered by Yahoo!! and others. However, this only protects the sender’s
identity from the recipient, but not from Yahoo or other eavesdroppers
because when accessing the mailbox at Yahoo from her home or work
computer, a user discloses her IP address. We conclude that e-mail
messages are more similar to postcards that contain the full sender’s
address than to letters.

e Traditionally, one had to go to the library to look up information. This
is a very private and in fact anonymous process because nobody has
to disclose her identity when simply consulting some books. Today,
people start their favourite search engine and type in a search string,
or they visit a web portal, both of which is not private at all. In either
case, they will end up browsing through the web, accessing several
web servers and leave extensive traces about their personal preferences,
habits, and dislikes.

e Browsing through a physical store and looking at goods is anonymous.
When buying a product, the customer can choose to pay with cash,
which is difficult to trace. Internet-based e-commerce is different. First
of all, anonymously buying products is not possible because payment
is usually done by credit cards. But anonymously looking at the goods
is also not possible because with every user sending her IP address, the
e-store may know a customer’s identity right when accessing the entry
page of the store. Consequently, e-commerce is like a customer would
have to provide her identity when entering a physical shop.

It could well be this resemblance of many Internet applications to the real
world which causes users to have a wrong sense of privacy. In any case,
if people start shifting more and more of their activities to the Internet, the
probability that information about them is logged and stored significantly in-
creases. Storage has become so cheap that even vast amounts of information
can be stored for a long time. Using powerful search engines allows to learn
virtually everything stored in public databases about a particular individual.
For example, using Google ' and searching within “Groups”™ makes it possi-
ble to access every single post ever made to newsgroups. It’s virtually impos-
sible to remove a message from a newsgroup. Once it has been posted, it is
likely to remain forever available to every Internet user 1. The same is true for
every piece of information stored about a certain person in the Internet: if the

Uhttp://www.yahoo.com
Phttp://www.google.com
13Considering the time the Internet has been around, “forever” means “a few decades”.
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1.4 Benefits versus Drawbacks 11

server holding the information is not under control of that person, removing
the information is very difficult.

Today, only a fraction of the traces one leaves in the Internet are available
in public databases. However, other parties may monitor and store parts of
the traffic being sent over the Internet. As mentioned in Section 1.2, various
parties may see what an individual is doing. Just imagine the personal in-
formation an individual discloses over a course of ten years of using search
engines, shopping online, visiting web sites in general, sending e-mail mes-
sages, posting to newsgroups, chatting, using file-sharing systems, and more.
Large dossiers about Internet users could be accumulated and sold, and it
is reasonable to assume that there is a market for such a business. For in-
stance, employers could extensively evaluate potential employees before hir-
ing them, or politicians could dig for information they could use against their
opponents.

One — and probably the only — way to mitigate these problems and to
significantly enhance the privacy of Internet users is by enabling anonymous
Internet access. Anonymous Internet access makes the task of accumulating
large amounts of information about a particular individual much more com-
plicated because Internet activities can no longer easily be associated with a
particular IP address or identity.

1.4 Benefits versus Drawbacks

Like every technology, anonymity in the Internet can be used for good and
bad purposes. As the examples given in Section 1.3 show, the physical world
often is anonymous. However, the availability of anonymity in real life is of-
ten abused because anonymous letters or phone calls from public telephones
arc used to threaten people all the time. Nevertheless, the benefits seem to
outweigh the drawbacks and consequently, anonymity in the physical world
is widely accepted as beneficial for society.

In the Internet, the situation is similar. We have given many arguments
for anonymity in this chapter, but there are several ways to abuse anonymous
Internet access. Distributing junk e-mail messages (spam) without being de-
tected would get even easier than today. Similarly, harassment of people
through e-mail messages or posts to newsgroups are likely to increase. In
addition, anonymity-providing technologies may make it even more difficult
to derive the origin of denial of service attacks than today. But the greatest
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fear of opponents of anonymity are that it may provide terrorists, drug dealers,
and other criminals with a platform that facilitates their communications. Ba-
sically, their arguments are the same we already heard during the discussions
in the 1990s about whether strong cryptography should be made available to
the broad public or not, and we do not deny that some of these arguments are
at least partially true. Like encryption, anonymity will make it more difficult
for intelligence agencies to spy on their enemies.

One thing to remember is that we can have very good anonymity in the
Internet even today. To browse the Web anonymously, we simply go to a pub-
lic Internet terminal as found at various places (Internet cafes, airports, train
stations, libraries, ...). To exchange e-mail messages anonymously, we can
establish an anonymous e-mail account at Yahoo and only access it through
a public terminal. Furthermore, more and more public wireless access points
are installed and many of them do not require any form of authentication to
be used. To summarise, there are various possibilities to access the Internet
anonymously, but regularly using the Internet in such a way is cumbersome.
However, smart criminals take their time, are careful, and may in fact take
great care to access the Internet only in such a way. Simply spoken, we can
say that criminals already have anonymity, but normal people don’t.

Ultimately, society will balance the benefits against the drawbacks and ei-
ther make use and thereby boost anonymity-providing techniques or not. We
believe that anonymity in the Internet is valuable for society, but it is not the
goal of this thesis to educate Internet users or impose our opinion on others.
Rather, we want to bring research on anonymity-providing systems one step
further by exploring the possibilities and limits of anonymous communication
in the Internet.

1.5 Terminology and Definitions

The terminology and definitions we use throughout this thesis are based on a
proposal for the terminology in anonymous communication systems [83].

The basic setting is that senders send messages to recipients. This ter-
minology works well for scenarios such as e-mail communication where a
message correspond to an e-mail message, but for applications that make use
of request/reply pairs, we prefer the notation that a client exchanges messages
with a server. In this case, the message correspond to either a web request or
a web reply.
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Anonymity is the state of being not identifiable within a set of subjects, the
anonymity set. The anonymity set is the set of subjects (for instance users)
that may have caused an action (for instance having sent an e-mail message
or having accessed a web server). The concept of the anonymity set is fun-
damental to research on anonymity. Less formal, it means that when using
an anonymity-providing service, one is only anonymous among the set of all
those using the same service at the same time, and not among all Internet
users. In general, larger anonymity sets imply better anonymity.

Unlinkability of two or more items (e.g. subjects or messages) means that
within an anonymity-providing system, these items are no more and no less
related than they are related concerning the a-priori knowledge. This means
the probability of those items being related stays the same before (a-priori
knowledge) and after the run within the system (a-posteriori knowledge of
the attacker).

Using the definition of unlinkability, anonymity can be defined as unlink-
ability of subjects and messages. In particular, sender (or client) anonymity
means that for the recipient (or server), messages it receives are not linkable
to a sender (or client). In the client/server case, it also means that the server
can send back messages to the client without this data being linkable to a par-
ticular client. Recipient (or server) anonymity means that for the sender (or
client), messages it sends are not linkable to a recipient (or server). Relation-
ship anonymity means that except for the communicating parties, no other
party can learn who communicates with whom. In other words, sender (or
client) and recipient (or server) are unlinkable.

It should be noted that the definition of anonymity using unlinkability is
absolute. Either there is unlinkability and therefore anonymity or not. For in-
stance, if an attacker manages to exclude 10% of all current users of a system
of having been the sender of a particular data, unlinkability and therefore also
anonymity are no longer given according to the definitions above, even if ev-
ery one of the remaining 90% of all senders could have sent the message with
equal probability. While this makes sense for researchers exploring possibil-
ities to achieve information-theoretic (or perfect) anonymity, it is less well
suited for those working on practical anonymity-providing systems because
in the latter case, attackers are usually capable to reduce the set of potential
senders of a certain message. We therefore define unambiguous linkability of
two or more items, which means these items can be unambiguously related.

Throughout this thesis, we equal IP addresses and identities, which means
that if the IP address of an item (for instance the sender) is known, we assume
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its identity (for instance the true name of the sender of an e-mail message or
the person acting as a client when downloading a web page) is also known.
Consequently and using our definition of unambiguous linkability, we say the
sender (or client) anonymity is broken if the recipient (or server) can unam-
biguously link a message it receives to the sender’s (or client’s) IP address.
Likewise, the recipient (server) anonymity is broken if the sender (or client)
can unambiguously link a message it sends to the recipient’s (or server’s) IP
address. Finally, the relationship anonymity is broken if any party except
communicating parties themselves can unambiguously link the IP addresses
of both sender (or client) and recipient (or server).

It should be noted that this terminology is well suited for anonymous com-
munication systems in general and is independent of a particular technology
that aims at providing anonymous communication. However, since this the-
sis focuses primarily on systems based on mix network to enable anonymous
communication, we will have to adapt and extend this terminology when we
discuss mix networks in more detail in the next chapter.

1.6 Problem Statement and Contributions of this
Work

In this thesis, we focus on the problem of achieving anonymous Internet ac-
cess for low-latency applications such as web browsing. As we will see in
Chapters 2 and 3, anonymity-providing systems have often been separated
into those supporting non-time-critical applications such as electronic mail
and those aiming at low-latency applications'?, although the systems often
have many similarities independent of the type of application they support.
However, experience has shown that supporting the former type of appli-
cation is a much more challenging problem than supporting the latter (see
Chapter 2) and as a result, no sophisticated system that provides practical
low-latency anonymity for a large number of users is available today.
Throughout this thesis, we focus on the concept of mix networks (see
Chapter 2), which is considered as the most promising approach to enable
anonymous Internet access. There are also alternative concepts (see Sec-
tion 3.3), but they either provide only little protection from attacks or are

140f course, systems supporting low-latency applications also support non-time-critical appli-

cations, but not vice versa.
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not practical for a large number of users in the Internet context. Mix net-
works provide client and relationship anonymity at the network level (see
Section 1.2), which means they hide the client’s IP address from the server
and prevent an adversary from unambiguously linking the IP addresses of the
client and the server of a communication relationship.

The principal goal of this work is to provide a practical system that en-
ables anonymous low-latency Internet access for a large number of users.
Although this will be specified in more detail in Chapter 5, with a practical
system we mean that (1) everybody owning a state-of-the-art computer con-
nected to the Internet can use the system, (2) the performance it offers is good
enough such that users won’t turn away from it, (3) it provides good protec-
tion from attacks by a realistic adversary, and (4) it scales well and can handle
a large number of users. To do so, we first analyse traditional mix networks
to demonstrate that they are not well suited to achieve this goal (see Chap-
ter 4). To overcome the limitations of traditional mix networks and to achieve
our principal goal, we have developed MorphMix, which proposes a novel
way of operating and organising a mix network. We have carried out detailed
analyses to show that MorphMix scales very well and provides good protec-
tion from a realistic adversary. To analyse the performance MorphMix can
offer to its users, we have implemented a simulator. The simulation results
show that the expected performance of MorphMix is indeed good enough to
attract users, and that the requirements to use MorphMix are modest. Finally,
we have specified the complete MorphMix protocol and have implemented a
prototype. The main conclusion of our work is that with respect to our prin-
cipal goal, MorphMix overcomes the limitations of traditional mix networks
and is the first practical system that enables anonymous low-latency Internet
access for a large number of users.

MorphMix will be presented and analysed in Chapters 5 to 8, and the
precise goals MorphMix should achieve are stated in Section 5.1.

1.7 Outline

In Chapter 2, we start with a description of the concept of mix networks that
will provide the basis for our work. In Chapter 3, we look at other work that
has been conducted in the field of anonymity. We do not restrict ourselves
to mix networks, but also present other techniques to tackle the problem of
anonymous Internet communication. In Chapter 4, we examine mix networks
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in great detail. We especially focus on mix networks for low-latency applica-
tions and analyse their resistance to attacks.

In Chapters 5-8, we present MorphMix, which is the major contribution
of our work. Chapter 5 describes the basic design and functionality and intro-
duces the core components of MorphMix. In Chapter 6, we examine different
attack strategies that can be employed by an adversary to analyse how well
MorphMix protects its users from the corresponding attacks. In Chapter 7, we
analyse the performance of the collusion detection mechanism, which is one
of the core components of MorphMix. We focus on large, realistic scenarios
where participants have different capabilitics and are not online all the time.
In Chapter 8, we describe the MorphMix simulator and present the simulation
results.

Finally, we summarise our work, draw the conclusions, compare Mor-
phMix with similar systems, and provide an outlook on possible further work
in Chapter 9.

Appendix A contains a detailed description of the MorphMix protocol
and the MorphMix prototype implementation.
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Chapter 2

The Mix Network Approach

Mix networks are the basis for our our work. In this chapter, we first de-
scribe the basic idea of mix networks and the terminology in general. Then
we look at mix networks in more detail, starting with the original approach
that was designed to support non-time-critical application such as electronic
mail. Afterwards, we describe how the original approach has been modified
to support near-real-time applications such as web browsing. In this chapter,
we only discuss the basic concepts; systems implemented on these concepts
are presented in Chapter 3. Similarly, we only talk about basic attacks in
this chapter. We will present more sophisticated attacks in Section 3.2 and
provide a more thorough analysis in Section 4.1.

2.1 The Mix Network Idea and Terminology

In 1981, the concept of a mix network was introduced by David Chaum [16].
Although the basic idea is independent of the underlying communication in-
frastructure, nearly all work on actual systems to provide a mix network (see
Section 3.1) has been conducted in the Internet context. In this thesis, we
also focus on mix networks operated in the Internet context and, unless noted
otherwise, assume that the underlying communication infrastructure is the
Internet. In this section, we provide the basic idea of mix networks and the
terminology we will use throughout this thesis. The purpose of this section is
to show the relation between a mix network and the underlying physical net-
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work and how a client and a server application can communicate with each
other such that an eavesdropper observing the Internet traffic cannot learn the
IP addresses of both communication endpoints by inspecting the network or
transport protocol headers of the corresponding IP packets. The purpose of
this section is nof to explain measures employed by mix networks to defend
against more sophisticated attacks. In particular, the important concept of
layered encryption will be left out for now and introduced in Section 2.2.1.
It should also be noted that there is no such thing as a generic mix network
because although all mix networks have fundamental similarities, every pro-
posal for a specific design of a mix network has its own typical properties.
Consequently, the model we use in this section to explain the basic mix net-
work idea is also not generic, but has many similarities to MorphMix, which
is our own proposal for a circuit-based mix network (see Chapters 5-8). Nev-
ertheless, it serves well to explain the fundamental ideas of mix networks and
many of the components we identify in this section can also be found in the
following two sections when we describe two specific mix networks.

A mix network is an overlay network that aims at providing sender (or
client) and relationship anonymity at the IP level. According to our defini-
tions in Section 1.5, this means the recipient (or server) cannot learn the IP
address of the sender (or client) and an adversary observing the data being
exchanged cannot learn the IP addresses of both communication endpoints.
Mix networks do not offer recipient (or server) anonymity because the sender
(or client) must know how to contact the other party.

A mix network is composed of multiple mixes m;. Basically, mixes are
proxies that relay data, but they provide additional functionality as we will
see in Sections 2.2 and 2.3. Mixes can be accessed using their mix address
that unambiguously identifies a mix. Up to now, all designs and implemen-
tations of proposed mix networks have modelled a mix as a service running
at the application layer on an Internet host, and we will make use of this con-
cept throughout this thesis. Consequently, mixes are accessed by specifying
the protocol to be used (either the transmission control protocol (TCP) [41]
or the user datagram protocol (UDP) [89]) together with an IP address and a
port, and therefore, the mix address is the combination of an IP address and
a port, i.e. mix m; is the mix address ip,,,:pm,;. Note that one could also
imagine a mix network operating below the application layer, for instance by
running the mixes directly on a subset of all routers using an extensible router
platform [65], but we will not pursue this approach further in this thesis. Fig-
ure 2.1 illustrates the basic idea of a mix network and the relationship of the
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mix overlay network and the underlying physical network.

virtual

|
|
|
|
|
!
|
: link
[

overlay network

physiéal network

physical link — router

Figure 2.1: The mix overlay network and the underlying physical network.

The lower half of Figure 2.1 shows a simplified IP network where routers
1;, hosts h, and h,, and mixes m; are interconnected by physical links. We
first look at what happens if a client application on h, communicates with a
server application on h directly, which is illustrated in Figure 2.2.

Figure 2.2 shows the two hosts h. and h; and five routers ra, 14, 13, 119,
and ry5 that specify the likely route IP packets follow when being sent from
h. to hy according to Figure 2.1. In addition, Figure 2.2 illustrates the ap-
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application
layer
“transport layer
(TCP/UDP)

network layer

(IP)

Figure 2.2: Sending application data directly from h . to h.

plication, transport, and network layer. We do not display layers below the
network layer as they are not relevant for the following discussion. We as-
sume the client application wants to send application data AD to the server
application. The server application can be accessed using the appropriate ad-
dress consisting of h,’s IP address ip, and the appropriate port ps. Using this
addressing information, the client application sends the application data via
the socket interface on h,. This results in the generation of one or more IP
packets that contain the addressing information in the transport (T) and net-
work (N) protocol headers. The headers also contain the address to identify
the client application consisting of h.’s IP address ip. and a port p.. The
resulting socket pair ip.:p.—ips :ps unambiguously identifies the communica-
tion relationship between the client and server applications and therefore also
between h, and h,. For simplicity, we assume the application data fits into
the payload of a single IP packet, but in reality, sending application data often
results in generating as many IP packets. The resulting IP packet is sent to
h,, and leaving out any kind of Network Address Translation (NAT) [43], IP
tunnelling [119], or application layer proxies, the addressing information in
the IP packet is left unchanged on the route between h, and h,. As discussed
in Section 1.2 this simultancous presence of the identifiers of both commu-
nication endpoints provides the fundamental prerequisite to easily invade the
privacy of the user at h,. at the network level. Note that although not depicted
in Figure 2.2, sending application data back to h. works vice versa. In ad-
dition, and also not depicted in Figure 2.2, the IP packets to establish the
end-to-end connection if TCP is used already contain the socket pair before
the actual application data transfer happens.

The upper half of Figure 2.1 illustrates the mix overlay network. Here,
we do no longer look at the routers and physical links of the underlying com-
munication infrastructure, but only at hosts, mixes, and the communication
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relationships between them. The mixes build the core of the mix network.
At any time, a mix can have a communication relationship with a subset of
all other mixes, but not necessarily with with all of them. We identify such
a communication relationship with virtual link to distinguish it from physical
links. To establish a virtual link to m;, m; uses m;’s mix address. Virtual links
can make use of TCP or UDP (see Section 2.3.4) and can be short-lived or
long-standing. The mixes with which a mix currently has established virtual
links are its neighbours. The basic idea of a mix network is that application
data are not directly exchanged between h. and h, as in Figure 2.2, but are
relayed by a subset of the mixes.

To access the mix network, h,. first contacts any one of the mixes of which
it knows the mix address by establishing a virtual link to it. Once a host has
established a virtual link to a mix, we say that the host is part of the mix
network and we collectively identify the mixes and the hosts that have estab-
lished a virtual link to a mix as nodes. To function propetrly, a mix network
uses its own mix network protocol. This protocol is used to exchange pro-
focol messages, or simply messages' between two nodes. Since we assume
the mix network to operate on the application level, this protocol is an ap-
plication level protocol. Messages are exchanged between two neighbouring
nodes within fixed-length ce//s?. The length of cells and their precise for-
mat is part of the mix network protocol. A cell has a header and a payload.
Among other information such as a checksum to protect the integrity of the
payload or information to forward the payload of the cell correctly along its
path, the cell header contains the type of the message that is carried in the
payload to distinguish between different types protocol message.

I'The proposal for terminology in anonymous communication systems (see Section 1.5) uses
message where we use application data, which makes sense if anonymity is considered in general
and not bound to a particular system that provides anonymity. However, since we focus on
systems based on mix networks, we will use messages to identify the protocol messages used in
mix networks. In addition, the term application data is a reasonable choice because we focus on
mix network that enable the anonymous communication between a client and a server application
located on two different Internet hosts.

21t should be noted that there is no terminology that is commonly used by all mix networks.
For instance, the term cell was introduced in the context of Onion Routing (see Section 3.1.2) and
is more often used in circuit-based mix networks (see Section 2.3) than in Chaumian mix net-
works (see Section 2.2). Chaum used item and systems that were implemented based on Chaum’s
idea (see Section 3.1.1) used packet or message. Neither of these terms is well suited because
item was only used by Chaum, packet may easily be confused with IP packets, and message are
usually used to identify protocol messages. To avoid confusion, we clearly distinguish between
application data, message, cell, and (IP) packet.
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Before h, can send application data anonymously to h,, h. selects a path
in the mix overlay network. Whether this path is actually selected by h . or the
mixes depends on the implementation of the particular mix network. Like-
wise, some systems allow paths to be selected only between mixes that have
already established a virtual link while others create virtual links on demand.
The path consists of h, and a sequence of mixes. The sequence of mixes used
by h. is also named %.’s chain of mixes. As an example in Figure 2.1, we
assume h, has built a path via three mixes, my, ms, and mg. This path can
now be used by the client application to communicate anonymously with the
server application, as illustrated in Figure 2.3.

end-to-end
application
application
layer TETETT
mix

network

overlay
transport layer

(TCP/UDP)

Tnetworklayer | T
(IP)

end-to-end

~ application
applicaton
layer
mix
network
overlay
Transporttayer | e =
(TCP/UDP)
network layer e Fys T T,
=) 7 19 T1o l4g ‘N‘T‘AD‘
iPrs Prs Pros Pros Py Pros P P,

Figure 2.3: Sending application data via the mix network from h . to hs.

Looking at Figure 2.3, we can see that mix networks introduce a new layer
between the traditional end-to-end application and transport layers. The client
application again uses h;’s IP address ips and the appropriate port p s to iden-
tify the server application on h but this time, this information is not directly
put into the transport and network protocol headers. Rather, a mix network
protocol message is built that contains the information about the server appli-
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cation to contact (ips:ps) and the application data (AD) itself. This message
is then sent via m; and m5 to mg. To do so, the message is transported within
cells over the virtual links between neighbouring nodes. A cell has a header
(C) and the payload of a cell is encrypted (see Section 2.2.1) such that only
the last mix in the path can decrypt it, which implies that only the last mix
learns ips and ps. The cell itself is then sent over the virtual link to the first
mix m; using the underlying physical network via three routers ro, r1, and
r3. Since the mix network runs on the application layer, a cell is nothing else
than application level data, and it is consequently sent within an IP packet by
prepending transport (T) and network (N) protocol headers that contain ip ..,
Pc, and my’s mix address ipm,, :Pm, . This means that IP packets exchanged
between h. and m; contain the socket pair ip.:pc—ipm, :Pm, > Which does not
identify both h, and h,. Again, we have assumed for simplicity that the mes-
sage containing AD fits into a single cell and that the resulting cell fits into
the payload of a single IP packet. In general, a message can result in multiple
cells and a cell may be spread across the payloads of several IP packets. The
opposite is also possible, i.e. cells may be so short that multiple cells fit into
the payload of a single IP packet. When receiving the cell, m inspects the
cell header, generates a new header, and forwards the cell over the virtual link
to mo, which results in an IP packet containing the socket pair ip ., Py, —
iPms Pms. Note that we have silently assumed that m; was the initiator of
the virtual link to ms. Consequently, p,,, corresponds to the port specified in
m;’s mix address (M5 :Ppy; ), but p,y,, is completely unrelated to p,y,, specified
in m;’s mix address (mj :p,, ). Mix ms essentially does the same as m; and
when the cell finally arrives at the last mix, mg decrypts the payload of the
cell to extract the message, which reveals ip:ps and AD. This allows mg to
establish a communication relationship with h and forward AD. The result-
ing IP packets between mg and h; contain the socket pair ipp; P/ —iPs:Ps.
which again does not identify both h, and h,. Here again, although not de-
picted in Figure 2.3, sending a message back to h. works vice versa. Also,
any IP packets to establish, maintain, or close TCP connections between two
nodes or between the last mix and h, have been omitted.

Following this discussion and looking at the mix network layer in Fig-
ure 2.3 more closely, we can say that the mix network layer itself can again
be separated into two layers: the message layer and the cell layer. Application
data sent by the client typically results in a mix network protocol message ex-
changed between the client and the last mix in the path, and the message is
transported hop-by-hop through the mix network within one or more fixed-
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length cells.

The discussion in this section has left out many details about mix net-
work that will be explained in the following two sections, but it has already
identified several important fundamental properties:

1. No IP packet on the route between h. and hs contains the IP addresses
of both communication endpoints. In contrast to the case where h,
communicates with h, directly, this prevents an adversary that observes
the IP packets anywhere on the physical route between h, and hy to
break the relationship anonymity by simply inspecting the IP and trans-
port protocol headers.

2. If at least two mixes are used in a path, no single mix learns the end-to-
end communication relationship because a mix knows the IP address
of at most one communication endpoint.

3. In contrast to the case when h. contacts h, directly, the IP packets ar-
riving at h, carry the IP address of the last mix in the path and not h.’s
IP address. Consequently, h, cannot easily identify h, by inspecting
the packets it receives, which is an essential property to achieve sender
(or client) anonymity.

4. Comparing Figures 2.2 and Figures 2.3, one can see that virtually noth-
ing has changed for h,. In fact, communication between h. and h; in
the non-anonymous case works in exactly the same way as communi-
cation between mg and h; in the anonymous case. The only difference
is that h, sees mg’s instead of h,.’s IP address in the latter case. This
is a very important property of mix networks which states that access-
ing a host anonymously is possible without changing that host in any
way, in particular without having to install additional software on that
host. Consequently, a host that is contacted via a mix network is not
considered to be part of the mix network itself. On the other hand, as
mentioned above, it makes sense to consider a client host being part of
the mix network once it has established a virtual link to a mix because
it communicates with this mix using the mix network protocol by send-
ing and receiving cells. This also implies that additional software must
be installed to access mix networks.

If the user sitting at the client host can freely determine the mixes she
uses in a path, the mix network is also called a firee-route mix networks. The
extreme opposite are mix cascades where disjoint subsets of the mixes form
long-standing chains. In this case, all users using the same cascade use ex-
actly the same mixes in the same order. In this case, users using different mix
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cascades are in different anonymity sets. In between there are restricted route
mix networks, where users can still choose among different paths, but with
certain restrictions. For instance, one restriction could be to build paths only
along virtual links that are already established.

From now on, we focus on the mix overlay network and only consider
the underlying physical network when this is required. We are concerned
with application data that are put into mix network protocol messages. The
messages are transported within cells over virtual links between nodes. We
also do not care if the underlying topology changes as long as nodes in the
overlay network can still reach each other. If we say that an adversary has
access to cells sent over a virtual link, this means that he has access to the
IP packets carrying these cells somewhere on the physical route between the
two nodes. Similarly, if we say an adversary can access application data on
the route between the last mix and the host that is contacted anonymously, we
mean he can access the corresponding IP packets somewhere on the physical
route between the mix and the host.

In this section, we have shown that mix networks are overlay networks
where data are exchanged between client and server application via a subset
of mixes. Consequently, an adversary cannot learn anything by inspecting
the network or transport protocol headers of the corresponding IP packets. In
the following two sections, we will describe to specific mix network systems
that basically work very similar to the mix network described in this section.
However, as already mentioned above, every proposal for a specific design
of a mix network has its own typical properties. Consequently, it is also not
always possible to identify and separate application data, protocol messages,
and cells as clearly as we have done it in this section. In the next two sections,
we will also introduce more advanced features employed by mix networks to
defeat more sophisticated attacks than simply inspecting protocol headers.

2.2 Mix Networks based on Chaumian Mixes

Chaum’s original idea of a mix network was targeted at enabling anonymous
e-mail communication between a sender s and a recipient . To distinguish
the basic mixes proposed by Chaum from more recent variations, they are
often referred to as Chaumian mixes and the corresponding systems as Chau-
mian mix networks.
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2.2.1 Basic Functionality

Every mix m; can be identified with its mix address a; and has a public-
key pair consisting of a public key PK; and a secret (or private) key SK;.
Similarly, the recipient, or strictly speaking the application running on the
recipient’s computer, can be identified with address a, (which, in the case
of e-mail communication, is an e-mail address) and has a public key PK,
and a secret key SK,.. To use the mix network, the sender must know the
addresses and public keys of at least some of the mixes and of the recipient.
To send application data AD anonymously to a recipient, the sender picks a
subset of all mixes. Assuming that s picks mixes m, my, and ms in this
order and F pk, (d) denotes the encryption of data d with the public key PK;,
s generates the following cell:

Epk,., (Epk,., (Epk,,, (Epk, (AD), ar), am, ), am, )

The idea is that this cell can be sent to  via the three selected mixes in a
way such that each mix can remove a layer of encryption to learn the next hop
to which the cell must be forwarded to, but nothing more. The mixes used by
a sender s is also named s’s chain of mixes. Figure 2.4 illustrates how the cell
containing the application data AD is sent to the recipient along s’s chain of
mixes.

EFKm1 F’KmZ(EPKmS(EPKr(AD)
a am3 ap,

sender recipient (r)
EF‘KmZ F’Km3(EPKr AD)
PKm3(EPKr(AD) a)

Figure 2.4: Sending application data AD through a Chaumian mix network.

The sender establishes a virtual link to m1, sends the cell, and terminates
virtual link again. Having received the cell from s and assuming D gg, (d)
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denotes the decryption of the encrypted data d with the secret key SK;, m;
performs the following operation:

Dsk,, (Epk,, (EPrk.,., (Epk,,, (Epk, (AD), ar), am, ), am,)) —
Epk,.,(Eprk,,, (Epk, (AD),ar), am,), am,

This tells m; to forward the resulting cell to m» identified with address
am,. To do so, my establishes a virtual link with ms, sends the cell, and
tears down the virtual link. The same is done by my and ms until the ap-
plication data AD finally arrives at the recipient. In the case of e-mail com-
munication, this usually means a mailbox, which is eventually accessed by
the intended recipient who can decrypt the e-mail message. Note that since
Chaum’s proposal was inspired by sending e-mail messages anonymously,
he made the reasonable assumption that users interested in sending e-mail
messages anonymously would also want to encrypt them. Therefore, he in-
clude the encryption of the application data (corresponding to an unencrypted
e-mail message) for the recipient in the mix protocol, although the protocol
would also work without encrypting the application data for the recipient. We
will see in Section 2.3 when discussing circuit-based mix networks that this
encryption for the recipient (or server) is not present in those mix network
protocol. Rather, it is left to the application using the mix network, so AD
corresponds to either encrypted or unencrypted application data.

To allow the recipient to send a reply, the sender can include a reply block
into the cell, which is constructed as follows?:

Epk,, (Epk,., (Frk,, (as,k1), a1, k2), a2, k3), PK{, a3

PK, is the public key of a key pair generated by the sender exclusively
for this reply block, k4, ko, and ks are symmetric keys randomly generated
by the sender, and a; is the address of the sender. The reply block tells the
recipient to encrypt a reply with PK’, and send it to m3 identified with address
az. Assuming AD’ is the recipient’s reply, the following cell is sent to m3:

Erk,,, (Epk,, (Epk,, (as, k1), a1, k), a2, k), Ep: (AD")

3We assume that replies take the same path in opposite direction, but in fact, the sender can
choose any set of mixes for the return path.
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Subsequently, every mix m; decrypts the first half of the cell using its
secret key SK,,,, to get the next hop along the return path, encrypts the second
half of the cell with the symmetric key k;, and forwards the resulting cell.
Finally, the following cell arrives at the sender:

By (Ery (Ex, (Epk: (AD"))))

Since the sender knows all k; and SK’,, the application data AD’ can be
uncovered.

A noteworthy property of Chaumian mix networks is that the mixes are
stateless: a mix receives a cell, gets all information to process it correctly
with the cell, and forgets it after the data have been forwarded. This stateless-
ness of the mixes is one fundamental difference to circuit-based mix networks
(see Section 2.3). Consequently, Chaumian mixes are also called store and
Jorward mixes and the systems store and forward mix networks.

2.2.2 Measures to Maintain the Sender’s Anonymity

We have already discussed fundamental properties to protect the sender’s
identity towards the end of Section 2.1. In particular, we have shown that
inspecting only the network and transport protocol headers does not help an
adversary. However, Chaumian mix networks employ additional measures to
protect against more sophisticated attacks that compare cells at various places
in the mix network. As explained in Section 2.1, all cells exchanged between
two nodes have the same length. This means that the sender must pad the
application data with random bits such that the resulting cell has the desired
length. On the other hand, if the application data are too large to fit into a
single cell, they are split up into several pieces and sent as multiple cells.
Systems that were implemented based on Chaumian mix networks use rela-
tively long cells such that breaking up a application data into multiple cells
occurs rarely. For instance, Mixminion (see Section 3.3.1) uses 32 KB long
cells. Since every mix removes the address of the next hop, a cell would get
smaller on its way to the recipient. To guarantee a cell keeps its length, addi-
tional random bits are appended to the cell by every mix before it is forwarded
to the next hop. Together with the layered encryptions, this results in all cells
exchanged between two nodes in the mix network having exactly the same
length and appearing to be composed of random bits.
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When arriving at a mix, cells are not forwarded right away but stored until
several cells from different senders have been accumulated and forwarded in
batches to the next hop. Cells in a batch are reordered such that the incoming
and outgoing sequences of cells are not related. Note that a cell can poten-
tially be delayed in a mix for a long time because it does not necessarily have
to be included in the next batch that is processed, but this is usually not criti-
cal with applications such as e-mail. When a batch is forwarded by a mix, the
mix establishes virtual links to all mixes it sends at least one cell, sends the
cells in the batch over the virtual links, and tears them down. Consequently,
a virtual link is short-lived and exists only as long as it takes for one or more
cells to be sent from one node to another. Finally, dummy cells (or cover traf-
fic) that look like real cells for an eavesdropper can be included in batches if
there are not enough real cells or simply to confuse an attacker further.

2.2.3 Basic Attacks on Mix Networks

With attacks on mix networks, we usually mean different kinds of #raffic
analysis attacks. Traffic analysis means observing and correlating the data
exchanged at various places in the mix network to get information about who
is communicating with whom. One prominent attacker is the eavesdropper
that is able to observe all or parts of the traffic sent and received the mixes.
This includes cells sent across virtual links and the data exchanged between
mixes and the recipients. Such an attacker could try to detect the mapping of
incoming and outgoing data at a mix. If he manages to successfully carry out
this attack at all mixes, he has broken the entire system and knows all com-
munication relationships between senders and recipients. However, recalling
that all cells entering a mix have exactly the same length, this cell volume
attack is defeated because (1) cells are either forwarded to another mix which
results again in cells having the same length or (2) a mix forwards the content
of a cell to the recipient, which results in a data volume that is completely un-
related to the fixed size of the corresponding incoming cell. Similarly, using
of the cell coding attack to compare the patterns of incoming and outgoing
data does not help because cells are decrypted (or encrypted if replies to the
sender are enabled using reply blocks) and therefore completely change their
encoding when traversing a mix. Another option for the attacker is to employ
a timing attack to correlate data based on the time at which they enter and
leave a mix. But since cells are reordered, delayed, and processed in batches,
this attack will only reveal little information. It is therefore unlikely that at-
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tacking every single mix will be successful. Another strategy is to attack at
the edges of a mix network, which means cells on the virtual links between
senders and first mix in their path and data on the route between last mix
and recipients are compared. But again, this attack is unlikely to succeed for
the same reasons as attacking a single mix. The conclusion is therefore that
Chaumian mix networks are very resistant to external observers.

Another threat are collusion attacks by mixes that share their knowledge.
In general, colluding mixes have a significant advantage over the eavesdrop-
per because they know the mapping of incoming and outgoing data at their
mixes. If all mixes in a chain are colluding, it is trivial for them to correlate
the sender and recipient. If not all but a subset of the mixes in a chain are col-
luding, the anonymity may decrease depending on the specific design of the
mix network. In the case of synchronous mix cascades (see Section 3.2), one
honest mix in the cascade is enough to protect the relationship anonymity be-
tween sender and recipient as well as if all mixes in the cascade were honest.
In the case of free-route mix networks, the relationship anonymity is usually
less well protected and depends on the number and positions of the colluding
mixes in a chain.

There is an additional fundamental external attack to consider, the cel/ re-
play attack. Since a mix merely removes or, if replies based on reply blocks
are allowed, adds a layer of encryption, processing a cell again produces the
same output (although padding bits may change). An attacker can therefore
resend a cell to a mix and wait until the same output is produced again. To de-
fend against this attack, a mix must process every cell only once. To do so, all
cells that have been processed before must be stored and a newly arriving cell
is compared with all of them. To reduce the complexity, cells can include a
time stamp that limits the time during which they are processed and the public
keys of mixes can be changed periodically. After the time stamp has expired
or the public key is no longer valid, a cell must no longer be remembered by
a mix.

2.3 Circuit-based Mix Networks

In particular with the advent of graphical web browsers in the 1990°s and the
popularity of the WWW, researchers became interested in applying Chaum’s
original idea to near-real-time applications. With near-real-time, we mean
applications that benefit from getting an answer quickly but that do not require
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hard real-time guarantees. Web browsing is a good example for a near-real-
time application because users prefer receiving pages quickly, but the service
still works if there is a delay of ten seconds from time to time.

The problem is that Chaumian mix networks were designed for applica-
tions that are not time-critical and don’t work well to support near-real-time
applications for various reasons. One is that a cell must be completely re-
ceived by a mix before it is forwarded to the next hop. Assuming a large
web page and three mixes in the chain, it may take quite a while until the
first byte of the page arrives at the client’s computer. Another reason is that
public-key operations are computationally expensive and not well suited for
large amounts of data*. Furthermore, delaying cells a long time in a mix until
enough cells are accumulated to forward them in a batch is completely out of
the question when near-real-time applications should be supported.

The basic solution has been presented in the context of Onion Rout-
ing [94], all mix networks that support near-real-time applications are based
on this approach, and they are commonly referred to as circuit-based mix
networks. In this section, we look at the basic properties of circuit-based
mix networks and compare them with Chaumian mix networks. Tradition-
ally, circuit-based networks have been used by a client ¢ to access a server s
anonymously’. We also name mix networks for near-real-time applications
low-latency mix networks.

2.3.1 Basic Functionality

There are again several mixes that are distributed in the Internet. Every mix
m; is identified with its mix address a; and has a public-key pair consisting of
PK; and SK;. The application on the server to be contacted anonymously is
identified with address a,. A mix has established a virtual link to some other
mixes but not necessarily with all of them. Two mixes m; and m; that have
established a virtual link share a secret key, which we identify with k;;. This
key is established when the virtual link is set up using the public keys of the
two mixes for key-exchange. In contrast to Chaumian mix networks where a
application data can be sent to a recipient right away by picking some mixes

4 Although not proposed by Chaum, this problem could be reduced by encrypting the bulk
data with a ephemeral symmetric key and only encrypt the symmetric key with the public key.

3In general, circuit-based mix networks can be used for any anonymous near-real-time com-
munication between two peers. But even in peer-to-peer system, one peer is always the initiator
(the client) of a communication relationship with another peer (the server).
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and generating one or more cells, accessing a server via a circuit-based mix
network is a three-step process.

First, a circuit is established via a subset of the of the mixes, then data are
exchanged anonymously with a server via the circuit, and finally the circuit is
torn down. Figure 2.5 illustrates the basic idea of a circuit-based mix network.

client (c) "
server (s

Figure 2.5: A circuit-based mix network.

In Figure 2.5, ¢ has established a circuit via three mixes my, ms, and ms.
During circuit setup, the client exchanges a key with each of the mixes it
wants to use in the circuit in a way such that only the first mix in the circuit
knows who the client is. These keys are then used to add and remove the
layers of encryption. There are different ways to establish such a circuit. The
one we present here is similar to the method introduced by Onion Routing.
First, the client established a virtual link to the first mix it wants to use in its
circuit. Then, the client prepares a data structure that contains the keys for
each mix. Assuming k.; is the key prepared by ¢ that will be shared between
c and m;, the data structure for our example in Figure 2.5 looks as follows:

Erk,, (Epk,., (EpK,,, (kes, as), k2, kmsy ), ket am, )

The client sends this data structure within one or more cells over the vir-
tual link it just has established with m;. When receiving the data, m; decrypts
them using its secret key SK,,,,, which reveals both the key k.; and the ad-
dress a,, of the next mix m». If m; and m» have not yet established a virtual
link, they set it up now. Then, the remainder of the data structure is forwarded
within one or more cells to ms, but m; also includes a circuit identifier CID 19
that has only local significance on the virtual link between m; and ms. The
reason for using the circuit identifier is that multiple circuits established by
different users may include the virtual link between m; and ms. The circuit
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identifier is put into the cell header and serves a mix to separate the cells
belonging to different circuits and to correctly process an incoming cell. To
avoid that different circuits can be identified by an eavesdropper, the circuit
identifier is always encrypted with the key that belong to the virtual link in
which is used. Consequently, CID 5 is encrypted using the key ki, shared
between m; and my. If Fy,.(d) denotes the encryption of data d with the
symmetric key k;;, m; sends the following cell to ms:

B, (C1D12), Epk,, (Epk,,., (kes), ke2, ams)

Similarly, ms establishes a virtual link to ms if they do not yet share a
virtual link, picks CID13 to unambiguously identify this circuit on the virtual
link between m; and ms and sends the encrypted circuit identifier and the
remainder of the data structure within one or more cells to m3. Finally, ms
learns that the server with address a, should be contacted and established a
communication relationship with s.

In contrast to Chaumian mixes, virtual links are long-standing and can
potentially remain established while several circuits are established and torn
down on top of them. In addition, mixes in circuit-based mix networks are
stateful because they must store some state to send cells back and forth cor-
rectly along a circuit once it has been set up. In particular, m, my, and ms
must remember the following:

my . c+>my,CIDqs with k.
mo : myq:CIDig < mg:CIDgy3 withkg
msg  mo:CIDy3 s with k.3

This means m; knows everything arriving from ¢ must be forwarded to
my using circuit identifier CID 15 and the corresponding layer of encryption
can be removed with key k1. Similarly, ms knows cells arriving from m;
with CIDq4 are forwarded to ms with CID»3 and the key it shares with the
client of this circuit is k.». Finally, ms forwards everything it gets from m»
with CID»3 to s and removes the layer of encryption with key k 5.

Once a circuit has been completely set up, the actual data transport takes
place where application data are exchanged between client and server. Just
like in Chaumian mix networks, application data are transported within cells
and all cells exchanged over virtual links have the same length. However,
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these cells are much shorter than the typical amount of data exchanged be-
tween client and server. For instance, cells in Onion Routing have a length
of 128 bytes. Since typical web objects are usually several KB long, a web
reply often results in many cells sent back to the client. Although omitted
for simplicity, the data structures described above to set up a circuit are also
transported within one or multiple fixed-length cells.

To send a application data AD to the server, the client splits them into
one or more parts such that the resulting cells have the appropriate length. If
necessary, the payload of the last cell is padded with random bits. Assuming
the application data AD is split into n pieces AD;, 1 < ¢ < n, the client
generates 7 cells as follows:

Ekcs (Ekc2 (Ekcl (AD’L)))

All n cells are sent over the virtual link to the first mix m;. Upon re-
ceiving such a cell, m; knows it’s from ¢, which means k.; must be applied
according to the state it has stored about the circuit to remove a layer of en-
cryption. It also knows that the resulting cell must be forwarded to m, using
the circuit identifier CID {5 in the cell header. To hide the circuit identifier
from an eavesdropper, the entire cell header (including the circuit identifier)
is encrypted using the key k12 that belong to the virtual link between m; and
my. The cell sent to m, therefore includes:

Ekm (CID12)7 Ekcg (Ekcl (ADl))

Decrypting the circuit identifier and consulting the state it has stored about
this circuit, ms knows that the cell must be decrypted with k .o and forwarded
to mg using CID»3 as the circuit identifier:

Ek23 (CID23)7 Ekcl (ADl)

Receiving this cell, ms used the appropriate key k.3 and forwards AD; to
the server. When all cells have been processed, the application data AD have
arrived at s. To send data back to the client, it works vice versa: m3 gets the
application data from the server, splits them such that they fit into the payloads
of one or more cells, encrypts the payloads of the cells with the key it shares
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with the client, puts the circuit identifier into the cell header, and encrypts
the cell header. The cells are then sent back to the client along the circuit in
opposite direction, where every mix in the circuit adds a layer of encryption.
Eventually, the client receives the cells, removes all encryptions and gets the
entire application data. To terminate the communication relationship with the
server, the client tears down the circuit by sending a special control cell along
the circuit all the way to the last mix, which causes the mixes to remove the
state they have stored about the circuit.

Compared to Chaumian mix networks, this design has several advantages
to support near-real-time applications. Since the cell size is small, a mix only
needs to receive a small fraction of a potentially large amount of application
data until data can be forwarded to the next hop in the circuit. In addition,
only the setup of the circuit involves public-key operations and the actual
data cells use symmetric cryptography, which means processing a data cell is
computationally significantly less expensive.

2.3.2 Measures to Maintain the Client’s Anonymity

Like Chaumian mix networks, circuit-based mix networks make use of fixed-
length cells and layered enctryption. In addition, dummy cells can be em-
ployed to further complicate traffic analysis and a mix makes sure no cell is
processed more than once. However, delaying cells for a long time and pro-
cessing them in large batches is impossible because the end-to-end delay of
cells should be at most a few seconds. It is a fundamental difference between
low-latency mix networks and Chaumian mix networks that in the former, a
cell is forwarded within some fractions of a second after it has been received
by a mix while in the latter, a cell may be delayed in a mix for hours. This
has a major impact on traffic analysis attacks and we provide a first insight
below. In Section 4.1, we will analyse traffic analysis attacks on low-latency
mix networks in more detail.

2.3.3 Attacks on Circuit-based Mix Networks

For the same reasons as in Chaumian mix networks, an attacker that performs
a cell volume or cell coding attack by observing the data entering and exiting
a mix can be defeated. Timing attacks, however, are much more likely to
succeed because data are forwarded quickly. If a mix network is heavily
loaded and a mix processes a thousand cells per second, the timing attack

Major Data Exhibit 1008
Page 55 of 307



36 2 The Mix Network Approach

is more difficult but if only a few cells are relayed by a mix, incoming and
outgoing data can be related with high probability. Note that what matters
when discussing timing attacks is not so much the time a cell remains in a
mix, but the total number of cells that are processed by a mix compared to
the time a cell remains in a mix. If a thousand cells are processed per hour
by a Chaumian mix and they are delayed for one hour on average, then this is
comparable with a thousand cells that are processed per second in a mix in a
low-latency mix network where cells are delayed for one second on average.

Another attack on a single mix is the application data volume attack. The
amount of application data are usually larger than what fits into a single cell (a
long web reply can easily result in hundreds of cells) and as a result, streams
of cells that carry parts of the same application data travel along a circuit.
So instead of trying to correlate single cells, an attacker counts the number
of cells that may belong to the same application data entering and leaving
a mix and tries to correlate the entire application data. Combined with the
timing attack, the application data volume attack is a very powerful attack
and difficult to defend against. One possibility to increase the resistance is to
employ dummy traffic between neighbouring mixes to disguise the patterns of
real data cells. This mechanism is also known as virtual link padding because
“missing” real cells on a virtual link are padded with dummies.

Observing the edges of a low-latency mix network is even more promis-
ing. Due to the low-latency property of the mixes, the (part of the) application
data enclosed in a cell entering the first mix will leave the last mix towards
the server at most a few seconds afterwards. Consequently, combining the
application data volume and timing attacks at the edges reveals a lot of infor-
mation to an eavesdropper. Making this attack more difficult is possible by
employing dummy traffic also on the virtual links between clients and their
first mix.

Collusion attacks by mixes are also a more significant threat than in Chau-
mian mix networks. It can be expected that by using timing and application
data volume attacks, any two mixes along the same circuit are likely to be able
to correlate cells flowing through them if enough cells are sent back and forth
along the circuit. In particular, if these two mixes happen to be the first and
last mix in that circuit, they can unambiguously link the client and the server
and have broken the relationship anonymity. In this case, dummy traffic be-
tween mixes does not help at all because the mixes can distinguish dummies
from real data cells. Rather, end-to-end dummies sent from the client all the
way to the last mix in a circuit and back are used to increase the resistance to
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this attack. This is also known as end-to-end padding or circuit padding.

2.3.4 Ways of Operating Circuit-based Mix Networks

With Chaumian mix networks, virtual links are usually based on short-lived
TCP connections that are only established to send one or a few cells. This
makes sense because Chaumian mixes may delay cells for a long time and
it is therefore reasonable to break the “natural” single end-to-end connec-
tion that is used when hosts communicate with each other directly as in Fig-
ure 2.2 into multiple ones. In circuit-based low-latency mix networks, how-
ever, cells are forwarded quickly and it is not necessarily needed to break the
end-to-end connection between client and server. Consequently, two differ-
ent approaches have found their way into implemented systems and they are
illustrated in Figure 2.6 assuming a web browser communicates with a web
server.

user's computer mix mix

web
browser

access ‘ ‘ mix ‘

mix
program program ’ ‘

program

socket socket

intefcace

socket

[ network ] [ network | [ networl

a) breaking up the end-to-end TCP connection

user's computer mix

access

web
program

browser

mix
program

sock.

int

socket

extract/
insert

network | [ network network

b) maintaining the end-to-end TCP connection

Figure 2.6: Different ways of operating circuit-based mix networks.

The first approach shown in Figure 2.6(a) breaks up the end-to-end TCP
connections such that a TCP connection is used as the basis for the virtual
link between any two nodes along the path from client to the last mix in the
circuit. To access the mix network, software that is usually provided by the
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developers of the mix network is installed on the client computer. We name
this software access program. The client application only interacts with this
access program, in exactly the same way a web browser accesses a web proxy:
a TCP connection is set up to the access program and instead of communicat-
ing directly with the web server, requests are sent to and replies are received
from the access program. All communication with the mix network and with
the web server through the mix network is handled by the access program,
transparently to the client application. This includes circuit setup and tear-
down, and generating and unpacking the cells. The access program can also
remove information from the data stream that could possibly give hints to
identify the user. In the case of web browsing, for instance, the access pro-
gram can modify or remove the user-agent field to not reveal information
about the user’s operating system or her web browser. Similarly, the access
program can block every cookie included in HTTP requests. Breaking up
the end-to-end TCP connection implies that its properties — flow control and
correct delivery of all data in the right order — are guaranteed between two
adjacent nodes and between the last mix and the web server, and not end-to-
end between the web browser and the web server. Consequently, a mix must
not lose any data of an end-to-end connection or the application will usually
fail. While breaking up the end-to-end connection seems unnatural, operat-
ing a mix network according to Figure 2.6(a) has some practical advantages.
First of all, using TCP for the virtual links between two nodes that have very
different bandwidth connections makes communication quite easy because
the transport layer takes care that all data are delivered correctly over a vir-
tual link. In addition, installing the required software on the client computer
and supporting different platforms is also easy because all that is needed is
the access program, which runs in the user space and accesses the standard
socket interface without requiring special privileges. A disadvantage of this
approach is that it requires the client application to be proxy-aware, which is
usually the case web browsers and file transfer protocol (FTP) [88] clients.
But in general, virtually any application can be made proxy-aware and for
many of them there exist implementations that can be downloaded for free
(for example PuTTY, which is a proxy-aware telnet [87] and secure shell
(SSH)® client”). Other applications such as e-mail can be supported by spec-
ifying the access program as the simple mail transfer protocol (SMTP) [90]
server.

(’http ://www.letf.org/html.charters/secsh-charter.html
"http://www.chiark.greenend.org.uk/ ~sgtatham/putty
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The second approach is illustrated in Figure 2.6(b) and does not break
up the end-to-end TCP connections. To do so, virtual links are implemented
on top of UDP datagrams that are exchanged between two nodes. Data are
extracted after the IP layer on the client’s computer and passed to an access
program. After removal of information that could possibly identify the user’s
computer such as its IP address, the IP packets are transported within cells to
the first mix. The cells are forwarded across the virtual links until the last mix
in the circuit is reached. The last mix extracts the IP packets from the cells,
sets its own IP address in the source IP address ficld, and sends them to the
web server by inserting them into its network stack. To send data back to the
client, it works vice versa. Note that since the data are extracted and inserted
at the IP layer, all TCP control data are also exchanged and interpreted end-to-
end, which includes TCP segments to establish and tear down the connection
and TCP segments that are only sent to acknowledge the reception of data.
While this approach seems cleaner because it does not break up the end-to-
end connection, it has some disadvantages. Bypassing the socket interface
and extracting data from and inserting them into the IP stack is not easily
possible without support of the operating system. In addition, this is usually
requires special user privileges. Note that with virtual links based on UDP,
cells can be lost anywhere in the mix network. But unlike in the approach
above, it is not necessary for the mix network to deliver all data in correct
order because this is handled by the end-to-end TCP connection used by the
application.

Both approaches have advantages and disadvantages. In general, operat-
ing the mix network as shown in Figure 2.6(a) is easier because (1) no special
privileges are needed on the client’s computer to access the mix network be-
cause the additional software that must be installed runs entirely in the user
space and (2) especially if the capabilities of the mixes are heterogencous,
employing UDP between them could result in losing and re-sending so many
cells that the end-to-end performance suffers significantly.

Assuming anonymity-providing techniques become very popular in the
future, one could consider providing a special socket type that handles the
communication with the mix network, completely transparent to the appli-
cation. An application would then simply make use of this new socket type
instead of traditional TCP (or UDP) sockets.

Major Data Exhibit 1008
Page 59 of 307



40 2 The Mix Network Approach

2.4 Summary

Mix networks are overlay networks and are the most promising technique to
anonymise Internet communication. The basic idea of mix networks is to
break up the end-to-end communication relationship and relay all data ex-
changed between the communication endpoints via some mixes to provide
sender (or client) and relationship anonymity at the IP level. This means the
recipient (or server) cannot learn the IP address of the sender (or client) and an
adversary observing the data being exchanged cannot learn the IP addresses
of both communication endpoints.

Basically, there are two types of mix networks. Chaumian mix networks
are well suited for non-time-critical application such as e-mail and circuit-
based mix networks help to anonymise near-real-time applications such as
web browsing. Although similar in design, there are some differences be-
tween the two types regarding cell length, use of public- or symmetric-key
cryptography, and allocation of state in the mixes.

The most significant difference in terms of operation is that in Chaumian
mix networks, cells can be delayed for a long time in a mix. This removes
virtually all correlation between incoming and outgoing cells. In low-latency
mix networks, this is not the case and as a result, they are certainly not ex-
pected to offer better protection from attacks than Chaumian mix networks.
We will analyse the protection circuit-based mix networks offer in much more
detail in Chapter 4.
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Chapter 3

Related Work

In this chapter, we look at other work in the field of anonymity. We first
present designs and implementations on Chaumian and circuit-based mix net-
works. Then we look at several papers that cover analysis of mix networks
and attacks on them. Afterwards, we examine other approaches than mix net-
works to achieve anonymity in the Internet. We also look at anonymous and
pseudonymous applications that operate on top of an anonymising infrastruc-
ture. Finally, we briefly look at recent work on the economics of anonymity,
how reputation systems may help to increase the performance of mix net-
works, and proposals on how to measure anonymity.

3.1 Mix Networks Designs and Implementations

Several mix networks have been proposed and some of them have been oper-
ational. Not all of these systems employ all measures used in mix networks
(see Sections 2.2.2 and 2.3.2) to protect from attacks. In this section, we list
those approaches that make at least use of layered encryption and multiple in-
termediate hops (mixes) between the communicating endpoints. There have
been practical systems based on Chaumian and circuit-based mix networks
and accordingly, we distinguish between the two approaches.
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3.1.1 Chaumian Mix Networks

Different types of remailers have been implemented and several of them make
use of Chaum’s original ideas. Today, the different types are categorised as
type 0, L, II, and III anonymous remailers. A higher category corresponds
to a more sophisticated design that provides better protection from attacks
than a lower category. Note that type 0 remailers do not make use of encryp-
tion and only one intermediate node is used between sender and recipient.
Consequently, type 0 remailers will not be discussed in this section, but in
Section 3.3.1.

Type I anonymous remailers, also known as Cypherpunk remailers [73]
were the first significant implementation of Chaumian mixes. They became
available in 1994 and were the result of discussions within the Cypherpunks
mailing list. One main motivation was to overcome the problems of Type 0
remailers (see Section 3.3.1). Type I remailers use PGP [129] for the layered
encryptions and make use of reply blocks (see Section 2.2.1) for the recipient
of an e-mail message be able to reply to the sender. On the other hand, they do
not employ fixed-length cells, batching, or replay protection. As of November
2003, there were about 40 Cypherpunk remailers available [42].

Type II anonymous remailers, also known as Mixmasters [20, 79] go be-
yond type I remailers by adding fixed-length cells, protection from replay
attacks, and processing of cells in batches. Mixmasters does no longer allow
using reply blocks because reply blocks provide a way to point back to the
sender of an e-mail message by means of “rubber hose cryptanalysis™ [110].
In this attack, the recipient or anyone possessing the reply block may ask or
force (by means of threatening, blackmailing, torturing, ...) all operators of
mixes used in the path back to the sender to process the reply block for them
and reveal the next mix to use. Eventually — if all mixes comply — this re-
veals the sender of the original e-mail message. It should be noted that even
without reply blocks, it would be possible to derive the true sender of an e-
mail message. To do so, operators of mixes would have to be required by
law to keep logs of the mapping of incoming and outgoing data they process
and deliver this information to law enforcement agencies if requested. To our
knowledge, no operator of any type of remailer has ever been forced to keep
such logs in a large scale (see Section 3.2) and consequently, reply blocks can
indeed be considered as the only pointer to the sender. Beyond this potential
problem, reply blocks as used by Cypherpunk remailers can be used multi-
ple times, which enables an attack where multiple e-mail messages using the
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same reply block are sent to the same mix. Since all resulting cells must be
forwarded to the same next hop mix, an attacker can use this knowledge to
trace the e-mail messages to the original sender. Unlike Cypherpunk remail-
ers, Mixmasters employ a sophisticated batching strategy, which is known as
timed dynamic pool batching. A mix keeps a pool of cells and as new cells
arrive, they are decrypted and enter the pool. Every ¢ seconds, the mix fires,
i.e. it sends a certain number of cells, but only if the pool contains more cells
than a certain threshold. In addition, not all cells in the pool are forwarded,
but only a constant fraction of them. This means a cell entering a mix can
be forwarded during the next time the mix fires, or only after several rounds.
As of November 2003, there were about 40 Mixmasters available [42]; most
of them actually supporting both the Mixmaster and Cypherpunk remailer
protocol. Babel [58] is similar to Mixmaster but allows for reply blocks.

Recently, Mixminion [26] has been proposed as a standard implementa-
tion for a Type Il anonymous remailer to overcome the flaws of previous
remailers. Since reply blocks are convenient, Mixminion allows them again,
but every reply block can only be used once. In addition, cells correspond-
ing to replies can no longer be distinguished from forward cells, not even by
the mixes themselves. To provide forward anonymity, Mixminion uses both
ephemeral keys between each pair of communicating mixes and every mix
rotates its public-key pair from time to time. Once keys have been changed,
the old versions are forgotten, which means that a mix cannot comply with
demands for decryption of a cell that was previously intercepted by an ad-
versary. Changing the public-key pair regularly also makes it more efficient
to protect from replay attacks because once the keys have been changed,
the cells processed with the old key no longer need to be remembered. To
keep its users informed about keys and availability and performance of mixes,
Mixminion employs a directory service. Basically, Mixminion employs the
same batching strategy as Mixmaster remailers, but when a mix forwards a
batch of cells, it always adds a few dummy cells to the batch. This increases
the protection from attacks because an adversary no longer knows which of
the cells are real and which are dummies. Finally, Mixminion allows for
exit policies that allows a user to specify not to receive anonymous e-mail
messages at all. To summarise, Mixminion is not a completely new or inno-
vative design, but brings many state-of-the-art techniques together to provide
a remailer system that is efficient, practical, and protects from a variety of
attacks.

Besides the systems that were actually implemented, several proposals
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on how to operate Chaumian mix networks have been made. Stop-and-Go
Mixes [68] do not batch cells, but have each cell wait a random time in a mix
before it is forwarded. Researchers have also worked on improving the ro-
bustness of Chaumian mix networks by making sure that it can be verified if
a mix has processed all cells correctly, resulting in Flash Mixes |61, 75], Hy-
brid Mixes [62, 82], Provable Shuffles [52, 80], and other proposals [1, 30].
Although these schemes have very strong and provable propertics, they are
often not practical because they assume strong coordination and synchronisa-
tion between the mixes and result in a significant computational and commu-
nication overhead. Since this thesis focuses on practical methods for provid-
ing anonymity, we do no longer consider such theoretical approaches.

3.1.2 Circuit-Based Mix Networks

ISDN-mixes, a system to anonymise ISDN-telephony [84, 63] via a mix cas-
cade is based on the idea that the subscribers connected to the same end-office
build an anonymity set. The approach makes heavily use of the synchronised
telephony system in the sense that all subscribers are always sending data
to the end-office so that real phone calls cannot be distinguished from the
dummy data. Although the idea could be realised very efficiently in the tele-
phony world, it is not well suited for the highly asynchronous Internet.
Onion Routing [57, 94] was the first circuit-based mix network that be-
came operational in the Internet. The system employs uniform cell length
of 128 bytes and layered encryption to complicate traffic analysis. A proto-
type network was online for about two years until January 2000. The pro-
totype consisted of five mixes (which are called onion routers) that were
actually all hosted on a single computer. During the final months of oper-
ation, about 50000 connections were established through the prototype net-
work every day. Onion Routing supported remote login (tlogin) [64], HTTP,
and SMTP. The Onion Routing analysis' and visualisations? pages provide
some interesting quantitative results that were collected during the operation
of the prototype. To put it briefly, Onion Routing was a proof of concept
that Chaumian mix networks can indeed be modified to support low latency
applications. A successor of Onion Routing named 7OR was proposed as
early as June 2000 [122] and was being tested as a limited public user trial

Ihttp://www.onion-router.net/Analysis.html
2ht:t:p ://www.onion-router.net/vVis.html
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as of November 2003°. It should be noted that the U.S. government, or more
specifically the Naval Research Laboratory, was awarded a patent for Onion
Routing on 24th July 2001. In particular, the patent covers the method how
circuits are established in Onion Routing. Since MorphMix, the system we
will propose later in this thesis, employs a different method to establish the
circuits, it does not fall under this patent.

The Freedom Network [55, 13, 54] was a commercial mix network pro-
vided by Zero-Knowledge Systems. Subscribing to the service cost about
USS$ 50 per year and during its peak, it had about 15000 subscribers*. Be-
sides anonymising Internet connections, it also provides pseudonymous e-
mail addresses (or nyms). The Freedom Network consisted of about 150
mixes named anonymous Internet proxies (AIPs) operated by various ISPs in
Europe, North America, and Japan. Every AIP was connected to the Inter-
net at least at T1 speed (1.544 Mb/s) [117]. The Freedom Network makes
use of layered encryption, but — although included in the original design —
neither fixed-length cells nor dummy traffic was employed for efficiency rea-
sons. The system designers’ argument is that the increased resistance to traffic
analysis is not worth the data overhead. In addition, the AIPs do not really
mix the traffic but forward the cells in a first in, first out (FIFO) manner. As
a result, the Freedom Network offers a slightly smaller level of anonymity
than Onion Routing. The Freedom network was shut down in October 2001.
An interesting discussion took place on Slashdot® about the reasons for the
termination of the service because it followed shortly after the terrorist at-
tacks against the USA on 11th September 2001. But apparently, the Freedom
network was shut down due to economic reasons®.

Web MIXes [9, 10] is a very ambitious project that wants to provide anony-
mous access to near-real-time services in the Internet assuming a very strong
attacker model. Instead of a mix network, a mix cascade that employs lay-
ered encryption and fixed-length cells is used as the basis. In addition, the mix
cascade is operated synchronously, which means the continuous time line is
split up into slices of the same length and at the end of every slice, all cells
in a mix are forwarded. A mix operating in this way is also called a timed
mix. As a result, all cells the first mix in a cascade receives from the clients
during the same time slice are processed and forwarded through the cascade

3http://www.freehaven.net/tor/

‘http://www.politechbot.com/p-03619.html

Shtt ://slashdot.org/articles/01/10/04/1526256.shtml
P g

Shttp://slashdot.org/comments.pl?sid=22261&cid=2388977
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together. Similarly, all data the last mix in a cascade receives from the servers
during the same time slice result in cells being sent back through the cascade
together. Based on this concept of a synchronous mix cascade, Web MIXes
introduces some novel concepts to beat sophisticated attacks. For instance, in
the flooding attack, an attacker tries to flood the first mix in the cascade with
many cells to make sure that only cells of one other user are processed during
the time slice. This would allow the attacker to break the anonymity of the
single user as the data in her cells leaves the last mix towards the contacted
host. To counter this attack, Web MIXes proposes a ticket-based authentica-
tion system where every user gets tickets that allow to send a limited number
of cells per time slice. Users must possess tickets for every mix along the
cascade and to protect the user’s identity, tickets are issued using blind signa-
tures [17]. Web MIXes also proposes a dummy traffic scheme where every
user exchanges dummies with the last mix all the way through the cascade
and back. The idea is to send dummies whenever the client does not have
real data to send to maximise protection from traffic analysis attacks. If Web
MIXes could be operated according to its design, it would probably offer the
best protection that can be imagined when aiming at supporting low-latency
applications. However, it remains to be shown if such a system is practical be-
cause end-to-end padding introduce a tremendous overhead (see Section 4.2)
and the ticketing mechanism produces a significant management burden as
well. A prototype of their system is known as J4P (Java Anon Proxy) and
has been up and running’ since 2000. Our trials of JAP provided acceptable
performance for web browsing but the system does not yet provide the kind of
resistance to attacks Web MIXes is aiming at. In particular, the ticketing and
dummy traffic mechanism are not used. Consequently, the level of protection
JAP offers in its current state is comparable with Onion Routing. Recently,
there has been a controversial discussion surrounding JAP. On 21st August
2003, The Register® informed about a back-door that was included into the
access program by the JAP developers without informing the users. As a re-
sult, the service was logging access attempts to a particular (unnamed) web
site and reporting the IP addresses of those who attempted to contact it to the
German police. The JAP developers were especially criticised for not having
informed the users in first place. A few days later, the back-door was removed
again’ because the JAP operators managed to successfully appeal against the

"http://anon.inf.tu-dresden.de/index.html
8ht:t:p ://theregister.co.uk/content/55/32450.html
9ht:t:p ://www.theregister.co.uk/content/6/32533.html
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court order and the issue was finally settled in favour of the JAP developers '°.

PipeNet [23] proposes a synchronously operated mix network for low-
latency applications. Like Web MIXes, its design aims at providing resistance
to a powerful adversary that is able to observe all traffic sent and received by
all mixes and that can selectively block the flow of data entering or exiting the
mixes. Besides the basic measures of circuit-based mix networks (see Sec-
tion 2.3.2), PipeNet proposes to use end-to-end padding, which means that
during the time a circuit is established, cells are continuously exchanged all
the way through the circuit between the client and the last mix in the circuit.
Whenever the client must send a cell to maintain a constant flow of cells, it
either sends a real data cell if one is available, or a dummy cell otherwise. The
network is synchronous in the sense that during each round, exactly one cell
is sent over every virtual link. Between any pair of mixes, there may be more
than one virtual link and the number of virtual links between two mixes corre-
sponds on the number of circuits that are currently established between them.
The synchronous way of operation makes PipeNet very resistant to several
attacks because the systems begins the next round only after a cell has been
received over every virtual link. If one virtual link fails, the whole system is
brought to a temporary halt until the missing cell is received. On the down-
side, such a system is totally vulnerable to Denial of Service (DoS) attacks:
any user can shut down the entire system by creating a circuit but never send-
ing cells through it. One can argue that such a user should simply be ignored
because he would be mainly hurting himself and all the others only a little bit.
But then, PipeNet would no longer operate truly synchronously and in addi-
tion, a malicious mix can perform the same attack by stopping forwarding
cells. Even in the absence of this attack, the whole system adapts its perfor-
mance to the slowest virtual link and since it must be expected that virtual
links happen to be temporarily blocked from time to time due to congestion
or failure of the underlying physical network, the system would probably be
more often stalled than forwarding cells. PipeNet is illustrative to show that
there are theoretical ways of operating mix networks such that they resist very
powerful adversaries, but is of little practical value.

The Anonymity Network [102, 103, 104] is another proposal for a circuit-
based low-latency mix network. Its designers focused on finding a good bal-
ance between usability, protection from attacks, and overhead. Unlike in
Onion Routing, circuits in the Anonymity Network are not established and

10ht:t:p ://www.datenschutzzentrum.de/material/themen/presse/
anonip3.htm
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torn down for a single web request/reply pair. Rather, they are set up, used
to communicate for a while with potentially multiple servers in parallel, and
eventually torn down. The advantage of this approach is that the load induced
on the mixes by public key operations to set up a circuit (see Section 2.3.1) is
significantly reduced. On the other hand, contacting different servers through
the same circuit could leak information about the user to the last mix in the
circuit because the combination of the severs accessed by the user could re-
veal hints at her identity. The Anonymity Network also introduced a novel
cover traffic scheme that results in fewer dummy data than employing con-
stant flows of cells between two neighbouring mixes (see Section 4.1.1), es-
pecially during times when the amount of real data is relatively low and if
the load is approximately equally distributed among all mixes. Using this
cover traffic scheme, every mix forwards cells in rounds and at the end of
each round, one cell is sent to each neighbouring mix. If there is a real data
cell waiting to be sent over a virtual link, the cell is sent, otherwise a dummy
cell is sent. The duration of a round is not fixed but is determined individu-
ally by a mix for itself and depends on the amount of incoming data: if many
cells are arriving, the rounds get shorter, if fewer cells are incoming, they get
longer without getting so long that the end-to-end performance suffers too
much. Compared to a system that uses a fixed duration of a round, this dy-
namic adaptation has the advantage that it decreases the amount of dummy
cells during low load situations by increasing the duration of a round and that
it can cope with high load situations by making the duration of a round small
to process as many cells as the computational power or Internet connectiv-
ity of the mix allows. The performance of the Anonymity Network has been
analysed in great detail using a testbed consisting of six mixes. One main
conclusion of the performance analysis was that the number of dummy cells
used between two neighbouring mixes is indeed low using the cover traffic
mechanism described above. However, this mechanism can only be employed
between mixes but not between clients and mixes and to protect the virtual
links between clients and mixes, constant bidirectional flows of cells must be
employed on all these virtual links (see Section 4.1.1), which results in much
more overhead and a significantly worse end-to-end performance.

Tarzan [50] is an effort to provide a peer-to-peer anonymising network
layer. There is no distinction between clients and mixes, every client is also
a mix at the same time and called a node in the overlay mix network. Tarzan
provides anonymous best-effort IP service and works similar as illustrated
in Figure 2.6(b). The system makes use of layered encryption, fixed-length

Major Data Exhibit 1008
Page 68 of 307



3.2 Mix Networks Analysis and Attacks 49

cells, and cover traffic between any two nodes that have established a virtual
link to achieve high protection from traffic analysis attacks. The cover traffic
mechanism is especially worth mentioning: each node maintains a bidirec-
tional cell stream with a fixed number of other nodes (its mimics). Circuits
through a node are only relayed via the node’s mimics, which implies that
real data are always hidden in the cell streams between the node and its mim-
ics. While this approach limits the possible paths that can be selected for a
circuit, it has the advantage that cover traffic is exchanged only between a few
of all potential pairs of nodes. The data rates of the bidirectional cell streams
between two neighbours can vary within an upper and a lower bound. This
seems to be a good idea because different nodes have different capabilities
but it is not entirely clear how much protection such a scheme really offers.
Mimics are not selected at will by each node, but are assigned in a pseudo-
random, but universally verifiable way from the pool of all present nodes.
Consequently, the probability that a malicious node has only other malicious
nodes as its mimics is very small, which implies it is difficult for an adver-
sary that operates several nodes himself to control all nodes along a circuit.
To select the own and verify another node’s mimics, a node needs to know
about all nodes in the system. Additionally, a node validates each other node
upon learning from its presence by contacting it. It is reasonable to assume
that Tarzan works quite well if the set of participating nodes is relatively static
and does not change too frequently. On the other hand, especially the require-
ment to know about all other nodes leaves open the question how well Tarzan
can cope with a large dynamic environment where nodes come and go. Basic
source code of Tarzan has been made available, but no further development
of Tarzan was planned as of January 2003 [49]. It is therefore unlikely to see
a public user-trial to really evaluate the system.

3.2 Mix Networks Analysis and Attacks

Mazi¢res et al. [74] report about their experiences operating an e-mail pseudo-
nym server. Users could get a pseudonymous e-mail address at the server and
deposit a reply block such that e-mail messages sent to their nym could even-
tually find their way to the intended recipient via Cypherpunk remailers. An
important argument of the authors is that one way to attack an anonymity
system is to abuse it and stir enough trouble that it must shut down. The
operators encountered all sorts of problems typically happening with e-mail
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such as bulk mail, mail bombs, and spam. Often, simple mechanisms such as
daily limits or not accepting blind carbon copies helped to reduce the prob-
lems. Once, somebody posted a message to a newsgroup to exploit a bug
in the Unix news server that causes the server to send its password file to a
specified e-mail address. The sender of the message specified a nym as the
address to send the password file to in order to receive the file anonymously.
As the message was replicated across multiple news servers, the number of
e-mail messages received by the nym exceeded its daily limit, which caused
the e-mail messages to bounce back to the administrators of the attacked news
servers. In another case, someone posted child pornography from a nym. The
operators were contacted by the FBI and handed out the reply block. This
does not directly disclose the identity of the owner of a nym, but helps the
FBI to issuc more subpoenas. Still, the FBI did not request the operators to
keep logs or shut down the service. The paper teaches a valuable lesson by
showing that operators of anonymity-providing service must be prepared to
cope with abuse. Apparently, the operators of the pseudonym server managed
to do so during the two years the service was operational.

Raymond [92] provides an introduction to the traffic analysis problem.
The paper covers both Chaumian and circuit-based mix networks and gives a
thorough overview of different attacks. Among others, it mentions the inter-
section attack, which exploits the fact that users tend to communicate with the
same communication partners (e.g. web servers or e-mail recipients) when-
ever they are online. By performing an operation similar to an intersection
of the sets of active users at different times it is likely that the adversary can
gain some information about communication relationships. Raymond also
mentions the tagging attack where an attacker slightly modifies a cell such
that it can be recognised later in the chain of mixes. Assuming the adversary
owns the first and last mix in a chain, this attack may make it possible to link
sender and recipient of a cell.

Zero-Knowledge Systems have provided documents with a security anal-
ysis of their Freedom Network [118, 5]. They point out several attacks their
system is vulnerable to. In particular, they state that since there is no cover
traffic or traffic shaping, an adversary capable of observing most of the Free-
dom Network should be able to learn quite a lot about communication rela-
tionships by performing statistical analysis. Dai [24] has pointed out that the
Freedom Network is vulnerable to a tagging attack where any two colluding
AlPs can easily learn whether they are the first and last AIP in a circuit. The
attack exploits the fact that a message authentication code (MAC) to check
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the integrity of a cell sent through the network is only used between the client
and last AIP. To execute the attack, the first AIP simply modifies the payload
of a cell it receives from the client and the last AIP waits until it detects a cell
that fails the MAC check.

Berthold et al. [12] discuss different methods of how to choose the route
through a mix network. In particular, they compare free-route mix networks
where every user picks the mixes she likes and synchronously operated mix
cascades where all users use the same mixes in the same order. The authors
assume a strong adversary that controls most mixes in the system and demon-
strate that under these circumstances, the mix cascade has advantages com-
pared to free-route mix networks. The main reason is that in a mix cascade,
cells arriving at the first mix are processed together in a batch and are only
forwarded when the complete batch has been received. The anonymity set
remains the same because the batches always contain the same cells from the
same set of users. A mix networks, on the other hand, works asynchronously
and every batch processed by a mix contains cells from different sets of users.
Assuming an attacker observes or owns most mixes and a sender sends mul-
tiple cells to a recipient, the adversary should be able to reduce the set of po-
tential senders of a cell by calculating intersections of incoming and outgoing
cells at the mixes. One can also say that although mix networks can support
many more users and therefore potentially have much larger anonymity sets,
the effective anonymity set may be smaller than in mix cascades assuming a
very powerful adversary. The paper also briefly discusses dummics and con-
cludes that dummies exchanged only between neighbouring mixes are of no
help against mixes controlled by an adversary.

An analysis of Onion Routing is given by Syverson et al. [122]. The
authors point out that an adversary controlling or observing both the first and
last mix along a circuit should be able link the communication endpoints. The
paper also proposes to use at least partial end-to-end padding in addition to
virtual link padding to significantly complicate the task for an adversary that
controls some mixes.

Back et al. [6] talk about traffic analysis and trade-offs in anonymity-
providing systems. They look closely at the Freedom Network and PipeNet
and come to the conclusion that designing such a system means finding a
balance between traffic analysis resistance, performance, resistance to DoS
attacks, and bandwidth cost. The paper contains one very important state-
ment that should always be kept in mind when aiming at designing a practical
anonymity-providing system: in anonymity systems, usability, efficiency, re-
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liability, and cost become security objectives because they affect the size of
the user base which in turn affects the degree of anonymity that is possible to
achieve. Simply spoken, this means that anonymity-providing systems should
aim at supporting as many users as possible because this means potentially
larger anonymity sets and therefore better anonymity.

Wright et al. [127] examine the vulnerability of anonymity-providing sys-
tems to the predecessor attack. The attack bases on a scenario where there is
no distinction between sender and mixes like in the Onion Routing local-COR
configuration [121], Tarzan (see Section 3.1.2), and Crowds (see Section 3.3,
although we do not consider Crowds as a mix network variation because of
the lack of layered encryption). The attacks requires that a subset of all mixes
is controlled by an adversary and that there are recurring sessions between the
sender and recipient, for instance a client that frequently connects to the same
web server or a sender that often sends e-mail messages to the same recipi-
ent. In addition, the attack requires that there is some information available
in the cells that allows the last mix in a chain to link the different sessions
of the same sender. According to the authors, this includes cookies, user
IDs, or e-mail addresses. The attack exploits the fact that assuming every
mix along a chain is picked randomly from the set of all mixes and the last
and one other mix along this chain is malicious, then the predecessor of the
first malicious mix in the chain is more likely to be the actual sender than
an intermediate mix in the chain. Carrying out this analysis over multiple
rounds allows to identify the sender with increasing probability. It should be
noted that the attack works always no matter how sophisticated the methods
employed by the mix network to resist traffic analysis are, but takes much
longer (more sessions are needed) in the latter case. In addition, the attack
is more difficult if there are more mixes in the system and if the percentage
of compromised mixes is smaller. Follow-up work by the same authors [128]
contains simulation results of the predecessor attack, which show the attack
times are significantly lower in practice than the upper bounds given in their
theoretical analysis. The paper also shows that choosing the mixes in the
chain non-randomly increases the resistance to the attack because choosing
always the same first and last mixes and not both are malicious does not al-
low the adversary to learn anything. Finally, and not directly related to the
predecessor attack, the paper discusses the intersection attack in a dynamic
environment where mixes join and leave. Again assuming that different ses-
sions can be linked by malicious last mixes in different chains, exploiting the
fact that different nodes are present at different times should eventually iden-
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tify the sender. To do so, the adversary also needs a complete list of all nodes
available at any time, which is exactly what is offered to every single node
in Tarzan and Crowds. Although very interesting and insightful, the practi-
cability of these attacks are questionable because linking different sessions to
the same sender is often impossible, for instance by carefully filtering HTTP
headers and cookies in the web browsing scenario. However, in certain situ-
ations or when only one or very few senders communicate with a particular
recipient or server, the attack is definitely of practical value.

A method to prevent long-ferm intersection attacks by using dummy traf-
fic is presented by Berthold et al. [11]. The authors propose that pre-generated
dummies are being sent to the communication partner (¢.g. a web server) dur-
ing the user’s offline periods. The simple approach would be a dummy server
that just generates traffic during the offline hours, but this requires too much
trust in the single service and the user would have to tell the server when to
send traffic and when not, since no dummies should be send during the user’s
online hours to not expose statistical significant variations in total traffic gen-
erated. Therefore, the authors propose a distributed database that contain
prefabricated dummies by all users. The distributed database publishes regu-
larly dummies and users pick them randomly. The databases themselves are
accessed via an anonymised channel. A user that wants to prevent her own
dummies from being processed simply picks her own dummies and does not
send them. Tickets similar as in Web MIXes (see Section 3.1.2) are proposed
to prevent an adversary from draining or flooding the distributed database.
The solution is very costly in terms of data and computational overhead and
the proposed design principles should mainly be considered as inputs for fur-
ther work to make such a scheme practical.

Serjantov et al. [112] analyse the different batching strategy of mixes.
The authors focus on the question if an attacker can manipulate cells entering
a mix such that the produced batch contains only one cell unknown to the
attacker. This may involve delaying or dropping incoming cells (a trickle at-
tack) or flooding the mix with attacker cells (a flooding attack). The analysis
shows that adding a “pool” to the mix and forwarding only a fraction of all
cells when the number of cells in the pool is above a certain threshold can
significantly improve anonymity. Diaz et al. [31] also examine the batching
strategies of mixes and present a generalised framework for expressing them.
The authors also propose a new batching strategy and name a mix employing
this strategy binomial mix. It is basically a timed pool mix that adapts the
number of cells to flush in each round to the traffic load. An advantage of this
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new mix is that it resists well to the flooding attack because it makes guess-
ing the actual number of cells in the mix difficult. In another paper [113],
Serjantov et al. present an analysis of the anonymity of a timed pool mix and
compare it with threshold pool mixes.

Kesdogan et al. [67] analyse the impact of the intersection attack. They
assume an anonymity-providing system that itself provides perfect untrace-
ability between incoming and outgoing cells (e.g. a mix or a mix cascade that
reorders and changes the encoding of the cells). There are a total of » system
users and every user has m communication partners. During every round, b
senders send b cells to n < b recipients. Note that always all & cells are pro-
cessed by the system, i.¢. there is no pool in the mix. The analysis shows the
number of rounds it takes for an attacker able to observe all incoming and out-
going cells to identify the m communication partners of a particular sender
with high probability. Not surprisingly, it takes longer if & or m get larger.
Although not mentioned in the paper, employing a more advanced batching
strategy that allows introducing long delays should significantly reduce the
practical impact of the attack.

Danerzis [25] examines mix networks with restricted routes. The idea is
that every mix in a large mix network is only connected to relatively few
other mixes, e.g. to 10% of all mixes. The author shows that the number of
mixes that should be included in a chain such that traffic is “mixed” as well
as in fully connected mix networks is logarithmically dependant on the total
number of mixes. In addition, an interesting result is that mix networks with
restricted routes are less vulnerable to intersection attacks because when pro-
cessing a batch, the probability that there is a cell sent out on any virtual link
is larger than in fully connected mix networks. Although the paper does not
investigate how the virtual links between mixes should be chosen in practice,
it is a valuable addition to the field because it shows there is a middle ground
between free-route mix networks and extremely restrictive mix cascades.

3.3 Techniques beyond Mix Networks

There are a few noteworthy techniques to get a certain degree of anonymity
that do not base on mix networks.
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3.3.1 Simple Remailers

Simple Remailers (also known as Type 0 anonymous remailer) are proxies
between sender and recipient that strip of headers from e-mail messages and
replace the original sender address with a pseudonym. One popular remailer,
anon.penet . fi, has been operational from 1993 to 1996. For Alice with
address alice@home . orgto send an e-mail message to Bob with address
bob@work . org, she sends it to anon . penet . £ i, which replaces Alice’s
address with, for instance, an7184@anon .penet . fi. This even allows
Bob to reply to Alice because anon.penet . fi remembers the mapping
between Alice’s real address and her pseudonym. Type O remailers do not
make use of encryption and the protection they offer from traffic analysis at-
tacks is quite low. In particular, the remailer offers a single point of attack and
in the case of anon . penet . £1, this was exploited in the Church of Scien-
tology vs. anon.penet.ficase [81]: in early 1995, somebody posted a message
toalt.religion.scientology viathe anonymous remailer. Scientol-
ogy representatives claimed the information of the message was stolen from
an internal Scientology computer and used Interpol and the Finnish police to
demand the true name of the poster of the message. Johan Helsingius, the
owner of the remailer, reluctantly complied, fearing that if he resisted, he
might be forced to give up his entire database that matched anonymous IDs
to true names. In 1996, Scientology once again demanded the names of two
anon.penet.fi users; as a result, Johan Helsingius shut the remailer down on
30st August 1996 [59]. At its peak, the remailer had 500000 registered users
and processed 10000 messages per day.

3.3.2 Proxy Forwarders

The Anonymizer [22] is a simple proxy-based service that offers anonymous
web browsing. The system works similar as a web proxy in the sense that
all data exchanged between the user’s browser and the web server are relayed
by the Anonymizer. The advantages of the system are that it is simple and
that the delay it introduces is relatively low compared to more sophisticated
systems. The disadvantages are that the level of anonymity it offers is quite
low and that the end-to-end relationship is not anonymous with regard to the
Anonymizer itself.

Crowds [95] collects users in a group (the “crowd”) to browse the Web
anonymously. Crowds can be considered as a peer-to-peer system because
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every user issues web requests and forwards data for others. However, it relies
on a centralised lookup service to inform all users about all other current users
in the crowd. A user is represented in a crowd by a process on her computer
called “jondo”. To join a crowd, the jondo contacts the lookup server to learn
about the other jondos. Similarly, the lookup server informs the other jondos
about the new participant. A user selects her own jondo as a web proxy. If
she wants to request a web page, the jondo forwards the request randomly
to another jondo in the crowd. Similarly, when a jondo receives a request
from another jondo, it makes a random choice to either forward the request
to another jondo or submit it to the server the request is intended for. The
reply from the server uses the same path in opposite order to find its way to
the requester. To the outside, the system provides anonymity in the sense that
any crowd user could have requested the web page. Crowds does not make
use of layered encryption but uses pairwise keys to encrypt the data between
two jondos. Crowds does also not employ fixed-length cells. As a result, an
eavesdropper can easily trace data and any two jondos along the same path
should easily be able to correlate data flowing through them. One important
feature of Crowds is plausible deniability because a user can always claim
she merely relayed the data for someone else. Likewise, a jondo never really
knows if its predecessor in a path is the original requester or not. A weakness
of the system is the lookup service that provides a single point of attack and
a potential bottleneck if a crowd gets large and its users change frequently.

3.3.3 Broadcast-Based Approaches

Chaum’s solution to the Dining Cryptographers Problem [18] provides infor-
mation theoretic sender and relationship anonymity. The basic idea is that all
participants continuously send random-looking data as broadcasts to the en-
tire group and only one of them is really transmitting a meaningful message.
The message is encrypted using the intended recipient’s public-key such that
no other recipient can read it. Although appealing because of its information
theoretic guarantees, it is of little practical value because participants are ar-
ranged on a logical ring and each participants must pre-share long random
bit-sequences with each of its two neighbours. In addition, only one partici-
pant can send a message at any time, and a malicious participant can easily
disrupt communication by sending data all the time.

P5 [116] is a peer-to-peer-based approach that aims at providing sender,
recipient, and relationship anonymity between nodes. P5 organises the nodes
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in a logical binary tree. Each node represents a broadcast group, which is de-
fined as the sub-tree of which the node is the root, and every group includes
all groups below it. Similarly, a user is not only member of the group that she
actually represents, but also of all other groups on the path to the root of the
tree. Recipients of messages are addressed by (one of) the broadcast groups
in which they reside. When a message is sent to a broadcast group, it is prop-
agated to all child-groups of that group. If the load gets too high, nodes drop
message. The rule is that messages sent to large broadcast groups (closer
to the root of the tree) are dropped with higher probability than messages
sent to smaller broadcast groups. This allows each individual node to make a
trade-off between communication latency, bandwidth usage, and anonymity
by sending messages to larger or smaller broadcast groups in which the re-
cipient resides: choosing a smaller group means less anonymity, but higher
probability (and therefore lower latency) that the message is not dropped. P5
produces significant data overhead because every node in P5 is always broad-
casting data to conceal her real sending of data and it is assumed that the
traffic is always at the maximum of what nodes can sustain.

3.3.4 Anonymous Publishing

Work on anonymous publishing has been strongly influenced by Anderson‘s
work on the Eternity Service [3]. The main goal of Eternity was not so much
anonymous publishing, but censorship-resistance in the sense that it should
be difficult for anyone to delete a document once it has been published. It
assumes there are several Eternity servers available where publishers up-
load documents together with the requested storage duration onto multiple
servers. Having done so, the publisher forgets about the servers where she has
placed the documents, which removes the capability for the publisher to eas-
ily delete all available copies of the document. Anderson argues that forget-
ting about the locations where the documents have been stored is required for
censorship-resistance, because if the capability to revoke a document exists,
an adversary has incentive to find who controls this capability and threaten
or torture that person until revocation takes place. To make it difficult for
an adversary to identify the servers on which a publisher publishes the docu-
ments, upload is done via an anonymous channel and payment for the service
is done with anonymous e-cash [15]. To download a document, queries are
done via broadcast and document delivery is achieved through anonymous
remailers. Anderson’s design leaves open many practical questions such as
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updating documents and fluctuations in the server population, but shows that
a censorship-resistant anonymous publishing system is possible.

The Rewebber Network [56] aims at anonymous publishing. Rewebbers
are proxies that relay web requests via multiple hops until they arrive at the
server containing the requested document. A locator is used to request doc-
uments and is similar to a reply block in Chaumian mix networks. Using
public-key cryptography and layered encryption, it guarantees that only the
identity of the next rewebber in the chain to use is revealed. The actual web
reply is sent back to the requester using the same chain in opposite direc-
tion. On the way back, each rewebber removes one layer of encryption from
the document itself (the keys to do so are included in the locater and are re-
membered when the locater is sent through the chain of rewebbers) until the
document is sent in plaintext from the first rewebber in the chain to the re-
quester. Except for the identity of the first rewebber, a locator only contains
random-looking data and is totally unrelated to the document it points to. To
solve this naming problem, the authors propose 7AZ (Temporary Autonomous
Zone'l) servers that provide the mapping of intelligible document names to
locators. Note that if the server storing the document deletes it, it is lost un-
til it is published again. However, since the document is encrypted multiple
times, it is hard for the server to decide why to delete a document at all if not
for storage restrictions. JANUS [29] is a proposal similar to the Rewebber
Network.

In Publius [124], the publisher encrypts a document with a secret key.
Using Shamir’s secret-sharing algorithm [114], the key is then split into 7
shares such that any & of these shares are sufficient to reconstruct the key.
Then the publisher picks » Publius servers and anonymously sends the en-
crypted document plus one share of the key to each of these servers. The
name of the document is also published together with the addresses of the
n servers, which forms an URL that can be used by potential readers to ac-
cess the document. To do so, a local web proxy recognises such an URL and
fetches all shares and the encrypted document, reconstruct the key, and de-
crypts the document. The main idea to encrypt the document but split the key
is for a server not being able to easily read the document and delete because
its operator does not like the content. In this sense, Publius does not only
provide publisher anonymity, but also resistance to censorship: as long as at
least k& shares remain available, the document can be retrieved. A drawback is

“http ://www.t0.or.at/hakimbey/taz/taz.htm
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that a server can find out what documents it is storing by searching for URLs
containing its own address.

Freenet [19] is a peer-to-peer file-sharing system. It has the property that
popular files are replicated on several nodes while infrequently requested files
eventually vanish. Both searching files and downloading them is anonymous
in the sense that the requester does not know where it downloads the file from
and the one offering the file does not know who the requester is. Nodes also
do not know what files they are storing because the files are identified with the
hash of the file name and the file itself is encrypted using the file name as the
key. To search for a document, the requester must know the precise file name,
builds its hash, and sends the request to the one of its current neighbours that
“most likely” stores it. If that node indeed stores the file, it sends it back
to the requester, otherwise it sends itself the request to the neighbour that is
most likely to store it. This continues until the file is found or a time-to-live
(TTL) counter reaches zero. One drawback is that the choice to drop a file is
a purely local decision, which implies the system cannot guarantee a certain
lifetime of a file.

The Free Haven Project [36] aims at deploying a system for distributed,
anonymous, persistent data storage which is robust against attempts by pow-
erful adversaries to find and destroy any stored data. The specific goals are
(1) anonymity for all parties, (2) accountability using reputation and micro-
payment schemes without sacrificing anonymity, (3) persistence in the sense
the publisher of a document determines its lifetime, and (4) flexibility, which
means the system functions smoothly as peers dynamically join or leave.
Although the project was not finished as of November 2003, it was put on
hold because fundamental problems must be addresses first'?. In particular,
a working reputation system seems to be very difficult to establish and docu-
ment retrieval based on broadcast is too inefficient.

Tangler [123] is another distributed document storage system that pro-
vides reader and publisher anonymity and censorship-resistance. The main
idea is to entangle different documents by transforming them into fixed-sized
blocks in such a way that many blocks belong to multiple documents. This
not only diffuses responsibility from particular servers for particular docu-
ments, but also makes replicating parts of other documents an inherent part
of publishing, and even gives a plausible cause for replicating other blocks in
the system.

12ht:t:p ://www.freehaven.net
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The goal of GNUnet [70, 7] is to provide practical anonymous and censor-
ship-resistant file-sharing. GNUnet is a peer-to-peer system and data are ba-
sically forwarded similar as in mix networks. But unlike in traditional mix
networks, the servers are also part of the system itself. This implies there are
no easily identifiable “edges™ and attacking the system at the edges (see Sec-
tions 2.2.3 and 2.3.3) is more difficult. The intended practicability of GNUnet
has caused the designers to find a reasonable trade-off between anonymity and
efficiency. For instance when a reply is sent back to the requester, it is pos-
sible to short-circuit two nodes to circumvent a highly loaded node along the
path. This makes GNUnet more vulnerable to attacks, but the designers be-
lieve this is worth the improved performance. GNUnet also makes trade-offs
when looking at censorship-resistance, where some resistance is sacrificed
for improvements to search for and find documents.

3.4 Other Applications

Besides techniques to exchange data anonymously, there have been proposals
for other applications that often rely on an underlying anonymous communi-
cation infrastructure.

Chaum et al. [15] proposed untraceable electronic cash. Alice can go to
a bank, withdraw some digital coins from her account, and spend the money.
Later, when the merchant takes the money to the bank, the bank checks if
it has issued the coin earlier and if the coin has not been spent before. The
trick is that the bank cannot link the coin it receives from the merchant to
Alice, since the coin was blinded by Alice when the bank issued it, using a
technique called blind signatures [17]. Untraceable electronic cash was never
widely accepted, mainly because of its reliance on the cooperation of banks
and software wallets that were difficult to use.

Low et al. [71] propose Anonymous Credit Cards. The idea is that a cus-
tomer has two accounts in different banks. The first bank knows the person’s
identity whereas the second does not (e.g. a numbered Swiss bank account).
Since the first bank knows the person, it is willing to grant her credit. The
second bank is not willing to grant the person credit, as it does not know her.
However, on the person’s request, the first bank agrees to put credit into the
anonymous account at the second bank. When the person pays, she uses a
credit card for her account at the second bank. The bank checks the person’s
credit and — if she is credit-worthy — authorises the payment. Eventually, the
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second bank sends a bill to the first bank, which sends a bill to the person.
This separates the information such that no party knows the identities of both
customer and merchant.

The Lucent Personalized Web Assistant (LPWA) [53] provides its users
with aliases where each alias consists of an alias user name, alias password
and alias e-mail address. The LPWA acts as a proxy and whenever the user
has to submit user name, password, or the e-mail address, he uses predefined
two character escape sequences (\u, \p or \@), and LPWA replaces them
with the appropriate alias. The LPWA provides a simple and effective way to
generate and use consistent pseudonyms.

Rennhard et al. [91, 104] propose a system to enable Pseudonymous E-
Commerce. Using different components such as pseudonymous certificates
and pseudonymous credit cards (using a protocol called Pseudonymous Se-
cure Electronic Transaction [101]), the system allows a customer to browse
through an e-shop, select goods, and pay the goods with her credit card such
that neither the e-shop operator nor the credit card issuer nor an eavesdropper
is able to get any information about the customer’s identity. The system also
guarantees that during the credit card payment process, none of the involved
parties can act dishonestly without being detected.

The Secure ANonymous GRoup InfrAstructure (SANGRIA) [125, 126]
proposed by Weiler enables secure and anonymous group communication.
Her work combines traditional unicast-based approaches for privacy with au-
thenticated and encrypted group communication. Thereby, only users who
fulfil certain conditions are allowed to join the secure anonymous group, non-
members of the group cannot understand the data, and the identity of a mem-
ber cannot be uncovered by outsiders of the group. Additionally, a member
may hide its identity from other group members.

3.5 Economics of Anonymity and Reputation

Two parties interested in keeping the content of their communications secret
can casily do so by employing appropriate cryptographic measures. With
anonymity, it is different because anonymity cannot be created by the sender
or recipient. Anonymity must be provided be some third party, and the ques-
tion about who could be interested to do so arises. One possibility is to pay
mixes for the service they provide, and Franz et al. [48] have introduced and
analysed different protocols for payment of an anonymity service.
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Acquisti et al. [2] have looked at the incentives for participants (as senders
or mixes) in mix-like anonymity services. There are some noteworthy re-
marks in that paper. For instance, before high-sensitivity users (those that
really want good anonymity) join a system, there must already be several
low-sensitivity users in the system to provide the necessary noise for good
anonymity. Also, weak security parameters (small batches, lower latency)
may actually provide stronger anonymity by attracting more users. The au-
thors also states that high-sensitivity users have incentive to run mixes them-
selves to be certain the first mix in their chain is honest.

Other work targets at increasing the reliability of mix networks. Using
reputation systems [35, 37] should enable users to use chains of mixes that
will succeed in delivering a message with high probability. Although still
in their infancy, such ideas may eventually help to increase the reliability
of practical mix networks because they result in far less overhead than pro-
posals aiming at giving provable guarantees about a system’s robustness (see
Section 3.1.1).

3.6 Measuring Anonymity

Two independent works by Diaz et al. [32] and Serjantov et al. [111] propose
metrics to measure anonymity. The main argument is that the traditionally
used anonymity set does not take into account potentially different probabili-
ties of different members of the anonymity set actually having sent or received
a cell. Both proposed measures are similar and base on Shannon’s definition
of entropy [115]. The metrics are well suited to analyse the anonymity of a
single Chaumian mix or simple systems based on strict assumptions, but it is
likely that they provide only a starting point to develop a more sophisticated
anonymity metric that is able to take into account the changing state of practi-
cal systems over time, for instance users or mixes that are joining and leaving
or links that are temporarily blocked. Due to their early development stage,
we do not make use of these metrics in this thesis.

3.7 Summary

In particular since the early 1990s, a lot of work has been conducted in the
field of anonymity, including work on systems to enable anonymous com-
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munication and publishing, analysis of and attacks against proposed systems,
anonymous payment methods, studies of the economics of anonymity, and
how to measure anonymity.

With the notable exception of Cypherpunk remailers, Mixmasters, and
the Anonymizer, none of the proposed systems has been available to the
broad public for a long period. In particular, there is no sophisticated sys-
tem based on mix networks to enable anonymous low-latency Internet ac-
cess in widespread use as of today; either because they failed for economical
reasons (Freedom), never made it beyond a limited user trial phase (Onion
Routing, JAP, Anonymity Network), or were never implemented or deployed
(PipeNet, Tarzan). We therefore conclude that none of these systems was re-
ally well suited or optimised to provide practical anonymity for a large num-
ber of users. Considering all the attacks against and analysis of systems in
Section 3.2, we argue that finding the optimal design for such a system is
closely associated with finding a reasonable trade-off between usability and
protection from attacks. We will analyse this more closely in the next chapter.
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Chapter 4

A Detailed Analysis of Mix
Networks

In this chapter!, we perform an analysis of mix networks. We focus on circuit-
based mix networks that aim at supporting low-latency applications, although
several of our findings apply to Chaumian mix networks as well. We first dis-
cuss why anonymity is so difficult to achieve. Afterwards, we provide a quan-
titative analysis of mix networks to estimate how big a mix network must be
to support a certain number of users and to analyse the costs of dummy traffic
overhead. Then we give arguments for what we believe is a realistic threat
model for different mix networks. We also analyse different mix network ap-
proaches in light of our realistic threat model and derive conclusions which
approaches are better suited than others to provide practical anonymity for a
large number of users.

4.1 Why Anonymity is so Hard

We base our analysis on a client/server scenario where the client contacts
a server anonymously. We assume the goal of an attacker is to learn who
communicates with whom by means of traffic analysis. With mix networks,
there are different kinds of attackers that can be described with the following

I'The work in this chapter has been published in a refereed paper [99]
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three attributes:

e Passive vs. Active. Passive attackers monitor the cells exchanged be-
tween nodes over virtual links and the data exchanged between the last
mix in the circuits and servers. Active attackers have all capabilities of
passive attacker, but in addition, they can insert, modify, duplicate, or
delete the data exchanged between two nodes or the last mix in a circuit
and the server.

e Fxternal vs. Internal. External attackers do not operate mixes them-
selves. Internal attackers control one or more mixes, for instance by
running them themselves, which means an internal attacker knows the
mapping of incoming to outgoing data at the mixes he controls and also
which of the cells originating or ending at these mixes are real data cells
and which are dummies.

e Partial vs. Global. A global attacker can attack the entire system, while
a partial attacker can attack only parts of the system.

Basically, any combination of these attributes is possible. In addition, an
attacker can be both active and passive and both internal and external at the
same time. For instance, an adversary may operate a few mixes himself and
modify the data flowing through them, which makes him an internal active
attacker. At the same time it could be possible that he manages to passively
observe a few other mixes, which makes him a passive external observer. In
addition, some combination of attributes enable the adversary to break any
mix network. For instance, the global internal attacker that operates all mixes
can trivially relate all communicating endpoints. Note also that every user
of a mix network is an active attacker because she can observe and manipu-
late all cells she exchanges with the the first mix the circuits she establishes.
However, this alone does not tell her anything about the anonymous commu-
nications of other users.

In the remainder of this section, we analyse two prominent attackers, the
global passive external attacker and the partial active internal attacker. We
examine the measures needed to defeat these two adversaries. Our method-
ology is as follows: we start with a basic circuit-based mix network (see
Section 2.3) that does not make use of any cover traffic and show why this
does not provide protection from certain traffic analysis attacks. Then we in-
crease the resistance of the mix network step-by-step by employing different
dummy traffic schemes, while demonstrating that even complex cover traffic
schemes are not enough to protect from sophisticated traffic analysis attacks.

Major Data Exhibit 1008
Page 85 of 307



66 4 A Detailed Analysis of Mix Networks

4.1.1 Global Passive External Attackers

The global passive external attackers (sometimes also called global eaves-
dropper or simply global passive attacker) can observe all data exchanged
over every virtual link between two nodes and between mixes and the servers.
As already mentioned in Section 2.1, observing the data on a virtual link
means observing them somewhere on the physical route between two nodes.
Similarly, monitoring the application data on the route between the last mix
and the server means monitoring them somewhere on that physical route.
Therefore, an adversary capable of observing all data entering and exiting
all mixes is a global eavesdropper because it enables him to monitor all data
exchanged between clients and mixes, all data exchanged between any two
neighbouring mixes, and all data exchanged between mixes and servers. We
briefly analyse the possibilities of such an attacker and the measures mix net-
works can employ to beat him. First, we look at attacks on a single mix and
Figure 4.1 illustrates the basic scenario.

b) with dummy traffic

Figure 4.1: Traffic analysis at a mix

We use an example with six mixes (m1—mg). User uy uses client ¢; and
is is connected to server sy via mixes mq, mg, and ms. User u, uses client

Major Data Exhibit 1008
Page 86 of 307



4.1 Why Anonymity is so Hard 67

¢y and is connected to so via my, mg, and my. Although there should be
many more users in a real mix network, the case with two users serves well to
explain the basic attacks and defences. Our basic mix network makes use of
fixed-length cells and layered encryption. The mixes may delay and reorder
incoming cells or data they receive from the servers for a short time. However,
as we are looking at near-real-time applications, cells must be sent out quickly
(i.e. within a few tenths of a second after the corresponding data have been
received) and if there is only little traffic, there may be no data from other
users available to reorder anything. A first attack is trying to follow the data
as they traverse a mix, as depicted in Figure 4.1(a). In our example, m ¢ is used
by both users, and let’s assume ¢; is sending three cells to s1, ¢ is sending
two cells to s3, and the cells happen to arrive at mg at nearly the same time.
Although an attacker cannot correlate the cells entering and exiting m ¢ based
on their length or encoding, he can still easily deduce that the data from m
is forwarded to ms and the data from ms is forwarded to m, because of their
different data volumes (three cells versus two cells). This corresponds to a
combined application data volume and timing attack (see Section 2.3.3).

Using cover traffic that is indistinguishable from the real cells, this attack
can be defeated. In Figure 4.1(b), ms employs constant flows of cells with
all its neighbours in both directions. An observer at mg has no way to tell
which of the cells entering and exiting the mix are real ones (the black ones)
and which are just dummies (the gray ones). As a result, there is nothing to
correlate as the application data volumes are hidden in the constant flows of
cells.

Since the adversary can no longer trace cells as they traverse a mix, he can
try to correlate the data at the endpoints. Knowing that each mix will delay
the data for at most a fraction of a second, cells sent from a client to the first
mix must result in data exiting the mix network towards the server at some
other mix within at most a few seconds. Figure 4.2(a) illustrates the attack.

The attacker no longer looks at any traffic exchanged between mixes, but
only sees three cells entering the mix network from ¢4 and two from cs.
Within some seconds, he sees data exiting at ms that have a length corre-
sponding to about three cells and data exiting at m4 with a length of about
two cells. Note that the fixed-length cells used on the virtual link between
the clients and the mixes are not visible on the route between the last mix
and the server, because the last mix just forwards the contents of the cells,
i.e. the application data to the server. Nevertheless, this combined end-to-end
application data volume and timing attack works well because the amount
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b) with dummy traffic

Figure 4.2: End-to-end Traffic analysis

of data entering the first mix and exiting at the last mix are closely related.
Figure 4.2(b) shows the countermeasure to this attack. The route between the
last mix and the server is not part of the mix network, and there is nothing we
can do there without requiring the servers to participate in the mix network
protocol. But we can introduce cover traffic on the virtual links between the
clients and mixes. Like between mixes, we use constant flows of cells on all
virtual links between clients and mixes in both directions. This removes any
correlation between the data entering the first mix and leaving the last mix.

However, there are still attacks possible. One is the long-term intersection
attack (see Section 3.2), which also correlates events at the endpoints but over
a long period of time. It makes use of the fact that every user has a certain
behaviour when being online, e.g. most Internet users download similar web
pages whenever they are hooked up to the Internet. As an example, assume
uy sitting at ¢; regularly downloads data from sy, and s; happens to be a web
server that is visited only by a few Internet users. So even if the combined
end-to-end application data volume and timing attack described above does
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not work when observing just one Internet session of a user, it could work
when correlating the patterns observed during 100 sessions, because ¢ 1 con-
tacts s1 in 90% of her sessions. This attack is of course much more difficult
to carry out when the server is visited by a huge number of people such as
www.cnn.com. But who is interested in learning who visits www.cnn.com?
An adversary can learn much more about an individual by knowing what “ex-
otic” web servers she visits. But even this attack could be beaten, at least in
theory: by making sure that users are always connected to the mix network
and always exchange dummy traffic with their first mix. But this is an unre-
alistic assumption even if users want to be online all the time: computers and
programs crash from time to time and Internet connections are not working
all the time due to congestion or ISP failure. To be really resistant against
the long-term intersection attack, mix networks would have to be brought to
a temporary halt whenever the cell stream between any client and its first
mix stalls to not leak any information to the global observer, as proposed in
PipeNet (see Section 3.1.2), a mix network operated synchronously. Assum-
ing a mix network with 100 mixes, it would be extremely difficult to distribute
the information about a stalled virtual link between a client and a mix quickly
enough to all other mixes. In addition, if 100 users were connected to each
of the 100 mixes, the probability that all 10000 virtual links between clients
and mixes are working at any time would be virtually zero in today’s Inter-
net. So even if the mix network could be brought to a full stop, it would
be of little practical use because it would be halted most of the time. Addi-
tional problems of PipeNet with DoS attacks have already been discussed in
Section 3.1.2.

There is a special case of mix networks that makes it easier to defend
against the long-term intersection attack: the mix cascade operated in the way
as proposed by the developers of the Web MIXes project (see Section 3.1.2).
Their mix cascade is operated synchronously and in a mix cascade, every user
uses the same set of mixes in the same order. For instance, we could use 25
mix cascades with four mixes each instead of a mix network with 100 mixes.
This would also have the advantage that the different mix cascades could
have different rates for the constant traffic flows on the virtual links between
clients and the first mix in the cascade they use. Slow dial-up users could
connect to a 32 Kb/s cascade and users with fast DSL connections could use
one of the 512 Kb/s cascades. Bringing a synchronous mix cascade to a halt
if any virtual link between a client and the first mix in its cascade is quite
simple because all users of a cascade are connected to the same first mix
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in the cascade and cells are only forwarded when all clients have sent one
or a certain number of cells. Using the same example as above with 10000
users and 100 mixes, we can arrange the 100 mixes in 25 mix cascades of
four mixes each. Consequently, each cascade must support 400 users. Note
that this also means an anonymity set that is 25 times smaller than above
because if a particular server is contacted by the last mix in a cascade, all users
of the other cascades cannot have been the initiator of this communication
relationship. But even with 400 clients per cascade, the probability that none
of these 400 virtual links to the first mix has connection problems at any
time is small. In addition, some problems remain: as with PipeNet-like mix
networks, any user or mix can bring the cascade down by stopping sending
cells.

But most of all, the huge amount of dummy traffic exchanged between
clients and mixes in both directions consumes a lot of bandwidth at the mixes,
as we will point out in Section 4.2. In general, the concept of dummy traffic
to increase anonymity is still not really understood. One question is if there
are “cheaper” ways than employing fixed streams of traffic between clients
and mixes to defeat the combined end-to-end application data volume and
timing attack. Probably not, because anything that is adapting to the user’s
behaviour in any way leaks some information [11].

4.1.2 Partial Active Internal Attackers

The partial active internal attacker controls a subset of the mixes, which opens
a new spectrum of attacks. In particular, dummy traffic can no longer be gen-
erated on a per-virtual link basis between two nodes because unlike an exter-
nal attacker observing a mix, the internal attacker knows which of the cells
the mixes he controls send and receive are dummies. Figure 4.3 illustrates
how this can be exploited by an adversary controlling two mixes, m and ms,
which happen to be the first and last mix used by ¢ 1.

In Figure 4.3(a), m; knows which cells on the virtual link to ¢, are real
data, which means m; and ms can carry out a combined end-to-end appli-
cation data volume and timing attack to break u;’s anonymity, just like in
Figure 4.2(a). To resist this attack, dummies have to be sent from the client
through the whole chain of mixes and back, as illustrated in Figure 4.3(b).
As a result, m; is no longer able to distinguish between ¢4 ’s real data and its
dummies and the application data volume attack does no longer work.

Unfortunately, even this cover traffic scheme is not enough to defeat the
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b) with end-to-end dummy traffic

Figure 4.3: End-to-end Traffic analysis by an internal attacker

active internal attacker. If m; briefly blocks the constant cell stream from
c; several times and checks with ms if it has noted a corresponding brief in-
terruption of an incoming cell stream shortly afterwards, they can conclude
with high probability that c; communicates with s;. In fact, introducing such
timing signatures in the cell streams is always possible for an adversary con-
trolling some mixes, independent of the actual cover traffic scheme that is em-
ployed. Since dummy cells would only give the adversary more possibilities
to introduce timing signatures, using dummies at all could even increase the
adversary’s chances to break the anonymity of a user. Indeed, synchronous
designs could even cope with this attack, but practical issues refrain us from
making use of them in low-latency systems.

4.1.3 Summary

Providing protection against very powerful attackers is extremely difficult.
Cover traffic certainly helps to increase the protection from external observers
that cannot continuously monitor the entire mix network or that are only capa-
ble of observing a subset of the system. However, a global observer using the
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long-term intersection attack can most probably beat every system because
there are always periods where clients cannot keep up a constant flow of traf-
fic with the first mix in their chain. A global observer with additional capa-
bilities of an active external attacker will be even more successful because
he can block virtual links without having to wait for such failures to happen
naturally. Stalling the whole system when any virtual link fails is simply not
an option in a practical system for low-latency applications. Internal attack-
ers could theoretically be beaten with end-to-end dummies, but since internal
attackers controlling mixes can always be assumed to also have active capa-
bilities, the adversary should again succeed by briefly blocking cell streams
at the first mix and recognise this at the last mix (or vice versa) if he controls
both the first and last mix in a chain. Introducing such timing signatures in
the cell streams is always possible independent of the cover traffic scheme,
which implies that dummy cells are in general of little value against internal
active attackers. One also must remember that if there are internal attackers
present in a system, perfect anonymity is not possible even in theory, because
even in a perfectly balanced and synchronous system, it can always happen
that all mixes along a chain are compromised.

4.2 A Quantitative Analysis of Mix Networks

In this section, we analyse how many data the mixes in a mix networks must
handle to serve a certain number of web users. The reason for this is to learn
more about the costs in terms of bandwidth of different cover traffic schemes
compared to the case where no dummies are used at all. Note that we are only
looking at the data handled by the mixes because from the point of view of
the operator(s) of a mix overlay network, this directly determines the band-
width costs they have to pay. We are not comparing the costs of anonymous
communication with direct client/server interaction because besides the costs
to operate the mixes, mix networks produce additional load on the whole
Internet infrastructure due to the longer paths the data travel between the end-
points of a communication relationship. We use web browsing as the example
application and for simplicity, we only take web requests and replies into ac-
count, leaving out any overheads resulting from underlying protocols or the
mix network protocol itself.

We assume a mix network consists of m mixes m;, 1 < 7 < m that are
connected to the Internet with bidirectional bandwidths b; b/s. We define the
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capacity c of a mix network as the total number of bits all mixes together can
send or receive in a second:

i=1

Note that it is reasonable not to distinguish between sending and receiving
capacities because mixes always send and receive approximately the same
amount of data: they get data from clients and forward the same amount of
data to the next hop, they receive data from a mix and forward them to another
mix, or they get data from a mix and forward them to a server. Consequently,
if a mix has an asymmetric Internet connection, then the lower bandwidth
determines the amount of data it can send and receive.

4.2.1 No Dummy Traffic

If no dummy traffic is used, then the whole capacity is devoted to transport
real data. We analyse how many users a mix network with a given capacity
can support. We assume that on average, each user sends d ; bits and receives
d, bits per day through ! mixes. If the application is e-mail, data are only sent
and d, = 0. If the application is web browsing, d, is about ten times a big as
ds. In any case, [ mixes receive d bits in one direction, and ! mixes receive
d, bits in the other direction during 24 hours (86400 seconds). Similarly, {
mixes send d bits in one direction and / mixes send d, bits on the way back.
On average, each user is responsible that [ - (ds + d,) bits must be sent and
received by the mix network. This means that without dummy traffic, the
load on the mix network is symmetric, i.e. the total amount of data sent or
received by all mixes is the same. We denote d = d; + d,. as the total amount
of data produced by each user during 24 hours. The minimum capacity a mix
network must offer to support » users, each of them producing d bits during
a day can therefore be computed as

n-l-d
Conin. = 26100 [b/s]. “4.2)

Transforming this equation, we get the maximum number of users a mix
network can handle given its capacity:
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86400 - ¢
maz = ———— 43
n 7 (4.3)

As an illustrative example, we assume we want to support 100000 web
users. To estimate the amount of data generated by the users, we use results
from Internet traffic pattern studies. According to Nielsen//NetRatings> and
Cyberatlas®, the average web user had about 25 web sessions per month dur-
ing September 2003. A web session is defined as a continuous series of user
activity via URL requests. A session is considered ended if no requests for
URLSs have been made and if no corresponding applications (for instance a
web browser) have been running for one minute*. The average duration of a
web session is about 33 minutes and during a single session, about 50 web
pages are completely downloaded. To determine the amount of data that is
generated to download a single web page, we use appropriate values from sci-
entific literature. We assume web requests to be 300 bytes with a probability
of 0.8 and 1100 bytes with a probability of 0.2 [72]. This results in an average
web request length of 460 bytes. The lengths of web replies follow a Pare-
toll distribution with parameters & = 800 and o« = 1.2 [44], which results
in an average size of 12 KB. The number of embedded objects also follow a
Paretoll distribution, this time with parameters £ = 2.4 and oo = 1.2 [44],
resulting in an average of four embedded objects per page. Consequently,
requesting a web page results in sending 2300 (= 5 - 460) bytes, and the size
of a web page is 60 (= 5 - 12) KB on average.

Summarising these data, the average user sends out 115 KB and receives
3 MB during each session. With 25 session during September 2003, the aver-
age data sent and received per day are 96 KB and 2.5 MB, respectively. For
ease of the further analysis in this section, we slightly modify the usage pat-
tern of the average user and assume every user has one session of 30 minutes
per day. During a session, 115 KB are uploaded and 3 MB are downloaded.
Note that these data are also similar to the outcome of WhiteCross/NARUS
study” that the average web user generates about 2.5 MB of data per day. We
further assume the average number of mixes in a circuit to three, which is a

http://www.nielsen-netratings.com
3http://cyberatlas.internet. com/big picture/traffic_patterns
4http://ereportsacn.netratings.com/help/
Glossary%200f%20NetView$20Terms .pdf.
Shttp://www.whitecross.com/white-papers/wnfwpll102.htm

Major Data Exhibit 1008
Page 94 of 307



4.2 A Quantitative Analysis of Mix Networks 75

reasonable compromise between protection from attacks and end-to-end de-
lay. Based on these assumptions and realising that every user generates 3115
KB per day, which is equivalent to 24920 Kb, the minimum capacity of the
mix network according to (4.2) must be

~ 100000 - 3 - 24920000
Cmin = 86400

~ 87 Mb/s.

According to (4.1), this mix network could be built with 87 mixes capable
of handling 1 Mb of data per second in both directions, or 9 mixes with a
10 Mb/s connection to the Internet. Note that there is no requirement for
homogeneous mixes, i.e. the mixes can have different capabilitiecs. However,
the figures are based on the assumption that all traffic is equally distributed
over time and that the circuits are chosen in a way that optimally distributes
the traffic according to the capabilities of the mixes. In practice, this is never
the case and the effective capacity needed to support 100000 users is probably
several times bigger than the minimum capacities we computed according to
(4.2). Nevertheless, the minimum capacity provides a good measure for the
absolute minimum that is needed to support a certain number of users.

4.2.2 Dummy Traffic between Clients and Mixes

With dummy traffic, the amount of data certainly increases, but by how much?
We have seen in Section 4.1.1 that dummy traffic employed only between
mixes does not help much because of end-to-end traffic analysis. So let’s look
at the case with constant bidirectional cell flows on the virtual links between
clients and mixes. The capacity ¢ is no longer exclusively available for real
data, but some of it must be devoted to handle the dummy data. We therefore
divide the capacity into a part ¢, to handle the real data and a part ¢4 to handle
the dummy data.

Similar as in the case without dummy traffic, each user is responsible that
[ - d bits of real data must be sent and received by the mix network. But now
we also have dummy traffic that is exchanged with the first mix. If ¢, is the
average uptime of a client during 24 hours and r ; is the rate at which data are
exchanged between the users and their first mix, then the number of dummy
bits received by the first mix is rq4 - ¢4, — ds. The reason for subtracting
ds is that the real data is sent within the constant cell stream and does not
account for the dummy data overhead. On the way back, the first mix sends
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74 -tup —d, bits of dummy data to the client in addition to the real data. So the
dummy traffic sent and received by all mixes together is not symmetric. Since
the load stemming from the real data is unchanged compared to Section 4.2.1,
it follows that the total traffic sent and received by the whole mix network is
also not symmetric. If ds < d,, then the whole mix network receives more
data than it sends and vice versa. As a result, the minimum capacity and the
maximum number of users given the capacity are defined as:

- n
fmin = Q6400

(l -d +7rg- tup - min(ds7 d’f’)) [b/s] (44)

86400 - ¢
l-d+rg -ty —min(ds, d,)

4.5

nmaz

We can easily decompose (4.5) into the minimum capacity for the real
and the dummy data:

n n-l-d

Cmins = geioet = Seaoo 1/°) (4.6)

(rq - tup —min(ds, dy)) [b/s] 4.7

n
Cmind = R6400

Unsurprisingly, the part for the real data equals the minimum capacity
in (4.2) where no dummy traffic is used. We use the same example with
web users as above, assuming every user is online during 30 minutes (1800
seconds) a day and exchanges data with the first mix at 64 Kb/s. According
to (4.5), the minimum capacity of the mix network is

100000
Cmin,30m = (3 - 24920000 + 64000 - 1800 — 920000)
' 86400

219 Mb/s.

Q

The capacity for the real data remains the same as in the example without
any dummy traffic, i.e. ¢pyin » & 87 Mb/s.

As discussed in Section 4.1.1, users must be online all the time to beat
long-term intersection attacks. So cover traffic should not only be generated
during one but 24 hours a day. In this case, the minimum capacity increases
to
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Cmin,24h = % (3 - 24920000 + 64000 - 86400 — 920000)

~ 6.49Gb/s.

According to (4.1), this could be provided by 649 mixes with a 10 Mb/s
connection or 66 mixes with a 100 Mb/s connection each. Note that since
we did not take dummies between mixes into account in (4.5), the actually
needed capacity would be even higher.

4.2.3 End-to-End Dummy Traffic

Going even further, we can defeat internal attacks where the adversary con-
trols the first and last mix of a chain by introducing end-to-end dummies (see
Section 4.1.2). In this case, the constant cell streams go all the way through
the whole chain of mixes and back. Each user is responsible that r 4 - £, bits
are sent to [ mixes in the forward direction and to { — 1 mixes on the way back.
In addition, d, bits are sent from the contacted server (e.g. the web server) to
the last mix in the chain. Similarly, r4 - « are sent by 2{ — 1 mixes and d
is sent by the last mix to the contacted server. Here again, the total amount
of data sent and received by all mixes together is not symmetric. If ds < d,,
then the whole mix network receives more data than it sends and vice versa.
The minimum capacity and the maximum number of users given the capacity
are defined as:

- n
fmin = Q6400

(20 —=1)-7rq-typ + max(ds,d,)) [b/s] (4.8)
86400 - ¢
(20 = 1) -rq - tup + max(ds, d,)

4.9

nmaz

Taking into account that the minimum capacity for the real data is the
same as in (4.7), we can compute these capacities as follows:

n-l-d
= 4.10
6100 /¢l (4.10)
‘ o ((20=1) rg - typ + max(ds,d,) —1-d)
Cmin,d = 36400 [b/s] “4.11)

Cmim,r
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Using again the same example with web users as above, the minimum
capacities assuming every user is online for 30 minutes or 24 hours a day are

100000

Cmin,30m — 86400
100000

86400

(5 - 64000 - 1800 + 24000000) ~ 695 Mb/s

(5 - 64000 - 86400 + 24000000) ~ 32.03 Gb/s.

Cmin,24h

If every user is online all time, we need a mix network consisting of at
least 321 mixes with a 100 Mb/s connection each.

4.2.4 Mix Cascades

For completeness, we also briefly analyse mix cascades. We assume that the
mixes build % fixed cascades of length /, and each cascade handles »/k of all
users. If no dummy traffic is used, then each user is responsible for sending
d, bits to the first mix in a cascade and d, bits on the way back. The minimum
capacity of the first mix in a cascade to support n/k users is

o
st mizmin = ——— [b/s].
C1st mix,min ]6400 [ /S]

Every mix in the cascade handles the same amount of data, so the capacity
of all cascades together to support » users and the maximum number of user
that can be handled are defined by

n-l-d
Cmin = oS [b/ 5] 4.12)
86400 - ¢
mar - 4.13
n 1 (4.13)

Comparing these equations with (4.2) and (4.3), we can see that without
dummy traffic, mix networks and mix cascades are equally efficient.

Introducing cover traffic on the virtual links between the clients and the
first mix in a cascade, the first mix receives d bits of real data and r 4 - t.,p — d;s
bits of dummy data. Similarly, it sends d bits of real data and r g - ¢, — d
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dummy bits. The needed capacity of a single first mix and the number of
users it can serve given the capacity are

n

Clot mimmin = 8£m¢d+m.%p_mmu&¢w[wﬂ(4M)
86400 - ¢

d+7rq - tyy —min(ds, d, )’

4.15)

T1st miz,max

For the other mixes in every chain, the capacity and the users given the
capacity can be computed as follows:

g

Cpnd_tth mizmin = geros [6/9] (4.16)
86400 - ¢
Nond 1tk miz maz — T 4.17)

So the total minimum capacity of all mixes is & - (¢ist piz min + (I —
1) - Cond_jeh iz min ), Which is exactly the same as the capacity in the case
of a mix network with dummy traffic on the virtual links between clients and
mixes (4.5). The difference to mix networks is that the capacity of the first
mix in each chain must be much bigger than the capacity of the others. Using
our web browsing example and assuming that the 27¢ .. . {*" mixes all have a
capacity of 1 Mb/s, each of them can handle

86400 - 1000000
Ngna_jth mizman =  ———————— 7 3467
) 24920000

users according to (4.17). This also means that we need & = 100000/3467 =~
29 chains to serve 100000 users. Each user is online during 30 minutes a day,
which means that using (4.15), the capacity of the first mix in every chain
must be

3467
e = 2290 194990000 4+ 64000 - 1800 — 920000
C1st mi, £6200 + )

5.59 Mb/s.

Q
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So a system consisting of 29 mix cascades where 29 mixes have a capacity
of 5.59 Mb/s and 58 mixes have a capacity of 1 Mb/s is one possible minimum
configuration to support 100000 users.

With end-to-end dummy traffic, the capacities of the first { — 1 mixes
in each chain is the same, as is the number of users they can handle if the
capacity is given:

n

Cist (1—1)th mixz,min — SGZOO “2-1yg “tup [b/s] (4.18)
86400 - ¢
Nyt (1—1)*h miz,maz  — Tratu 4.19)

The capacity of the last mix and the number of users it can handle at most
are as follows:

Cith miz,min  — ﬁ (rd . tup + max(ds7 d'r’)) [b/s] (420)
86400 - ¢
th mi = 4.21
Tyth miz,max 7 - tup T+ ma:c(ds, dr) ( )

Adding up the capacities of all mixes in all cascades, we can see again that
mix cascades have the same minimal capacity requirements as mix networks
when end-to-end dummies are used.

4.2.5 Summary

Table 4.1 summarises the various cases we discussed above and also gives ex-
ample configurations and the dummy traffic overhead for a system to support
100000 users.

To summarise, dummy traffic significantly increases the minimum capac-
ity of mix networks. While accepting being vulnerable to the long-term in-
tersection attack introduces a data overhead of a “only” a few times the real
data, the measures to resist this attack are extremely costly in terms of data
overhead. The minimum capacities of mix cascades are the same as those
of mix networks but the capacities of either the first mix (if dummy traffic is
used only on the virtual links between clients and mixes) or the last mix (if
end-to-end dummies are employed) differ from the others. Especially in the
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Table 4.1: Minimum capacities to support 100000 users (web browsing, 5

MB per day and user).
dummy online time | capacity | example dummy
data per user needed | configurations traffic
rate (b/s) | (hours/day) (Mb/s) overhead
— — 87 mix network: —
87 mixes with 1 Mb/s
29 mix cascades:
87 mixes with 1 Mb/s
64000 0.5 219 mix network: 152%
(between 22 mixes with 10 Mb/s
client and 29 mix cascades:
first mix) 29 mixes with 5.59 Mb/s
58 mixes with 1 Mb/s
64000 0.5 695 mix network: 699%
(end- 70 mixes with 10 Mb/s
to-end) 27 mix cascades:
54 mixes with 10 Mb/s
27 mixes with 6.05 Mb/s
64000 24 6486 mix network: 7355%
(between 649 mixes with 10 Mb/s
client and 29 mix cascades:
first mix) 29 mixes with 222.9 Mb/s
58 mixes with 1 Mb/s
64000 24 32028 mix network 36714%
(end- 321 mixes with 100 Mb/s
to-end) 128 mix cascades:
256 mixes with 100 Mb/s
128 mixes with 50.27 Mb/s

case of dummy traffic only between the clients and the mixes, the first mix in
each chain must handle many more data than the others.

Recalling that none of these cover traffic schemes provides full protection
from powerful adversaries and considering the very significant bandwidth
data, any use of cover traffic is questionable. In particular, given any mix
network with a certain capacity, and considering that the bandwidth that is
spent on handling dummies is not available to handle real data, an important
question to consider is whether it is better to have a certain level of anonymity
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among 10000 users without dummy traffic or to have “a bit more” anonymity
among 1000 users when using dummies.

4.3 A Realistic Threat Model

We have seen in Section 4.2 that employing dummy traffic to protect from
powerful adversaries is extremely expensive in terms of data overhead. We
have also discussed in Section 4.1 that achieving perfect protection against a
global observer or a partial internal attacker in a practical system is simply
not possible. But how realistic are these powerful attackers? The community
has been arguing for years about what a realistic threat model could be like.
In this section, we give arguments for what we call a realistic threat model.

4.3.1 The Passive External Attacker

We start with the global passive attacker. The long-term intersection attack is
the most powerful attack that can be executed by such an adversary. To resist
this attack, users must be connected to the mix network all the time and all
users must continually exchange constant, bidirectional cell streams with the
first mix in their circuits. To not leak any information, the mix network must
be operated completely synchronously, but we have already shown in Sec-
tion 4.1.1 that this is impossible to achieve if the mix network is reasonably
large and if an acceptable quality of service should be offered to the users.

Protection against a global passive attacker is only realistic using syn-
chronous mix cascades with a small number (e.g. 100) of users per cascade.
The synchronous operation of these mix cascades and the assumption that the
probability that no virtual link between the clients and the first mix in a cas-
cade is stalled is reasonably close to one imply that such a system would be
usable in practice. Such a small number of users could also make it possi-
ble that the huge dummy traffic overhead (about 74 times the amount of real
data traffic according to Table 4.1) can be absorbed by a powerful first mix
in the cascade. But what does it help to be anonymous within such a small
anonymity set?

Following this discussion, we state that perfect anonymity for very many
users within large anonymity sets is impossible in the Internet. In fact, we
go even further and say that if there is a global eavesdropper, then practi-
cal anonymous low-latency communication is not possible, at least not until
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the implications of cover traffic schemes are better understood and efficient
mechanisms that significantly increase protection from traffic analysis attacks
will be developed.

But how realistic is such a global passive attacker? As discussed in Sec-
tion 4.1.1, this attacker would have to be able to read every cell exchanged
between two nodes and all application data between mixes and servers. In
addition, he would need the capability to store this information together with
precise timing information to correlate them at different places in the mix
network based on their timing. If a cell is observed, he must store at least
the IP addresses and ports of the two nodes between which it was sent. In
the case of application data that are observed between a mix and a server,
he must additionally store the length of the data. ISPs are a potential threat
because their task of transporting data through the Internet implies they have
also access to the data handled by a mix network. If a cell is sent from one
node to another or application data are exchanged between a mix and a server,
the corresponding IP packets usually travel across different ISPs. In general,
this means they are sent from one access ISP via zero or more backbone ISPs
to another access ISP, but it can also mean the involvement of only a single
access ISP if both nodes or the mix and the server happen to be served by that
single access ISP. Assuming a large mix network with mixes that are spread
across the world, every ISP only gets a small part of the full picture. Some
ISPs are larger than others and can therefore monitor a more significant por-
tion of the Internet than others, but in general, the capabilities of a single ISP
are limited. To act as a global passive attacker, several backbone ISPs must
collect data and bring together the relevant information. Even when leaving
out technical issues to collect and store the data, the threat from such a collu-
sion of ISPs is minimal because of the large number of ISPs. As an example,
there are about 40 backbone ISPs in the USA according to ISP Planet®. To get
all data sent and received by mixes in the USA, nearly all of these 40 inde-
pendent organisations would have to collaborate, which is an unlikely threat.
Similar arguments can be made for other major Internet regions in the world
such as Europe or Japan. We therefore conclude that if the number of mixes
is sufficiently large and they are spread across several countries and use a
variety of different ISPs, then the global observer is a very unlikely threat.

Another potential threat are federal agencies that are interested in getting
the full picture about what is going on in a mix network. Using FBI’s Carni-

6ht:t:p ://www.lsp-planet.com/resources/backbones/index.html
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vore diagnostic tool, this is possible by installing Carnivore at all backbone
ISPs. Carnivore can theoretically capture all data flowing through an ISP, but
by specifying filter rules, Carnivore only delivers those data that match these
rules (e.g. only packets that contain a specific IP address). At least officially,
Carnivore can only be used for a limited time after a court order has been
issued, and even then only to read data “authorised for capture” by the court
order, which directly affects the filter settings. In addition, a court order is
only issued to gather hard evidence and not intelligence. Since a court order
is needed for every single temporary installation of Carnivore at an ISP, get-
ting continual access to all backbone ISPs using the legal way is not likely to
be possible for federal agencies.

Another option for federal agencies is to circumvent the legal way and to
convince the backbone ISPs to provide them with all data. This might even
work with a few of them, but making deals to collaborate with every single
backbone ISP is extremely unlikely to be successful — in particular without
anyone leaking information about this criminal act.

To summarise, if a mix network contains only 10 mixes that are in a geo-
graphically small area such as a single country, then the global attacker may
be a threat because only a few ISPs must combine their data to get the full
picture. But with 100s or 1000s of mixes that are distributed over the whole
planet, it is very unlikely an attacker can observe more than a small subset
of them for the reasons given above. Note that we cannot provide a precise
number for the maximum percentage of all traffic in a mix network an adver-
sary may be able to observe in a large distributed mix network but following
this discussion, anything significantly larger than 10% of all traffic is unlikely.
Still, one must bear in mind that a partial observer capable of observing 10%
of all traffic may be enough to break the anonymity of users from time to time.
In particular, if no cover traffic is used, it is likely that an adversary ecavesdrop-
ping on the virtual link between client and first mix and on the route between
the last mix and the server can break that circuit using the combined end-to-
end application data volume and timing attack, as illustrated in Figure 4.2.
The more data that are sent along a virtual circuit, the higher the probability
the attacker can indeed link the two communication endpoints but since this
is difficult to quantify, we simply assume the adversary can always link the
endpoints if he observes any data on both the virtual link between client and
mix and on the route between last mix and server. The probability of suc-
cess of this attack depends on the fraction of all Internet traffic the adversary
can observe. Assuming the adversary observes a fraction of ¢, of all Internet
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traffic and assuming the traffic exchanged between nodes in the mix network
and between mixes and servers is similarly distributed across the Internet as
all traffic, the probability p, the adversary can observe both endpoints in a
random circuit and thereby break the relationship anonymity is given by:

po =1, (4.22)

Consequently, if an adversary manages to observe 10% of the entire Inter-
net traffic, he can expect to break 1% of all circuits and therefore also 1% of
all anonymous communications, because 10% corresponds to a fraction 0.1
and therefore p, — 0.12 = 0.01 according to (4.22).

4.3.2 The Active Internal Attacker

The active internal attacker controls a subset of the mixes, probably by run-
ning them himself. If he controls the first and last mixes in a circuit, he can
observe both the virtual link to the client and the data on the route to the
server, which implies he has broken the relationship anonymity according
to our discussion above. Assuming the attacker controls » . of » mixes, the
probability p, the adversary can observe a random circuit is given by [122]:

Ne

Py = (?)2 (4.23)

We assume the government or any other powerful institution is the adver-
sary and interested in breaking the anonymous communications. While this
institution would probably not run mixes under its own name, it could pro-
vide private persons with the necessary equipment to operate mixes at their
homes and pay th em 1000 US$ a year in addition. Assuming the infrastruc-
ture (a decent Internet connection and a personal computer) costs 4000 US$
a year per mix, there are yearly costs of 5000 US$ per mix. As an example,
we take quite a big mix network consisting of 100 mixes that are operated
by volunteers such as companies, universities, and private persons. If the
adversary manages to convince 300 people to run a mix, he controls 75%
of all mixes and the yearly costs are 1.5 million US$. According to (4.23),
this would mean the adversary can break any random circuit with probability
pp = (0.75)? =~ 0.56. Note that as we have seen earlier in this chapter that
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no dummy traffic scheme helps against an internal attacker if he makes use of
his active capabilities to introduce timing signatures in the cell streams at one
endpoint to recognise this later in the chain.

If a mix network is operated by volunteers, then this attack is a very real
threat. Operating any significant fraction of all nodes is certainly much sim-
pler than observing the same percentage passively. One possible defence
against the adversary controlling a significant subset is to make sure that only
“honest” people and institutions are allowed to operate a mix. But how could
one guarantee this in practice? With 10 mixes, this is possible, maybe even
with 100. But it gets more and more difficult as the number of mixes in-
creases.

We conclude that it is quite possible for an adversary to operate a signifi-
cant portion (e.g. 50%) of all mixes in a mix network operated by volunteers
as described as above. The larger the number of honest mixes, the more dif-
ficult and expensive the attack gets.

4.3.3 Summary

Based on the assumption of a distributed mix network of reasonable size that
aims at supporting at least several 1000 users, we conclude that there is no
known method that can be applied in practice to really provide protection
against a global observer. However, we have also given reasonable arguments
that the likelihood of such an attacker depends on the size of the mix network.
The global observer may be a threat in mix networks with no more than a few
mixes. But if the number of mixes grows and the mixes are spread over the
world, it is very unlikely any adversary can observe more than a small subset
of all mixes. It is of course difficult to prove that global eavesdroppers are no
threat to a large mix network if its mixes are spread over the whole planet,
but we have given strong arguments to support this. We can only repeat that
if there is a global observer, practical anonymity for low-latency applications
is not possible, at least not with the current knowledge we have about cover
traffic schemes. Internal attackers are always a threat if there is no strict ac-
cess control about who is allowed to run a mix. Even assuming a mix network
operated by volunteers that consists of 100 mixes that are spread across the
world, the threat from an internal observer is significant, and we have given
arguments that it is likely to be bigger than the threat from an external ob-
server. The only way to defend against an adversary controlling a significant
subset of all mixes is either by allowing only “trustworthy” institutions or per-
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sons to run a mix, which makes it difficult to acquire a large number of mixes
at all, or by making the attack more expensive by increasing the number of
honest mixes.

It is important to remember that there is no practical defence against an
internal attacker operating some mixes because even end-to-end cover traf-
fic would not prevent any two colluding mixes from learning whether they
are part of the same circuit. If the adversary controlled both endpoints of a
circuit, he would succeed in breaking it, in particular if many data are ex-
changed between client and server. Similarly, when leaving out any cover
traffic mechanism, a partial external attacker observing the data on the virtual
link between client and first mix and the route between last mix and server is
frequently able to break the relationship anonymity between the endpoints. In
this case, however, dummy cells exchanged on the virtual link between clients
and mixes make it more difficult for the attacker to correlate the endpoints of a
communication, but again at the cost of supporting fewer simultancous users.

4.4 Comparison of Mix Network Approaches

In Section 4.2, we have seen that very many mixes are needed to support
100000 users that want to browse the Web anonymously. In this section, we
analyse how well different mix network approaches are suited to provide prac-
tical anonymity for such a large user base. We distinguish between three basic
approaches: commercially operated static mix networks, static mix networks
composed of volunteers that operate a mix, and dynamic, peer-to-peer-based
mix networks where every client is also a mix at the same time. With static
mix network, we mean an infrastructure where the set of mixes is highly sta-
ble over time. We focus especially on how well the different approaches are
suited to acquire enough mixes to support many users and how well they are
suited with respect to the realistic threat model we stated in Section 4.3.

4.4.1 Static Mix Networks as Commercial Services

The only really big mix network for near-real-time applications that has been
operational so far was Zero-Knowledge Systems’ commercial Freedom Net-
work (see Section 3.1.2). Since the Freedom Network was shut down due to
economical reasons, we briefly look at the major cost factors when offering
such a service:
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¢ Bandwidth costs associated with the data handled by the mixes. These
costs are directly dependent on the data volume and therefore on the
number of users.

e Hardware costs to provide the platforms to operate the mixes. Like
bandwidth costs, these costs depend about proportionally on the user
base.

e Software costs, especially to develop and maintain the mix network
software itself. These costs are nearly independent of the number of
users and can be expected to be relatively high in the beginning until the
software has reached a certain stability. Once the software has entered
its maintenance phase, these costs usually get smaller.

e Network operations costs, which includes human efforts to guarantee
smooth operation of the system. These costs depend on the size of the
mix network and the number of users.

According to Adam Shostack [117], Zero-Knowledge Systems” former
director of technology, bandwidth, software, and networks operations costs
were the dominating costs factors during the time the Freedom Network was
operational, while he expected software costs to get smaller over time be-
cause the Freedom Network was basically always work in progress during
the period it was operational. In general, Shostack argues that while soft-
ware costs have to be considered as an investment to improve the product
which eventually results in profits, bandwidth and network operations costs
are fundamental prerequisites to guarantee the operation of such a system,
which cannot easily be reduced. Since bandwidth costs are therefore indeed
one dominating cost factor when operating commercially a mix network, we
carry out the same analysis as in Section 4.2.1 using the figures we know
about the Freedom Network (see Section 3.1.2) and assume again that every
user generates 3115 KB of data per day. Recalling that no dummy traffic was
employed, that two mixes were used per default in a circuit, and assuming the
mixes were connected to the Internet with double T1 speed on average, the
Freedom Network was theoretically able to support about 800000 users ac-
cording to (4.3). Taking overhead and peak times into account, however, the
Freedom Network was more likely to support 100000 users with reasonable
service, which is about 660 per mix on average. Recalling that the Freedom
Network had only about 15000 subscribers, we conclude that it simply did
not manage to attract enough users, which is confirmed by Shostack.

Following our discussion in Section 4.3, the Freedom Network was cer-
tainly large and distributed enough to make the global observer extremely
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unlikely and the probability that a partial eavesdropper can observe data on
both the virtual circuits between client and first mix and the route between
last mix and server in a random circuit is small. In addition, operating several
mixes was difficult for a possible internal attacker because Zero-Knowledge
Systems made contracts only with ISPs and it was not possible for volunteers
to simply run a mix. But a problem with commercial mix networks is that to
sell anonymity, it may not be enough to say “anonymity in 99% of all cases
for 50 US$ a year”. To offer better anonymity, cover traffic must be used on
the virtual links between clients and mixes (see Section 4.1.2). Using constant
streams of cells with a rate of 64 Kb/s between clients and mixes during the 30
minutes an average user was online, the theoretical maximum number of users
would have dropped to about 330000 according to (4.5). Considering over-
head and peak times, something like 40000 users (about 266 per mix) is more
realistic. So introducing cover traffic between clients and mixes increases the
bandwidth cost per user by about 150%. Note also that exchanging the data
between clients and mixes at 64 Kb/s means a significant performance penalty
for all users that have faster Internet connections, which has been analysed in
the context of the Anonymity Network (see Section 3.1.2). But increasing
this fixed data rate implies significantly higher bandwidth costs per user. For
example, if we increase the data rate to 256 Kb/s, the number of users accord-
ing to (4.5) drops to 85000 in theory and about 10000 in practice (about 66
per mix). Going even further, and assuming all users had been online all the
time and end-to-end dummies with a rate of 64 Kb/s had been used to defeat
long-term intersection attacks, the Freedom Network could have supported
2412 user in theory according to (4.9), which would have been about 16 per
mix.

We state that it is certainly possible to commercially operate a mix net-
work for a large number of users. The question is whether this can be done
profitably, and Zero-Knowledge Systems did not manage to attract enough
users to do so. One problem could be that users are not willing to pay for
anonymity as long as the system is vulnerable to the external observer. How-
ever, as we have seen above, employing any cover traffic mechanism to in-
crease the protection from attacks multiplies the bandwidth that is consumed
by a user. Recalling that bandwidth costs were one of the dominating cost
factors of the Freedom Network, the cost per user would have significantly
increased. We therefore conclude that running profitably a commercial mix
network with or without dummy traffic is very difficult today. However, it
may well be the case to operate such a service profitably in the future, espe-
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cially if operational costs drop significantly and if users become more aware
of the lack of privacy in the Internet and recognise the value of anonymous
Internet access.

4.4.2 Static Mix Networks Operated by Volunteers

A trustworthy, static mix network capable of supporting a large number of
users must consist of very many mixes operated by independent institutions.
Leaving out any dummy traffic, Table 4.1 tells that at least 87 mixes with a
IMb/s connection each are needed at minimum to support 100000 users in
theory, which grows to several 100 mixes in practice But how difficult is it to
convince so many institutions to operate a mix?

There is no easy answer for this question. Not many mix networks con-
sisting of really independent nodes have been around. The Cypherpunk and
Mixmaster remailers (see Section 3.1.1) have been operational for years and
each of them consists of about 40 remailers in total, where several of them
support both protocols. Looking at mix networks for low-latency applica-
tions, no free mix network has grown beyond a limited user trial with more
than five mixes, and the mixes were not really operated by independent insti-
tutions.

What does it cost to run a mix? First, one must dedicate a reasonably
powerful computer and accept that significant amounts of traffic are entering
and exiting one’s network. The first one is not the main problem because a
powerful enough computer can be bought for about 1000 US$. Bandwidth
is a problem, though. In Switzerland, one can get a bidirectional 512 Kb/s
DSL-connection for about 130 US$ a month to your home as of November
2003. Not many people are willing to spend this amount of money voluntarily
just to run a mix, but again, the development of bandwidth costs is difficult
to predict. That leaves universities and large companies, which both have the
possibilities to easily spare a computer and “a few Mb/s” of their bandwidth.
So are they willing to help building a large mix network?

We do not believe the main problem to achieve a critical mass lies in
the potential availability of the resources but in the political field. The gov-
ernments of several countries do not like the idea of anonymity in the In-
ternet. For instance, academic institutions could be threatened to receive less
research funding from the government if they operated a mix. Likewise, com-
panies could risk news articles where they are accused of supporting terror-
ists and drug dealers and as a consequence, could lose customers. Recalling
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the Church of Scientology vs. anon.penet.fi case we have discussed in Sec-
tion 3.3.1 shows that threats on operators of anonymity service have already
happened and are not only theoretical. For such reasons, we believe it will be
very difficult to run by volunteers a static mix network that provides a similar
capacity as the Freedom Network. Of course one can argue that bandwidth
will get cheaper, and in 10 years we may have 10 Mb/s connections into our
homes for 10 US$ a month. But with more bandwidth available, people send
more and larger objects across the Internet. Yesterday, people were down-
loading small web objects, today, they are exchanging mp3-files, and in 10
years, they may be regularly sending whole movies around.

The fact that collecting a large number of mixes that are operated by vol-
unteers is very difficult means that the active internal attacker controlling a
large number of mixes becomes a very real threat (see Section 4.3.2), and any
cover traffic scheme is of little value against this attacker (see Section 4.1.2).
Since collecting a large number of honest mixes is difficult, the only other
possible defence against this attack is to be very restrictive about who is al-
lowed to operate a mix. But this will make it even more difficult to collect
enough mixes to support a large user base.

4.4.3 Dynamic, Peer-to-Peer-based Mix Networks

The third option are dynamic mix networks that operate in a peer-to-peer fash-
ion. The main idea is that there is no distinction between mixes and clients
that access the mixes. Rather, every client that uses other mixes to access the
Internet anonymously offers itself the service of a mix to other users. Instead
of paying for a commercial service or hoping that there are enough volun-
teers to provide enough capacity for a static mix network, each user pays for
the anonymity by dedicating some of her bandwidth and computing power to
others, very much like in peer-to-peer networks for file-sharing. Since every
user brings her own mix, the capacity of such a mix network grows with the
number of users and as a result, it should be able to support a very large user
base. In addition, as it can be expected that users may join and leave such a
system at any time, the set of mixes in the system fluctuates over time and is
no longer stable. Consequently, we also name this type of systems dynamic
mix networks, in contrast to static mix networks.

One problem of static mix networks is that there are political and legal
barriers that may hinder an institution willing to operate a mix from doing so.
In a dynamic mix network, the barrier to join is quite low as in all peer-to-
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peer system. Participating in the system knowing that 100000 other users are
already doing so is a much smaller step than operating one of a small number
of static mixes.

Dynamic, peer-to-peer-based mix networks provide good protection from
the realistic threats we identified in Section 4.3. With a huge number of mixes
distributed all over the world, the probability that any adversary is able to ob-
serve a significant portion of the mixes is small. In addition, dynamic mix
networks protect much better from internal attacks than static mix networks,
because one possibility to reduce the probability an adversary controls a sig-
nificant portion of all mixes in a mix network is to make sure there are very
many honest mixes. With every user bringing her own mix, this is the best we
can do.

However, dynamic, peer-to-peer-based mix networks are also the least
explored approach and there are also some potential drawbacks. Since mixes
may leave at any time, circuits are more likely to break than in static mix net-
works, which makes dynamic mix networks less well suited for long-standing
connections such as remote logins. Note that with Crowds (see Section 3.3.2
and Tarzan (see Section 3.1.2), two peer-to-peer-based anonymity providing
systems have been proposed, but neither of them copes well with significant
membership fluctuations. Another potential problem is exit abuse. It remains
to be seen if users really want to send web request for others. Static mix net-
works may be in a better position here because a participating mix processes
lots of traffic and its operator can plausibly argue he didn’t send it himself.

4.4.4 Summary

Of the three approaches we identified, static mix networks operated by volun-
teers seem not to be the right choice when aiming at a low-latency anonymity
service for a large number of users. They suffer from the problem of ac-
quiring enough mixes and from the very real threat of an internal attacker
controlling a significant portion of all mixes. Static mix networks operated
commercially are more likely to prevent this attack because volunteers can-
not easily run mixes themselves. However, commercial mix networks have
yet to show whether they can be operated profitably. In particular, it is un-
clear if and how much potential users are willing to pay for good but not
perfect anonymity. Dynamic, peer-to-peer-based mix networks seem to be
the best option to handle a large number of users because they do not suf-
fer from capacity problems and provide good resistance against our realistic
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threat model. Still, dynamic mix networks are not well explored at this time
and they have yet to demonstrate their usefulness in practice. In particular,
guaranteeing good end-to-end performance if mixes may leave at any time
and with some mixes offering poor performance (e.g. dial-up users) is more
difficult than in static mix networks. Nevertheless, we identify dynamic, peer-
to-peer-based mix networks as the potentially most promising way to provide
practical anonymity for a very large number of users. Consequently, we will
explore this approach in the remainder of this thesis to demonstrate that dy-
namic mix networks are feasible and can be operated in a way such that they
provide good anonymity, acceptable end-to-end performance, and scale up to
a very large number of users.

4.5 Conclusions

In this chapter, we have performed a detailed analysis of mix networks. Fo-
cusing on mix networks to support low-latency applications, we have seen
designing and operating a practical system that protects from powerful adver-
saries is very difficult. Even employing cover traffic is of little value against
certain adversaries, in particular against the internal attacker that controls a
subset of all nodes.

In general, the concept of dummy traffic to increase anonymity is still not
really understood, and especially on the virtual links between the clients and
the mixes, there may be more efficient ways than employing fixed streams of
cells to provide good protection from an external observer that cannot contin-
uously monitor the entire system. However, based on the current knowledge,
any use of cover traffic is questionable, in particular as its significant data
overhead reduced the number of users that can be supported with any given
system.

We have defined a realistic threat model. Assuming a mix network that
consists of many mixes that are spread over the world, the passive external
attacker that is able to observe a significant portion of the system is a small
threat. However, it must be remembered that even a partial external attacker
may succeed in breaking the anonymity of a user from time to time if he
manages to observe the data on the virtual link between the client and the first
mix and on the route between the last mix and the server. Another realistic
threat in mix networks with no strict access control about who is allowed to
run a mix is the internal attackers that controls a subset of all mixes. Even
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in a mix network operated by volunteers that consists of 100 mixes that are
spread across the world, the threat from an internal observer is significant.

Finally, we have compared different mix network approaches regarding
their suitability to provide practical anonymity for a large number of users
with respect to our realistic threat model. We concluded that dynamic, peer-
to-peer-based mix network have advantages over static mix networks, in par-
ticular because their capacity increases as more and more users join the sys-
tem. Furthermore, dynamic mix networks can potentially attract very many
users, which implies it gets more difficult for an adversary to control a sig-
nificant subset of all mixes. Nevertheless, dynamic mix networks have yet to
show their usefulness in practice.
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MorphMix

In this chapter, we introduce MorphMix, a peer-to-peer-based dynamic mix
network for low-latency applications. In Section 5.1, we first state our moti-
vation for developing MorphMix and the goals we want to achieve. Then we
describe the basic functionality of MorphMix by looking at its properties and
illustrating how a client application can communicate anonymously with a
server application in Section 5.2. Based on this functionality, we analyse the
requirements an adversary must fulfil to break the relationship anonymity in
Section 5.3 and elaborate on the threat model in Section 5.4. In Sections 5.5—
5.7, we introduce and explain the three core components of MorphMix, which
include:
1. The anonymous tunnel setup protocol to establish circuits to access
servers anonymously (see Section 5.5)
2. The collusion detection mechanism to detect circuits that contain sev-
eral nodes operated by an adversary with high probability (see Sec-
tion 5.6)
3. The peer discovery mechanism to make sure that nodes can pick other
nodes from a wide variety of all available nodes (see Section 5.7)
Afterwards, we analyse scalability issues and the requirements to run a
node in Section 5.8 and take a look at what changes for MorphMix if IP
version 6 gets widely deployed in Section 5.9.
This chapter is the first of four chapters on MorphMix. After having in-
troduced MorphMix in this chapter, we examine different attack strategies
that can be employed by an adversary in Chapter 6. In Chapter 7, we analyse
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the performance of the collusion detection mechanism to assess the protec-
tion MorphMix offers assuming realistic scenarios. Finally, we describe the
MorphMix simulator and present the simulation results in Chapter 8.

The basic idea of MorphMix has been published as a refereed paper [98]
and in larger technical report [97] that contains more details and early anal-
yses than the paper version. The detailed analysis of MorphMix has been
published in another refereed paper [100].

5.1 Motivation and Goals

We have seen in Chapter 4 that dynamic mix networks have advantages over
static mix network, especially if the number of users that should be supported
gets large. However, it remains to be shown whether it is feasible to design
a dynamic mix networks in a way such that it fulfils our principal goal we
have stated in Section 1.6, which is to develop a practical system that enables
anonymous low-latency Internet access for a large number of users. This is
exactly what we want to achieve with MorphMix, and the more detailed goals
are as follows:

1. Requirements to Participate: Anybody who has access to a computer
that is connected to the Internet should be able to join and use Mor-
phMix after having installed the MorphMix software. Participating
should be possible with a computer that has a public (static or dynamic)
IP address as well as with a computer that has a private IP address that
accesses the Internet through a NAT gateway. The bandwidth or com-
puting power requirements should be modest in the sense that any com-
puter with a dial-up connection capable of running a modern graphical
web browser should be sufficient.

2. Scalability: MorphMix should be able to efficiently cope with a very
large number of users. This means that even if there are millions of
participating users, the overhead to establish and tear down circuits and
to manage the MorphMix overlay network can easily be handled by
every participating computer that fulfils the requirements above. In
addition, the performance as perceived by a user should not decrease
as the number of participants increases.

3. Protection from Attacks: MorphMix should provide good protection
from the realistic attackers we have identified in Section 4.3. With good
protection, we mean that MorphMix does not guarantee the anonymity
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of every single transaction, but provides very good protection from
long-term profiling. In particular, MorphMix should protect well from
an internal attacker operating parts of the system himself, as this is eas-
ily possible due to the openness of the system.

4. Performance: MorphMix should be able to deliver adequate end-to-
end performance to its users despite the dynamic and heterogencous
environment where users that are part of MorphMix may turn off their
computers at any time. Although adequate performance is difficult to
quantify, it should be good enough such that MorphMix users are not
turning away from the system because of its poor performance. In par-
ticular, the performance as perceived by a user with a good Internet
connection (¢.g. DSL with 512 Kb/s) should not be degraded to the
performance of a dial-up connection.

It is important to realise that perfect anonymity is not a design goal of
MormphMix, at least not at this time. In fact, as discussed in Section 4.1, con-
sidering the asynchronous nature of the Internet and powerful attacks on mix
networks, it is very unlikely that operating a practical mix network that offers
perfect anonymity is possible at all — especially when the mix network aims
at supporting low-latency applications. We have seen that there are cover
traffic schemes that help against certain kinds of external adversaries, but in
particular when aiming at defeating end-to-end traffic analysis, they introduce
significant data overhead. In addition, cover traffic is of little value against an
internal attacker, which we consider as the most serious threat to MorphMix
(see Section 5.4). Consequently, we do not employ any cover traffic mech-
anism in MorphMix because we believe it is not worth its costs. However,
since MorphMix is essentially a mix network, we state that if more efficient
cover mechanisms that significantly increase the protection mix networks of-
fer from external observers will be ever developed, they should be easily ap-
plicable to MorphMix.

5.2 Basic Functionality of MorphMix

MorphMix is basically a circuit-based mix overlay network with many simi-
larities to static circuit-based mix networks as described in Chapter 2. How-
ever, it has a few special properties and we therefore give a detailed descrip-
tion of its basic functionality, following the terminology introduced in Chap-
ter 2 whenever possible. The MorphMix protocol itself is provided in Ap-
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pendix A.

5.2.1 Overview

MormphMix is a peer-to-peer-based mix network and consequently, we no
longer distinguish between clients and mixes and simply refer to them as
nodes. Every node joining the system can itself establish circuits via other
nodes to access a server anonymously, but can also be part of circuits estab-
lished by other nodes and relay data for them at the same time. A node ¢ is
identified with its public IP address ip;. For now, we assume all nodes have
public static IP addresses; we will discuss other cases in Section 5.8.2. To be
contacted by other nodes, a node listens on TCP port p 1, which is 28080
per default, but which can be changed by the node operator. In addition, each
node has a key pair consisting of a secret (or private) key SK; and a public
key PK;. This key pair is generated locally when a node is started for the first
time. At any time, MorphMix consists of a set of participating nodes. Nodes
can join and leave the system at any time and must therefore not necessarily
participate in the MorphMix protocol all the time. From now on and un-
less specified otherwise, we mean a currently participating node when we are
talking about a MorphMix node. We assume that at any time, a node knows
about some other nodes, i.c. their IP addresses, the ports on which the Mor-
phMix application is listening for incoming connection requests, and their
public keys. Learning about other nodes requires a peer discovery mecha-
nism, which we will describe in Section 5.7. Figure 5.1 depicts the basic idea
of MorphMix.

Figure 5.1: Basic idea of MorphMix.
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A node that is participating in MorphMix has established a virtual link to
one or more other MorphMix nodes at any time. In MorphMix, a virtual link
means that (1) there is a TCP connection between the two nodes and (2) they
share a symmetric key that is only known to these two nodes. To establish
a virtual link to a node b, node « first establishes a TCP connection with
b by connecting to ipp:pmm,. Node a then selects a random bit-string that
serves as the symmetric key for the virtual link. The key is encrypted with b’s
public key and sent to b. Using TCP connections between two nodes implies
that MorphMix is basically operated as illustrated in Figure 2.6(b), which is
reasonable because of the heterogeneity of the nodes (see Section 2.3.4). The
set of nodes to which a node « has currently established virtual links are a’s
neighbours. In Figure 5.1, a has five neighbours because it has established
virtual links to five other nodes.

5.2.2 Anonymous Tunnels and Anonymous Connections

Since MorphMix is basically a circuit-based mix network, a node establishes
a circuit via some other nodes to access servers in the Internet anonymously.
In Section 2.3, we have described how a circuit is set up in Onion Routing
to connect to a server. This circuit can then be used to communicate anony-
mously with the server but if another connection must be established with
the same server or if a different server is contacted, a new circuit must be
established. While this is not a problem with long-standing communication
relationships as used in remote login sessions, it is less well suited for appli-
cations such as web browsing that frequently establish multiple short-lived
connections in parallel to the same web server. Since setting up circuits in
MormphMix is a relatively expensive operation (see Section 5.5.1), we make
use of a concept we have introduced in the context of the Anonymity Net-
work (see Section 3.1.2) that allows using the same circuit to have several
communication relationships with a single or different servers. To do so, we
distinguish between anonymous tunnels (often referred to simply as tunnels)
and anonymous connections. Anonymous tunnels correspond to the circuits
as introduced in Section 2.3.

In Figure 5.1, we assume node a has established an anonymous tunnel
via b and c¢. The first node in a tunnel (a) is the initiator, the last node (c)
is the final node, and the nodes in between (b) are intermediate nodes. The
initiator and the final node are also called the endpoints of a tunnel. The
total number of nodes in a tunnel is the funnel length and equals three in the
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example above. If the tunnel length is more than three, there are multiple
intermediate nodes. Note that like in any mix network, the servers that are
contacted anonymously are nof part of MorphMix and the tunnel ends at the
final node, not at the server.

Within an anonymous tunnel, anonymous connections can be set up to
anonymously communicate with a server. Assuming a client application run-
ning on a MorphMix node wants to communicate anonymously with a server,
and assuming the node has set up at least one tunnel that is ready to be used,
each TCP connection request issued by the application results in exactly one
anonymous connection being established within an anonymous tunnel, which
results in exactly one TCP connection being established between the final
node in the tunnel and the server. If the client or the server terminates the com-
munication relationship, the corresponding anonymous connection is also ter-
minated, but the anonymous tunnel remains established and new anonymous
connections can be set up within this tunnel. The idea of multiple anonymous
connection within a single anonymous tunnel is illustrated in Figure 5.2:

anonymous connections

anonymous tunnel

Figure 5.2: Multiple anonymous connections within one anonymous tunnel.

Three client applications ¢c1—c3 (¢.g. web browser windows) on the ini-
tiator’s computer communicate anonymously with three server applications
s1—ss through the same anonymous tunnel. For each of these three com-
munication relationships (corresponding to a direct TCP connection in the
non-anonymous case), there is one anonymous connection. Note that it does
not matter whether the server applications are located on the same physical
server or not because despite using the same anonymous tunnels, anonymous
connections within the same tunnel are independent from one another. As we
will see below, anonymous connections are only visible at the endpoints of an
anonymous tunnel, i.e. at the initiator and final node. Intermediate nodes only
see the anonymous tunnel and cannot tell how many anonymous connections
there are currently established.
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Like static mix networks, MorphMix employs multiple layers of encryp-
tions (see Section 2.3) to complicate traffic analysis attacks. Consequently,
once the anonymous tunnel from « via b to ¢ has been established, it looks as
illustrated in Figure 5.3.

Figure 5.3: Virtual links and layers of encryption along an anonymous tun-
nel.

There are virtual links between nodes @ and b (VL ,5) and b and ¢ (VL)
that are communicating directly with each other across TCP connections. The
corresponding symmetric keys shared by the two endpoints of each virtual
link are Ky, op and Ky 1, p, respectively. In addition, there is one layer of
encryption between the initiator ¢ and each other node (b and c) along the
tunnel, identified with LE,; and LE,.. A layer of encryption between two
nodes means that the two nodes share a symmetric key (k. g,q» and kg qc.
respectively) that is only known to them. At first glance, it seems pointless to
have two different shared secret kg o and ky 1, o5 between a and b. How-
ever, this has to do with the property of MorphMix that b cannot easily tell
that « is the initiator of the tunnel, as will be discussed in more detail in Sec-
tion 5.3. Note also that like in static mix networks, a virtual link is used to
transport the data of potentially multiple anonymous tunnels that are making
use of this virtual link. A layer of encryption, on the other hand is associated
with exactly one anonymous tunnel.

5.2.3 Cells and Messages

All data exchanged between two neighbouring nodes are transported within
the payload of fixed-length cells. A cell consists of a 16-byte header and a
496-byte payload, resulting in a cell length of 512 bytes, and we give argu-
ments and show simulation results that support this choice in Section 8.3.8.
If the length of the data is longer than what fits into the payload of a single
cell, the data are split such that they fit into the payloads of multiple cells.
The payload of the last cell is padded with random bits to its fixed length.
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The header of a cell contains an identifier that has only local significance on
a virtual link between two nodes to determine what cells belong to which
anonymous tunnel and to correctly forward the data along its tunnel. If the
cell does not belong to a specific anonymous tunnel and is merely used to
exchange control information between two neighbours, a special identifier is
used (0). The header also contains a type to distinguish different types of
data transported within the cells and a checksum to check the integrity of the
data and to counter replay attacks (see Section A.2.2). To prevent an external
observer from easily identifying what cells exchanged between neighbours
belong to which tunnel, the header is encrypted using the symmetric keys of
the virtual link.

We refer to the data that are exchanged between nodes and transported
within cells as MorphMix protocol messages, or simply messages. Messages
are either exchanged between two neighbours or between the endpoints of
an anonymous tunnel. In the first case, the messages are directly transported
within the payloads of the cells the message must not be forwarded to an-
other node. In the second case, we refer to them as end-fo-end messages and
the messages are not directly put into the payloads of the cells. Rather, end-
to-end messages are always associated with a specific anonymous connection
and to multiplex the end-to-end messages of multiple anonymous connections
within the anonymous tunnel, a second 16-byte header is used at the begin-
ning of the cell payload. This second header looks exactly like a cell header
and we also refer to it as anonymous connection header. The identifier in
the anonymous connection header is used to distinguish the data of different
anonymous connections and similar as in the cell header, the identifier (0) is
used to exchange control information between the endpoints of an anonymous
tunnel.

Since the layers of encryption cover the entire cell payload, they also cov-
ers the anonymous connection header, and the different anonymous connec-
tions are therefore not visible for the intermediate nodes. Intermediate nodes
only care about the cell headers to forward the payload (which includes the
anonymous connection header) correctly along an anonymous tunnel.

5.2.4 Anonymous End-to-End Communication

The application data to be anonymised are transported within anonymous
connections. One anonymous TCP connection from the initiator’s computer
to a server is mapped onto exactly one anonymous connection. In general,

Major Data Exhibit 1008
Page 122 of 307



5.2 Basic Functionality of MorphMix 103

MorphMix can anonymise any TCP-based application but in its first version,
we focus on web browsing and MorphMix supports HTTP (both versions 1.0
and 1.1) and HTTPS. Since MorphMix works as illustrated in Figure 2.6(a),
client applications access MorphMix through an access program that acts as
a proxy. As we do no longer distinguish between clients and mixes, this
access program is part of the MorphMix software itself and a MorphMix
node listens for anonymous communication requests by client applications
on TCP port pappi, which is 8080 by default, but which can be changed by
the node operator. To communicate anonymously with a server application
identified with ip,:ps, the client application connects to port popp; on the lo-
cal computer and sends ips and ps to the access program. The node then
establishes an anonymous connection within a previously set up anonymous
tunnel by sending an end-to-end message to the final node that contains ip s
and ps. The final node connects to the server and, assuming anything worked
correctly, sends back an end-to-end message to the initiator to indicate the
connection has been established. The initiator itself then notifies the client
application that the connection has been established and application data can
be exchanged between the client and server applications. Once this end-to-
end communication relationship has been established, application data can be
exchanged between client and server application. Figure 5.4 illustrates how
the application data are transported within the anonymous connection along
the anonymous tunnel, and how the forwarding is done using only anonymous
tunnel information.
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Figure 5.4: Anonymous connections and cell forwarding.
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There exists an anonymous tunnel from « via b to c. We assume that 7 is
the identifier on the virtual link from « to b and 15 on the virtual link from
b to c. As explained in Section 2.3, each node along an anonymous tunnel
must know what to do with cells it receives. In our example, this means that
b knows that every cell arriving from o with identifier 7 must be forwarded
to ¢ with identifier 15. The identifier also tells b to use key % 1 g 41 to remove
the corresponding layer of encryption. Similarly, ¢ knows that cells arriving
from b with identifier 15 have reached their final node and that the layer of
encryption can be removed with k7. .. We assume the anonymous connec-
tion within the anonymous tunnel is identified with identifier 3. Similarly,
the connection from the client application to « is identified with the socket
PAair i, :Peiient—iPa Pappi and consequently, a knows that everything arriving
from the connection corresponding to this socket pair must be sent through
the anonymous tunnel using the anonymous connection with identifier 3. Fi-
nally, the connection between ¢ and the server application is identified with
the socket pair ip.:p.-—ips:ps, which tells ¢ to forward the data it receives
through the anonymous connection identified with identifier 3 must be sent to
the socket identified with this socket pair.

To send application data (AD) from the client to the server, the following
steps are carried out:

1. The client application sends AD to a.

2. Node a chops AD such that each resulting piece (while leaving room
for the anonymous connection header) fits into the payload of one fixed-
length cell. From the MorphMix’ protocol point of view, each of these
resulting pieces is an end-to-end message that must be sent from one
endpoint of the tunnel (a) to the other (¢). In Figure 5.4, we assume that
this results in three pieces and the last piece is padded with random bits
to its maximum length.

3. An anonymous connection header that contains the identifier of the
anonymous connection (3) is prepended to each piece.

4. Each resulting piece of data is encrypted with % ;5 .. corresponding
to the layer of encryption between a and ¢ and then with £ ;g 45 cor-
responding to the layer of encryption between a and b. Note that for
simplicity, we illustrate this and also the following cell transport along
the anonymous tunnel for only one piece in Figure 5.4.

5. The resulting data are put into the payload of a fixed-length cell and the
cell header is filled with the correct identifier to identify the cell on the
virtual link between a and b.
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6. The cell header is encrypted using key kv, o1 that corresponds to the
virtual link between a and b and the cell is sent to b.

7. Upon receiving the cell, b decrypts the cell header.

8. Node b sees the identifier (7), and knows that the layer of encryption
can be removed from the payload with £ g_op.

9. Node b also knows that the payload must be forwarded to ¢ with iden-
tifier 15. Consequently, a new cell header is prepended, encrypted with
k1B be, and the resulting cell is forwarded to c.

10. Node ¢ decrypts the cell header, sees the identifier 15, knows that the
layer of encryption can be decrypted with k 1 ., and also knows that
the cell has reached its final node.

11. Node ¢ consults the anonymous connection header in the payload, sees
that the identifier is 3 and knows that the rest of the payload (after
removing padding bits) must be sent out on the connection given by
the socket pair ip.:p.—ips:Ps.

12. The same is done for all cells ¢ receives and consequently, the server
eventually receives AD. Sending data back from the server to the client
works exactly in the opposite way.

It should be noted that although we have clearly separated setting up the
end-to-end communication relationship from the actual data exchange be-
tween the client and the server application in the example above for illustra-
tive reasons, this is not necessary in practice. In fact, the client application
can send the information about the server to contact and the application data
together to the access program, as is done by web browsers when they use
a web proxy. Since this saves one round-trip, MorphMix includes the ap-
plication data in the request to establish an anonymous connection whenever
possible.

Another important detail is that if the client application does not know ip ¢
but only the host name of the server, the client application must not resolve the
host name itself, as this would easily tell an eavesdropper the server the client
wants to access. Instead, the host name is sent instead of ip, to the access
program, which sends it to the final node when setting up an anonymous
connection. Only the final node resolves the host name, which does not leak
any information as the final node will contact the server directly anyway.

Note also that end-to-end messages are not only sent through completely
set up anonymous tunnels like in the example above. During the setup of
anonymous tunnels (see Section 5.5.1), nodes are appended hop by hop to the
tunnel. At any time, the initiator can exchange end-to-end messages with the
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node that is currently the final node in the tunnel.

5.3 Requirements to Break the Anonymity

In this section, we identify the requirements for an adversary to break the
anonymity of a user, i.¢. to link the initiator and the server of a communication
relationship.

An advantage of MorphMix compared to static mix networks is that in
the latter, the first mix in a circuit or an eavesdropper observing the cells ex-
changed on the virtual link between the client and the mix can easily identify
the client because the roles of clients and mixes are clearly separated. In Mor-
phMix, however, this is not the case because every client is also a mix. This
means that in Figure 5.1, & cannot be sure if « is the initiator of the tunnel
or if a is just another intermediate node in this tunnel that relays data for yet
another node. The MorphMix protocol guarantees that no such information is
leaked by the content of the messages, neither during the anonymous tunnel
setup nor during the exchange of application data between initiator and server.
This property of MorphMix is often referred to as plausible deniability be-
cause assuming a user is accused of having contacted a server anonymously,
she can always claim she only relayed the data for another node.

We first analyse the internal attacker controlling a subset of all nodes. Re-
calling our discussion in Section 4.3.2 about static mix networks, we should
say that the relationship anonymity is broken if the adversary controls the first
intermediate and the final node in the tunnel. This allows the adversary to cor-
relate the cells exchanged between the initiator and the first intermediate node
and data exchanged between the final node and the server. If sufficient data
are exchanged between initiator and server, this allows the adversary to link
the initiator and the server with high probability. However, due to the plau-
sible deniability property of MorphMix, the operator of the first intermediate
node cannot be sure that his node is indeed the first intermediate node. In
practice, however, it can be assumed that the number of nodes along anony-
mous tunnels is reasonably low, e.g. five, and the operator of an intermediate
node should be able to at least guess how many nodes are following in an
anonymous tunnel. For instance, the patterns of cells flowing through a node
when nodes are appended to a tunnel are quite typical (see Figure 5.5) and
an intermediate node can derive with high probability how many nodes are
following in the anonymous tunnel. Assuming most tunnels have a length
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of five and an intermediate node recognises by analysing the traffic patterns
that three additional nodes are appended to the tunnel, it can derive with high
probability that it is indeed the first intermediate node. There are additional
ways to guess the position of a node in an anonymous tunnel. Assuming the
adversary controls the final node in a tunnel and knows that he controls an-
other node in this tunnel, he can measure the time it takes for the fixed-length
cells to travel between the two nodes he controls. This gives him an indica-
tion about how many other nodes there may be in between. Another property
that can be exploited by an intermediate node is measuring the time it takes
for the initiator to react to data it receives from the server. For instance in the
case of web browsing, embedded objects in a web page are automatically re-
quested by the browser, which results in quickly sending back data to the web
server once the web browser has received the index file of a web page. If the
measured time between sending cells towards the initiator and receiving cells
from it is small, the intermediate node can conclude with high probability it is
indeed the first intermediate node. We therefore assume that if an adversary
controls the first intermediate and final node in an anonymous tunnel and data
are exchanged between initiator and server through this tunnel, then the ad-
versary can always break the relationship anonymity and link the initiator and
the server. This is a worst case assumption because everything else is difficult
to quantify. In practice, it may not always be easy for the first intermedi-
ate node to correctly determine its position in a tunnel with high probability.
In addition, especially if only few data are exchanged between initiator and
server, it may not even possible for the first intermediate and final nodes do
determine that they are part of the same anonymous tunnel. Nevertheless,
assuming there are » nodes in MorphMix, the adversary controls » . of them,
and there is at least one intermediate node in every tunnel, the adversary is
able to break the relationship anonymity between initiator and server with a
probability of p, = (n./n)? according to (4.23).

With the external attacker, we distinguish between two cases. In the first
case, the attacker observes the initiator directly, which means he sees all traf-
fic entering and exiting the node on all virtual links. Since no cover traffic is
employed, this should enable the observer to separate the data that originate or
terminate at this node from the data that are relayed for other nodes. The sec-
ond case is an observer that only sees the cells on the virtual link between the
initiator and the first intermediate node in a tunnel. Using similar arguments
as for the adversary controlling the first intermediate node above, we can ar-
gue this observer may be able to derive which cells originate and terminate
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at the initiator in some cases, although this is significantly more difficult than
for the first intermediate node because the observer cannot easily separate the
data belonging to different circuits. However, again for the reasons that any-
thing except the worst case is difficult to quantify, we assume an adversary
observing the virtual link between the initiator and the first intermediate node
can always learn which cells originate and terminate at the initiator. Conse-
quently, and recalling our discussion in Section 4.3.1, we therefore assume an
eavesdropper can always break the relationship anonymity between the ini-
tiator and the server if he observes the cells on the virtual link between the
initiator and the first intermediate node and the data exchanged between the
final node and the server. Assuming the adversary observes a fraction of ¢,
of all Internet traffic and assuming the traffic exchanged between nodes in the
mix network and between mixes and servers is similarly distributed across the
Internet as all traffic, the adversary is able to break the relationship anonymity
between initiator and server with a probability of p, = t,? according to (4.22).

Interestingly, the probabilities to break the relationship anonymity are the
same as in static mix networks (see 4.3). However, there is an important dif-
ference in the sense that in static mix networks, the adversary always knows
who the initiator is. Consequently, it can be expected that attacks on static
mix networks are nearly as successful in practice as the formulas indicate.
In the case of MorphMix, on the other hand, there is often the uncertainty
whether the suspected initiator is really the initiator of a tunnel or merely re-
laying the data for another node because of the plausible deniability property.
Consequently, the probability an adversary manages to break the relationship
anonymity between initiator and server can be expected to be significantly
smaller than in our worst case assumptions. Nevertheless we will use these
worst case assumption as a reference during the remainder of this thesis.

5.4 Threat Model

In this section, we state our threat model. We look at the two most likely
attackers on large mix networks that we have introduced in Section 4.3, the
passive external attacker and the active internal attacker.
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5.4.1 The Passive External Attacker

With MorphMix, we want to provide anonymity for the masses and aim at
a large number of nodes distributed all around the world. According to our
definition of a realistic threat model (see Section 4.3), this makes it is very
unlikely any passive external attacker can observe a significant portion of all
data that are processed by MorphMix nodes. On the other hand, observing
a small portion of the traffic is certainly possible for certain potential adver-
saries such as ISPs and as discussed in Section 5.3, such an attacker will
occasionally succeed in breaking the relationship anonymity between an ini-
tiator and a server. However, recalling that even monitoring 10% of all traffic
only allows to link the initiator and the server in 1% of all cases and that one
goal of MorphMix is to provide protection from long-term profiling and not
to guarantee the anonymity of every single transaction, we accept this lim-
ited vulnerability to the partial external attacker. Increasing the resistance of
MorphMix to this attack depends on the development of efficient cover traffic
mechanisms, which it outside the scope of this thesis.

5.4.2 The Active Internal Attacker

There is no admission control and the first goal in Section 5.1 states that
everybody with a computer connected to the Internet having access to a com-
puter can easily join the system. As a result, we must assume there are sonest
nodes, which are nodes that do not try to break the anonymity of other users
and there are malicious nodes, which collude with other malicious nodes to
break the anonymity of honest users. As mentioned previously, a MorphMix
node is identified with its IP address and is therefore usually associated with a
single computer. Consequently, we assume honest users typically run exactly
one node on their own computer.

An adversary that possesses several IP addresses can run several mali-
cious nodes. However, it is not necessarily required for the adversary to oper-
ate a dedicated physical computer for each node. In particular, if an adversary
owns a contiguous range of IP addresses, he can operate multiple nodes on a
single computer by using special software (e.g. Linux-VServer!) that allows a
computer with a single network interface to have multiple IP addresses. There
are additional possibilities for an adversary that owns many IP addresses to
operate many nodes using only a few physical computers. An access ISP, for

1ht:t:p ://www.l3thfloor.at/vserver/project
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instance, could run a node for each of its IP addresses it currently has not as-
signed to its customers. One place to do so could be at the border gateway(s)
to the access ISP’s backbone provider(s) where all data entering and exiting
the access ISP’s network must pass. In general,we do not claim that operat-
ing many nodes is a trivial task for an adversary that owns a range of »n IP
addresses, but we must not argue that it is as complicated or as expensive as
running n different physical computers. Consequently, we assume it is feasi-
ble for an adversary to run as many nodes as he owns IP addresses. In the case
of a class B network, this would allow the adversary to operate 65533 Mor-
phMix nodes. Even if there were 100000 honest nodes in MorphMix, such
an attacker could relatively easily control nearly 40% of all nodes. According
to our discussion in Section 5.3 and assuming the nodes along an anonymous
tunnel are picked randomly, this would allow him to break the relationship
anonymity in 16% (because 0.4? = 0.16) of all cases. This is a serious and
very realistic threat to MorphMix users.

So it is quite easy for certain adversary such as ISPs or large institutions
in general to run very many MorphMix nodes. To defend against such an
adversary, we must first understand how IP addresses are assigned. For now,
we focus on IP version 4 (IPv4); the influence of IP version 6 (IPv6) will be
discussed in Section 5.9. Although the traditional notion of class A, B, and
C networks has been blurred due to subnetting [78] and classless interdomain
routing (CIDR) [96], it is still the case that usually contiguous ranges of IP
addresses are under a single administrative control. Consequently, although
it is easy for an adversary that possesses many IP addresses to run many
nodes, all of them are “similar” in the sense they usually all have the same
IP address prefix, i.e. the first few bits of the different IP addresses are equal.
Using again the example above with 100000 honest nodes, we can assume
these nodes have IP addresses with 1000s of different 16-bit prefixes. The
adversary owning an entire class B network can still operate 65533 nodes,
and looking at the complete IP addresses of all 165533 nodes present in this
system, he controls about 40% of all. But if we only look at the 16-bit prefix
of the TP addresses, the adversary “controls” only one out of 1000s of different
16-bit prefixes.

This assumption of the similarity of IP addresses of the malicious nodes
controlled by the adversary is the key to deal with the problem of defend-
ing against an internal attacker. We say that all IP addresses with the same
16-bit IP address prefix are in the same /16 subnet. There are exactly 56559
public /16 subnets in the Internet: the unicast address range between 1.0.0.0
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and 223.255.255.255 corresponds to 57088 different /16 subnets, but 256 of
them are assigned for local addresses (127.0.0.0 — 127.255.255.255) and 273
are reserved by the three private address ranges (10.0.0.0 — 10.255.255.255,
172.16.0.0 — 172.31.255.255, and 192.168.0.0 — 192.168.255.255). Follow-
ing our discussion above, we conclude that while it is easy for an adversary
running many nodes, it is much more difficult for him to control nodes in a
significant portion of all 56559 /16 subnets. An adversary owning a class B
network controls nodes in only one of 56559 possible /16 subnets. Even an
adversary owning an entire class A network, which corresponds to the largest
address ranges that were assigned to single institutions?, can only run nodes
in 256 different /16 subnets, which is less than 0.5% of all public /16 subnets.

Consequently, all three core components of MorphMix we will present in
Sections 5.5-5.7, which includes the anonymous tunnels setup protocol, the
collusion detection mechanism, and the peer discovery mechanism, do not
operate on the whole IP address of a node, but only on its 16-bit IP address
prefix. Although we will describe this in much more detail later in this chap-
ter, the basic idea is that from the point of view of the collusion detection
mechanism and the peer discovery mechanism, all nodes in the same /16 sub-
net are equal. So for an adversary to be effective, he must not only control
many nodes, but he must control nodes in a wide variety of /16 subnets. Note
that the choice of a 16-bit prefix is a compromise between making it difficult
for an adversary to run nodes in a significant portion of all subnets (see be-
low) and keeping the overhead of the collusion detection mechanism and the
peer discovery mechanism within reasonable limits (see Section 5.8).

We have seen that an adversary won’t manage to control nodes in very
many different /16 subnet if he runs them only in the subnets he owns. An-
other strategy for the adversary is to operate nodes also in /16 subnets he does
not own. Acquiring IP addresses under his own name in a wide variety of /16
subnets could soon become suspicious. So instead of acquiring IP addresses
under his own name, the adversary could provide private persons with the nec-
essary equipment to operate nodes at their homes and pay them, for instance,
1000 US$ a year in addition. Assuming the infrastructure (a decent network
connectivity and a PC) costs 4000 US$ a year per node, there are yearly costs
of 5000 US$ per node. Convincing 1000 people to run 1000 nodes in 1000
different /16 subnets would therefore cost five million US$ per year. This is
certainly not a barrier for certain well-funded organisations that would like to

2http://www.iana.org/assignments/ipv4-address-space
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break the anonymity of the MorphMix users. To do so, the adversary would
somehow have to advertise that he is looking for users operating nodes for
him, which again could eventually become suspicious. In any case, even if
the adversary does not care if he is detected, getting control over 1000s of
nodes in as many different /16 subnets either by operating them himself or by
private persons he provides with money and equipment is very difficult.

We say that an adversary controls a fraction between 0 and 1 of a /16
subnet depending on the ratio of malicious nodes to all nodes in this subnet.
If a subnet contains only malicious nodes, the adversary controls a fraction
of 1 of the subnet, and we also say he has full control of the subnet. If it
does contain only honest nodes, the adversary controls a fraction of 0 of the
subnet, and we also say he has no control of the subnet. If it contains both
honest and malicious nodes, the adversary controls any fraction greater than
0 and smaller than 1. With », nodes in a /16 subnet s where nj, ; are honest
and n,, s are malicious, the fraction f.  the adversary controls is given with
fe,s = nm,s/ns. There is one difference for the adversary between owning
a subnet and running a node in a subnet he does not possess: In the first
case, he can operate as many nodes as there are IP addresses available, and he
can force f. ; of this subnet close to 1 even if there are a few honest nodes.
Another option is to simply block all MorphMix traffic from and to the honest
nodes. Conversely, if the adversary runs nodes either by himself or by private
persons in subnets he does not own, f. s is often smaller than 1 if there are
also honest nodes in the subnet. The reason is that the adversary controls only
one or a small range of IP addresses and cannot run as many nodes as he likes.

5.4.3 Summary

We summarise the threat model based on the discussion in this Section. We
do not consider the external observer as a significant threat because like in
any large mix network distributed all over the world, it is unlikely such an
adversary can observe a significant portion of MorphMix.

Since it is easy for an adversary owning a range of IP addresses to operate
many node, we consider the internal attacker a much more serious threat. To
reduce the potential impact from such an adversary, the core components of
MorphMix do not operate on the whole IP address of a node, but only on its
16-bit IP address prefix. This is based on the assumption the adversary can
operate nodes in a limited number of /16 subnets. He either owns the subnets
and has full controls of them, but we do not assume it is realistic a single
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adversary will ever own more than 1000 /16 subnets, which corresponds to
about four class A networks or 1000 class B networks. Even the largest ISPs
do not control addresses in so many /16 subnets, which can be seen by query-
ing the whois servers of the Regional Internet Registries such as RIPE NCC?
or ARIN*. The other option for the adversary is to run nodes in subnets he
does not possess, either by himself or by private persons. Usually, he controls
a fraction that is smaller than 1 in these subnets because there are also honest
nodes present. Again, running nodes in several 1000 subnets is very difficult,
in particular if the adversary wants to avoid that his activities to break the
anonymity of the users of MorphMix become public. We also assume that
malicious nodes can mark every cell they exchange with their neighbours and
all application data they exchange with servers with a precise timestamp and
send all relevant data (at least the IP addresses, ports, length of the application
data, and the timestamp) to a centralised place where the traffic handled by
different malicious nodes can be correlated to break tunnels as discussed in
Section 5.3.

5.5 Establishing Anonymous Tunnels

In this section, we present and analyse the protocol to set up anonymous
tunnels, which is the first major component of MorphMix. We first describe
how anonymous tunnels are set up and analyse the procedure. Then we talk
about the policy about how virtual links to neighbours should be used and
why MorphMix provides incentive to relay the data of other nodes.

5.5.1 Anonymous Tunnel Setup

As we will see below, setting up an anonymous tunnel is a relatively com-
plex process that usually takes several seconds to complete. In addition, as
we will see in Section 5.6 when presenting the collusion detection mecha-
nism, some tunnels will be rejected by the initiator and not used to contact a
server. Consequently, anonymous tunnels are not established on demand to
contact a server anonymously, because this would take too long until a tunnel
were ready with high probability. Rather, setting up anonymous tunnels is a
background process in the sense that at any time, there should be a few of

3whois.ripe.net
4whois.arin.net
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them ready to be used. In Chapter 8 when we analyse the performance of
MorphMix based on a simulator, we assume that a node has established five
tunnels at any time. The reason for having multiple tunnels ready at any time
is to quickly be able to switch to another tunnel in case one of them fails or
offers poor performance. In addition, anonymous tunnels are only used for a
limited time. We use the policy that anonymous connection may only be es-
tablished within ten minutes after a tunnel has been set up. Note that after ten
minutes, a tunnel is not simply torn down but stays alive until all anonymous
connections within this tunnel have been terminated. There are two main rea-
sons for this policy. The first is that the correct functioning of the collusion
detection mechanism and the peer discovery mechanism rely on frequently
setting up anonymous tunnels. The second is based on the observation that
the more data that are exchanged through an anonymous tunnel, the higher
the probability an adversary can break the anonymity in practice if he indeed
controls the first intermediate and the final node in a tunnel or eavesdrops on
the virtual link between initiator and the first intermediate node and on the
route between the final node and the server (see Section 5.3). Consequently,
limiting the time an anonymous tunnel can be used limits the amount of data
that can be exchanged through this tunnel, which complicates the task for the
adversary to break the anonymity. With five tunnels that can be used at any
time and a lifetime of ten minutes per tunnel, this results in setting up a tunnel
every two minutes on average.

An important design decision we made during the development of Mor-
phMix is that an anonymous tunnel is set up hop-by-hop in the sense that
the initiator picks the first intermediate node and establishes the layer of en-
cryption with it. Then the initiator tells the first intermediate node to append
another node to the tunnel and establishes the layer of encryption with the sec-
ond intermediate node. This continues until the initiator decides the tunnel is
long enough. The key is that the initiator selects only the first intermediate
node and each node along the anonymous tunnel then picks the following
node.

This has one big advantage: at any time, a node a only needs to have a
few neighbours that it can append to anonymous tunnels if a is requested to
do so. In addition, a can communicate with its neighbours over the virtual
links it has established to them to learn which of them have spare resources
and are willing to be appended to an anonymous tunnels. Conversely, assume
the initiator would select all nodes of an anonymous tunnel itself. Except for
the first intermediate node, it would have no idea about the current status of
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the other nodes, e.g. whether they are still participating in MorphMix, and if
yes, whether they are actually willing to accept further anonymous tunnels.
For such a system to work efficiently, a lookup service would be required.
The lookup service could be queried to get nodes that are currently willing
to accept anonymous tunnels. Considering MorphMix is supposed to scale
up to millions of nodes, a centralised lookup service that keeps track of the
nodes that are currently participating in MorphMix is out of the question.
An alternative are distributed scalable peer-to-peer lookup services such as
Chord [120] where (a subset of) the MorphMix nodes themselves organise
the Chord Ring to provide information about all participating nodes. How-
ever, the frequent joins and leaves of nodes and the continuously changing
state of each node would generate a lot of traffic to keep the Chord Ring
itself intact and to keep the information provided by the lookup service up-to-
date. Letting each node select the next hop makes MorphMix highly scalable
because independent of the system size, a node only has to manage its lo-
cal environment and therefore only cares about a relatively small number of
other nodes at any time. Of course, MorphMix nodes still need a way to learn
about potential neighbours, but the peer discovery mechanism we employ
(see Section 5.7) is especially tailored to meet the needs of MorphMix and is
much simpler than a lookup service that continuously tries to keep track of
the nodes that are currently participating in MorphMix.

However, there is also one major problem with this design decision. Ac-
cording to Section 5.3, we assume an adversary controlling a subset of all
nodes can break the relationship anonymity if he controls both the first inter-
mediate and the final node in a tunnel. If an initiator picks a first intermediate
node that is controlled by the adversary, it can be therefore expected that the
first intermediate node picks another node controlled by the adversary as the
next hop and so on to make sure that the adversary controls both the first
intermediate and the final node. Using this strategy, assuming there are n
nodes, and n. of them are controlled by the adversary, the adversary man-
ages to break the relationship anonymity between initiator and server with
a probability of p, = n./n. If the initiator would pick all nodes along the
tunnel randomly, the probability of success for the adversary would only be
pp = (n./n)?. Note that is a significant difference. Assuming the adver-
sary controls 10% of all nods, he only succeeds in breaking the relationship
anonymity in 1% of all cases if the initiator picks all nodes in the tunnel.
But if every node along the tunnel picks the following node, he can expect
to break the relationship anonymity in 10% of all cases. So by letting each
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node along a tunnel select the following node, we have actually significantly
increased the chances for the adversary to break the anonymity of MorphMix
users. To deal with this problem, we require that the node that selects the
following node in a tunnel must first select multiple possible next hop nodes
from the set of its own neighbours and offer these nodes in a selection to the
initiator. The initiator simply picks one of them randomly and the node is
appended to the tunnel. This alone does not prevent the attack above because
a malicious node can simply offer exclusively malicious nodes in the selec-
tion, but this selection can be used by the collusion detection mechanism (see
Section 5.6) to detect malicious nodes in tunnels with high probability.

Following the discussion above, setting up an anonymous means adding
nodes hop-by-hop. The main goal when adding a node c is to establish a sym-
metric key for the layer of encryption (see Figure 5.3) between the initiator
and c that is only known to the initiator and c. Except for the first intermedi-
ate node, the initiator does not know the nodes that will be added hop-by-hop
along a tunnel as it is set up. Consequently, the initiator does also not know
the public keys of these nodes beforehand and we therefore use the Diffie-
Hellman (DH) key-exchange algorithm [34]. If the initiator simply sent its
half® of the DH key-exchange to node b responsible for selecting the next hop
¢, b could easily play the role of ¢ (and of other nodes following c) itself with-
out the initiator noticing this. To counter this attack, we must not allow b to
see the initiator’s half of the DH key-exchange in the clear. To solve this prob-
lem, we introduce the notion of a witness. For each hop, the initiator selects
a witness randomly from the nodes it currently knows (see Section 5.7). The
witness’ task is to act as a third party in the process of establishing a sym-
metric key between the initiator and the newly appended node. Figure 5.5
illustrates the principal procedure to append a node to an anonymous tunnel
and to establish the layer of encryption. {d} px, denotes the encryption of
data d with the public key PK; of node i, and {d} sk, denotes the signature
(including the signed data) on data d with the secret key SK ; of node . Fig-
ure 5.5 only illustrates the most important fields in the protocol messages. In
Appendix A, we will describe the whole MorphMix protocol in much more
detail.

Node « is the initiator. We assume the tunnel has already been set up to
node b (via zero or more intermediate nodes). In addition, b has currently
three virtual links established with nodes c, d, and e that are willing to accept

3One half of the DH key exchange corresponds to ¢* where g is the publicly known group
element and 2 the secretly chosen exponent
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Figure 5.5: Appending a node fo a tunnel and establishing the layer of en-
cryption.

further anonymous tunnels. To append a new node to the tunnel, all messages
exchanged between the initiator and the currently final node b (messages 1,
2, 3, and 10 in Figure 5.5) are transported within the tunnel that has been set
up so far and are therefore end-to-end messages identified with the special
anonymous connection identifier (0) for control data (see Section 5.2.3). All
the other messages are directly exchanged between neighbours using the con-
trol data identifier (0) in the cell header. To append a node to a tunnel and to
establish the layer of encryption with this node, the following messages are
exchanged:

1. a sends a message to b that tells b to append another node to the tunnel.
The message contains n.;, which is the number of nodes b has to offer
to a in message 2. Here, we assume ng; = 3.

2. b receives the message and selects ng.; = 3 potential next hop nodes
(c, d, and ¢) among its neighbours. It sends a message back to « that
contains the IP addresses (ip., ipq, and ip.), ports (Pmm.., Pmm., and
Pmm. ), and public keys (PK ., PK,, and PK.) of the three potential next
hop nodes. We name the list of IP addresses offered by b the selection
from b.

3. areceives the message and randomly picks one node from the selection
from b as the next hop. Here, we assume c is selected. Then a picks a
witness w randomly from the set of nodes it currently knows, generates
its half DH,, of a DH key-exchange, encrypts it for ¢ with PK ., and
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10.

encrypts the resulting data together with ip., pmm,, and PK, using w’s
public key PK,,. This results inin {ip., pmm., PKe, {DHo} Pk, } PK.,»
which is put into a message together with the witness’ IP address ip,,
the port p,m,, onwhich it accepts connections, and its public key PK ,,,,
and is sent to b.

. breceives the message, establishes a virtual link to w using ip ., Pmm., »

and PK,,, and forwards the encrypted data.

. w receives the message, decrypts the encrypted data to get ip ¢, Pmm.»

PK,. and {DH, } px_, and establishes a virtual link to c using ip.., Prm.,
and PK,.. w generates a message consisting of ip, and {DH,, } px, and
sends it to c.

. ¢ gets the message and checks if it is indeed willing to accept an anony-

mous tunnel from b. If yes, ¢ decrypts DH ,, and sends a message back
to w telling it that everything is OK. In addition, ¢ builds its own half
DH_. of the key-exchange and uses DH,, to compute the key k7 g . for
the layer of encryption between « and c.

. w receives the message and generates the receipt for a. The receipt

contains the IP addresses of b and ¢ and is signed by w using SK .

. b receives the message from w and learns that w has selected c as the

next hop. It generates a message containing the identifier ID to be used
to identify data belonging to this anonymous tunnel on the virtual link
between b and ¢ and sends it to c.

. c gets the message and sends its half DH . of the DH key-exchange back

to b.

b generates a message consisting of DH, and the receipt from w and
sends it to a. Upon receiving this message, a checks if the receipt
is indeed signed by w and if it contains b’s and ¢’s IP addresses. a
then uses DH.. to compute the key k7 o. for the layer of encryption
between a and c.

There are two important points to notice about the procedure to append a
node to a tunnel. The first is making sure that b does not learn a’s half of the
DH key-exchange as this would easily enable b to simulate all remaining hops
by itself. This is achieved by encrypting DH , first for ¢ and then for w, which
guarantees DH,, is never seen in the clear except at ¢. In particular, b never
sees DH,, in non-encrypted form. The second is preventing b from selecting
the next hop purely by itself. This is achieved by having b offering a selection
of possible next hops to a and a selecting one of them. This guarantees that
b cannot predict which of the nodes in the selection is going to be picked as
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the next hop and makes it much more complicated for b to determine the next
hop. In particular, if b wants to make sure that c is in the same set of colluding
nodes as itself, then all nodes in the selection from b must be in that collusion.

Note that when appending the first intermediate node, « and b in Fig-
ure 5.5 are “the same node” because « itself appends the first intermediate
node. Consequently, « simply picks the first intermediate node from its neigh-
bours and only messages 4—9 must be used. However, from the point of view
of of the witness or the node ¢ that is appended, appending a node always con-
sists of using messages 4-9. As a result, they cannot distinguish appending
the first intermediate node from appending any other node by analysing the
content of the messages, which confirms the plausible deniability property of
MorphMix (see Section 5.3).

5.5.2 Analysis of the Anonymous Tunnel Setup

We analyse the security of the anonymous tunnel setup. We are interested in
the possibilities an adversary has to either learn the key exchanged between
the initiator and the newly appended node, to simulate the next hop himself, or
to make sure the node that is appended by a malicious node is also malicious.
We use Figure 5.5 as the reference for the analysis.

Case 1: b is malicious Let’s assume w is honest but b is malicious and no
further nodes are collaborating with b. The goal of b is to break the layer of
encryption that will be set up between a and ¢ to read the data exchanged
between them. To do so, b can try to simulate c itself by carrying out the
following steps:

1. In message 2, b replaces the public keys corresponding to the IP ad-
dresses with self-generated versions it knows the secret keys of. The IP
addresses can be those of nodes participating in MorphMix, but this is
not required.

2. b intercepts the data sent from w to ¢ to set up the virtual link and acts
as citself. This allows b to decrypt DH,, in message 5 because it knows
the corresponding secret key.

3. b generates the OK message for ¢ and sends it to w in message 6 to get
the receipt from w in message 7.

4. b generates ¢’s half of the DH key-exchange and inserts it in message 8.
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The main difficulty for b is getting active control on the virtual link be-
tween w and ¢ with the capability to intercept and inject data. Since b cannot
predict which witness a is going to choose, b cannot prepare itself in advance
and it is difficult to intercept data close to w. It seems more realistic for b to
intercept data close to ¢, especially as it is b that selects the list of nodes in
message 2. To make the attack as complicated as possible, we require that
all IP addresses offered by b and b’s own IP address must be in different /16
subnets. This does not prevent the attack, but makes it much more difficult
because it introduces a greater diversity of the physical paths of the possible
virtual links between w and ¢, and b needs active control over all of them to
make sure the attack can be carried out successfully. Nevertheless, even if we
assume the adversary has indeed managed to simulate the next hop itself, it
gets even more difficult for him if the initiator requests to append yet another
node to the tunnel. The problem for the adversary is that when appending this
additional hop, the receipt generated by the witness contains b’s IP address.
Since the initiator expects ¢’s IP address in the receipt, the initiator notices
the attack and does not use the tunnel. The only way to avoid detection is if
all witnesses to set up further steps are colluding with b, as will be discussed
in case 2.

To avoid these problems, b can carry out a man-in-the-middle attack using
the following steps:

1. In message 2, b replaces the public keys corresponding to the IP ad-
dresses with self-generated versions it knows the secret keys of. This
time, the IP addresses must be those of nodes that are currently partic-
ipating in MorphMix.

2. b intercepts the data sent from w to ¢ to set up the virtual link and
performs a man-in-the middle attack on the key exchange to gencrate
the symmetric key for this virtual link.

3. bdecrypts DH, in message 5, replaces «’s half of the DH key-exchange
with a self-generated version DH,,” and includes it in message 6. The
protocol then continues normally until b has received message 9.

4. Before sending message 10 to a, b replaces ¢’s half DH, of the DH
key-exchange with an own version, DH ..

Node b has now broken the layer of encryptionbetween a and ¢ because it
has split it into two parts: between a to b, the data is encrypted using keys gen-
erated from DH,, and DH,’, whereas between b and c, it uses keys generated
from DH,’ and DH,.. In contrast to the case where b simulates the next hop b
by itself, the initiator will not detect the attack if another hop is appended be-
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cause the receipt will contain the correct IP addresses. However, controlling
further nodes or breaking additional layers of encryption is very difficult for
b because setting up the next hop will be handled by ¢ and the IP addresses
in the selection are no longer offered by b. Note that the IP addresses in the
selection offered by ¢ to a could be replaced by b since it has broken the layer
of encryption between a and ¢. But the receipt from the witness will uncover
this attack because c detects that the IP address of the newly appended node
was not in the selection it offered to the initiator.

Only a very powerful attacker having active control over significant parts
of the Internet could be able to carry out both these attacks. Following our
discussion in Section 4.3.1, such an attacker is extremely unlikely to exist.

Case 2: b and w are malicious and colluding In this case, b attacks in the
same way as above to simulate the next hop itself. Since b and w collude, b
trivially has active control on the virtual link between w and c. As discussed
above, this attack will be detected when the next hop is appended unless the
next witness is also colluding with b. So the attack only succeeds if all re-
maining witnesses collude with b. In addition, b only learns about w after it
has offered the selection to a. Consequently, all b can do is to include fake
public keys in the selection and “hope” the initiator selects a malicious wit-
ness. In general, if the percentage of malicious nodes is relatively large and
only a few nodes (e.g. one or two) nodes are appended after b, the attack may
be successful with significant probability. Since the attack does not require
active control over virtual links, we will analyse its impact in Section 6.3.

Malicious witnesses can also help if they are following later in the tunnel.
If b has managed to simulate the next hop by itself or has broken a layer of
encryption according to case 1 and an additional hop needs to be appended,
a malicious witness can produce an appropriate receipt to please the initiator.
Still, this does not make the attack significantly easier because b still needs
active control over several virtual links and the probability all following wit-
nesses are colluding with b is very small unless the percentage of malicious
nodes is relatively large. In the latter case, the attack described in case 3 is
much more likely.

Case 3: b is part of a set of cooperating malicious nodes If we assume
that b is not alone but is part of a larger set of cooperating malicious nodes,
then b can simply list a subset of these malicious nodes in message 2 and it is
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guaranteed that the next hop is also part of the cooperating set. As we have
required that the IP addresses must all be in different /16 subnets, the ma-
licious nodes must reside in different subnets, which makes the attack more
difficult according to our threat model (see Section 5.4). Nevertheless, if an
adversary manages to control several nodes located in different /16 subnets,
then this attack is quite easy to carry out.

Summarising the attacks discussed in this section, we conclude that the
most realistic attack is the one where a set of cooperating malicious nodes
tries to learn more about anonymous end-to-end connections (case 3). To
defend against this attack, we introduce a collusion detection mechanism in
Section 5.6. The first attack (case 1) requires active control over several vir-
tual links and is therefore much harder to carry out. The second attack (case
2) does not require active control over virtual links, but we will show in Sec-
tion 6.3 that it is not more successful than the attack described in case 3.

5.5.3 Policy For Using the Virtual Links to Neighbours

Basically, the virtual links to neighbours are bidirectional which means that
although « has initiated the connection to b to establish a virtual link, it can
be used by both endpoints to advertise the other node in selections. Similarly,
a can pick b as its first intermediate node in a tunnel and vice versa. However,
such a policy makes an attack possible where the adversary has several of
the nodes he controls establish virtual links to an honest node a such that a
ends up with many malicious neighbours. The first consequence is that the
probability a picks a malicious node as the first intermediate node in one of its
tunnels is significantly higher than in the average case. Since controlling the
first intermediate node is a necessary requirement for the adversary to break
the anonymity, this would significantly increase his chances. To avoid this
problem, « should pick the first intermediate node only among those nodes to
which « has established the virtual link itself. The second consequence is that
if a should append the next hop to a tunnel of another node, it will offer many
malicious nodes in the selection it sends back to the initiator in message 2
of Figure 5.5. Assuming malicious nodes offer mainly other malicious nodes
in their selections, this implies the selection of this honest node looks very
similar to one of a malicious node. However, this second consequence is not
a big problem because if there are too many malicious nodes in the selection,
the initiator will detect this with high probability and reject the tunnel (see
Section 5.6.3). Nevertheless, we will use the policy that a node only uses
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those nodes as first intermediate nodes or in selections it offers to which it
has established virtual link itself.

5.5.4 Why Relaying Data for Other Nodes is Good

Many peer-to-peer systems suffer from the “free rider” problem [39]. Espe-
cially in popular file-sharing systems, most users only consume but do not
provide the files they downloaded to others. The main problem is that there is
no real incentive to offer content to others because everything is for free and
the systems seem to work well enough even if most users are free riders. Solv-
ing the free rider problem by technical means is very difficult and proposals
to do so include micropayments and reputation systems, both of which have
been discussed in the context of the Free Haven project (see Section 3.3.4).

MorphMix suffers from the same problem. Nodes can simply choose not
to relay data of others by never accepting virtual links being established to
them. This poses a problem because assuming that, say, only 10% of all
nodes are relaying data of others, the load on them could get quite high and
the performance may suffer. However, the advantage of MorphMix compared
to other peer-to-peer systems is that MorphMix provides an incentive to relay
the data of others. This has to do with the plausible deniability property of
MorphMix (see Section 5.3). Recalling our discussion about the requirements
for an attacker to break the relationship anonymity between an initiator and
a server, we concluded that it is not always trivial for the adversary to learn
whether the initiator of a tunnel is really the initiator of a tunnel or merely
relaying the data for another node. However, if a node « is a free rider, an
adversary (or in general any other node) can learn about this by trying to
establish virtual links to «. If this always fails or if ¢ never accepts relaying
tunnels, it can be concluded with very high probability that all data sent or
received by a belong to tunnels of which a is the initiator. We therefore
conclude a node increases his protection from attacks by relaying data for
other nodes.

5.6 Collusion Detection Mechanism

In this section, we present the collusion detection mechanism, which is the
second major component of MorphMix. We first describe its principal idea by
describing the concept of the correlation and the correlation distribution and
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give a proof of concept. Then we discuss the dependence of the mechanism
of different parameters and provide reasonable values for them. Finally, we
examine how a node can make use of the correlation distribution to detect
anonymous tunnels that contain many malicious nodes with high probability.

5.6.1 Correlation and Correlation Distribution

The collusion detection mechanism makes use of the fact that if a colluding
set of malicious nodes want to control many nodes in an anonymous tunnel,
they have to offer many or only malicious nodes in their selections. Corre-
sponding to honest nodes, we name the selections they offer /ionest selections
and the selections from malicious nodes malicious selections. Note that the
initiator always learns which node has offered what selection by inspecting
the messages during the anonymous tunnel setup (see messages 2 and 10 in
Figure 5.5).

We identify the combination of a selection and the node that has offered
the selection with extended selection (ES). Like with selections, we distin-
guish between honest extended selections and malicious extended selections
depending on whether the selection has been offered by an honest or mali-
cious node. A node remembers the extended selections it has accumulated
during the setup of anonymous tunnels in a extended selections list L gg.

An extended selection does not contain IP addresses, but the correspond-
ing 16-bit IP address prefixes. If prefix 4(ip) gives the 16-bit IP address pre-
fix of an IP address ip and if node b has offered the selection {ip ., ipg, ipe}.
the resulting extended selection is {prefixs(ips), prefixis(ip.), prefixis(ipa).
prefixig(ipe) }.

For each new extended selection, a node computes the correlation by
comparing it to all extended selections stored in the extended selections list
Lgs. The idea bases on the assumption that honest nodes pick the nodes they
offer in their selections more or less randomly from the set of all nodes. Con-
sequently, there is no subset of nodes that appear more frequently together in
honest extended selections than others, which should result in a small com-
puted correlation of the nodes in a honest extended selection. Conversely,
since malicious nodes are expected to offer mainly other malicious nodes in
their selections, malicious nodes tend to show up together in extended selec-
tions, i.e. there is a stronger correlation among them. Consequently, a mali-
cious extended selection should result in a larger computed correlation than
an extended selection that contains nodes that are more randomly selected
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from all MorphMix nodes. The correlation of a new extended selection is
computed according to Algorithm 1:

Algorithm 1 Computing the correlation of a new extended selection

1. Build a set ES n consisting of the 16-bit IP address prefixes of the nodes
in the new extended selection.

2. Define a result set ESg which is empty at first.

3. Compare each extended selection ES| in the extended selections list
Lgs with ESn. If ESy and EST, have at least one element in common,
add the elements of ESy, to ESRg.

4. Count each occurrence of elements that appear more than once in ES p
and store the result in m.

5. Count the number of elements that appear only once in ES r, and store
the result in w.

6. Compute the correlation c which is defined as ¢ = =% if u > 0, or 0o
otherwise.

We argue that based on the assumption that honest nodes offer nodes from
a wide variety of all /16 subnets that contain MorphMix nodes, this correla-
tion is in general large if the new extended selection contains many or only
colluding malicious nodes and small otherwise. The reasons are that mali-
cious nodes (1) select other malicious nodes with high probability and (2) are
selected by other malicious nodes with high probability. This follows from
our assumption that attacks by a cooperating malicious set of nodes are most
likely. Similarly, honest nodes (3) pick nodes for the selections they offer
from the set of all other nodes and (4) are picked by all other honest nodes.
In step 3 of Algorithm 1, we want to find out what the nodes in the same /16
subnets as those in the new extended selection have done before, i.e. in what
extended selections they have appeared before. Therefore, we collect all el-
ements of those extended selections in L g5 that contain at least one element
of the new extended selection in a set ESg. Recalling our threat model (see
Section 5.4) where we stated that any adversary can only control nodes in a
limited number of all public /16 subnets, assuming that there are honest nodes
in a much larger number of /16 subnets, and for reasons (1-4) given above,
we can state the following properties about the set ES i:
1. If the new extended selection ES x mainly consists of the /16 subnets
of malicious nodes, ESr will contain /16 subnets from only a small
fraction of all public /16 subnets that contain MorphMix nodes. In
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addition, most of the /16 subnets in ES p are present several times in
the set. According to Algorithm 1, this implies a large m and a small
u, and since ¢ = m /u, the resulting c is large.

2. If the new extended selection ES 5 mainly consists of the /16 subnets
of honest nodes, ES r will contain /16 subnets from a /arge fraction of
all public /16 subnets that contain MorphMix nodes. In addition, most
of the /16 subnets in ES i are present once or only a few times in the
set. According to Algorithm 1, this implies a small m and a large «,
and since ¢ = m/u, the resulting ¢ is small.

Simply counting how many times the /16 subnets in ES v show up in
Lgs does not work. Although subnets with malicious nodes may show up
in extended selections more frequently on average because malicious nodes
offer many or only other malicious nodes in their selections, many /16 subnets
consisting of only honest nodes will also show up frequently, either because
there are many nodes in them or because some nodes are very popular because
they have a lot of bandwidth and computing power to spare. In addition, there
is an attack the adversary could exploit if simply counting the occurrences of
/16 subnets were used that we will point out in Section 6.6.

Note that the complexity to compute the correlation of a new extended
selection is proportional to the number of extended selections in L gg. For
scalability reasons, we cannot keep all extended selections in L g forever.
Rather, we “forget” old extended selections and to keep only the k most re-
cently received extended selections in L pg. We will talk in Section 5.6.2
about reasonable values for the number of extended selectioninL gg.

A node remembers the correlations it has computed over time and rep-
resents them as a correlation distribution. In our MorphMix prototype, this
is implemented as an array with 50 slots®, whereas each slot of the array
corresponds to a particular discrete correlation. If a new correlation ¢ is com-
puted, it basically affects the slot closest to ¢ by incrementing its value by
one. However, in order not to let grow the values in the array indefinitely,
they follow an exponential weighted moving average (EWMA) with param-
eter a.. « is slightly larger than zero and depends on the number of extended
selections in L gg: if kgg is the number of extended selections in L g, then
a = 1/kgs. After a new correlation has been computed, the value in each
slot is first multiplied with (1 — «), and « is added to the value in the slot that
corresponds to the new correlation. For details about the implementation of

S Analyses with our node simulator (see Section 6.1.1) have shown that increasing the number
of slots beyond 50 does not provide better results
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the correlation distribution, refer to the MorphMix prototype implementation
(see Appendix A.7).

As a proof of concept, we analyse how the correlation distribution looks
using our node simulator (see Section 6.1.1). We assume a system with 10000
nodes, where some of them are malicious and in the same colluding set. All
10000 nodes are in different /16 subnets and every node has the same prob-
ability of being offered in a honest selection. We set up 5000 anonymous
tunnels, whereas each tunnel consists of five nodes in total, which is a rea-
sonable choice for the tunnel length (see Section 8.3.7). This means that the
initiator gets three different selections during the setup of each tunnel, one
from each of the intermediate nodes. Each selection contains 14 nodes, which
is a reasonable selection size in a system with nodes in 10000 different /16
subnets (see Section 5.6.2). For now, we assume that malicious nodes offer
only other malicious nodes from their collusion in their selections, i.¢. mali-
cious selections contain 14 malicious nodes. Figure 5.6 shows the correlation
distribution when 0, 5, 10, 20, 30, and 40% of all nodes are malicious.

exterded selbdtions from honest nodes
extended selections from maic

frequency

e -

01 02 03 02 04 06 08 02 04 05

Extended seledio
extended selections from malicious nodes

frequency
o
o

04 06
correlation comelation correlation

d) 20% malicious nodes  ¢) 30% malicious nodes ) 40% malicious nodes

Figure 5.6: Correlation distribution with 10000 nodes.

We can see the contributions of honest and malicious nodes to the corre-
lation distribution. In general, this results in two peaks, one on the left from
the honest nodes and one on the right from the malicious nodes. The more
malicious nodes there are in the system, the bigger the right peak gets and
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the closer the two peaks move together. Remembering that each node is in a
different /16 subnet, this also means that the larger the fraction of /16 subnets
that contain malicious nodes, the bigger the right peak gets and the closer the
two peaks move together.

5.6.2 Selection Size and Size of Extended Selections List

Our initial analysis [97] have shown that the shape of the correlation distribu-
tion depends on the selection size and the number of extended selections in
Lgs. In general, both a larger L g5 and a larger selection size help to separate
the peaks in the correlation distribution, but it has its limits. On the other
hand, increasing the sizes also means that the time to compute the correlation
and the memory requirements to store the extended selections list grow (see
Section 5.8). Using analyses based on our node simulator (see Section 6.1.1),
we have derived reasonable values for both sizes. They depend on the number
of different /16 subnets that contain nodes. If s is the number of different /16
subnets that contain nodes, the selection size 7 s¢; to be used is given by:

Neer = max(3,[7.75 log;qs —17]) 3.1

The selection size is logarithmically dependent on the number of dif-
ferent /16 subnets that contain nodes. Since there are only 56559 different
/16 subnets, there is an upper bound for 7 ;.;, which is given by 7se maz =
([7.75 - logy, 56559 — 17]) = 20. So the selection size is always between
three and 20. The size of L pg is also dependent on the number of different
/16 subnets that contain nodes. If 77, is the average number of nodes in a
selection, the number of extended selections k gs in Lgg is given by:

8

]fES = |—2~

| (52

Nsel

Like for the selection size, there is also an upper bound for the size of
Lggs, which is given by kgs mae = [2 - 56559/20] = 5656. So if there
are noes in all possible /16 subnets, the list contains 5656 extended selections
with 21 nodes each, and the list won’t grow any further.

Note that when a node joins MorphMix for the first time, it does not know
how many nodes there are in the system, i.e. it does not know what value to
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use for s in (5.1) and (5.2). Consequently, the node starts with the minimum
selection size of three, but tries to estimate the actual number of different
/16 subnets that contain nodes by observing how frequently a new extended
selection has elements in common with extended selections in L gg. If there
are only a few different /16 subnets that contain nodes, this frequency will
already be high after only a few tunnels have been set up and vice versa. For
more details about estimating the number of /16 subnets that contain nodes,
refer to the MorphMix prototype implementation (see Appendix A.7).

To summarise, there is an upper limit on both the selection size and the
size of the extended selections list. We carried out some performance tests on
a system with a 1IGHz AMD Athlon CPU, 256 MB RAM, running Linux as
operating system with a 2.4.17 kernel. With both selection size and size of the
extended selections list set to their maximum values, it takes about 50 ms to
compute the correlation of a new extended selection. Assuming a node sets up
a tunnel every two minutes (see Section 8.2.3) and a tunnel has a reasonable
length of five (see Section 8.3.7), which means three correlations must be
computed per tunnel, the computational overhead resulting from computing
the correlations is only about 0.125% on the above-mentioned system, which
can be neglected.

5.6.3 Detecting Malicious Tunnels

Based on our discussion in Section 5.3, we say that a tunnel is malicious if
the adversary controls both the first intermediate and the final node in this
tunnel. We also say such a tunnel is compromised. Otherwise, the tunnel is
considered as good. Looking at the correlation distributions in Figure 5.6, the
strategy a node follows to detect malicious anonymous tunnels is as follows:
At any time, the node knows the correlation distribution it has generated based
on selections it received previously. Based on this distribution, the node de-
termines a correlation limit, which should have the property that if the corre-
lation of a new extended selection is smaller than this limit, then the node that
offered the corresponding selection is honest with a high probability. Simi-
larly, the extended selection corresponding to the selection from a malicious
node should yield a correlation that is above the limit with high probability.
As an example, using the correlation distribution in Figure 5.6(d), a correla-
tion limit of 0.28 would be reasonable. In general, the correlation limit is not
a fixed value but depends on the system size and the percentage of malicious
nodes. For instance, the correlation limit for Figure 5.6(¢) should be about
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0.2 instead of 0.28. The difficulty of determining this limit is that the initiator
only knows the correlation distribution of all nodes, i.e. the sum of the con-
tributions of honest and malicious nodes in Figure 5.6. Furthermore, as we
will see in Chapter 6, the peaks cannot always be separated so clearly as in
Figure 5.6 and we will explain in Section 6.2.1 how the correlation limit is
determined in practice. For now, we simply assume the initiator can deter-
mine a reasonable correlation limit based on the correlation distribution. If
the correlations of all extended selections of an anonymous tunnel are below
that limit, then the initiator considers the anonymous tunnel as good. But if
the correlation of at least one extended seclection is above the limit, it is as-
sumed the node that has offered that selection is malicious. Consequently, the
initiator considers the tunnel as malicious and it will not be used to contact a
server anonymously. Note that this decision is made before anonymous con-
nections to contact servers are established within the anonymous tunnel, so
in case a tunnel is indeed malicious and rejected, the adversary cannot learn
anything to break a users anonymity. Note also that if only the final node
in the tunnel is malicious, then this is difficult to detect because it does not
offer a selection. However, this final node cannot learn anything about the
anonymous tunnel only by itself.

The steps the initiator carries out during the setup of an anonymous tunnel
to determine whether it is considered good or malicious are listed in Algo-
rithm 2:

Algorithm 2 Determining if an anonymous tunnel is good or malicious
1. Initialise a variable rejectTunnel to false.

Get the next extended selection ES  of the anonymous tunnel.

. Compute the correlation c of ESn.

. Determine the correlation limit c;_from the correlation distribution.

. If cis greater than c,, set rejectTunnel to true.

. Add c to the correlation distribution and add ES  to the extended se-

lections list.

7. If there are more intermediate nodes following in the tunnel, go to step
2.

8. If rejectTunnel is true, reject the tunnel. Otherwise it is consid-
ered good.

A LR W

One might wonder why we reject the tunnel if any of the computed cor-
relations is above the correlation limit and not only consider the extended
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selection offered by the first node. The latter makes sense because a tunnel
is only malicious if the adversary controls both the first intermediate and the
final node. However, based on our analyses with the node simulator it has
turned out that the probability to detect malicious tunnels is higher if all ex-
tended selections are tested and not only the first. The reason is that in case
the first malicious extended selection was not detected and the second inter-
mediate node is also malicious, there is another chance by examining the ma-
licious extended selection from the second intermediate node and so on. On
the downside, examining all extended selections also means the probability a
tunnel that is not compromised is rejected slightly increases, but the increased
chances to detect compromised tunnels outweighs this disadvantage.

5.7 Peer Discovery Mechanism

In this section, we present the peer discovery mechanism that enables Morph-
Mix nodes to learn about other nodes. The peer discovery mechanism is the
third major component of MorphMix.

In general, resource discovery is an important and fundamental task that
must be solved in every self-organising system, which includes peer-to-peer
systems. Often, especially in peer-to-peer file-sharing systems, finding a re-
source is equivalent to locating one or more peers that store a particular file
(or a part of the file). In MorphMix, however, the case is different because
there are no resources in the sense of files to discover. Rather, the other nodes
themselves are the resources. Therefore, all a MorphMix node needs to do is
learning about other nodes that can be used as new neighbours or witnesses.
In MorphMix, there are two different types of peer discovery: initial and con-
tinuous peer discovery. The first one is used by a node to join MorphMix
for the first time. The second type of peer discovery happens all the time
while a node is participating in MorphMix. We first discuss these two types
of peer discovery. Afterwards, we describe how the information about other
nodes is organised internally and accessed to select nodes as new neighbours
or witnesses.

5.7.1 Initial Peer Discovery

The goal of initial peer discovery is to quickly learn about a few other nodes
when a node joins MorphMix for the first time. Once a node knows some
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other nodes, it can start establishing virtual links to them and set up anony-
mous tunnel, which directly leads to continuous peer discovery described be-
low.

Of course, there are always offline methods (not part of MorphMix) such
as the Usenet or the Web to learn about other peers. But these approaches are
cumbersome to use because they cannot be integrated well into MorphMix.
In addition, one can imagine methods based on portscans, address resolu-
tion protocol (ARP) [85] broadcast, or IP multicast [27] to discover other
nodes, but such methods may take a long time to discover a node (portscans),
are of limited reach (ARP broadcast), or are based on technology that is not
widely deployed (IP multicast). Consequently, MorphMix itself offers a way
to easily learn about other nodes when a node knows about at least one other
node. To do so, the MorphMix protocol includes peer discovery messages
(see Appendix A.3.3), which allow a node to ask another MorphMix node for
information about other nodes, i.e. their IP addresses, ports on which they are
listening for connection requests, public keys, and node levels”.

To facilitate joining for nodes that do not know any other node, there are
“official” introductory nodes in MorphMix. The contact information of these
nodes is included in every distribution of the MorphMix program, and differ-
ent distributions may contain different introductory nodes. These nodes are
basically just MorphMix nodes that are always participating and the method
to query them for information about other nodes is the same as described
above. The user has the choice to make use of these official introductory
nodes and the trust she puts in them depends on the trust she puts in the capa-
bility of the developers of a distribution to pick only honest nodes as official
introductory nodes. We agree that that the approach with introductory nodes
is merely a “hack” to solve the bootstrapping problem, but there is simply
no alternative if we want to offer a built-in way to easily join MorphMix if
no other node is known. Users that do not trust the introductory nodes can
always choose offline methods to learn about other nodes. Another potential
problem with introductory nodes is that they are the only centralised (even if
there are several of them) component in the otherwise completely distributed
MorphMix system and provide therefore a potential point of attack for legal
attacks.

One general problem with querying other noes is that if the node that is
contacted is malicious, it will inform only about other malicious nodes and

"The concept of different node types that have different node levels will be introduced in
Section 7.3.2 and is specified in more detail in Appendix A.2.3
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these nodes again inform only about malicious nodes and so on, which means
a node may end up in a completely malicious MorphMix subsystem where
it is the only honest node. To minimise this risk, multiple nodes should be
queried, which increases the probability that there is at least one honest node
among them.

Querying other nodes is usually only needed right after having joined
MorphMix for the first time. A returning node that has been participating be-
fore has usually accumulated so much information about other nodes during
the continuous peer discovery that other nodes that are currently participating
can be easily found. Nevertheless, if it happens at any time that a node knows
too few other nodes, it can always query other nodes again, but this is very
unlikely to happen considering the continuous peer discovery mechanism de-
scribed below.

5.7.2 Continuous Peer Discovery

While participating in MorphMix and setting up anonymous tunnels, a node
learns about a variety of other nodes. Every selection it gets contains the IP
addresses, ports, public keys, and node levels of several nodes. This gives the
initiator all necessary information to contact new nodes to establish virtual
links to them, or to select a witness to append a node to its own tunnels.

In addition, a node always includes its own node information when estab-
lishing a virtual link to another node (see Appendix A.3.1). This is necessary
because otherwise, a node could never inform other nodes about itself and
consequently, no other node would establish a virtual link to it. According
to our policy on using virtual links (see Section 5.5.3), this implies it would
never be chosen as intermediate node in tunnels of other nodes and could
therefore never relay data for other nodes.

5.7.3 Organising and Accessing Information about other
Nodes

The information a node learns about other nodes is stored in an internal data
structure. One possibility would be to use a simple list, where each list ele-
ment corresponds to a node. However, we have seen in Section 5.6 that the
collusion detection mechanism is based on the assumption that honest nodes
pick the nodes they offer in their selections from a wide variety of /16 subnets
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that contain MorphMix nodes. To avoid that an honest node offers always the
same set of nodes in its selections, and since these nodes are selected from the
set of its current neighbours, honest nodes must change their neighbours from
time to time. To do so, a newly established virtual link to a new neighbour is
only kept for a limited time of 30 minutes (see Appendix A.5.1). After this
lifetime, the virtual link is not simply torn down because there may still be
tunnels using it, but the node at the other end of the virtual link is no longer
advertised in selections. Consequently, we should organise the data structure
in a way that easily supports picking nodes from a wide variety of /16 subnets.

Selecting the neighbours from a large range of /16 subnets has an ad-
ditional benefit. To break the relationship anonymity between initiator and
server, it is a necessary requirement for the internal adversary to control the
first intermediate node. Therefore, selecting the neighbours (and therefore po-
tential first intermediate nodes) from a wide variety of all /16 subnets reduces
the probability the adversary controls this node because of the assumption
that the adversary can only control nodes in a limited number of all public /16
subnets (see Section 5.4).

The data structure to store the information about other nodes is imple-
mented as follows: the initiator remembers the nodes it has received in se-
lections in a node lookup list. There is at most one entry in the list per /16
subnet, which implies that this list has at most 56559 entries. Each entry
contains the corresponding 16-bit IP address prefix and a /ist of nodes that
contains the information about nodes in this subnet. Each entry in a list of
nodes contains itself the IP address, port, public key, and node level of the
corresponding node. Figure 5.7 illustrates the basic idea of the node lookup
list and the principal concept of how nodes are inserted into and selected from
the list. Note that Figure 5.7 only sketches the basic concept. In particular,
the cases of inserting a node (b, ¢, and ) correspond to nodes that have been
learned as part of selections offered by other nodes. For simplicity, we only
show the IP addresses of the nodes in the lists of nodes and leave out their
public keys, port numbers, and node levels.

In this example, we assume that in the beginning, the list contains three
different subnets and four nodes, as illustrated in Figure 5.7(a). 129.132 is the
16-bit IP address prefix of the first /16 subnet in the list, there are two nodes
for the /16 subnet 8.245 and one node for the two other subnets. Now we as-
sume that the initiator learns about a new node with IP address 132.101.23.66.
Figure 5.7(b) shows how the information about the new node is processed:
since the 16-bit IP address prefix (132.101) corresponding to the new node is
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[129.132}—{129.132.77.11] [132.101]
| s.z|45 |—{ 8.245.220.54 || 8.245.93.167 | [129.132}—{129.132.77.11]
[132.101]—{132.101.48.91] [[8.245 | —{ 8.245.220.54 | 8.245.93.167 |
a) beginning b) after inserting node 132,101.23.66
[213.42 —{213.12.129.31]
[132.101}—{132.101.23.66 | {132.101.48.91] [132.101]—{132.101.23.66 | { 132.101.48.91
[129.132}{129.132.77.11] [129.132}—{129.132.77.11]
[ s.2|45 —{ 8.245.220.54 |{ 8.245.93.167 | [ s.2|45 —{ 8.245.93.167
c) after inserting 213.12.129.31 d) after selecting 8.245.220.54

132101 13210148901 132.101.23.66

[213.12 }—{213.12.129.31]

[120.132}—{129.132.77.11]

[[8.245 —{ 8.245.93.167 | 8.245.220.54 |
e) after inserting 132.101.48.91

Figure 5.7: Node Lookup list.

already in the node lookup list, the node is inserted at the first position in the
list of nodes of this /16 subnet. In addition, the entry for the subnet is moved
to the first position of the node lookup list. Figure 5.7(c) shows how another
node 213.12.129.31 is inserted into the list: this time, the corresponding 16-
bit IP address prefix (231.12) is not yet in the list. Therefore, a new /16 subnet
is inserted at the first position in the node lookup list with the new node as
the single entry in the corresponding list of nodes. Figure 5.7(d) shows what
happens if the node lookup list is accessed to select a node from the /16 sub-
net identified with 8.245: the first element in the corresponding list of nodes,
8.245.220.54 is returned and moved fo the last position of the list of nodes.
Finally, Figure 5.7(¢) illustrates when a node 132.101.48.91 that is already
in the node lookup list is inserted: the old entry is removed from the list of
nodes, the information about the new node is inserted at the first position in
the list of nodes, and the subnet is moved to the first position of the node
lookup list.
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For practical reasons, the information about at most ten different nodes is
stored in the list of nodes of a subnet, which implies a node knows of at most
ten nodes in the same subnet at any time. If information about a new node is
learned as part of a selection, the corresponding list of nodes already contains
ten nodes, and the new node is not yet in the list, then the last entry of the list
of nodes is simply discarded before the new node is inserted.

Organising the node lookup list in this way has two properties: (1) the
nodes belonging to the same /16 subnet are ordered in the corresponding list
of nodes such that the more recently the information about a node has been
received as part of a selection, the closer to the first position it is, and (2) the
subnets themselves are ordered such that the more recently the information
about a node has been received, the closer the corresponding subnet is to the
top of the node lookup list.

Whenever the initiator wants to contact a new neighbour, it randomly
picks a subnet from the node lookup list. Then it picks the first node in the
corresponding list of nodes and moves it to the last position, as illustrated
in Figure 5.7(d). It then tries to establish a virtual link to this node. If the
node cannot be contacted or the virtual link can not be established for any
reason, the information about the node is removed from the corresponding
list of nodes and the next node is tried in the list of nodes of the same subnet.
If this fails for all nodes in the list of nodes of the subnet, the subnet itself is
removed from the node lookup list and another subnet is tried. This procedure
guarantees that every honest node picks other nodes from a wide spectrum of
/16 subnets, and this is exactly what we wanted to achicve.

Since the /16 subnets corresponding to nodes that have been received re-
cently are moved to the top of the node lookup list, picking a node from a
subnet that is close to the top of the list guarantees with high probability that
the node is currently participating in MorphMix. This is not critical for nodes
that should be contacted as new neighbours because the initiator can simply
try another node when a timeout occurs during the connection attempt. How-
ever, the initiator also must select witnesses from the node lookup list. To
make sure that a high percentage of the attempts to set up an anonymous tun-
nel succeed, it is desirable that the witnesses the initiator selects are currently
participating in MorphMix with high probability. Witnesses should therefore
be picked from a subnet that is close to the top of the node lookup list. Note
that like with nodes that are selected as neighbours, the information about a
node that has been selected as a witness is removed from the list of nodes if
it cannot be contacted during the setup of an anonymous tunnel.
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The nodes in newly arriving selections are only inserted into the node
lookup list if the corresponding computed correlation is not above the cor-
relation limit. This means we have combined the peer discovery and collu-
sion detection mechanisms to minimise the number of malicious nodes in the
node lookup list. This is an important property because for the adversary to
compromise a tunnel, he must necessarily control the first intermediate node.
Since an initiator picks the first intermediate node from the set of its cur-
rent neighbours, which are selected from the node lookup list, the adversary
should make sure that many malicious nodes are present in the node lookup
lists of honest nodes to increase his chances to control the first intermediate
node. To achieve this, he should include many or only malicious nodes in the
selections his nodes offer. But since the collusion detection mechanism de-
tects malicious selections that contain many malicious nodes with high prob-
ability (see Chapter 6), the adversary cannot advertise malicious nodes as
aggressively as he would like.

We mentioned that Figure 5.7(b, ¢, and e) correspond to the case of insert-
ing a node that has been learned as part of a selection. However, information
about other nodes are also learned when other nodes establish virtual links
to the own node or when other nodes are queried. Since these methods of
learning about other nodes are not coupled to the collusion detection mecha-
nism, it is easy for the adversary to force the information about the nodes he
controls into the node lookup lists of honest nodes. In particular, if inserting
nodes into the node lookup list were always done as in Figure 5.7, frequently
establishing virtual links to a honest node would allow the adversary to move
the information about malicious nodes to the first positions of the subnets
where he controls nodes. Consequently, we employ a different strategy when
information about other nodes is not learned as part of a selection. The idea
is that an adversary that operates several nodes in a /16 subnet that also con-
tains honest nodes should not be able to continuously put a malicious node
into the first position of the corresponding list of nodes of an honest node by
establishing virtual links to the honest node. On the other hand, the strategy
should still make it possible for an honest node that has joined MorphMix and
that wants to relay data for other nodes to disseminate its contact information
by establishing virtual links to other honest nodes. The strategy to insert in-
formation about nodes that have nof been received as part of selections is as
follows:

1. In general, inserting this information never moves the corresponding
subnet to the first position in the node lookup list.
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2. If the corresponding subnet is not yet in the list, it is inserted af the
last position of the node lookup list with the information about the new
node as the only entry in the list of nodes.

3. If the subnet is already in the node lookup list, the information about
the new node is not in the corresponding list of nodes, and the list of
nodes contains fewer than ten elements, the information about the new
node is inserted at the first fiee position, i.e. at the end of the list of
nodes.

4. Ifthe subnet is already in the node lookup list and the information about
the new node is already in the corresponding list of nodes, the old entry
is replaced with the information about the new node.

5. If the subnet is already in the node lookup list, the information about
the new node is not in the corresponding list of nodes, the list of nodes
contains ten elements, and there is at least one node in the list of nodes
that is located in the same /24 subnet as the new node (i.e. the IP ad-
dresses of the two nodes have the same 24-bit prefix), the /ast of these
entries is replaced with the information about the new node.

6. If the subnet is already in the node lookup list, the information about
the new node is not in the corresponding list of nodes, the list of nodes
contains ten elements, and there is no node in the list of nodes that is
located in the same /24 subnet as the new node, then the /ast entry in
the list of nodes is replaced with the information about the new node.

Analysing this strategy more closely and looking at a single /16 subnet
that contains honest and malicious nodes, we can see that as long as the list
of nodes of an honest node contains fewer than ten entries, the adversary (1)
cannot remove honest nodes from the list of nodes and (2) cannot insert the
information about malicious nodes at the first position in the list of nodes
(unless the subnet has not been in the node lookup list before). Consequently,
the adversary can only make sure honest nodes store the information about
malicious nodes in their list of nodes, but he cannot enforce honest nodes
to select a particular malicious node more frequently than any other node in
its list of nodes. If we again look at a single /16 subnet, assume that the
corresponding list of nodes of an honest node contains ten entries, and there
are honest nodes in different /24 subnets, we can state that an adversary must
either control nodes in the same /24 subnets as the honest nodes to effectively
remove all of them from the list of nodes, or he must control nodes in many
different (at least ten) /24 subnets to have a chance to introduce many or only
malicious nodes in the list of nodes. In the second case, however, it is not
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possible to remove honest nodes that are close to the first position in the list
of nodes because information about new nodes is never inserted at the first
position.

On the other hand, an honest node « that has joined MorphMix for the first
time can effectively disseminate its contact information. By contacting other
nodes, it is inserted into their node lookup lists. Since this information cannot
easily be removed by the adversary, node « will eventually be contacted by
honest nodes and offered in selections to other nodes, which tells these other
nodes about node @ and so on. Note that especially if the system is large, it
may take a while until node « is contacted regularly by other nodes because
before a is offered in selections, it is never inserted at the first position of lists
of nodes (unless the corresponding /16 subnet has not been in the node lookup
list before). However, once « is being offered in selections, it is inserted at
the first position of the lists of nodes and the contact information about « is
spread quickly.

Note that the strategy described above fails if the adversary controls nodes
in very many different /24 subnets of a /16 subnet. In this case, the adversary
should be able to insert mainly malicious in the corresponding lists of nodes
of honest nodes. The countermeasures are either increasing the length of the
lists of nodes beyond ten, or using shorter prefixes than 24 bits, for instance
/20 subnets instead of /24 subnets. However, longer lists of nodes means it
takes even longer until the information about a new node is disseminated if
there are already several nodes in the /16 subnet and the memory requirements
for the node lookup list also increases (see Section 5.8.1). Shorter prefixes,
on the other hand, increase the probability the adversary can overwrite entries
of honest nodes in a list of nodes. Using /24 subnets is a good compromise
because it hinders an institution owning a class C network (which is quite
common) from inserting significantly more than one of the nodes it controls
into the lists of nodes of honest nodes if there are several honest nodes in the
/16 subnet.

There is a possible attack on MorphMix that exploits the fact that a node
may eventually directly connect to a node that it received earlier as part of a
selection. We will analyse the impact of this attack in Section 6.5.
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5.8 Scalability and Requirements to Run a Node

MorphMix aims at providing anonymity for the masses and should therefore
scale well up to a large number of nodes. In this section, we first state why
MormphMix indeed scales very well and why any modern personal computer
with a dial-up Internet connection is sufficient to run a node. We also anal-
yse the possibilities for users with computers that are located behind NAT
gateways and the influence of dynamic IP addresses.

5.8.1 Scalability and General Requirements

The complexity of all three core components of MorphMix grows as the num-
ber of nodes increases. The most critical parameters that affect scalability in
MormphMix regarding to these three components are the following:

1. Collusion detection mechanism:
o the selection size
o the size of the extended selections list
o the complexity to compute the correlation
2. Anonymous tunnel setup:
o the length of message 2 in Figure 5.5
¢ the number of neighbours a node must have at any time
¢ the computational overhead imposed by public-key cryptography
operations
3. Peer Discovery:
o the memory requirements to store the node lookup list

In general, the key to scalability in MorphMix bases on the fact that all
these critical parameters depend on the number of different /16 subnets that
contain MorphMix nodes and not on the total number of nodes. As a result,
we can expect the complexity to grow slower than the number of nodes gets
larger because if many nodes that are already participating in MorphMix, it
gets less likely that new nodes reside in a “new” /16 subnet that does not yet
contain a node. But even more important, the complexity for these parameters
has an upper bound because the number of public /16 subnets is limited to
56559 (see Section 5.4.2). Consequently, if we can show that MorphMix can
cope well with an environment with nodes in all public /16 subnets, then we
can expect MorphMix to be able to handle as many nodes as there are public
IP addresses.
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We first analyse the collusion detection mechanism. According to (5.1),
the selection size grows logarithmically with the number of /16 subnets. Us-
ing the maximum number of /16 subnets, the selection size reaches its max-
imum of 20. Similarly, the size of the extended selections list grows linearly
with the number of /16 subnets and reaches its maximum size with 5656 en-
tries with 21 IP addresses each according to (5.2). This corresponds to less
than 0.5 MB memory space, which is hardly an issue for state-of-the-art com-
puters. According to Algorithm 1, the computational overhead to compute the
correlation of a new extended selection grows linearly with the number of /16
subnets, and we have already stated in Section 5.6.2 that with nodes in all
/16 subnets, this takes about 50 ms on a system with a IGHz AMD Athlon
CPU. Assuming an average tunnel length of five and even if a node sets up
significantly more tunnels than one every two minutes because tunnels may
fail during the setup or may be rejected according to Algorithm 2, the com-
putational overhead resulting from computing the correlations is well below
1% on the above-mentioned system, which is insignificant. We therefore con-
clude that the overhead from the collusion detection mechanism is small and
can easily be handled by virtually any personal computer that is in use as of
November 2003.

The selection size determines the number of nodes a node must offer in its
selections and therefore it also determines the minimal number of neighbours
a node must have at any time. As a result, this minimal number of neigh-
bours also grows logarithmically with the number of /16 subnets and has an
upper limit of 20. Similarly, the selection size determines the amount of data
exchanged during anonymous tunnel setup. Consequently, message 2 in Fig-
ure 5.5 contains the information of at most 20 different nodes that are offered
to the initiator. For now, we can only state that since there is an upper limit for
the minimal number of neighbours and the amount of data exchanged during
the anonymous tunnel setup, the data overhead is so small that even dial-up
Internet connections are sufficient to participate in MorphMix. A detailed
analysis of this data overhead will be provided in Section 8.3. Similarly, we
state that since the data overhead is small, the computational overhead im-
posed by public-key cryptography operations that are used to establish virtual
links and in general during the anonymous tunnel setup can be well handled
by reasonably modern personal computers, and we will also analyse this in
more detail in Section 8.3.

Finally, the length of the node lookup list grows linearly with the num-
ber of /16 subnets that contain nodes. Consequently, its maximum length is
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56559. Every entry in this list contains four bytes for the IP address, two
bytes for the port on which the MorphMix node is listening, 256 bytes for the
RSA modulus, and one byte for the node level. There may be up to 10 entries
per /16 subnet and consequently, the maximum size of the node lookup list
is about 150 MB. Since this data structure is stored in memory during the
time a node is participating in MorphMix, this is not insignificant. However,
it can well be handled by modern personal computer systems that are usu-
ally equipped with at least 256 MB RAM as of November 2003. In addition,
there is always the possibility to reduce the number of entries per /16 subnets
to make the list smaller. Reducing it to two entries per subnet, for example,
brings down the memory requirements of the extended selections list to 30
MB.

Summarising this discussion concerning the computational, memory, and
bandwidth requirements depending on the number of nodes, we conclude that
MormphMix scales indeed very well and can handle as many nodes as there a
publicly available IP addresses. The computational requirements are modest,
although we have yet to show that the overhead imposed by the public-key
cryptography operations is indeed small (see Section 8.3). The memory re-
quirements of the peer discovery mechanism are dominant and imply that it
may not yet be possible to run a MorphMix node on a handheld computer.
On the other hand, the requirements are comparable with other typical appli-
cations such as office packages or graphical web browsers and we therefore
conclude that any state-of-the-art personal computer can run a MorphMix
node. Bandwidth requirements are also modest and even dial-up connections
are sufficient to participate, and we will give a detailed analysis of this claim
in Section 8.3.

5.8.2 NAT Gateways and Dynamic IP Addresses

So far, we have assumed all MorphMix nodes have public static IP addresses.
What remains to be discussed is how participating in MorphMix is possible
for users with a computer that is located in a private network behind a NAT
gateway and the influence of dynamic IP addresses.

We first look at users that access the Internet through a NAT gateway.
One approach is to simply run the node on a computer behind the NAT gate-
way and access MorphMix in the same way nodes with public IP addresses
do. This allows to establish anonymous tunnels via other nodes, but the own
computer cannot be accessed by others because it is hidden behind the NAT
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gateway. If the NAT gateway is under control of the user’s ISP and the user’s
computer simply gets assigned a private IP address, there is nothing that can
be done about this situation and the user cannot relay anonymous tunnels of
other MorphMix user.

On he other hand, NAT gateways are also often used by administrators of
home or small office networks that get assigned one public static IP address
from their ISP. In this case, the NAT gateway is often under control of the user
or the user has indirect control of it through the network administrator. Con-
necting to a computer behind the NAT gateway from computers outside the
private network can now easily be enabled by using port forwarding, which
is supported by virtually all NAT gateways, including (A)DSL/Cable routers.
When establishing a virtual link to another node, a node behind a NAT gate-
way simply includes the public IP address and the corresponding port of the
NAT gateway instead of its own IP address and port to disseminate its contact
information (see Appendix A.3.1).

If multiple users with multiple computers in the same private network
want to access MorphMix from behind the NAT gateway, one could simply
extend the idea above by giving each MorphMix node a dedicated port such
that it can be accessed from outside the NAT gateway. Note that this results in
multiple nodes having the same public IP address, but different ports. How-
ever, since MorphMix identifies nodes with IP addresses, they are equal from
the system’s point of view. This can also be seen by recalling that the peer
discovery mechanism replaces a node with the same IP address as a new node
is inserted in the node lookup list. So for the other nodes, this looks like a
node that changes its port and its key pair quite frequently, but they always
only know about one of them. Although there is no problem to make use of
such a configuration, there is a much more elegant and cleaner solution to
access MorphMix from behind a NAT gateway if there are multiple users: by
choosing one of the internal computers to run a single node, having all users
access MorphMix through this single node, and granting access to the node
from outside the NAT gateway by using port forwarding. Another option is
to run the node directly on the NAT gateway. Since applications access their
own MorphMix node like a proxy, there is no need for this application to
run on the same computer as the MorphMix node. Another advantage of this
scenario is that only a single computer must be kept up and running to be par-
ticipating in MorphMix all time. A potential disadvantage of this approach is
that the anonymity of users may be compromised by an attacker sniffing on
the private network, but usually, a private network behind a NAT gateway can
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be considered as trustworthy. In fact, this concept of using a single MorphMix
node on a dedicated, powerful computer for multiple users in a trustworthy
environment is an attractive option to participate in MorphMix for small com-
panies, departments of larger companies, or institutes of a university.

The effect of dynamic IP addresses is that users get a different IP address
after a period (e.g. 24 hours) expires or each time they connect their computer
to the Internet. The effect is that nodes may get a new identity from time to
time. One consequence is that when a node gets a new IP address, it cannot be
accessed any longer by other nodes that remember this node under its former
identity in their node lookup list. However, this is no problem because a
node will easily detect this when trying to contact this node as a potentially
new neighbour and simply pick another node. When picking such a node
as a witness, the case is different, but selecting witnesses from the top of
the node lookup list as discussed in Section 5.7.2 reduces the probability a
node has changed its identity in the meantime. In general, nodes that change
their IP addresses have the same effect as nodes that leave the system. Since
MormphMix is designed to cope with disappearing nodes (see Sections 5.7
and 7.3.2), it can also deal with nodes that have dynamic IP addresses. As
an interesting side note, it can be expected that nodes that get dynamic IP
addresses always get them from the same /16 subnet. So for the collusion
detection mechanism, such a node always looks the same.

We conclude that having a public static IP address is no requirement, be-
cause even users with computers that are located behind NAT gateways or
that get dynamic IP addresses can run a node and participate in MorphMix.

5.9 An Outlook on IPv6

Although this thesis focuses on IP version 4 (IPv4), it is foresecable that
IPv4 will eventually be replaced with its successor IP version 6 (IPv6) [28],
mainly because the IPv4 address space may become too small. In this section,
we analyse the implications of MorphMix if IPv6 gets widely deployed and
show that MorphMix should still work well on top of IPv6.

In this chapter, we have seen that MorphMix heavily depends on the IPv4
addressing structure and on the way IPv4 addresses are assigned to ISPs or
institutions in general. This has directly lead to our choice of using the 16-bit
prefix of IP addresses as the basis for the three core components of Mor-
phMix. The two main reasons to use /16 subnets was that it bases on the
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assumption that adversaries cannot control nodes in very many of all pub-
lic /16 subnets and that it makes MorphMix scalable because the maximum
number of /16 subnets is much smaller than the maximum number of pub-
lic IP addresses. Consequently, the goal when moving to IPv6 is to organise
IPv6 addresses in a similar way, i.e. to arrange them in “subnets” such that it
is difficult for an adversary to run nodes in a significant fraction of them and
that the total number of these “subnets” has a similar size as the number of
/16 subnets in IPv4 to maintain scalability.

IPv6 addresses [106] are 128 bits long and consist of a 64-bit network part
and a 64-bit host part. A trivial approach would therefore be to move from
/16 subnets in IPv4 to /64 subnets in IPv6. However, this would result in a
potentially very large number of different subnets and the resulting complex-
ity of the three core components of MorphMix could not be handled by any
computer in the foreseeable future. To find a more suitable solution, we must
analyse how address allocation and assignment will be handled in IPv6 [4] in
more detail.

The Internet Assigned Number Authority (IANA) manages the whole
IPv6 address space. The address range 2000::/3 has been designated to be
the global unicast address space in IPv6 [106]. Below IANA, there are the
Regional Internet Registries (RIR) such as ARIN, APNIC, or RIPE NCC.
TANA has allocated initial ranges of global unicast address space from the
2001::/16 address block to the existing RIRs. Below the RIRs, there are the
Local Internet Registries (LIRs), which are usually ISPs. The LIRs get one
or more /32 address blocks from their respective RIRs and end users get /48
address blocks from their LIR. /48 address blocks should be enough even for
the largest companies, because it allows operating 2 6 subnets with 254 hosts
each.

Address allocation in IPv6 is therefore much more structured than in IPv4.
In IPv6, one can always state that all addresses within the same /32 address
block have been allocated by one and the same ISP. This is not the case in
IPv4 where there is no such clear boundary. Small ISPs can have relatively
small /19 IPv4 address blocks while larger ISPs often administrate several /16
address blocks or even larger ones. Similarly, IPv6 addresses within the same
/32 address block can be expected to be topologically (and therefore also
geographically) close, but two IPv4 addresses within the same /16 address
block are often not.

With IPv4, one main motivation for using /16 subnets was to make it dif-
ficult for any entity to run MorphMix nodes in a significant portion of all
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possible /16 subnets. Since hardly any ISP or institution owns or adminis-
trates more /16 subnets than what corresponds to a class A network, this goal
was met. Transferring the same principle to IPv6, then /32 subnets are rea-
sonable to hinder ISPs from operating several nodes. This also implies that it
is at least as difficult to do so for individual companics owning a /48 address
block. According to Cyberatlas®, there are about 12000 ISPs worldwide as of
March 2003. Assuming each of them gets one /32 IPv6 address block, there
will be 12000 /32 subnets, which is smaller than the number of /16 subnets
that are possible in IPv4. In general, the problem with using /32 subnets di-
rectly it that it is difficult to predict how many of them there will be inuse. If
the number grows significantly beyond to the number of /16 subnets in IPv4,
scalability problems arise. Conversely, if the number of /32 subnets is much
smaller than the number of /16 subnets in IPv4, it becomes easier for an in-
stitution (or a few colluding institutions) to run nodes in a significant portion
of all /32 subnets, which reduces the protection from the internal attacker. So
what we need is a function that maps different /32 subnets into a space that
approximately corresponds to the number of different /16 subnets in IPv4,
and this is what we will solve in the remainder of this section.

The idea is to not use the /32 subnet of an IPv6 address directly, but the
last 16 bits of a cryptographic hash (for instance SHA1 [46]) over the 32-bit
prefix, which we denote as the /16;, subnet of this address. Independently
of the number of ISPs, the complexity of MorphMix is now bound by the
216 different /16;, subnets. If the number /32 subnets will be much larger
than today, either because there will be more ISPs or because large ISPs get
assigned several /32 subnets, at least one /32 subnet will hash into most of
the /165, subnets and the situation for MorphMix is very similar to what we
have today in IPv4. Of course this implies that different /32 subnets may
be mapped onto the same /16, subnet, but this is not a problem, because
an adversary controlling a /32 subnet still only gets control in a single /16,
subnet.

It looks different if the number of /32 subnets will be significantly smaller
than 2'6. This could for instance be the case if the number if IPv6 ISPs gets
significantly smaller during the next years and most of them only need one /32
subnet. As a result, the number of /16, subnets will also be small and it will
be easier for an adversary to operate nodes in many different /16 ;, subnets. It
this case, it is therefore reasonable to not only hash the first 32 bits to generate
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the /16;, subnets, but also make use of the following 16 bits. For instance,
assuming there are only 2000 ISPs left and each of them controls one /32
subnet, we could use the last 10 bits of the hash over the 32-bit IP address
prefix and append the last 6 bits of the hash over the next 16 bits in the IP
address, which should exhaust nearly the entire /16 ;, subnet space. Assuming
an adversary that either operates nodes by himself or by private persons, he
must therefore again control nodes in thousands of different /48 networks
to control a significant subset of all /16;, subnets. Looking at a single ISP,
we can state that it is still capable of controlling only a small subset of all
/16;, subnets (2° of 2'° in this example), which corresponds approximately
to the inverse of the number of different ISPs. This is the best we can do to
protect from a single ISP because the fewer different ISPs there are, the more
significant the portion of the address space a single ISP controls. As another
example, assuming there will still be 12000 ISPs and each of them controls
one /32 subnet, then using the last 13 bits of the hash over the 32-bit prefix
and appending the last 3 bits of the hash over the next 16 bits is reasonable.

Note that this mapping of IPv6 prefixes to /165, subnets such that it is
difficult for any institution to control nodes that correspond to many different
/16y, subnets can also be considered as a generalisation of simply using 16-
bit prefixes in IPv4. The simple mapping in IPv4 is possible because of the
relatively small address space and the fact that most public /16 subnets have
already been assigned to RIRs, ISPs, or end users. Due to the uncertainty
about how many /32 subnets will be assigned to ISPs in IPv6, we cannot
yet tell what mapping should be used. However, it is reasonable to assume
that eventually, the number of /32 subnets assigned to ISPs will grow beyond
216 and consequently, hashing the first 32 bits of an IPv6 address will be an
adequate mapping into the /16;, subnet space for the reasons given above.

We conclude that using these modifications, MorphMix can still be op-
erated efficiently on top of IPv6 without any limits in the number of users
that can be supported. Its maximum complexity is slightly higher than with
IPv4, because there will be 216 = 65536 different /16, subnets compared to
56559 different /16 subnets with IPv4. As a result, the maximum selection
size in (5.1) increases from 20 to 21 and the maximum length of the extended
selections list increases from 5656 to 6242 according to (5.2). In addition, the
length needed to store the IP addresses in extended selections list and in the
node lookup list increases from 4 to 16 bytes, and the length of message 2 in
Figure 5.5 also gets slightly larger.
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5.10 Summary

In this section, we have presented the basic idea and functionality of Mor-
phMix, a peer-to-peer-based dynamic mix network for low-latency applica-
tions. In contrast to static mix networks, there is no distinction between
clients and mixes. Rather, every participating node is both a client and a
mix at the same time. The principal goal of MorphMix is to enable practi-
cal anonymous Internet access for a large number of users. We have defined
a threat model which states that due to the openness of MorphMix where
anybody can easily run a node, the internal attacker controlling a significant
subset of all nodes is the biggest threat. On the other hand, we have also
stated that while it is easy for an adversary to run many MorphMix nodes, it
is much more difficult to operate nodes in a significant portion of all public
/16 subnets. To achieve the principal goal and to protect from this internal
attacker, MorphMix is based on three core components.

The first component is the protocol to establish anonymous tunnels. One
key decision to make MorphMix scalable is that every node along an anony-
mous tunnel picks its immediate successor node. This guarantees that at any
time, a node only needs to have a few neighbours that it can append to anony-
mous tunnels. In addition, neighbouring nodes can communicate over their
virtual link to learn which nodes have spare resources to accept new anony-
mous tunnels. But since everyone owning a computer with a public IP ad-
dress can join MorphMix, a colluding set of malicious nodes would simply
pick the next hop among themselves to compromise the anonymity of honest
users. For this reason, we have designed the protocol to append a node to a
tunnel in such a way to make this attack as complicated as possible. In par-
ticular, the node that is appending a node to a tunnel must offer a selection
of several potential next hop nodes that are located in different /16 subnets
to the initiator and the initiator picks one of them. This alone is not enough
to stop the adversary because he can offer exclusively malicious nodes in his
selections to control all remaining hops in a tunnel, and we have identified
this attack as by far the most promising one assuming the adversary controls
several nodes.

To counter this attack, we have developed a collusion detection mecha-
nism, which is the second core component. The goal of the collusion detec-
tion mechanism is to detect malicious tunnels with high probability before the
server is contacted. It makes use of the selections that are offered to the initia-
tor when appending a node to a tunnel with the goal to detect those selections
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that contain several malicious nodes with high probability. The collusion de-
tection mechanism makes use of our assumption in the threat model that the
adversary cannot control nodes in many different /16 subnets. Consequently,
the collusion detection mechanism is not directly based on the IP addresses
that are offered in selections, but on their 16-bit prefix. We have delivered a
proof of concept that assuming 10000 nodes reside in as many different /16
subnets and that the adversary always offers exclusively malicious nodes in
his selections, the mechanism indeed works by producing a correlation distri-
bution with two peaks that can be clearly separated if the adversary does not
control nodes in significantly more than 30% of all /16 subnets.

However, since the collusion detection is based on the assumption that
honest nodes pick the nodes they offer in their selections from a wide variety
of /16 subnets, MorphMix requires a mechanism that supports this. Con-
sequently, the third core component provides a peer discovery mechanism
that allows nodes to easily learn about a large number of nodes. The infor-
mation about other nodes is organised in a node lookup list, which allows
honest nodes to pick their neighbours from a wide variety of /16 subnets. In
addition to providing the basis for the correct functioning of the collusion
detection mechanism, this has an additional benefit because it is a necessary
requirement for the internal adversary to control the first intermediate node to
break the relationship anonymity between initiator and server. Selecting the
neighbours from a wide variety of all /16 subnets reduces the probability the
adversary controls this node because of the assumption in our threat model
that the adversary can only control nodes in a limited number of all public /16
subnets.

We have also shown that MorphMix scales very well and can handle as
many nodes as there are public IP addresses. Joining MorphMix is possi-
ble for a user independent of whether her computer has a static or dynamic
public IP address or is located in a private network behind a NAT gateway.
The computational and memory requirements to run a node are reasonable
and can easily be handled by a modem personal computer, although we will
be able to show that the computational overhead imposed by the public-key
cryptography operations is indeed small only after we have analysed the data
overhead in Section 8.3. Furthermore, even a dial-up Internet connection is
sufficient to participate, and we will provide a detailed analysis to support this
claim in Section 8.3.

Finally, MorphMix makes heavily use of the IPv4 addressing structure
and on the way IPv4 addresses are assigned. However, we have demonstrated
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that with minor modifications, MorphMix should be able to cope well with
IPv6.
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Chapter 6

Attacks on MorphMix

In this chapter, we analyse various attacks on MorphMix. We first describe
the basic attack model we will use throughout this chapter. Then we analyse
attacks where the adversary inserts different numbers of malicious nodes into
malicious selections. Afterwards, we look at attacks including malicious wit-
nesses and DoS attacks. We also discuss attacks exploiting the peer discovery
mechanism and show that simply counting the occurrences of subnets in ex-
tended selections would not work well to determine whether an anonymous
tunnel is good or malicious.

6.1 Basic Attack Model

We have mentioned in Section 5.5.2 that the most realistic threat on Mor-
phMix is an adversary controlling several nodes in several /16 subnets. We
therefore focus primarily on attacks where the adversary tries to control as
many nodes in tunnels initiated by honest nodes by offering many or only
malicious nodes in malicious selections. However, it should be kept in mind
that there is a whole range of other attacks that are still possible against Mor-
phMix, although we believe they are no significant threat. One of them is
the passive observer that can see parts of all traffic handled by MorphMix
nodes. If this adversary manages to observe both the cells on the virtual link
between initiator and the first intermediate node and the corresponding data
on the route between the final node and the server, he may succeed in break-
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ing the relationship anonymity between initiator and server (see Section 5.3).
However, since our threat model (see Section 5.4) is based on the assumption
that only a small fraction of all traffic can be observed by a realistic adver-
sary, we do not consider this attacker as a significant threat. Furthermore,
since we do not employ digital certificates [86], there is no binding between a
node’s IP address and its public key, which makes man-in-the-middle attack
a threat (see Section 5.5.2). But to implement this attack in an effective way
to break several virtual links and layers of encryption along an anonymous
tunnel, the adversary needs active control over many network links, which
is even more difficult than observing the data on these links passively. Fi-
nally, there are attacks that MorphMix cannot cope with such as threats from
malware. An adversary could manipulate the MorphMix software, the oper-
ating system or the application (for instance a web browser) that is used to
access the Internet anonymously in a way such that information about end-
to-end connections is leaked. Note that as is often the case with software that
attempts to increase a user’s privacy or security, introducing a back-door is
much easier than breaking the system. Since it is likely that implementations
of the MorphMix software will be open source, introducing a few lines of
code that send information about all communication relationships of a user
to a centralised server is very easy. This is much simpler than controlling
several nodes or eavesdropping on a significant fraction of all traffic handled
by the MorphMix nodes to collect and correlate large amounts of data. The
best protection against malware in general is to download the software only
from trustworthy servers and to check its integrity with checksums based on
cryptographic hashes.

As defined in Section 5.6.3, a tunnel is malicious (or compromised) if the
adversary controls at least the first intermediate and the final node. Corre-
spondingly, an anonymous tunnel is good if the adversary does not control
both the first intermediate and the final node. Looking at the collusion de-
tection algorithm described in Algorithm 2 in Section 5.6.3, it is obvious that
setting up ¢ tunnels results in ¢, tunnels being accepted and ¢, tunnels being
rejected. Similarly, there are ¢, good and ¢,, malicious tunnels. Of the ¢,
tunnels that are accepted, ¢, are good and ¢, are malicious. Likewise, of
the ¢, tunnels that are rejected, ¢,,, are indeed malicious but ¢, are good.
The goal is to minimise both ¢,,, and ¢,,. Note that it is trivial to minimise
either one without considering the other: rejecting every tunnel means that
ta,, = 0 and accepting every tunnel implies ¢, = 0. The difficulty is to keep
both values small simultaneously. Consequently, we are mainly interested in
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two figures in our following analyses. The first is the fraction of malicious
tunnels among the accepted tunnels, f,,, = t,,, /ta. The second is the frac-
tion of good tunnels that were wrongly classified as malicious, f,, = t,,/t,.
which is — using intrusion detection systems terminology — nothing else than
the fraction of false positives. The prime goal is to minimise f,, . If we man-
age to keep f,,, close to zero, then a reasonably low fraction of false positives
(e.g. 0.25) is acceptable.

Note that f,, and f,, are not independent. With f, = 4, /te. ta =
ta, tlap.ta, =ty —tr, andt,, = f,, -tg. it follows

ta,,
Jam = A=) T e 6.1

which means that a large f,, implies a large f,, . So keeping the fraction
of false positives low is not only important for good usability of the system,
but especially to keep the fraction of malicious tunnels that are wrongfully
accepted as good low.

6.1.1 The Node Simulator

To analyse the effectiveness of attacks by an adversary controlling a subset of
the nodes, we have developed a node simulator that allows simulating attacks
on MorphMix from the point of view of a single node. Basically, the simulator
simulates setting up anonymous tunnels, focusing on the selections that are
offered to the node. The simulator also completely implements the collusion
detection mechanism and the peer discovery mechanism. The node simulator
has been used for all analyses in the previous, this, and the following chapter.
Note that this node simulator is not related to the MorphMix simulator we
will describe and use in Chapter 8.
The node simulator allows specifying a wide variety of parameters to
analyse different settings. The most important parameters them include:
e The number of /16 subnets that contain nodes
e The number of honest and malicious nodes and how they are distributed
over the /16 subnets
e The capabilities of nodes (see Section 7.3)
e The strategy of the adversary (how many malicious nodes to include in
selection and when to attack)
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o The tunnel length

In addition, the node simulator allows specifying several fundamental pa-
rameters of MorphMizx, including the selection size and size of the extended
selections list. In fact, we have used the node simulator to find reasonable
values for several MorphMix parameters, including the selection size in (5.1),
the size of the internal table in (5.2), and the number of slots in the internal
representation of the correlation distribution (see Section 5.6.1).

The node simulator can provide different outputs, including f . f.,, . and
the correlation distribution depending on the number of tunnels that have been
set up.

6.1.2 Basic Scenario

For all attacks in this section, we use the same basic setting as in Figure 5.6:
there are 10000 nodes in 10000 different /16 subnets and every node has the
same probability of being offered in a honest selection. The number of collud-
ing nodes ranges from 500—4000. According to (5.1), a selection contains 14
nodes, which means the adversary can vary the number of malicious nodes he
puts into a selection from 0—14. We set up 5000 anonymous tunnels, whereas
each tunnel consists of five nodes in total. Note that this is a very “clean” sce-
nario because every node is in a different /16 subnet. In addition, if a fraction
f of all nodes is malicious, it actually means that a fraction f of all /16 sub-
nets are completely controlled by the adversary. However this clearly defined
scenario is perfectly suited to compare the basic effectiveness of different at-
tack strategies that can be employed by an adversary. We will analyse more
realistic scenarios in Chapter 7.

With malicious nodes present in the system, it is never possible to reduce
fa.,, to zero. Like in any mix network where malicious nodes are present,
it may always happen that the adversary controls the endpoints of an anony-
mous tunnel. If we assume there are » nodes in MorphMix that all reside
in different /16 subnets, an adversary controls » . of them, and he picks the
nodes for the malicious selections randomly from the set of all (honest and
malicious) nodes, the probability he controls at least the first intermediate and
the final node in a tunnel is approximately (n./n)? (see Section 5.3). There is
no way to detect such a tunnel because the malicious nodes behave in exactly
the same way as honest nodes during the tunnel setup. On the other hand, as
we have seen in Section 5.5.1, if MorphMix would not employ any collusion
detection mechanism, the adversary could easily control all nodes in a tunnel
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if he controlled the first intermediate node. The resulting probability for the
adversary to control all intermediate nodes and the final node would be n . /n.
The goal of the collusion detection mechanism is therefore that the adversary
cannot do much better than he would if he played fair, i.e. if malicious nodes
picked the nodes in their selections randomly.

6.2 Varying the Attack Level

We first analyse what the adversary can achieve depending on his aggressive-
ness. The more malicious nodes that are included in malicious selections, the
more aggressive the adversary is. We denote the number of malicious node
in malicious selections the atfack level of the adversary. We look at two dif-
ferent basic strategies. In the first, the adversary attacks always when one of
his nodes offers a selection. In the second, the adversary attacks only if he
controls the first intermediate node in the tunnel.

6.2.1 The Adversary Attacks Always

In this attack, the adversary always offers malicious nodes in its selection if
a malicious node is hit during the setup of an anonymous tunnel. First, we
assume the adversary uses always the same attack level, which means that the
number of malicious nodes in malicious selections is always the same. We
analyse different attack levels and how they influence the adversary’s chances
to control as many tunnels as possible, i.e. to maximise f,, . Figure 6.1
illustrates the average results over ten simulation rounds' .

Figure 6.1 shows that unless the adversary controls 40% of all nodes (see
below for an explanation), it is not advisable for him to always include only
malicious nodes in malicious selections. This is not surprising, because Fig-
ure 5.6 illustrates that the peaks resulting from the correlations of honest and
malicious extended selections are clearly separated as long as the fraction of
malicious nodes is reasonably small. Including fewer malicious nodes makes
malicious selections more similar to honest selections, and the peaks in the
correlation distribution can no longer be easily separated. Below a certain
threshold, it is virtually impossible for the correlation detection mechanism
to determine if a selection is malicious. For instance, if 10% of all nodes are

IWithout mentioning this again, we will use the average over ten simulation rounds in general
to generate plots of this kind in this and the next chapter.
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Figure 6.1: f, _ ifthe adversary attacks always with the same attack level.

malicious, f,,, slowly increases as the the number of malicious nodes in mali-
cious selections grows from 0-5, because honest and malicious selections are
too similar for the collusion detection mechanism to detect. With more than 5
malicious nodes in a malicious selection, the collusion detection mechanism
starts working correctly in the sense that more and more malicious selections
are detected if the attack level is increased. This can even better be seen when
looking at the correlation distribution. Figure 6.2 illustrates the correlation
distribution when 10% of the 10000 nodes are malicious. The number of
malicious nodes in selections is increased from 0—14.

For 0-5 malicious nodes in malicious selections, the peak from malicious
extended selections overlaps completely with the peak from honest extended
selections. Only increasing the number of malicious nodes in malicious se-
lections to 6 and beyond makes it more and more possible to separate the
peaks and detect malicious nodes with higher and higher probability. We
conclude the collusion detection mechanism cannot completely prevent ma-
licious nodes from offering some malicious nodes in their selections, but it
prevents them from offering too many such nodes.

Figure 6.2 also serves well to explain how the correlation limit is deter-
mined. We do not try to detect two peaks and pick the minimum between
them. This would not always work because if there are no malicious nodes,
there is no second peak and if there are different, independent adversaries,
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Figure 6.2: Correlation distribution when varying the attack level from 0—14.

there are “multiple second peaks”, which could also overlap. In addition,
as it is the case in Figure 6.2 when about 6—9 malicious nodes are used in
malicious selections, determining the minimum is difficult if the peak from
malicious extended selections overlaps with the peak from the honest ones
and the sum of the two does not result in two peaks but looks more like one
peak with a tail on the right end. The strategy is therefore to use the left
flank of the first peak and the maximum of this peak as a reference to guess
the approximate end of the first peak. This allows to detect at least some
malicious selections even when the peaks overlap significantly. For more de-
tails about determining the correlation limit, refer to the MorphMix prototype
implementation (see Appendix A.7).

Depending on the percentage of malicious nodes, there is an optimum
number of malicious nodes that should be offered in malicious selections for
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the adversary to be most effective. We name this optimum number the optimal
attack level. Tt is defined as the maximum number of malicious nodes in mali-
cious selections such that the two peaks still overlap completely. With 10000
nodes in the system and if 10% of all nodes are malicious, Figure 6.2 tells
us that the optimal attack level is 5. This is confirmed by Figure 6.1, which
tells us indeed that the adversary manages to control a maximum fraction of
0.0142 of all tunnels if he uses 5 malicious nodes in malicious selections.
This is larger than the fraction of 0.1 = 0.01 he would control if he played
fair, but is also much smaller than the fraction of 0.1 he would control if no
collusion detection mechanism were employed.

Figure 6.1 also shows that the collusion detection mechanism has its limits
if the percentage of malicious nodes increases. With 20% malicious nodes,
the adversary manages to control a fraction of 0.0535 of all tunnels compared
to 0.04 if the malicious nodes played fair and with 30% malicious nodes,
this grows to 0.128 compared to 0.09 if the adversary played fair. With 40%
malicious nodes, however, the collusion detection mechanism does no longer
work and the adversary manages to compromise a fraction of nearly 0.38 of
all tunnels instead of 0.16 if he played fair. This can be explained by looking
at Figure 5.6 and realising that the peaks resulting from selections from honest
and malicious nodes move closer together as the number of malicious nodes
gets larger.

A variation of the first attack is to still attack always, but to attack with
a higher level if the final node is appended to the anonymous tunnel. This
means that if the adversary controls the last intermediate node, this node
offers only other malicious nodes in the selection for the final node. If an
intermediate node is appended to a malicious node, the node offers fewer ma-
licious nodes in the selection. This attack is difficult to mount in practice
because the adversary cannot know when the final node is appended. Assum-
ing the adversary controls indeed the last intermediate node in a tunnel, the
predecessor node of the final intermediate node is honest, and there is an addi-
tional malicious node in the tunnel, the adversary can try to correlate the cells
handled by both malicious nodes during the tunnel setup. Since the number
of nodes along anonymous tunnels is reasonably small in practice, e.g. five,
this may tell the adversary the position of the last intermediate node in the
tunnel. However, there are only a few cells that are handled by both mali-
cious nodes before the last intermediate node must send back the selection
for the final node to the initiator. If there are many nodes in the system, these
cells are definitely not enough to make a correct guess with high probability.
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Another possibility for a malicious node is to guess its position without cor-
relating data with other nodes. The idea is to measure the time that has passed
between sending message 9 in Figure 5.5 to append the malicious node and
receiving message 1 to append the next node. If the measured time is very
small, then it is likely that there is no other node between the initiator and the
malicious node. If the time increases, it is more likely that there are “a few”
other nodes in between. However, if the initiator introduces a random delay
of several seconds between the reception of message 10 (or message 9 if the
first intermediate node is appended) and sending out message 1 to append
the next hop, it is virtually impossible for a malicious node to determine its
position in an anonymous tunnel during the setup. Nevertheless, we analyse
the impact of this attack assuming the adversary always knows when the final
node is appended to the tunnel to compare it with the attack described above.

We vary the number of malicious nodes in malicious selections from 0—
14 when another intermediate node is appended. When the final node is ap-
pended, malicious nodes offer 14 malicious nodes in the selection. Figure 6.3
depicts the fraction of malicious tunnels among the accepted tunnels.
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Figure 6.3: [, ifthe adversary attacks with different attack levels.

The attack is slightly more efficient than the one above. For instance,
with 10% malicious nodes in the system, the adversary controls a fraction of
0.0147 of all tunnels if he uses one malicious node in his selections.
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6.2.2 The Adversary Attacks Selectively

A better strategy for the adversary is to attack only if he controls the first
intermediate node in an anonymous tunnel. Intuitively, this makes sense be-
cause breaking the relationship between initiator and server is only possible
if he controls the first intermediate node in the corresponding tunnel. Attack-
ing when the first intermediate node is not controlled delivers unnecessarily
an extended malicious selection with several malicious nodes to the initia-
tor. Since a node stores the extended selections it receives in the extended
selections list, this increases the correlation of further malicious extended se-
lections with several malicious nodes that are sent to the same initiator. In the
following two attacks, malicious nodes offer only honest nodes in their selec-
tions whenever the first intermediate node is not controlled by the adversary.

Again, these attacks are difficult to carry out in practice. The adversary
must decide during the setup whether a node he controls is the first interme-
diate node along an anonymous tunnel. This is very difficult since all infor-
mation a malicious first intermediate node has is to measure the time between
sending messages 9 in Figure 5.5 to the initiator and receiving message 1 to
append the next hop. In addition, if the first intermediate node is indeed mali-
cious and one or more honest nodes are picked as the next nodes in the tunnel,
it is very difficult to determine for a malicious node appended to this tunnel
whether the first intermediate node is also malicious, for the same reasons as
discussed in Section 6.2.1. We still analyse the impact of the following two
attacks in the same way as above.

Like in the case where the adversary attacks always, we first assume the
number of malicious nodes in malicious selections is always the same. We
analyse different attack levels and how they influence the adversary’s changes
to control as many tunnels as possible (f,, ). Figure 6.4 illustrates the results.

Compared to Figure 6.1, this strategy gives the adversary better chances to
control a malicious tunnel. With 10% malicious nodes, the maximum f, in-
creases from 0.0142 with 5 malicious nodes in malicious selections to about
0.0175 with 8 malicious nodes. Interestingly, the adversaries chances de-
crease compared to Figure 6.1 if he controls 40% of all nodes. The reason is
that the initiator now gets fewer malicious selections, which causes the peak
from correlations of malicious extended selections to be smaller than in Fig-
ure 5.6(f). As a result, the initiator can better detect the leftmost peak and a
reasonable correlation limit.

We also examine the adversary’s changes if he attacks with a higher attack
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Figure 6.4: f, _ if the adversary attacks always with the same attack level
but only if he controls the first intermediate node.

level when the final node is appended to the anonymous tunnel. To carry out
this attack, the adversary must not only know if he controls the first interme-
diate node, but also guess when the final node is appended to a tunnel, which
is even more complicated than the attack above. Assuming the adversary
controls the first intermediate node, we vary the number of malicious nodes
in malicious selections from malicious nodes from 0—14 when another inter-
mediate node is appended. When the final node is appended, malicious nodes
offer 14 malicious nodes in the selection. Figure 6.5 depicts the fraction of
malicious tunnels among the accepted tunnels.

This maximum f,  that can be achieved with this attack is again larger
than before. Compared to Figure 6.1 and an adversary controlling 10% of all
nodes, the maximum f,, increases to about 0.0231.

6.2.3 Summary

Comparing the attacks described above, we conclude the adversary should
attack only if he controls the first intermediate node in an anonymous tunnel
and attack with a higher attack level when appending the final node. However,
as already pointed out, this attack is nearly impossible to mount in practice
because decisions have to be made based on very little information. In partic-
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Figure 6.5: f,, ifthe adversary attacks with different attack levels but only
if he controls the first intermediate node.

ular, having the initiator introduce a random delay of several seconds between
the reception of message 10 (or message 9 if the first intermediate node is ap-
pended) and sending out message 1 to append the next hop makes it virtually
impossible for a malicious node to find out if it is the first intermediate node in
a tunnel. Similarly, even if a malicious node learns it is the last intermediate
node before it offers the selection to the initiator, only very little informa-
tion is available for the adversary to find out if the first intermediate node of
this tunnel is also malicious. Of course, the adversary can always make a
guess, but the uncertainty about when to attack will result in several missed
opportunities where he should have attacked but did not, and many situations
where he wastes a malicious extended selection because he decided to attack
although he didn’t control the first intermediate node.

To support this claim, we analyse the impact of wrong guesses on the
results in Figure 6.5. In this scenario, the adversary has to decide between
three options when he controls a node: attack by offering only malicious
nodes, attack with the reduced attack level, or do not attack and offer only
honest nodes. Simply guessing would tell the adversary the right thing to do
in 1/3 of all cases when he controls a node. To analyse the impact of wrong
guesses, we analyse two cases. In the first case, we assume the adversary
guesses correctly with a probability of 1/2; in the second case we increase
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this probability to 2/3. If the adversary make the wrong guess, we assume he
chooses any one of the two other options with equal probability. The results
are illustrated in Figure 6.6.
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Figure 6.6: f,, ifthe adversary attacks with different attack levels but only
if he controls the first intermediate node, assuming he does not always guess
correctly.

Comparing Figures 6.5 and 6.6, we see that the higher the probability the
adversary makes a correct guess, the larger the number of malicious tunnels
among the accepted tunnels, which is not surprising. However, comparing
Figures 6.1 and 6.6(b) shows that the adversary must guess correctly with a
probability of about 2/3 or better to be as successful as when he attacks al-
ways with the same attack level. Since guessing correctly with a probability
of 2/3 is very unlikely according to our discussion in this section, we can state
that the adversary will be more successful in practice by attacking always with
the same attack level than by employing the strategy in Figure 6.5. Similar ar-
guments can be made for the other two attacks that depend on correct guesses,
illustrated in Figures 6.3 and 6.4. Since these attacks result in a smaller f,
than the attack in Figure 6.5 assuming the adversary always guesses correctly,
we expect they also result in a smaller f,_ than in Figure 6.6(b) in practice.
We therefore conclude that of all attacks we have discussed in this section, the
one where the adversary attacks always with the same attack level results in
the largest f,, inpractice. The adversary can get all information to carry out
this attack optimally, because observing the system tells him the approximate
number of different /16 subnets with nodes in the system. This can then be
used to determine the optimal attack level. One way to determine this optimal
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level is by employing the same method we do throughout this thesis: by using
our node simulator and testing the effectiveness of different attack levels.

6.3 Attacks Including Malicious Witnesses

Recalling the procedure to append a node to a tunnel in Figure 5.5, there is a
potential attack that can be used if the node b that appends the next hop to the
tunnel and the witness collude. Althoughb cannot yet know if the witness will
be also malicious, it can hope for a malicious witness and generate a forged
selection for the initiator. This selection contains any IP addresses of nodes
that are not in the b’s collusion and self-generated public keys of which node
b knows the corresponding secret keys. If it turns out that the witness is really
malicious, b and w can decrypt DH,, sent by the initiator in message 3 and b
can simulate the next hop itself. However if the witness is not malicious, the
setup will fail because w will either not be able to contact c at all because b did
not include the IP addresses of existing MorphMix nodes or ¢ won’t be able to
decrypt DH, in message 5 because it is not encrypted with ¢’s real public key.
But even if b and w are malicious and b simulates c itself, this will be detected
when appending the next hop if that witness is not malicious because it will
include b’s IP address in the receipt in message 7. Therefore, it does not make
sense that the adversary makes use of this attack if he controls a node early in
the tunnel, because most attacks would be detected. However, assuming the
adversary knows when the final node is appended to the anonymous tunnel,
it could make sense to employ this attack when the last intermediate node is
malicious. Again, this attack is not easy to mount because finding out when
the final node is appended is difficult in practice.

We analyse the impact of this attack. We vary the number of malicious
nodes in malicious selections from 0—14 when another intermediate node is
appended. When the final node is appended, malicious nodes hope for a ma-
licious witness and offer only IP addresses in /16 subnets that do not contain
malicious nodes and also include self-generated public keys of which they
know the secret keys. Figure 6.7 depicts the fraction of malicious tunnels
among the accepted tunnels.

When controlling 20% of all nodes or fewer, the maximum f,, is smaller
than in Figure 6.1. It seems that the probability that b and w are colluding
when appending the last hop is too small to gain anything from this attack.
With 30 or 40% malicious nodes, f,,, is slightly larger than in Figure 6.1.
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Figure 6.7: f,, ifthe adversary hopes for a malicious witness when the final
node is appended.

Considering that this attack is significantly more difficult to mount than the
one in Figure 6.1, it is very unlikely to be more effective in practice for the
reasons we discussed in Section 6.2.3. Consequently, it does not make sense
for an adversary to use this attack.

6.4 Denial of Service Attacks

Any MorphMix node can always choose not to forward cells, and there is
nothing MorphMix can do about it. For the initiator, an anonymous tunnel
simply fails to transport data; it cannot distinguish between a congested node,
a failure or congestion in the underlying physical network, a node that has
crashed, or a node that refuses to forward data. If a tunnel fails, all end-to-
end communication relationships that use this tunnel also fail.

This can be exploited by the adversary because it may always happen
that a tunnel that is accepted by the initiator contains malicious nodes, but
the tunnel itself is not malicious because the adversary does not control both
the first intermediate and the final node. If the adversary refuses to transport
data through these tunnels after they have completely been set up, ¢, gets
smaller and so does t,, but ¢,,, stays the same. Since f,,, = ., /ta> fa.,
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gets larger, i.e. the fraction of malicious tunnels among all tunnels accepted
by the initiator gets larger.

Figure 6.8 depicts the impact of this attack. We use the same setting as
in Figure 6.1 where the adversary attacks always with the same attack level.
However, if the adversary controls at least one node along the tunnel but not
both the first intermediate and the final node, he won’t forward any data along
this tunnel, which means the initiator cannot use it.
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Figure 6.8: f,  if the adversary attacks always with the same attack level
and refitses to forward data along any tunnel where he controls at least one
node but not both the first intermediate and the final node.

With 5 or 10% malicious nodes, f,. . is not significantly larger than in
Figure 6.1. However, as the percentage of malicious nodes grows, f,, sig-
nificantly increases. For instance, with 20% malicious nodes f,, grows to
0.106 compared to 0.0535 in Figure 6.1, and with 30% malicious nodes f,,,
is 0.311 compared to 0.128 in Figure 6.1.

The explanation for this is that with 10% malicious nodes, the probabil-
ity there is at least one malicious node in a tunnel is about 0.34. This is not
depicted in Figure 6.8 but was produced as an additional output during the
analysis with the node simulator to generate the results in Figure 6.8. With
20% malicious nodes, this probability increases to 0.59 and with 30% ma-
licious nodes to 0.77. It is therefore not surprising that as the percentage of
malicious nodes grows, more and more tunnels that are actually good because
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the adversary does not control both the first intermediate and last node cannot
be used because the adversary blocks the data flowing through them.

Such DoS attacks are not a specific MorphMix problem, but a general
problem of mix networks where the adversary operates a subset of the mixes
himself: if the adversary blocks the traffic along all chains of mixes where he
controls at least one node but not all the nodes he needs to break the chain,
his success rate increases. It seems difficult to prevent this attack, but one
possibility to reduce its impact is to couple MorphMix with a reputation sys-
tem. Nodes repeatedly failing to forward data would get a bad reputation
over time and would no longer be offered in extended selections from honest
nodes. Research on reputation systems is still in its infancy, but initial studies
to make mix networks more reliable through reputation have been carried out
(see Section 3.5).

Although the theoretical threat from these attacks is significant if the per-
centage of the nodes controlled by the adversary exceeds 15-20%, it is not
trivial to mount in practice. Before refusing to transport data through a par-
ticular tunnel, the adversary first must be sure that he does really not control
the first intermediate and the final node. Correctly determining this with high
probability is only possible after several cells have been transported along
the tunnel. The collected data must be sent to a centralised place where the
traffic flowing through the various malicious nodes can be correlated to learn
which tunnels the adversary controls and which he can block. This takes time
and depending on the system size, the number of malicious nodes, and the
amount of data transported through a tunnel before it is torn down, this may
take longer than the average lifetime of a tunnel. It should be at least possi-
ble for a user to send and receive some data through such a tunnel before the
adversary starts blocking the traffic, which reduces the impact of the attack.
We conclude that in practice, the adversary could be able to find out quickly
enough if he controls nodes in a tunnel that is not malicious to block the traf-
fic before the lifetime of the tunnel expires, which increases f,, compared
to Figure 6.1. However, especially if the percentage of malicious nodes is
below 15-20% malicious nodes, the expected gain for the adversary won’t be
significant.

As a side note, another strategy for an adversary is to participate in Mor-
phMix with several nodes simply to disrupt the service and not to link initia-
tors to servers. To do so, his nodes would accept tunnels being established
through them but refuse to transport data once a tunnel has been set up or
stop forwarding data after it has been used for a while. Depending on the
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application, MorphMix is resilient to tunnel failures up to a certain degree
by switching to another tunnel if a tunnel fails and establishing the commu-
nication relationship wit the server again. For instance, in the case of web
browsing, if downloading a web page is interrupted, the page can simply be
downloaded again using another tunnel (see Section 8.3.9). But in general,
this attack can be quite effective in the sense that if most tunnels fail, the
quality of service as perceived by the users gets so poor that they no longer
use MorphMix. As discussed above, a reputation system could help against
DoS attacks in general by excluding nodes that have a history of offering poor
service.

6.5 Exploiting the Peer Discovery Mechanism

During initial peer discovery, a node a contacts another node & directly to
learn about some other nodes. Afterwards, b knows some nodes « is storing
in its node lookup list. Let’s assume b is malicious and b tells a about m
malicious nodes {m 1, ma, ..., my, } that are part of b’s collusion. If we look
at one of these nodes and identify it with m;,1 < k < m, then we can
say that if my, gets picked later as a witness to add a hop to an anonymous
tunnel, then it could be that « is the initiator of this tunnel. The adversary
can maximise his chances to be successful with this attack by making sure
the nodes are advertised only to a and to no other node. However, a could
itself tell others about some or all of these nodes during initial or continuous
peer discovery, which implies the adversary cannot be sure if the initiator
is indeed a if my, is picked as a witness. In addition, « may have removed
my, from its node lookup list if it has learned about several other nodes in
the same /16 subnet or if it has contacted m, directly to pick it as a new
neighbour. But assuming the adversary has told about m j, exclusively to a
and assuming « has not informed other nodes about it, then a malicious node
c that is colluding with b and m and that is appended to a tunnel can be sure
that a is the initiator of this tunnel if m is picked as the witness for adding
this hop. If no further nodes are appended, the tunnel is compromised because
the adversary controls the final node and knows how the initiator is.

Looking at continuous peer discovery, there is a similar exploit. A mali-
cious node b offers m other malicious nodes {m 1, ma, ..., m,, } exclusively
in one selection. Let’s assume that « is the initiator of this tunnel, it happens
the adversary controls the final node, and, by correlating the data that are
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sent along the tunnel, the adversary can determine that the selection above
was offered during the setup of this tunnel. Unless the adversary controls
also the first intermediate node in this tunnel, he cannot know that « is the
initiator at this time, but since the adversary controls the final node, he re-
members all servers that were contacted using this tunnel. If later, a contacts
any my, 1 < k < m directly to pick it as a new neighbour, and if we assume
that « has not informed others about m g, then the adversary can be sure that
a was the initiator of the tunnel.

How useful are these attacks? The first attack requires that when m g is
picked as a witness, a malicious node must be appended. In addition, the fi-
nal node in the tunnel must be malicious, which is trivial is no further nodes
are appended after my, has been picked as the witness. So even if my, is in-
deed selected as a witness, it is by no means guaranteed that the final node
will also be malicious. The second attack suffers from the problem that the
final node does not offer a selection and malicious intermediate nodes cannot
predict if the final node in the tunnel will also be in their collusion. Conse-
quently, the malicious intermediate nodes must offer other malicious nodes
exclusively in their selections although the probability the final node will be
malicious is relatively small. In general, the problem is similar in both cases:
in the first attack, the final node must be malicious when m, is picked as a
witness and in the second case, the final node must be malicious when m , is
offered in a selection. But beyond this, both attacks suffer from the problem
that they are very uncertain to succeed because the nodes can be overwritten
with other nodes from the same /16 subnet in the targeted user’s node lookup
list or information about them can be forwarded to other nodes during peer
discovery. So looking at the first attack, the adversary has no way to tell if
the node picking m, as a witness is indeed the same node that received m
exclusively earlier. Similarly, in the second attack, the adversary does not
know if the node directly contacting m j, is the same node that received m,
exclusively as part of a malicious selection before. Another problem for the
adversary is to decide when an exclusive node can be reused. Since the infor-
mation about a node may remain in a node lookup list for a long time until
it is removed (see Section 5.7.3), the adversary does not know if a node has
been overwritten or is still out there in the targeted node’s list if it has never
been contacted directly or used as a witness. If the targeted node has further
disseminated information about the node, things get even more complicated
because its virtually impossible for an attacker to tell when a node has been
removed from the node lookup lists of all nodes.
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The main problems with exploiting the peer discovery mechanisms are the
uncertainty when deciding if an attack was successful or not and that multiple
malicious nodes must be assigned exclusively to a single attack without being
reusable for a potentially long time. The second problem gets smaller when
the adversary owns several /16 subnets, which gives him quite large reservoir
of exclusive nodes. But operating many nodes in one subnet increases the
probability that the nodes in these subnets are overwritten quickly in the node
lookup lists. Looking at all the complications with the attacks exploiting peer
discovery, we argue that they are unlikely to be effective in practice. The
attacks may be used and even be effective from time to time on a small scale,
but are not well suited to attack on a large scale.

6.6 Why Counting the Occurrences of Subnets
does not Work

We stated in Section 5.6.1 that simply counting how many times the subnets
in an extended selection show up in the extended selections list would not
work well. Here, we show a simple attack how the adversary could exploit
this. We use again 10000 nodes in 10000 subnets, 1000 of which are mali-
cious. Malicious nodes offer six malicious nodes in their selections, but if a
malicious node is asked by one of its honest neighbours if it is willing to be
the next hop in an anonymous tunnel, then it accepts this with a probability of
only 0.35. The main idea behind this strategy is to compensate the increase of
malicious nodes in malicious selection with the frequency they are included
in honest selection. Figure 6.9 illustrates the occurrences of the 10000 /16
subnets. The first 9000 entries are the subnets with honest nodes while the
last 1000 subnets contain malicious nodes.

Looking at Figure 6.9, it is virtually impossible to tell what subnets con-
tain many malicious nodes. Using the collusion detection mechanism based
on occurrences of subnets in the extended selections list in our node simulator,
we found out that the adversary would have managed to control the first inter-
mediate and final node in a fraction of about 0.036 of all tunnels accepted by
the initiator. This is significantly larger than the maximum fraction of 0.0142
of all tunnels that are malicious according to Figure 6.1 with 10% malicious
nodes and when using the “real” collusion detection mechanism as described
in Section 5.6.1. Carrying out the attack above and using the real collusion
detection mechanism, the fraction of malicious tunnels drops from 0.036 to
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Figure 6.9: Occurrences of /16 subnets in the extended selections list.

about 0.0043. We therefore conclude that the correlation as it is computed
in Algorithm 1 in Section 5.6.1 is a useful measure to learn which extended
selections contain many malicious nodes.

6.7 Summary

Based on the assumption that an adversary controlling a subset of all nodes
is the biggest threat to MorphMix, we have analysed several different attack
strategies. The most reasonable basic attack the adversary should make use
of is attacking always with the same attack level, as analysed in Figure 6.1.
Attacking with different levels or attacking only when the first intermediate
node is malicious is very difficult in practice and very unlikely to be more
successful as we have shown in Figure 6.6.

The DoS attack where the adversary refuses to forward data in tunnels
where he does not control both the first intermediate and the final node is a
potential threat because it significantly increases f,,, especially if the ad-
versary controls at least 15-20% of all nodes. However, we can expect its
practical impact to be much smaller than in the theoretical analysis in Fig-
ure 6.8 because the tunnels where traffic would be blocked can only be iden-
tified after several cells have been sent through them. In general, any kind
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of DoS attack is a problem if the quality of service as perceived by the users
gets so poor that they no longer use MorphMix. One possibility to reduce the
impact of DoS attacks are future advances in research on reputation systems
and their application to mix networks. Exploiting the peer discovery mech-
anism could give the adversary an advantage for a short time, but turns out
to be very problematic in the long run, since the adversary cannot control to
which other nodes information about exclusive nodes are propagated after the
information has been given to one particular node. Finally, we have shown
that simply counting how many times the subnets in an extended selection
show up in the extended selections list would not be a useful alternative to
our collusion detection mechanism to detect malicious selections.

Consequently, we assume the adversary attacks always with the same at-
tack level in the remainder of this thesis. We also assume he can always
determine the optimal attack level to use to maximise f,, . Using this as-
sumptions, Figure 6.10 depicts the fraction of malicious tunnels among the
accepted tunnels depending on the percentage of malicious nodes (0—40%).
The top line shows the fraction of malicious tunnels if no collusion detec-
tion mechanism is employed, which corresponds to n./n if n, of » nodes
are malicious. The bottom line shows the fraction if the adversary plays fair,
1.e. if malicious nodes picked the nodes in their selections randomly from the
set of all nodes, which corresponds to (n./n)%. The line in between shows
the fraction of malicious tunnels if the adversary uses the optimal attack level
depending on the percentage of nodes he controls. The table below the figure
gives the optimal attack level to maximise f,, . The setting is the one we
described in Section 6.1.

As long as the percentage of malicious nodes is reasonably small, the
collusion detection mechanism works well in the sense that the adversary
cannot compromise significantly more tunnels than if he plays fair. If the
adversary controls more than about a third of all nodes, the collusion detection
mechanism starts failing because the peaks resulting from selections from
honest and malicious nodes are too close together to determine a reasonable
correlation limit (see Section 5.6.1).

Note that since we used a setting where every node is located in its own
/16 subnet, the results in Figure 6.10 can also be interpreted by replacing per-
centage of malicious nodes with percentage of subnets where the adversary
has full control. Consequently, Figure 6.10 also tells the fraction of malicious
tunnels depending on the percentage of all /16 subnets where the adversary
has full control assuming all /16 subnets contain the same number of nodes
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Figure 6.10: f, _ without and with collusion detection, and if the adversary
plays fair.

and all nodes have the same probability of being offered in honest selections.
Considering that fully controlling 10% of all /16 subnets is difficult according
to our threat model (see Section 5.4), we can expect already now that assum-
ing there are honest nodes in most public /16 subnets, a realistic adversary
should only manage to compromise a small fraction of all tunnels that are
accepted by the initiator. Nevertheless, we will analyse this in more detail in
the next chapter where we assume more realistic scenarios than the one we
used in this chapter to compare different attack strategies.
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Chapter 7

Analysis of the Collusion
Detection Mechanism

In this chapter, we evaluate the performance of the collusion detection mech-
anism. We first use the basic scenario from the previous chapter to see what
happens if a node joins MorphMix for the first time. Then, we extend this
basic scenario to analyse the effect if there are honest and malicious nodes in
the same subnet. Afterwards, we examine realistic scenarios with many nodes
and analyse the influence of nodes that have different capabilities and that are
not participating in MorphMix all the time. We also look at how optimis-
ing the quality of anonymous tunnels in terms of throughput affects collusion
detection, analyse the influence if there are different numbers of nodes in the
different subnets, and examine the effect of using different tunnel lengths than
five.

7.1 Joining MorphMix for the first Time

In our first analysis, we want to examine what happens if a node joins Mor-
phMix for the first time with an empty extended selections list. It is reason-
able to assume that a node first has to set up several anonymous tunnels until
the correlation distribution starts getting its typical shape and the initiator can
make valid decisions about whether a new extended selection is good or ma-
licious.
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We use the same setting as in Chapter 6 and vary the percentage of ma-
licious nodes from 0-40%. Malicious nodes attack always using the optimal
attack level. We are interested in the the fraction of malicious tunnels among
the accepted tunnels (f,,,) and the fraction of false positives (f,,) depending
on the number of tunnels that have been set up. Figure 7.1 shows the results.
The data are represented as a rolling average over the 200 most recently set
up anonymous tunnels. Below each individual graph, the optimal attack level
is given in parenthesis.
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Figure 7.1: Performance with 10000 nodes.

Starting with an empty internal table, the fraction of false positives is
quite high at the beginning but starts dropping quickly. Recalling that accord-
ing to Section 5.5.1, a new tunnel is set up every two minutes on average,
and considering that a large fraction of false positives only increases this rate
because if a tunnel is rejected, another is set up right away, the fraction of
false positives should drop below 0.5 within a few hours after having joined
MorphMix. After having set up about 1000 tunnels, the fraction of false pos-
itives has reached approximately 0.2 and remains at this level. This implies
that in the long run, one out of five tunnels that are actually good are rejected
by the initiator. However, this no significant problem because as discussed in
Section 5.5.1, setting up anonymous tunnels is a background process to keep
a pool of usable tunnels ready at any time. Similarly, Figure 7.1 shows that it
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takes setting up several tunnels until the fraction of malicious tunnels among
the accepted tunnels has reached a “steady state”, but in general, the fraction
of malicious tunnels among the accepted tunnels is not especially large in the
beginning. This is surprising, but can be explained with the way the correla-
tion distribution is built starting with an empty extended selections list. After
a few tunnels have been set up, the shape of the correlation distribution does
not yet look as in Figure 6.2, but consist of several small peaks. Since the
left flank of the first peak is used as a reference to determine the correlation
limit according to Algorithm 2 in Section 5.6.3, the resulting correlation limit
is usually chosen too small in the beginning. One can also say the correla-
tion limit is selected conservatively in the beginning to guarantee only a small
fraction of malicious tunnels, but at the cost of more false positives.

Since the size of MorphMix is determined by the number of different /16
subnets in which the nodes are located, we conclude that joining the system
for the first time when there are 10000 different subnets works well. In Sec-
tion 5.6, we mentioned there are 56559 public /16 subnets in the Internet.
What about joining the system for the first time if there are nodes present in
nearly all /16 subnets? Figure 7.2 repeats the analysis for a system with 50000
nodes in 50000 different /16 subnets. This time, we set up 10000 tunnels.
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Figure 7.2: Performance with 50000 nodes.

The results are very similar to those in Figure 7.1, with the exception
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that it takes setting up about 4000 anonymous tunnels until the fraction of
false positives reaches and remains at approximately 0.2. But still, joining
the system for the first time is not a problem, although the fraction of false
positives will be relatively high during the first hours. To reduce this learning
phase, a node could try to fill its extended selections list much more quickly
by asking other nodes that have been participating in MorphMix for a while
about extended selections they have stored in their lists. But carelessly giv-
ing away the information about extended selections collected during the setup
of the own anonymous tunnels could allow others to learn more about these
tunnels. In addition, malicious nodes could distribute forged extended selec-
tions to confuse honest nodes. We therefore choose not to employ any such
mechanism to speed up a node’s filling of its extended selections list.

The fact that it takes setting up some anonymous tunnels until a node can
make reasonable judgements about whether a tunnel is good or malicious has
some implications. First of all, we should keep the knowledge about pre-
viously established tunnels in case a node leaves MorphMix and joins again
later. Therefore, the complete extended selections list is periodically stored on
disk. Furthermore, we have already discussed in Section 5.5.4 why relaying
traffic for others is good to increase the own anonymity. The collusion detec-
tion mechanism provides additional incentive for a user to keep her node up
and running and relay data for others even when she does not need to access
the Internet anonymously: the node continues to set up anonymous tunnels
to collect information about the system, which keeps the data in the extended
selections list table up-to-date.

7.2 Honest and Malicious Nodes in the same /16
Subnet

In Chapter 6 and Section 7.1, we have always assumed that some /16 subnets
contain only honest and some other subnets contain only malicious nodes. In
reality, however, it is more likely that the adversary controls some nodes in
subnets where there are also honest nodes.

We analyse a system with 100000 nodes in 10000 different /16 subnets.
Every subnet contains 10 nodes, and all nodes have the same probability of
being offered in honest selections. We vary the number of subnets that contain
both honest and malicious nodes from 500—-4000; all other subnets contain
only honest nodes. We examine f,,, depending on the fraction of malicious
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nodes in the subnets where there are both honest and malicious nodes, which
corresponds to the fraction the adversary controls in these subnets according
to Section 5.4.2. We vary this fraction from 0-1, where 0 corresponds to no
malicious nodes in the particular subnet and 1 corresponds to exclusively ma-
licious nodes in the subnet (which corresponds to the basic scenario used in
Chapter 6. We also assume that there are at most ten nodes in a single /16 sub-
net that are all located in different /24 subnets. This implies that malicious
nodes can never overwrite honest nodes in the node lookup lists of honest
nodes (see Section 5.7.3). We set up 5000 anonymous tunnels, whereas each
tunnel consists of five nodes in total. The adversary attacks always using the
optimal attack level. Figure 7.3 illustrates f,, dependingon the fraction con-
trolled by the adversary in subnets with malicious nodes and the percentage
of subnets that contain both honest and malicious nodes. The table lists the
optimal attack levels to maximise f,, .

We can see that if the fraction the adversary controls in subnets with
malicious nodes gets larger, the number of malicious tunnel among the ac-
cepted tunnels also increases. This is not surprising because recalling the
peer discovery mechanism in Section 5.7 and looking at a single /16 subnet,
the fraction of malicious nodes that are stored in the corresponding list of
nodes grows as the fraction the adversary controls of this subnet gets larger.
Consequently, the probability an honest node picks a malicious node from
this subnet as a new neighbour increases, which implies the probability that
the first intermediate node in one of the tunnels of an honest node is mali-
cious also gets larger. For the same reason, the probability that a malicious
node from this subnet is included in a selection offered by a honest node gets
larger, which increases the probability a malicious node is selected from this
subnet as the final node in a tunnel of an honest node. Figure 7.3 also illus-
trates that if there are malicious nodes in 40% of all subnets, the collusion
detection mechanism only fails if the adversary controls more than a fraction
of 0.7 in these subnets.

Note that what counts is mostly the fraction controlled by the adversary
in a /16 subnet, and not so much the absolute numbers of malicious and hon-
est nodes. If the adversary has full control over a subnet (corresponding to a
fraction of 1), then it does not matter if he runs only a few or 65533 nodes be-
cause an honest node stores exclusively malicious nodes in the list of nodes
at the corresponding entry in the node lookup list. Similarly, assuming the
nodes are located in different /24 subnets (see Section 5.7.3), it does not mat-
ter if there one malicious and four honest or two malicious and eight honest
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Figure 7.3: f,, depending on the fraction controlled by the adversary in
subnets with malicious nodes.

nodes in a /16 subnet, because in both cases, the adversary controls a fraction
of 0.2 of the /16 subnet, which means it is likely that a fraction of 0.2 of all
nodes that are stored in the list of nodes of this /16 subnet in node lookup list
are malicious. We can also say that a /16 subnet that contains many honest
nodes is more resistant to the adversary than one with only a few such nodes.
If there are eight honest nodes in a /16 subnet and the adversary manages to
run two nodes in this subnet, he controls only a fraction of 0.2. If he runs
two malicious nodes in a subnet with only two honest nodes, he controls a
fraction of 0.5. So every additional honest node in a /16 subnet increases the
resistance of this subnet to the adversary. Note that due to the restriction for
practical reasons of the length of a list of nodes to ten and if there are more
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than ten nodes in a /16 subnet, it is possible that the fraction of malicious
nodes an honest node stores in the list of nodes of this particular /16 subnet
is larger than the fraction the adversary controls in this /16 subnet. However,
this requires the malicious nodes in this /16 subnet to be located in several
different /24 subnets.

7.3 Large Realistic Systems

One goal of MorphMix is to provide anonymity for a large number of users.
We therefore analyse the performance of the collusion detection mechanism
assuming there are nodes in nearly all public /16 subnets. We always look
at two systems: one system with 100000 honest nodes in 50000 subnets and
a large system with 1000000 honest nodes in 50000 subnets. We assume
the adversary manages to control 10000 malicious nodes that are located in
1000, 2000, 5000, or 10000 different subnets that also contain honest nodes.
In addition, we assume that malicious nodes establish virtual links to other
nodes as frequently as honest nodes and all nodes in the same /16 subnet are
located in different /24 subnets. The latter implies that a node that is inserted
into the node lookup list of an honest node can never overwrite another node
that is located in the same /24 subnet (see Section 5.7.3). When offering
selections, malicious nodes attack always using the optimal attack level. First,
we assume that every node has an abundant capacity, i.e. every node can
always accept relaying further anonymous tunnels. In addition, all nodes are
continuously participating in MorphMix. In Section 7.3.2, we look at what
happens if the nodes have different capabilities and if not all of them are
participating in MorphMix all the time.

7.3.1 The Nodes have Abundant Capabilities and are Con-
tinuously Participating in MorphMix

We start by examining the smaller system with 100000 nodes. Starting with
an empty internal table, 10000 anonymous tunnels are set up. Figure 7.4
shows the fraction of false positives and the fraction of malicious tunnels
among the accepted tunnels. The data are again represented as a rolling av-
erage over the 200 most recently set up anonymous tunnels. Note that we
do not graphically depict the results for malicious nodes in 2000 subnets, but
still include them in the table.
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Figure 7.4: 100000 honest, 10000 malicious nodes (abundant capabilities,
always participating).

We see that for the adversary, it is much better to control only one or a few
nodes in as many different subnets as possible than to have nearly full control
over a smaller number of subnets. Owning ten nodes in 1000 different subnets
corresponds to controlling ten of twelve nodes in these subnets (a fraction of
0.83) and allows the adversary to control the first intermediate and final node
in a fraction of 0.0009 of all tunnels that are accepted by the initiator. Having
one malicious node in 10000 different subnets means controlling one of three
nodes in these subnets (a fraction of 0.33), but allows the adversary to control
the first intermediate and final node in a fraction of 0.0248 of all tunnels. The
table in Figure 7.4 also lists f,, if no collusion detection were employed. In
this case, the adversary would offer always only malicious nodes in malicious
selections. So looking at the example with malicious nodes in 1000 different
subnets, we can see that a fraction of 0.0142 of all tunnels used be the initiator
would be malicious if no collusion detection were used. This is already quite
a low value because the node lookup list (see Section 5.7) contains malicious
nodes for at most 1000 subnets and honest nodes for about 50000 subnets.
Therefore, the probability a malicious node is picked as the first intermediate
node is already quite small. Still, employing the cover traffic mechanism
reduces f,,, about 16 times to 0.0009. With an increasing number of subnets
in which the adversary controls nodes, this reduction factor becomes smaller:
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with 2000 subnets it is about 12, with 5000 subnets about seven, and with
10000 subnets about 3.5.

Increasing the number of honest nodes to 1000000 gives the results in
Figure 7.5. The main difference is that the adversary controls a smaller frac-
tion of the nodes in the subnets with malicious nodes. For instance, if the
adversary operates two nodes in 5000 subnets, he no longer controls a frac-
tion of 0.5 (two of four nodes) of these subnets, but only a fraction of about
0.09 (two of 22 nodes).
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Figure 7.5: 1000000 honest, 10000 malicious nodes (abundant capabilities,
always participating).

Compared to the setting with 100000 nodes, f,,, gets smaller both with
and without collusion detection. This is not surprising when looking at the
results in Figure 7.3 and undermines that increasing the number of honest
nodes adds to the resistance of MorphMix to attacks.

7.3.2 The Nodes have Different Capabilities and Up-Times

Up to now, we have always assumed that all nodes are equal: they are always
capable to accept further anonymous tunnels and all nodes are participating
in MorphMix all the time. In reality, this is not the case. Some users have
slow dial-up connections and pay for the time they are online, which means
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their nodes are usually participating in MorphMix for only a relatively short
period during a day. In addition, these nodes do not have the capabilities to
relay many anonymous tunnels of other nodes because of the bandwidth lim-
itations and are therefore offered less frequently in selections. Then there are
nodes with very good network connectivity that are potentially participating
in MorphMix continuously. These are nodes run at universities or by users
having fast DSL connections. And there is a range of nodes in between these
two extremes.

It is difficult to estimate what nodes would participate in MorphMix. As a
basis, we use a measurement study [109] about the peers participating in the
Napster [39] and Gnutella [39] file-sharing systems. One main result of the
study is the distribution of the bandwidths of the peers, and based on these
results, we define a distribution for the bandwidths of MorphMix nodes that
we assume to be realistic. For instance, according to the study, only about
10% of all peers have slow dial-up connections (at most one ISDN channel)
and about 15% of all peers have very fast ones (T1 or T3). In between, there
is a range of peers with ADSL, Cable, and DSL connections. We assume the
bandwidth of MorphMix nodes is similarly distributed as in Napster/Gnutella.
Depending on the bandwidth of a MorphMix node, we also define acceptance
probabilities, which is the probability a node accepts to relay anonymous tun-
nels when it is picked as a new neighbour. If the new neighbour does not
accept to relay tunnels, the virtual link is terminated and a new neighbour is
picked from the same /16 subnet. It is reasonable to assume that nodes with
good Internet connections accept to relay the data of others with a higher
probability than nodes with slower Internet connections. Table 7.1 illustrates
the distribution for the bandwidths of MorphMix nodes and the acceptance
probabilities. Note that these assumptions are only valid for honest nodes.
We describe a different model for malicious nodes below.

Table 7.1: Realistic bandwidth distribution of MorphMix nodes.

bandwidth (Kb/s) percentage | acceptance
node type || up-stream | down-stream | ofall nodes | probability
ISDN 64 64 10 0.05
ADSLoss || 64 256 25 0.1
ADSL510 128 512 25 0.2
DSLs512 512 512 25 0.5
T1 1544 1544 10 0.8
T3 4632 4632 5 0.95
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Looking at Table 7.1, we can see that we assign ISDN nodes a very small
acceptance probability of 0.05, which implies that these nodes are only ca-
pable of accepting anonymous tunnels in one out of 20 cases when they are
picked as a new neighbour. Conversely, we assume nodes with fast Internet
connections can handle most of the requests to relay further anonymous tun-
nels and we therefore assign T1 and T3 nodes an acceptance probability of
0.8 and 0.95, respectively. Note that we have not explicitly listed nodes with
Cable connections because the bandwidths they offer are the same as ADSL
or DSL connections. Therefore, the ADSL and DSL nodes in Table 7.1 also
include nodes with Cable connections.

A second valuable result from the measurement study are the up-times of
the peers. It shows that the probability a Napster/Gnutella peer is connected
to the Internet at any time is nearly evenly distributed between zero and one,
with the exception that hardly any peer is nearly never or nearly always con-
nected. It is reasonable to assume that the peers with dial-up connections are
connected to the Internet for only a relatively short time and that peers with
fast T1 and T3 connections are nearly always online. In MorphMix, we as-
sume that nodes are always participating in MorphMix during the time they
are connected to the Internet. Using the results of the measurement study, we
therefore model the probability a MorphMix node is participating at any time
as follows:
o The ISDN nodes are participating in MorphMix during one hour a day,
which means the participation probability is 1/24.

e The T1 and T3 nodes have a participation probability of 0.9.

o All other nodes get randomly a participation probability between 1/24
and 0.9.

To be most effective, the adversary makes sure that the malicious nodes
are participating in MorphMix as often as possible. In addition, to be involved
in as many anonymous tunnels as possible, the malicious nodes should always
accept further anonymous tunnels, We therefore assign all malicious nodes
per default an acceptance probability and a participation probability of one.

When analysing the performance of the collusion detection mechanism,
the participation probabilities are used as follows: we assume the initiator sets
up one anonymous tunnel every two minutes (see Section 5.5.1). This implies
that 30 anonymous tunnels are set up during one hour. It can also be assumed
that nodes are connected to the Internet for a certain period and then offline
for another; it is not likely that on- and offline periods follow each other
rapidly. Consequently, at the beginning, it is determined for each node if it
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is participating in MorphMix during the following hour (which corresponds
to 30 anonymous tunnels) according to its participation probability. After
30 anonymous tunnels have been set up, this procedure is repeated. Since
an ISDN node has a participation probability of 1/24, this implies that on
average, such a node is continually participating in MorphMix for one hour
during 24 hours, which is a reasonable assumption.

We analyse how well the collusion detection mechanism copes with the
realistic acceptance and participation probabilities defined above. We start
with 100000 honest nodes. Figure 7.6 illustrates the performance of this sce-
nario.
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1000 4 0.0028 0.0534
2000 5 0.0091 0.1004
5000 7 0.0447 0.2290
10000 10 0.1242 0.4254

Figure 7.6: 100000 honest, 10000 malicious nodes (different capabilities and
participation probabilities).

The fraction of malicious tunnels among the accepted tunnels is larger
than in Figure 7.4. This makes sense because taking the participation proba-
bilities into account means that at any time, there are about 15-0.94-75-(0.9+
1/24)/2+10-1/24 ~ 46.5% of all honest nodes participating. With 100000
honest nodes in 50000 /16 subnets, this means that at any time, there are sev-
eral subnets where no honest node is participating. In addition, using the data
from Table 7.1, 60% of all nodes have an acceptance probability of at most
0.2. Recalling how honest nodes pick their neighbours (see Section 5.7.2),
this implies that even if there are honest nodes for a given /16 subnet in the
initiator’s node lookup list, it may happen that none of them can be used as a
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new neighbour. This significantly increases f,,, compared to Figure 7.4.

Nevertheless, the collusion detection mechanism still works very well
because f,,,, is also increased if no collusion detection mechanism is used.
Comparing f,,, with and without employing the collusion detection mecha-
nism, then the relative gain in Figures 7.4 and 7.6 depending on the number
of /16 subnets with malicious nodes is comparable.

Considering that an average honest node is no longer always participating
in MorphMix and does not always accept further anonymous tunnels leads us
to the notion of the overall acceptance probability of honest and malicious
nodes. If there are n;, honest nodes with acceptance probabilities accyp, and
participation probabilities party,, 1 < i < ny, the overall average acceptance
probability of any honest node is defined as:

1 &
acc, = — Zacchi -party, 7D
i

Similarly, if there are n,,, malicious nodes with acceptance probabilities
accn,; and participation probabilities part,,;,1 < i < n,y, the overall aver-
age acceptance probability of any malicious node is defined as:

N

1
accy, = — Z acCm,; * PaTly, 7.2)

n
moi=1

Looking at the scenario analysed in Figure 7.6(b) with the adversary op-
erating nodes in 5000 subnets and applying (7.1), we get

1
acc, = 0.1-.0.05. 21 +(025-0.140.25-0.240.25-0.5) -

1
= +0.9
“T + (0.1-0.8 +0.05-0.95) - 0.9 ~ 0.207.

This means that picking any honest node at any time, it is both partici-
pating and can accept further anonymous tunnels with probability of about
0.207. Since malicious nodes are always participating and can always accept
anonymous tunnels, acc,, = 1. So compared to Figure 7.4 where accy, = 1,

Major Data Exhibit 1008
Page 206 of 307



7.3 Large Realistic Systems 187

honest nodes in the scenario of Figure 7.6 are only about one fifth “as useful”
on average.

Taking different capabilities and participation probabilities into account,
we have to modify our notion about the adversary controlling a certain frac-
tion of a /16 subnet (see Section 5.4). The fraction the adversary controls
of a subnet depends on the nodes that are online on average in this subnet
and their acceptance probabilities. If there are nj, ; honest nodes in a /16
subnet s with acceptance probabilities accy, ; and participation probabili-
ties party; s,1 < i@ < nyp,, and n,, ; malicious nodes in the same sub-
net s with acceptance probabilities acc,,, s and participation probabilities
Part,, s,1 < 1 < nyy, s, the average fraction f. ; the adversary controls
of this subnet is defined as:

T, s
f. = DT acem, - partmy, 73)
o T acen, - party, + Y iy accm; - partm, '

If the honest nodes are evenly distributed among all s /16 subnets, (7.3) can
also be written as:

Nm, s
fos = 2t acem, ATt (7.4)

np Nm,s
Zhoacen + Y aCCm, - party,

Applying the scenario from Figure 7.6 with 5000 malicious nodes to (7.4),
we get

2
fes = ———— 20829
: 2.0.207 + 2

for the subnets that contain malicious nodes. Considering the decrease in
the overall acceptance probability of honest nodes (accy,) from 1 to 0.207 and
the increase of the fraction an adversary controls of the subnets with malicious
nodes from 0.5 to 0.829 in the case when there are malicious nodes in 5000
subnets explains the significantly larger f, , when comparing Figures 7.6
and 7.4.

Increasing the number of honest nodes to 1000000 leads to the results
illustrated in Figure 7.7.
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subnets with optimal fa,, with | fa,,, without
mal. nodes attack level collusion detection
1000 7 0.0006 0.0171
2000 8 0.0014 0.0295
5000 11 0.0052 0.0550
10000 14 0.0220 0.0923

Figure 7.7: 1000000 honest, 10000 malicious nodes (different capabilities
and participation probabilities).

Like inFigure 7.6, f,,, is larger than when all honest nodes are participat-
ing all the time and always accept further anonymous tunnels (see Figure 7.5).
Applying (7.3) again assuming the adversary operates nodes in 5000 subnets
results in

2
cs N T = 03267
Te, 20 -0.207 + 2
which is smaller than the f. ; of 0.5 of the scenario in Figure 7.4(b) but
also larger than the f. ; of 0.09 of the scenario in Figure 7.5(b). It is therefore
reasonable that the f,  inFigure 7.7 are between those of Figures 7.4 and 7.5.

7.4 Optimising the Quality of Anonymous Tun-
nels
Taking into account nodes with very different bandwidths, we must think

about the quality of the nodes along an anonymous tunnel. Basically, the
slowest node in a tunnel determines the maximum throughput of the tunnel:
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if one intermediate node is an ISDN node and all the others, including the
initiator, are T3 nodes, the throughput of the tunnel will be at most 64 Kb/s.
This is a significant problem because hardly any user is willing to sacrifice
her fast Internet connection for anonymity if all she gets is the equivalent of
a slow dial-up connection.

The only way to cope with this problem is to make sure no nodes with
slow Internet connections are present along tunnels of initiators that have
good Internet connections. In practice, this means that the initiator speci-
fies a minimum quality in terms of bandwidth for the nodes it accepts in its
anonymous tunnels, which causes the intermediate nodes to offer only nodes
that fulfil these requirements in their selections. Table 7.2 specifies what we
believe could be acceptable intermediate and final nodes depending on the
capabilities of the initiator.

Table 7.2: Acceptable intermediate and final nodes

intermediate and final nodes.
initiator || ISDN | ADSL2ss | ADSLs12 | DSLs1a | T1 | T3
ISDN . . . . ° °
ADSL2s6 . . . °
ADSL512 ° ° .
DSL512 . . .
T1 ° . .
T3 ° . °

For initiators that are ISDN nodes, every other node is suitable to be used
in their anonymous tunnels because no other node has a worse Internet con-
nectivity than the initiator. For ADSL 956 nodes, ISDN and other ADSL 956
are no good choice for the intermediate or final nodes in their tunnels be-
cause this would limit the throughput to 64 Kb/s, which is only one fourth
of the initiator’s down-stream bandwidth. Even ADSL 515 nodes in tunnels of
ADSL556 nodes limit the throughput to 128 Kb/s, but we believe that a 50%
throughput reduction is acceptable for getting anonymity. If the initiator has
an ADSL519, DSLs19, T1, or T3 connection to the Internet, the nodes along a
tunnel should be at least DSL515 nodes to guarantee a reasonably good end-
to-end performance to the initiator.

However, we can expect that these measures to improve the throughput
of anonymous tunnels will increase the adversaries chances to compromise
an anonymous tunnel. Just like when we introduced different capabilities and
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participation probabilities of the nodes in Section 7.3.2, the effective number
of honest nodes for initiators with fast Internet connections becomes smaller
because nodes with slow connections are no longer offered in selections to
them. Figure 7.9 illustrates the performance with 100000 honest nodes. We
assume the initiator has an Internet connection corresponding to ADSL 515 or
faster, which corresponds to the worst case since the spectrum of nodes that
can be offered in selections to these nodes is smallest according to Table 7.1.
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malicious nodes (7) malicious nodes (11) malicious nodes (14)
subnets with optimal fa, with | fa., Without
mal. nodes attack level collusion detection
1000 4 0.0045 0.0574
2000 5 0.0113 0.1126
5000 7 0.0523 0.2404
10000 10 0.1417 0.4464

Figure 7.8: 100000 honest, 10000 malicious nodes (with tunnel optimisa-
tion).

As expected, f,,, is larger than in Figure 7.6 where no optimisation of
the throughput of anonymous tunnels was made. However, the difference is
quite small although DSL515, T1, and T3 account for only 40% of all nodes
according to Table 7.1. The reason is that from the point of view of a node
with a fast Internet connection, not very much has changed because look-
ing at the acceptance probabilities in Table 7.1 shows that nodes with slow
Internet connection accept only infrequently to relay tunnels after they have
been picked as a new neighbour. This implies that by requesting a minimum
quality for the nodes offered in selection for nodes with good Internet con-
nections, we have merely removed occasional occurrences of nodes with slow
connections in these selections. It should be noted that for ADSL 554 nodes,
fa., 1s slightly smaller than in Figure 7.8 and for ISDN nodes, nothing has
changed compared to the results in Figure 7.6.
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The small difference between the results shown in Figures 7.6 and 7.8
can also be explained using our notation introduced in Section 7.3.2. Only
considering DSL512, T1, and T3 nodes and using (7.1), we get the following
overall average acceptance probability of any honest node:

1
= +0.9
acecp, = O.25~O.5~%

— +(0.1-0.840.05-0.95)-0.9~0.174

This is relatively close to the 0.207 when no optimisation of tunnels was
made. Similarly, using (7.4) to compute the average percentage f .  the ad-
versary controls in the subnets that contain malicious nodes for the case illus-
trated in Figure 7.8(b) results in

Jes = __2 coss.
' 2017442

Compared with the results without any optimisation, this is a small in-
crease from 0.829 to 0.852, which again explains the small increase of f,,,,.
Increasing the number of honest nodes to 1000000 leads to the results illus-
trated in Figure 7.9.

Again, f,  is slightly larger than without optimising the throughput of a
tunnel. Using (7.4) to compute the average fraction f. s the adversary con-
trols in the subnets that contain malicious nodes for the case illustrated in
Figure 7.9(b) results in

Jes = 2 . 0.365,
' 20-0.174 +2
which is close to the 0.326 without any optimisation. We conclude that opti-
mising the throughput of anonymous tunnels does not significantly increase
the adversaries chances to compromise anonymous tunnels. In addition, we
will see in Section 8.3.3 when analysing the end-to-end performance Mor-
phMix offers that the benefits by optimising the throughput of anonymous
tunnels greatly outweighs the small increase of f,, .

As a side note MorphMix demonstrates how poorly asymmetric access
technologies such as ADSL and often also Cable connections are suited for
peer-to-peer systems. For traditional client/server applications, such asym-
metric access technologies are very well suited but in peer-to-peer systems,
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1000 7 0.0005 0.0179
2000 8 0.0018 0.0316
5000 11 0.0060 0.0571
10000 14 0.0237 0.0951

Figure 7.9: 1000000 honest, 10000 malicious nodes (with tunnel optimisa-
tion).

the slow up-link of these nodes becomes a bottleneck. What we have mainly
done with our throughput optimisation to make sure that nodes with slow up-
links are not present in the tunnels of nodes with fast down-links. Actually,
this is not completely true because we have allowed ADSL 515 nodes with rel-
atively slow 128 Kb/s up-links in tunnels of ADSL 954 nodes. If these nodes
had up-links as fast as their down-links, they would be much more useful for
MorphMix and Table 7.2 would look differently.

One can ask if the measures to increase the quality of anonymous tun-
nels decrease the chances to set up a tunnel successfully in the sense that all
intermediate nodes along a tunnel have enough neighbours of the adequate
node type they can offer in their selections. But this can be easily solved in
practice (and is done in this way in the MorphMix protocol in Appendix A)
in the sense that if the number of nodes 7 .; to be offered in a selection is
larger than the number 74y pe>type,n;, Of neighbours that fulfil the minimal
node type requirements as requested by the initiator, the remaining positions
in the selection are filled with the (n5e1 — Niype>typenms. ) NEXt best nodes
regarding the node type.
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7.5 The Subnets Contain Different Numbers of
Honest Nodes

In reality, the participating nodes are not evenly distributed over the /16 sub-
nets in which they are located. We analyse how much this affects the perfor-
mance of the collusion detection mechanism. The basic setting is the same
as in Figure 7.9, with the exception that the number of honest nodes per sub-
net is distributed linearly over all 50000 subnets such that the subnet with
the largest number of honest nodes contains ten times as many honest nodes
as the subnet with the smallest number of honest nodes. We also use tunnel
throughput optimisation according to Table 7.2 and assume the initiator has
an Internet connection corresponding to at least ADSL 51, or better. Since
some subnets contain ten times as many nodes as others, we only consider
the case with 1000000 honest nodes and Figure 7.10 illustrates the results.
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1000 6 0.0007 0.0192
2000 7 0.0023 0.0334
5000 10 0.0069 0.0611
10000 13 0.0251 0.0984

Figure 7.10: 1000000 honest, 10000 malicious nodes (different numbers of
honest nodes in the /16 subnets).

The adversary’s probability to compromise any tunnel is again slightly
larger than in Figure 7.9. This can be explained with the fact that although
there are fewer than average honest nodes in half of all subnets, there also
more than average honest nodes in the other half. Similarly, half of the mali-
cious nodes are in subnets with relatively many honest nodes and half of them
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are in subnets with relatively few honest nodes on average. Since according
to Figure 7.3, malicious nodes are the more powerful the fewer honest nodes
there are in their subnets, the results in Figure 7.10 indicate that the effect
of having some malicious nodes in sparsely populated subnets does slightly
outweigh the effect of having some malicious nodes in subnets with many
honest nodes.

7.6 Varying the Tunnel Length

Finally, we analyse the effect of the tunnel length. Longer tunnels imply more
extended selections per tunnel for the initiator to test, which should increase
the probability to detect malicious tunnels according to Algorithm 2 in Sec-
tion 5.6.3. On the other hand, longer tunnels in general also mean worse
end-to-end performance as we will analyse in Section 8.3.7. Figure 7.11 il-
lustrates f,,, and the fraction of false positives for a tunnel length of three,
four, six, and ten. All other parameters are set as in Figure 7.10, which means
we assume the subnets contain different numbers of nodes and that tunnel op-
timisation is used according to Table 7.2. For completeness, we also include
the figures for a tunnel length of five in the table below the graphs.

The fraction of malicious tunnels among the accepted tunnels gets indeed
smaller if the tunnel length gets longer. However, it does not seem to make
sense to increase the tunnel length more and more, because the relative gain
by adding a hop gets smaller and smaller. For instance, with malicious nodes
in 5000 subnets, the relative decrease in f,,, when going from a tunnel length
of five to six is about the same as when going from six to ten. In addition,
the rate of false positives also increases as the tunnel length gets longer. With
a tunnel length of ten, the fraction of false positives is about 0.4 compared
to about 0.2 with five nodes in a tunnel. Note that f, _ without collusion
detection is independent of the tunnel length. We will continue analysing the
influence of the tunnel length in Section 8.3.7.

7.7 Summary

Looking at the realistic scenarios we analysed in this section, we can state
that our collusion detection mechanism works indeed well. It significantly
reduces f,,, compared to the case if no such mechanism were employed and
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Figure 7.11: 1000000 honest, 10000 malicious nodes (diff. tunnel lengths).
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it is very difficult for an adversary to control the first intermediate and final
node in a significant percentage of all anonymous tunnels. According to our
most realistic scenario in Figure 7.10 that takes into account that nodes are
not participating in MorphMix continuously, that nodes are connected to the
Internet with different bandwidths, that there are different numbers of honest
nodes in the /16 subnets, and that employs tunnel throughput optimisation,
the collusion detection mechanism can reduce the number of compromised
tunnels that are accepted by the initiator about 27 times with malicious nodes
in 1000 subnets, about 14 times with malicious nodes in 2000 subnets, about
eight times with malicious nodes in 5000 subnets, and about 4 times with
malicious nodes in 10000 subnets.

We conclude that especially when the system gets large, i.e. when there
are nodes in most public /16 subnets, the task for the adversary becomes very
complicated, because he cannot simply run many nodes in a few subnets but
must be present in a large number of different subnets. Of course it could
be the case that the adversary owns a part of the public IP address space, for
instance a whole class A network. But this only gives him full control over
256 /16 subnets, which only enables him to control the first intermediate and
final node in very few tunnels. To be effective, the adversary must have nodes
under his control in very many different /16 subnets. Assuming a large system
with honest nodes in nearly all public /16 subnets, the results in Figure 7.10
show that the adversary must control nodes in more several 1000 subnets to
compromise more than a fraction of 0.01 of the tunnels that are accepted by
the initiator.

We have also seen that not only the collusion detection mechanism, but
also the peer discovery mechanism helps to keep the fraction of compromised
tunnels small. In particular, the way in which information about other nodes
is arranged in the node lookup list (see Section 5.7.2) guarantees that the
probability an adversary controls the first intermediate node in a tunnel does
not depend on the fraction of all nodes he controls, but on the fraction of
different /16 subnets in which he controls nodes. Consequently, the fraction of
malicious tunnel is already relatively small simply because honest nodes pick
their neighbours randomly among all /16 subnets, but the collusion detection
mechanism helps to significantly reduce this fraction further.

One minor problem is the learning phase that requires a newly joining
node to set up many anonymous tunnels until the collusion detection mecha-
nism starts working correctly. This results in s significantly higher fraction of
false positives in the beginning because the correlation limit is selected con-
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servatively during this phase to keep the fraction of malicious tunnels small.
However, if a node remains active most of the time, this only happens once
and even during this learning phase, a user can already use her node to contact
servers anonymously, although anonymous tunnels must be set up at a higher
rate to compensate for the high fraction of false positives. One could reduce
this learning phase by asking other nodes about their extended selections, but
we have given arguments in Section 7.1 that this is not necessarily a good
idea.

The results in this section have demonstrated that to estimate the strength
of an adversary, we cannot simply count the absolute number of honest and
malicious nodes, but must take their capabilities and participation probabil-
ities into account. We have therefore introduced the notion of the overall
average acceptance probabilities accy, and acc,,. Honest nodes that are par-
ticipating in MorphMix more frequently or accept relaying anonymous tun-
nels more often than others are more valuable to increase the resistance to
attacks because they contribute more to keep the fraction f. , an adversary
controls in a particular subnet small.

In general, longer anonymous tunnels increase a user’s anonymity be-
cause it decreases the percentage of compromised tunnels by the adversary.
If minimising f,, were the only goal, tunnels lengths of ten or even more
would be a reasonable choice. However, we will see in Section 8.3 that longer
tunnels usually imply worse end-to-end performance and we will therefore
continue to use a tunnel length of five nodes as the basis for our evaluation of
MorphMix.
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Chapter 8

MorphMix Simulation and
Results

Although we have shown in the previous chapters that MorphMix protects
well from an internal attacker that wants to break the anonymity of MorphMix
users, it is still not clear how practical the system is. Since MorphMix users
contact servers indirectly, the expected performance is certainly worse than
when communicating with a server directly. In addition, there is overhead
because nodes not only handle their own data, but also set up tunnels and relay
the data of other nodes. To evaluate the expected performance MorphMix can
offer to its users, we have implemented a simulator. In this chapter we first
describe the MorphMix simulator and the basic settings we have used in our
simulation runs. Afterwards, the simulation results are presented.

8.1 The MorphMix Simulator

We decided to implement our own simulator, mainly because existing generic
network simulators such as ns-2 [14] simulate the underlying network proto-
cols in great detail and are therefore not capable of simulating a large number
of nodes (e.g. 1000) over a large simulated time period (several hours) within
a reasonable execution time. The prime goal of the MorphMix simulator is
not to reflect the real world as closely as possible, but to deliver valuable
information about how the heterogeneity and dynamism of the nodes affect
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the end-to-end performance. We therefore basically simulate the MorphMix
overlay network consisting of nodes and virtual links and omit many of the
details of the underlying physical communication infrastructure.

The core elements of the simulator are the MorphMix nodes. Every node
has an up- and down-stream bandwidth that specifies the number of bytes it
can send and receive at most during a time interval. In addition, nodes may be
shut down by their operators or simply crash or may temporarily not be reach-
able due to network problems. There is a subtle difference between a crash
or a shut down of the MorphMix application and a crash of the computer run-
ning the application: in the first case, the TCP connections from and to the
computer will be correctly terminated [41], which tells the neighbours imme-
diately that the connections and all tunnels using them are no longer usable.
These nodes can then send a TERM message (see Appendix A.3.5) through
all tunnels that have failed and the initiators of these tunnels can simply termi-
nate all connections between the access program and the client applications
(see Section 5.2 .4) that are using these tunnels. Since client applications usu-
ally inform their users about unexpectedly terminated connections, the users
can then re-establish the communication relationships with the servers using
other tunnels. In the second case, however, the TCP connections won’t be
torn down and the crashed computer simply won’t react to data sent to it. If
the computer is eventually rebooted, it will respond with a TCP RST if it still
receives data but it may take a long time until the computer is rebooted at
all. In this situation, we must assume that the user eventually notices that
a tunnel has failed without being notified by the client application. A com-
puter crash will therefore be more harmful for the end-to-end performance
than an application crash or shut down because it takes longer for a user to
detect that a particular tunnel is no longer usable. Nodes that are temporarily
not reachable due to network problems produce the same effects as a crashed
computer: they simply do not respond anymore.

If two nodes are connected (i.e. they are neighbours), there is a virtual
link between them. A virtual link has a certain delay to simulate the propa-
gation delay when data are sent from a node to another and is an abstraction
of a “perfect” TCP connection. This means that if none of the two nodes
communicating over a virtual link has crashed or is temporarily blocked, then
all data are transmitted with exactly the specified delay. However, virtual
links do simulate the TCP flow control mechanism to account for the limited
buffer space in hosts. Depending on the delay on a virtual link, this flow
control mechanism puts an upper limit on the maximum throughput of any
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virtual link.

The simulator itself is event-driven. The continuous time line is chopped
into slots of 10 ms. Sending data at a node during a certain time slot triggers
the complete reception of these data during a future time slot at another node
depending on the delay of the virtual link between the two nodes, their up-
and down-stream bandwidths, the TCP flow control mechanism, and the other
data that are handled concurrently by the two nodes. Since we assume the
delay on any virtual link to be always at least 20 ms, time slots of 10 ms are
small enough to accurately analyse the time it takes for data to travel through
anonymous tunnels. Of course one could always make the time slots smaller,
but this would increase the simulation time inversely proportionally.

We analyse the performance of MorphMix using web browsing as the ex-
ample application. It can be expected that web browsing will be one of the
prime applications if any system for anonymous low-latency Internet access
ever gets widely deployed. But web browsing is also a very challenging appli-
cation for anonymity-providing systems, since web pages often contain sev-
eral small embedded objects, which results in many sequential request/reply
pairs being exchanged between client and server.

8.2 Basic Simulator Settings

There are a variety of parameters that can be specified in the MorphMix sim-
ulator. All of our simulations in this section will be based on the same basic
setting. These setting can be separated into protocol settings, virtual link set-
tings, tunnel settings, node settings, and web browsing scenario settings. The
simulator simulates the entire MorphMix protocol as specified in Appendix A
and the basic settings for many parameters are directly inherited from the pro-
tocol specification.

8.2.1 Protocol Settings

These settings follow directly from the MorphMix protocol in Appendix A:
the fixed cell length is 512 bytes and the cell and anonymous connection
header length is 16 bytes. To take into account the overhead from lower-
level protocols such as TCP, IP, and link layer protocols, we assume 10%
of a node’s bandwidth is used for the corresponding headers and trailers and
simply deduct these 10% from a node’s bandwidth.

Major Data Exhibit 1008
Page 220 of 307



8.2 Basic Simulator Settings 201

8.2.2 Virtual Link Settings

Virtual link settings describe the properties of our abstraction of a TCP con-
nection between two nodes. The virtual link delay is the time it takes for
the data to travel from one to the other node. For every virtual link between
two nodes, we choose a random delay evenly distributed between 20 and 150
ms. The TCP buffer size determines the maximum throughput of the virtual
link and is set to 64 KB (65536 bytes). For the collusion detection mech-
anism to work, the nodes that are offered in selections from the same node
must change from time to time, which means honest nodes must change their
neighbours from time to time. To do so, a newly established virtual link to a
new neighbour is only kept for a limited virtual link lifetime, which is set to 30
minutes. After this lifetime, the virtual link is not simply torn down, but the
node at the other end of the virtual link is no longer advertised in selections.
The virtual link itself is kept alive until all tunnels using it have been torn
down. Finally, the virtual link status message interval determines the interval
between two subsequent STAT REQ/STAT REP pairs (see Appendix A.3.4)
being sent over one virtual link. After a STAT REP message has been re-
ceived, we assume it takes a random time evenly distributed between 0 and
four minutes before the next STAT REQ is sent.

8.2.3 Tunnel Settings

The tunnel length is the number of nodes in a tunnel and is set to five, which
corresponds to the standard tunnel length we used in the previous chapters.
Tunnel settings also specify the tunnel setup interval time, which is set to
two minutes and the minimum number of tunnels that should be available at
a node at any time, which is set to five. This means that tunnels are regu-
larly set up in the background while making sure that the number of tunnels
never falls below a certain minimum. There is a tunnel lifetime set to ten min-
utes, which means that after this lifetime, a tunnel is no longer used for new
anonymous connections. Limiting the tunnel lifetime guarantees that virtual
links can eventually be torn down after all tunnels using it have reached their
lifetime. The tunnel end-to-end ping interval specifies the time between two
subsequent E2E PING/E2E PONG pairs (see Appendix A.4.3) are used to
measure the round-trip time (RTT) of a tunnel and is set to two minutes. To
detect tunnels that have failed for any reason, for instance because a node
along the tunnel has left MorphMix, the funnel timeout parameter, which is
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set to 30 seconds, is used. If the initiator sends an E2E PING message and
no reply arrives within the time specified by the tunnel timeout parameter, the
tunnel is considered to have failed and is torn down, Similarly, if no reply
arrives within this time during the tunnel setup after the initiator has sent a
message, the tunnel is also considered to have failed and is torn down.

Our basic assumption throughout this chapter is that setting up anony-
mous tunnels only fails if one of the nodes along the tunnel fails (for instance
by leaving MorphMix) during the setup or a witness that is used to append a
node fails. Similarly, we assume anonymous tunnels are never rejected by the
initiator, i.e. every tunnel that has been set up successfully can potentially be
used for anonymous communication. The influence of other failures during
tunnel setup or tunnels that are rejected by the initiator because they are iden-
tified as malicious by the collusion detection mechanism will be analysed in
Section 8.3.6.

8.2.4 Node Settings

We always set the number of nodes in the system to 1000. More nodes are
possible but the simulation time grows linearly with the number of nodes.
However, we argue that even a system with 1000 nodes delivers reasonable
information about how a very large system would perform if certain parame-
ters are set accordingly. To do so, we will always use the maximum selection
size of 20 (see Section 5.6.2), which implies the messages to set up a tun-
nel have their maximum length. We also make sure that at any time, every
node has at least 30 neighbours that are willing to relay more anonymous tun-
nels, which implies that 20 nodes can easily be offered in selections at any
time. So even if the system consisted of a million nodes, the tunnel setup
messages would not be longer and the local environment every node has to
handle would not be larger. We use the same distribution of the nodes’ capa-
bilities and participation probabilities (see Table 7.1) as we used for the large
realistic systems in Section 7.3.2. This determines the up- and down-stream
bandwidths, the participation patterns, and the acceptance probabilities of
the nodes. If the system were ten times bigger, there would be ten times as
much traffic, but also ten times as many nodes to handle it. Since the dis-
tribution of the nodes’ capabilities and participation probabilities would be
unchanged, we could expect the simulation results to be very similar.

The participation pattern determines when a node joins MorphMix to par-
ticipate and when it leaves the system again because it is shut down by its op-
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erator. When a node leaves the system because of its participation pattern, we
always assume the MorphMix application has been shutdown, which means
the information about tunnels that have failed is quickly propagated to the
initiators (see Section 8.1).

We specify the cell processing delay with ten ms, which means that after
a cell has been completely received by a node, we assume it can be forwarded
to the next node after ten ms. Processing a cell includes reading the data
from the socket into the application, performing the cryptographic operations,
modifying the cell header, and writing the data into the socket to forward the
cell. Only the cryptographic operations are computationally expensive (see
Appendix A.2.1 and A.2.2): the 16-byte header of the incoming cell must be
decrypted and the one of the outgoing cell encrypted, a layer of encryption
must be added or removed resulting in encrypting or decrypting 496 bytes,
and computing two hashes over 502 bytes of data, one to check the checksum
of the incoming cell and one to build the checksum of the outgoing cell. Mod-
ern computers are capable of computing hashes and symmetric encryptions
or decryptions at rates of several 10 Mb/s. Since several 10 Mb/s is signifi-
cantly faster than the bandwidth of any node (see Table 7.1), we can assume
that cells can be processed at line speed, and the assumption all cells can be
processed withing 10 ms is reasonable. Similarly, we also assume the initia-
tor can handle the multiple encryptions or decryptions of the cell it sends and
receives at line speed, i.e. the limiting factor to the number of cells that can be
handled is never the rate of encryption or decryption. Finally, the public-key
operation processing delay is specified with 100 ms and denotes the delay in-
duced by public-key operations during the setup of anonymous tunnels. Using
state-of-the-art computers, 100 ms is certainly enough to perform any of the
public-key operations we are dealing with, which includes public-key encryp-
tions and decryptions and DH key-exchange operations. Note that although
RSA public-key operations take much less time than private-key operations
due to the small public-key exponent (see Appendix A.2.1), we assume both
of them introduce a processing delay of 100 ms to be on the safe side. We
also assume that public-key operations never delay the processing of other
cells, which can be achieved in practice by performing public-key operations
not in the main loop of the MorphMix program, but in a dedicated thread. We
will give a more detailed analysis of the computational overhead imposed by
the cryptographic operations in Section 8.3.5.

Per default, nodes or the computers they run on never crash and nodes that
are online can always be reached, i.e. their connection to the Internet is never
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blocked temporarily. This means that nodes do only leave MorphMix when
they are willingly shut down by their operator according to their participation
pattern. Note that we will analyse the influence of nodes that crash or that
cannot be reached temporarily in Section 8.3.9.

8.2.5 Web Browsing Scenario Settings

The nature of web traffic and web users has been thoroughly analysed and
we use appropriate values from scientific literature to model it. The web
request length is 300 bytes with a probability of 0.8 and 1100 bytes with a
probability of 0.2 [72]. The web reply lengths (in bytes) follow a Paretoll
distribution with parameters £ = 800 and o« = 1.2 [44]. For simplicity, we
limit the maximum reply size to 1 MB. The number of embedded objects
per page also follow a Paretoll distribution, this time with parameters & =
24 and oo = 1.2 [44]. For simplicity, we limit the maximum number of
embedded objects per page to 50. The reading time (in seconds) is the time it
takes between having completely downloaded a page and initiating the next
download. Again, this follows a Paretoll distributed with parameters £ = 60
and o = 2.0 [44]. For simplicity, we limit the maximum reading time to 60
seconds. The browsing time is the time a user running a node is browsing
the Web per day. For ISDN nodes, we assume the user is always browsing
when the node is running; for all other nodes, the browsing time is set to
two hours per day. Like the virtual links between two MorphMix nodes, the
connection between the final node in a tunnel and the web server has also a
delay that is evenly distributed between 20 and 150 ms and also simulates the
TCP flow control mechanism using buffer sizes of 64 KB. In addition, the
time it takes to establish the TCP connection to the web server is simulated
by inserting an additional delay of two times the delay on that connection.
Unlike nodes, web servers never crash and can always be reached. The web
request processing delay is specified with ten ms, which is the time it takes for
the web server to start sending a web reply after having completely received a
web request. Considering the performance of modern web servers, ten ms is
certainly not too small. As mentioned in Section 5.2.4, the initiator must not
perform the address resolution using the domain name system (DNS) [76, 77]
by itself because this would reveal the identity of the host it intends to contact.
Resolving the name is therefore done by the final node in a tunnel. However,
querying a name server takes very little time (a few ms) because the name
server is usually located nearby the final node (for instance at the access ISP)
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and queries and replies use the UDP protocol. In addition, caching replies of
name servers means that name servers need not be contacted every time a web
request arrives at the final node of a tunnel. We therefore do not take the time
to resolve a name into account and assume it is included in the processing
delay of ten ms by the final node.

If downloading a page has failed because the tunnel that has been used
to download (parts of) the page has failed for any reason, we assume the
user reacts by downloading the entire page again. We specify this download
Jailure reaction time with five and 30 seconds. For the reasons discussed in
Section 8.1 two different reaction times make sense: five seconds is used if
the initiator, and therefore also the client application, can be informed about
the failed tunnel and the terminated connections; 30 seconds is used if this is
not possible and the user has to detect herself whether downloading the page
has failed.

8.3 Simulation Results

We analyse the performance of MorphMix using web browsing as the exam-
ple application. In all simulations, we simulate four hours of real-time. We
usually evaluate the time it takes to completely download a web page, which
is defined as the time between sending the first byte of the web request for
the index file and receiving the last byte of the complete page. We do not
take the time it takes to display a completely downloaded page in the web
browser into account. Since there are six different types of nodes depending
on their up- and down-stream bandwidths (see Table 7.1), the graphs show
the download times for each of these types separately. In general, it turns out
that the page download time is nearly linearly dependent on the page size; we
therefore use linear regression to plot the graphs.

8.3.1 Contacting the Web Server Directly

We first analyse the performance if the web server is contacted directly. We
use both versions 1.0 [8] and 1.1 [45] of HTTP and also vary the upper limit
of simultaneous connections when using HTTP 1.0, because browser usually
have such an upper limit. The main difference between HTTP 1.0 and 1.1 is
that with HTTP 1.0, a dedicated TCP connection is established to download
a single web object, e.g. the index file or a single embedded object of a page.
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With HTTP 1.1, the entire web page is usually downloaded over a single TCP
connection, which significantly reduces the number of TCP connections that
have to be established to download an entire web page. Consequently, we
expect HTTP 1.1 offers better performance than HTTP 1.0. During the four
hours of simulated real-time, about 130000 pages were downloaded with a
total size of about 3.2 GB. Figure 8.1 depicts the results.
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Figure 8.1: Download times, accessing the web server directly.

Not surprisingly, the download times are the shorter the higher the band-
width with which users are connected to the Internet. We can also see that
the performance of HTTP 1.0 is increased if more simultaneous connections
are allowed. As expected, HTTP 1.1 generally outperforms HTTP 1.0, but
the advantage gets smaller if many simultaneous connections are allowed in
HTTP 1.0. We will use the results in Figure 8.1 as a reference for all forth-
coming performance measurements in this section. As most browsers have at
least a default limit of about five simultaneous connections with HTTP 1.0,
we will focus on this case when using HTTP 1.0.
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8.3.2 Contacting the Web Server through MorphMix

We analyse the performance when the web server is contacted anonymously
through MorphMix. Figure 8.2 shows the download times for HTTP 1.0 with
five simultaneous connections and HTTP 1.1.
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Figure 8.2: Download times, accessing the web server through MorphMix.

Compared to Figure 8.1, the download times are significantly longer. The
better the bandwidth of the node, the more severe the performance penalty
from which it suffers. We already discussed this problem in Section 7.4 when
we analysed the influence of optimising the throughput of anonymous tunnels
on the collusion detection mechanism. The problem stems from intermedi-
ate or final nodes with poor Internet connections in tunnels of initiators that
have good Internet connections. While this is not a problem for ISDN nodes
because they are the slowest node type in our analyses, the impact gets the
larger the faster the initiator is. In particular, the end-to-end performance
of any node falls below the performance ISDN nodes experience if the web
server is contacted directly, as is shown in Figure 8.1. Comparing HTTP 1.0
with HTTP 1.1, Figure 8.1 shows that like when contacting the web server
directly, the latter offers slightly better performance. This is again not sur-
prising because using HTTP 1.0, each object of a web page results in setting
up one anonymous connection within the anonymous tunnel and one TCP
connection between the final node and the web server, whereas with HTTP
1.1, all object of a web page are downloaded through a single anonymous
connection and a single TCP connection between the final node and the web
server.

We strongly believe that a performance loss so significant as shown in
Figure 8.2 would be unacceptable for most users with reasonably fast Internet
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connections and hinder MorphMix from acquiring a critical mass.

8.3.3 Optimising the Throughput of Anonymous Tunnels

To optimise the throughput of anonymous tunnels, we employ the minimum
quality for intermediate and final nodes depending on the node type of the
initiator as introduced in Table 7.2. We have seen in Section 7.4 that the opti-
misation has only a marginal effect on the adversary’s chances to compromise
anonymous tunnels. Figure 8.3 shows the corresponding download times.
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Figure 8.3: Download times with optimised tunnel throughput.

Compared to Figure 8.2, the end-to-end performance could be signifi-
cantly improved. We can also clearly state that the benefits from optimising
the throughput of anonymous tunnels greatly outweighs the small increase in
the number of compromised tunnels. When optimising the throughput, ISDN
nodes have better end-to-end performance than T3 nodes without any optimi-
sation, which is remarkable. Interestingly, the performance of ISDN nodes
has also significantly improved although they still accept all other nodes in
their anonymous tunnels. The explanation is that ISDN nodes are now only
intermediate or final nodes in tunnels of other ISDN nodes. As a result, ISDN
nodes must donate only very little bandwidth to handle the traffic of other
nodes, which increases the bandwidth available for their own data.

Compared with the results in Figure 8.1 when contacting the web server
directly, the download times for large web pages have increased about 20%
for ISDN nodes and about 50% for ADSL 956 nodes. All other nodes only
accept nodes with at least DSL515 speed in their tunnels and the performance
they experience is therefore approximately equal. Their download times are
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now about 50% longer than those of ADSL 512 or DSL512 nodes when the
web server is contacted directly.

Further optimisation is of course still possible. Looking at Table 7.2, it
could make sense to increase the minimum node type for intermediate nodes
if the initiator is a ADSL 56 to DSLs 12 to avoid the slow 128-Kb/s up-stream
bandwidth of ADSLs19 nodes. Similarly, DSL 512 nodes can be considered as
too slow if the initiator is a T1 or T3 node and we therefore raise the minimum
node type for intermediate or final nodes for these initiators to T1 nodes.
Analysing the download times for this scenario with even more optimised
tunnels, we get the download times as illustrated in Figure 8.4.
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Figure 8.4: Download times with even more optimised tunnel throughput.

Compared with the results in Figure 8.3, the throughput could be again
improved for all nodes with at least ADSL 955 speed. The biggest relative gain
is experienced by T1 and T3 nodes because they got rid of “slow” DSL 519
nodes in their tunnels. However, the improvement compared to Figure 8.3 is
in general relatively small and we do not believe it is worth the greater risk
of compromised tunnels. We therefore will continue using the optimisation
according to Table 7.2 and the corresponding results in Figure 8.3 as a ba-
sis. Another argument to continue our analysis based on this less aggressive
optimisation strategy is that in practice, the higher the minimum node type
specified by the initiator, the smaller the probability all nodes along a tunnel
the initiator sets up fulfil this minimum node type requirements. The reason
is that the higher this minimum node type, the smaller the probability a node
has enough neighbours of this minimum node type it can offer in selections.
As we have discussed in Section 7.4, selections are filled up with the next
best neighbours that do not fulfil the minimal requirements and it may there-
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fore happen that not all nodes along a tunnel fulfil the minimum node type
requirements as specified by the initiator. It is therefore indeed reasonable to
use optimisation according to Table 7.2 as a basis, although in practice, a user
may always choose to override the default minimum node type she accepts in
her tunnels.

For completeness, Figure 8.5 illustrates the ratio of the download times
between accessing the web server directly and through MorphMix based on
the optimisations in Figures 8.3 and 8.4. We only illustrate the ratio for HTTP
1.1 because the results for HTTP 1.0 are similar.
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Figure 8.5: Ratio between the download times when accessing the web server
through MorphMix and directly using HTTP 1.1.

We see that for small web pages, the ratio is nearly the same for all tun-
nels. The reason is that the download time is mainly determined by the RTT,
which is several times larger if the web server is accessed through MorphMix.
As the web pages get larger, the throughput of the anonymous tunnel becomes
more important and we can confirm the results we observed above that espe-
cially T1 and T3 nodes profit from the even more optimised tunnels we used
to generate the results in Figure 8.4

Using a single anonymous tunnel to download the web page, it secems we
are approaching the limits in terms of end-to-end performance. However, the
size of a web page does not unambiguously reflect the complexity to down-
load it because it could be just one file that requires one request/reply pair or it
could be composed of an index file and several embedded object, resulting in
several request/reply pairs being sent through MorphMix. To assess the pure
performance of MorphMix, we simulate file transfers with random file sizes
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between one and 200000 bytes. Every file transfer results in exactly one re-
quest/reply pair, which means there is no uncertainty as in the web browsing
case about the number of embedded objects in a web page. Figure 8.6 depicts
the download times when the server is contacted directly, when the optimisa-
tions according to Table 7.2 are used, and when the further optimisations as
in Figure 8.4 are employed.
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Figure 8.6: Download times for a single file.

Again and not surprisingly, downloading a single file through MorphMix
takes longer than downloading it directly. When contacting the server di-
rectly, the download times in Figures 8.1(d) and 8.6(a) are virtually the same,
which means that downloading a single web page possibly composed of sev-
eral objects is only marginally slower than downloading a single file of the
same size. This can be explained with the relatively short RTT, which means
that the time between requesting the embedded objects and starting receiv-
ing them is relatively short. Contacting the server through MorphMix using
tunnel throughput optimisation according to Table 7.2 and comparing Fig-
ures 8.3(b) and 8.6(b), we can see that downloading a single file is notably
faster than downloading a web page of the same size. The main reason is the
significantly longer RTT than when contacting the server directly: since the
delay on a virtual link and on the connection to the web server is 85 ms on
average (see Section 8.2), accessing the server through MorphMix and using
a tunnel length of five results in an the average RTT of 850 ms compared to
170 ms when the server is contacted directly. If a web page with embedded
objects is downloaded through MorphMix, this implies it takes at least 850
ms on average between completely receiving the index file and starting re-
ceiving the first bytes of embedded objects. Consequently, there is a gap of
at least 850 ms on average during which no data are downloaded to the ini-
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tiator. In the single file transfer case, this gap is not present, which explains
the difference of the download times. Using the even more optimised tun-
nel throughput scenario and comparing Figures 8.4(b) and 8.6(c), we observe
exactly the same.

With the results in Figure 8.6, we can definitely see the limits of the end-
to-end performance MorphMix users may expect. To analyse this in more
detail, we depict the download times for a single file again in Figure 8.7,
but this time with an y-axis that only ranges from 0-10 seconds. We do not
include the download times for initiator that are ISDN nodes because for large
files, their download times are significantly longer than ten seconds.
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Figure 8.7: Download times for a single file (more detailed illustration).

There are three factors that account for the increased download times.
The first is the increased RTT, which is clearly visible looking at Figure 8.7
for small file sizes: contacting the server through MorphMix (Figures 8.7(b)
and(c)) results in download times that are about one second longer than when
contacting the server directly (Figure 8.7(a)). The second component are
nodes with poor Internet connections along the tunnels of initiators with good
Internet connections. Looking at initiators with ADSL 555 connections and
comparing Figures 8.7(a) and (b), the increased download times with Mor-
phMix cannot only be explained with the increased RTT, but also with the
slow up-stream bandwidth of ADSL515 nodes that are allowed to be present
in the tunnels according to Table 7.2. With the even more optimised tunnels,
this is no longer the case and as a result, the increased download times of
ADSL556 nodes in Figure 8.6(c) can again be explained with the RTT. Fi-
nally, the third factor are congested nodes. In general, MorphMix makes use
of statistical multiplexing, which means that even if a node handles several
tunnels simultaneously, it is likely that it must send or receive data of one or
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only a few of them at the same time. However, it may always happen that this
is not the case at a node for a short while, which makes this node a temporary
bottleneck for all tunnels using it. This can be seen by the increased download
times for large files of DSL5 12 nodes comparing Figures 8.7(a) and (b), which
shows the difference is larger than what can be explained with the increased
RTT.

8.3.4 Using Multiple Anonymous Tunnels in Parallel

Another way to get better end-to-end performance is to use multiple tunnels in
parallel. This should decrease the download times of web pages with several
embedded objects because they can be requested in parallel through different
tunnels. We analyse the download times when using three or five tunnels in
parallel. We use HTTP 1.0 with a maximum of five parallel connections. Note
that using tunnels in parallel to download a single web page does not make
sense with HTTP 1.1 where the index file and all embedded objects of a page
are fetched through the same anonymous connection, and therefore through
the same anonymous tunnel. Figure 8.8 illustrates the download times.
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Figure 8.8: Download times using multiple tunnels in parallel.

Again, the download times could be decreased compared to Figure 8.3(a)
and using five tunnels in parallel results in an end-to-end performance that is
only slightly worse than using HTTP 1.1 as in Figure 8.3(b). However, using
multiple tunnels in parallel to request a web page from a single server greatly
increases the risk that an adversary breaks the anonymity because all he needs
is to compromise one of the tunnels used to communicate with the server.
Assuming f, . is the fraction of compromised tunnels among the tunnels an
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initiator accepts and ¢, tunnels are used in parallel to access a single server,
the probability p,p that this can be observed by the adversary is

Pobs — 1 _(1 _fam)tp~ (81)

As an example, assuming f,,, = 0.01 and ¢, = 5 results in pyps ~
0.049, which means the probability of being observed has increased nearly
five times. Considering that even using five tunnels in parallel does in general
not yield shorter download times than when using HTTP 1.1, it definitely
does not make sense to use tunnels in parallel. We therefore continue to use
the good compromise with one tunnel per web page and the optimisations
according to Table 7.2. Since HTTP 1.1 always outperforms HTTP 1.0 if one
tunnel is used, we will stick exclusively with HTTP 1.1 from now on.

8.3.5 Bandwidth Usage and Overhead

Appendix A.6 gives a quantitative analysis of the overhead produced by Mor-
phMix and concludes that the data to set up and maintain anonymous tunnels
result in an average overhead of sending and receiving about 1090 B/s for
each node. Here, we analyse the bandwidth usage and the data overhead of
MorphMix in more detail assuming our web browsing scenario. We distin-
guish between six different types of data:

1. Web requests/replies at initiator: the web requests sent and replies
received by initiators. This corresponds to the the application data sent
and received if the web server is contacted directly.

2. Cell header/padding: the additional data that are needed to generate
fixed-length cells from the web requests and replies. This includes the
cell headers, anonymous connection headers, and the random bits for
the padding,

3. Forwarding web requests/replies: the web requests and replies for-
warded by intermediate and final nodes. It is the total length of all data
that are forwarded, including application data, cell and anonymous con-
nection headers, and padding.

4. Tunnel setup overhead: all data associated with tunnel setup and tear-
down. It includes data sent and received by all nodes along a tunnel to
establish append nodes and to establish the layer of encryption, includ-
ing setting up the virtual links from and to the witnesses. We separate
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between data sent and received by the nodes along a tunnel and by the
data sent and received by witnesses to append a node. It also includes
TERM messages to tear down tunnels.

5. E2E ping/pong overhead: all data sent and received to test the RTT
of anonymous tunnels. It includes the data sent and received to test the
own tunnels and the data forwarded for other nodes.

6. Virtual link message overhead: all virtual link messages sent and re-
ceived between two neighbours to set up a virtual link and exchange
virtual link status information. It also includes CREDIT messages (see
Appendix A.3.6) for flow-control and cell headers and padding to ex-
change the virtual link messages.

The first three types of data are needed to fulfil the prime task of a mix
network: to send and receive application data through anonymous tunnels.
We therefore do not count the anonymous connection headers, cell headers,
and padding bits to generate the fixed-length cells from the application data
and forwarding the resulting cells along anonymous tunnels as data overhead.
Consequently, we identify the first three types of data as funnel data. On the
other hand, the other three types of data are needed to provide the anonymous
tunnel infrastructure including tunnel setup, testing, and teardown overhead
and management of the overlay network, and are therefore collectively iden-
tified as data overhead.

We first analyse how much of the available bandwidth is actually used by
MormphMix using the scenario in Figure 8.3(b) where web pages are requested
through one anonymous tunnel using HTTP 1.1 and tunnel optimisation ac-
cording to Table 7.2 is used. We distinguish between data sent and received
and between tunnel data and data overhead. Figure 8.9 shows the bandwidth
usage for all nodes together and for the different node types.

Looking at the leftmost bars in Figure 8.9, we can make two important
observations:

1. Overall, only about 3% of the total bandwidth available to all nodes is
used by MorphMix for sending and receiving data assuming our web
browsing scenario described above. This is quite a small burden and
means in general that most users can easily run a node without noticing
a significant drop in terms of network performance for other applica-
tions.

2. Of all MorphMix data sent and received by all nodes, about 61% are
tunnel data and 39% are data overhead. This means that the overhead
is relatively large compared to the tunnel data, but since the total Mor-
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Figure 8.9: Bandwidth usage.

phMix load is so small compared to the bandwidth available to the
nodes, it can easily be dealt with this data overhead.

Looking at the different node types, we can see that about one third of
the down-stream bandwidth of ISDN nodes is used, which can be explained
with their small bandwidth and our assumption that users with ISDN nodes
are always browsing when they are online. Of the up-stream bandwidth of
ISDN nodes, less than 10% is used. The explanation is that web requests
are much shorter than web replies and that ISDN nodes only relay very little
data of other nodes. In general, the percentage of the used bandwidth de-
creases as the Internet connection of the nodes gets faster. The exception in
Figure 8.9 are DSL512 nodes because they are the nodes with the slowest In-
ternet connections that are accepted in anonymous tunnels of all other nodes
(see Table 7.2).

The calculations in Appendix A.6 result in an average data overhead of
sending and receiving about 1090 B/s per node. According to Figure 8.9,
ISDN nodes spend about 6% of their total available bandwidth for data over-
head, which corresponds to approximately 430 bytes/s. This is less than the
average because ISDN nodes relay fewer than average data from other nodes
and 430 B/s is definitely an acceptable overhead for slow ISDN nodes. This
overhead increases as the nodes get faster and T3 nodes use about 0.47% of
their available bandwidth for overhead, which is equal to 2450 B/s and above
the average. This is the maximum data overhead any node can expect and is
insignificant compared to the available bandwidth to fast nodes.
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We can also use the results in Figure 8.9 to estimate the computational
overhead imposed by the cryptographic operations. We only consider T3
nodes because they handle the largest amount of data. These nodes send and
receive about 7.8 KB of data per second. On our test system that is equipped
with a 1IGHz AMD Athlon CPU and 256 MB RAM, the symmetric key oper-
ations and the cryptographic hashes we employ (see Appendix A.2.1) can be
computed at rates of 80 and 350 Mb/s, respectively. Even recalling that the
payload of some cells must be encrypted multiple times, the resulting com-
putational overhead is significantly below 1%. Looking at public-key cryp-
tography and assuming RSA private-key operations with a 2048-bit key (see
Appendix A.2.1), our test system manages to process about 160 Kb of data
per second. Public-key cryptography is only used to process the data over-
head and even there, only to establish virtual links and during the anonymous
tunnel setup. In fact, less than 10% of all data overhead involves public-
key operations (see Appendix A.6), and only half of these operations are the
significantly more expensive private-key operations. Considering a T3 node
sends and receives about 20 Kb of data overhead per second, less than 2 Kb
of them must be processed using expensive private-key operations, which re-
sults in a computational overhead of about 1-2%. We therefore conclude that
the computational overhead imposed by cryptographic operations is below
2% and can be handled well by a reasonably modern computer and that our
assumptions in Section 8.2.4 were correct.

To analyse the data sent and received by the nodes in more detail, Fig-
ure 8.10 illustrates how much of the used bandwidth is spent on which type
of data.
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Figure 8.10: Data sent and received by the nodes.
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By far the biggest part — about 55% — is spent on forwarding the web
requests and replies of other nodes and only relatively little is spent to handle
the own application data. This is reasonable because sending a web request
as an initiator means that all other nodes along the anonymous tunnel must
send and receive this request, too. Similarly, the reply sent back by the web
server must be sent and received by the final and all intermediate nodes along
the tunnel. The effective web replies received at the initiators only account
for about 11% of all data nodes receive. Since web requests are usually much
shorter than web replies, requests issued at an initiator account for less than
1% of all data sent. Figure 8.10 also shows that the additional amount of
data produced by cell and anonymous connection headers and padding bits
is relatively small compared to the user data: looking at the web replies, it is
about 10% of the application data.

Tunnel setup and teardown overhead is responsible for about half of all
data overhead and for about 19% of all all data. About 16.5% stem from the
nodes along the tunnel and 2.5% from the witnesses when appending a node.
End-to-end status information is responsible for about 9% and the various
virtual link messages for about 11% of all data. Looking at the different node
types, the bandwidth that is spent for handling the data of other nodes gets
the bigger the faster the Internet connection of the node is. This is reasonable
because according to our assumptions about realistic capabilities and partic-
ipation probabilities in Section 7.3.2, nodes with good Internet connections
accept relaying anonymous tunnels more frequently and are participating in
MorphMix more often. In particular, ISDN nodes have to deal with relatively
little data overhead, which can clearly be seen by inspecting Figure 8.10(b).
More than 70% of all data received by ISDN nodes are web replies they have
requested themselves and the data overhead accounts for only about 20%.
The main reason is that we assume that the owners of the ISDN nodes are
always browsing the web when the node is up. In addition, ISDN nodes
nearly never accept relaying anonymous tunnels and as a result, their tunnel
setup overhead mainly stems from setting up their own tunnels and acting as
a witness for others. Similarly, ISDN nodes forward only little end-to-end
status information messages of other nodes, which means most of the data
overhead also stems from testing their own tunnels. As the nodes’ bandwidth
increases, they accept relaying anonymous tunnels more frequently and also
become more attractive for others to be used in their tunnels. As a result,
the fraction of the bandwidth that is used to forward data of other nodes gets
larger and the fraction of the bandwidth that spent on handling the own web
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requests and replies gets smaller.

The results depicted in Figures 8.9 and 8.10 are of course heavily depen-
dent on the scenario and the different parameters we specified in Section 8.2.
For instance, reducing the interval between two subsequent tunnels setups to
one minute on average would approximately double the data overhead im-
posed by tunnel setups. Similarly, increasing the amount of application data
decreases the relative data overhead. To analyse the impact of an increased
amount of application data, we reduce the reading time (see Section 8.2.5)
to zero, which means that as soon as a web page has completely been down-
loaded, the next request is initiated right away. Figure 8.11 depicts the down-
load times and the bandwidth usage.

50
a5

40|
ES)S

average download time (seconds)
o
5

percentage of node bandwidth used

L L 1 L
0 40 80 120 160 200 0 all nodes. ISDN ADSL256 ADSL&12  DSL&12 T T3
page size (kilobytes) node type

a) download times b) bandwidth usage

Figure 8.11: Download times bandwidth usage with reading time = 0.

Figure 8.11(b) shows that the total bandwidth used by MorphMix has
nearly tripled from 3% to about 8.9% compared to Figure 8.9. Still the down-
load times in Figure 8.11(a) have only increased a little bit compared to Fig-
ure 8.2(b), which means the MorphMix nodes could cope quite well with the
increased traffic volume. Furthermore, the additional computational overhead
by symmetric key operations and the cryptographic hashes can easily be han-
dled by the nodes following our discussion in Section 8.3.5. Since the data
overhead has remained the same, it now only accounts for about 15% of all
data. For completeness, Figure 8.12 shows the data sent and received by the
nodes in more detail.

Compared to Figure 8.10, the bars corresponding to tunnel data have be-
come longer and those corresponding to data overhead have become smaller.
Otherwise, the basic characteristics of how many data are used for which type
depending on the node type have remained similar to those in Figure 8.10.
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Figure 8.12: Data sent and received by the nodes with reading time = 0.

8.3.6 The Influence of Failed Tunnel Setups and Rejected
Tunnels

Throughout this chapter, we have always assumed that setting up anonymous
tunnels only fails if one of the nodes along the tunnel fails (for instance by
leaving MorphMix) during the setup or a witness that is used to append a node
fails. Similarly, we have assumed tunnels are never rejected by the initiator.
However, in practice it may happen that the tunnel fails during the setup for
any reason, for instance because the witness specified by the initiator cannot
be contacted. In addition, some tunnels will be rejected by the initiator be-
cause they are identified as malicious by the collusion detection mechanism.
Even without malicious nodes, a fraction of about 0.2 of all tunnels will be
rejected because of false positives (see Chapter 7). We analyse the impact
of failed or rejected tunnels in Figure 8.13, assuming that a fraction of 0.5
or 0.8 of all anonymous tunnels fails or is rejected. Note that although tun-
nels can fail at any time during the setup, we assume a worst case scenario
in the sense that the failure occurs at the end of setting up a complete tunnel.
Consequently, failed and rejected tunnels both “cost” setting up a complete
tunnel.

Comparing Figure 8.13 with Figure 8.3(b), we can see that the down-
load times have marginally increased. This is not surprising, as there is addi-
tional load because more tunnels have to be set up. This can also bee seen by
analysing the corresponding bandwidth usage illustrated in Figure 8.14.

In general, the overhead has increased compared to Figure 8.3 and con-
sequently, the total load per node has increased. The overhead has grown
from about 39% of the total amount of data in Figure 8.3 to approximately
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Figure 8.13: Download times with failed and rejected tunnels.
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Figure 8.14: Bandwidth usage with failed and rejected tunnels.

49% in Figure 8.14(a) and 64% in Figure 8.14(b). However, the total load of
all MorphMix traffic is still below 5% of the total bandwidth available to all
nodes even if a fraction of 0.8 of all tunnels cannot be used. For T3 nodes,
the data overhead in Figure 8.14(b) has about tripled compared to Figure 8.3,
which implies the computational overhead imposed by cryptographic opera-
tions has also approximately tripled. On a computer equipped with a 1GHz
AMD Athlon CPU, this result in a computational overhead of about 6% (see
Section 8.3.5), which can easily be handled. Consequently, we conclude that
MorphMix copes well with a significant fraction of failed or rejected tunnels.

8.3.7 The Influence of the Tunnel Length

In Section 7.6, we have analysed the effect of different tunnel lengths on the
probability the adversary manages to compromise anonymous tunnels. In
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general, we have seen that longer tunnels imply better protection but they
also increase the fraction of false positives. To examine the influence of the
tunnel length, Figure 8.15 illustrates the download times depending on the
tunnel length. We use again HTTP 1.1 to download a whole web page through
one anonymous tunnel and the optimisations according to Table 7.2. As a
reference, we also include Figure 8.3(b) with a tunnel length of five nodes.
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Figure 8.15: Download times depending on the tunnel length.

Not surprisingly, the download times increase as the tunnels get longer.
In addition, the RTT gets longer, which can be clearly seen by comparing
the download times when the page sizes are small. On the other hand, the
download times if one uses three nodes in a tunnel are significantly faster than
with five nodes, in particular if the initiator has a good Internet connection.
Figure 8.16 depicts the bandwidth usage for the scenarios in Figure 8.15.

The longer the tunnel length, the larger the percentage of the total band-
width that is used by MorphMix. The relative data overhead also gets larger
as the tunnels get longer because the tunnel setup overhead grows faster than
the tunnel data if the tunnel length increases. Similarly, the computational
overhead imposed by cryptographic operations and the collusion detection
mechanism increases as the tunnel length grows. Note that longer tunnels also
means an increased risk that any of the intermediate or final nodes suddenly
leaves the system and thereby breaks the tunnel. Nevertheless, assuming the
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Figure 8.16: Bandwidth usage depending on the tunnel length.

web browsing scenario, the amount of data can easily be handled by the nodes
even if all tunnels have a length of ten.

As a conclusion, we state there is simply no optimal tunnel length in
MorphMix. Choosing the tunnel length is a compromise between usability
and protection from attacks. A user who prefers good end-to-end perfor-
mance over best possible anonymity should be happy with a tunnel length of
three. Another user interested in minimising the probability of compromised
tunnels may be willing to use tunnels with ten nodes even if this implies
worse end-to-end performance and a higher rate of false positives. A third
user could try to find a good trade-off between performance and protection
from attacks and chooses five nodes in her tunnel. Recalling the results in
Figures 7.11, 8.15, and 8.16, a tunnel length of five still seems to be a good
compromise and a reasonable default value to be used in MorphMix. How-
ever, any implementation of a MorphMix node should give the user the choice
to change the default value to anything between three and ten. A tunnel length
below three does not make sense because this means the initiator directly ap-
pends the final node to itself, which implies there is no selection offered to
the initiator during the entire tunnel setup and consequently, there are no data
for the collusion detection to operate on. Tunnel lengths above ten are also
not recommended because they add virtually nothing to further increase the
resistance to attacks and are therefore not worth the additional performance
penalty and the increased load on other MorphMix nodes.
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8.3.8 The Influence of the Cell Length

We have always used 512 bytes for the length of the cells, but other cell
lengths could be used. In general, shorter cells mean more header data over-
head per cell but also fewer padding bits on average in the last cell of a Mor-
phMix protocol message. In addition, the end-to-end delay for a single cell is
slightly smaller because nodes must always completely receive a cell before
they can forward it. Conversely, longer cells mean less header data over-
head and more padding bits in the last cell of a message, and completely
receiving and processing a cell takes a bit longer. As an example, we analyse
the total amount of data that must be transmitted to handle different applica-
tion data lengths from 100 to 100000 bytes. To get the effective payload per
cell that can be used to carry application data, we must subtract the cell and
anonymous connections headers lengths from the cell length. Looking at cell
lengths of 256, 512, and 1024 bytes, the available payloads for the applica-
tion data are 224, 480, and 992 bytes, respectively. Table 8.1 illustrates the
number of cells needed and the total data that must be transmitted depending
on the application data length and the cell length.

Table 8.1: Data volume depending on the cell length (all lengths in bytes)
appl. data 256-byte cells 512-byte cells 1024-byte cells
length #cells | tot. data | #cells | tot. data | #cells | tot. data

100 1 256 1 512 1 1024
1000 5 1280 3 1536 2 2048
10000 45 11520 21 10752 11 11264
100000 447 114432 209 107008 101 103424

Looking at the results in Table 8.1, we can say that small amounts of
application data profit from small cells while longer amounts benefit from
long cells. If we were sure MorphMix would only be used to download large
files, we would choose a cell length of 1024 or even longer. If it were mainly
used for anonymous remote terminal access, even 256 bytes would be too
much because a single character would be transmitted in one cell most of the
time. Using our web browsing scenario and examining the download times
depending on the cell length, we get the results in Figure 8.17. We use the
standard settings, i.e. requesting a page through one tunnel via HTTP 1.1 and
using tunnel optimisation according to Table 7.2. For easy comparison, we
also include Figure 8.3(b).
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Figure 8.17: Download times using different cell lengths.

There is virtually no difference between the download times, with the
exception that with a cell length of 1024 bytes, the times for fast nodes are
slightly worse than with shorter cells. We conclude our cell length of 512
bytes is reasonable, although 256 bytes would make sense too when looking
at the download times. One argument in favour of 512 bytes is that about 80%
of all web requests are approximately 300 bytes long (see Section 8.2.5) and
therefore fit into one cell, which means exactly one cell must be processed by
each node along a tunnel for most web request.

8.3.9 Crashing Nodes and Blocked Virtual Links

So far, nodes did never crash and could always be reached. The only way they
could disappear and render tunnels useless was when their operators willingly
shut them down. In practice, we can expect that nodes or the computers they
run on crash from time to time and that nodes can temporarily not be reached
due to problems with their Internet connection. We have already mentioned
the subtle differences between a MorphMix application that crashes or is shut
down and a computer running a MorphMix node that crashes or that cannot
be reached temporarily in Section 8.1. Here we analyse the impact on the
end-to-end performance.

We use the following model: MorphMix applications or the computers
they run on can crash at any time. If a node crashes, we assume it is because
of a computer crash in 50% of all cases and because of a MorphMix applica-
tion crash in the other 50% of all cases. Once a node has crashed, we assume
it will be back online within a random time between one and five minutes.
In addition, nodes can temporarily not be reachable due to connection prob-
lems for a random time between one and five minutes. Note that the effect
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of a node that cannot be reached is similar as a crashed computer because
the initiator, and therefore the client application, cannot be notified about the
terminated connection. Since the download failure reaction time (see Sec-
tion 8.2.5) is at most 30 seconds, any of the failures described above always
result in downloading the entire page again through another tunnel.

We analyse the impact of node crashes and temporarily blocked virtual
links assuming every node crashes once during a day and is temporarily
blocked from its neighbours 5, 10, or 20 times during a day. Figure 8.18 illus-
trates the download times for the four node types ISDN, ADSL 955, DSL512,
and T3 for the cases where a node is blocked from its neighbours 5 or 20
times a day. Since some page downloads take much longer because they page
must be downloaded more than once, we do not use linear regression this time
but show the effective download times of each individual page download. We
use the standard settings, i.e. requesting a page through one tunnel via HTTP
1.1 and using tunnel optimisation according to Table 7.2.

First of all, Figure 8.18(a) shows the download times are indeed nearly
linearly dependent on the page size, which justifies our practice of using lin-
ear regression to plot the graphs. Without any node crashes or blocked virtual
links, only very few downloads take significantly longer than they should be-
cause the probability a tunnel is interrupted is small. In this case, interrupted
tunnels occur only if an intermediate or final node leaves the system accord-
ing to its participation pattern (see Section 8.2.4). With crashing nodes and
with an increasing probability of blocked virtual links, more and more tunnels
fail and as a result, the probability a page must be requested more than once
increases. However, even in Figure 8.18(c), the vast majority of all download
times are still the same as with no node crashes or blocked virtual links. Cor-
responding to Figure 8.18, Table 8.2 lists the percentage of pages that failed
during their first download.

With no node crashes or blocked virtual links, only about one of 1000
page downloads fail. With every node crashing once and being blocked tem-
porarily from the Internet five times a day, the failure rate increases to about
1%. The results for even more frequently blocked nodes are of rather the-
oretical interest, as we do not believe nodes crash or are blocked from the
Internet so often. We conclude that MorphMix should still be able to deliver
satisfactory performance if nodes crash or are blocked from their neighbours
from time to time.
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Figure 8.18: Download times when nodes crash or are temporarily blocked
from their neighbours.

8.4 Summary

We have presented a thorough discussion of the performance MorphMix of-
fers to its users using our own simulator and web browsing as the example
application. Naturally, we cannot expect the same performance as when con-
tacting the web server directly, but summarising all results, we state that de-
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Table 8.2: Percentage of pages that failed during their first download.

node type || no crashes, | 1 crash, 1 crash, 1 crash,
type no blocks 5blocks | 10 blocks | 20 blocks
ISDN 0.09% 0.90% 2.04% 4.47%
ADSLasg 0.11% 0.95% 2.00% 3.97%
ADSL519 0.09% 0.96% 1.90% 3.95%
DSLs512 0.07% 0.95% 1.85% 3.75%
T1 0.06% 1.05% 1.95% 3.78%
T3 0.15% 0.88% 1.74% 4.93%
total 0.09% 0.96% 1.91% 3.95%

spite the heterogeneity and the fact that nodes may no longer be reachable
at any time, MorphMix offers good performance. In particular, using HTTP
1.1 and downloading the whole page through a single tunnel, a tunnel length
of five nodes, and tunnel optimisation according to Table 7.2 results in an ac-
ceptable performance penalty and provides a reasonable compromise between
download times and protection from attacks. We have also demonstrated that
participating in MorphMix and getting adequate performance is not only pos-
sible for users with computers that have a broadband Internet connection,
but also for users with computers with slow 64 Kb/s Internet connections.
Finally, we have shown that even if a significant fraction of all anonymous
tunnels cannot be used, either because the tunnel fails during the setup or is
rejected by the initiator because the tunnel is identified as malicious by the
collusion detection mechanism, the performance gets only marginally worse.

Besides the “normal” mix network overhead induced by fixed-length cells
and relaying the data of other nodes, there is additional data overhead result-
ing from tunnel setup, testing, and teardown and management of the overlay
network, which accounts for nearly 50% of all MorphMix traffic assuming
every second anonymous tunnel cannot be used because it has either failed
during the setup or is rejected by the initiator. This is the price MorphMix
users must pay to deal with a dynamic environment with potentially mali-
cious nodes, but we have shown that this data overhead can be easily han-
dled. Similarly, we have also demonstrated that considering the nodes that
handle the largest amounts of data and assuming that most tunnels cannot
be used after they have been set up, the cryptographic operations impose a
computational overhead that consumes up to 6% of the available computing
power on a computer that is equipped with a 1GHz AMD Athlon CPU. Con-
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sequently, the computational overhead can be easily handled by reasonably
modern computers.

Although we have simulated a system consisting of only 1000 nodes, we
state that our results are also representative for significantly larger systems.
In particular, we have set the selection size to its maximum value, which
implies the messages to set up a tunnel have their maximum length. In addi-
tion, every node has 30 neighbours at any time to guarantee 20 nodes can be
easily offered in selections, which means the overhead to manages the local
environment is not smaller than it would be with nodes in all public /16 sub-
nets. Furthermore, we use the realistic assumptions about the capabilities of
the nodes we introduced in Section 7.3.2. As a result, the tunnel data, data
overhead, and computational overhead for a single node in our simulation are
the same as if there were nodes in all /16 subnets. Since the load on a sin-
gle node is low, we state that our results would be very similar to the results
based on a significantly larger system. In general, it can be expected that the
performance offered by MorphMix is virtually independent of the number of
/16 subnets that contain nodes if the distribution of the nodes’ capabilities re-
mains approximately the same, because the data and computational overheads
are always small, no matter how large the system is.

We conclude that MorphMix is indeed practical in the sense that its data
overhead an the computational overhead resulting from cryptographic opera-
tions are reasonably small and the performance it offers is good enough such
that users are not turning away from the system for performance reasons. It
should be noted that we have measured only the time to download the pages
and have not taken the time it takes to display a completely downloaded page
in the web browser into account. Since displaying the pages can take a few
seconds for complex pages independent of whether the page was downloaded
directly or through MorphMix, the relative performance penalty to download
and display a page should be even smaller than what our simulation results
revealed.

One final remark about the variations of different parameters to optimise
the performance: it is all in hands of the initiators. A user that wants to max-
imise her protection from being observed and does not care much about the
performance she gets can always choose to accept every node in her anony-
mous tunnels and to use long tunnels. Another user aiming at a good compro-
mise between anonymity and performance would probably make use of the
optimisations according to Table 7.2 and use a tunnel length of five to contact
a host anonymously. Finally, users that wish to maximise the performance

Major Data Exhibit 1008
Page 249 of 307



230 8 MorphMix Simulation and Results

but still get a certain degree of anonymity make sure that only fast nodes are
present in their tunnels and use short tunnels with only three or four nodes.
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Chapter 9

Conclusions

In this chapter, we conclude our work. We first provide a brief summary of
our work. Then we review the goals we have stated in Section 5.1 and analyse
if we could achieve them. We also point out some limitations of MorphMix.
Afterwards, we compare MorphMix with other peer-to-peer-based systems
that aim at providing anonymous Internet access. Finally, we identify several
challenging topics for future research on mix networks in general.

9.1 Summary

In thesis, we have presented MorphMix, a novel peer-to-peer-based dynamic
mix network. The main motivation for developing MorphMix was that static
mix network, operated commercially or by volunteers, seem not to be well
suited to provide anonymous Internet access for a large number of users.
Static mix networks operated by volunteers suffer from the problem of ac-
quiring enough mixes and from the threat of an internal attacker controlling
a significant portion of all mixes. Commercially operated static mix network
have yet to show whether they can indeed be operated profitably. Peer-to-
peer-based mix networks, on the other hand, seem to have some intrinsic
advantages over static mix networks. Since every user brings her own mix,
they should be able to support a very large number of users. In addition, the
potentially large number of participating users makes it more difficult for an
adversary to operate a significant subset of all mixes. However, peer-to-peer
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mix networks are still a relatively new area of research and they had yet to
demonstrate their usefulness in practice.

The goal of our work on MorphMix was to provide a practical system that
enables anonymous low-latency Internet access for a large number of users.
To achieve this goal, MorphMix is composed of three core components. The
first of these components is the anonymous tunnel setup protocol. One key
design decision regarding this protocol is that every node along a tunnel picks
its immediate successor. This has the advantage that every node must only
handle its local environment consisting of its neighbours. A node can easily
communicate with its neighbours to learn which of them are currently par-
ticipating in MorphMix and have spare resources to accept new anonymous
tunnels. The disadvantage is that a malicious node would simply pick another
malicious node as its successor to compromise anonymous tunnels of honest
nodes. To counter this attack, we designed the anonymous tunnel setup pro-
tocol in a way such that a node cannot simply choose its successor itself, but
must offer a selection of several nodes to the initiator and the initiator picks
one of them. The idea is that a malicious node must now offer many or only
malicious node in its selections to guarantee the following node in the tunnel
is also malicious with high probability.

This is where the second core component, the collusion detection mecha-
nism, comes into play. Based on the assumption that an adversary can operate
nodes only in a small subset of all public /16 subnets, the collusion detection
mechanism can detect selections that contain many malicious nodes with high
probability. if such a selection is detected, the tunnel is suspected as poten-
tially malicious and is rejected by the initiator. Therefore, a malicious node
can only offer relatively few malicious nodes in its selections without be-
ing detected and consequently, the adversary manages to compromise only
slightly more tunnels than if he played fair. The collusion detection mech-
anism bases on the assumption that honest nodes pick their neighbours they
offer in selections from a wide variety of all /16 subnets that contain Mor-
phMix nodes. Consequently, MorphMix requires a mechanism that supports
this.

This is achieved with the third component, the peer discovery mecha-
nism. The idea is that a node remembers the information about other nodes it
receives in selections. This information about other nodes is stored in a way
that allows honest nodes to pick their neighbours from a wide variety of /16
subnets. In addition to providing the basis for the correct functioning of the
collusion detection mechanism, this has an additional benefit because it is a
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necessary requirement for the internal adversary to control the first interme-
diate node to break the relationship anonymity between initiator and server.
Selecting the neighbours from a wide variety of all /16 subnets reduces the
probability the adversary controls this node because of the assumption that
the adversary can only control nodes in a limited number of all public /16
subnets.

After having described the basic design of MorphMix, we have analysed
the impact of different attack strategies that can be employed by the adversary
and have come to the conclusion that the most promising attack the adversary
should make use of is attacking always with the same attack level. This means
that whenever a malicious node is picked as an intermediate node in a tunnel,
it should offer always the same number of malicious nodes in its selection.
The number of malicious nodes in a selection corresponds to the attack level
and depending on the number of different /16 subnets that contain MorphMix
nodes, there is an optimal attack level that maximises the adversary’s chances
to compromise a tunnel.

Based on this attack, we have analysed the performance of the collusion
detection mechanism assuming a realistic scenarios with a large number of
nodes that are located in many different /16 subnets. In addition, we have
analysed the impact of different capabilities of the nodes and the influence
of the fact that many nodes are not continuously participating in MorphMix,
but may join or leave at any time. The main result was that the collusion
detection works well in the sense that it can significantly reduce the number
of compromised tunnel compared to the case if no such mechanism were em-
ployed. In particular, assuming a large system with honest nodes in nearly all
public /16 subnets, the adversary must control nodes in several 1000 subnets
to compromise more than a fraction of 0.01 of the tunnels that are accepted
by the initiator.

Finally, we have implemented a simulator to evaluate the performance
MormphMix users can expect and to analyse the data overhead produced by
MormphMix. Using web browsing as the example application, we have shown
that although the nodes are very heterogeneous, may no longer be reachable
at any time, tunnels may fail during the setup, and tunnels may be rejected
by the initiator because it is identified as malicious by the collusion detec-
tion mechanism, the performance MorphMix offers is good enough such that
users are not turning away from the system for performance reasons. In ad-
dition, both the data overhead and the computational overhead imposed by
cryptographic operations are reasonably small and can be easily handled by
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any participating node.

For completeness, we have also provided the full MorphMix protocol
specification and a prototype implementation, both of which are described
in the appendix.

9.2 Achievement of Goals and Assessment

The principal goal of our work was to develop a practical system that enables
anonymous low-latency Internet access for a large number of users. In Sec-
tion 5.1, we have stated four more detailed goals we wanted to achieve with
MorphMix to fulfil the principal goal of this thesis, and we can say we have
fulfilled all four of them:

1. Requirements to Participate: Recalling our discussion on computa-
tional and memory requirements in Sections 5.8.1 and 8.3, participating
in MorphMix is possible for anyone owning a state-of-the art computer
that is connected to the Internet and capable of running modern graph-
ical application such as web browsers or office packages. We have
shown in Section 8.3 that the bandwidth requirements are also modest
and even users with computers that have slow 64 Kb/s dial-up Internet
connections can participate. In addition, participating is possible in-
dependent of whether the computer has a static or dynamic public IP
address or is located in a private network behind a NAT gateway, as we
have shown in Section 5.8.2. Finally, joining MorphMix for the first
time is easy because the peer discovery mechanism (see Section 5.7)
makes it possible to quickly learn about other nodes.

2. Scalability: MorphMix scales very well and can handle as many nodes
as there are public IP addresses (see Section 5.8.1). The key to scala-
bility in MorphMix is that the complexity of its three core components
does not depend on the number of nodes, but on the number of /16 sub-
nets that contain MorphMix nodes. Since there is an upper bound on
the number of /16 subnets (see Section 5.4.2), the complexity of the
three components is also limited, and we have shown in Sections 5.8.1
and 8.3 that a node that fulfils the requirements above can cope well
with an environment with MorphMix nodes in all /16 subnets. Further-
more, we have demonstrated in Section 8.3 that since the data overhead
is so small, the performance offered by MorphMix is virtually indepen-
dent on the system size.
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3. Protection from Attacks: Based on our assumption that an adversary
can operate nodes in only a small fraction of all public /16 subnets (see
Section 5.4.2), we have shown in Chapter 6 that the collusion detection
mechanism works well in the sense that an attacker cannot compromise
significantly more tunnels than if he played fair, i.e. if malicious nodes
behaved like honest nodes and picked the nodes in their selections ran-
domly. Note that this is close to the optimum we can achieve because it
is never possible to detect an adversary that plays fair based on his be-
haviour. Furthermore, we have demonstrated in Chapter 7 that assum-
ing a realistic scenario with a large number of nodes that have different
capabilities and that are spread across many different /16 subnets, the
combination of the peer discovery mechanism and the collusion detec-
tion mechanism prevents an adversary from compromising more than
a very small fraction of all tunnels that are accepted by the initiator.
In particular, assuming a large system with honest nodes in nearly all
public /16 subnets, the adversary must control nodes in several 1000
subnets to compromise more than a fraction of 0.01 of the tunnels. Con-
sequently, MorphMix indeed provides good protection from long-term
profiling attacks by an internal attacker. However, it must be remem-
bered that MorphMix cannot guarantee the anonymity of every single
transaction and does therefore not offer perfect anonymity. In addition,
MorphMix does not employ measures to protect from an external ob-
server that observes a subset of all nodes because we do not consider
this attacker as a significant threat (see Section 5.4). However, as men-
tioned in Section 5.3, it must be expected that an adversary observing
both the first intermediate and the final node of a tunnel manages to
break the relationship anonymity between the initiator and the server
that is contacted through this tunnel. Developing efficient mechanisms
that significantly increase protection from external observers in mix
networks in general is a topic of further research.

4. Performance: According to our performance analysis in Chapter 8
based on a realistic web browsing scenario, we conclude MorphMix
indeed offers good performance despite the heterogencous environ-
ment with nodes that have significantly different capabilities and that
may no longer be reachable at any time, either because they have been
shut down by their operators, have crashed, or can temporarily not be
reached due to network problems. Naturally, there is a performance
penalty when accessing servers through MorphMix, but especially the
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measures to optimise the throughput of anonymous tunnels by making
sure no nodes with slow Internet connections are present in the tunnels
of initiators with broadband Internet connections (see Section 8.3.3)
result in acceptable performance. We therefore can state that the per-
formance MorphMix offers is good enough such that MorphMix users
are not turning away from the system for performance reasons.

Since we have achieved all four partial goals, we conclude that MorphMix
fulfils the principal goal of our work and is indeed a practical system that
enables anonymous low-latency Internet access for a large number of users.

However, there is still room for improvements. The most significant limi-
tation of MorphMix is that if any node along a tunnel can no longerbe reached
for any reason, the tunnel fails. Consequently, all anonymous communication
relationships between the initiator and servers that use this tunnel are termi-
nated. This is a general problem of mix networks that are operated similar
as illustrated in Figure 2.6(a), but static mix networks suffer less from it be-
cause their mixes are usually available all the time. We have thought about
possible solutions to mitigate this problem, for instance by bypassing nodes
in a tunnel that are no longer reachable. However, doing so could enable an
attack where malicious nodes claim that their honest successor node in a tun-
nel can no longer be reached and we therefore decided not to make use of this
approach. Consequently, and until there is no proposal to solve this problem,
MorphMix is not well suited for long-standing communication relationships
such as remote logins.

For many other applications, however, MorphMix can be well used. We
have already shown in Chapter 8 that web browsing is one such application.
In addition, MorphMix can be used to anonymise FTP downloads or in gen-
eral to enable anonymous file transfer, with the risk that files must be down-
loaded again if a tunnel fails. MorphMix is also very well suited to enable
anonymously searching and downloading files from other peers in peer-to-
peer file-sharing communities. One could go even further: by incorporat-
ing ideas to use mix networks to enable both client and server anonymity
via rendezvous points' and assuming every peer runs also a MorphMix node
would enable a completely anonymous file-sharing community where offer-
ing, downloading, and searching for files would be anonymous.

Another potential problem for MorphMix are DoS attacks. As discussed
in Section 6.4, an adversary may participate in MorphMix with several nodes

1ht:t:p ://freehaven.net/tor
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simply to disrupt the service. To do so, his nodes would accept tunnels being
established through them but refuse to transport data once a tunnel has been
set up or stop forwarding data after it has been used for a while. In practice,
this attack can be quite effective in the sense that if most tunnels fail in the
middle of a file transfer, the quality of service as perceived by the users gets
so poor that they no longer use MorphMix. Again, this problem is less severe
in static mix networks with a limited number of mixes where it is much easier
to identify and exclude mixes that fail to process data correctly. The solu-
tion to this problem is to couple MorphMix with a reputation system. Nodes
that repeatedly fail to forward data would get a bad reputation over time and
would no longer be offered in extended selections from honest nodes. Re-
search on reputation systems is still in its infancy, but initial studies to make
mix networks more reliable through reputation have been carried out (see
Section 3.5). Note that such a reputation system would not only protect better
from DoS attacks by an adversary, but decrease the failure rate of anonymous
tunnels in general because nodes that frequently leave the system would also
get a poor reputation.

One final remark about the fact that MorphMix protects from long-term
profiling attacks but does not guarantee the anonymity of every single trans-
action. Although the latter would be more desirable from an anonymity point
of view, the acceptance of MorphMix could actually benefit from this. The
reason is that if a person is suspected to be involved in criminal activities by
communicating with a particular server through MorphMix, it is relatively
easy to uncover this communication relationship because all that is needed is
to eavesdrop on both the person’s computer and the server (see Section 5.3).
It is likely that if there is a strong suspicion of ongoing criminal activity, court
orders would be issued to facilitate this action. Consequently, MorphMix is
probably not the right tool to be used for criminal activities because the risk
of being detected by a well targeted attack is too high.

9.3 Comparison with Other Systems

The advantages of dynamic, peer-to-peer-based mix networks have already
be pointed out in Chapter 4 and we therefore do not compare MorphMix with
static mix networks. Rather, we compare MorphMix with other, peer-to-peer-
based approaches where hosts that are not part of the system are contacted via
some other nodes. In particular, we compare MorphMix with Crowds (see
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Section 3.3) and Tarzan (see Section 3.1.2).

9.3.1 Comparison with Crowds

There are three main differences when comparing MorphMix with Crowds:
(1) Crowds requires a centralised lookup server to keep track of nodes that
are currently participating, (2) Crowds does not employ a collusion detection
mechanism, and (3) Crowds does neither make use of fixed-length cells nor
of layered encryption.

The requirement of a lookup service is definitely a major drawback, first
of all because it provides a single point of failure and attack and second be-
cause the lookup server must inform all participating nodes about joining
or leaving nodes because every node must know about all other nodes in the
crowd. The second makes Crowds not well suited to support many nodes (e.g.
several 1000s) where nodes come and go. In contrast, leaving out the optional
introductory nodes to join for the first time, MorphMix does not relay on such
a lookup service and in particular, MorphMix does not require a node to know
about all other nodes at any time and we have shown in Sections 5.8 and 8.3
that MorphMix scales very well up to as many nodes as there are public IP
addresses. Note that due to the lack of simulation results or analyses of the
overhead that is produced by the communication of the nodes with the lookup
server, it is difficult to compare the data overheads of Crowds and MorphMix.
But it can be expected that in Crowds, the relative data overhead compared
to the actual application data that are processed grows with the number of
nodes because more and more bandwidth must be devoted to keep all nodes
informed about joining and leaving nodes. In MorphMix, on the other hand,
the data overhead is nearly independent of the number of nodes and can eas-
ily be handled by the nodes even if there are very many participants (see
Section 8.3).

The second difference is the lack of a collusion detection mechanism in
Crowds. Assuming the requester picks a malicious node to which it forwards
the request and that node can find out that its predecessor is indeed the re-
quester, it has broken the anonymity. To protect from this attack, the last
node along a chain retrieves the page including all embedded objects before
sending it back to the requester. This prevents the malicious node from eas-
ily making use of a timing attack to learn whether it is directly following
the requester or not because embedded objects would be requested by the
browser automatically. It also improves the performance because round-trips
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to request embedded objects between requester and web server are avoided.
Still, this approach also has disadvantages because it requires the last page
to parse an HTML object to get all embedded objects, which could be diffi-
cult with web pages that contain executable scripts. In addition, the approach
does not work if HTTPS is used because the last node along the chain cannot
access the HTML object. Furthermore, the requester clicking on a link can
itself leak information that can be used for a timing attack by the first node
in the chain to determine its position with high probability. The Crowds’ de-
signers propose to introduce random delays to complicate this attack, but this
reduces the end-to-end performance and could refrain potential users from us-
ing the system. Finally, HTTP redirects [45] may be inserted by the malicious
node to force the browser to issue another request after a specified amount of
time. Of course one can always filter such content on the requesters com-
puter, but this always implies limiting the capabilities of the system a bit.
In general, this entire approach has the serious drawback that Crowds needs
to be application-aware and cannot easily be used for other applications than
web browsing. In contrast, the collusion detection mechanism as employed in
MorphMix is a much cleaner solution because it increases the probability that
anonymous paths are “secure” before the server is contacted. Consequently,
no such measures as employed by Crowds are required and the nodes along a
tunnel can always simply forward the data of others without having to inspect
the content. Note also that during the analysis of attacks on MorphMix, we
have assumed that during the exchange of data between initiator and server,
the first intermediate node in the tunnel always learns that it is directly follow-
ing the .initiator. This may not always be easy in practice, but it will often be
possible to find this out with high probability if sufficient data are sent forth
and back through the tunnel (see Section 5.3).

The third major difference is the lack of fixed-length cells and layered
encryption in Crowds. From the point of view of correlating data at different
places in the Internet, layered encryption and fixed-length cell do not help
much because the combined application data volume and timing attack at the
endpoints is difficult to prevent (see Section 4.1) without employing cover
traffic. The reason for using layered encryption in MorphMix is mainly mo-
tivated by hiding the data sent by the initiator from any of the nodes along
the tunnel except from the final one. Otherwise, a malicious first intermediate
node could for instance see a web request and the whole collusion detec-
tion mechanism would be pointless. Crowds, on the other hand, does not
make use of layered encryption because it assumes the first node cannot eas-
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ily learn that it follows directly the initiator. Even if layered encryption were
employed in Crowds, it would not help because malicious nodes could sim-
ply pick other malicious nodes (or themselves) as their successors. Using
fixed-length cells has a performance advantage because application data can
be “streamed” along an anonymous tunnel in the sense that data can be for-
warded as soon as a (short) cell has been received. In Crowds, the entire data
corresponding to a web request or reply must be received by a node before
they are forwarded, which introduces long end-to-end delays if the chain gets
long and if a web page is large. The MorphMix design with fixed-length cells
and layered encryption also has the advantage that cover traffic could easily
be added if an efficient mechanism will be ever developed.

We conclude that MorphMicx is superior to Crowds, mainly because of its
scalability, its application independence, and its capabilities to detect mali-
cious tunnels with high probability before any critical data are sent through
that tunnel. Since Crowds cannot detect a malicious node directly following
the requester, it mainly focuses on making it difficult for this node to detect
its predecessor is indeed the requester.

9.3.2 Comparison with Tarzan

The main differences between MorphMix and Tarzan are: (1) Tarzan builds
an universally verifiable set of neighbours (the mimics) for every node, and
(2) Tarzan employs cover traffic streams between neighbours. The first re-
quires Tarzan nodes to know about all other nodes, which again makes it
unlikely Tarzan can function well in a large and dynamic environment where
nodes come and go. Apart from this drawback, the fact that every node selects
its neighbours in a pseudo-random but verifiable way makes it virtually im-
possible for a malicious node to have only other malicious neighbours. Since
the initiator picks the nodes along a tunnel (each node is picked from the mim-
ics of it predecessor), it is therefore very unlikely all nodes along an anony-
mous path are malicious. In comparison to the collusion detection mechanism
employed in MorphMix, we can identify the mechanism employed by Tarzan
as collusion prevention. Assuming the mimics of a node in Tarzan are indeed
selected randomly, it can be expected that the node following the initiator and
the last node in an anonymous path are also selected nearly randomly from
the set of all nodes. Consequently, the probability of a compromised anony-
mous path can be expected to be slightly better than in MorphMix and close
to the optimum (i.e. the bottom line in Figure 6.10). However, this comes
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with a heavy price because every node must know about all other nodes for
the system to work correctly. In addition, there is only little room for through-
put optimisation because the potential next hop nodes are limited to a node’s
mimics. Due to the lack of quantitative simulation results, we can only es-
timate the data overhead of Tarzan, but like in Crowds, it is reasonable to
assume that keeping the information about the entire system up-to-date at
every node grows faster than the number of participating nodes.

The second difference is the decision to make use of cover traffic in
Tarzan. The main motivation was to provide protection from a global eaves-
dropper and we agree that this requires cover traffic between neighbours (see
Section 4.1.1). However, according to our threat model (see Section 5.4), we
believe that like in MorphMix, internal attackers are a more significant threat
and no cover traffic scheme helps against this internal active attacker. In addi-
tion, cover traffic could reduce the performance offered by Tarzan so signifi-
cantly that users interested in anonymity would not use the system at all. Just
imagine a DSLsz19 nodes with six neighbours. Using the same constant cover
traffic rates on all links would reduce the bandwidth of each link to 64 Kb/s
even if all neighbours could handle at least as many data as the DSL 51, node.
In MorphMix and assuming the node is currently only handling the data of
one tunnel, the full 512 Kb/s were available to forward the data. It is exactly
reasons like this that refrain us from employing any cover traffic mechanism.
It should be noted that Tarzan does not require a node to employ the same
fixed stream bit-rates with all its neighbours. In fact, data rates of the bidi-
rectional cell streams between two neighbours can vary within an upper and
a lower bound. This seems to be a good idea because different nodes have
different capabilities but it is not entirely clear how much protection such a
scheme really offers.

We conclude that Tarzan could work well if the number of nodes is rela-
tively small or if the nodes in the system do not change too frequently. As-
suming such a scenario, Tarzan provides good protection against internal at-
tackers and even against the global observer. In fact, the number of compro-
mised tunnels can be expected to be slightly smaller than in MorphMix. But
as long as there are only a few honest nodes, it is also relatively easy for an
adversary to operate a significant subset of all Tarzan nodes by himself. On
the other hand, Tarzan is unlikely to cope well with large (e.g. with several
1000 nodes) and dynamic systems because of the requirement for every node
to know about all other nodes. MorphMix can cope much better with large
systems because there is no need to know about all other nodes. Looking at
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the cover traffic, it should be remembered that Tarzan provides better pro-
tection from external observers, but at the cost of a significant performance
penalty. It all depends on the threat model: if the eavesdropper is considered
to be the biggest threat, cover traffic may be a good idea. With our threat
model, cover traffic would help only little and its drawbacks would greatly
outweigh its benefits.

9.4 Further Work

Besides the limitations of MorphMix we have identified in Section 9.2, there
are several open issues regarding mix networks in general. The following list
contains some of the challenging questions that remain to be answered. Note
that these are general problems that are not dependent on a particular mix
network design. Consequently, MorphMix would profit from solving these
problems as well.

1. Cover traffic schemes: The concept of dummy traffic is still not well
understood. In general, there is the question whether there are alter-
natives to constant streams of cells between a pair of nodes that are
much more efficient without reducing protection from attacks. If not,
then maybe there are schemes that produce significantly less overhead
while reducing the anonymity only marginally. In particular with peer-
to-peer-based mix networks, there is the question whether there are effi-
cient cover traffic schemes that would significantly improve the protec-
tion from eavesdroppers without introducing too much data overhead
and hurting the performance so much such that nobody would to use
the system.

2. Deployment: How should a mix network be deployed? The problem
is that without several other users, there is only little anonymity at all.
But users really interested in anonymity won’t join before there is a rea-
sonable number of system users. When deploying a peer-to-peer-based
mix networks, this problem is even more significant because there is
not even a fixed set of static mixes for the first users to begin with. In
this case, the only reasonable way to solve the problem is by collecting
several users — for instance through mailing lists focusing on anonymity
and privacy aspects — that are interested in running a node to provide a
basic infrastructure to attract additional users.
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3. Incentives: What incentives are there for volunteers to operate a mix?
This problem of acquiring enough mixes is one of the most crucial is-
sues of static mix networks. In peer-to-peer-based systems, this is a
smaller problem and in MorphMix, there are even incentives to relay
the data of others because it increases the own protection from attacks.
But MorphMix cannot enforce a node to actually act as mix and it may
be that like in many peer-to-peer file-sharing systems, 90% of all nodes
will be free riders. One way to attack this problem is through reputa-
tion systems in the sense that peers that do not offer a service to other
peers get a poor reputation over time and are no longer allowed to use
services offered by other peers. In general, solving these problems on
reputation and incentives in peer-to-peer communities is a very inter-
esting and challenging topic for future research.

4. Exit abuse: This is a serious problem in mix networks. It is also cou-
pled to the incentive problem described above: do people really want
to handle the web requests of others? What if a Yahoo account is ac-
cessed through a mix network and a threatening e-mail message is sent
to the President of the USA? Will the operator of the last mix in the
chain be prosecuted because the IP addresses in the (possibly avail-
able) logs at Yahoo indicate the account has been accessed from her
computer? This problem seems more significant in peer-to-peer-based
mix networks, because especially in commercially operated static mix
networks, the operator can plausibly argue about not having sent the
e-mail message himself. One possibility to solve this problem are exit
policies in the sense that there is a blacklist at every node that deter-
mines what host/port combinations must not be accessed. There is an-
other potential solution to this problem: assuming a system such as
MorphMix becomes extremely popular in the sense that there are mil-
lions of users that relay traffic for each other. This would significantly
“blur” the relationship between IP addresses in IP packets and the com-
puter the data have originally been sent from or are sent to and as a re-
sult, IP addresses could possibly no longer be accepted by law enforce-
ment to track down individuals. Another option could be to combine
anonymity and accountability such that it is possible to unambiguously
identify an anonymous users if certain conditions are met (for instance
if a court order to do so has been issued). To do so, mixes would log
all data they process including the corresponding keys and the mapping
of incoming and outgoing data. If the last mix were accused of having
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been the sender of the threatening e-mail message to the President, it
would identify the previous mix in the chain. Doing this step-by-step
would eventually reveal the true sender. The problem is that the logged
information could grow rapidly and pose a burden on the nodes, and a
node that accidentally “loses” the logs for any reason could be in trou-
ble. But even worse, any set of mixes could easily blame any user of
having contacted a server and having sent or received certain data be-
cause there is no binding (for instance a digital signature) between the
user and the data she has sent or received that could be used to prove
this binding to a third party. Pscudonyms that can be unambiguously
linked to an individual’s real identity could be a solution to solve this
accountability problem. In general, the relation between the concepts
of anonymous communication, the systems and operators that imple-
ment them, and the needs of society are a topic for future research.

There are several other open problems, but the ones described above are

closely related to the work presented in this thesis. We expect that anonymity
and privacy-enhancing technologies in general will certainly remain to be a
hot and interesting research area during the years to come.
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Appendix A

MorphMix Protocol and
Prototype Implementation

In this appendix, we describe the details of the MorphMix protocol. We
first introduce the notation we are using throughout this appendix. Then, we
describe the protocol basics which includes the various cryptographic algo-
rithms we employ, the cell format, the different node levels, and the encoding
of various fields in messages. Afterwards, we give the meaning and precise
format of all messages exchanged between neighbouring nodes and between
the endpoints of an anonymous tunnel. We also give detailed descriptions
of the life cycle of virtual links and tunnels, and the policy for using virtual
links. Finally, we make a quantitative analysis of the data overhead induced
by MorphMix and give a brief description of the MorphMix prototype imple-
mentation.

A.1 Notation

We use the following notation: « is the node that sets up a virtual link to node
b. Similarly, when a node is appended to a tunnel, « is the initiator and b is the
final node of the tunnel that has been set up so far. w is the witness. Node c is
the node that is selected as the next hop when a node is appended to a tunnel,
and d, e, f . .. are the other nodes b offered in the selection but that were not
chosen. When end-to-end messages are sent through a tunnel, they are sent
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from a via b to ¢ and we assume they are currently on the virtual link between
aand b. kv, is the symmetric key for the virtual link between nodes = and
y. kpp,, is the symmetric key for the layer of encryption between nodes =
and y. PK, and SK, are the corresponding public and secret keys of node
z. ip, is the IP address of x. lev, is the node level of node . MorphMix
node z listens for incoming connections on port P, . The MorphMix port
is 28080 per default, but can be specified by the node operator. This port is
used to contact a node that has been chosen as a new neighbour. In addition,
there is a witness port p.i:,, which is always specified as pq, + 1. This
port is used to establish a virtual link to a witness and from the witness to
the node that is appended to a tunnel. The reason for having two ports is that
if a node does not want to accept being selected as a neighbour, it simply
stops listening on the MorphMix port. On the other hand, a node should
always listen on its witness port even if it does not accept being selected as
a new neighbour. Before setting up a virtual link, we assume a knows ip s,
Prmm,, (Which implies a also knows puit, (= Pmm, + 1), PKep, and lev, and
before appending a node to a tunnel, @ knows ip ., Pmm.,, and PK,,,. All these
assumption make sense due to the peer discovery mechanism in Section 5.7.
Finally, % is the host that is contacted by « through the anonymous tunnel.

A.2 Basic Protocol Properties

In this section, we describe the basic protocol properties. We first define the
cryptographic algorithms we employ. Then, we describe the format of a cell,
the different node levels, and the encoding used in various fields of protocol
messages.

A.2.1 Cryptographic Algorithms

MormphMix makes use of different cryptographic algorithms. For symmetric
key cryptographic operations, we employ the Advanced Encryption Standard
(AES) [47] with 128-bit keys in cipher block chaining (CBC) mode [110]
with no padding. For public key operations, we use RSA [107] with 2048-bit
moduli. The same key pair is used for signing and encrypting. To encrypt
with the public key, we basically use RSA in electronic codebook (ECB)
mode [110] with PKCSI1 (version 1.5) padding [21], which operates on 245-
byte blocks. If more than 245 bytes must be encrypted with the public key,
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we use a hybrid scheme as follows to encrypt » bytes: first, a 16-byte initial-
isation vector v and a 16-byte symmetric key & are randomly chosen, which
serve as the input to an AES cipher that is operated as described above. Then,
the concatenation of v, key, and the first k = n — (16 - [(n — 245+ 32)/167])
bytes of the data are encrypted using RSA with the recipients public key,
which results in dy. Since this input is guaranteed to be smaller than 245
bytes, only one block is encrypted. In addition, the remaining (n — k) bytes
of the data are encrypted using the AES cipher, which results in d5. The
concatenation of d; and ds is the output, i.c. the ciphertext of the hybrid
encryption. Decrypting the ciphertext works vice versa. To sign, we em-
ploy RSA with SHA1 [46]. The public exponent of every node is fixed to
216 11 = 65537 and the modulus of node = is given by mod,. To get the
symmetric keys for a layer of encryption, we use the Diffie-Hellman (DH)
key-exchange algorithm [34] with a 1024-bit modulus.

A.2.2 Cell Format

The format of a MorphMix cell exchanged between two neighbouring nodes
is depicted in Figure A.1.

ver-
sion

length of

atid payload

type

checksum ‘

1 1 2 2 10

- > »

header (16 bytes) payload (496 bytes)

Figure A.1: Cell format.

All cells have a length of 512 bytes and consist of a 16-byte header and
a 496 bytes payload (including the padding). The version and type fields are
defined as unsigned 8-bit integers. The current version is 1.0, and the various
types are needed to identify the type of message that is transported in the
payload of the cell. The at/D is an unsigned 16-bit integer and is needed
to multiplex anonymous tunnels on a virtual link between two nodes. The
atID has only local significance on the virtual link between two nodes. The
unsigned 16-bit integer field /length of payload identifies the number of bytes
in the payload field, excluding the padding. If needed, the payload is padded
with random bits to make sure the cell has its fixed length.

To protect the integrity of a cell, there is a 10-byte checksum, which is
made over the concatenation of the first 6 bytes of the header and the whole
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payload, including the padding. SHA1 produces a 20-bytes output, of which
we XOR the left and right 10 bytes to generate the checksum. 10 bytes are
enough to detect if the cell has been tampered with in transit between two
nodes if the header is encrypted. It also makes replay attacks virtually im-
possible, because if the header is encrypted, the decryption of the header of
a replayed cell results in a completely different plaintext header because we
are using AES in CBC mode. The probability a replayed cell is not detected
is 2780,

If messages are exchanged between neighbours, they are directly trans-
ported within the payload of cells. In the case of end-to-end messages that
are exchanged between the endpoints of an anonymous tunnel, an additional
anonymous connection header is inserted at the beginning of a cell payload.
The anonymous connection header looks exactly the same as a cell header
and the atID corresponds to the anonymous connection identifier (acID). Us-
ing the concept of anonymous connections (see Section 5.2) allows to use a
single anonymous tunnel for multiple anonymous communication relation-
ships in parallel.

The atIDs are assigned as follows: the node that initiated establishing the
virtual link uses odd, the other even unsigned 16-bit integers. Note that ac-
cording to our policy about how virtual links are used (see Appendix A.5.2),
this implies that even number will not be used at this time, but we never-
theless separate between odd and even numbers in case this policy changes
in future versions. atIDs are assigned sequentially for each new anonymous
tunnel transported within a virtual link between the nodes, starting with 1
(1,3,5,7....) and 2 (2,4,6.8.. . .), respectively. If they ever reach their maxi-
mum (65535 and 65534), they simply wrap around, although it is extremely
unlikely a virtual link between two nodes remains active for such a long time
(see Appendix A.5.1). It works in the same way for anonymous connections:
the initiator uses odd acIDs and the final node uses even acIDs to multiplex
anonymous connections within one tunnel (although at this time, we do not
allow connections being established by the final node to the initiator) . The
atID/acID 0 is reserved for control data exchanged between neighbours or be-
tween the endpoints of an anonymous tunnel that do not belong to a particular
anonymous tunnel/connection or if no such identifier has been assigned yet
(for instance during the setup of anonymous tunnels).
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A.2.3 Node Levels

To optimise the quality of anonymous tunnel, each node has a specific node
level that depends on its up- and down-stream bandwidths. Table A.1 defines
the node levels used in MorphMix. The table also lists the encoding of the
different levels and the default minimum level the nodes along a tunnel should
have depending on the node level of the initiator.

Table A.1: Node levels in MorphMix

node level bandwidth (Kb/s) enc. default min. level
up-stream | down-stream of nodes along tunnel
slower than ISDN < 64 < 64 1 1
ISDN 64 64 2 2
ADSL/Cablegsg 64 256 3 4
ADSL/Cablesa 128 512 4 5
ADSL/Cablejgaq 256 1024 5 6
DSLs12 512 512 6 5
T1 1544 1544 7 6
T3 or faster > 4632 >4632 8 6

To make use of the node levels, the operator of a node specifies the level
of its node according to Table A.1. If none of the levels matches her Internet
connection, she picks the highest level that both up- and down-stream band-
widths of her connections are at least as large as those of the chosen level.
In addition, she may modify the minimum level for the nodes she accepts in
her anonymous tunnels or simply use the default one. It is important to re-
member that selecting the minimum acceptable level is a trade-off between
performance and protection from attacks. The default levels are similar to
those used in our analyses in Sections 7.4 and 8.3.3, which have turned out to
be reasonable compromises.

A.2.4 Encoding

Whenever control messages are exchanged between nodes (for instance to set
up virtual link and anonymous tunnels), the payload itself contains formatted
control data ficlds. To make sure that two nodes can communicate, the data in
these fields must be encoded in a clearly specified way. In general, we always
encode values in big-endian order, i.e. the most significant byte comes first.
In addition, most fields have a fixed length. One exception are the DH key-
exchange parameters, where the public key is represented in ASN. 1 encoding
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for public keys [86], which corresponds to at most 296 bytes. Table A.2 lists
the encoding of several fields.

Table A.2: Encoding of fields in the payload.

[ field [ length | description
IP address (ipg) 4 Each of the four bytes of an IP address is
stored in one of the four unsigned bytes
port (e, Prmy ) 2 Ports are encoded as unsigned 16-bit integers
RSA modulus (mod) 256 The 2048 bits are encoded as 256 unsigned bytes
node level (levy,in, levg) | 1 The node level is encoded as an 8-bit unsigned
integer
nonce (noncez, ) 16 A nonce is always 16 unsigned bytes long. We

use nonces throughout the protocol to recognise
replies to a particular request and to guarantee
the freshness of these replies.

symmetric key 16 The 128 bits are encoded as 16 unsigned bytes

&{VLILE} zy)

initialisation 16 The 128 bits are encoded as 16 unsigned bytes

vector (iv)

selection size (nsel) 1 The selection size is encoded as an 8-bit
unsigned integer

length (1) 2 Length fields are represented as unsigned 16-bit
integers and identify the number of bytes
of the following field

DH parameters (DH,; ) <296 | The DH public key (of one party) is represented in
ASN.1 encoding for public keys [86]

number of nodes for 1 The requested and replied number of nodes for

peer discovery discovery is encoded as an 8-bit unsigned integer

(reg, Nrep)

information 1 Status information exchanged between two

(info, info,) neighbours or information about the host «,

represented as unsigned 8-bit integers
RSA public key encryp- n - 256 | Data encrypted with 2’s RSA public key are

tion({...}PK,) represented as unsigned bytes;
the length is a multiple of 256 bytes
RSA signature 256 Data hashed with SHA1 and then encrypted with
- }sk,) 2’s RSA private key, represented as 256
unsigned bytes

We describe the various message types that are exchanged between neigh-
bours and between the endpoints of an anonymous tunnels. According to
Appendix A.2.2, the types are encoded as 8-bit unsigned integers. Since the
length of some messages can be longer than what fits into a single cell, there
is a simple rule to recognise when all cells of a message have been received:
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The last cell of a message always has a different type than the others. For in-
stance, the selection a node offers when appending a node to the tunnel is an
end-to-end message that uses multiple cells. Therefore, the type field in the
anonymous connection headers is SEL RFEQ in all cells except the last, where
itis SEL_REQ_FINAL. Table A.3 lists the encoding of all message types used

in MorphMix.
Table A.3: Encoding of message types.
[ type | encoding ]| type encoding |
[ messages between neighbours |
[ TINK REQ [ 11 [ LINKREP 2 |
WIT_REQ 16 WIT_REQ_FINAL 17
WIT_REP 18 WIT_FAIL 19
NEXT_REQ 21 NEXT_REP 22
NEXT_FAIL 23
ADD_REQ 26 ADD_REP 27
ADD_FAIL 28
NODES_REQ 31 NODES_REP 32
NODES_REP_FINAL 33
STAT_REQ 36 STAT REP 37
STAT_PUSH 38
I TERM I 41 " I
[ CREDIT [ 46 I |
[LINK DATA [51 I |
[ end-to-end messages |
SEL_REQ 61 SEL_REP 62
SEL_REP_FINAL 63 SEL_FAIL 64
APP_REQ 66 APP_REQ_FINAL 67
APP_REP 68 APP_REP_FINAL 69
APP_FAIL 70
CON_REQ 71 CON_REQ-FINAL | 72
CON_REP 73 CONDATA_REQ 74
CONDATA_REQ_FINAL | 75 CON_CLOSE 76
CON_FAIL 77
[ E2EPING [ 81 [[ E2ELPONG 82 |
[E2EDATA 136 T |

Major Data Exhibit 1008
Page 286 of 307



A.3 Messages between Neighbours 267

A.3 Messages between Neighbours

In this section, we precisely describe all messages in MorphMix that are ex-
changed between neighbours. They are used to set up virtual links, to set up
and terminate anonymous tunnels, for peer discovery, to get status informa-
tion about neighbours, for flow control, and to carry end-to-end messages.
With the exception of the case when carrying end-to-end messages, layered
encryption is not relevant if messages are exchanged between neighbours.
Therefore, both the header and payload are usually encrypted using the key
of the corresponding virtual link.

A.3.1 Establishing a Virtual Link

Whenever two nodes in MorphMix communicate directly with each other,
they establish a virtual link. To do so, a establishes a TCP connection with
b using ipy and Pyym, (O Puwis, if @ or b act as a witness). Node a then
selects randomly three 128-bit values: a nonce, p, an initialisation vector
(iv) for the AES cipher because it operates in CBC mode, and a key kv 1, 40,
which will be used to encrypt data sent across the virtual link. Node a also
includes its IP address ip,, port pmm., . RSA modulus mod,, and node level
lev,. If a is located in a private network behind a NAT gateway and port
forwarding to connect to a has been enabled on the NAT gateway, a includes
the public IP address and the corresponding port of the NAT gateway instead
of its own. All these data are concatenated, encrypted with b’s public key
PKj, and sent to b in a LINK_REQ message. Since the resulting data have
a length of 368 bytes, they fit into the payload of a single cell. The atID
is set to 0 because the messages do not belong to any particular anonymous
tunnel. Cells carrying messages of type LINK _REQ are the only cells where
the header is transmitted in the clear.

Upon receiving the message, b decrypts the payload to get the data that
were encrypted by a. iv and kv 5 are used as input to the AES cipher
to encrypt the data on this virtual link. In addition, ip,, Pmm,, mod,, and
lev, are passed to the peer discovery mechanism (see Section 5.7). If b is
willing to accept the connection, it generates message of type LINK REP that
contains nonce, ». The header and the whole payload of the resulting cell are
encrypted with ky- 7, ., and sent back to a. Node a gets the cell, decrypts the
header, sees that it is a message of type LINK REP, checks the included nonce
to make sure it really is a valid reply to its own message and the virtual link
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is established. If there is any problem with the LINK REP message, a simply
tears down the TCP connection to b. If b cannot decrypt the LINK REQ
message or does not want to accept the connection from « for any reason,
it simply closes the TCP connection. As mentioned in Appendix A.1, b can
simply stop listening on p,,m, if it does not want to be chosen as a neighbour.
However, a node should always accept virtual links being established to p iz,
to guarantee setting up anonymous tunnels succeeds with high probability.
Table A.4 summarises all fields and cells used during the setup of a virtual
link.

Table A.4: Fields and cells to establish a virtual linki

[ field [ length | description
nonce, ; | 16 Nonce for a to recognise b’s reply
iv 16 Initialisation vector for the AES cipher
Kvr ab 16 Symmetric key used for the virtual link
ver- | type at pld | payload key to encrypt
sion ID | len header | payload
1.0 [ LINKREQ | 0 368 | {nonce,; || iv || kv ab [l | no no
ipa || prmm, [ moda ||
levg } PK,
1.0 LINKREP | 0 16 nonce, p kv ab | KviL.ab

A.3.2 Appending a Node to a Tunnel

Messages 1-3 and 10 in Figure 5.5 are end-to-end messages and will be han-
dled in Appendix A.4.1. Here, we describe messages 4-9.

Upon receiving message 3 in Figure 5.5, b sets up a virtual link to w. As
mentioned in Appendix A.5.2, this is only needed if b and w are currently not
neighbours. Node b then generates a W/7 REQ message. Since the length of
the message is longer than the payload of a cell, it results in two cells. The
first cell has type WIT_REQ and the second WIT REQ_FINAL. The message
includes a nonce and the encrypted payload b received from a in message 3.

The witness w decrypts the encrypted data to get ip., Pmm., and mod..
It establishes a virtual link to ¢ by connecting to ¢’s witness port p.i:, (=
Pmm. + 1) if w and c are currently not neighbours. Then, w generates a
NEXT_REQ message, which contains a new nonce (nonce.,; ), noncey ¢, ipp,
and a’s DH public key that is encrypted for c. If w cannot establish a virtual
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link to ¢ or if there is a problem with the WIT REQ message, w sends a
WIT_FAIL message to b that contains nonce,, .

Node ¢ decrypts a’s DH public key and completes the key-exchange to
get the shared secret. The first 16 bytes of this shared secret are used as the
initialisation vector and the next 16 bytes as the symmetric key k 1, g 4. for the
AES cipher that is used for the layer of encryption between a and ¢. Node ¢
then generates its own DH public key, DH .. of the key-exchange and replies
to w with a NEXT_REP message that contains nonce, .. If ¢ does not accept
being the next node in the tunnel or if there is another problem, c replies with
a NEXT_FAIL message to w. Upon receiving the NEXT REP message, w
generates the receipt for a, which includes nonce , .., the IP addresses of b
and c, and a digital signature over these data. It then sends nonces ., and the
receipt to b in a WIT_REP message. If w has received a NEXT FAIL message
from c, it sends a WIT_FAIL message to b.

After having received the WIT REP message, b sends an ADD REQ mes-
sage containing noncep . and an identifier /D to be used to multiplex the
anonymous tunnel on the virtual link from b to ¢ later. If ¢ accepts the anony-
mous tunnel, it replies with an ADD_REP message, which contains noncey .
and ¢’s DH public key. If there is a problem with the ADD REP message,
it replies with an ADD_FAIL message. Table A.5 summarises the fields and
cells that are used used during steps 49 in Figure 5.5.

A.3.3 Peer Discovery Messages

A node can ask another node about further nodes. To do so, a establishes
a virtual link to b by connecting to b’s MorphMix port, i.c. b must first be-
come a neighbour of a. Then, a sends a NODES REQ message to b. The
message contains a nonce and the maximum number of nodes ¢ wants to
learn about. Node b responds with a NODES REP message. Since the reply
is likely to be longer than the payload of a single cell, the last cell has type
NODES_REP_FINAL and the others NODES_REP. A NODES _REP message
contains nonce, p, the number of noes about which information is provided in
the message (b can choose to inform a about fewer nodes than a requested),
and the IP addresses, ports, RSA moduli, and node levels of these nodes. The
fields and cells used for peer discovery are given in Table A.6.
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Table A.S: Fields and cells (corresponding to messages 4-9) to append a

node to an anonymous tunnel.

[ field [ length ] description |
Nnoncey, 4, 16 Nonce for b to recognise w’s reply
noncey . 16 Nonce for b to recognise ¢’s reply
nonce,,.w | 16 Nonce for a to recognise w’s reply
ipe 4 ¢’s IP address
Prme 2 c’s MorphMix port
mod, 256 ¢’s RSA modulus
DH, < 296 a’s DH public key
noncey ¢ 16 Nonce for w to recognise ¢’s reply
ipp 4 b’s IP address
ID 2 the identifier to multiplex the anonymous tunnel on the
virtual link between b and ¢
DH. variable | ¢’s DH public key
ver- | type at pld payload key to encrypt
sion ID | len header payload
1.0 WIT_REQ 0 <720 | noncep o [ noncey o || | kvir pw | kvir,bw

(_FINAL)

{nonceq w || ipe ||
Pmm. || mode ||
{DHa} PK_} PK,,

1.0 NEXTREQ | 0 <382 [ noncew,e [[noncey o || | kvrwe | kvr we
ipy || {PHa}PK,
1.0 NEXT_REP 0 16 nonceqy ¢ kvLwe | KVLwe
10 | NEXTFAIL | 0 | 16 noncey . L we | VL oo
1.0 WIT_REP 0 296 noncey , | kv bw | KvIbw
nonceq w || ips ||
ipc || {nonceq w ||
ipy || ipe} sk,
1.0 WIT_FAIL 0 16 noncey, ., kvrbow | KVL bw
10 | ADDREQ |0 | 18 noncey . || 1D e | KV be
10 | ADDREP | 0 | <314 | nonce,, || DH. oo | KV be
1.0 ADD_FAIL 0 16 noncey, o kv L be KvL be
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Table A.6: Fields and cells to learn about other nodes.

field length | description

nonce, , | 16 Nonce for a to recognise b’s reply

Nyeq 1 The number of nodes @ requests at most (1{dots255)

Nrep 1 The number of nodes in b’s reply (1{dots255)

ip; 4 4’s IP address, ¢ = ¢, d, e, . ..

Prm;; 2 4’s MorphMix port, ¢ = ¢, d, e, . . .

mod; 256 i’s RSA modulus, 7 = ¢, d, e, ...

lev; 1 i’snode level, © = ¢, d, e, ...
ver- | type at pld payload key to encrypt
sion ID | len header | payload
1.0 NODESREQ | 0 17 nonce, p || nreq kvrpab | KvL.ab
1.0 NODES_REP 0 17 + nonce, p || Nrep I kVL,ab kVL,ab

(_FINAL) Nrep - 263 | ipc || prme ||
mod, || leve || ...

A.3.4 Virtual Link Status Information Messages

Neighbouring nodes can request status information from each other or de-
cided themselves to inform the other peer about the own status. To request b’s
status, a sends a STAT_REQ message to b, to which b replies with a STAT REP
message. In addition, if a wants to tell b about its status, it can send a
STAT_PUSH message. STAT_REQ and STAT _REP messages contain a nonce
and all status information messages contain an info field. The fields and cells
used to exchange status information messages are given in Table A.7.

A.3.5 Terminating an Anonymous Tunnel

Any node along an anonymous tunnel can terminate the tunnel at any time.
Often, this is done by the initiator, but due to potential failure of nodes, it can
also be done by any intermediate node or the final node. To terminate a tun-
nel, a TERM message is sent to the next node in the tunnel. The resulting cell
contains the ID that identifies the tunnel to be torn down on the corresponding
virtual link. If an intermediate node tears down a tunnel, it sends two TERM
messages, one to the previous and one to the next node in the tunnel, unless
one of these two nodes is no longer a neighbour. The recipient of a TERM
message sends itself a TERM message to the next node again using the ap-
propriate ID and so on, until the initiator or/and the final node receive such a
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Table A.7: Fields and cells to exchange status information between neigh-

bours.
field | length | description
nonce, ; | 16 Nonce to identify which STAT_REQ belongs to which
STAT REP message
info 1 Either the requested information, the reply, or the pushed
information

1: ACCEPT_TUNNELS (in STAT_REQ messages to ask

if the peer can accept further anonymous tunnels)

2: OK_TUNNELS (in STAT_REP messages to tell that
further anonymous tunnels can be accepted)

3: NO_TUNNELS (in STAT_REP or STAT PUSH messages
to tell that no further anonymous tunnels can be accepted)

ver- | type at pld | payload key to encrypt
sion ID | len header | payload
1.0 STAT REQ 0 17 nonceg p |[info | kvp ab | Kvir ab
1.0 STAT REP 0 17 nonceg p [[info | kvp ab | Kvir ab
1.0 STAT_PUSH | 0

17 | info kvrab | KvL,ab

message. Table A.8 gives the format of a cell containing a TERM message.

Table A.8: Cell to terminate an anonymous tunnel.
ver- | type at pld | payload key to encrypt

sion ID | len header | payload
[10 JTERM [ DD [0 | [ KLt | KvLoab |

A.3.6 Flow Control Messages

MorphMix employs a simple flow control mechanism. The main motiva-
tion for this is that if a node gets cells much faster than it can forward them
to the next node, the cells may pile up in that node and consume a signifi-
cant amount of its memory. MorphMix employs a credit-based scheme very
similar to the one introduced in the context of the Anonymity Network (see
Section 3.1.2), which works bidirectionally between two neighbouring nodes
along an anonymous tunnel. A node « gets an initial credit, which corre-
sponds to the number of cells it is allowed to send to one specific neighbour b
for a particular anonymous tunnel identified with atID ID on the virtual link
between ¢ and b. This initial credit is set to 50 cells, which means that a is
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allowed to send 50 cells belonging to this anonymous tunnel to & before it
must wait. Node b counts itself the cells with atID ID it has received from
a and already forwarded to the next node along the tunnel (or to the client
application(s) if the b is the initiator or to the host(s) if the b is the final node).
Whenever b has forwarded 30 cells, it sends a CREDIT message back to a
which sets the credit for the tunnel with atID ID back to 50. The atID of the
cell containing the CREDIT message contains the ID of the tunnel for which
the credit should be reset. Sending the CREDIT message already after 30
and not only after 50 cells have been forwarded should guarantee that ¢ can
reset the credit for the corresponding tunnel before all credits have been used
up. If b cannot forward the cells from a anymore, it simply stops sending
back CREDIT messages, which prevents a from sending cells along the tun-
nel identified with atID ID after its credit is used up. Note that flow control
only affects LINK_DATA messages (see Appendix A.3.7) that carry the actual
end-to-end messages. All other messages between neighbours can always be
sent and do not affect the credit of cells a node is allowed to send. Table A.9
gives the format of a CREDIT message.

Table A.9: Cell to reset the credit of a tunnel on a virtual link.

ver- | type at | pld | payload key to encrypt
sion ID | len header payload
1.0 CREDIT | ID | O kviar | KvL.ab

A.3.7 Virtual Link Data Messages

Besides all control messages, there are simple L/INK_DATA messages. A
LINK_DATA message is used to transport (parts of) an end-to-end message
across a virtual link between two neighbours. Table A.10 gives the format of
a cell containing a LINK _DATA message.

Table A.10: Cell to transport end-to-end messages.

ver- | type at pld | payload key to encrypt

sion ID | len header | payload

1.0 LINKDATA | ID | 496 | (parts of an) end-to-end | kv a6 | kLB ab
message
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A.4 End-to-End Messages

In addition to messages between neighbours, there are end-to-end messages
exchanged between the endpoints of an anonymous tunnel. They are used to
set up anonymous tunnels, to set up and terminate anonymous connections,
to exchange end-to-end status information, and to carry data exchanged be-
tween the client application and the host. End-to-end messages are always
transported between two neighbours within one or more LINK DATA mes-
sages. The first 16 bytes of the corresponding cell payloads are used for the
anonymous connection header, which looks exactly like a cell header. Since
the cell header of end-to-end messages always contains the message type
LINK_DATA, the atID of the corresponding tunnel, and a payload length of
496 bytes (see Appendix A.3.7), we only illustrate the cell payload (including
the anonymous connection header) and not the entire cells.

A.4.1 Appending a Node to a Tunnel

We follow the messages in Figure 5.5 and describe the messages in steps 1-3
and 10. When a wants to append a node to the tunnel, it sends a SEL REQ
message to b. The message includes a nonce (nonce p, the number of nodes
b must offer in its selection to a, and the minimum level these nodes should
have.

Node b replies with a SEL _RFEP message. This message usually needs sev-
eral cells to be transported, which means the anonymous connection header
in the last cell has type SEL_REP_FINAL, the others SEL._REP. The message
includes nonce, 3, the number of nodes in the selection, and the IP addresses,
ports, public keys, and levels of these nodes in the selection. If b cannot offer
a selection to a, it replies with a SEL_FAIL message. Note that b should try
to only offer nodes that satisfy the minimum node level specified by «, but
the prime goal is to offer a selection at all. So if b can offer a selection to
a but has not enough neighbours that satisfy the minimum node level speci-
fied by «, the rule is that b still offers the entire selection. Node « then picks
randomly a node from the selection (here we assume node ¢ is picked). It
is important that a picks the node at random, even if some nodes in the se-
lection do not meet the minimum level. Otherwise, a malicious node could
offer a selection where it includes one malicious node with a very high level
and only honest nodes with low levels and hope the initiator picks the one
with the highest level. Node a then generates its public key DH, of the DH
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key-exchange and encrypts it with ¢ public key, which results in {DH , } px.
It then picks a witness w from the set of nodes it knows (see Section 5.7) and
encrypts the concatenation of a nonce (nonce, ., ¢’s IP address, port, public
key, and {DH,, } px, with w’s public key. It generates an 4PP _REQ message
for b, which results in multiple cells where the anonymous connection header
in the last has type APP_REQ_FINAL and the others APP_REQ. The message
contains nonce, p, w’s IP address ip,,, port Prmm., . RSA modulus mod.,, ip.,
Pmm. and the encrypted data for w. After b has completed appending c to the
anonymous tunnel, it sends a APP_REP message to a, which again results in
multiple cells where the anonymous connection header in the last cell has type
APP_REP_FINAL and the others APP_REP. The message contains nonce , p,
the signed receipt from w (see Section A.3.2), and ¢’s DH public key DH ..
Node a checks the receipt if it indeed contains the correct nonce (nonce , 1)
and the IP addresses of b and c. If this is not the case, the tunnel is terminated.
If the receipt can be correctly verified, @ uses DH . to create the initialisation
vector and the symmetric key k 1 i . that are used as inputs to the AES cipher
for the layer of encryption between a and c. If anything has failed and b could
not append c, b sends an APP_FAIL message to a. Table A.11 summarises
the fields and cell payloads used during steps 1-3 and 10 in Figure 5.5 when
appending a node to a tunnel.

A.4.2 Initiating and Terminating an Anonymous Connec-
tion

Once an anonymous tunnel has been set up, the initiator can establish anony-
mous connections. To do so, it sends a CON _REQ message to c¢. The message
contains the IP address or host name hn;, and the port py, of the service to con-
tact. The message can potentially result in multiple cells, which means the
anonymous connection header in the last cell has type CON REQ FINAL
and the others CON_REQ. Note that the initiator must not perform the ad-
dress resolution by itself because this would reveal the identity of the host it
intends to contact. The convention for c is that if hn;, has a length of four
bytes and has the format of a valid IP address, it will be treated as an IP ad-
dress, otherwise as a host name. Node c tries to contact » and sends back a
CON_REP message, which contains an information field info,. To increase
end-to-end performance, there is an additional message type to establish an
anonymous connection, the CONDATA REQ message. Basically it works
similar to a CON_REQ message but in addition contains end-to-end data to
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Table A.11: Fields and cell payloads (corresponding to messages 1-3 and
10) to append a node to an anonymous tunnel.

field | length | description

nonce, p 16 Nonce for a to recognise b’s reply

Ngef 1 The number of nodes b must offer in the selection

levinin 1 The minimum level the nodes in &’s selection should have

ip; 4 i’s IP address, 1 = ¢, d, e, . . .

Prm; 2 4’s MorphMix port, ¢ = ¢, d, €, . . .

mod; 256 i’s RSA modulus, 7 = ¢, d,e, . ..

lev; 1 i’s node level, ¢ = ¢, d, e, . ..

iPw 4 w’s IP address

P, 2 w’s MorphMix port

mod., 256 w’s RSA modulus

nonce,,.w | 16 Nonce for a to recognise w’s reply

ipp 4 b’s IP address

DH, <296 | a’s DH public key

DH. <296 | c¢’s DH public key
ver- | type ac | pld payload key to encrypt
sion ID | len header | payload
1.0 SEL.REQ | 0 18 nonceg p || nset || 1eVimin | kKpgab | KLE ab
1.0 SEL_REP 0 17 + nonce, p || nser || ipe || kpg,ab | KLE,ab

(-FINAL) $+263 | pmm, || mode ||
leve || ...
1.0 SEL_FAIL | 0 16 nonce, p kreab | KLE.ab
1.0 APP_REQ 0 S 972 nonce , ” ipw || kLE,ab kLE,ab
(-FINAL) Prmay, || modew ||

ipe || P |
{nonce || ipe |
Prmme || mode ||

{DH.} P, }PK.,
1.0 APP_REP 0 <592 | nonce, p || nonceq ,uw || kig,.ab | KLE,ab
(_FINAL) ipy || ipc || {nonceq w ||
ipp || ipe}sk,, || DHe
1.0 APP_FAIL | 0 16 nonceg kirgab | KLE. ab

be sent to the host as soon as the connection between the final node and the
host has been established. Looking at applications such as web browsing,
this saves one RTT because using the the normal CON _REQ/CON REP pair,
the web request can only be sent through the anonymous tunnel to the web
server after the CON_REP has arrived at the initiator. CONDATA REQ may
be longer than what fits into a single cell, which implies the anonymous con-
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nection header in the last cell has type CONDATA REQ FINAL and the oth-
ers CONDATA_REQ. Note that there is no corresponding CONDATA REP
message because the reply from the server is directly sent back to the initia-
tor using E2E_DATA messages (see Appendix A.4.4). If connecting to the
host is not possible, the final node sends back a CLOSE FAIL message that
contains an info field to inform the initiator about the reason why connecting
was not possible. Finally, a CON_CLOSE message is sent along an anony-
mous connection if either the host has closed the connection to the final node
or if the client application has closed the connection to the access program.
The CON_CLOSE message informs the other endpoint of the tunnel to itself
close the connection to the client application or the host. The fields and cell
payloads used to initiate and terminate anonymous connections are given in
Table A.12.

Table A.12: Fields and cell payloads to initiate and terminate anonymous

connections.
[ field | length [ description |
lhn, 16 The length of the following host name or IP address of i
hny, variable | h’s host name or IP address
Ph 2 The port to contact on h
infop, | 2 Information about the connection attempt to -
1: NAME_RESOLUTION_FAILURE
2: DESTINATION NOT_REACHED
ver- | type ac | pld payload key to encrypt
sion ID | len header | payload
1.0 CON_REQ ID | variable | hny || pp kiE,ac | KLE,ac
(-FINAL)
1.0 CON_REP ID| O kLE,ac | KLE,ac
1.0 CONDATAREQ | ID | variable | lpy,, [[hop, [pn | | koEae | KLE,ac
(_FINAL) end-to-end data
1.0 CON_CLOSE ID |0 kiBac | KLE.ac
1.0 CON_FAIL ID |1 infoy, kiE,ac | KLE,ac

A.4.3 End-to-End Status Information Messages

To measure the RTT of an anonymous tunnel or to learn if the tunnel is ac-
tually still functioning, there are £2E _PING and E2E_PONG message. The
initiator simply sends a nonce in a E2E_PING message through the tunnel to
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the final node and remembers the time when it has sent message. Upon re-
ceiving the message, the final node immediately sends the same nonce back
to the initiator using an E2E PONG message. The fields and cell payloads
used to measure the RTT of a tunnel are given in Table A.13.

Table A.13: Fields and cell payloads to exchange status information between
endpoints of a tunnel.

[ field [ length | description |

[ nonces . | 16 | Nonce for a to recognise ¢’s reply |
ver- | type ac | pld | payload key to encrypt
sion ID | len header | payload

1.0 E2E_PING 0 16 noncea.c | Kpg.ab | KLE ab
1.0 E2E_PONG | 0 16 noncea.c | Kpg.ab | KLE ab

A.4.4 End-to-end Data Messages

To carry the actual data that are exchanged between the client application
and the host, £2F_DATA messages are used. The anonymous connection is
identified by putting the appropriate ID into the acID field of the anonymous
connection header and upon receiving an E2E DATA message, the initiator
simply forwards the end-to-end data to the client application and the final
node forwards the data to the host. Table A.14 gives the cell payload of
E2E_DATA messages.

Table A.14: cell payloads to transport end-to-end data.
ver- | type at pld payload key to encrypt
sion len header | payload

[[1.0 T E2EDATA [ ID | <480 [ end-to-enddata | kg ap | kig,ab |

A.5 Virtual Link and Tunnel Usage

In this section, we give the details about how long virtual links and tunnels
can be used once they have completely been set up. In addition, we give the
policy for using virtual links.
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A.5.1 Virtual Links and Tunnel Lifetimes

For the collusion detection mechanism (see Section 5.6) to work correctly,
honest nodes must change their neighbours from time to time. We enforce
this by specifying the maximum time a virtual link or a tunnel can be used.
We first describe the life cycle of a virtual link:

1.

During its lifetime, a virtual link from « to b can have four different
states: SETUP, READY, WAIT1, and WAIT2. In general, a virtual link
can be terminated at any time if a or b crashes, but in the normal course
of events, a virtual link changes its state from SETUP to READY to
WAIT1 and WAIT2. When « starts setting up a virtual link, the state of
the virtual link is set to SETUP.

. When the virtual link has been completely set up, its state changes to

READY and it remains in this state for a virtual link READY lifetime of
30 minutes. Only while a virtual link is in state READY, « can choose
b as the first intermediate node in a tunnel and b may be offered in
selections from « unless b has informed a to not to do so via virtual
link status information messages (see Appendix A.3.4).

. When the virtual link READY lifetime expires, the state of the virtual

link is changed to WAIT1. The virtual link remains in this state for a
virtual link WAIT1 lifetime of 15 minutes.

. When the virtual link WAIT1 lifetime expires, the state of the virtual

link is changed to WAIT2. Once a virtual link is in state WAIT2, it
is terminated as soon there are no more anonymous tunnels that use
this virtual link. After a virtual link WAIT?2 lifetime of 15 minutes, the
virtual link is terminated in any case.

Similarly, there is a life cycle for anonymous tunnels:

1.

During its lifetime, an anonymous tunnel can have three different states:
SETUP, READY, and WAIT. A tunnel can be torn down at any time if
any of the nodes along the tunnel leave MorphMix, but in general, a
tunnel changes its state from SETUP to READY and WAIT. When the
initiator starts setting up an anonymous tunnel, the state of the tunnel
is set to SETUP. If the tunnel cannot be set up completely within five
minutes, it is torn down.

. When the tunnel has been completely set up, its state changes to READY

and it remains in this state for a funnel READY lifetime of 10 minutes.
Only while a tunnel is in state READY, it may be used to set up new
anonymous connections.
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3. When the tunnel READY lifetime expires, the state of the tunnel is
changed to WAIT. Once a tunnel is in state WAIT, it is terminated as
soon as all anonymous connections using the tunnel are terminated.
Although there is no tunnel WAIT lifetime, a tunnel is eventually ter-
minated even if there are still anonymous connections using it when
any of the virtual links it uses is terminated.

A.5.2 Policy for Using Virtual Links

We have already discussed in Section 5.5.3 that when offering a selection or
picking a neighbour as the first intermediate node in a tunnel, nodes should
only use those nodes to which they have established the virtual link them-
selves. Virtual links are also used during tunnel setup by the node b that is ap-
pending a new node to contact the witness w (WIT REQ( FINAL), WIT REP,
and WIT_FAIL message) and for the witness to contact the node c that is ap-
pended to a tunnel (NEXT REQ, NEXT REP, and NEXT FAIL message).
The policy for establishing and using a virtual link between b and w to ap-
pend c is given below. It works in exactly the same way between w and c.

1. When b must contact w, b and w are currently neighbours, and there is a
virtual link between them in state READY, this virtual link is also used
for all witness messages exchanged between b and w for this particular
appending of node c. It does not matter which of the two nodes b and
w was the initiator of the virtual link.

2. If b and w will be neighbours in the sense that there is a virtual link in
state SETUP between them (but none in state READY), b waits until
this virtual link changes its statc to READY and uses it to exchange
messages with w. Like above, it does not matter which of the two
nodes b and w was the initiator of the virtual link.

3. If b and w are currently not neighbours or if the virtual link(s) between
them is (are) in state WAIT1 or WAIT2, a new virtual witness link is
established. The virtual witness link is basically the same as a virtual
link and is established in the same way, but the virtual witness link
is only used to exchange the witness messages between b and w for
this particular appending of node ¢ and will be torn down after all wit-
ness messages between b and w have been exchanged. Note also that
a virtual witness link between two nodes does not make these node
neighbours.
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A.6 Quantitative Analysis of the Data Overhead

We give a quantitative analysis of the data overhead produced by the Mor-
phMix protocol. As discussed in Section 8.3.5, data overhead includes all
data that are not directly related to transporting application data: tunnel setup
and teardown, virtual link setup, exchange of virtual link status messages,
end-to-end ping and pong messages, flow control messages, and peer discov-
ery messages.

A.6.1 Tunnel Setup and Teardown Overhead

We assume a tunnel of length [ is set up. We also assume that there are
nodes in all /16 domains, which results in a selection size of 20 according to
Section 5.6.2. The players when setting up a tunnel are the following: the ini-
tiator, the 1°¢ .. . (I — 2)" intermediate node(s), the final node, and the ([ — 1)
witnesses. Besides the actual messages to append a node to a tunnel, tunnel
setup also includes establishing the virtual links from and to the witnesses.
For simplicity and to take into account the maximum possible data overhead,
we assume that virtual links from and to the witnesses must always be estab-
lished to exchange the witness messages (see Appendix A.5.2). Analysing
the messages exchanged during the setup of anonymous tunnels, we get the
tunnel setup overhead for the initiator as illustrated in Table A.15.

Table A.15: Overhead for the initiator to set up a tunnel.

message payload | number of # cells total length (bytes)
length messages | send | receive | send | receive

LINK-REQ 256 1 1 512
LINK_REP 16 1 1 512

WIT_REQ < 720 1 2 1024
WIT_REP 296 1 1 512

ADD_REQ 18 1 1 512
ADD_REP <312 1 1 512
6 4 3 | 2048 1536

SEL_REQ 18 (-2 512
SEL_REP 5277 (-2 11 5632

APP_REQ <972 (1-2) 3 1536
APP_REP < 592 (1—-2) 2 1024
4.-(1-2) 4 13 [ 2048 6656

The top six messages are needed to append the node immediately follow-
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ing the initiator and each of these messages is needed exactly once. As a
result, four fixed-length cells of length 512 bytes each must be sent and three
cells must be received, resulting in sending 2048 and receiving 1536 bytes.

For each additional node to be appended to the tunnel, the initiator sends
two and receives two messages. Since the tunnel has a total length of / nodes,
this results in sending (I — 2) - 4 cells corresponding to (I — 2) - 2048 bytes
and receiving ({ — 2) - 13 cells corresponding to (I — 2) - 6656 bytes.

Looking at the overhead for the i** intermediate node, we get the results
in Table A.16.

Table A.16: Overhead for the i'" intermediate node to set up a tunnel.

message payload number of # cells total length (bytes)
length messages | send | receive send | receive
LINK_REQ 256 1 1 1 512 512
LINK_REP 16 1 1 1 512 512
NEXT_REQ <382 1 1 512
NEXT_REP 16 1 1 512
WITREQ <720 1 1024
WIT_REP 296 1 1 512
ADD_REQ 18 1 1 1 512 512
ADD_REP <312 1 1 1 512 512
SEL_REQ 18 1 1 512
SEL_REP 5277 1 11 5632
APP_REQ <972 1 3 1536
APP_REP <592 1 2 1024
12 20 10 | 10240 5120
SEL_REQ 18 (I—2-—17) 512 512
SEL_REP 5277 (I1—2-1) 11 11 5632 5632
APP_REQ <972 (l—2-1) 3 3 1536 1536
APP_REP <592 (l—2-1) 2 2 1024 1024
4-(1—2—1) 17 17 8704 8704

The top twelve messages are needed to append the intermediate node it-
self and the following node, which results in sending 20 cells (10240 bytes)
and receiving 10 cells (5120 bytes). Depending on the position of an interme-
diate node, it has to relay more or fewer messages when the following nodes
are appended. With a tunnel length of  nodes and for the i** intermediate
node for 1 < ¢ < (I — 2), this results in relaying [ — 2 — i times 17 cells,
resulting in sending and receiving (! — 2 — 4) - 17 cells (({ — 2 — 4)- 8704
bytes).

The final node is a special case of an intermediate node because it is only
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appended to a tunnel but does not append additional nodes itself. Table A.17
lists its overhead during the setup of a tunnel, which results in sending and
receiving three cells (1536 bytes).

Table A.17: Overhead for the final node to set up a tunnel.

message payload | number of # cells total length (bytes)

length messages | send | receive | send | receive

LINK_REQ 256 1 1 512
LINK_REP 16 1 1 512

NEXT-REQ <382 1 1 512
NEXT_REP 16 1 1 512

ADD_REQ 18 1 1 512
ADD_REP <312 1 1 512

6 3 | 1536 1536

There is also overhead for the witnesses. A witness must send four cells
(2048 bytes) and receive five cells (2560 bytes) when a node is appended to
the tunnel. Table A.18 shows which messages are responsible for how much
overhead.

Table A.18: Overhead for a witness to set up a tunnel.

message payload | number of # cells total length (bytes)
length messages | send | receive send | receive
LINK_REQ 256 1 1 1 512 512
LINK_REP 16 1 1 1 512 512
WITREQ < 720 1 2 1024
WITREP 296 1 1 512
NEXT_REQ <382 1 1 512
NEXT_REP 16 1 1 512
6 4 5 2048 2560

Finally, there is some overhead when tunnels are torn down. To do so,
the initiator sends a TERM message consisting of one cell (512 bytes) to
the first intermediate node, from where the tunnel is torn down hop by hop.
Therefore, the initiator sends one message, each intermediate node sends and
receives one message, and the final node receives one message.

Assuming a tunnel length of [ = 5, the overhead for each node involved
in setting up and tearing down an anonymous tunnel is summarised in Ta-
ble A.19

Using the results from Table A.19 and assuming there are » nodes in
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Table A.19: Overhead summary to set up and tear down a tunnel with length

five.

node # cells total length (bytes)

send | receive send receive
initiator 17 42 8704 21504
1% witness 4 5 2048 2560
274 witness 4 5| 2048 2560
374 witness 4 5| 2048 2560
4th witness 4 5| 2048 2560
15¢ int. node 55 45 | 28160 23552
274 int. node 38 28 | 19456 14848
374 int. node 21 11 | 10752 6144
final node 3 4 1536 2536
all nodes 150 150 | 76800 76800

MormphMix, the average tunnel length is five, every node sets up a tunnel
every T;s seconds and every node is equally likely to be selected as a witness,
an intermediate node, or a final node, then the average load (sending and
receiving) on every node is

n 76800 76800
Tis n Tis
With T;s = 120, this results in an average tunnel setup overhead of send-
ing and receiving of about 640 B/s. While this is less than 0.5% of what a
T1 node can handle, it has an impact on slow nodes. Looking at an ISDN
node connected to the Internet with a bandwidth of 64 Kb/s, the tunnel setup
overhead accounts for approximately 8%.

[B/s]. (A.1)

load;s =

A.6.2 Virtual Link Setup Overhead

If a node contacts and sets up a virtual link every 7', seconds and assuming
that the probability to be contacted is the same for every node, this results in
an average load of

load;e = TL -1024 [B/s] . (A2)

le
Assuming a node contacts another node once per minute, i.e. 1. = 60,
the resulting overhead is about 17 B/s.
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A.6.3 Virtual Link Status Information Overhead

At any time, every node has several neighbours that can be used as potential
next hops when appending a node to a tunnel. Assuming a node has estab-
lished a virtual link with /,, neighbours on average and assuming that a node
exchanges one STAT_REQ/STAT REP pair with each of its neighbours every
T;s seconds, the overhead per node is

load;s = j{—n 1024 = [B/s]. (A3)

ls

Assuming that every node has /,, = 30 neighbours on average and that
status information is exchanged every two minutes, the overhead is about 256
B/s.

A.6.4 End-to-End Status Information Overhead

There is additional overhead from status information messages to test the
quality of a tunnel with E2E PING and E2E PONG messages. With » nodes,
an average tunnel length of /, every node has established ¢ anonymous tunnels
on average, and a tunnel is tested with an E2E PING/E2E PONG pair every
T;.... seconds, the average overhead per node is

nt 2.(1—1)-512 t-(I—1)-1024

load =
08%tstar Tt n Tt

[B/s|(A4)

stat stat

With ¢ = 5 tunnels established per node at any time, an average tunnel
length of [ = 5, and testing a tunnel every two minutes on average, the over-
head is about 171 B/s.

A.6.5 Other Protocol Overhead

There are other overheads. Initial peer discovery produces NODES REQ and
NODES_REP messages, but since they are usually only needed when joining
MorphMix for the first time or when joining again after having been offline
for a while, their impact is negligible. In addition, a few CREDIT messages
must be sent within the LINK_DATA messages stream between two nodes,
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but the number of these messages is dependent on the number of LINK DATA
messages and can therefore not be expressed in the same way as we did for
the other overheads above.

A.6.6 Protocol Overhead Summary

The overheads produced by the MorphMix protocol are quite significant.
Summing the overheads calculated above results in an average overhead of
sending and receiving about 1090 B/s. Taking into account additional over-
heads from peer discovery and flow control messages, the effective overhead
is even slightly higher. This is quite a burden for ISDN nodes and even for
slower ADSL or Cable connections. However, recalling that slower nodes
will simply refuse accepting many anonymous tunnels as discussed in Sec-
tion 7.3.2 implies that these nodes must handle much less than the average
overhead. On the other hand, fast nodes can easily handle more than the
average overhead without significantly compromising their bandwidth avail-
able for real data. Note that the overhead is analysed in more detail in Sec-
tion 8.3.5.

A.7 MorphMix Prototype Implementation

We have implemented a MorphMix prototype as a proof of concept. The
prototype implements the entire MorphMix protocol including collusion de-
tection and peer discovery mechanisms and represents a fully functioning
MormphMix node. The prototype includes support for HTTP (versions 1.0 and
1.1) and HTTPS, and can casily be extended to support other protocols as
well. While the implementation did not deliver new fundamental results, it
served us well to correctly specify the details of the MorphMix protocol.
The MorphMix prototype is free software and is available with full source
code under the terms of the GNU General Public License ! at the MorphMix
project web page’. The MorphMix project web page will in general in-
form about further developments of MorphMix, and also contains informa-
tion about how to configure and run the prototype. In addition, the source
code itself contains many comments to facilitate further development of the
prototype. The prototype is implemented in Java 1.4. Since Java 1.4 includes

Ihttp://www.gnu.org/copyleft/gpl.html
2ht:t:p ://www.tik.ee.ethz.ch/“morphmix
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the Java Cryptography Extension (JCE)? framework but no implementations
of the RSA and AES ciphers, we use version 1.21 of the free Bouncy Cas-
tle* crypto package, which provides a complete implementation of JCE. This
crypto package is not available at our MorphMix web page and the latest re-
lease® must be downloaded before the MorphMix prototype can be run. The
Bouncy Castle web page also gives detailed information about how to install
the crypto package. Of course, it is possible to use any other provider of a
JCE compatible implementation of the necessary cryptographic algorithm.

The MorphMix prototype mainly serves experimental purposes to test the
protocol and to analyse the effect of varying different parameters. In partic-
ular, it has not been optimised with respect to performance. Nevertheless,
our experiences with the prototype have shown that in its current state, the
performance it offers on a state-of-the-art computer and its stability are good
enough such that the prototype could certainly be used as a basis for a limited
user trial. However, the prototype definitely should be tested and fine-tuned
more thoroughly before a wider public release is attempted.

MorphMix is designed to operate in an environment with many nodes
distributed across a wide variety of different /16 subnets. However, such
an environment is usually not available when testing or experimenting with
the software. Consequently, we have added functionality to the MorphMix
prototype that allows running either several nodes using different MorphMix
ports on a single computer, or several nodes on different computers within
the same /16 subnet. Whether a MorphMix node should run in either one of
these test modes or in the real mode with nodes in many different /16 subnets
can be specified with the appropriate command line arguments. In addition,
the MorphMix prototype makes use of a properties file to specify a variety of
parameters, which allows easily changing these parameters without having to
modify the code.

3http://java.sun.com/products/jce
P J 1Y J
4htt ://www.bouncycastle.or
P Y g
5http://www.bouncycastle.org/latest_releases.html
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