

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent of: Klaus Finkenzeller, et al.
U.S. Patent No.: 8,581,706 Attorney Docket No.: 39843-0132IP1
Issue Date: November 12, 2013
Appl. Serial No.: 12/304,653
Filing Date: March 4, 2009
Title: DATA STORAGE MEDIUM AND METHOD FOR

CONTACTLESS COMMUNICATION BETWEEN THE DATA
STORAGE MEDIUM AND A READER

DECLARATION OF JUNE ANN MUNFORD

1 SAMSUNG 1103

1

INTRODUCTION

1. My name is June Ann Munford. I am over the age of 18, have personal

knowledge of the facts set forth herein, and am competent to testify to the

same.

2. I earned a Master of Library and Information Science (MLIS) from the

University of Wisconsin-Milwaukee in 2009. I have over ten years of

experience in the library/information science field. Beginning in 2004, I

have served in various positions in the public library sector including

Assistant Librarian, Youth Services Librarian and Library Director. I have

attached my Curriculum Vitae as Appendix CV.

3. During my career in the library profession, I have been responsible for

materials acquisition for multiple libraries. In that position, I have cataloged,

purchased and processed incoming library works. That includes purchasing

materials directly from vendors, recording publishing data from the material

in question, creating detailed material records for library catalogs and

physically preparing that material for circulation. In addition to my

experience in acquisitions, I was also responsible for analyzing large

collections of library materials, tailoring library records for optimal catalog

2

2

search performance and creating lending agreements between libraries

during my time as a Library Director.

4. I am familiar with the Internet Archive, a digital library formally certified by

the State of California as a public library. Among other services that the

Internet Archive makes available to the general public is the Wayback

Machine, an online archive. The Internet Archive’s Wayback Machine

service archives webpages as of a certain capture date to track changes in the

web over time. The Internet Archive has been in operation as a nonprofit

library since 1996 and has hosted the Wayback Machine service since its

inception in 2001. During my time as a librarian, I frequently used the

Internet Archive’s Wayback Machine for research and instruction purposes.

This includes teaching instructional classes on using the Wayback Machine

to library patrons and using the Wayback Machine to research reference

inquiries that require hard-to-find online resources. I consider the Internet

Archive’s recordskeeping to be as rigorous and detailed as other formal

library recordskeeping practices such as MARC records, OCLC records and

Dublin Core.

5. I have been retained by Fish & Richardson P.C. on behalf of Samsung

Electronics Co., Ltd. (“Petitioner” or “Samsung”). I understand that

3

3

Samsung is requesting that the Patent Trial and Appeal Board (“PTAB”) or

“Board”) institute an inter partes review (“IPR”) proceeding of U.S. Patent

No. 8,581,706 (“the ’706 patent”).

6. I am being compensated for my services in this matter at the rate of $100.00

per hour plus reasonable expenses. My statements are objective, and my

compensation does not depend on the outcome of this matter.

7. I have been asked to provide assistance in authenticating and assessing the

public accessibility of the following three documents, which I understand to

be cited in Samsung’s IPR petition against the ’706 patent:

 a. Exhibit SAMSUNG-1011: Java Card 2.1 Runtime Environment

(JCRE) Specification (Revision 1.0) by Sun Microsystems

 b. Exhibit SAMSUNG-1012: Java Card 2.1 Virtual Machine

Specification (Revision 1.0) by Sun Microsystems

 c. Exhibit SAMSUNG-1013: Java Card 2.1 Application Programming

Interface (Revision 1.0) by Sun Microsystems

 d. Exhibit SAMSUNG-1009: RFID Handbook: Fundamentals and

Applications in Contactless Smart Cards and Identification by Klaus

Finkenzeller

4

4

AUTHENTICATION OF EXHIBIT SAMSUNG-1011: Java Card 2.1 Runtime

Environment (JCRE) Specification (Revision 1.0)

8. I have reviewed Exhibit SAMSUNG-1011, a document entitled Java Card

2.1 Runtime Environment (JCRE) Specification (Revision 1.0) by Sun

Microsystems.

9. Attached hereto as Appendix JCRE01 is a PDF copy of Java Card 2.1

Runtime Environment (JCRE) Specification (Revision 1.0) titled ‘jcre.pdf’. I

secured this file myself from http://aszt.inf.elte.hu/~javabook/java-

1.2/javacard/standard/pdf/jcre.pdf. In comparing ‘jcre.pdf’ to Exhibit

SAMSUNG-1011, it is my determination that Exhibit SAMSUNG-1011 is a

true and correct copy of Java Card 2.1 Runtime Environment (JCRE)

Specification (Revision 1.0) by Sun Microsystems.

5

http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcre.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcre.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcre.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcre.pdf

5

AUTHENTICATION OF EXHIBIT SAMSUNG-1012: Java Card 2.1 Virtual

Machine Specification (Revision 1.0)

10. I have reviewed Exhibit SAMSUNG-1012, a document entitled Java Card

2.1 Virtual Machine Specification (Revision 1.0) by Sun Microsystems.

11. Attached hereto as Appendix JCVM01 is a PDF copy of Java Card 2.1

Virtual Machine Specification (Revision 1.0) titled ‘jcvm.pdf’. I secured this

file myself from http://aszt.inf.elte.hu/~javabook/java-

1.2/javacard/standard/pdf/jcvm.pdf. In comparing ‘jcvm.pdf’ to Exhibit

SAMSUNG-1012, it is my determination that Exhibit SAMSUNG-1012 is a

true and correct copy of Java Card 2.1 Virtual Machine Specification

(Revision 1.0) by Sun Microsystems.

AUTHENTICATION OF EXHIBIT SAMSUNG-1013: Java Card 2.1

Application Programming Interface (Revision 1.0)

12. I have reviewed Exhibit SAMSUNG-1013, a document entitled Java Card

2.1 Application Programming Interface (Revision 1.0) by Sun

Microsystems.

6

http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcvm.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcvm.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcvm.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcvm.pdf

6

13. Attached hereto as Appendix JCAPI01 is a PDF copy of Java Card 2.1

Application Programming Interface (Revision 1.0) titled ‘jcapi.pdf’. I

secured this file myself from http://aszt.inf.elte.hu/~javabook/java-

1.2/javacard/standard/pdf/jcapi.pdf. In comparing ‘jcapi.pdf’ to Exhibit

SAMSUNG-1013, it is my determination that Exhibit SAMSUNG-1013 is a

true and correct copy of Java Card 2.1 Application Programming Interface

(Revision 1.0) by Sun Microsystems.

PUBLIC AVAILABILITY OF EXHIBITS SAMSUNG-1011, SAMSUNG-

1012, SAMSUNG-1013

14. Attached hereto as Appendix JCAPI02 is a PDF copy of Java Card 2.1

Application Programming Interface (Revision 1.0) entitled

‘JavaCard21API.pdf’. I secured this copy of Java Card 2.1 Application

Programming Interface (Revision 1.0) from the Internet Archive’s Wayback

Machine at

https://web.archive.org/web/20030611045849/http://java.sun.com/products/j

avacard/JavaCard21API.pdf. In comparing ‘JavaCard21API.pdf’to

Appendix JCAPI01 and Exhibit SAMSUNG-1013, it is my determination

that Appendix JCAPI02 is a true and correct copy of Java Card 2.1

Application Programming Interface (Revision 1.0).

7

http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcapi.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcapi.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcapi.pdf
http://aszt.inf.elte.hu/%7Ejavabook/java-1.2/javacard/standard/pdf/jcapi.pdf
https://web.archive.org/web/20030611045849/http:/java.sun.com/products/javacard/JavaCard21API.pdf
https://web.archive.org/web/20030611045849/http:/java.sun.com/products/javacard/JavaCard21API.pdf
https://web.archive.org/web/20030611045849/http:/java.sun.com/products/javacard/JavaCard21API.pdf
https://web.archive.org/web/20030611045849/http:/java.sun.com/products/javacard/JavaCard21API.pdf

7

15. Attached hereto as Appendix JCAPI03 is the Internet Archive record for

‘JavaCard21API.pdf’ found at

http://java.sun.com/products/javacard/JavaCard21API.pdf. I secured these

screen captures myself from

https://web.archive.org/web/20030611045849/http://java.sun.com/products/j

avacard/JavaCard21API.pdf. Based on this record, The Internet Archive first

preserved http://java.sun.com/products/javacard/JavaCard21API.pdf as of

June 11, 2003, ensuring public access to Java Card 2.1 Application

Programming Interface (Revision 1.0) as of June 11, 2003.

16. Attached hereto as Appendix JCAPI04 is the Internet Archive record for

‘Java Card 2.1 Platform’ found at

http://www.java.sun.com/products/javacard/javacard21.html. I secured these

screen captures myself from

https://web.archive.org/web/19991103041851/http:/www.java.sun.com:80/p

roducts/javacard/javacard21.html. Based on this record, The Internet

Archive first preserved

http://www.java.sun.com/products/javacard/javacard21.html as of November

3, 1999.

8

http://java.sun.com/products/javacard/JavaCard21API.pdf
http://java.sun.com/products/javacard/JavaCard21API.pdf
https://web.archive.org/web/20030611045849/http:/java.sun.com/products/javacard/JavaCard21API.pdf
https://web.archive.org/web/20030611045849/http:/java.sun.com/products/javacard/JavaCard21API.pdf
https://web.archive.org/web/20030611045849/http:/java.sun.com/products/javacard/JavaCard21API.pdf
https://web.archive.org/web/20030611045849/http:/java.sun.com/products/javacard/JavaCard21API.pdf
http://java.sun.com/products/javacard/JavaCard21API.pdf
http://java.sun.com/products/javacard/JavaCard21API.pdf
http://www.java.sun.com/products/javacard/javacard21.html
http://www.java.sun.com/products/javacard/javacard21.html
https://web.archive.org/web/19991103041851/http:/www.java.sun.com:80/products/javacard/javacard21.html
https://web.archive.org/web/19991103041851/http:/www.java.sun.com:80/products/javacard/javacard21.html
https://web.archive.org/web/19991103041851/http:/www.java.sun.com:80/products/javacard/javacard21.html
https://web.archive.org/web/19991103041851/http:/www.java.sun.com:80/products/javacard/javacard21.html
http://www.java.sun.com/products/javacard/javacard21.html
http://www.java.sun.com/products/javacard/javacard21.html

8

17. On page 2 of the record included in Appendix JCAPI04 under the heading

‘Java Card 2.1 Platform Documentation’, there are several web links to the

JavaCard 2.1 documentation discussed in this declaration: ‘Java Card 2.1

API Specification (in a single PDF file)’, ‘Java Card 2.1 Runtime

Environment (JCRE) Specification (PDF)’ and ‘Java Card 2.1 Virtual

Machine (JCVM) Specification (PDF)’. If a user were to follow the link

entitled ‘Java Card 2.1 API Specification (in a single PDF file)’, the Internet

Archive presents ‘JavaCard21API.pdf’, a true and correct copy of Java Card

2.1 Application Programming Interface (Revision 1.0) as presented in

Appendix JCAPI02.

18. The record presented in JCAPI04 was first preserved by the Internet Archive

as of November 3, 1999. Considering the page entitled ‘Java Card 2.1

Platform’ as presented in Appendix JCAPI04 advertises and features a direct

link to a copy of Java Card 2.1 Application Programming Interface

(Revision 1.0) and that copy is identical to the versions of Java Card 2.1

Application Programming Interface (Revision 1.0) presented in Exhibit

SAMSUNG-1013 and Appendix JCAPI01, it is my determination that Sun

Microsystems first made Java Card 2.1 Application Programming Interface

(Revision 1.0) available and accessible to the public as of November 3, 1999

if not earlier.

9

9

19. Although the Internet Archive does not feature full PDF copies of Java Card

2.1 Runtime Environment (JCRE) Specification (Revision 1.0) or Java Card

2.1 Virtual Machine Specification (Revision 1.0) in their records, the Sun

Microsystems page entitled ‘Java Card 2.1 Platform Documentation’

presented as Appendix JCAPI04 does advertise and present a link to both

documents in the same fashion as Java Card 2.1 Application Programming

Interface (Revision 1.0). As such, it is also my determination that Java Card

2.1 Runtime Environment (JCRE) Specification (Revision 1.0) and Java

Card 2.1 Virtual Machine Specification (Revision 1.0) were both made

accessible and available to the public by Sun Microsystems as of November

3, 1999 if not earlier.

AUTHENTICATION AND PUBLIC AVAILABILITY OF EXHIBIT

SAMSUNG-1009: RFID Handbook: Fundamentals and Applications in

Contactless Smart Cards and Identification by Klaus Finkenzeller

20. I have reviewed Exhibit SAMSUNG-1009, RFID Handbook: Fundamentals

and Applications in Contactless Smart Cards and Identification by Klaus

Finkenzeller, 2nd Edition.

10

10

21. Attached hereto as Appendix FINKENZELLER01 is a true and correct copy

of the MARC record for RFID Handbook: Fundamentals and Applications

in Contactless Smart Cards and Identification as held by the Penn State

University library. I secured this record myself from the library’s public

catalog. The MARC record contained within Appendix FINKENZELLER01

accurately describes the title, author, publisher, and ISBN number of RFID

Handbook: Fundamentals and Applications in Contactless Smart Cards and

Identification, 2nd Edition.

22. Attached hereto as Appendix FINKENZELLER02 is a true and correct copy

of selections from RFID Handbook: Fundamentals and Applications in

Contactless Smart Cards and Identification, 2nd Edition. I secured these

scans myself from Penn State University’s holdings for RFID Handbook:

Fundamentals and Applications in Contactless Smart Cards and

Identification. In comparing Exhibit SAMSUNG-1009 to Appendix

FINKENZELLER02, it is my determination that Exhibit SAMSUNG-1009

is a true and correct copy of RFID Handbook: Fundamentals and

Applications in Contactless Smart Cards and Identification, 2nd Edition by

Klaus Finkenzeller.

11

11

23. The 008 field of the MARC record in Appendix FINKENZELLER01

indicates the date of record creation. The 008 field of Appendix

FINKENZELLER01 indicates Penn State University library first acquired

this book as of December 10, 2002. Considering this information, it is my

determination that RFID Handbook: Fundamentals and Applications in

Contactless Smart Cards and Identification, 2nd Edition was made available

to the public shortly after its initial acquisition in December 2002.

CONCLUSION

24. I declare under penalty of perjury that the foregoing is true and correct. I

hereby declare that all statements made herein of my own knowledge are

true and that all statements made on information and belief are believed to

be true; and further that these statements were made the knowledge that

willful false statements and the like so made are punishable by fine or

imprisonment, or both, under Section 1001 of Title 18 of the United States

Code and that such willful false statements may jeopardize the validity of

this proceeding.

Dated: 4/28/2022

June Ann Munford

12

J. Munford
Curriculum Vitae

Education

University of Wisconsin-Milwaukee - MS, Library & Information Science, 2009
Milwaukee, WI

● Coursework included cataloging, metadata, data analysis, library systems,
management strategies and collection development.
● Specialized in library advocacy, cataloging and public administration.

Grand Valley State University - BA, English Language & Literature, 2008
Allendale, MI

● Coursework included linguistics, documentation and literary analysis.
● Minor in political science with a focus in local-level economics and
government.

Professional Experience

Researcher / Expert Witness, October 2017 – present
Freelance ● Pittsburgh, Pennsylvania & Grand Rapids, Michigan

● Material authentication and public accessibility determination.
Declarations of authenticity and/or public accessibility provided upon
research completion. Experienced with appeals and deposition process.

● Research provided on topics of public library operations, material
publication history, digital database services and legacy web resources.

● Past clients include Alston & Bird, Arnold & Porter, Baker Botts, Fish &
Richardson, Erise IP, Irell & Manella, O'Melveny & Myers, Perkins-Coie,
Pillsbury Winthrop Shaw Pittman and Slayden Grubert Beard.

Library Director, February 2013 - March 2015
Dowagiac District Library ● Dowagiac, Michigan

● Executive administrator of the Dowagiac District Library. Located in

Appendix CV

13

Southwest Michigan, this library has a service area of 13,000, an annual
operating budget of over $400,000 and total assets of approximately
$1,300,000.

● Developed careful budgeting guidelines to produce a 15% surplus during
the 2013-2014 & 2014-2015 fiscal years while being audited.

● Using this budget surplus, oversaw significant library investments
including the purchase of property for a future building site, demolition of
existing buildings and building renovation projects on the current facility.

● Led the organization and digitization of the library's archival records.

● Served as the public representative for the library, developing business
relationships with local school, museum and tribal government entities.

● Developed an objective-based analysis system for measuring library
services - including a full collection analysis of the library's 50,000+
circulating items and their records.

November 2010 - January 2013
Librarian & Branch Manager, Anchorage Public Library ● Anchorage, Alaska

● Headed the 2013 Anchorage Reads community reading campaign
including event planning, staging public performances and creating
marketing materials for mass distribution.

● Co-led the social media department of the library's marketing team,
drafting social media guidelines, creating original content and instituting
long-term planning via content calendars.

● Developed business relationships with The Boys & Girls Club, Anchorage
School District and the US Army to establish summer reading programs for
children.

June 2004 - September 2005, September 2006 - October 2013
Library Assistant, Hart Area Public Library
Hart, MI

● Responsible for verifying imported MARC records and original MARC

Appendix CV

14

cataloging for the local-level collection as well as the Michigan Electronic
Library.

● Handled OCLC Worldcat interlibrary loan requests & fulfillment via
ongoing communication with lending libraries.

Professional Involvement

Alaska Library Association - Anchorage Chapter

● Treasurer, 2012

Library Of Michigan

● Level VII Certification, 2008
● Level II Certification, 2013

Michigan Library Association Annual Conference 2014

● New Directors Conference Panel Member

Southwest Michigan Library Cooperative

● Represented the Dowagiac District Library, 2013-2015

Professional Development

Library Of Michigan Beginning Workshop, May 2008
Petoskey, MI

● Received training in cataloging, local history, collection management,
children’s literacy and reference service.

Public Library Association Intensive Library Management Training, October 2011
Nashville, TN

● Attended a five-day workshop focused on strategic planning, staff
management, statistical analysis, collections and cataloging theory.

Alaska Library Association Annual Conference 2012 - Fairbanks, February 2012
Fairbanks, AK

● Attended seminars on EBSCO advanced search methods, budgeting,
cataloging, database usage and marketing.

Appendix CV

15

Depositions

2019 ● Fish & Richardson
 IPR Petitions of 865 Patent, Apple v. Qualcomm (IPR2018-001281 /
 39521-00421IP & IPR2018-01282 / 39521-00421IP2)

2019 ● Erise IP
 Implicit, LLC v. Netscout Systems, Inc (Civil Action No. 2:18-cv-53-JRG)

2019 ● Perkins-Coie
 Adobe Inc. v. RAH Color Technologies LLC (Cases IPR2019-00627,
 IPR2019-00628, IPR2019-00629 and IPR2019-00646)

2020 ● O’Melveny & Myers
 Maxell, Ltd. v. Apple Inc. (Case 5:19-cv-00036-RWS)

2021 ● Pillsbury Winthrop Shaw Pittman LLP
 Intel v. SRC (Case IPR2020-1449)

Limited Case History & Potential Conflicts

Alston & Bird
 ● Nokia (v. Neptune Subsea, Xtera)

Arnold & Porter
 ● Ivantis (v. Glaukos)

Erise I.P.
 ● Apple
 v. Future Link Systems (IPRs 6317804, 6622108, 6807505, and
 7917680)

 v. INVT

 v. Navblazer LLC (Case No. IPR2020-01253)

Appendix CV

16

 v. Qualcomm (IPR2018-001281, 39521-00421IP, IPR2018-01282,
 39521-00421IP2)

 v. Quest Nettech Corp, Wynn Technologies (Case No. IPR2019-
 00XXX, RE. Patent Re38137)

 ● Fanduel (v CGT)

 ● Garmin (v. Phillips North America LLC, Case No. 2:19-cv-6301-AB-KS
 Central District of California)

 ● Netscout

 v. Longhorn HD LLC)

 v. Implicit, LLC (Civil Action No. 2:18-cv-53-JRG)

 ● Sony Interactive Entertainment LLC

v. Bot M8 LLC

v. Infernal Technology LLC

● Unified Patents (v GE Video Compression, Civil Action No. 2:19-cv-248)

Fish & Richardson
 ● Apple
 v. LBS Innovations

 v. Masimo (IPR 50095-0012IP1, 50095-0012IP2, 50095-0013IP1,
 50095-0013IP2, 50095-0006IP1)

 v. Neonode

 v. Qualcomm (IPR2018-001281, 39521-00421IP, IPR2018-01282,
 39521-00421IP2)

 ● Dish Network

 v. Realtime Adaptive Streaming, Case No 1:17-CV-02097-RBJ)

Appendix CV

17

 v. TQ Delta LLC

● Huawei (IPR 76933211)

● Kianxis

● LG Electronics (v. Bell Northern Research LLC, Case No. 3:18-cv-2864-
CAB-BLM)

● Metaswitch

● MLC Intellectual Property (v. MicronTech, Case No. 3:14-cv-03657-SI)

● Realtek Semiconductor

● Quectel

● Samsung (v. Bell Northern Research, Civil Action No. 2:19-cv-00286-
JRG)

● Texas Instruments

Irell & Manella

 ● Curium

O’Melveny & Myers

 ● Apple (v. Maxell, Case 5:19-cv-00036-RWS)

Perkins-Coie

 ● TCL Industries (v. Koninklijke Philips NV, PTAB Case Nos. IPR2021-
 00495, IPR2021-00496, and IPR2021-00497)

Pillsbury Winthrop Shaw Pittman
 ● Intel (v. FG SRC LLC, Case No. 6:20-cv-00315 W.D. Tex)

Appendix CV

18

Java Card 2.1 Application Programming
Interface

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Final Revision 1.0, February 24, 1999

Appendix JCAPI01

19

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94043 USA.
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable, worldwide, limited license
(without the right to sublicense) under SUN’s intellectual property rights that are essential to practice the Java Card API
Specification ("Specification") to use the Specification for internal evaluation purposes only. Other than this limited license, you
acquire no right, title, or interest in or to the Specification and you shall have no right to use the Specification for productive or
commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, Java Card, HotJava, HotJava Views, Visual Java, Solaris,
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris
sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo,
and Visual Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD
INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS
OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Appendix JCAPI01

20

Java Card API

Table of Contents
.................... 1Overview
.................. 4Class Hierarchy
.................. 6Package java.lang
................ 9Class ArithmeticException
............ 11Class ArrayIndexOutOfBoundsException
................ 13Class ArrayStoreException
................ 15Class ClassCastException
................... 17Class Exception
.............. 19Class IndexOutOfBoundsException
.............. 21Class NegativeArraySizeException
................ 23Class NullPointerException
................... 25Class Object
................ 27Class RuntimeException
................. 29Class SecurityException
.................. 31Class Throwable
............... 33Package javacard.framework
.................... 35Class AID
................... 39Class APDU
................. 51Class APDUException
................... 56Class Applet
................. 63Class CardException
............... 66Class CardRuntimeException
.................. 69Interface ISO7816
.................. 76Class ISOException
................... 78Class JCSystem
.................. 87Class OwnerPIN
................... 92Interface PIN
.................. 95Class PINException
.................. 98Interface Shareable
................. 99Class SystemException
................ 103Class TransactionException
................. 107Class UserException
.................... 110Class Util
................ 117Package javacard.security
................. 119Class CryptoException
.................. 123Interface DESKey
.................. 125Interface DSAKey
................ 129Interface DSAPrivateKey
................ 131Interface DSAPublicKey
................... 133Interface Key

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. i

Java Card 2.1 API

Appendix JCAPI01

21

.................. 135Class KeyBuilder

................. 141Class MessageDigest

................. 146Interface PrivateKey

.................. 147Interface PublicKey

............... 148Interface RSAPrivateCrtKey

................ 155Interface RSAPrivateKey

................ 158Interface RSAPublicKey

.................. 161Class RandomData

.................. 164Interface SecretKey

................... 165Class Signature

................ 176Package javacardx.crypto

................... 177Class Cipher

................ 186Interface KeyEncryption

..................... 188Index

ii Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

22

Java CardTM 2.1 Platform API Specification
Final Revision 1.0

This document is the specification for the Java Card 2.1 Application Programming Interface.

See:
 Description

Packages

java.lang
Provides classes that are fundamental to the design of the Java Card technology
subset of the Java programming language.

javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java
Card applet.

javacard.security Provides the classes and interfaces for the Java Card security framework.

javacardx.crypto
Extension package containing security classes and interfaces for
export-controlled functionality.

This document is the specification for the Java Card 2.1 Application Programming Interface.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1

Java Card 2.1 API

Appendix JCAPI01

23

Java Card 2.1 API Notes

Referenced Standards

ISO - International Standards Organization

Information Technology - Identification cards - integrated circuit cards with contacts: ISO 7816
Information Technology - Security Techniques - Digital Signature Scheme Giving Message
Recovery: ISO 9796
Information Technology - Data integrity mechanism using a cryptographic check function employing
a block cipher algorithm: ISO 9797
Information technology - Security techniques - Digital signatures with appendix : ISO 14888

RSA Data Security, Inc.

RSA Encryption Standard: PKCS #1 Version 2.0
Password-Based Encryption Standard: PKCS #5 Version 1.5

EMV

The EMV ’96 ICC Specifications for Payments systems Version 3.0

IPSec

The Internet Key Exchange (IKE) document RFC 2409 (STD 1)

Standard Names for Security and Crypto
SHA (also SHA-1): Secure Hash Algorithm, as defined in Secure Hash Standard, NIST FIPS 180-1.
MD5: The Message Digest algorithm RSA-MD5, as defined by RSA DSI in RFC 1321.
RIPEMD-160 : as defined in ISO/IEC 10118-3:1998 Information technology -- Security techniques
-- Hash-functions -- Part 3: Dedicated hash-functions
DSA: Digital Signature Algorithm, as defined in Digital Signature Standard, NIST FIPS 186.
DES: The Data Encryption Standard, as defined by NIST in FIPS 46-1 and 46-2.
RSA: The Rivest, Shamir and Adleman Asymmetric Cipher algorithm.

2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

24

Parameter Checking

Policy
All Java Card API implementations must conform to the Java model of parameter checking. That is, the
API code should not check for those parameter errors which the VM is expected to detect. These include
all parameter errors, such as null pointers, index out of bounds, and so forth, that result in standard
runtime exceptions. The runtime exceptions that are thrown by the Java Card VM are:

ArithmeticException
ArrayStoreException
ClassCastException
IllegalArgumentException
IllegalStateException
IndexOutOfBoundsException
ArrayIndexOutOfBoundsException
NegativeArraySizeException
NullPointerException
SecurityException

Exceptions to the Policy
In some cases, it may be necessary to explicitly check parameters. These exceptions to the policy are
documented in the Java Card API specification. A Java Card API implementation must not perform
parameter checking with the intent to avoid runtime exceptions, unless this is clearly specified by the Java
Card API specification.

Note: If multiple erroneous input parameters exist, any one of several runtime exceptions will be
thrown by the VM. Java programmers rely on this behavior, but they do not rely on getting a specific
exception. It is not necessary (nor is it reasonable or practical) to document the precise error handling
for all possible combinations of equivalence classes of erroneous inputs. The value of this behavior is
that the logic error in the calling program is detected and exposed via the runtime exception
mechanism, rather than being masked by a normal return.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3

Java Card 2.1 API

Appendix JCAPI01

25

Hierarchy For All Packages
Package Hierarchies:

java.lang, javacard.framework, javacard.security, javacardx.crypto

Class Hierarchy
class java.lang.Object

class javacard.framework.AID
class javacard.framework.APDU
class javacard.framework.Applet
class javacardx.crypto.Cipher
class javacard.framework.JCSystem
class javacard.security.KeyBuilder
class javacard.security.MessageDigest
class javacard.framework.OwnerPIN (implements javacard.framework.PIN)
class javacard.security.RandomData
class javacard.security.Signature
class java.lang.Throwable

class java.lang.Exception
class javacard.framework.CardException

class javacard.framework.UserException
class java.lang.RuntimeException

class java.lang.ArithmeticException
class java.lang.ArrayStoreException
class javacard.framework.CardRuntimeException

class javacard.framework.APDUException
class javacard.security.CryptoException
class javacard.framework.ISOException
class javacard.framework.PINException
class javacard.framework.SystemException
class javacard.framework.TransactionException

class java.lang.ClassCastException
class java.lang.IndexOutOfBoundsException

class java.lang.ArrayIndexOutOfBoundsException
class java.lang.NegativeArraySizeException
class java.lang.NullPointerException
class java.lang.SecurityException

class javacard.framework.Util

4 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

26

Interface Hierarchy
interface javacard.security.DSAKey

interface javacard.security.DSAPrivateKey(also extends javacard.security.PrivateKey)
interface javacard.security.DSAPublicKey(also extends javacard.security.PublicKey)

interface javacard.framework.ISO7816
interface javacard.security.Key

interface javacard.security.PrivateKey
interface javacard.security.DSAPrivateKey(also extends javacard.security.DSAKey)
interface javacard.security.RSAPrivateCrtKey
interface javacard.security.RSAPrivateKey

interface javacard.security.PublicKey
interface javacard.security.DSAPublicKey(also extends javacard.security.DSAKey)
interface javacard.security.RSAPublicKey

interface javacard.security.SecretKey
interface javacard.security.DESKey

interface javacardx.crypto.KeyEncryption
interface javacard.framework.PIN
interface javacard.framework.Shareable

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 5

Java Card 2.1 API

Appendix JCAPI01

27

Package java.lang
Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

See:
 Description

Class Summary
Object Class Object is the root of the Java Card class hierarchy.

Throwable
The Throwable class is the superclass of all errors and exceptions in the Java Card subset of
the Java language.

6 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

28

Exception Summary

ArithmeticException
A JCRE owned instance of ArithmethicException is
thrown when an exceptional arithmetic condition has occurred.

ArrayIndexOutOfBoundsException
A JCRE owned instance of IndexOutOfBoundsException
is thrown to indicate that an array has been accessed with an
illegal index.

ArrayStoreException
A JCRE owned instance of ArrayStoreException is
thrown to indicate that an attempt has been made to store the
wrong type of object into an array of objects.

ClassCastException
A JCRE owned instance of ClassCastException is thrown
to indicate that the code has attempted to cast an object to a
subclass of which it is not an instance.

Exception
The class Exception and its subclasses are a form of
Throwable that indicates conditions that a reasonable applet
might want to catch.

IndexOutOfBoundsException
A JCRE owned instance of IndexOutOfBoundsException
is thrown to indicate that an index of some sort (such as to an
array) is out of range.

NegativeArraySizeException
A JCRE owned instance of
NegativeArraySizeException is thrown if an applet
tries to create an array with negative size.

NullPointerException
A JCRE owned instance of NullPointerExceptionis
thrown when an applet attempts to use null in a case where an
object is required.

RuntimeException

RuntimeException is the superclass of those exceptions that
can be thrown during the normal operation of the Java Card
Virtual Machine. A method is not required to declare in its
throws clause any subclasses of RuntimeException that
might be thrown during the execution of the method but not
caught.

SecurityException

A JCRE owned instance of SecurityException is thrown
by the Java Card Virtual Machine to indicate a security violation.
This exception is thrown when an attempt is made to illegally
access an object belonging to a another applet.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 7

Java Card 2.1 API

Appendix JCAPI01

29

Package java.lang Description
Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

8 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

30

java.lang
Class ArithmeticException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ArithmeticException

public class ArithmeticException
extends RuntimeException

A JCRE owned instance of ArithmethicException is thrown when an exceptional arithmetic
condition has occurred. For example, a "divide by zero" is an exceptional arithmentic condition.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArithmeticException()
 Constructs an ArithmeticException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 9

Java Card 2.1 API

Appendix JCAPI01

31

ArithmeticException
public ArithmeticException()

Constructs an ArithmeticException.

10 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

32

java.lang
Class ArrayIndexOutOfBoundsException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IndexOutOfBoundsException
 |
 +--java.lang.ArrayIndexOutOfBoundsException

public class ArrayIndexOutOfBoundsException
extends IndexOutOfBoundsException

A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an array has
been accessed with an illegal index. The index is either negative or greater than or equal to the size of the
array.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArrayIndexOutOfBoundsException()
 Constructs an ArrayIndexOutOfBoundsException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 11

Java Card 2.1 API

Appendix JCAPI01

33

ArrayIndexOutOfBoundsException
public ArrayIndexOutOfBoundsException()

Constructs an ArrayIndexOutOfBoundsException.

12 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

34

java.lang
Class ArrayStoreException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ArrayStoreException

public class ArrayStoreException
extends RuntimeException

A JCRE owned instance of ArrayStoreException is thrown to indicate that an attempt has been
made to store the wrong type of object into an array of objects. For example, the following code generates
an ArrayStoreException:

 Object x[] = new AID[3];
 x[0] = new OwnerPIN((byte) 3, (byte) 8);

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArrayStoreException()
 Constructs an ArrayStoreException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 13

Java Card 2.1 API

Appendix JCAPI01

35

ArrayStoreException
public ArrayStoreException()

Constructs an ArrayStoreException.

14 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

36

java.lang
Class ClassCastException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ClassCastException

public class ClassCastException
extends RuntimeException

A JCRE owned instance of ClassCastException is thrown to indicate that the code has attempted to
cast an object to a subclass of which it is not an instance. For example, the following code generates a
ClassCastException:

 Object x = new OwnerPIN((byte)3, (byte)8);
 JCSystem.getAppletShareableInterfaceObject((AID)x, (byte)5);

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ClassCastException()
 Constructs a ClassCastException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 15

Java Card 2.1 API

Appendix JCAPI01

37

ClassCastException
public ClassCastException()

Constructs a ClassCastException.

16 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

38

java.lang
Class Exception
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception

Direct Known Subclasses:
CardException, RuntimeException

public class Exception
extends Throwable

The class Exception and its subclasses are a form of Throwable that indicates conditions that a
reasonable applet might want to catch.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Exception()
 Constructs an Exception instance.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Exception
public Exception()

Constructs an Exception instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 17

Java Card 2.1 API

Appendix JCAPI01

39

18 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

40

java.lang
Class IndexOutOfBoundsException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IndexOutOfBoundsException

Direct Known Subclasses:
ArrayIndexOutOfBoundsException

public class IndexOutOfBoundsException
extends RuntimeException

A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an index of
some sort (such as to an array) is out of range.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
IndexOutOfBoundsException()
 Constructs an IndexOutOfBoundsException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 19

Java Card 2.1 API

Appendix JCAPI01

41

IndexOutOfBoundsException
public IndexOutOfBoundsException()

Constructs an IndexOutOfBoundsException.

20 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

42

java.lang
Class NegativeArraySizeException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.NegativeArraySizeException

public class NegativeArraySizeException
extends RuntimeException

A JCRE owned instance of NegativeArraySizeException is thrown if an applet tries to create an
array with negative size.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
NegativeArraySizeException()
 Constructs a NegativeArraySizeException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 21

Java Card 2.1 API

Appendix JCAPI01

43

NegativeArraySizeException
public NegativeArraySizeException()

Constructs a NegativeArraySizeException.

22 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

44

java.lang
Class NullPointerException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.NullPointerException

public class NullPointerException
extends RuntimeException

A JCRE owned instance of NullPointerExceptionis thrown when an applet attempts to use null
in a case where an object is required. These include:

Calling the instance method of a null object.
Accessing or modifying the field of a null object.
Taking the length of null as if it were an array.
Accessing or modifying the slots of null as if it were an array.
Throwing null as if it were a Throwable value.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
NullPointerException()
 Constructs a NullPointerException.

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 23

Java Card 2.1 API

Appendix JCAPI01

45

Constructor Detail

NullPointerException
public NullPointerException()

Constructs a NullPointerException.

24 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

46

java.lang
Class Object
java.lang.Object

public class Object

Class Object is the root of the Java Card class hierarchy. Every class has Object as a superclass. All
objects, including arrays, implement the methods of this class.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Object()

Method Summary
 boolean equals(Object obj)

 Compares two Objects for equality.

Constructor Detail

Object
public Object()

Method Detail

equals
public boolean equals(Object obj)

Compares two Objects for equality.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 25

Java Card 2.1 API

Appendix JCAPI01

47

The equals method implements an equivalence relation:
It is reflexive: for any reference value x, x.equals(x) should return true.
It is symmetric: for any reference values x and y, x.equals(y) should return true if and
only if y.equals(x) returns true.
It is transitive: for any reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
It is consistent: for any reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false.
For any reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence
relation on objects; that is, for any reference values x and y, this method returns true if and only if
x and y refer to the same object (x==y has the value true).
Parameters:

obj - the reference object with which to compare.
Returns:

true if this object is the same as the obj argument; false otherwise.

26 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

48

java.lang
Class RuntimeException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException

Direct Known Subclasses:
ArithmeticException, ArrayStoreException, CardRuntimeException, ClassCastException,
IndexOutOfBoundsException, NegativeArraySizeException, NullPointerException,
SecurityException

public class RuntimeException
extends Exception

RuntimeException is the superclass of those exceptions that can be thrown during the normal
operation of the Java Card Virtual Machine.

A method is not required to declare in its throws clause any subclasses of RuntimeException that
might be thrown during the execution of the method but not caught.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
RuntimeException()
 Constructs a RuntimeException instance.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 27

Java Card 2.1 API

Appendix JCAPI01

49

RuntimeException
public RuntimeException()

Constructs a RuntimeException instance.

28 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

50

java.lang
Class SecurityException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.SecurityException

public class SecurityException
extends RuntimeException

A JCRE owned instance of SecurityException is thrown by the Java Card Virtual Machine to
indicate a security violation.

This exception is thrown when an attempt is made to illegally access an object belonging to a another
applet. It may optionally be thrown by a Java Card VM implementation to indicate fundamental language
restrictions, such as attempting to invoke a private method in another class.

For security reasons, the JCRE implementation may mute the card instead of throwing this exception.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
SecurityException()
 Constructs a SecurityException.

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 29

Java Card 2.1 API

Appendix JCAPI01

51

Constructor Detail

SecurityException
public SecurityException()

Constructs a SecurityException.

30 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

52

java.lang
Class Throwable
java.lang.Object
 |
 +--java.lang.Throwable

Direct Known Subclasses:
Exception

public class Throwable
extends Object

The Throwable class is the superclass of all errors and exceptions in the Java Card subset of the Java
language. Only objects that are instances of this class (or of one of its subclasses) are thrown by the Java
Card Virtual Machine or can be thrown by the Java throw statement. Similarly, only this class or one of
its subclasses can be the argument type in a catch clause.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Throwable()
 Constructs a new Throwable.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Throwable
public Throwable()

Constructs a new Throwable.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 31

Java Card 2.1 API

Appendix JCAPI01

53

32 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

54

Package javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

See:
 Description

Interface Summary
ISO7816 ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4.

PIN This interface represents a PIN.

Shareable The Shareable interface serves to identify all shared objects.

Class Summary
AID This class encapsulates the Application Identifier(AID) associated with an applet.

APDU
Application Protocol Data Unit (APDU) is the communication format between the card and
the off-card applications.

Applet This abstract class defines an applet in Java Card.

JCSystem
The JCSystem class includes a collection of methods to control applet execution, resource
management, atomic transaction management and inter-applet object sharing in Java Card.

OwnerPIN This class represents an Owner PIN.

Util The Util class contains common utility functions.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 33

Java Card 2.1 API

Appendix JCAPI01

55

Exception Summary
APDUException APDUException represents an APDU related exception.

CardException
The CardException class defines a field reason and two accessor
methods getReason() and setReason().

CardRuntimeException
The CardRuntimeException class defines a field reason and two
accessor methods getReason() and setReason().

ISOException
ISOException class encapsulates an ISO 7816-4 response status word as
its reason code.

PINException PINException represents a OwnerPIN class access-related exception.

SystemException SystemException represents a JCSystem class related exception.

TransactionException
TransactionException represents an exception in the transaction
subsystem.

UserException UserException represents a User exception.

Package javacard.framework Description
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

34 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

56

javacard.framework
Class AID
java.lang.Object
 |
 +--javacard.framework.AID

public final class AID
extends Object

This class encapsulates the Application Identifier(AID) associated with an applet. An AID is defined in
ISO 7816-5 to be a sequence of bytes between 5 and 16 bytes in length.

The JCRE creates instances of AID class to identify and manage every applet on the card. Applets need
not create instances of this class. An applet may request and use the JCRE owned instances to identify
itself and other applet instances.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from any
applet context. References to these permanent objects can be stored and re-used.

An applet instance can obtain a reference to JCRE owned instances of its own AID object by using the
JCSystem.getAID() method and another applet’s AID object via the JCSystem.lookupAID()
method.

An applet uses AID instances to request to share another applet’s object or to control access to its own
shared object from another applet. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem, SystemException

Constructor Summary
AID(byte[] bArray, short offset, byte length)
 The JCRE uses this constructor to create a new AID instance encapsulating the specified AID
bytes.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 35

Java Card 2.1 API

Appendix JCAPI01

57

Method Summary
 boolean equals(byte[] bArray, short offset, byte length)

 Checks if the specified AID bytes in bArray are the same as those encapsulated in
this AID object.

 boolean equals(Object anObject)
 Compares the AID bytes in this AID instance to the AID bytes in the specified
object.

 byte getBytes(byte[] dest, short offset)
 Called to get the AID bytes encapsulated within AID object.

 boolean partialEquals(byte[] bArray, short offset, byte length)
 Checks if the specified partial AID byte sequence matches the first length bytes of
the encapsulated AID bytes within this AID object.

 boolean RIDEquals(AID otherAID)
 Checks if the RID (National Registered Application provider identifier) portion of the
encapsulated AID bytes within the otherAID object matches that of this AID object.

Constructor Detail

AID
public AID(byte[] bArray,
 short offset,
 byte length)
 throws SystemException

The JCRE uses this constructor to create a new AID instance encapsulating the specified AID bytes.
Parameters:

bArray - the byte array containing the AID bytes.
offset - the start of AID bytes in bArray.
length - the length of the AID bytes in bArray.

Throws:
SystemException - with the following reason code:

SystemException.ILLEGAL_VALUE if the length parameter is less than 5 or
greater than 16.

Method Detail

36 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

58

getBytes
public byte getBytes(byte[] dest,
 short offset)

Called to get the AID bytes encapsulated within AID object.
Parameters:

dest - byte array to copy the AID bytes.
offset - within dest where the AID bytes begin.

Returns:
the length of the AID bytes.

equals
public boolean equals(Object anObject)

Compares the AID bytes in this AID instance to the AID bytes in the specified object. The result is
true if and only if the argument is not null and is an AID object that encapsulates the same AID
bytes as this object.

This method does not throw NullPointerException.
Parameters:

anObject - the object to compare this AID against.
Returns:

true if the AID byte values are equal, false otherwise.
Overrides:

equals in class Object

equals
public boolean equals(byte[] bArray,
 short offset,
 byte length)

Checks if the specified AID bytes in bArray are the same as those encapsulated in this AID
object. The result is true if and only if the bArray argument is not null and the AID bytes
encapsulated in this AID object are equal to the specified AID bytes in bArray.

This method does not throw NullPointerException.
Parameters:

bArray - containing the AID bytes
offset - within bArray to begin
length - of AID bytes in bArray

Returns:
true if equal, false otherwise.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 37

Java Card 2.1 API

Appendix JCAPI01

59

partialEquals
public boolean partialEquals(byte[] bArray,
 short offset,
 byte length)

Checks if the specified partial AID byte sequence matches the first length bytes of the
encapsulated AID bytes within this AID object. The result is true if and only if the bArray
argument is not null and the input length is less than or equal to the length of the encapsulated
AID bytes within this AID object and the specified bytes match.

This method does not throw NullPointerException.
Parameters:

bArray - containing the partial AID byte sequence
offset - within bArray to begin
length - of partial AID bytes in bArray

Returns:
true if equal, false otherwise.

RIDEquals
public boolean RIDEquals(AID otherAID)

Checks if the RID (National Registered Application provider identifier) portion of the encapsulated
AID bytes within the otherAID object matches that of this AID object. The first 5 bytes of an
AID byte sequence is the RID. See ISO 7816-5 for details. The result is true if and only if the
argument is not null and is an AID object that encapsulates the same RID bytes as this object.

This method does not throw NullPointerException.
Parameters:

otherAID - the AID to compare against.
Returns:

true if the RID bytes match, false otherwise.

38 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

60

javacard.framework
Class APDU
java.lang.Object
 |
 +--javacard.framework.APDU

public final class APDU
extends Object

Application Protocol Data Unit (APDU) is the communication format between the card and the off-card
applications. The format of the APDU is defined in ISO specification 7816-4.

This class only supports messages which conform to the structure of command and response defined in
ISO 7816-4. The behavior of messages which use proprietary structure of messages (for example with
header CLA byte in range 0xD0-0xFE) is undefined. This class does not support extended length fields.

The APDU object is owned by the JCRE. The APDU class maintains a byte array buffer which is used to
transfer incoming APDU header and data bytes as well as outgoing data. The buffer length must be at
least 37 bytes (5 bytes of header and 32 bytes of data). The JCRE must zero out the APDU buffer before
each new message received from the CAD.

The JCRE designates the APDU object as a temporary JCRE Entry Point Object (See Java Card Runtime
Environment (JCRE) 2.1 Specification for details). A temporary JCRE Entry Point Object can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components.

The JCRE similarly marks the APDU buffer as a global array (See Java Card Runtime Environment
(JCRE) 2.1 Specification for details). A global array can be accessed from any applet context. References
to global arrays cannot be stored in class variables or instance variables or array components.

The applet receives the APDU instance to process from the JCRE in the Applet.process(APDU)
method, and the first five bytes [CLA, INS, P1, P2, P3] are available in the APDU buffer.

The APDU class API is designed to be transport protocol independent. In other words, applets can use the
same APDU methods regardless of whether the underlying protocol in use is T=0 or T=1 (as defined in
ISO 7816-3).

The incoming APDU data size may be bigger than the APDU buffer size and may therefore need to be
read in portions by the applet. Similarly, the outgoing response APDU data size may be bigger than the
APDU buffer size and may need to be written in portions by the applet. The APDU class has methods to
facilitate this.

For sending large byte arrays as response data, the APDU class provides a special method
sendBytesLong() which manages the APDU buffer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 39

Java Card 2.1 API

Appendix JCAPI01

61

 // The purpose of this example is to show most of the methods
 // in use and not to depict any particular APDU processing

public void process(APDU apdu){
 // ...
 byte[] buffer = apdu.getBuffer();
 byte cla = buffer[ISO7816.OFFSET_CLA];
 byte ins = buffer[ISO7816.OFFSET_INS];
 ...
 // assume this command has incoming data
 // Lc tells us the incoming apdu command length
 short bytesLeft = (short) (buffer[ISO7816.OFFSET_LC] & 0x00FF);
 if (bytesLeft < (short)55) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

 short readCount = apdu.setIncomingAndReceive();
 while (bytesLeft > 0){
 // process bytes in buffer[5] to buffer[readCount+4];
 bytesLeft -= readCount;
 readCount = apdu.receiveBytes (ISO7816.OFFSET_CDATA);
 }
 //
 //...
 //
 // Note that for a short response as in the case illustrated here
 // the three APDU method calls shown : setOutgoing(),setOutgoingLength() & sendBytes()
 // could be replaced by one APDU method call : setOutgoingAndSend().

 // construct the reply APDU
 short le = apdu.setOutgoing();
 if (le < (short)2) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
 apdu.setOutgoingLength((short)3);

 // build response data in apdu.buffer[0.. outCount-1];
 buffer[0] = (byte)1; buffer[1] = (byte)2; buffer[3] = (byte)3;
 apdu.sendBytes ((short)0 , (short)3);
 // return good complete status 90 00
 }

See Also:
APDUException , ISOException

Field Summary
static byte PROTOCOL_T0

 ISO 7816 transport protocol type T=0

static byte PROTOCOL_T1
 ISO 7816 transport protocol type T=1

Method Summary

40 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

62

 byte[] getBuffer()
 Returns the APDU buffer byte array.

static short getInBlockSize()
 Returns the configured incoming block size. In T=1 protocol, this corresponds to
IFSC (information field size for ICC), the maximum size of incoming data blocks into
the card. In T=0 protocol, this method returns 1.

 byte getNAD()
 In T=1 protocol, this method returns the Node Address byte, NAD. In T=0
protocol, this method returns 0.

static short getOutBlockSize()
 Returns the configured outgoing block size. In T=1 protocol, this corresponds to
IFSD (information field size for interface device), the maximum size of outgoing data
blocks to the CAD. In T=0 protocol, this method returns 258 (accounts for 2 status
bytes).

static byte getProtocol()
 Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.

 short receiveBytes(short bOff)
 Gets as many data bytes as will fit without APDU buffer overflow, at the specified
offset bOff. Gets all the remaining bytes if they fit.

 void sendBytes(short bOff, short len)
 Sends len more bytes from APDU buffer at specified offset bOff.

 void sendBytesLong(byte[] outData, short bOff, short len)
 Sends len more bytes from outData byte array starting at specified offset
bOff.

 short setIncomingAndReceive()
 This is the primary receive method.

 short setOutgoing()
 This method is used to set the data transfer direction to outbound and to obtain the
expected length of response (Le).

 void setOutgoingAndSend(short bOff, short len)
 This is the "convenience" send method.

 void setOutgoingLength(short len)
 Sets the actual length of response data.

 short setOutgoingNoChaining()
 This method is used to set the data transfer direction to outbound without using
BLOCK CHAINING(See ISO 7816-3/4) and to obtain the expected length of response
(Le).

 void waitExtension()
 Requests additional processsing time from CAD.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 41

Java Card 2.1 API

Appendix JCAPI01

63

Methods inherited from class java.lang.Object

equals

Field Detail

PROTOCOL_T0
public static final byte PROTOCOL_T0

ISO 7816 transport protocol type T=0

PROTOCOL_T1
public static final byte PROTOCOL_T1

ISO 7816 transport protocol type T=1

Method Detail

getBuffer
public byte[] getBuffer()

Returns the APDU buffer byte array.

Notes:
References to the APDU buffer byte array cannot be stored in class variables or instance
variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification
for details.

Returns:
byte array containing the APDU buffer

getInBlockSize
public static short getInBlockSize()

Returns the configured incoming block size. In T=1 protocol, this corresponds to IFSC (information
field size for ICC), the maximum size of incoming data blocks into the card. In T=0 protocol, this
method returns 1. IFSC is defined in ISO 7816-3.

42 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

64

This information may be used to ensure that there is enough space remaining in the APDU buffer
when receiveBytes() is invoked.

Notes:
On receiveBytes() the bOff param should account for this potential blocksize.

Returns:
incoming block size setting.

See Also:
receiveBytes(short)

getOutBlockSize
public static short getOutBlockSize()

Returns the configured outgoing block size. In T=1 protocol, this corresponds to IFSD (information
field size for interface device), the maximum size of outgoing data blocks to the CAD. In T=0
protocol, this method returns 258 (accounts for 2 status bytes). IFSD is defined in ISO 7816-3.

This information may be used prior to invoking the setOutgoingLength() method, to limit the
length of outgoing messages when BLOCK CHAINING is not allowed.

Notes:
On setOutgoingLength() the len param should account for this potential blocksize.

Returns:
outgoing block size setting.

See Also:
setOutgoingLength(short)

getProtocol
public static byte getProtocol()

Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.
Returns:

the protocol type in progress. One of PROTOCOL_T0, PROTOCOL_T1 listed above.

getNAD
public byte getNAD()

In T=1 protocol, this method returns the Node Address byte, NAD. In T=0 protocol, this method
returns 0. This may be used as additional information to maintain multiple contexts.
Returns:

NAD transport byte as defined in ISO 7816-3.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 43

Java Card 2.1 API

Appendix JCAPI01

65

setOutgoing
public short setOutgoing()
 throws APDUException

This method is used to set the data transfer direction to outbound and to obtain the expected length of
response (Le).

Notes.
Any remaining incoming data will be discarded.
In T=0 (Case 4) protocol, this method will return 256.

Returns:
Le, the expected length of response.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if this method or setOutgoingNoChaining()
method already invoked.
APDUException.IO_ERROR on I/O error.

setOutgoingNoChaining
public short setOutgoingNoChaining()
 throws APDUException

This method is used to set the data transfer direction to outbound without using BLOCK
CHAINING(See ISO 7816-3/4) and to obtain the expected length of response (Le). This method
should be used in place of the setOutgoing() method by applets which need to be compatible
with legacy CAD/terminals which do not support ISO 7816-3/4 defined block chaining. See Java
Card Runtime Environment (JCRE) 2.1 Specification for details.

Notes.
Any remaining incoming data will be discarded.
In T=0 (Case 4) protocol, this method will return 256.
When this method is used, the waitExtension() method cannot be used.
In T=1 protocol, retransmission on error may be restricted.
In T=0 protocol, the outbound transfer must be performed without using response status
chaining.
In T=1 protocol, the outbound transfer must not set the More(M) Bit in the PCB of the I block.
See ISO 7816-3.

Returns:
Le, the expected length of response data.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if this method or setOutgoing() method already
invoked.

44 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

66

APDUException.IO_ERROR on I/O error.

setOutgoingLength
public void setOutgoingLength(short len)
 throws APDUException

Sets the actual length of response data. Default is 0.

Note:
In T=0 (Case 2&4) protocol, the length is used by the JCRE to prompt the CAD for GET
RESPONSE commands.

Parameters:
len - the length of response data.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoing() not called or this method
already invoked.
APDUException.BAD_LENGTH if len is greater than 256 or if non BLOCK
CHAINED data transfer is requested and len is greater than (IFSD-2), where IFSD is the
Outgoing Block Size. The -2 accounts for the status bytes in T=1.
APDUException.IO_ERROR on I/O error.

See Also:
getOutBlockSize()

receiveBytes
public short receiveBytes(short bOff)
 throws APDUException

Gets as many data bytes as will fit without APDU buffer overflow, at the specified offset bOff.
Gets all the remaining bytes if they fit.

Notes:
The space in the buffer must allow for incoming block size.
In T=1 protocol, if all the remaining bytes do not fit in the buffer, this method may return less
bytes than the maximum incoming block size (IFSC).
In T=0 protocol, if all the remaining bytes do not fit in the buffer, this method may return less
than a full buffer of bytes to optimize and reduce protocol overhead.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more input data can be received. No output data can be transmitted. No error status response
can be returned.

Parameters:
bOff - the offset into APDU buffer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 45

Java Card 2.1 API

Appendix JCAPI01

67

Returns:
number of bytes read. Returns 0 if no bytes are available.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setIncomingAndReceive() not called or if
setOutgoing() or setOutgoingNoChaining() previously invoked.
APDUException.BUFFER_BOUNDS if not enough buffer space for incoming block
size.
APDUException.IO_ERROR on I/O error.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
getInBlockSize()

setIncomingAndReceive
public short setIncomingAndReceive()
 throws APDUException

This is the primary receive method. Calling this method indicates that this APDU has incoming data.
This method gets as many bytes as will fit without buffer overflow in the APDU buffer following the
header. It gets all the incoming bytes if they fit.

Notes:
In T=0 (Case 3&4) protocol, the P3 param is assumed to be Lc.
Data is read into the buffer at offset 5.
In T=1 protocol, if all the incoming bytes do not fit in the buffer, this method may return less
bytes than the maximum incoming block size (IFSC).
In T=0 protocol, if all the incoming bytes do not fit in the buffer, this method may return less
than a full buffer of bytes to optimize and reduce protocol overhead.
This method sets the transfer direction to be inbound and calls receiveBytes(5).
This method may only be called once in a Applet.process() method.

Returns:
number of bytes read. Returns 0 if no bytes are available.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setIncomingAndReceive() already invoked
or if setOutgoing() or setOutgoingNoChaining() previously invoked.
APDUException.IO_ERROR on I/O error.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

46 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

68

sendBytes
public void sendBytes(short bOff,
 short len)
 throws APDUException

Sends len more bytes from APDU buffer at specified offset bOff.

If the last part of the response is being sent by the invocation of this method, the APDU buffer must
not be altered. If the data is altered, incorrect output may be sent to the CAD. Requiring that the
buffer not be altered allows the implementation to reduce protocol overhead by transmitting the last
part of the response along with the status bytes.

Notes:
If setOutgoingNoChaining() was invoked, output block chaining must not be used.
In T=0 protocol, if setOutgoingNoChaining() was invoked, Le bytes must be transmitted
before response status is returned.
In T=0 protocol, if this method throws an APDUException with NO_T0_GETRESPONSE
reason code, the JCRE will restart APDU command processing using the newly received
command. No more output data can be transmitted. No error status response can be returned.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more output data can be transmitted. No error status response can be returned.

Parameters:
bOff - the offset into APDU buffer.
len - the length of the data in bytes to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingLen() not called or
setOutgoingAndSend() previously invoked or response byte count exeeded or if
APDUException.NO_T0_GETRESPONSE previously thrown.
APDUException.BUFFER_BOUNDS if the sum of bOff and len exceeds the buffer
size.
APDUException.IO_ERROR on I/O error.
APDUException.NO_T0_GETRESPONSE if T=0 protocol is in use and the CAD does
not respond to response status with GET RESPONSE command.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
setOutgoing(), setOutgoingNoChaining()

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 47

Java Card 2.1 API

Appendix JCAPI01

69

sendBytesLong
public void sendBytesLong(byte[] outData,
 short bOff,
 short len)
 throws APDUException

Sends len more bytes from outData byte array starting at specified offset bOff.

If the last of the response is being sent by the invocation of this method, the APDU buffer must not
be altered. If the data is altered, incorrect output may be sent to the CAD. Requiring that the buffer
not be altered allows the implementation to reduce protocol overhead by transmitting the last part of
the response along with the status bytes.

The JCRE may use the APDU buffer to send data to the CAD.

Notes:
If setOutgoingNoChaining() was invoked, output block chaining must not be used.
In T=0 protocol, if setOutgoingNoChaining() was invoked, Le bytes must be transmitted
before response status is returned.
In T=0 protocol, if this method throws an APDUException with NO_T0_GETRESPONSE
reason code, the JCRE will restart APDU command processing using the newly received
command. No more output data can be transmitted. No error status response can be returned.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more output data can be transmitted. No error status response can be returned.

Parameters:
outData - the source data byte array.
bOff - the offset into OutData array.
len - the bytelength of the data to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingLen() not called or
setOutgoingAndSend() previously invoked or response byte count exeeded or if
APDUException.NO_T0_GETRESPONSE previously thrown.
APDUException.IO_ERROR on I/O error.
APDUException.NO_T0_GETRESPONSE if T=0 protocol is in use and CAD does not
respond to response status with GET RESPONSE command.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
setOutgoing(), setOutgoingNoChaining()

48 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

70

setOutgoingAndSend
public void setOutgoingAndSend(short bOff,
 short len)
 throws APDUException

This is the "convenience" send method. It provides for the most efficient way to send a short
response which fits in the buffer and needs the least protocol overhead. This method is a combination
of setOutgoing(), setOutgoingLength(len) followed by sendBytes (bOff,
len). In addition, once this method is invoked, sendBytes() and sendBytesLong()
methods cannot be invoked and the APDU buffer must not be altered.

Sends len byte response from the APDU buffer at starting specified offset bOff.

Notes:
No other APDU send methods can be invoked.
The APDU buffer must not be altered. If the data is altered, incorrect output may be sent to the
CAD.
The actual data transmission may only take place on return from Applet.process()

Parameters:
bOff - the offset into APDU buffer.
len - the bytelength of the data to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoing() or
setOutgoingAndSend() previously invoked or response byte count exeeded.
APDUException.IO_ERROR on I/O error.

waitExtension
public void waitExtension()
 throws APDUException

Requests additional processsing time from CAD. The implementation should ensure that this method
needs to be invoked only under unusual conditions requiring excessive processing times.

Notes:
In T=0 protocol, a NULL procedure byte is sent to reset the work waiting time (see ISO
7816-3).
In T=1 protocol, the implementation needs to request the same T=0 protocol work waiting time
quantum by sending a T=1 protocol request for wait time extension(see ISO 7816-3).
If the implementation uses an automatic timer mechanism instead, this method may do nothing.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingNoChaining() previously

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 49

Java Card 2.1 API

Appendix JCAPI01

71

invoked.
APDUException.IO_ERROR on I/O error.

50 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

72

javacard.framework
Class APDUException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.APDUException

public class APDUException
extends CardRuntimeException

APDUException represents an APDU related exception.

The APDU class throws JCRE owned instances of APDUException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
APDU

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 51

Java Card 2.1 API

Appendix JCAPI01

73

Field Summary
static short BAD_LENGTH

 This reason code is used by the APDU.setOutgoingLength() method to
indicate that the length parameter is greater that 256 or if non BLOCK CHAINED data
transfer is requested and len is greater than (IFSD-2), where IFSD is the Outgoing
Block Size.

static short BUFFER_BOUNDS
 This reason code is used by the APDU.sendBytes() method to indicate that
the sum of buffer offset parameter and the byte length parameter exceeds the APDU
buffer size.

static short ILLEGAL_USE
 This APDUException reason code indicates that the method should not be
invoked based on the current state of the APDU.

static short IO_ERROR
 This reason code indicates that an unrecoverable error occurred in the I/O
transmission layer.

static short NO_T0_GETRESPONSE
 This reason code indicates that during T=0 protocol, the CAD did not return a
GET RESPONSE command in response to a <61xx> response status to send additional
data.

static short T1_IFD_ABORT
 This reason code indicates that during T=1 protocol, the CAD returned an
ABORT S-Block command and aborted the data transfer.

Constructor Summary
APDUException(short reason)
 Constructs an APDUException.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of APDUException with the specified reason.

52 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

74

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_USE
public static final short ILLEGAL_USE

This APDUException reason code indicates that the method should not be invoked based on the
current state of the APDU.

BUFFER_BOUNDS
public static final short BUFFER_BOUNDS

This reason code is used by the APDU.sendBytes() method to indicate that the sum of buffer
offset parameter and the byte length parameter exceeds the APDU buffer size.

BAD_LENGTH
public static final short BAD_LENGTH

This reason code is used by the APDU.setOutgoingLength() method to indicate that the
length parameter is greater that 256 or if non BLOCK CHAINED data transfer is requested and len
is greater than (IFSD-2), where IFSD is the Outgoing Block Size.

IO_ERROR
public static final short IO_ERROR

This reason code indicates that an unrecoverable error occurred in the I/O transmission layer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 53

Java Card 2.1 API

Appendix JCAPI01

75

NO_T0_GETRESPONSE
public static final short NO_T0_GETRESPONSE

This reason code indicates that during T=0 protocol, the CAD did not return a GET RESPONSE
command in response to a <61xx> response status to send additional data. The outgoing transfer has
been aborted. No more data or status can be sent to the CAD in this APDU.process() method.

T1_IFD_ABORT
public static final short T1_IFD_ABORT

This reason code indicates that during T=1 protocol, the CAD returned an ABORT S-Block
command and aborted the data transfer. The incoming or outgoing transfer has been aborted. No
more data can be received from the CAD. No more data or status can be sent to the CAD in this
APDU.process() method.

Constructor Detail

APDUException
public APDUException(short reason)

Constructs an APDUException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of APDUException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

APDUException - always.

54 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

76

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 55

Java Card 2.1 API

Appendix JCAPI01

77

javacard.framework
Class Applet
java.lang.Object
 |
 +--javacard.framework.Applet

public abstract class Applet
extends Object

This abstract class defines an applet in Java Card.

The Applet class should be extended by any applet that is intended to be loaded onto, installed into and
executed on a Java Card compliant smart card.

Example usage of Applet

 public class MyApplet extends javacard.framework.Applet{
 static byte someByteArray[];

 public static void install(byte[] bArray, short bOffset, byte bLength) throws ISOException {
 // make all my allocations here, so I do not run
 // out of memory later
 MyApplet theApplet = new MyApplet();

 // check incoming parameter
 byte bLen = bArray[bOffset];
 if (bLen!=0) { someByteArray = new byte[bLen]; theApplet.register(); return; }
 else ISOException.throwIt(ISO7816.SW_FUNC_NOT_SUPPORTED);
 }

 public boolean select(){
 // selection initialization
 someByteArray[17] = 42; // set selection state
 return true;
 }

 public void process(APDU apdu) throws ISOException{
 byte[] buffer = apdu.getBuffer();
 // .. process the incoming data and reply
 if (buffer[ISO7816.OFFSET_CLA] == (byte)0) {
 switch (buffer[ISO7816.OFFSET_INS]) {
 case ISO.INS_SELECT:
 ...
 // send response data to select command
 short Le = apdu.setOutgoing();
 // assume data containing response bytes in replyData[] array.
 if (Le < ..) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
 apdu.setOutgoingLength((short)replyData.length);
 apdu.sendBytesLong(replyData, (short) 0, (short)replyData.length);
 break;
 case ...
 }
 }

56 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

78

 }

 }

See Also:
SystemException , JCSystem

Constructor Summary
protected Applet()

 Only this class’s install() method should create the applet object.

Method Summary
 void deselect()

 Called by the JCRE to inform this currently selected applet that another (or the
same) applet will be selected.

 Shareable getShareableInterfaceObject(AID clientAID, byte parameter)
 Called by the JCRE to obtain a shareable interface object from this server applet,
on behalf of a request from a client applet.

static void install(byte[] bArray, short bOffset, byte bLength)
 To create an instance of the Applet subclass, the JCRE will call this static
method first.

abstract
 void

process(APDU apdu)
 Called by the JCRE to process an incoming APDU command.

protected
 void

register()
 This method is used by the applet to register this applet instance with the JCRE
and to assign the Applet subclass AID bytes as its instance AID bytes.

protected
 void

register(byte[] bArray, short bOffset, byte bLength)
 This method is used by the applet to register this applet instance with the JCRE
and assign the specified AID bytes as its instance AID bytes.

 boolean select()
 Called by the JCRE to inform this applet that it has been selected.

protected
 boolean

selectingApplet()
 This method is used by the applet process() method to distinguish the
SELECT APDU command which selected this applet, from all other other SELECT
APDU commands which may relate to file or internal applet state selection.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 57

Java Card 2.1 API

Appendix JCAPI01

79

Methods inherited from class java.lang.Object

equals

Constructor Detail

Applet
protected Applet()

Only this class’s install() method should create the applet object.

Method Detail

install
public static void install(byte[] bArray,
 short bOffset,
 byte bLength)
 throws ISOException

To create an instance of the Applet subclass, the JCRE will call this static method first.

The applet should perform any necessary initializations and must call one of the register()
methods. The installation is considered successful when the call to register() completes without
an exception. The installation is deemed unsuccessful if the install method does not call a
register() method, or if an exception is thrown from within the install method prior to the
call to a register() method, or if the register() method throws an exception. If the
installation is unsuccessful, the JCRE must perform all the necessary clean up when it receives
control. Successful installation makes the applet instance capable of being selected via a SELECT
APDU command.

Installation parameters are supplied in the byte array parameter and must be in a format defined by
the applet. The bArray object is a global array. If the applet desires to preserve any of this data, it
should copy the data into its own object.

bArray is zeroed by the JCRE after the return from the install() method.

References to the bArray object cannot be stored in class variables or instance variables or array
components. See Java Card Runtime Environment (JCRE) 2.1 Specification for details.

58 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

80

The implementation of this method provided by Applet class throws an ISOException with
reason code = ISO7816.SW_FUNC_NOT_SUPPORTED.

Note:
Exceptions thrown by this method after successful installation are caught by the JCRE and
processed by the Installer.

Parameters:
bArray - the array containing installation parameters.
bOffset - the starting offset in bArray.
bLength - the length in bytes of the parameter data in bArray. The maximum value of bLength
is 32.

process
public abstract void process(APDU apdu)
 throws ISOException

Called by the JCRE to process an incoming APDU command. An applet is expected to perform the
action requested and return response data if any to the terminal.

Upon normal return from this method the JCRE sends the ISO 7816-4 defined success status (90 00)
in APDU response. If this method throws an ISOException the JCRE sends the associated reason
code as the response status instead.

The JCRE zeroes out the APDU buffer before receiving a new APDU command from the CAD. The
five header bytes of the APDU command are available in APDU buffer[0..4] at the time this method
is called.

The APDU object parameter is a temporary JCRE Entry Point Object. A temporary JCRE Entry Point
Object can be accessed from any applet context. References to these temporary objects cannot be
stored in class variables or instance variables or array components.

Notes:
APDU buffer[5..] is undefined and should not be read or written prior to invoking the
APDU.setIncomingAndReceive() method if incoming data is expected. Altering the
APDU buffer[5..] could corrupt incoming data.

Parameters:
apdu - the incoming APDU object

Throws:
ISOException - with the response bytes per ISO 7816-4

See Also:
APDU

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 59

Java Card 2.1 API

Appendix JCAPI01

81

select
public boolean select()

Called by the JCRE to inform this applet that it has been selected.

It is called when a SELECT APDU command is received and before the applet is selected. SELECT
APDU commands use instance AID bytes for applet selection. See Java Card Runtime Environment
(JCRE) 2.1 Specification for details.

A subclass of Applet should override this method if it should perform any initialization that may be
required to process APDU commands that may follow. This method returns a boolean to indicate that
it is ready to accept incoming APDU commands via its process() method. If this method returns
false, it indicates to the JCRE that this Applet declines to be selected.

The implementation of this method provided by Applet class returns true.

Returns:
true to indicate success, false otherwise.

deselect
public void deselect()

Called by the JCRE to inform this currently selected applet that another (or the same) applet will be
selected. It is called when a SELECT APDU command is received by the JCRE. This method is
invoked prior to another applets or this very applets select() method being invoked.

A subclass of Applet should override this method if it has any cleanup or bookkeeping work to be
performed before another applet is selected.

The default implementation of this method provided by Applet class does nothing.

Notes:
Unchecked exceptions thrown by this method are caught by the JCRE but the applet is
deselected.
Transient objects of JCSystem.CLEAR_ON_DESELECT clear event type are cleared to their
default value by the JCRE after this method.
This method is NOT called on reset or power loss.

getShareableInterfaceObject
public Shareable getShareableInterfaceObject(AID clientAID,
 byte parameter)

60 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

82

Called by the JCRE to obtain a shareable interface object from this server applet, on behalf of a
request from a client applet. This method executes in the applet context of this applet instance. The
client applet initiated this request by calling the
JCSystem.getAppletShareableInterfaceObject() method. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.
Parameters:

clientAID - the AID object of the client applet.
parameter - optional parameter byte. The parameter byte may be used by the client to specify
which shareable interface object is being requested.

Returns:
the shareable interface object or null. Note:

The clientAID parameter is a JCRE owned AID instance. JCRE owned instances of
AID are permanent JCRE Entry Point Objects and can be accessed from any applet
context. References to these permanent objects can be stored and re-used.

See Also:
JCSystem.getAppletShareableInterfaceObject(AID, byte)

register
protected final void register()
 throws SystemException

This method is used by the applet to register this applet instance with the JCRE and to assign the
Applet subclass AID bytes as its instance AID bytes. One of the register() methods must be
called from within install() to be registered with the JCRE. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.
Throws:

SystemException - with the following reason codes:
SystemException.ILLEGAL_AID if the Applet subclass AID bytes are in use or if
the applet instance has previously called one of the register() methods.

register
protected final void register(byte[] bArray,
 short bOffset,
 byte bLength)
 throws SystemException

This method is used by the applet to register this applet instance with the JCRE and assign the
specified AID bytes as its instance AID bytes. One of the register() methods must be called
from within install() to be registered with the JCRE. See Java Card Runtime Environment
(JCRE) 2.1 Specification for details.
Parameters:

bArray - the byte array containing the AID bytes.
bOffset - the start of AID bytes in bArray.
bLength - the length of the AID bytes in bArray.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 61

Java Card 2.1 API

Appendix JCAPI01

83

Throws:
APDUException - with the following reason codes:

SystemException - with the following reason code:
SystemException.ILLEGAL_VALUE if the bLength parameter is less than 5
or greater than 16.
SystemException.ILLEGAL_AID if the specified instance AID bytes are in use
or if the RID portion of the AID bytes in the bArray parameter does not match the
RID portion of the Applet subclass AID bytes or if the applet instance has
previously called one of the register() methods.

selectingApplet
protected final boolean selectingApplet()

This method is used by the applet process() method to distinguish the SELECT APDU
command which selected this applet, from all other other SELECT APDU commands which
may relate to file or internal applet state selection.
Returns:

true if this applet is being selected.

62 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

84

javacard.framework
Class CardException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--javacard.framework.CardException

Direct Known Subclasses:
UserException

public class CardException
extends Exception

The CardException class defines a field reason and two accessor methods getReason() and
setReason(). The reason field encapsulates exception cause identifier in Java Card. All Java Card
checked Exception classes should extend CardException. This class also provides a resource-saving
mechanism (throwIt() method) for using a JCRE owned instance of this class.

Constructor Summary
CardException(short reason)
 Construct a CardException instance with the specified reason.

Method Summary
 short getReason()

 Get reason code

 void setReason(short reason)
 Set reason code

static void throwIt(short reason)
 Throw the JCRE owned instance of CardException class with the specified
reason.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 63

Java Card 2.1 API

Appendix JCAPI01

85

Methods inherited from class java.lang.Object

equals

Constructor Detail

CardException
public CardException(short reason)

Construct a CardException instance with the specified reason. To conserve on resources, use the
throwIt() method to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception

Method Detail

getReason
public short getReason()

Get reason code
Returns:

the reason for the exception

setReason
public void setReason(short reason)

Set reason code
Parameters:

reason - the reason for the exception

throwIt
public static void throwIt(short reason)
 throws CardException

Throw the JCRE owned instance of CardException class with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1

64 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

86

Specification for details.
Parameters:

reason - the reason for the exception
Throws:

CardException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 65

Java Card 2.1 API

Appendix JCAPI01

87

javacard.framework
Class CardRuntimeException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException

Direct Known Subclasses:
APDUException, CryptoException, ISOException, PINException, SystemException,
TransactionException

public class CardRuntimeException
extends RuntimeException

The CardRuntimeException class defines a field reason and two accessor methods
getReason() and setReason(). The reason field encapulates exception cause identifier in Java
Card. All Java Card unchecked Exception classes should extend CardRuntimeException. This class
also provides a resource-saving mechanism (throwIt() method) for using a JCRE owned instance of
this class.

Constructor Summary
CardRuntimeException(short reason)
 Construct a CardRuntimeException instance with the specified reason.

Method Summary
 short getReason()

 Get reason code

 void setReason(short reason)
 Set reason code

static void throwIt(short reason)
 Throw the JCRE owned instance of the CardRuntimeException class with
the specified reason.

66 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

88

Methods inherited from class java.lang.Object

equals

Constructor Detail

CardRuntimeException
public CardRuntimeException(short reason)

Construct a CardRuntimeException instance with the specified reason. To conserve on resources, use
throwIt() method to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception

Method Detail

getReason
public short getReason()

Get reason code
Returns:

the reason for the exception

setReason
public void setReason(short reason)

Set reason code
Parameters:

reason - the reason for the exception

throwIt
public static void throwIt(short reason)
 throws CardRuntimeException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 67

Java Card 2.1 API

Appendix JCAPI01

89

Throw the JCRE owned instance of the CardRuntimeException class with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception
Throws:

CardRuntimeException - always.

68 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

90

javacard.framework
Interface ISO7816

public abstract interface ISO7816

ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4. ISO7816 interface contains
only static fields.

The static fields with SW_ prefixes define constants for the ISO 7816-4 defined response status word. The
fields which use the _00 suffix require the low order byte to be customized appropriately e.g
(ISO7816.SW_CORRECT_LENGTH_00 + (0x0025 & 0xFF)).

The static fields with OFFSET_ prefixes define constants to be used to index into the APDU buffer byte
array to access ISO 7816-4 defined header information.

Field Summary
static byte CLA_ISO7816

 APDU command CLA : ISO 7816 = 0x00

static byte INS_EXTERNAL_AUTHENTICATE
 APDU command INS : EXTERNAL AUTHENTICATE = 0x82

static byte INS_SELECT
 APDU command INS : SELECT = 0xA4

static byte OFFSET_CDATA
 APDU command data offset : CDATA = 5

static byte OFFSET_CLA
 APDU header offset : CLA = 0

static byte OFFSET_INS
 APDU header offset : INS = 1

static byte OFFSET_LC
 APDU header offset : LC = 4

static byte OFFSET_P1
 APDU header offset : P1 = 2

static byte OFFSET_P2
 APDU header offset : P2 = 3

static short SW_APPLET_SELECT_FAILED
 Response status : Applet selection failed = 0x6999;

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 69

Java Card 2.1 API

Appendix JCAPI01

91

static short SW_BYTES_REMAINING_00
 Response status : Response bytes remaining = 0x6100

static short SW_CLA_NOT_SUPPORTED
 Response status : CLA value not supported = 0x6E00

static short SW_COMMAND_NOT_ALLOWED
 Response status : Command not allowed (no current EF) = 0x6986

static short SW_CONDITIONS_NOT_SATISFIED
 Response status : Conditions of use not satisfied = 0x6985

static short SW_CORRECT_LENGTH_00
 Response status : Correct Expected Length (Le) = 0x6C00

static short SW_DATA_INVALID
 Response status : Data invalid = 0x6984

static short SW_FILE_FULL
 Response status : Not enough memory space in the file = 0x6A84

static short SW_FILE_INVALID
 Response status : File invalid = 0x6983

static short SW_FILE_NOT_FOUND
 Response status : File not found = 0x6A82

static short SW_FUNC_NOT_SUPPORTED
 Response status : Function not supported = 0x6A81

static short SW_INCORRECT_P1P2
 Response status : Incorrect parameters (P1,P2) = 0x6A86

static short SW_INS_NOT_SUPPORTED
 Response status : INS value not supported = 0x6D00

static short SW_NO_ERROR
 Response status : No Error = (short)0x9000

static short SW_RECORD_NOT_FOUND
 Response status : Record not found = 0x6A83

static short SW_SECURITY_STATUS_NOT_SATISFIED
 Response status : Security condition not satisfied = 0x6982

static short SW_UNKNOWN
 Response status : No precise diagnosis = 0x6F00

static short SW_WRONG_DATA
 Response status : Wrong data = 0x6A80

static short SW_WRONG_LENGTH
 Response status : Wrong length = 0x6700

70 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

92

static short SW_WRONG_P1P2
 Response status : Incorrect parameters (P1,P2) = 0x6B00

Field Detail

SW_NO_ERROR
public static final short SW_NO_ERROR

Response status : No Error = (short)0x9000

SW_BYTES_REMAINING_00
public static final short SW_BYTES_REMAINING_00

Response status : Response bytes remaining = 0x6100

SW_WRONG_LENGTH
public static final short SW_WRONG_LENGTH

Response status : Wrong length = 0x6700

SW_SECURITY_STATUS_NOT_SATISFIED
public static final short SW_SECURITY_STATUS_NOT_SATISFIED

Response status : Security condition not satisfied = 0x6982

SW_FILE_INVALID
public static final short SW_FILE_INVALID

Response status : File invalid = 0x6983

SW_DATA_INVALID
public static final short SW_DATA_INVALID

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 71

Java Card 2.1 API

Appendix JCAPI01

93

Response status : Data invalid = 0x6984

SW_CONDITIONS_NOT_SATISFIED
public static final short SW_CONDITIONS_NOT_SATISFIED

Response status : Conditions of use not satisfied = 0x6985

SW_COMMAND_NOT_ALLOWED
public static final short SW_COMMAND_NOT_ALLOWED

Response status : Command not allowed (no current EF) = 0x6986

SW_APPLET_SELECT_FAILED
public static final short SW_APPLET_SELECT_FAILED

Response status : Applet selection failed = 0x6999;

SW_WRONG_DATA
public static final short SW_WRONG_DATA

Response status : Wrong data = 0x6A80

SW_FUNC_NOT_SUPPORTED
public static final short SW_FUNC_NOT_SUPPORTED

Response status : Function not supported = 0x6A81

SW_FILE_NOT_FOUND
public static final short SW_FILE_NOT_FOUND

Response status : File not found = 0x6A82

72 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

94

SW_RECORD_NOT_FOUND
public static final short SW_RECORD_NOT_FOUND

Response status : Record not found = 0x6A83

SW_INCORRECT_P1P2
public static final short SW_INCORRECT_P1P2

Response status : Incorrect parameters (P1,P2) = 0x6A86

SW_WRONG_P1P2
public static final short SW_WRONG_P1P2

Response status : Incorrect parameters (P1,P2) = 0x6B00

SW_CORRECT_LENGTH_00
public static final short SW_CORRECT_LENGTH_00

Response status : Correct Expected Length (Le) = 0x6C00

SW_INS_NOT_SUPPORTED
public static final short SW_INS_NOT_SUPPORTED

Response status : INS value not supported = 0x6D00

SW_CLA_NOT_SUPPORTED
public static final short SW_CLA_NOT_SUPPORTED

Response status : CLA value not supported = 0x6E00

SW_UNKNOWN
public static final short SW_UNKNOWN

Response status : No precise diagnosis = 0x6F00

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 73

Java Card 2.1 API

Appendix JCAPI01

95

SW_FILE_FULL
public static final short SW_FILE_FULL

Response status : Not enough memory space in the file = 0x6A84

OFFSET_CLA
public static final byte OFFSET_CLA

APDU header offset : CLA = 0

OFFSET_INS
public static final byte OFFSET_INS

APDU header offset : INS = 1

OFFSET_P1
public static final byte OFFSET_P1

APDU header offset : P1 = 2

OFFSET_P2
public static final byte OFFSET_P2

APDU header offset : P2 = 3

OFFSET_LC
public static final byte OFFSET_LC

APDU header offset : LC = 4

OFFSET_CDATA
public static final byte OFFSET_CDATA

APDU command data offset : CDATA = 5

74 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

96

CLA_ISO7816
public static final byte CLA_ISO7816

APDU command CLA : ISO 7816 = 0x00

INS_SELECT
public static final byte INS_SELECT

APDU command INS : SELECT = 0xA4

INS_EXTERNAL_AUTHENTICATE
public static final byte INS_EXTERNAL_AUTHENTICATE

APDU command INS : EXTERNAL AUTHENTICATE = 0x82

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 75

Java Card 2.1 API

Appendix JCAPI01

97

javacard.framework
Class ISOException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.ISOException

public class ISOException
extends CardRuntimeException

ISOException class encapsulates an ISO 7816-4 response status word as its reason code.

The APDU class throws JCRE owned instances of ISOException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

Constructor Summary
ISOException(short sw)
 Constructs an ISOException instance with the specified status word.

Method Summary
static void throwIt(short sw)

 Throws the JCRE owned instance of the ISOException class with the specified
status word.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

76 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

98

Methods inherited from class java.lang.Object

equals

Constructor Detail

ISOException
public ISOException(short sw)

Constructs an ISOException instance with the specified status word. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

sw - the ISO 7816-4 defined status word

Method Detail

throwIt
public static void throwIt(short sw)

Throws the JCRE owned instance of the ISOException class with the specified status word.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

sw - ISO 7816-4 defined status word
Throws:

ISOException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 77

Java Card 2.1 API

Appendix JCAPI01

99

javacard.framework
Class JCSystem
java.lang.Object
 |
 +--javacard.framework.JCSystem

public final class JCSystem
extends Object

The JCSystem class includes a collection of methods to control applet execution, resource management,
atomic transaction management and inter-applet object sharing in Java Card. All methods in JCSystem
class are static methods.

The JCSystem class also includes methods to control the persistence and transience of objects. The term
persistent means that objects and their values persist from one CAD session to the next, indefinitely.
Persistent object values are updated atomically using transactions.

The makeTransient...Array() methods can be used to create transient arrays with primitive data
components. Transient array data is lost (in an undefined state, but the real data is unavailable)
immediately upon power loss, and is reset to the default value at the occurrence of certain events such as
card reset or deselect. Updates to the values of transient arrays are not atomic and are not affected by
transactions.

The JCRE maintains an atomic transaction commit buffer which is initialized on card reset (or power on).
When a transaction is in progress, the JCRE journals all updates to persistent data space into this buffer so
that it can always guarantee, at commit time, that everything in the buffer is written or nothing at all is
written. The JCSystem includes methods to control an atomic transaction. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.

See Also:
SystemException, TransactionException, Applet

Field Summary
static byte CLEAR_ON_DESELECT

 This event code indicates that the contents of the transient object are cleared to the
default value on applet deselection event or in CLEAR_ON_RESET cases.

static byte CLEAR_ON_RESET
 This event code indicates that the contents of the transient object are cleared to the
default value on card reset (or power on) event.

static byte NOT_A_TRANSIENT_OBJECT
 This event code indicates that the object is not transient.

78 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

100

Method Summary
static void abortTransaction()

 Aborts the atomic transaction.

static void beginTransaction()
 Begins an atomic transaction.

static void commitTransaction()
 Commits an atomic transaction.

static AID getAID()
 Returns the JCRE owned instance of the AID object associated with the
current applet context.

static Shareable getAppletShareableInterfaceObject(AID serverAID,
byte parameter)
 This method is called by a client applet to get a server applet’s shareable
interface object.

static short getMaxCommitCapacity()
 Returns the total number of bytes in the commit buffer.

static AID getPreviousContextAID()
 This method is called to obtain the JCRE owned instance of the AID object
associated with the previously active applet context.

static byte getTransactionDepth()
 Returns the current transaction nesting depth level.

static short getUnusedCommitCapacity()
 Returns the number of bytes left in the commit buffer.

static short getVersion()
 Returns the current major and minor version of the Java Card API.

static byte isTransient(Object theObj)
 Used to check if the specified object is transient.

static AID lookupAID(byte[] buffer, short offset, byte length)
 Returns the JCRE owned instance of the AID object, if any, encapsulating
the specified AID bytes in the buffer parameter if there exists a successfully
installed applet on the card whose instance AID exactly matches that of the
specified AID bytes.

static boolean[] makeTransientBooleanArray(short length, byte event)
 Create a transient boolean array with the specified array length.

static byte[] makeTransientByteArray(short length, byte event)
 Create a transient byte array with the specified array length.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 79

Java Card 2.1 API

Appendix JCAPI01

101

static Object[] makeTransientObjectArray(short length, byte event)
 Create a transient array of Object with the specified array length.

static short[] makeTransientShortArray(short length, byte event)
 Create a transient short array with the specified array length.

Methods inherited from class java.lang.Object

equals

Field Detail

NOT_A_TRANSIENT_OBJECT
public static final byte NOT_A_TRANSIENT_OBJECT

This event code indicates that the object is not transient.

CLEAR_ON_RESET
public static final byte CLEAR_ON_RESET

This event code indicates that the contents of the transient object are cleared to the default value on
card reset (or power on) event.

CLEAR_ON_DESELECT
public static final byte CLEAR_ON_DESELECT

This event code indicates that the contents of the transient object are cleared to the default value on
applet deselection event or in CLEAR_ON_RESET cases.

Notes:
CLEAR_ON_DESELECT transient objects can be accessed only when the applet which created
the object is the currently the selected applet.
The JCRE will throw a SecurityException if a CLEAR_ON_DESELECT transient object
is accessed when the currently selected applet is not the applet which created the object.

Method Detail

80 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

102

isTransient
public static byte isTransient(Object theObj)

Used to check if the specified object is transient.

Notes:
This method returns NOT_A_TRANSIENT_OBJECT if the specified object is null or is not an
array type.

Parameters:
theObj - the object being queried.

Returns:
NOT_A_TRANSIENT_OBJECT, CLEAR_ON_RESET, or CLEAR_ON_DESELECT.

See Also:
makeTransientBooleanArray(short, byte),
makeTransientByteArray(short, byte),
makeTransientShortArray(short, byte),
makeTransientObjectArray(short, byte)

makeTransientBooleanArray
public static boolean[] makeTransientBooleanArray(short length,
 byte event)
 throws SystemException

Create a transient boolean array with the specified array length.
Parameters:

length - the length of the boolean array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientByteArray
public static byte[] makeTransientByteArray(short length,
 byte event)
 throws SystemException

Create a transient byte array with the specified array length.
Parameters:

length - the length of the byte array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 81

Java Card 2.1 API

Appendix JCAPI01

103

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientShortArray
public static short[] makeTransientShortArray(short length,
 byte event)
 throws SystemException

Create a transient short array with the specified array length.
Parameters:

length - the length of the short array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientObjectArray
public static Object[] makeTransientObjectArray(short length,
 byte event)
 throws SystemException

Create a transient array of Object with the specified array length.
Parameters:

length - the length of the Object array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

82 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

104

getVersion
public static short getVersion()

Returns the current major and minor version of the Java Card API.
Returns:

version number as byte.byte (major.minor)

getAID
public static AID getAID()

Returns the JCRE owned instance of the AID object associated with the current applet context.
Returns null if the Applet.register() method has not yet been invoked.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Returns:

the AID object.

lookupAID
public static AID lookupAID(byte[] buffer,
 short offset,
 byte length)

Returns the JCRE owned instance of the AID object, if any, encapsulating the specified AID bytes in
the buffer parameter if there exists a successfully installed applet on the card whose instance AID
exactly matches that of the specified AID bytes.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Parameters:

buffer - byte array containing the AID bytes.
offset - offset within buffer where AID bytes begin.
length - length of AID bytes in buffer.

Returns:
the AID object, if any; null otherwise. A VM exception is thrown if buffer is null, or if
offset or length are out of range.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 83

Java Card 2.1 API

Appendix JCAPI01

105

beginTransaction
public static void beginTransaction()
 throws TransactionException

Begins an atomic transaction. If a transaction is already in progress (transactionDepth != 0), a
TransactionException is thrown.
Throws:

TransactionException - with the following reason codes:
TransactionException.IN_PROGRESS if a transaction is already in progress.

See Also:
commitTransaction(), abortTransaction()

abortTransaction
public static void abortTransaction()
 throws TransactionException

Aborts the atomic transaction. The contents of the commit buffer is discarded.

Notes:
Do not call this method from within a transaction which creates new objects because the JCRE
may not recover the heap space used by the new object instances.
The JCRE ensures that any variable of reference type which references an object instantiated
from within this aborted transaction is equivalent to a null reference.

Throws:
TransactionException - with the following reason codes:

TransactionException.NOT_IN_PROGRESS if a transaction is not in progress.
See Also:

beginTransaction(), commitTransaction()

commitTransaction
public static void commitTransaction()
 throws TransactionException

Commits an atomic transaction. The contents of commit buffer is atomically commited. If a
transaction is not in progress (transactionDepth == 0) then a TransactionException is thrown.
Throws:

TransactionException - with the following reason codes:
TransactionException.NOT_IN_PROGRESS if a transaction is not in progress.

See Also:
beginTransaction(), abortTransaction()

84 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

106

getTransactionDepth
public static byte getTransactionDepth()

Returns the current transaction nesting depth level. At present, only 1 transaction can be in progress
at a time.
Returns:

1 if transaction in progress, 0 if not.

getUnusedCommitCapacity
public static short getUnusedCommitCapacity()

Returns the number of bytes left in the commit buffer.
Returns:

the number of bytes left in the commit buffer
See Also:

getMaxCommitCapacity()

getMaxCommitCapacity
public static short getMaxCommitCapacity()

Returns the total number of bytes in the commit buffer. This is approximately the maximum number
of bytes of persistent data which can be modified during a transaction. However, the transaction
subsystem requires additional bytes of overhead data to be included in the commit buffer, and this
depends on the number of fields modified and the implementation of the transaction subsystem. The
application cannot determine the actual maximum amount of data which can be modified during a
transaction without taking these overhead bytes into consideration.
Returns:

the total number of bytes in the commit buffer
See Also:

getUnusedCommitCapacity()

getPreviousContextAID
public static AID getPreviousContextAID()

This method is called to obtain the JCRE owned instance of the AID object associated with the
previously active applet context. This method is typically used by a server applet, while executing a
shareable interface method to determine the identity of its client and thereby control access
privileges.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 85

Java Card 2.1 API

Appendix JCAPI01

107

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Returns:

the AID object of the previous context, or null if JCRE.

getAppletShareableInterfaceObject
public static Shareable getAppletShareableInterfaceObject(AID serverAID,
 byte parameter)

This method is called by a client applet to get a server applet’s shareable interface object.

This method returns null if the Applet.register() has not yet been invoked or if the server
does not exist or if the server returns null.
Parameters:

serverAID - the AID of the server applet.
parameter - optional parameter data.

Returns:
the shareable interface object or null.

See Also:
Applet.getShareableInterfaceObject(AID, byte)

86 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

108

javacard.framework
Class OwnerPIN
java.lang.Object
 |
 +--javacard.framework.OwnerPIN

public class OwnerPIN
extends Object
implements PIN

This class represents an Owner PIN. It implements Personal Identification Number functionality as
defined in the PIN interface. It provides the ability to update the PIN and thus owner functionality.

The implementation of this class must protect against attacks based on program flow prediction.Even if a
transaction is in progress, internal state such as the try counter, the validated flag and the blocking state
must not be conditionally updated during PIN presentation.

If an implementation of this class creates transient arrays, it must ensure that they are CLEAR_ON_RESET
transient objects.

The protected methods getValidatedFlag and setValidatedFlag allow a subclass of this class
to optimize the storage for the validated boolean state.

Some methods of instances of this class are only suitable for sharing when there exists a trust relationship
among the applets. A typical shared usage would use a proxy PIN interface which implements both the
PIN interface and the Shareable interface.

Any of the methods of the OwnerPIN may be called with a transaction in progress. None of the methods
of OwnerPIN class initiate or alter the state of the transaction if one is in progress.

See Also:
PINException, PIN, Shareable, JCSystem

Constructor Summary
OwnerPIN(byte tryLimit, byte maxPINSize)
 Constructor.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 87

Java Card 2.1 API

Appendix JCAPI01

109

Method Summary
 boolean check(byte[] pin, short offset, byte length)

 Compares pin against the PIN value.

 byte getTriesRemaining()
 Returns the number of times remaining that an incorrect PIN can be presented
before the PIN is blocked.

protected
 boolean

getValidatedFlag()
 This protected method returns the validated flag.

 boolean isValidated()
 Returns true if a valid PIN has been presented since the last card reset or last
call to reset().

 void reset()
 If the validated flag is set, this method resets it.

 void resetAndUnblock()
 This method resets the validated flag and resets the PIN try counter to the
value of the PIN try limit.

protected
 void

setValidatedFlag(boolean value)
 This protected method sets the value of the validated flag.

 void update(byte[] pin, short offset, byte length)
 This method sets a new value for the PIN and resets the PIN try counter to the
value of the PIN try limit.

Methods inherited from class java.lang.Object

equals

Constructor Detail

OwnerPIN
public OwnerPIN(byte tryLimit,
 byte maxPINSize)
 throws PINException

Constructor. Allocates a new PIN instance.
Parameters:

tryLimit - the maximum number of times an incorrect PIN can be presented.
maxPINSize - the maximum allowed PIN size. maxPINSize must be >=1.

88 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

110

Throws:
PINException - with the following reason codes:

PINException.ILLEGAL_VALUE if maxPINSize parameter is less than 1.

Method Detail

getValidatedFlag
protected boolean getValidatedFlag()

This protected method returns the validated flag. This method is intended for subclass of this
OwnerPIN to access or override the internal PIN state of the OwnerPIN.
Returns:

the boolean state of the PIN validated flag.

setValidatedFlag
protected void setValidatedFlag(boolean value)

This protected method sets the value of the validated flag. This method is intended for subclass of
this OwnerPIN to control or override the internal PIN state of the OwnerPIN.
Parameters:

value - the new value for the validated flag.

getTriesRemaining
public byte getTriesRemaining()

Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.
Specified by:

getTriesRemaining in interface PIN
Returns:

the number of times remaining

check
public boolean check(byte[] pin,
 short offset,
 byte length)

Compares pin against the PIN value. If they match and the PIN is not blocked, it sets the validated
flag and resets the try counter to its maximum. If it does not match, it decrements the try counter, and
if the counter has reached zero, blocks the PIN. Even if a transaction is in progress, internal state
such as the try counter, the validated flag and the blocking state must not be conditionally updated.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 89

Java Card 2.1 API

Appendix JCAPI01

111

Specified by:
check in interface PIN

Parameters:
pin - the byte array containing the PIN value being checked
offset - the starting offset in the pin array
length - the length of pin.

Returns:
true if the PIN value matches; false otherwise

isValidated
public boolean isValidated()

Returns true if a valid PIN has been presented since the last card reset or last call to reset().
Specified by:

isValidated in interface PIN
Returns:

true if validated; false otherwise

reset
public void reset()

If the validated flag is set, this method resets it. If the validated flag is not set, this method does
nothing.
Specified by:

reset in interface PIN

update
public void update(byte[] pin,
 short offset,
 byte length)
 throws PINException

This method sets a new value for the PIN and resets the PIN try counter to the value of the PIN try
limit. It also resets the validated flag.

This method copies the input pin parameter into an internal representation. If a transaction is in
progress, the new pin and try counter update must be conditional i.e the copy operation must use the
transaction facility.
Parameters:

pin - the byte array containing the new PIN value
offset - the starting offset in the pin array
length - the length of the new PIN.

90 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

112

Throws:
PINException - with the following reason codes:

PINException.ILLEGAL_VALUE if length is greater than configured maximum PIN
size.

See Also:
JCSystem.beginTransaction()

resetAndUnblock
public void resetAndUnblock()

This method resets the validated flag and resets the PIN try counter to the value of the PIN try limit.
This method is used by the owner to re-enable the blocked PIN.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 91

Java Card 2.1 API

Appendix JCAPI01

113

javacard.framework
Interface PIN
All Known Implementing Classes:

OwnerPIN

public abstract interface PIN

This interface represents a PIN. An implementation must maintain these internal values:

PIN value
try limit, the maximum number of times an incorrect PIN can be presented before the PIN is blocked.
When the PIN is blocked, it cannot be validated even on valid PIN presentation.
max PIN size, the maximum length of PIN allowed
try counter, the remaining number of times an incorrect PIN presentation is permitted before the PIN
becomes blocked.
validated flag, true if a valid PIN has been presented. This flag is reset on every card reset.

This interface does not make any assumptions about where the data for the PIN value comparison is
stored.

An owner implementation of this interface must provide a way to initialize/update the PIN value.The
owner implemention of the interface must protect against attacks based on program flow prediction. Even
if a transaction is in progress, internal state such as the try counter, the validated flag and the blocking
state must not be conditionally updated during PIN presentation.

A typical card global PIN usage will combine an instance of OwnerPIN class and a a Proxy PIN interface
which implements both the PIN and the Shareable interfaces. The OwnerPIN instance would be
manipulated only by the owner who has update privilege. All others would access the global PIN
functionality via the proxy PIN interface.

See Also:
OwnerPIN, Shareable

92 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

114

Method Summary
 boolean check(byte[] pin, short offset, byte length)

 Compares pin against the PIN value.

 byte getTriesRemaining()
 Returns the number of times remaining that an incorrect PIN can be presented before
the PIN is blocked.

 boolean isValidated()
 Returns true if a valid PIN value has been presented since the last card reset or last
call to reset().

 void reset()
 If the validated flag is set, this method resets it.

Method Detail

getTriesRemaining
public byte getTriesRemaining()

Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.
Returns:

the number of times remaining

check
public boolean check(byte[] pin,
 short offset,
 byte length)

Compares pin against the PIN value. If they match and the PIN is not blocked, it sets the validated
flag and resets the try counter to its maximum. If it does not match, it decrements the try counter, and
if the counter has reached zero, blocks the PIN. Even if a transaction is in progress, internal state
such as the try counter, the validated flag and the blocking state must not be conditionally updated.
Parameters:

pin - the byte array containing the PIN value being checked
offset - the starting offset in the pin array
length - the length of the PIN value.

Returns:
true if the PIN value matches; false otherwise

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 93

Java Card 2.1 API

Appendix JCAPI01

115

isValidated
public boolean isValidated()

Returns true if a valid PIN value has been presented since the last card reset or last call to
reset().
Returns:

true if validated; false otherwise

reset
public void reset()

If the validated flag is set, this method resets it. If the validated flag is not set, this method does
nothing.

94 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

116

javacard.framework
Class PINException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.PINException

public class PINException
extends CardRuntimeException

PINException represents a OwnerPIN class access-related exception.

The OwnerPIN class throws JCRE owned instances of PINException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
OwnerPIN

Field Summary
static short ILLEGAL_VALUE

 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

Constructor Summary
PINException(short reason)
 Constructs a PINException.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 95

Java Card 2.1 API

Appendix JCAPI01

117

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of PINException with the specified reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

Constructor Detail

PINException
public PINException(short reason)

Constructs a PINException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

96 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

118

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of PINException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

PINException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 97

Java Card 2.1 API

Appendix JCAPI01

119

javacard.framework
Interface Shareable

public abstract interface Shareable

The Shareable interface serves to identify all shared objects. Any object that needs to be shared through
the applet firewall must directly or indirectly implement this interface. Only those methods specified in a
shareable interface are available through the firewall. Implementation classes can implement any number
of shareable interfaces and can extend other shareable implementation classes.

98 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

120

javacard.framework
Class SystemException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.SystemException

public class SystemException
extends CardRuntimeException

SystemException represents a JCSystem class related exception. It is also thrown by the
javacard.framework.Applet.register() methods and by the AID class constructor.

These API classes throw JCRE owned instances of SystemException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem, Applet, AID

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 99

Java Card 2.1 API

Appendix JCAPI01

121

Field Summary
static short ILLEGAL_AID

 This reason code is used by the
javacard.framework.Applet.register() method to indicate that the input
AID parameter is not a legal AID value.

static short ILLEGAL_TRANSIENT
 This reason code is used to indicate that the request to create a transient object is
not allowed in the current applet context.

static short ILLEGAL_VALUE
 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

static short NO_RESOURCE
 This reason code is used to indicate that there is insufficient resource in the Card
for the request.

static short NO_TRANSIENT_SPACE
 This reason code is used by the makeTransient..() methods to indicate that
no room is available in volatile memory for the requested object.

Constructor Summary
SystemException(short reason)
 Constructs a SystemException.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of SystemException with the specified
reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

100 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

122

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

NO_TRANSIENT_SPACE
public static final short NO_TRANSIENT_SPACE

This reason code is used by the makeTransient..() methods to indicate that no room is
available in volatile memory for the requested object.

ILLEGAL_TRANSIENT
public static final short ILLEGAL_TRANSIENT

This reason code is used to indicate that the request to create a transient object is not allowed in the
current applet context. See Java Card Runtime Environment (JCRE) 2.1 Specification for details.

ILLEGAL_AID
public static final short ILLEGAL_AID

This reason code is used by the javacard.framework.Applet.register() method to
indicate that the input AID parameter is not a legal AID value.

NO_RESOURCE
public static final short NO_RESOURCE

This reason code is used to indicate that there is insufficient resource in the Card for the request.

For example, the Java Card Virtual Machine may throw this exception reason when there is
insufficient heap space to create a new instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 101

Java Card 2.1 API

Appendix JCAPI01

123

Constructor Detail

SystemException
public SystemException(short reason)

Constructs a SystemException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of SystemException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

SystemException - always.

102 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

124

javacard.framework
Class TransactionException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.TransactionException

public class TransactionException
extends CardRuntimeException

TransactionException represents an exception in the transaction subsystem. The methods referred
to in this class are in the JCSystem class.

The JCSystem class and the transaction facility throw JCRE owned instances of
TransactionException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 103

Java Card 2.1 API

Appendix JCAPI01

125

Field Summary
static short BUFFER_FULL

 This reason code is used during a transaction to indicate that the commit buffer is
full.

static short IN_PROGRESS
 This reason code is used by the beginTransaction method to indicate a
transaction is already in progress.

static short INTERNAL_FAILURE
 This reason code is used during a transaction to indicate an internal JCRE problem
(fatal error).

static short NOT_IN_PROGRESS
 This reason code is used by the abortTransaction and
commintTransaction methods when a transaction is not in progress.

Constructor Summary
TransactionException(short reason)
 Constructs a TransactionException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of TransactionException with the
specified reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

Methods inherited from class java.lang.Object

equals

104 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

126

Field Detail

IN_PROGRESS
public static final short IN_PROGRESS

This reason code is used by the beginTransaction method to indicate a transaction is already in
progress.

NOT_IN_PROGRESS
public static final short NOT_IN_PROGRESS

This reason code is used by the abortTransaction and commintTransaction methods
when a transaction is not in progress.

BUFFER_FULL
public static final short BUFFER_FULL

This reason code is used during a transaction to indicate that the commit buffer is full.

INTERNAL_FAILURE
public static final short INTERNAL_FAILURE

This reason code is used during a transaction to indicate an internal JCRE problem (fatal error).

Constructor Detail

TransactionException
public TransactionException(short reason)

Constructs a TransactionException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 105

Java Card 2.1 API

Appendix JCAPI01

127

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of TransactionException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Throws:

TransactionException - always.

106 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

128

javacard.framework
Class UserException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--javacard.framework.CardException
 |
 +--javacard.framework.UserException

public class UserException
extends CardException

UserException represents a User exception. This class also provides a resource-saving mechanism
(the throwIt() method) for user exceptions by using a JCRE owned instance.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

Constructor Summary
UserException()
 Constructs a UserException with reason = 0.

UserException(short reason)
 Constructs a UserException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of UserException with the specified reason.

Methods inherited from class javacard.framework.CardException

getReason, setReason

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 107

Java Card 2.1 API

Appendix JCAPI01

129

Methods inherited from class java.lang.Object

equals

Constructor Detail

UserException
public UserException()

Constructs a UserException with reason = 0. To conserve on resources use throwIt() to use
the JCRE owned instance of this class.

UserException
public UserException(short reason)

Constructs a UserException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)
 throws UserException

Throws the JCRE owned instance of UserException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

UserException - always.

108 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

130

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 109

Java Card 2.1 API

Appendix JCAPI01

131

javacard.framework
Class Util
java.lang.Object
 |
 +--javacard.framework.Util

public class Util
extends Object

The Util class contains common utility functions. Some of the methods may be implemented as native
functions for performance reasons. All methods in Util, class are static methods.

Some methods of Util namely arrayCopy(), arrayCopyNonAtomic(),
arrayFillNonAtomic() and setShort(), refer to the persistence of array objects. The term
persistent means that arrays and their values persist from one CAD session to the next, indefinitely. The
JCSystem class is used to control the persistence and transience of objects.

See Also:
JCSystem

110 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

132

Method Summary
static byte arrayCompare(byte[] src, short srcOff, byte[] dest,

short destOff, short length)
 Compares an array from the specified source array, beginning at the specified
position, with the specified position of the destination array from left to right.

static short arrayCopy(byte[] src, short srcOff, byte[] dest,
short destOff, short length)
 Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array.

static short arrayCopyNonAtomic(byte[] src, short srcOff, byte[] dest,
short destOff, short length)
 Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array (non-atomically).

static short arrayFillNonAtomic(byte[] bArray, short bOff, short bLen,
byte bValue)
 Fills the byte array (non-atomically) beginning at the specified position, for the
specified length with the specified byte value.

static short getShort(byte[] bArray, short bOff)
 Concatenates two bytes in a byte array to form a short value.

static short makeShort(byte b1, byte b2)
 Concatenates the two parameter bytes to form a short value.

static short setShort(byte[] bArray, short bOff, short sValue)
 Deposits the short value as two successive bytes at the specified offset in the byte
array.

Methods inherited from class java.lang.Object

equals

Method Detail

arrayCopy
public static final short arrayCopy(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 111

Java Card 2.1 API

Appendix JCAPI01

133

 short length)
 throws IndexOutOfBoundsException,
 NullPointerException,
 TransactionException

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array.

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.
If srcOff+length is greater than src.length, the length of the src array a
IndexOutOfBoundsException exception is thrown and no copy is performed.
If destOff+length is greater than dest.length, the length of the dest array an
IndexOutOfBoundsException exception is thrown and no copy is performed.
If src or dest parameter is null a NullPointerException exception is thrown.
If the src and dest arguments refer to the same array object, then the copying is performed
as if the components at positions srcOff through srcOff+length-1 were first copied to a
temporary array with length components and then the contents of the temporary array were
copied into positions destOff through destOff+length-1 of the argument array.
If the destination array is persistent, the entire copy is performed atomically.
The copy operation is subject to atomic commit capacity limitations. If the commit capacity is
exceeded, no copy is performed and a TransactionException exception is thrown.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start copy from.
dest - destination byte array.
destOff - offset within destination byte array to start copy into.
length - byte length to be copied.

Returns:
destOff+length

Throws:
IndexOutOfBoundsException - - if copying would cause access of data outside array bounds.
NullPointerException - - if either src or dest is null.
TransactionException - - if copying would cause the commit capacity to be exceeded.

See Also:
JCSystem.getUnusedCommitCapacity()

arrayCopyNonAtomic
public static final short arrayCopyNonAtomic(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,
 short length)
 throws IndexOutOfBoundsException,
 NullPointerException

112 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

134

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array (non-atomically).

This method does not use the transaction facility during the copy operation even if a transaction is in
progress. Thus, this method is suitable for use only when the contents of the destination array can be
left in a partially modified state in the event of a power loss in the middle of the copy operation.

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.
If srcOff+length is greater than src.length, the length of the src array a
IndexOutOfBoundsException exception is thrown and no copy is performed.
If destOff+length is greater than dest.length, the length of the dest array an
IndexOutOfBoundsException exception is thrown and no copy is performed.
If src or dest parameter is null a NullPointerException exception is thrown.
If the src and dest arguments refer to the same array object, then the copying is performed
as if the components at positions srcOff through srcOff+length-1 were first copied to a
temporary array with length components and then the contents of the temporary array were
copied into positions destOff through destOff+length-1 of the argument array.
If power is lost during the copy operation and the destination array is persistent, a partially
changed destination array could result.
The copy length parameter is not constrained by the atomic commit capacity limitations.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start copy from.
dest - destination byte array.
destOff - offset within destination byte array to start copy into.
length - byte length to be copied.

Returns:
destOff+length

Throws:
IndexOutOfBoundsException - - if copying would cause access of data outside array bounds.
NullPointerException - - if either src or dest is null.

See Also:
JCSystem.getUnusedCommitCapacity()

arrayFillNonAtomic
public static final short arrayFillNonAtomic(byte[] bArray,
 short bOff,
 short bLen,
 byte bValue)
 throws IndexOutOfBoundsException,
 NullPointerException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 113

Java Card 2.1 API

Appendix JCAPI01

135

Fills the byte array (non-atomically) beginning at the specified position, for the specified length with
the specified byte value.

This method does not use the transaction facility during the fill operation even if a transaction is in
progress. Thus, this method is suitable for use only when the contents of the byte array can be left in
a partially filled state in the event of a power loss in the middle of the fill operation.

Notes:
If bOff or bLen parameter is negative an IndexOutOfBoundsException exception is
thrown.
If bOff+bLen is greater than bArray.length, the length of the bArray array an
IndexOutOfBoundsException exception is thrown.
If bArray parameter is null a NullPointerException exception is thrown.
If power is lost during the copy operation and the byte array is persistent, a partially changed
byte array could result.
The bLen parameter is not constrained by the atomic commit capacity limitations.

Parameters:
bArray - the byte array.
bOff - offset within byte array to start filling bValue into.
bLen - byte length to be filled.
bValue - the value to fill the byte array with.

Returns:
bOff+bLen

Throws:
IndexOutOfBoundsException - - if the fill operation would cause access of data outside array
bounds.
NullPointerException - - if bArray is null

See Also:
JCSystem.getUnusedCommitCapacity()

arrayCompare
public static final byte arrayCompare(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,
 short length)
 throws IndexOutOfBoundsException,
 NullPointerException

Compares an array from the specified source array, beginning at the specified position, with the
specified position of the destination array from left to right. Returns the ternary result of the
comparison : less than(-1), equal(0) or greater than(1).

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.

114 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

136

If srcOff+length is greater than src.length, the length of the src array a
IndexOutOfBoundsException exception is thrown.
If destOff+length is greater than dest.length, the length of the dest array an
IndexOutOfBoundsException exception is thrown.
If src or dest parameter is null a NullPointerException exception is thrown.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start compare.
dest - destination byte array.
destOff - offset within destination byte array to start compare.
length - byte length to be compared.

Returns:
the result of the comparison as follows:

0 if identical
-1 if the first miscomparing byte in source array is less than that in destination array,
1 if the first miscomparing byte in source array is greater that that in destination array.

Throws:
IndexOutOfBoundsException - - if comparing all bytes would cause access of data outside array
bounds.
NullPointerException - - if either src or dest is null.

makeShort
public static final short makeShort(byte b1,
 byte b2)

Concatenates the two parameter bytes to form a short value.
Parameters:

b1 - the first byte (high order byte).
b2 - the second byte (low order byte).

Returns:
the short value - the concatenated result

getShort
public static final short getShort(byte[] bArray,
 short bOff)

Concatenates two bytes in a byte array to form a short value.
Parameters:

bArray - byte array.
bOff - offset within byte array containing first byte (the high order byte).

Returns:
the short value - the concatenated result

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 115

Java Card 2.1 API

Appendix JCAPI01

137

setShort
public static final short setShort(byte[] bArray,
 short bOff,
 short sValue)
 throws TransactionException

Deposits the short value as two successive bytes at the specified offset in the byte array.
Parameters:

bArray - byte array.
bOff - offset within byte array to deposit the first byte (the high order byte).
sValue - the short value to set into array.

Returns:
bOff+2

Note:
If the byte array is persistent, this operation is performed atomically. If the commit
capacity is exceeded, no operation is performed and a TransactionException
exception is thrown.

Throws:
TransactionException - - if the operation would cause the commit capacity to be exceeded.

See Also:
JCSystem.getUnusedCommitCapacity()

116 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

138

Package javacard.security
Provides the classes and interfaces for the Java Card security framework.

See:
 Description

Interface Summary

DESKey
DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES
operations.

DSAKey
The DSAKey interface is the base interface for the DSA algorithms private and
public key implementaions.

DSAPrivateKey The DSAPrivateKey interface is used to sign data using the DSA algorithm.

DSAPublicKey
The DSAPublicKey interface is used to verify signatures on signed data using the
DSA algorithm.

Key The Key interface is the base interface for all keys.

PrivateKey
The PrivateKey class is the base class for private keys used in asymmetric
algorithms.

PublicKey
The PublicKey class is the base class for public keys used in asymmetric
algorithms.

RSAPrivateCrtKey
The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm
in its Chinese Remainder Theorem form.

RSAPrivateKey
The RSAPrivateKey class is used to sign data using the RSA algorithm in its
modulus/exponent form.

RSAPublicKey
The RSAPublicKey is used to verify signatures on signed data using the RSA
algorithm.

SecretKey
The SecretKey class is the base interface for keys used in symmetric alogrightms
(e.g. DES).

Class Summary
KeyBuilder The KeyBuilder class is a key object factory.

MessageDigest The MessageDigest class is the base class for hashing algorthims.

RandomData The RandomData abstract class is the base class for random number generation.

Signature The Signature class is the base class for Signature algorthims.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 117

Java Card 2.1 API

Appendix JCAPI01

139

Exception Summary
CryptoException CryptoException represents a cryptography-related exception.

Package javacard.security Description
Provides the classes and interfaces for the Java Card security framework.

118 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

140

javacard.security
Class CryptoException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.security.CryptoException

public class CryptoException
extends CardRuntimeException

CryptoException represents a cryptography-related exception.

The API classes throw JCRE owned instances of SystemException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components.

See Also:
KeyBuilder, MessageDigest, Signature, RandomData, Cipher

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 119

Java Card 2.1 API

Appendix JCAPI01

141

Field Summary
static short ILLEGAL_USE

 This reason code is used to indicate that the signature or cipher algorithm does not
pad the incoming message and the input message is not block aligned.

static short ILLEGAL_VALUE
 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

static short INVALID_INIT
 This reason code is used to indicate that the signature or cipher object has not
been correctly initialized for the requested operation.

static short NO_SUCH_ALGORITHM
 This reason code is used to indicate that the requested algorithm or key type is not
supported.

static short UNINITIALIZED_KEY
 This reason code is used to indicate that the key is uninitialized.

Constructor Summary
CryptoException(short reason)
 Constructs a CryptoException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of CryptoException with the specified
reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

Methods inherited from class java.lang.Object

equals

120 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

142

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

UNINITIALIZED_KEY
public static final short UNINITIALIZED_KEY

This reason code is used to indicate that the key is uninitialized.

NO_SUCH_ALGORITHM
public static final short NO_SUCH_ALGORITHM

This reason code is used to indicate that the requested algorithm or key type is not supported.

INVALID_INIT
public static final short INVALID_INIT

This reason code is used to indicate that the signature or cipher object has not been correctly
initialized for the requested operation.

ILLEGAL_USE
public static final short ILLEGAL_USE

This reason code is used to indicate that the signature or cipher algorithm does not pad the incoming
message and the input message is not block aligned.

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 121

Java Card 2.1 API

Appendix JCAPI01

143

CryptoException
public CryptoException(short reason)

Constructs a CryptoException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of CryptoException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

CryptoException - always.

122 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

144

javacard.security
Interface DESKey

public abstract interface DESKey
extends SecretKey

DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES operations.

When the key data is set, the key is initialized and ready for use.

See Also:
KeyBuilder, Signature, Cipher, KeyEncryption

Method Summary
 byte getKey(byte[] keyData, short kOff)

 Returns the Key data in plain text.

 void setKey(byte[] keyData, short kOff)
 Sets the Key data.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

setKey
public void setKey(byte[] keyData,
 short kOff)
 throws CryptoException

Sets the Key data. The plaintext length of input key data is 8 bytes for DES, 16 bytes for 2 key triple
DES and 24 bytes for 3 key triple DES. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

keyData - byte array containing key initialization data
kOff - offset within keyData to start

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 123

Java Card 2.1 API

Appendix JCAPI01

145

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, keyData is decrypted
using the Cipher object.

getKey
public byte getKey(byte[] keyData,
 short kOff)

Returns the Key data in plain text. The length of output key data is 8 bytes for DES, 16 bytes for 2
key triple DES and 24 bytes for 3 key triple DES. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

keyData - byte array to return key data
kOff - offset within keyData to start.

Returns:
the byte length of the key data returned.

124 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

146

javacard.security
Interface DSAKey
All Known Subinterfaces:

DSAPrivateKey, DSAPublicKey

public abstract interface DSAKey

The DSAKey interface is the base interface for the DSA algorithms private and public key
implementaions. A DSA private key implementation must also implement the DSAPrivateKey
interface methods. A DSA public key implementation must also implement the DSAPublicKey
interface methods.

When all four components of the key (X or Y,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPublicKey, DSAPrivateKey, KeyBuilder, Signature, KeyEncryption

Method Summary
 short getG(byte[] buffer, short offset)

 Returns the subprime parameter value of the key in plain text.

 short getP(byte[] buffer, short offset)
 Returns the base parameter value of the key in plain text.

 short getQ(byte[] buffer, short offset)
 Returns the prime parameter value of the key in plain text.

 void setG(byte[] buffer, short offset, short length)
 Sets the subprime parameter value of the key.

 void setP(byte[] buffer, short offset, short length)
 Sets the base parameter value of the key.

 void setQ(byte[] buffer, short offset, short length)
 Sets the prime parameter value of the key.

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 125

Java Card 2.1 API

Appendix JCAPI01

147

setP
public void setP(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the base parameter value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input base parameter data is copied
into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the base parameter value begins
length - the length of the base parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the base parameter
value is decrypted using the Cipher object.

setQ
public void setQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the prime parameter value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input prime parameter data is copied
into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the prime parameter value begins
length - the length of the prime parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the prime parameter
value is decrypted using the Cipher object.

126 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

148

setG
public void setG(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the subprime parameter value of the key. The plaintext data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte). Input subprime
parameter data is copied into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the subprime parameter value begins
length - the length of the subprime parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the subprime
parameter value is decrypted using the Cipher object.

getP
public short getP(byte[] buffer,
 short offset)

Returns the base parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the base parameter value starts

Returns:
the byte length of the base parameter value returned

getQ
public short getQ(byte[] buffer,
 short offset)

Returns the prime parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 127

Java Card 2.1 API

Appendix JCAPI01

149

Parameters:
buffer - the output buffer
offset - the offset into the output buffer at which the prime parameter value begins

Returns:
the byte length of the prime parameter value returned

getG
public short getG(byte[] buffer,
 short offset)

Returns the subprime parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the subprime parameter value begins

Returns:
the byte length of the subprime parameter value returned

128 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

150

javacard.security
Interface DSAPrivateKey

public abstract interface DSAPrivateKey
extends PrivateKey, DSAKey

The DSAPrivateKey interface is used to sign data using the DSA algorithm. An implementation of
DSAPrivateKey interface must also implement the DSAKey interface methods.

When all four components of the key (X,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPublicKey, KeyBuilder, Signature, KeyEncryption

Method Summary
 short getX(byte[] buffer, short offset)

 Returns the value of the key in plain text.

 void setX(byte[] buffer, short offset, short length)
 Sets the value of the key.

Methods inherited from interface javacard.security.DSAKey

getG, getP, getQ, setG, setP, setQ

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 129

Java Card 2.1 API

Appendix JCAPI01

151

setX
public void setX(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the key. When the base, prime and subprime parameters are intialized and the key
value is set, the key is ready for use. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the key value is
decrypted using the Cipher object.

getX
public short getX(byte[] buffer,
 short offset)

Returns the value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the key value starts

Returns:
the byte length of the key value returned

130 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

152

javacard.security
Interface DSAPublicKey

public abstract interface DSAPublicKey
extends PublicKey, DSAKey

The DSAPublicKey interface is used to verify signatures on signed data using the DSA algorithm. An
implementation of DSAPublicKey interface must also implement the DSAKey interface methods.

When all four components of the key (Y,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPrivateKey, KeyBuilder, Signature, KeyEncryption

Method Summary
 short getY(byte[] buffer, short offset)

 Returns the value of the key in plain text.

 void setY(byte[] buffer, short offset, short length)
 Sets the value of the key.

Methods inherited from interface javacard.security.DSAKey

getG, getP, getQ, setG, setP, setQ

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 131

Java Card 2.1 API

Appendix JCAPI01

153

setY
public void setY(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the key. When the base, prime and subprime parameters are intialized and the key
value is set, the key is ready for use. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the key value begins
length - the length of the key value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the key value is
decrypted using the Cipher object.

getY
public short getY(byte[] buffer,
 short offset)

Returns the value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the input buffer at which the key value starts

Returns:
the byte length of the key value returned

132 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

154

javacard.security
Interface Key
All Known Subinterfaces:

DESKey, DSAPrivateKey, DSAPublicKey, PrivateKey, PublicKey, RSAPrivateCrtKey,
RSAPrivateKey, RSAPublicKey, SecretKey

public abstract interface Key

The Key interface is the base interface for all keys.

See Also:
KeyBuilder

Method Summary
 void clearKey()

 Clears the key and sets its initialized state to false.

 short getSize()
 Returns the key size in number of bits.

 byte getType()
 Returns the key interface type.

 boolean isInitialized()
 Reports the initialized state of the key.

Method Detail

isInitialized
public boolean isInitialized()

Reports the initialized state of the key. Keys must be initialized before being used.

A Key object sets its initialized state to true only when all the associated set methods have been
invoked at least once since the time the initialized state was set to false.

A newly created Key object sets its initialized state to false. Invocation of the clearKey() method
sets the initialized state to false. A key with transient key data sets its initialized state to false on the
associated clear events.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 133

Java Card 2.1 API

Appendix JCAPI01

155

Returns:
true if the key has been initialized.

clearKey
public void clearKey()

Clears the key and sets its initialized state to false.

getType
public byte getType()

Returns the key interface type.
Returns:

the key interface type.

See Also:
KeyBuilder

getSize
public short getSize()

Returns the key size in number of bits.
Returns:

the key size in number of bits.

134 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

156

javacard.security
Class KeyBuilder
java.lang.Object
 |
 +--javacard.security.KeyBuilder

public class KeyBuilder
extends Object

The KeyBuilder class is a key object factory.

Field Summary
static short LENGTH_DES

 DES Key Length LENGTH_DES = 64.

static short LENGTH_DES3_2KEY
 DES Key Length LENGTH_DES3_2KEY = 128.

static short LENGTH_DES3_3KEY
 DES Key Length LENGTH_DES3_3KEY = 192.

static short LENGTH_DSA_1024
 DSA Key Length LENGTH_DSA_1024 = 1024.

static short LENGTH_DSA_512
 DSA Key Length LENGTH_DSA_512 = 512.

static short LENGTH_DSA_768
 DSA Key Length LENGTH_DSA_768 = 768.

static short LENGTH_RSA_1024
 RSA Key Length LENGTH_RSA_1024 = 1024.

static short LENGTH_RSA_2048
 RSA Key Length LENGTH_RSA_2048 = 2048.

static short LENGTH_RSA_512
 RSA Key Length LENGTH_RSA_512 = 512.

static short LENGTH_RSA_768
 RSA Key Length LENGTH_RSA_768 = 768.

static byte TYPE_DES
 Key object which implements interface type DESKey with persistent key data.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 135

Java Card 2.1 API

Appendix JCAPI01

157

static byte TYPE_DES_TRANSIENT_DESELECT
 Key object which implements interface type DESKey with
CLEAR_ON_DESELECT transient key data.

static byte TYPE_DES_TRANSIENT_RESET
 Key object which implements interface type DESKey with CLEAR_ON_RESET
transient key data.

static byte TYPE_DSA_PRIVATE
 Key object which implements the interface type DSAPrivateKey for the DSA
algorithm.

static byte TYPE_DSA_PUBLIC
 Key object which implements the interface type DSAPublicKey for the DSA
algorithm.

static byte TYPE_RSA_CRT_PRIVATE
 Key object which implements interface type RSAPrivateCrtKey which uses
Chinese Remainder Theorem.

static byte TYPE_RSA_PRIVATE
 Key object which implements interface type RSAPrivateKey which uses
modulus/exponent form.

static byte TYPE_RSA_PUBLIC
 Key object which implements interface type RSAPublicKey.

Method Summary
static Key buildKey(byte keyType, short keyLength,

boolean keyEncryption)
 Creates cryptographic keys for signature and cipher algorithms.

Methods inherited from class java.lang.Object

equals

Field Detail

136 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

158

TYPE_DES_TRANSIENT_RESET
public static final byte TYPE_DES_TRANSIENT_RESET

Key object which implements interface type DESKey with CLEAR_ON_RESET transient key data.

This Key object implicitly performs a clearKey() on power on or card reset.

TYPE_DES_TRANSIENT_DESELECT
public static final byte TYPE_DES_TRANSIENT_DESELECT

Key object which implements interface type DESKey with CLEAR_ON_DESELECT transient key
data.

This Key object implicitly performs a clearKey() on power on, card reset and applet deselection.

TYPE_DES
public static final byte TYPE_DES

Key object which implements interface type DESKey with persistent key data.

TYPE_RSA_PUBLIC
public static final byte TYPE_RSA_PUBLIC

Key object which implements interface type RSAPublicKey.

TYPE_RSA_PRIVATE
public static final byte TYPE_RSA_PRIVATE

Key object which implements interface type RSAPrivateKey which uses modulus/exponent form.

TYPE_RSA_CRT_PRIVATE
public static final byte TYPE_RSA_CRT_PRIVATE

Key object which implements interface type RSAPrivateCrtKey which uses Chinese Remainder
Theorem.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 137

Java Card 2.1 API

Appendix JCAPI01

159

TYPE_DSA_PUBLIC
public static final byte TYPE_DSA_PUBLIC

Key object which implements the interface type DSAPublicKey for the DSA algorithm.

TYPE_DSA_PRIVATE
public static final byte TYPE_DSA_PRIVATE

Key object which implements the interface type DSAPrivateKey for the DSA algorithm.

LENGTH_DES
public static final short LENGTH_DES

DES Key Length LENGTH_DES = 64.

LENGTH_DES3_2KEY
public static final short LENGTH_DES3_2KEY

DES Key Length LENGTH_DES3_2KEY = 128.

LENGTH_DES3_3KEY
public static final short LENGTH_DES3_3KEY

DES Key Length LENGTH_DES3_3KEY = 192.

LENGTH_RSA_512
public static final short LENGTH_RSA_512

RSA Key Length LENGTH_RSA_512 = 512.

LENGTH_RSA_768
public static final short LENGTH_RSA_768

RSA Key Length LENGTH_RSA_768 = 768.

138 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

160

LENGTH_RSA_1024
public static final short LENGTH_RSA_1024

RSA Key Length LENGTH_RSA_1024 = 1024.

LENGTH_RSA_2048
public static final short LENGTH_RSA_2048

RSA Key Length LENGTH_RSA_2048 = 2048.

LENGTH_DSA_512
public static final short LENGTH_DSA_512

DSA Key Length LENGTH_DSA_512 = 512.

LENGTH_DSA_768
public static final short LENGTH_DSA_768

DSA Key Length LENGTH_DSA_768 = 768.

LENGTH_DSA_1024
public static final short LENGTH_DSA_1024

DSA Key Length LENGTH_DSA_1024 = 1024.

Method Detail

buildKey
public static Key buildKey(byte keyType,
 short keyLength,
 boolean keyEncryption)
 throws CryptoException

Creates cryptographic keys for signature and cipher algorithms. Instances created by this method may
be the only key objects used to initialize instances of Signature and Cipher. Note that the object
returned must be cast to their appropriate key type interface.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 139

Java Card 2.1 API

Appendix JCAPI01

161

Parameters:
keyType - the type of key to be generated. Valid codes listed in TYPE.. constants.
keyLength - the key size in bits. The valid key bit lengths are key type dependent. See above.
keyEncryption - if true this boolean requests a key implementation which implements the
javacardx.cipher.KeyEncryption interface.

Returns:
the key object instance of the requested key type, length and encrypted access.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm associated
with the specified type, size of key and key encryption interface is not supported.

140 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

162

javacard.security
Class MessageDigest
java.lang.Object
 |
 +--javacard.security.MessageDigest

public abstract class MessageDigest
extends Object

The MessageDigest class is the base class for hashing algorthims. Implementations of MessageDigest
algorithms must extend this class and implement all the abstract methods.

Field Summary
static byte ALG_MD5

 Message Digest algorithm MD5.

static byte ALG_RIPEMD160
 Message Digest algorithm RIPE MD-160.

static byte ALG_SHA
 Message Digest algorithm SHA.

Constructor Summary
protected MessageDigest()

 Protected Constructor

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 141

Java Card 2.1 API

Appendix JCAPI01

163

Method Summary
abstract short doFinal(byte[] inBuff, short inOffset,

short inLength, byte[] outBuff, short outOffset)
 Generates a hash of all/last input data.

abstract byte getAlgorithm()
 Gets the Message digest algorithm.

static MessageDigest getInstance(byte algorithm, boolean externalAccess)
 Creates a MessageDigest object instance of the selected algorithm.

abstract byte getLength()
 Returns the byte length of the hash.

abstract void update(byte[] inBuff, short inOffset,
short inLength)
 Accumulates a hash of the input data.

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_SHA
public static final byte ALG_SHA

Message Digest algorithm SHA.

ALG_MD5
public static final byte ALG_MD5

Message Digest algorithm MD5.

ALG_RIPEMD160
public static final byte ALG_RIPEMD160

142 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

164

Message Digest algorithm RIPE MD-160.

Constructor Detail

MessageDigest
protected MessageDigest()

Protected Constructor

Method Detail

getInstance
public static final MessageDigest getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Creates a MessageDigest object instance of the selected algorithm.
Parameters:

algorithm - the desired message digest algorithm. Valid codes listed in ALG_.. constants.
See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the MessageDigest instance will also be accessed (via a Shareable
interface) when the owner of the MessageDigest instance is not the currently selected
applet.

Returns:
the MessageDigest object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Message digest algorithm.
Returns:

the algorithm code defined above.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 143

Java Card 2.1 API

Appendix JCAPI01

165

getLength
public abstract byte getLength()

Returns the byte length of the hash.
Returns:

hash length

doFinal
public abstract short doFinal(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] outBuff,
 short outOffset)

Generates a hash of all/last input data. Completes and returns the hash computation after performing
final operations such as padding. The MessageDigest object is reset after this call is made.

The input and output buffer data may overlap.
Parameters:

inBuff - the input buffer of data to be hashed
inOffset - the offset into the input buffer at which to begin hash generation
inLength - the byte length to hash
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes of hash output in outBuff

update
public abstract void update(byte[] inBuff,
 short inOffset,
 short inLength)

Accumulates a hash of the input data. When this method is used temporary storage of intermediate
results is required. This method should only be used if all the input data required for the hash is not
available in one byte array. The doFinal() method is recommended whenever possible.
Parameters:

inBuff - the input buffer of data to be hashed
inOffset - the offset into the input buffer at which to begin hash generation
inLength - the byte length to hash

See Also:
doFinal(byte[], short, short, byte[], short)

144 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

166

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 145

Java Card 2.1 API

Appendix JCAPI01

167

javacard.security
Interface PrivateKey
All Known Subinterfaces:

DSAPrivateKey, RSAPrivateCrtKey, RSAPrivateKey

public abstract interface PrivateKey
extends Key

The PrivateKey class is the base class for private keys used in asymmetric algorithms.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

146 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

168

javacard.security
Interface PublicKey
All Known Subinterfaces:

DSAPublicKey, RSAPublicKey

public abstract interface PublicKey
extends Key

The PublicKey class is the base class for public keys used in asymmetric algorithms.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 147

Java Card 2.1 API

Appendix JCAPI01

169

javacard.security
Interface RSAPrivateCrtKey

public abstract interface RSAPrivateCrtKey
extends PrivateKey

The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm in its Chinese
Remainder Theorem form. It may also be used by the javacardx.crypto.Cipher class to
encrypt/decrypt messages.

Let S = md mod n, where m is the data to be signed, d is the private key exponent, and n is private key
modulus composed of two prime numbers p and q. The following names are used in the initializer
methods in this interface:

P, the prime factor p
Q, the prime factor q.
PQ = q-1 mod p
DP1 = d mod (p - 1)
DQ1 = d mod (q - 1)

When all five components (P,Q,PQ,DP1,DQ1) of the key are set, the key is initialized and ready for use.

See Also:
RSAPrivateKey, RSAPublicKey, KeyBuilder, Signature, Cipher, KeyEncryption

148 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

170

Method Summary
 short getDP1(byte[] buffer, short offset)

 Returns the value of the DP1 parameter in plain text.

 short getDQ1(byte[] buffer, short offset)
 Returns the value of the DQ1 parameter in plain text.

 short getP(byte[] buffer, short offset)
 Returns the value of the P parameter in plain text.

 short getPQ(byte[] buffer, short offset)
 Returns the value of the PQ parameter in plain text.

 short getQ(byte[] buffer, short offset)
 Returns the value of the Q parameter in plain text.

 void setDP1(byte[] buffer, short offset, short length)
 Sets the value of the DP1 parameter.

 void setDQ1(byte[] buffer, short offset, short length)
 Sets the value of the DQ1 parameter.

 void setP(byte[] buffer, short offset, short length)
 Sets the value of the P parameter.

 void setPQ(byte[] buffer, short offset, short length)
 Sets the value of the PQ parameter.

 void setQ(byte[] buffer, short offset, short length)
 Sets the value of the Q parameter.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

setP
public void setP(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 149

Java Card 2.1 API

Appendix JCAPI01

171

Sets the value of the P parameter. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input P parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the P parameter value
is decrypted using the Cipher object.

setQ
public void setQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the Q parameter. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input Q parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the Q parameter value
is decrypted using the Cipher object.

150 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

172

setDP1
public void setDP1(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the DP1 parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input DP1 parameter data is copied into
the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the DP1 parameter
value is decrypted using the Cipher object.

setDQ1
public void setDQ1(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the DQ1 parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input DQ1 parameter data is copied into
the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the DQ1 parameter
value is decrypted using the Cipher object.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 151

Java Card 2.1 API

Appendix JCAPI01

173

setPQ
public void setPQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the PQ parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input PQ parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the PQ parameter
value is decrypted using the Cipher object.

getP
public short getP(byte[] buffer,
 short offset)

Returns the value of the P parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the P parameter value returned

getQ
public short getQ(byte[] buffer,
 short offset)

Returns the value of the Q parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).

152 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

174

Parameters:
buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the Q parameter value returned

getDP1
public short getDP1(byte[] buffer,
 short offset)

Returns the value of the DP1 parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the DP1 parameter value returned

getDQ1
public short getDQ1(byte[] buffer,
 short offset)

Returns the value of the DQ1 parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the DQ1 parameter value returned

getPQ
public short getPQ(byte[] buffer,
 short offset)

Returns the value of the PQ parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the PQ parameter value returned

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 153

Java Card 2.1 API

Appendix JCAPI01

175

154 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

176

javacard.security
Interface RSAPrivateKey

public abstract interface RSAPrivateKey
extends PrivateKey

The RSAPrivateKey class is used to sign data using the RSA algorithm in its modulus/exponent form.
It may also be used by the javacardx.crypto.Cipher class to encrypt/decrypt messages.

When both the modulus and exponent of the key are set, the key is initialized and ready for use.

See Also:
RSAPublicKey, RSAPrivateCrtKey, KeyBuilder, Signature, Cipher,
KeyEncryption

Method Summary
 short getExponent(byte[] buffer, short offset)

 Returns the private exponent value of the key in plain text.

 short getModulus(byte[] buffer, short offset)
 Returns the modulus value of the key in plain text.

 void setExponent(byte[] buffer, short offset, short length)
 Sets the private exponent value of the key.

 void setModulus(byte[] buffer, short offset, short length)
 Sets the modulus value of the key.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 155

Java Card 2.1 API

Appendix JCAPI01

177

setModulus
public void setModulus(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the modulus value of the key. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input modulus data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input modulus data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the modulus value is
decrypted using the Cipher object.

setExponent
public void setExponent(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the private exponent value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input exponent data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the exponent value begins
length - the length of the exponent

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input exponent data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the exponent value is
decrypted using the Cipher object.

156 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

178

getModulus
public short getModulus(byte[] buffer,
 short offset)

Returns the modulus value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the modulus value starts

Returns:
the byte length of the modulus value returned

getExponent
public short getExponent(byte[] buffer,
 short offset)

Returns the private exponent value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the exponent value begins

Returns:
the byte length of the private exponent value returned

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 157

Java Card 2.1 API

Appendix JCAPI01

179

javacard.security
Interface RSAPublicKey

public abstract interface RSAPublicKey
extends PublicKey

The RSAPublicKey is used to verify signatures on signed data using the RSA algorithm. It may also
used by the javacardx.crypto.Cipher class to encrypt/decrypt messages.

When both the modulus and exponent of the key are set, the key is initialized and ready for use.

See Also:
RSAPrivateKey, RSAPrivateCrtKey, KeyBuilder, Signature, Cipher,
KeyEncryption

Method Summary
 short getExponent(byte[] buffer, short offset)

 Returns the private exponent value of the key in plain text.

 short getModulus(byte[] buffer, short offset)
 Returns the modulus value of the key in plain text.

 void setExponent(byte[] buffer, short offset, short length)
 Sets the public exponent value of the key.

 void setModulus(byte[] buffer, short offset, short length)
 Sets the modulus value of the key.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

158 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

180

setModulus
public void setModulus(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the modulus value of the key. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input modulus data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the byte length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input modulus data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the modulus value is
decrypted using the Cipher object.

setExponent
public void setExponent(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the public exponent value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input exponent data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the exponent value begins
length - the byte length of the exponent

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input exponent data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the exponent value is
decrypted using the Cipher object.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 159

Java Card 2.1 API

Appendix JCAPI01

181

getModulus
public short getModulus(byte[] buffer,
 short offset)

Returns the modulus value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the input buffer at which the modulus value starts

Returns:
the byte length of the modulus value returned

getExponent
public short getExponent(byte[] buffer,
 short offset)

Returns the private exponent value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the exponent value begins

Returns:
the byte length of the public exponent returned

160 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

182

javacard.security
Class RandomData
java.lang.Object
 |
 +--javacard.security.RandomData

public abstract class RandomData
extends Object

The RandomData abstract class is the base class for random number generation. Implementations of
RandomData algorithms must extend this class and implement all the abstract methods.

Field Summary
static byte ALG_PSEUDO_RANDOM

 Utility pseudo random number generation algorithms.

static byte ALG_SECURE_RANDOM
 Cryptographically secure random number generation algorithms.

Constructor Summary
protected RandomData()

 Protected constructor for subclassing.

Method Summary
abstract void generateData(byte[] buffer, short offset, short length)

 Generates random data.

static RandomData getInstance(byte algorithm)
 Creates a RandomData instance of the selected algorithm.

abstract void setSeed(byte[] buffer, short offset, short length)
 Seeds the random data generator.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 161

Java Card 2.1 API

Appendix JCAPI01

183

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_PSEUDO_RANDOM
public static final byte ALG_PSEUDO_RANDOM

Utility pseudo random number generation algorithms.

ALG_SECURE_RANDOM
public static final byte ALG_SECURE_RANDOM

Cryptographically secure random number generation algorithms.

Constructor Detail

RandomData
protected RandomData()

Protected constructor for subclassing.

Method Detail

getInstance
public static final RandomData getInstance(byte algorithm)
 throws CryptoException

Creates a RandomData instance of the selected algorithm. The pseudo random RandomData
instance’s seed is initialized to a internal default value.
Parameters:

algorithm - the desired random number algorithm. Valid codes listed in ALG_.. constants.
See above.

Returns:
the RandomData object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

162 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

184

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

generateData
public abstract void generateData(byte[] buffer,
 short offset,
 short length)

Generates random data.
Parameters:

buffer - the output buffer
offset - the offset into the output buffer
length - the length of random data to generate

setSeed
public abstract void setSeed(byte[] buffer,
 short offset,
 short length)

Seeds the random data generator.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer
length - the length of the seed data

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 163

Java Card 2.1 API

Appendix JCAPI01

185

javacard.security
Interface SecretKey
All Known Subinterfaces:

DESKey

public abstract interface SecretKey
extends Key

The SecretKey class is the base interface for keys used in symmetric alogrightms (e.g. DES).

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

164 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

186

javacard.security
Class Signature
java.lang.Object
 |
 +--javacard.security.Signature

public abstract class Signature
extends Object

The Signature class is the base class for Signature algorthims. Implementations of Signature
algorithms must extend this class and implement all the abstract methods.

The term "pad" is used in the public key signature algorithms below to refer to all the operations specified
in the referenced scheme to transform the message digest into the encryption block size.

Field Summary
static byte ALG_DES_MAC4_ISO9797_M1

 Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC
(most significant 4 bytes of encrypted block) using DES or triple DES in CBC mode.
This algorithm uses outer CBC for triple DES. Input data is padded according to the ISO
9797 method 1 scheme.

static byte ALG_DES_MAC4_ISO9797_M2
 Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC
(most significant 4 bytes of encrypted block) using DES or triple DES in CBC mode.
This algorithm uses outer CBC for triple DES. Input data is padded according to the ISO
9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_MAC4_NOPAD
 Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most
significant 4 bytes of encrypted block) using DES or triple DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data.

static byte ALG_DES_MAC4_PKCS5
 Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most
significant 4 bytes of encrypted block) using DES or triple DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5
scheme.

static byte ALG_DES_MAC8_ISO9797_M1
 Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC
using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES.
Input data is padded according to the ISO 9797 method 1 scheme.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 165

Java Card 2.1 API

Appendix JCAPI01

187

static byte ALG_DES_MAC8_ISO9797_M2
 Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC
using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES.
Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_MAC8_NOPAD
 Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using
DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES. This
algorithm does not pad input data.

static byte ALG_DES_MAC8_PKCS5
 Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using
DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES. Input
data is padded according to the PKCS#5 scheme.

static byte ALG_DSA_SHA
 Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using
DSA.

static byte ALG_RSA_MD5_PKCS1
 Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_MD5_RFC2409
 Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest
using RSA. The digest is padded according to the RFC2409 scheme.

static byte ALG_RSA_RIPEMD160_ISO9796
 Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte
RIPE MD-160 digest using RSA. The digest is padded according to the ISO 9796
scheme.

static byte ALG_RSA_RIPEMD160_PKCS1
 Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE
MD-160 digest using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_SHA_ISO9796
 Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the ISO 9796 (EMV’96) scheme.

static byte ALG_RSA_SHA_PKCS1
 Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_SHA_RFC2409
 Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the RFC2409 scheme.

static byte MODE_SIGN
 Used in init() methods to indicate signature sign mode.

166 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

188

static byte MODE_VERIFY
 Used in init() methods to indicate signature verify mode.

Constructor Summary
protected Signature()

 Protected Constructor

Method Summary
abstract byte getAlgorithm()

 Gets the Signature algorithm.

static Signature getInstance(byte algorithm, boolean externalAccess)
 Creates a Signature object instance of the selected algorithm.

abstract short getLength()
 Returns the byte length of the signature data.

abstract void init(Key theKey, byte theMode)
 Initializes the Signature object with the appropriate Key.

abstract void init(Key theKey, byte theMode, byte[] bArray,
short bOff, short bLen)
 Initializes the Signature object with the appropriate Key and algorithm
specific parameters.

abstract short sign(byte[] inBuff, short inOffset, short inLength,
byte[] sigBuff, short sigOffset)
 Generates the signature of all/last input data.

abstract void update(byte[] inBuff, short inOffset, short inLength)
 Accumulates a signature of the input data.

abstract
 boolean

verify(byte[] inBuff, short inOffset, short inLength,
byte[] sigBuff, short sigOffset, short sigLength)
 Verifies the signature of all/last input data against the passed in signature.

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 167

Java Card 2.1 API

Appendix JCAPI01

189

Field Detail

ALG_DES_MAC4_NOPAD
public static final byte ALG_DES_MAC4_NOPAD

Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. This algorithm does not pad input data. If the input data is not (8 byte) block aligned it throws
CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_MAC8_NOPAD
public static final byte ALG_DES_MAC8_NOPAD

Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using DES or triple DES
in CBC mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data. If the input data is not (8 byte) block aligned it throws CryptoExeption with the reason
code ILLEGAL_USE.

Note:
This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_ISO9797_M1
public static final byte ALG_DES_MAC4_ISO9797_M1

Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_MAC8_ISO9797_M1
public static final byte ALG_DES_MAC8_ISO9797_M1

Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 1 scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

168 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

190

ALG_DES_MAC4_ISO9797_M2
public static final byte ALG_DES_MAC4_ISO9797_M2

Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96)
scheme.

ALG_DES_MAC8_ISO9797_M2
public static final byte ALG_DES_MAC8_ISO9797_M2

Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_PKCS5
public static final byte ALG_DES_MAC4_PKCS5

Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_MAC8_PKCS5
public static final byte ALG_DES_MAC8_PKCS5

Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using DES or triple DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to the
PKCS#5 scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 169

Java Card 2.1 API

Appendix JCAPI01

191

ALG_RSA_SHA_ISO9796
public static final byte ALG_RSA_SHA_ISO9796

Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_SHA_PKCS1
public static final byte ALG_RSA_SHA_PKCS1

Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_MD5_PKCS1
public static final byte ALG_RSA_MD5_PKCS1

Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_RIPEMD160_ISO9796
public static final byte ALG_RSA_RIPEMD160_ISO9796

Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the ISO 9796 scheme.

ALG_RSA_RIPEMD160_PKCS1
public static final byte ALG_RSA_RIPEMD160_PKCS1

Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_DSA_SHA
public static final byte ALG_DSA_SHA

Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using DSA.

170 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

192

ALG_RSA_SHA_RFC2409
public static final byte ALG_RSA_SHA_RFC2409

Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_RSA_MD5_RFC2409
public static final byte ALG_RSA_MD5_RFC2409

Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the RFC2409 scheme.

MODE_SIGN
public static final byte MODE_SIGN

Used in init() methods to indicate signature sign mode.

MODE_VERIFY
public static final byte MODE_VERIFY

Used in init() methods to indicate signature verify mode.

Constructor Detail

Signature
protected Signature()

Protected Constructor

Method Detail

getInstance
public static final Signature getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 171

Java Card 2.1 API

Appendix JCAPI01

193

Creates a Signature object instance of the selected algorithm.
Parameters:

algorithm - the desired Signature algorithm. See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the Signature instance will also be accessed (via a Shareable interface)
when the owner of the Signature instance is not the currently selected applet.

Returns:
the Signature object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

init
public abstract void init(Key theKey,
 byte theMode)
 throws CryptoException

Initializes the Signature object with the appropriate Key. This method should be used for
algorithms which do not need initialization parameters or use default parameter values.

Note:
DES and triple DES algorithms in CBC mode will use 0 for initial vector(IV) if this method is
used.

Parameters:
theKey - the key object to use for signing or verifying
theMode - one of MODE_SIGN or MODE_VERIFY

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
the Key is inconsistent with theMode or with the Signature implementation.

init
public abstract void init(Key theKey,
 byte theMode,
 byte[] bArray,
 short bOff,
 short bLen)
 throws CryptoException

Initializes the Signature object with the appropriate Key and algorithm specific parameters.

Note:
DES and triple DES algorithms in outer CBC mode expect an 8 byte parameter value for the
initial vector(IV) in bArray.

172 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

194

RSA and DSA algorithms throw CryptoException.ILLEGAL_VALUE.
Parameters:

theKey - the key object to use for signing
theMode - one of MODE_SIGN or MODE_VERIFY
bArray - byte array containing algorithm specific initialization info.
bOff - offset withing bArray where the algorithm specific data begins.
bLen - byte length of algorithm specific parameter data

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
a byte array parameter option is not supported by the algorithm or if the bLen is an
incorrect byte length for the algorithm specific data or if the Key is inconsistent with
theMode or with the Signature implementation.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Signature algorithm.
Returns:

the algorithm code defined above.

getLength
public abstract short getLength()

Returns the byte length of the signature data.
Returns:

the byte length of the signature data.

update
public abstract void update(byte[] inBuff,
 short inOffset,
 short inLength)
 throws CryptoException

Accumulates a signature of the input data. When this method is used temporary storage of
intermediate results is required. This method should only be used if all the input data required for the
signature is not available in one byte array. The sign() or verify() method is recommended
whenever possible.
Parameters:

inBuff - the input buffer of data to be signed
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 173

Java Card 2.1 API

Appendix JCAPI01

195

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
See Also:

sign(byte[], short, short, byte[], short), verify(byte[], short,
short, byte[], short, short)

sign
public abstract short sign(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] sigBuff,
 short sigOffset)
 throws CryptoException

Generates the signature of all/last input data. A call to this method also resets this Signature
object to the state it was in when previously initialized via a call to init(). That is, the object is
reset and available to sign another message.

The input and output buffer data may overlap.
Parameters:

inBuff - the input buffer of data to be signed
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign
sigBuff - the output buffer to store signature data
sigOffset - the offset into sigBuff at which to begin signature data

Returns:
number of bytes of signature output in sigBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Signature object is not initialized or
initialized for signature verify mode.
CryptoException.ILLEGAL_USE if this Signature algorithm does not pad the
message and the message is not block aligned.

verify
public abstract boolean verify(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] sigBuff,
 short sigOffset,
 short sigLength)
 throws CryptoException

174 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

196

Verifies the signature of all/last input data against the passed in signature. A call to this method also
resets this Signature object to the state it was in when previously initialized via a call to init().
That is, the object is reset and available to verify another message.
Parameters:

inBuff - the input buffer of data to be verified
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign
sigBuff - the input buffer containing signature data
sigOffset - the offset into sigBuff where signature data begins.
sigLength - the byte length of the signature data

Returns:
true if signature verifies false otherwise.

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Signature object is not initialized or
initialized for signature sign mode.
CryptoException.ILLEGAL_USE if this Signature algorithm does not pad the
message and the message is not block aligned.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 175

Java Card 2.1 API

Appendix JCAPI01

197

Package javacardx.crypto
Extension package containing security classes and interfaces for export-controlled functionality.

See:
 Description

Interface Summary

KeyEncryption
KeyEncryption interface defines the methods used to enable encrypted key data
access to a key implementation.

Class Summary
Cipher The Cipher class is the abstract base class for Cipher algorthims.

Package javacardx.crypto Description
Extension package containing security classes and interfaces for export-controlled functionality.

176 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

198

javacardx.crypto
Class Cipher
java.lang.Object
 |
 +--javacardx.crypto.Cipher

public abstract class Cipher
extends Object

The Cipher class is the abstract base class for Cipher algorthims. Implementations of Cipher algorithms
must extend this class and implement all the abstract methods.

The term "pad" is used in the public key cipher algorithms below to refer to all the operations specified in
the referenced scheme to transform the message block into the cipher block size.

Field Summary
static byte ALG_DES_CBC_ISO9797_M1

 Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded
according to the ISO 9797 method 1 scheme.

static byte ALG_DES_CBC_ISO9797_M2
 Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded
according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_CBC_NOPAD
 Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC
mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data.

static byte ALG_DES_CBC_PKCS5
 Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC
mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the PKCS#5 scheme.

static byte ALG_DES_ECB_ISO9797_M1
 Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in
ECB mode. Input data is padded according to the ISO 9797 method 1 scheme.

static byte ALG_DES_ECB_ISO9797_M2
 Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in
ECB mode. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4,
EMV’96) scheme.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 177

Java Card 2.1 API

Appendix JCAPI01

199

static byte ALG_DES_ECB_NOPAD
 Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB
mode. This algorithm does not pad input data.

static byte ALG_DES_ECB_PKCS5
 Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB
mode. Input data is padded according to the PKCS#5 scheme.

static byte ALG_RSA_ISO14888
 Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data
is padded according to the ISO 14888 scheme.

static byte ALG_RSA_ISO9796
 Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is
padded according to the ISO 9796 (EMV’96) scheme.

static byte ALG_RSA_PKCS1
 Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is
padded according to the PKCS#1 (v1.5) scheme.

static byte MODE_DECRYPT
 Used in init() methods to indicate decryption mode.

static byte MODE_ENCRYPT
 Used in init() methods to indicate encryption mode.

Constructor Summary
protected Cipher()

 Protected Constructor

178 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

200

Method Summary
abstract

 short
doFinal(byte[] inBuff, short inOffset, short inLength,
byte[] outBuff, short outOffset)
 Generates encrypted/decrypted output from all/last input data.

abstract byte getAlgorithm()
 Gets the Cipher algorithm.

static Cipher getInstance(byte algorithm, boolean externalAccess)
 Creates a Cipher object instance of the selected algorithm.

abstract void init(Key theKey, byte theMode)
 Initializes the Cipher object with the appropriate Key.

abstract void init(Key theKey, byte theMode, byte[] bArray, short bOff,
short bLen)
 Initializes the Cipher object with the appropriate Key and algorithm specific
parameters.

abstract
 short

update(byte[] inBuff, short inOffset, short inLength,
byte[] outBuff, short outOffset)
 Generates encrypted/decrypted output from input data.

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_DES_CBC_NOPAD
public static final byte ALG_DES_CBC_NOPAD

Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data. If the input data is
not (8 byte) block aligned it throws CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_CBC_ISO9797_M1
public static final byte ALG_DES_CBC_ISO9797_M1

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 179

Java Card 2.1 API

Appendix JCAPI01

201

Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 1
scheme.

ALG_DES_CBC_ISO9797_M2
public static final byte ALG_DES_CBC_ISO9797_M2

Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 2
(ISO 7816-4, EMV’96) scheme.

ALG_DES_CBC_PKCS5
public static final byte ALG_DES_CBC_PKCS5

Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_ECB_NOPAD
public static final byte ALG_DES_ECB_NOPAD

Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB mode. This
algorithm does not pad input data. If the input data is not (8 byte) block aligned it throws
CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_ECB_ISO9797_M1
public static final byte ALG_DES_ECB_ISO9797_M1

Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_ECB_ISO9797_M2
public static final byte ALG_DES_ECB_ISO9797_M2

Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

180 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

202

ALG_DES_ECB_PKCS5
public static final byte ALG_DES_ECB_PKCS5

Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB mode. Input data is
padded according to the PKCS#5 scheme.

ALG_RSA_ISO14888
public static final byte ALG_RSA_ISO14888

Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data is padded
according to the ISO 14888 scheme.

ALG_RSA_PKCS1
public static final byte ALG_RSA_PKCS1

Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is padded according to
the PKCS#1 (v1.5) scheme.

Note:
This algorithm is only suitable for messages of limited length. The total number of input bytes
processed may not be more than k-11, where k is the RSA key’s modulus size in bytes.

ALG_RSA_ISO9796
public static final byte ALG_RSA_ISO9796

Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is padded
according to the ISO 9796 (EMV’96) scheme.

Note:
This algorithm is only suitable for messages of limited length. The total number of input bytes
processed may not be more than k/2, where k is the RSA key’s modulus size in bytes.

MODE_DECRYPT
public static final byte MODE_DECRYPT

Used in init() methods to indicate decryption mode.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 181

Java Card 2.1 API

Appendix JCAPI01

203

MODE_ENCRYPT
public static final byte MODE_ENCRYPT

Used in init() methods to indicate encryption mode.

Constructor Detail

Cipher
protected Cipher()

Protected Constructor

Method Detail

getInstance
public static final Cipher getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Creates a Cipher object instance of the selected algorithm.
Parameters:

algorithm - the desired Cipher algorithm. See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the Cipher instance will also be accessed (via a Shareable interface)
when the owner of the Cipher instance is not the currently selected applet.

Returns:
the Cipher object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

init
public abstract void init(Key theKey,
 byte theMode)
 throws CryptoException

Initializes the Cipher object with the appropriate Key. This method should be used for algorithms
which do not need initialization parameters or use default parameter values.

182 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

204

Note:
DES and triple DES algorithms in CBC mode will use 0 for initial vector(IV) if this method is
used.

Parameters:
theKey - the key object to use for signing or verifying
theMode - one of MODE_DECRYPT or MODE_ENCRYPT

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
the Key is inconsistent with the Cipher implementation.

init
public abstract void init(Key theKey,
 byte theMode,
 byte[] bArray,
 short bOff,
 short bLen)
 throws CryptoException

Initializes the Cipher object with the appropriate Key and algorithm specific parameters.

Note:
DES and triple DES algorithms in outer CBC mode expect an 8 byte parameter value for the
initial vector(IV) in bArray.
RSA and DSA algorithms throw CryptoException.ILLEGAL_VALUE.

Parameters:
theKey - the key object to use for signing
theMode - one of MODE_DECRYPT or MODE_ENCRYPT
bArray - byte array containing algorithm specific initialization info.
bOff - offset withing bArray where the algorithm specific data begins.
bLen - byte length of algorithm specific parameter data

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
a byte array parameter option is not supported by the algorithm or if the bLen is an
incorrect byte length for the algorithm specific data or if the Key is inconsistent with the
Cipher implementation.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Cipher algorithm.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 183

Java Card 2.1 API

Appendix JCAPI01

205

Returns:
the algorithm code defined above.

doFinal
public abstract short doFinal(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] outBuff,
 short outOffset)
 throws CryptoException

Generates encrypted/decrypted output from all/last input data. A call to this method also resets this
Cipher object to the state it was in when previously initialized via a call to init(). That is, the
object is reset and available to encrypt or decrypt (depending on the operation mode that was
specified in the call to init()) more data.

The input and output buffer data may overlap.

Notes:
On decryption operations (except when ISO 9797 method 1 padding is used), the padding bytes
are not written to outBuff.
On encryption operations, the number of bytes output into outBuff may be larger than
inLength.

Parameters:
inBuff - the input buffer of data to be encrypted/decrypted.
inOffset - the offset into the input buffer at which to begin encryption/decryption.
inLength - the byte length to be encrypted/decrypted.
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes output in outBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Cipher object is not initialized.
CryptoException.ILLEGAL_USE if this Cipher algorithm does not pad the
message and the message is not block aligned or if the input message length is not
supported.

update
public abstract short update(byte[] inBuff,
 short inOffset,

184 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

206

 short inLength,
 byte[] outBuff,
 short outOffset)
 throws CryptoException

Generates encrypted/decrypted output from input data. When this method is used temporary storage
of intermediate results is required. This method should only be used if all the input data required for
the cipher is not available in one byte array. The doFinal() method is recommended whenever
possible.

The input and output buffer data may overlap.

Notes:
On decryption operations(except when ISO 9797 method 1 padding is used), the padding bytes
are not written to outBuff.
On encryption operations, the number of bytes output into outBuff may be larger than
inLength.
On encryption and decryption operations(except when ISO 9797 method 1 padding is used),
block alignment considerations may require that the number of bytes output into outBuff be
smaller than inLength or even 0.

Parameters:
inBuff - the input buffer of data to be encrypted/decrypted.
inOffset - the offset into the input buffer at which to begin encryption/decryption.
inLength - the byte length to be encrypted/decrypted.
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes output in outBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Cipher object is not initialized.
CryptoException.ILLEGAL_USE if the input message length is not supported.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 185

Java Card 2.1 API

Appendix JCAPI01

207

javacardx.crypto
Interface KeyEncryption

public abstract interface KeyEncryption

KeyEncryption interface defines the methods used to enable encrypted key data access to a key
implementation.

See Also:
KeyBuilder, Cipher

Method Summary
 Cipher getKeyCipher()

 Returns the Cipher object to be used to decrypt the input key data and key parameters
in the set methods. Default is null - no decryption performed.

 void setKeyCipher(Cipher keyCipher)
 Sets the Cipher object to be used to decrypt the input key data and key parameters in
the set methods. Default Cipher object is null - no decryption performed.

Method Detail

setKeyCipher
public void setKeyCipher(Cipher keyCipher)

Sets the Cipher object to be used to decrypt the input key data and key parameters in the set
methods.

Default Cipher object is null - no decryption performed.
Parameters:

keyCipher - the decryption Cipher object to decrypt the input key data. null parameter
indicates that no decryption is required.

getKeyCipher
public Cipher getKeyCipher()

186 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

208

Returns the Cipher object to be used to decrypt the input key data and key parameters in the set
methods.

Default is null - no decryption performed.
Returns:

keyCipher the decryption Cipher object to decrypt the input key data. null return indicates
that no decryption is performed.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 187

Java Card 2.1 API

Appendix JCAPI01

209

A B C D E G I J K L M N O P R S T U V W

A
abortTransaction() - Static method in class javacard.framework.JCSystem

Aborts the atomic transaction.
AID - class javacard.framework.AID.

This class encapsulates the Application Identifier(AID) associated with an applet.
AID(byte[], short, byte) - Constructor for class javacard.framework.AID

The JCRE uses this constructor to create a new AID instance encapsulating the specified AID bytes.
ALG_DES_CBC_ISO9797_M1 - Static variable in class javacardx.crypto.Cipher

Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 1
scheme.

ALG_DES_CBC_ISO9797_M2 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 2
(ISO 7816-4, EMV’96) scheme.

ALG_DES_CBC_NOPAD - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data.

ALG_DES_CBC_PKCS5 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_ECB_ISO9797_M1 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_ECB_ISO9797_M2 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

ALG_DES_ECB_NOPAD - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB mode. This
algorithm does not pad input data.

ALG_DES_ECB_PKCS5 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB mode. Input data is
padded according to the PKCS#5 scheme.

ALG_DES_MAC4_ISO9797_M1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_MAC4_ISO9797_M2 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96)
scheme.

188 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

210

ALG_DES_MAC4_NOPAD - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. This algorithm does not pad input data.

ALG_DES_MAC4_PKCS5 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_MAC8_ISO9797_M1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 1 scheme.

ALG_DES_MAC8_ISO9797_M2 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

ALG_DES_MAC8_NOPAD - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using DES or triple DES
in CBC mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data.

ALG_DES_MAC8_PKCS5 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using DES or triple DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to the
PKCS#5 scheme.

ALG_DSA_SHA - Static variable in class javacard.security.Signature
Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using DSA.

ALG_MD5 - Static variable in class javacard.security.MessageDigest
Message Digest algorithm MD5.

ALG_PSEUDO_RANDOM - Static variable in class javacard.security.RandomData
Utility pseudo random number generation algorithms.

ALG_RIPEMD160 - Static variable in class javacard.security.MessageDigest
Message Digest algorithm RIPE MD-160.

ALG_RSA_ISO14888 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data is padded
according to the ISO 14888 scheme.

ALG_RSA_ISO9796 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is padded
according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_MD5_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_MD5_RFC2409 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_RSA_PKCS1 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is padded according to

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 189

Java Card 2.1 API

Appendix JCAPI01

211

the PKCS#1 (v1.5) scheme.
ALG_RSA_RIPEMD160_ISO9796 - Static variable in class javacard.security.Signature

Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the ISO 9796 scheme.

ALG_RSA_RIPEMD160_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_SHA_ISO9796 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_SHA_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_SHA_RFC2409 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_SECURE_RANDOM - Static variable in class javacard.security.RandomData
Cryptographically secure random number generation algorithms.

ALG_SHA - Static variable in class javacard.security.MessageDigest
Message Digest algorithm SHA.

APDU - class javacard.framework.APDU.
Application Protocol Data Unit (APDU) is the communication format between the card and the
off-card applications.

APDUException - exception javacard.framework.APDUException.
APDUException represents an APDU related exception.

APDUException(short) - Constructor for class javacard.framework.APDUException
Constructs an APDUException.

Applet - class javacard.framework.Applet.
This abstract class defines an applet in Java Card.

Applet() - Constructor for class javacard.framework.Applet
Only this class’s install() method should create the applet object.

ArithmeticException - exception java.lang.ArithmeticException.
A JCRE owned instance of ArithmethicException is thrown when an exceptional arithmetic
condition has occurred.

ArithmeticException() - Constructor for class java.lang.ArithmeticException
Constructs an ArithmeticException.

arrayCompare(byte[], short, byte[], short, short) - Static method in class javacard.framework.Util
Compares an array from the specified source array, beginning at the specified position, with the
specified position of the destination array from left to right.

arrayCopy(byte[], short, byte[], short, short) - Static method in class javacard.framework.Util
Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array.

arrayCopyNonAtomic(byte[], short, byte[], short, short) - Static method in class
javacard.framework.Util

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array (non-atomically).

190 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

212

arrayFillNonAtomic(byte[], short, short, byte) - Static method in class javacard.framework.Util
Fills the byte array (non-atomically) beginning at the specified position, for the specified length with
the specified byte value.

ArrayIndexOutOfBoundsException - exception java.lang.ArrayIndexOutOfBoundsException.
A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an array
has been accessed with an illegal index.

ArrayIndexOutOfBoundsException() - Constructor for class
java.lang.ArrayIndexOutOfBoundsException

Constructs an ArrayIndexOutOfBoundsException.
ArrayStoreException - exception java.lang.ArrayStoreException.

A JCRE owned instance of ArrayStoreException is thrown to indicate that an attempt has
been made to store the wrong type of object into an array of objects.

ArrayStoreException() - Constructor for class java.lang.ArrayStoreException
Constructs an ArrayStoreException.

B
BAD_LENGTH - Static variable in class javacard.framework.APDUException

This reason code is used by the APDU.setOutgoingLength() method to indicate that the
length parameter is greater that 256 or if non BLOCK CHAINED data transfer is requested and len
is greater than (IFSD-2), where IFSD is the Outgoing Block Size.

beginTransaction() - Static method in class javacard.framework.JCSystem
Begins an atomic transaction.

BUFFER_BOUNDS - Static variable in class javacard.framework.APDUException
This reason code is used by the APDU.sendBytes() method to indicate that the sum of buffer
offset parameter and the byte length parameter exceeds the APDU buffer size.

BUFFER_FULL - Static variable in class javacard.framework.TransactionException
This reason code is used during a transaction to indicate that the commit buffer is full.

buildKey(byte, short, boolean) - Static method in class javacard.security.KeyBuilder
Creates cryptographic keys for signature and cipher algorithms.

C
CardException - exception javacard.framework.CardException.

The CardException class defines a field reason and two accessor methods getReason()
and setReason().

CardException(short) - Constructor for class javacard.framework.CardException
Construct a CardException instance with the specified reason.

CardRuntimeException - exception javacard.framework.CardRuntimeException.
The CardRuntimeException class defines a field reason and two accessor methods
getReason() and setReason().

CardRuntimeException(short) - Constructor for class javacard.framework.CardRuntimeException
Construct a CardRuntimeException instance with the specified reason.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 191

Java Card 2.1 API

Appendix JCAPI01

213

check(byte[], short, byte) - Method in class javacard.framework.OwnerPIN
Compares pin against the PIN value.

check(byte[], short, byte) - Method in interface javacard.framework.PIN
Compares pin against the PIN value.

Cipher - class javacardx.crypto.Cipher.
The Cipher class is the abstract base class for Cipher algorthims.

Cipher() - Constructor for class javacardx.crypto.Cipher
Protected Constructor

CLA_ISO7816 - Static variable in interface javacard.framework.ISO7816
APDU command CLA : ISO 7816 = 0x00

ClassCastException - exception java.lang.ClassCastException.
A JCRE owned instance of ClassCastException is thrown to indicate that the code has
attempted to cast an object to a subclass of which it is not an instance.

ClassCastException() - Constructor for class java.lang.ClassCastException
Constructs a ClassCastException.

CLEAR_ON_DESELECT - Static variable in class javacard.framework.JCSystem
This event code indicates that the contents of the transient object are cleared to the default value on
applet deselection event or in CLEAR_ON_RESET cases.

CLEAR_ON_RESET - Static variable in class javacard.framework.JCSystem
This event code indicates that the contents of the transient object are cleared to the default value on
card reset (or power on) event.

clearKey() - Method in interface javacard.security.Key
Clears the key and sets its initialized state to false.

commitTransaction() - Static method in class javacard.framework.JCSystem
Commits an atomic transaction.

CryptoException - exception javacard.security.CryptoException.
CryptoException represents a cryptography-related exception.

CryptoException(short) - Constructor for class javacard.security.CryptoException
Constructs a CryptoException with the specified reason.

D
deselect() - Method in class javacard.framework.Applet

Called by the JCRE to inform this currently selected applet that another (or the same) applet will be
selected.

DESKey - interface javacard.security.DESKey.
DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES operations.

doFinal(byte[], short, short, byte[], short) - Method in class javacard.security.MessageDigest
Generates a hash of all/last input data.

doFinal(byte[], short, short, byte[], short) - Method in class javacardx.crypto.Cipher
Generates encrypted/decrypted output from all/last input data.

DSAKey - interface javacard.security.DSAKey.
The DSAKey interface is the base interface for the DSA algorithms private and public key
implementaions.

192 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

214

DSAPrivateKey - interface javacard.security.DSAPrivateKey.
The DSAPrivateKey interface is used to sign data using the DSA algorithm.

DSAPublicKey - interface javacard.security.DSAPublicKey.
The DSAPublicKey interface is used to verify signatures on signed data using the DSA algorithm.

E
equals(byte[], short, byte) - Method in class javacard.framework.AID

Checks if the specified AID bytes in bArray are the same as those encapsulated in this AID
object.

equals(Object) - Method in class java.lang.Object
Compares two Objects for equality.

equals(Object) - Method in class javacard.framework.AID
Compares the AID bytes in this AID instance to the AID bytes in the specified object.

Exception - exception java.lang.Exception.
The class Exception and its subclasses are a form of Throwable that indicates conditions that a
reasonable applet might want to catch.

Exception() - Constructor for class java.lang.Exception
Constructs an Exception instance.

G
generateData(byte[], short, short) - Method in class javacard.security.RandomData

Generates random data.
getAID() - Static method in class javacard.framework.JCSystem

Returns the JCRE owned instance of the AID object associated with the current applet context.
getAlgorithm() - Method in class javacard.security.MessageDigest

Gets the Message digest algorithm.
getAlgorithm() - Method in class javacard.security.Signature

Gets the Signature algorithm.
getAlgorithm() - Method in class javacardx.crypto.Cipher

Gets the Cipher algorithm.
getAppletShareableInterfaceObject(AID, byte) - Static method in class javacard.framework.JCSystem

This method is called by a client applet to get a server applet’s shareable interface object.
getBuffer() - Method in class javacard.framework.APDU

Returns the APDU buffer byte array.
getBytes(byte[], short) - Method in class javacard.framework.AID

Called to get the AID bytes encapsulated within AID object.
getDP1(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey

Returns the value of the DP1 parameter in plain text.
getDQ1(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey

Returns the value of the DQ1 parameter in plain text.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 193

Java Card 2.1 API

Appendix JCAPI01

215

getExponent(byte[], short) - Method in interface javacard.security.RSAPrivateKey
Returns the private exponent value of the key in plain text.

getExponent(byte[], short) - Method in interface javacard.security.RSAPublicKey
Returns the private exponent value of the key in plain text.

getG(byte[], short) - Method in interface javacard.security.DSAKey
Returns the subprime parameter value of the key in plain text.

getInBlockSize() - Static method in class javacard.framework.APDU
Returns the configured incoming block size. In T=1 protocol, this corresponds to IFSC (information
field size for ICC), the maximum size of incoming data blocks into the card. In T=0 protocol, this
method returns 1.

getInstance(byte) - Static method in class javacard.security.RandomData
Creates a RandomData instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacard.security.MessageDigest
Creates a MessageDigest object instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacard.security.Signature
Creates a Signature object instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacardx.crypto.Cipher
Creates a Cipher object instance of the selected algorithm.

getKey(byte[], short) - Method in interface javacard.security.DESKey
Returns the Key data in plain text.

getKeyCipher() - Method in interface javacardx.crypto.KeyEncryption
Returns the Cipher object to be used to decrypt the input key data and key parameters in the set
methods. Default is null - no decryption performed.

getLength() - Method in class javacard.security.MessageDigest
Returns the byte length of the hash.

getLength() - Method in class javacard.security.Signature
Returns the byte length of the signature data.

getMaxCommitCapacity() - Static method in class javacard.framework.JCSystem
Returns the total number of bytes in the commit buffer.

getModulus(byte[], short) - Method in interface javacard.security.RSAPrivateKey
Returns the modulus value of the key in plain text.

getModulus(byte[], short) - Method in interface javacard.security.RSAPublicKey
Returns the modulus value of the key in plain text.

getNAD() - Method in class javacard.framework.APDU
In T=1 protocol, this method returns the Node Address byte, NAD. In T=0 protocol, this method
returns 0.

getOutBlockSize() - Static method in class javacard.framework.APDU
Returns the configured outgoing block size. In T=1 protocol, this corresponds to IFSD (information
field size for interface device), the maximum size of outgoing data blocks to the CAD. In T=0
protocol, this method returns 258 (accounts for 2 status bytes).

getP(byte[], short) - Method in interface javacard.security.DSAKey
Returns the base parameter value of the key in plain text.

getP(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the P parameter in plain text.

getPQ(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the PQ parameter in plain text.

194 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

216

getPreviousContextAID() - Static method in class javacard.framework.JCSystem
This method is called to obtain the JCRE owned instance of the AID object associated with the
previously active applet context.

getProtocol() - Static method in class javacard.framework.APDU
Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.

getQ(byte[], short) - Method in interface javacard.security.DSAKey
Returns the prime parameter value of the key in plain text.

getQ(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the Q parameter in plain text.

getReason() - Method in class javacard.framework.CardRuntimeException
Get reason code

getReason() - Method in class javacard.framework.CardException
Get reason code

getShareableInterfaceObject(AID, byte) - Method in class javacard.framework.Applet
Called by the JCRE to obtain a shareable interface object from this server applet, on behalf of a
request from a client applet.

getShort(byte[], short) - Static method in class javacard.framework.Util
Concatenates two bytes in a byte array to form a short value.

getSize() - Method in interface javacard.security.Key
Returns the key size in number of bits.

getTransactionDepth() - Static method in class javacard.framework.JCSystem
Returns the current transaction nesting depth level.

getTriesRemaining() - Method in class javacard.framework.OwnerPIN
Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.

getTriesRemaining() - Method in interface javacard.framework.PIN
Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.

getType() - Method in interface javacard.security.Key
Returns the key interface type.

getUnusedCommitCapacity() - Static method in class javacard.framework.JCSystem
Returns the number of bytes left in the commit buffer.

getValidatedFlag() - Method in class javacard.framework.OwnerPIN
This protected method returns the validated flag.

getVersion() - Static method in class javacard.framework.JCSystem
Returns the current major and minor version of the Java Card API.

getX(byte[], short) - Method in interface javacard.security.DSAPrivateKey
Returns the value of the key in plain text.

getY(byte[], short) - Method in interface javacard.security.DSAPublicKey
Returns the value of the key in plain text.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 195

Java Card 2.1 API

Appendix JCAPI01

217

I
ILLEGAL_AID - Static variable in class javacard.framework.SystemException

This reason code is used by the javacard.framework.Applet.register() method to
indicate that the input AID parameter is not a legal AID value.

ILLEGAL_TRANSIENT - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that the request to create a transient object is not allowed in the
current applet context.

ILLEGAL_USE - Static variable in class javacard.framework.APDUException
This APDUException reason code indicates that the method should not be invoked based on the
current state of the APDU.

ILLEGAL_USE - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the signature or cipher algorithm does not pad the incoming
message and the input message is not block aligned.

ILLEGAL_VALUE - Static variable in class javacard.framework.PINException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

ILLEGAL_VALUE - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

ILLEGAL_VALUE - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

IN_PROGRESS - Static variable in class javacard.framework.TransactionException
This reason code is used by the beginTransaction method to indicate a transaction is already in
progress.

IndexOutOfBoundsException - exception java.lang.IndexOutOfBoundsException.
A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an index
of some sort (such as to an array) is out of range.

IndexOutOfBoundsException() - Constructor for class java.lang.IndexOutOfBoundsException
Constructs an IndexOutOfBoundsException.

init(Key, byte) - Method in class javacard.security.Signature
Initializes the Signature object with the appropriate Key.

init(Key, byte) - Method in class javacardx.crypto.Cipher
Initializes the Cipher object with the appropriate Key.

init(Key, byte, byte[], short, short) - Method in class javacard.security.Signature
Initializes the Signature object with the appropriate Key and algorithm specific parameters.

init(Key, byte, byte[], short, short) - Method in class javacardx.crypto.Cipher
Initializes the Cipher object with the appropriate Key and algorithm specific parameters.

INS_EXTERNAL_AUTHENTICATE - Static variable in interface javacard.framework.ISO7816
APDU command INS : EXTERNAL AUTHENTICATE = 0x82

INS_SELECT - Static variable in interface javacard.framework.ISO7816
APDU command INS : SELECT = 0xA4

install(byte[], short, byte) - Static method in class javacard.framework.Applet
To create an instance of the Applet subclass, the JCRE will call this static method first.

INTERNAL_FAILURE - Static variable in class javacard.framework.TransactionException
This reason code is used during a transaction to indicate an internal JCRE problem (fatal error).

196 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

218

INVALID_INIT - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the signature or cipher object has not been correctly
initialized for the requested operation.

IO_ERROR - Static variable in class javacard.framework.APDUException
This reason code indicates that an unrecoverable error occurred in the I/O transmission layer.

isInitialized() - Method in interface javacard.security.Key
Reports the initialized state of the key.

ISO7816 - interface javacard.framework.ISO7816.
ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4.

ISOException - exception javacard.framework.ISOException.
ISOException class encapsulates an ISO 7816-4 response status word as its reason code.

ISOException(short) - Constructor for class javacard.framework.ISOException
Constructs an ISOException instance with the specified status word.

isTransient(Object) - Static method in class javacard.framework.JCSystem
Used to check if the specified object is transient.

isValidated() - Method in class javacard.framework.OwnerPIN
Returns true if a valid PIN has been presented since the last card reset or last call to reset().

isValidated() - Method in interface javacard.framework.PIN
Returns true if a valid PIN value has been presented since the last card reset or last call to
reset().

J
java.lang - package java.lang

Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

javacard.framework - package javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

javacard.security - package javacard.security
Provides the classes and interfaces for the Java Card security framework.

javacardx.crypto - package javacardx.crypto
Extension package containing security classes and interfaces for export-controlled functionality.

JCSystem - class javacard.framework.JCSystem.
The JCSystem class includes a collection of methods to control applet execution, resource
management, atomic transaction management and inter-applet object sharing in Java Card.

K
Key - interface javacard.security.Key.

The Key interface is the base interface for all keys.
KeyBuilder - class javacard.security.KeyBuilder.

The KeyBuilder class is a key object factory.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 197

Java Card 2.1 API

Appendix JCAPI01

219

KeyEncryption - interface javacardx.crypto.KeyEncryption.
KeyEncryption interface defines the methods used to enable encrypted key data access to a key
implementation.

L
LENGTH_DES - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES = 64.
LENGTH_DES3_2KEY - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES3_2KEY = 128.
LENGTH_DES3_3KEY - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES3_3KEY = 192.
LENGTH_DSA_1024 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_1024 = 1024.
LENGTH_DSA_512 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_512 = 512.
LENGTH_DSA_768 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_768 = 768.
LENGTH_RSA_1024 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_1024 = 1024.
LENGTH_RSA_2048 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_2048 = 2048.
LENGTH_RSA_512 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_512 = 512.
LENGTH_RSA_768 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_768 = 768.
lookupAID(byte[], short, byte) - Static method in class javacard.framework.JCSystem

Returns the JCRE owned instance of the AID object, if any, encapsulating the specified AID bytes in
the buffer parameter if there exists a successfully installed applet on the card whose instance AID
exactly matches that of the specified AID bytes.

M
makeShort(byte, byte) - Static method in class javacard.framework.Util

Concatenates the two parameter bytes to form a short value.
makeTransientBooleanArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient boolean array with the specified array length.
makeTransientByteArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient byte array with the specified array length.
makeTransientObjectArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient array of Object with the specified array length.
makeTransientShortArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient short array with the specified array length.

198 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

220

MessageDigest - class javacard.security.MessageDigest.
The MessageDigest class is the base class for hashing algorthims.

MessageDigest() - Constructor for class javacard.security.MessageDigest
Protected Constructor

MODE_DECRYPT - Static variable in class javacardx.crypto.Cipher
Used in init() methods to indicate decryption mode.

MODE_ENCRYPT - Static variable in class javacardx.crypto.Cipher
Used in init() methods to indicate encryption mode.

MODE_SIGN - Static variable in class javacard.security.Signature
Used in init() methods to indicate signature sign mode.

MODE_VERIFY - Static variable in class javacard.security.Signature
Used in init() methods to indicate signature verify mode.

N
NegativeArraySizeException - exception java.lang.NegativeArraySizeException.

A JCRE owned instance of NegativeArraySizeException is thrown if an applet tries to
create an array with negative size.

NegativeArraySizeException() - Constructor for class java.lang.NegativeArraySizeException
Constructs a NegativeArraySizeException.

NO_RESOURCE - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that there is insufficient resource in the Card for the request.

NO_SUCH_ALGORITHM - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the requested algorithm or key type is not supported.

NO_T0_GETRESPONSE - Static variable in class javacard.framework.APDUException
This reason code indicates that during T=0 protocol, the CAD did not return a GET RESPONSE
command in response to a <61xx> response status to send additional data.

NO_TRANSIENT_SPACE - Static variable in class javacard.framework.SystemException
This reason code is used by the makeTransient..() methods to indicate that no room is
available in volatile memory for the requested object.

NOT_A_TRANSIENT_OBJECT - Static variable in class javacard.framework.JCSystem
This event code indicates that the object is not transient.

NOT_IN_PROGRESS - Static variable in class javacard.framework.TransactionException
This reason code is used by the abortTransaction and commintTransaction methods
when a transaction is not in progress.

NullPointerException - exception java.lang.NullPointerException.
A JCRE owned instance of NullPointerExceptionis thrown when an applet attempts to use
null in a case where an object is required.

NullPointerException() - Constructor for class java.lang.NullPointerException
Constructs a NullPointerException.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 199

Java Card 2.1 API

Appendix JCAPI01

221

O
Object - class java.lang.Object.

Class Object is the root of the Java Card class hierarchy.
Object() - Constructor for class java.lang.Object

OFFSET_CDATA - Static variable in interface javacard.framework.ISO7816

APDU command data offset : CDATA = 5
OFFSET_CLA - Static variable in interface javacard.framework.ISO7816

APDU header offset : CLA = 0
OFFSET_INS - Static variable in interface javacard.framework.ISO7816

APDU header offset : INS = 1
OFFSET_LC - Static variable in interface javacard.framework.ISO7816

APDU header offset : LC = 4
OFFSET_P1 - Static variable in interface javacard.framework.ISO7816

APDU header offset : P1 = 2
OFFSET_P2 - Static variable in interface javacard.framework.ISO7816

APDU header offset : P2 = 3
OwnerPIN - class javacard.framework.OwnerPIN.

This class represents an Owner PIN.
OwnerPIN(byte, byte) - Constructor for class javacard.framework.OwnerPIN

Constructor.

P
partialEquals(byte[], short, byte) - Method in class javacard.framework.AID

Checks if the specified partial AID byte sequence matches the first length bytes of the
encapsulated AID bytes within this AID object.

PIN - interface javacard.framework.PIN.
This interface represents a PIN.

PINException - exception javacard.framework.PINException.
PINException represents a OwnerPIN class access-related exception.

PINException(short) - Constructor for class javacard.framework.PINException
Constructs a PINException.

PrivateKey - interface javacard.security.PrivateKey.
The PrivateKey class is the base class for private keys used in asymmetric algorithms.

process(APDU) - Method in class javacard.framework.Applet
Called by the JCRE to process an incoming APDU command.

PROTOCOL_T0 - Static variable in class javacard.framework.APDU
ISO 7816 transport protocol type T=0

PROTOCOL_T1 - Static variable in class javacard.framework.APDU
ISO 7816 transport protocol type T=1

PublicKey - interface javacard.security.PublicKey.
The PublicKey class is the base class for public keys used in asymmetric algorithms.

200 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

222

R
RandomData - class javacard.security.RandomData.

The RandomData abstract class is the base class for random number generation.
RandomData() - Constructor for class javacard.security.RandomData

Protected constructor for subclassing.
receiveBytes(short) - Method in class javacard.framework.APDU

Gets as many data bytes as will fit without APDU buffer overflow, at the specified offset bOff.
Gets all the remaining bytes if they fit.

register() - Method in class javacard.framework.Applet
This method is used by the applet to register this applet instance with the JCRE and to assign the
Applet subclass AID bytes as its instance AID bytes.

register(byte[], short, byte) - Method in class javacard.framework.Applet
This method is used by the applet to register this applet instance with the JCRE and assign the
specified AID bytes as its instance AID bytes.

reset() - Method in class javacard.framework.OwnerPIN
If the validated flag is set, this method resets it.

reset() - Method in interface javacard.framework.PIN
If the validated flag is set, this method resets it.

resetAndUnblock() - Method in class javacard.framework.OwnerPIN
This method resets the validated flag and resets the PIN try counter to the value of the PIN try limit.

RIDEquals(AID) - Method in class javacard.framework.AID
Checks if the RID (National Registered Application provider identifier) portion of the encapsulated
AID bytes within the otherAID object matches that of this AID object.

RSAPrivateCrtKey - interface javacard.security.RSAPrivateCrtKey.
The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm in its Chinese
Remainder Theorem form.

RSAPrivateKey - interface javacard.security.RSAPrivateKey.
The RSAPrivateKey class is used to sign data using the RSA algorithm in its modulus/exponent
form.

RSAPublicKey - interface javacard.security.RSAPublicKey.
The RSAPublicKey is used to verify signatures on signed data using the RSA algorithm.

RuntimeException - exception java.lang.RuntimeException.
RuntimeException is the superclass of those exceptions that can be thrown during the normal
operation of the Java Card Virtual Machine. A method is not required to declare in its throws clause
any subclasses of RuntimeException that might be thrown during the execution of the method
but not caught.

RuntimeException() - Constructor for class java.lang.RuntimeException
Constructs a RuntimeException instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 201

Java Card 2.1 API

Appendix JCAPI01

223

S
SecretKey - interface javacard.security.SecretKey.

The SecretKey class is the base interface for keys used in symmetric alogrightms (e.g. DES).
SecurityException - exception java.lang.SecurityException.

A JCRE owned instance of SecurityException is thrown by the Java Card Virtual Machine to
indicate a security violation. This exception is thrown when an attempt is made to illegally access an
object belonging to a another applet.

SecurityException() - Constructor for class java.lang.SecurityException
Constructs a SecurityException.

select() - Method in class javacard.framework.Applet
Called by the JCRE to inform this applet that it has been selected.

selectingApplet() - Method in class javacard.framework.Applet
This method is used by the applet process() method to distinguish the SELECT APDU command
which selected this applet, from all other other SELECT APDU commands which may relate to
file or internal applet state selection.

sendBytes(short, short) - Method in class javacard.framework.APDU
Sends len more bytes from APDU buffer at specified offset bOff.

sendBytesLong(byte[], short, short) - Method in class javacard.framework.APDU
Sends len more bytes from outData byte array starting at specified offset bOff.

setDP1(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the DP1 parameter.

setDQ1(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the DQ1 parameter.

setExponent(byte[], short, short) - Method in interface javacard.security.RSAPrivateKey
Sets the private exponent value of the key.

setExponent(byte[], short, short) - Method in interface javacard.security.RSAPublicKey
Sets the public exponent value of the key.

setG(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the subprime parameter value of the key.

setIncomingAndReceive() - Method in class javacard.framework.APDU
This is the primary receive method.

setKey(byte[], short) - Method in interface javacard.security.DESKey
Sets the Key data.

setKeyCipher(Cipher) - Method in interface javacardx.crypto.KeyEncryption
Sets the Cipher object to be used to decrypt the input key data and key parameters in the set
methods. Default Cipher object is null - no decryption performed.

setModulus(byte[], short, short) - Method in interface javacard.security.RSAPrivateKey
Sets the modulus value of the key.

setModulus(byte[], short, short) - Method in interface javacard.security.RSAPublicKey
Sets the modulus value of the key.

setOutgoing() - Method in class javacard.framework.APDU
This method is used to set the data transfer direction to outbound and to obtain the expected length of
response (Le).

202 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

224

setOutgoingAndSend(short, short) - Method in class javacard.framework.APDU
This is the "convenience" send method.

setOutgoingLength(short) - Method in class javacard.framework.APDU
Sets the actual length of response data.

setOutgoingNoChaining() - Method in class javacard.framework.APDU
This method is used to set the data transfer direction to outbound without using BLOCK
CHAINING(See ISO 7816-3/4) and to obtain the expected length of response (Le).

setP(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the base parameter value of the key.

setP(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the P parameter.

setPQ(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the PQ parameter.

setQ(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the prime parameter value of the key.

setQ(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the Q parameter.

setReason(short) - Method in class javacard.framework.CardRuntimeException
Set reason code

setReason(short) - Method in class javacard.framework.CardException
Set reason code

setSeed(byte[], short, short) - Method in class javacard.security.RandomData
Seeds the random data generator.

setShort(byte[], short, short) - Static method in class javacard.framework.Util
Deposits the short value as two successive bytes at the specified offset in the byte array.

setValidatedFlag(boolean) - Method in class javacard.framework.OwnerPIN
This protected method sets the value of the validated flag.

setX(byte[], short, short) - Method in interface javacard.security.DSAPrivateKey
Sets the value of the key.

setY(byte[], short, short) - Method in interface javacard.security.DSAPublicKey
Sets the value of the key.

Shareable - interface javacard.framework.Shareable.
The Shareable interface serves to identify all shared objects.

sign(byte[], short, short, byte[], short) - Method in class javacard.security.Signature
Generates the signature of all/last input data.

Signature - class javacard.security.Signature.
The Signature class is the base class for Signature algorthims.

Signature() - Constructor for class javacard.security.Signature
Protected Constructor

SW_APPLET_SELECT_FAILED - Static variable in interface javacard.framework.ISO7816
Response status : Applet selection failed = 0x6999;

SW_BYTES_REMAINING_00 - Static variable in interface javacard.framework.ISO7816
Response status : Response bytes remaining = 0x6100

SW_CLA_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : CLA value not supported = 0x6E00

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 203

Java Card 2.1 API

Appendix JCAPI01

225

SW_COMMAND_NOT_ALLOWED - Static variable in interface javacard.framework.ISO7816
Response status : Command not allowed (no current EF) = 0x6986

SW_CONDITIONS_NOT_SATISFIED - Static variable in interface javacard.framework.ISO7816
Response status : Conditions of use not satisfied = 0x6985

SW_CORRECT_LENGTH_00 - Static variable in interface javacard.framework.ISO7816
Response status : Correct Expected Length (Le) = 0x6C00

SW_DATA_INVALID - Static variable in interface javacard.framework.ISO7816
Response status : Data invalid = 0x6984

SW_FILE_FULL - Static variable in interface javacard.framework.ISO7816
Response status : Not enough memory space in the file = 0x6A84

SW_FILE_INVALID - Static variable in interface javacard.framework.ISO7816
Response status : File invalid = 0x6983

SW_FILE_NOT_FOUND - Static variable in interface javacard.framework.ISO7816
Response status : File not found = 0x6A82

SW_FUNC_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : Function not supported = 0x6A81

SW_INCORRECT_P1P2 - Static variable in interface javacard.framework.ISO7816
Response status : Incorrect parameters (P1,P2) = 0x6A86

SW_INS_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : INS value not supported = 0x6D00

SW_NO_ERROR - Static variable in interface javacard.framework.ISO7816
Response status : No Error = (short)0x9000

SW_RECORD_NOT_FOUND - Static variable in interface javacard.framework.ISO7816
Response status : Record not found = 0x6A83

SW_SECURITY_STATUS_NOT_SATISFIED - Static variable in interface
javacard.framework.ISO7816

Response status : Security condition not satisfied = 0x6982
SW_UNKNOWN - Static variable in interface javacard.framework.ISO7816

Response status : No precise diagnosis = 0x6F00
SW_WRONG_DATA - Static variable in interface javacard.framework.ISO7816

Response status : Wrong data = 0x6A80
SW_WRONG_LENGTH - Static variable in interface javacard.framework.ISO7816

Response status : Wrong length = 0x6700
SW_WRONG_P1P2 - Static variable in interface javacard.framework.ISO7816

Response status : Incorrect parameters (P1,P2) = 0x6B00
SystemException - exception javacard.framework.SystemException.

SystemException represents a JCSystem class related exception.
SystemException(short) - Constructor for class javacard.framework.SystemException

Constructs a SystemException.

T
T1_IFD_ABORT - Static variable in class javacard.framework.APDUException

This reason code indicates that during T=1 protocol, the CAD returned an ABORT S-Block
command and aborted the data transfer.

204 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

226

Throwable - class java.lang.Throwable.
The Throwable class is the superclass of all errors and exceptions in the Java Card subset of the Java
language.

Throwable() - Constructor for class java.lang.Throwable
Constructs a new Throwable.

throwIt(short) - Static method in class javacard.framework.CardRuntimeException
Throw the JCRE owned instance of the CardRuntimeException class with the specified reason.

throwIt(short) - Static method in class javacard.framework.PINException
Throws the JCRE owned instance of PINException with the specified reason.

throwIt(short) - Static method in class javacard.framework.ISOException
Throws the JCRE owned instance of the ISOException class with the specified status word.

throwIt(short) - Static method in class javacard.framework.CardException
Throw the JCRE owned instance of CardException class with the specified reason.

throwIt(short) - Static method in class javacard.framework.UserException
Throws the JCRE owned instance of UserException with the specified reason.

throwIt(short) - Static method in class javacard.framework.SystemException
Throws the JCRE owned instance of SystemException with the specified reason.

throwIt(short) - Static method in class javacard.framework.TransactionException
Throws the JCRE owned instance of TransactionException with the specified reason.

throwIt(short) - Static method in class javacard.framework.APDUException
Throws the JCRE owned instance of APDUException with the specified reason.

throwIt(short) - Static method in class javacard.security.CryptoException
Throws the JCRE owned instance of CryptoException with the specified reason.

TransactionException - exception javacard.framework.TransactionException.
TransactionException represents an exception in the transaction subsystem.

TransactionException(short) - Constructor for class javacard.framework.TransactionException
Constructs a TransactionException with the specified reason.

TYPE_DES - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with persistent key data.

TYPE_DES_TRANSIENT_DESELECT - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with CLEAR_ON_DESELECT transient key
data.

TYPE_DES_TRANSIENT_RESET - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with CLEAR_ON_RESET transient key data.

TYPE_DSA_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements the interface type DSAPrivateKey for the DSA algorithm.

TYPE_DSA_PUBLIC - Static variable in class javacard.security.KeyBuilder
Key object which implements the interface type DSAPublicKey for the DSA algorithm.

TYPE_RSA_CRT_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPrivateCrtKey which uses Chinese Remainder
Theorem.

TYPE_RSA_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPrivateKey which uses modulus/exponent form.

TYPE_RSA_PUBLIC - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPublicKey.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 205

Java Card 2.1 API

Appendix JCAPI01

227

U
UNINITIALIZED_KEY - Static variable in class javacard.security.CryptoException

This reason code is used to indicate that the key is uninitialized.
update(byte[], short, byte) - Method in class javacard.framework.OwnerPIN

This method sets a new value for the PIN and resets the PIN try counter to the value of the PIN try
limit.

update(byte[], short, short) - Method in class javacard.security.MessageDigest
Accumulates a hash of the input data.

update(byte[], short, short) - Method in class javacard.security.Signature
Accumulates a signature of the input data.

update(byte[], short, short, byte[], short) - Method in class javacardx.crypto.Cipher
Generates encrypted/decrypted output from input data.

UserException - exception javacard.framework.UserException.
UserException represents a User exception.

UserException() - Constructor for class javacard.framework.UserException
Constructs a UserException with reason = 0.

UserException(short) - Constructor for class javacard.framework.UserException
Constructs a UserException with the specified reason.

Util - class javacard.framework.Util.
The Util class contains common utility functions.

V
verify(byte[], short, short, byte[], short, short) - Method in class javacard.security.Signature

Verifies the signature of all/last input data against the passed in signature.

W
waitExtension() - Method in class javacard.framework.APDU

Requests additional processsing time from CAD.

A B C D E G I J K L M N O P R S T U V W

206 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI01

228

Java Card 2.1 Application Programming
Interface

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Final Revision 1.0, February 24, 1999

Appendix JCAPI02

229

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94043 USA.
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable, worldwide, limited license
(without the right to sublicense) under SUN’s intellectual property rights that are essential to practice the Java Card API
Specification ("Specification") to use the Specification for internal evaluation purposes only. Other than this limited license, you
acquire no right, title, or interest in or to the Specification and you shall have no right to use the Specification for productive or
commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, Java Card, HotJava, HotJava Views, Visual Java, Solaris,
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris
sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo,
and Visual Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD
INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS
OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Appendix JCAPI02

230

Java Card API

Table of Contents
.................... 1Overview
.................. 4Class Hierarchy
.................. 6Package java.lang
................ 9Class ArithmeticException
............ 11Class ArrayIndexOutOfBoundsException
................ 13Class ArrayStoreException
................ 15Class ClassCastException
................... 17Class Exception
.............. 19Class IndexOutOfBoundsException
.............. 21Class NegativeArraySizeException
................ 23Class NullPointerException
................... 25Class Object
................ 27Class RuntimeException
................. 29Class SecurityException
.................. 31Class Throwable
............... 33Package javacard.framework
.................... 35Class AID
................... 39Class APDU
................. 51Class APDUException
................... 56Class Applet
................. 63Class CardException
............... 66Class CardRuntimeException
.................. 69Interface ISO7816
.................. 76Class ISOException
................... 78Class JCSystem
.................. 87Class OwnerPIN
................... 92Interface PIN
.................. 95Class PINException
.................. 98Interface Shareable
................. 99Class SystemException
................ 103Class TransactionException
................. 107Class UserException
.................... 110Class Util
................ 117Package javacard.security
................. 119Class CryptoException
.................. 123Interface DESKey
.................. 125Interface DSAKey
................ 129Interface DSAPrivateKey
................ 131Interface DSAPublicKey
................... 133Interface Key

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. i

Java Card 2.1 API

Appendix JCAPI02

231

.................. 135Class KeyBuilder

................. 141Class MessageDigest

................. 146Interface PrivateKey

.................. 147Interface PublicKey

............... 148Interface RSAPrivateCrtKey

................ 155Interface RSAPrivateKey

................ 158Interface RSAPublicKey

.................. 161Class RandomData

.................. 164Interface SecretKey

................... 165Class Signature

................ 176Package javacardx.crypto

................... 177Class Cipher

................ 186Interface KeyEncryption

..................... 188Index

ii Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

232

Java CardTM 2.1 Platform API Specification
Final Revision 1.0

This document is the specification for the Java Card 2.1 Application Programming Interface.

See:
 Description

Packages

java.lang
Provides classes that are fundamental to the design of the Java Card technology
subset of the Java programming language.

javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java
Card applet.

javacard.security Provides the classes and interfaces for the Java Card security framework.

javacardx.crypto
Extension package containing security classes and interfaces for
export-controlled functionality.

This document is the specification for the Java Card 2.1 Application Programming Interface.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1

Java Card 2.1 API

Appendix JCAPI02

233

Java Card 2.1 API Notes

Referenced Standards

ISO - International Standards Organization

Information Technology - Identification cards - integrated circuit cards with contacts: ISO 7816
Information Technology - Security Techniques - Digital Signature Scheme Giving Message
Recovery: ISO 9796
Information Technology - Data integrity mechanism using a cryptographic check function employing
a block cipher algorithm: ISO 9797
Information technology - Security techniques - Digital signatures with appendix : ISO 14888

RSA Data Security, Inc.

RSA Encryption Standard: PKCS #1 Version 2.0
Password-Based Encryption Standard: PKCS #5 Version 1.5

EMV

The EMV ’96 ICC Specifications for Payments systems Version 3.0

IPSec

The Internet Key Exchange (IKE) document RFC 2409 (STD 1)

Standard Names for Security and Crypto
SHA (also SHA-1): Secure Hash Algorithm, as defined in Secure Hash Standard, NIST FIPS 180-1.
MD5: The Message Digest algorithm RSA-MD5, as defined by RSA DSI in RFC 1321.
RIPEMD-160 : as defined in ISO/IEC 10118-3:1998 Information technology -- Security techniques
-- Hash-functions -- Part 3: Dedicated hash-functions
DSA: Digital Signature Algorithm, as defined in Digital Signature Standard, NIST FIPS 186.
DES: The Data Encryption Standard, as defined by NIST in FIPS 46-1 and 46-2.
RSA: The Rivest, Shamir and Adleman Asymmetric Cipher algorithm.

2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

234

Parameter Checking

Policy
All Java Card API implementations must conform to the Java model of parameter checking. That is, the
API code should not check for those parameter errors which the VM is expected to detect. These include
all parameter errors, such as null pointers, index out of bounds, and so forth, that result in standard
runtime exceptions. The runtime exceptions that are thrown by the Java Card VM are:

ArithmeticException
ArrayStoreException
ClassCastException
IllegalArgumentException
IllegalStateException
IndexOutOfBoundsException
ArrayIndexOutOfBoundsException
NegativeArraySizeException
NullPointerException
SecurityException

Exceptions to the Policy
In some cases, it may be necessary to explicitly check parameters. These exceptions to the policy are
documented in the Java Card API specification. A Java Card API implementation must not perform
parameter checking with the intent to avoid runtime exceptions, unless this is clearly specified by the Java
Card API specification.

Note: If multiple erroneous input parameters exist, any one of several runtime exceptions will be
thrown by the VM. Java programmers rely on this behavior, but they do not rely on getting a specific
exception. It is not necessary (nor is it reasonable or practical) to document the precise error handling
for all possible combinations of equivalence classes of erroneous inputs. The value of this behavior is
that the logic error in the calling program is detected and exposed via the runtime exception
mechanism, rather than being masked by a normal return.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3

Java Card 2.1 API

Appendix JCAPI02

235

Hierarchy For All Packages
Package Hierarchies:

java.lang, javacard.framework, javacard.security, javacardx.crypto

Class Hierarchy
class java.lang.Object

class javacard.framework.AID
class javacard.framework.APDU
class javacard.framework.Applet
class javacardx.crypto.Cipher
class javacard.framework.JCSystem
class javacard.security.KeyBuilder
class javacard.security.MessageDigest
class javacard.framework.OwnerPIN (implements javacard.framework.PIN)
class javacard.security.RandomData
class javacard.security.Signature
class java.lang.Throwable

class java.lang.Exception
class javacard.framework.CardException

class javacard.framework.UserException
class java.lang.RuntimeException

class java.lang.ArithmeticException
class java.lang.ArrayStoreException
class javacard.framework.CardRuntimeException

class javacard.framework.APDUException
class javacard.security.CryptoException
class javacard.framework.ISOException
class javacard.framework.PINException
class javacard.framework.SystemException
class javacard.framework.TransactionException

class java.lang.ClassCastException
class java.lang.IndexOutOfBoundsException

class java.lang.ArrayIndexOutOfBoundsException
class java.lang.NegativeArraySizeException
class java.lang.NullPointerException
class java.lang.SecurityException

class javacard.framework.Util

4 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

236

Interface Hierarchy
interface javacard.security.DSAKey

interface javacard.security.DSAPrivateKey(also extends javacard.security.PrivateKey)
interface javacard.security.DSAPublicKey(also extends javacard.security.PublicKey)

interface javacard.framework.ISO7816
interface javacard.security.Key

interface javacard.security.PrivateKey
interface javacard.security.DSAPrivateKey(also extends javacard.security.DSAKey)
interface javacard.security.RSAPrivateCrtKey
interface javacard.security.RSAPrivateKey

interface javacard.security.PublicKey
interface javacard.security.DSAPublicKey(also extends javacard.security.DSAKey)
interface javacard.security.RSAPublicKey

interface javacard.security.SecretKey
interface javacard.security.DESKey

interface javacardx.crypto.KeyEncryption
interface javacard.framework.PIN
interface javacard.framework.Shareable

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 5

Java Card 2.1 API

Appendix JCAPI02

237

Package java.lang
Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

See:
 Description

Class Summary
Object Class Object is the root of the Java Card class hierarchy.

Throwable
The Throwable class is the superclass of all errors and exceptions in the Java Card subset of
the Java language.

6 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

238

Exception Summary

ArithmeticException
A JCRE owned instance of ArithmethicException is
thrown when an exceptional arithmetic condition has occurred.

ArrayIndexOutOfBoundsException
A JCRE owned instance of IndexOutOfBoundsException
is thrown to indicate that an array has been accessed with an
illegal index.

ArrayStoreException
A JCRE owned instance of ArrayStoreException is
thrown to indicate that an attempt has been made to store the
wrong type of object into an array of objects.

ClassCastException
A JCRE owned instance of ClassCastException is thrown
to indicate that the code has attempted to cast an object to a
subclass of which it is not an instance.

Exception
The class Exception and its subclasses are a form of
Throwable that indicates conditions that a reasonable applet
might want to catch.

IndexOutOfBoundsException
A JCRE owned instance of IndexOutOfBoundsException
is thrown to indicate that an index of some sort (such as to an
array) is out of range.

NegativeArraySizeException
A JCRE owned instance of
NegativeArraySizeException is thrown if an applet
tries to create an array with negative size.

NullPointerException
A JCRE owned instance of NullPointerExceptionis
thrown when an applet attempts to use null in a case where an
object is required.

RuntimeException

RuntimeException is the superclass of those exceptions that
can be thrown during the normal operation of the Java Card
Virtual Machine. A method is not required to declare in its
throws clause any subclasses of RuntimeException that
might be thrown during the execution of the method but not
caught.

SecurityException

A JCRE owned instance of SecurityException is thrown
by the Java Card Virtual Machine to indicate a security violation.
This exception is thrown when an attempt is made to illegally
access an object belonging to a another applet.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 7

Java Card 2.1 API

Appendix JCAPI02

239

Package java.lang Description
Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

8 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

240

java.lang
Class ArithmeticException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ArithmeticException

public class ArithmeticException
extends RuntimeException

A JCRE owned instance of ArithmethicException is thrown when an exceptional arithmetic
condition has occurred. For example, a "divide by zero" is an exceptional arithmentic condition.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArithmeticException()
 Constructs an ArithmeticException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 9

Java Card 2.1 API

Appendix JCAPI02

241

ArithmeticException
public ArithmeticException()

Constructs an ArithmeticException.

10 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

242

java.lang
Class ArrayIndexOutOfBoundsException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IndexOutOfBoundsException
 |
 +--java.lang.ArrayIndexOutOfBoundsException

public class ArrayIndexOutOfBoundsException
extends IndexOutOfBoundsException

A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an array has
been accessed with an illegal index. The index is either negative or greater than or equal to the size of the
array.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArrayIndexOutOfBoundsException()
 Constructs an ArrayIndexOutOfBoundsException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 11

Java Card 2.1 API

Appendix JCAPI02

243

ArrayIndexOutOfBoundsException
public ArrayIndexOutOfBoundsException()

Constructs an ArrayIndexOutOfBoundsException.

12 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

244

java.lang
Class ArrayStoreException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ArrayStoreException

public class ArrayStoreException
extends RuntimeException

A JCRE owned instance of ArrayStoreException is thrown to indicate that an attempt has been
made to store the wrong type of object into an array of objects. For example, the following code generates
an ArrayStoreException:

 Object x[] = new AID[3];
 x[0] = new OwnerPIN((byte) 3, (byte) 8);

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ArrayStoreException()
 Constructs an ArrayStoreException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 13

Java Card 2.1 API

Appendix JCAPI02

245

ArrayStoreException
public ArrayStoreException()

Constructs an ArrayStoreException.

14 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

246

java.lang
Class ClassCastException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.ClassCastException

public class ClassCastException
extends RuntimeException

A JCRE owned instance of ClassCastException is thrown to indicate that the code has attempted to
cast an object to a subclass of which it is not an instance. For example, the following code generates a
ClassCastException:

 Object x = new OwnerPIN((byte)3, (byte)8);
 JCSystem.getAppletShareableInterfaceObject((AID)x, (byte)5);

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
ClassCastException()
 Constructs a ClassCastException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 15

Java Card 2.1 API

Appendix JCAPI02

247

ClassCastException
public ClassCastException()

Constructs a ClassCastException.

16 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

248

java.lang
Class Exception
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception

Direct Known Subclasses:
CardException, RuntimeException

public class Exception
extends Throwable

The class Exception and its subclasses are a form of Throwable that indicates conditions that a
reasonable applet might want to catch.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Exception()
 Constructs an Exception instance.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Exception
public Exception()

Constructs an Exception instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 17

Java Card 2.1 API

Appendix JCAPI02

249

18 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

250

java.lang
Class IndexOutOfBoundsException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.IndexOutOfBoundsException

Direct Known Subclasses:
ArrayIndexOutOfBoundsException

public class IndexOutOfBoundsException
extends RuntimeException

A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an index of
some sort (such as to an array) is out of range.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
IndexOutOfBoundsException()
 Constructs an IndexOutOfBoundsException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 19

Java Card 2.1 API

Appendix JCAPI02

251

IndexOutOfBoundsException
public IndexOutOfBoundsException()

Constructs an IndexOutOfBoundsException.

20 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

252

java.lang
Class NegativeArraySizeException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.NegativeArraySizeException

public class NegativeArraySizeException
extends RuntimeException

A JCRE owned instance of NegativeArraySizeException is thrown if an applet tries to create an
array with negative size.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
NegativeArraySizeException()
 Constructs a NegativeArraySizeException.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 21

Java Card 2.1 API

Appendix JCAPI02

253

NegativeArraySizeException
public NegativeArraySizeException()

Constructs a NegativeArraySizeException.

22 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

254

java.lang
Class NullPointerException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.NullPointerException

public class NullPointerException
extends RuntimeException

A JCRE owned instance of NullPointerExceptionis thrown when an applet attempts to use null
in a case where an object is required. These include:

Calling the instance method of a null object.
Accessing or modifying the field of a null object.
Taking the length of null as if it were an array.
Accessing or modifying the slots of null as if it were an array.
Throwing null as if it were a Throwable value.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
NullPointerException()
 Constructs a NullPointerException.

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 23

Java Card 2.1 API

Appendix JCAPI02

255

Constructor Detail

NullPointerException
public NullPointerException()

Constructs a NullPointerException.

24 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

256

java.lang
Class Object
java.lang.Object

public class Object

Class Object is the root of the Java Card class hierarchy. Every class has Object as a superclass. All
objects, including arrays, implement the methods of this class.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Object()

Method Summary
 boolean equals(Object obj)

 Compares two Objects for equality.

Constructor Detail

Object
public Object()

Method Detail

equals
public boolean equals(Object obj)

Compares two Objects for equality.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 25

Java Card 2.1 API

Appendix JCAPI02

257

The equals method implements an equivalence relation:
It is reflexive: for any reference value x, x.equals(x) should return true.
It is symmetric: for any reference values x and y, x.equals(y) should return true if and
only if y.equals(x) returns true.
It is transitive: for any reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
It is consistent: for any reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false.
For any reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence
relation on objects; that is, for any reference values x and y, this method returns true if and only if
x and y refer to the same object (x==y has the value true).
Parameters:

obj - the reference object with which to compare.
Returns:

true if this object is the same as the obj argument; false otherwise.

26 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

258

java.lang
Class RuntimeException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException

Direct Known Subclasses:
ArithmeticException, ArrayStoreException, CardRuntimeException, ClassCastException,
IndexOutOfBoundsException, NegativeArraySizeException, NullPointerException,
SecurityException

public class RuntimeException
extends Exception

RuntimeException is the superclass of those exceptions that can be thrown during the normal
operation of the Java Card Virtual Machine.

A method is not required to declare in its throws clause any subclasses of RuntimeException that
might be thrown during the execution of the method but not caught.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
RuntimeException()
 Constructs a RuntimeException instance.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 27

Java Card 2.1 API

Appendix JCAPI02

259

RuntimeException
public RuntimeException()

Constructs a RuntimeException instance.

28 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

260

java.lang
Class SecurityException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--java.lang.SecurityException

public class SecurityException
extends RuntimeException

A JCRE owned instance of SecurityException is thrown by the Java Card Virtual Machine to
indicate a security violation.

This exception is thrown when an attempt is made to illegally access an object belonging to a another
applet. It may optionally be thrown by a Java Card VM implementation to indicate fundamental language
restrictions, such as attempting to invoke a private method in another class.

For security reasons, the JCRE implementation may mute the card instead of throwing this exception.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
SecurityException()
 Constructs a SecurityException.

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 29

Java Card 2.1 API

Appendix JCAPI02

261

Constructor Detail

SecurityException
public SecurityException()

Constructs a SecurityException.

30 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

262

java.lang
Class Throwable
java.lang.Object
 |
 +--java.lang.Throwable

Direct Known Subclasses:
Exception

public class Throwable
extends Object

The Throwable class is the superclass of all errors and exceptions in the Java Card subset of the Java
language. Only objects that are instances of this class (or of one of its subclasses) are thrown by the Java
Card Virtual Machine or can be thrown by the Java throw statement. Similarly, only this class or one of
its subclasses can be the argument type in a catch clause.

This Java Card class’s functionality is a strict subset of the definition in the Java Platform Core API
Specification.

Constructor Summary
Throwable()
 Constructs a new Throwable.

Methods inherited from class java.lang.Object

equals

Constructor Detail

Throwable
public Throwable()

Constructs a new Throwable.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 31

Java Card 2.1 API

Appendix JCAPI02

263

32 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

264

Package javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

See:
 Description

Interface Summary
ISO7816 ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4.

PIN This interface represents a PIN.

Shareable The Shareable interface serves to identify all shared objects.

Class Summary
AID This class encapsulates the Application Identifier(AID) associated with an applet.

APDU
Application Protocol Data Unit (APDU) is the communication format between the card and
the off-card applications.

Applet This abstract class defines an applet in Java Card.

JCSystem
The JCSystem class includes a collection of methods to control applet execution, resource
management, atomic transaction management and inter-applet object sharing in Java Card.

OwnerPIN This class represents an Owner PIN.

Util The Util class contains common utility functions.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 33

Java Card 2.1 API

Appendix JCAPI02

265

Exception Summary
APDUException APDUException represents an APDU related exception.

CardException
The CardException class defines a field reason and two accessor
methods getReason() and setReason().

CardRuntimeException
The CardRuntimeException class defines a field reason and two
accessor methods getReason() and setReason().

ISOException
ISOException class encapsulates an ISO 7816-4 response status word as
its reason code.

PINException PINException represents a OwnerPIN class access-related exception.

SystemException SystemException represents a JCSystem class related exception.

TransactionException
TransactionException represents an exception in the transaction
subsystem.

UserException UserException represents a User exception.

Package javacard.framework Description
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

34 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

266

javacard.framework
Class AID
java.lang.Object
 |
 +--javacard.framework.AID

public final class AID
extends Object

This class encapsulates the Application Identifier(AID) associated with an applet. An AID is defined in
ISO 7816-5 to be a sequence of bytes between 5 and 16 bytes in length.

The JCRE creates instances of AID class to identify and manage every applet on the card. Applets need
not create instances of this class. An applet may request and use the JCRE owned instances to identify
itself and other applet instances.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from any
applet context. References to these permanent objects can be stored and re-used.

An applet instance can obtain a reference to JCRE owned instances of its own AID object by using the
JCSystem.getAID() method and another applet’s AID object via the JCSystem.lookupAID()
method.

An applet uses AID instances to request to share another applet’s object or to control access to its own
shared object from another applet. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem, SystemException

Constructor Summary
AID(byte[] bArray, short offset, byte length)
 The JCRE uses this constructor to create a new AID instance encapsulating the specified AID
bytes.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 35

Java Card 2.1 API

Appendix JCAPI02

267

Method Summary
 boolean equals(byte[] bArray, short offset, byte length)

 Checks if the specified AID bytes in bArray are the same as those encapsulated in
this AID object.

 boolean equals(Object anObject)
 Compares the AID bytes in this AID instance to the AID bytes in the specified
object.

 byte getBytes(byte[] dest, short offset)
 Called to get the AID bytes encapsulated within AID object.

 boolean partialEquals(byte[] bArray, short offset, byte length)
 Checks if the specified partial AID byte sequence matches the first length bytes of
the encapsulated AID bytes within this AID object.

 boolean RIDEquals(AID otherAID)
 Checks if the RID (National Registered Application provider identifier) portion of the
encapsulated AID bytes within the otherAID object matches that of this AID object.

Constructor Detail

AID
public AID(byte[] bArray,
 short offset,
 byte length)
 throws SystemException

The JCRE uses this constructor to create a new AID instance encapsulating the specified AID bytes.
Parameters:

bArray - the byte array containing the AID bytes.
offset - the start of AID bytes in bArray.
length - the length of the AID bytes in bArray.

Throws:
SystemException - with the following reason code:

SystemException.ILLEGAL_VALUE if the length parameter is less than 5 or
greater than 16.

Method Detail

36 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

268

getBytes
public byte getBytes(byte[] dest,
 short offset)

Called to get the AID bytes encapsulated within AID object.
Parameters:

dest - byte array to copy the AID bytes.
offset - within dest where the AID bytes begin.

Returns:
the length of the AID bytes.

equals
public boolean equals(Object anObject)

Compares the AID bytes in this AID instance to the AID bytes in the specified object. The result is
true if and only if the argument is not null and is an AID object that encapsulates the same AID
bytes as this object.

This method does not throw NullPointerException.
Parameters:

anObject - the object to compare this AID against.
Returns:

true if the AID byte values are equal, false otherwise.
Overrides:

equals in class Object

equals
public boolean equals(byte[] bArray,
 short offset,
 byte length)

Checks if the specified AID bytes in bArray are the same as those encapsulated in this AID
object. The result is true if and only if the bArray argument is not null and the AID bytes
encapsulated in this AID object are equal to the specified AID bytes in bArray.

This method does not throw NullPointerException.
Parameters:

bArray - containing the AID bytes
offset - within bArray to begin
length - of AID bytes in bArray

Returns:
true if equal, false otherwise.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 37

Java Card 2.1 API

Appendix JCAPI02

269

partialEquals
public boolean partialEquals(byte[] bArray,
 short offset,
 byte length)

Checks if the specified partial AID byte sequence matches the first length bytes of the
encapsulated AID bytes within this AID object. The result is true if and only if the bArray
argument is not null and the input length is less than or equal to the length of the encapsulated
AID bytes within this AID object and the specified bytes match.

This method does not throw NullPointerException.
Parameters:

bArray - containing the partial AID byte sequence
offset - within bArray to begin
length - of partial AID bytes in bArray

Returns:
true if equal, false otherwise.

RIDEquals
public boolean RIDEquals(AID otherAID)

Checks if the RID (National Registered Application provider identifier) portion of the encapsulated
AID bytes within the otherAID object matches that of this AID object. The first 5 bytes of an
AID byte sequence is the RID. See ISO 7816-5 for details. The result is true if and only if the
argument is not null and is an AID object that encapsulates the same RID bytes as this object.

This method does not throw NullPointerException.
Parameters:

otherAID - the AID to compare against.
Returns:

true if the RID bytes match, false otherwise.

38 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

270

javacard.framework
Class APDU
java.lang.Object
 |
 +--javacard.framework.APDU

public final class APDU
extends Object

Application Protocol Data Unit (APDU) is the communication format between the card and the off-card
applications. The format of the APDU is defined in ISO specification 7816-4.

This class only supports messages which conform to the structure of command and response defined in
ISO 7816-4. The behavior of messages which use proprietary structure of messages (for example with
header CLA byte in range 0xD0-0xFE) is undefined. This class does not support extended length fields.

The APDU object is owned by the JCRE. The APDU class maintains a byte array buffer which is used to
transfer incoming APDU header and data bytes as well as outgoing data. The buffer length must be at
least 37 bytes (5 bytes of header and 32 bytes of data). The JCRE must zero out the APDU buffer before
each new message received from the CAD.

The JCRE designates the APDU object as a temporary JCRE Entry Point Object (See Java Card Runtime
Environment (JCRE) 2.1 Specification for details). A temporary JCRE Entry Point Object can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components.

The JCRE similarly marks the APDU buffer as a global array (See Java Card Runtime Environment
(JCRE) 2.1 Specification for details). A global array can be accessed from any applet context. References
to global arrays cannot be stored in class variables or instance variables or array components.

The applet receives the APDU instance to process from the JCRE in the Applet.process(APDU)
method, and the first five bytes [CLA, INS, P1, P2, P3] are available in the APDU buffer.

The APDU class API is designed to be transport protocol independent. In other words, applets can use the
same APDU methods regardless of whether the underlying protocol in use is T=0 or T=1 (as defined in
ISO 7816-3).

The incoming APDU data size may be bigger than the APDU buffer size and may therefore need to be
read in portions by the applet. Similarly, the outgoing response APDU data size may be bigger than the
APDU buffer size and may need to be written in portions by the applet. The APDU class has methods to
facilitate this.

For sending large byte arrays as response data, the APDU class provides a special method
sendBytesLong() which manages the APDU buffer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 39

Java Card 2.1 API

Appendix JCAPI02

271

 // The purpose of this example is to show most of the methods
 // in use and not to depict any particular APDU processing

public void process(APDU apdu){
 // ...
 byte[] buffer = apdu.getBuffer();
 byte cla = buffer[ISO7816.OFFSET_CLA];
 byte ins = buffer[ISO7816.OFFSET_INS];
 ...
 // assume this command has incoming data
 // Lc tells us the incoming apdu command length
 short bytesLeft = (short) (buffer[ISO7816.OFFSET_LC] & 0x00FF);
 if (bytesLeft < (short)55) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

 short readCount = apdu.setIncomingAndReceive();
 while (bytesLeft > 0){
 // process bytes in buffer[5] to buffer[readCount+4];
 bytesLeft -= readCount;
 readCount = apdu.receiveBytes (ISO7816.OFFSET_CDATA);
 }
 //
 //...
 //
 // Note that for a short response as in the case illustrated here
 // the three APDU method calls shown : setOutgoing(),setOutgoingLength() & sendBytes()
 // could be replaced by one APDU method call : setOutgoingAndSend().

 // construct the reply APDU
 short le = apdu.setOutgoing();
 if (le < (short)2) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
 apdu.setOutgoingLength((short)3);

 // build response data in apdu.buffer[0.. outCount-1];
 buffer[0] = (byte)1; buffer[1] = (byte)2; buffer[3] = (byte)3;
 apdu.sendBytes ((short)0 , (short)3);
 // return good complete status 90 00
 }

See Also:
APDUException , ISOException

Field Summary
static byte PROTOCOL_T0

 ISO 7816 transport protocol type T=0

static byte PROTOCOL_T1
 ISO 7816 transport protocol type T=1

Method Summary

40 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

272

 byte[] getBuffer()
 Returns the APDU buffer byte array.

static short getInBlockSize()
 Returns the configured incoming block size. In T=1 protocol, this corresponds to
IFSC (information field size for ICC), the maximum size of incoming data blocks into
the card. In T=0 protocol, this method returns 1.

 byte getNAD()
 In T=1 protocol, this method returns the Node Address byte, NAD. In T=0
protocol, this method returns 0.

static short getOutBlockSize()
 Returns the configured outgoing block size. In T=1 protocol, this corresponds to
IFSD (information field size for interface device), the maximum size of outgoing data
blocks to the CAD. In T=0 protocol, this method returns 258 (accounts for 2 status
bytes).

static byte getProtocol()
 Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.

 short receiveBytes(short bOff)
 Gets as many data bytes as will fit without APDU buffer overflow, at the specified
offset bOff. Gets all the remaining bytes if they fit.

 void sendBytes(short bOff, short len)
 Sends len more bytes from APDU buffer at specified offset bOff.

 void sendBytesLong(byte[] outData, short bOff, short len)
 Sends len more bytes from outData byte array starting at specified offset
bOff.

 short setIncomingAndReceive()
 This is the primary receive method.

 short setOutgoing()
 This method is used to set the data transfer direction to outbound and to obtain the
expected length of response (Le).

 void setOutgoingAndSend(short bOff, short len)
 This is the "convenience" send method.

 void setOutgoingLength(short len)
 Sets the actual length of response data.

 short setOutgoingNoChaining()
 This method is used to set the data transfer direction to outbound without using
BLOCK CHAINING(See ISO 7816-3/4) and to obtain the expected length of response
(Le).

 void waitExtension()
 Requests additional processsing time from CAD.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 41

Java Card 2.1 API

Appendix JCAPI02

273

Methods inherited from class java.lang.Object

equals

Field Detail

PROTOCOL_T0
public static final byte PROTOCOL_T0

ISO 7816 transport protocol type T=0

PROTOCOL_T1
public static final byte PROTOCOL_T1

ISO 7816 transport protocol type T=1

Method Detail

getBuffer
public byte[] getBuffer()

Returns the APDU buffer byte array.

Notes:
References to the APDU buffer byte array cannot be stored in class variables or instance
variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification
for details.

Returns:
byte array containing the APDU buffer

getInBlockSize
public static short getInBlockSize()

Returns the configured incoming block size. In T=1 protocol, this corresponds to IFSC (information
field size for ICC), the maximum size of incoming data blocks into the card. In T=0 protocol, this
method returns 1. IFSC is defined in ISO 7816-3.

42 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

274

This information may be used to ensure that there is enough space remaining in the APDU buffer
when receiveBytes() is invoked.

Notes:
On receiveBytes() the bOff param should account for this potential blocksize.

Returns:
incoming block size setting.

See Also:
receiveBytes(short)

getOutBlockSize
public static short getOutBlockSize()

Returns the configured outgoing block size. In T=1 protocol, this corresponds to IFSD (information
field size for interface device), the maximum size of outgoing data blocks to the CAD. In T=0
protocol, this method returns 258 (accounts for 2 status bytes). IFSD is defined in ISO 7816-3.

This information may be used prior to invoking the setOutgoingLength() method, to limit the
length of outgoing messages when BLOCK CHAINING is not allowed.

Notes:
On setOutgoingLength() the len param should account for this potential blocksize.

Returns:
outgoing block size setting.

See Also:
setOutgoingLength(short)

getProtocol
public static byte getProtocol()

Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.
Returns:

the protocol type in progress. One of PROTOCOL_T0, PROTOCOL_T1 listed above.

getNAD
public byte getNAD()

In T=1 protocol, this method returns the Node Address byte, NAD. In T=0 protocol, this method
returns 0. This may be used as additional information to maintain multiple contexts.
Returns:

NAD transport byte as defined in ISO 7816-3.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 43

Java Card 2.1 API

Appendix JCAPI02

275

setOutgoing
public short setOutgoing()
 throws APDUException

This method is used to set the data transfer direction to outbound and to obtain the expected length of
response (Le).

Notes.
Any remaining incoming data will be discarded.
In T=0 (Case 4) protocol, this method will return 256.

Returns:
Le, the expected length of response.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if this method or setOutgoingNoChaining()
method already invoked.
APDUException.IO_ERROR on I/O error.

setOutgoingNoChaining
public short setOutgoingNoChaining()
 throws APDUException

This method is used to set the data transfer direction to outbound without using BLOCK
CHAINING(See ISO 7816-3/4) and to obtain the expected length of response (Le). This method
should be used in place of the setOutgoing() method by applets which need to be compatible
with legacy CAD/terminals which do not support ISO 7816-3/4 defined block chaining. See Java
Card Runtime Environment (JCRE) 2.1 Specification for details.

Notes.
Any remaining incoming data will be discarded.
In T=0 (Case 4) protocol, this method will return 256.
When this method is used, the waitExtension() method cannot be used.
In T=1 protocol, retransmission on error may be restricted.
In T=0 protocol, the outbound transfer must be performed without using response status
chaining.
In T=1 protocol, the outbound transfer must not set the More(M) Bit in the PCB of the I block.
See ISO 7816-3.

Returns:
Le, the expected length of response data.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if this method or setOutgoing() method already
invoked.

44 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

276

APDUException.IO_ERROR on I/O error.

setOutgoingLength
public void setOutgoingLength(short len)
 throws APDUException

Sets the actual length of response data. Default is 0.

Note:
In T=0 (Case 2&4) protocol, the length is used by the JCRE to prompt the CAD for GET
RESPONSE commands.

Parameters:
len - the length of response data.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoing() not called or this method
already invoked.
APDUException.BAD_LENGTH if len is greater than 256 or if non BLOCK
CHAINED data transfer is requested and len is greater than (IFSD-2), where IFSD is the
Outgoing Block Size. The -2 accounts for the status bytes in T=1.
APDUException.IO_ERROR on I/O error.

See Also:
getOutBlockSize()

receiveBytes
public short receiveBytes(short bOff)
 throws APDUException

Gets as many data bytes as will fit without APDU buffer overflow, at the specified offset bOff.
Gets all the remaining bytes if they fit.

Notes:
The space in the buffer must allow for incoming block size.
In T=1 protocol, if all the remaining bytes do not fit in the buffer, this method may return less
bytes than the maximum incoming block size (IFSC).
In T=0 protocol, if all the remaining bytes do not fit in the buffer, this method may return less
than a full buffer of bytes to optimize and reduce protocol overhead.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more input data can be received. No output data can be transmitted. No error status response
can be returned.

Parameters:
bOff - the offset into APDU buffer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 45

Java Card 2.1 API

Appendix JCAPI02

277

Returns:
number of bytes read. Returns 0 if no bytes are available.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setIncomingAndReceive() not called or if
setOutgoing() or setOutgoingNoChaining() previously invoked.
APDUException.BUFFER_BOUNDS if not enough buffer space for incoming block
size.
APDUException.IO_ERROR on I/O error.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
getInBlockSize()

setIncomingAndReceive
public short setIncomingAndReceive()
 throws APDUException

This is the primary receive method. Calling this method indicates that this APDU has incoming data.
This method gets as many bytes as will fit without buffer overflow in the APDU buffer following the
header. It gets all the incoming bytes if they fit.

Notes:
In T=0 (Case 3&4) protocol, the P3 param is assumed to be Lc.
Data is read into the buffer at offset 5.
In T=1 protocol, if all the incoming bytes do not fit in the buffer, this method may return less
bytes than the maximum incoming block size (IFSC).
In T=0 protocol, if all the incoming bytes do not fit in the buffer, this method may return less
than a full buffer of bytes to optimize and reduce protocol overhead.
This method sets the transfer direction to be inbound and calls receiveBytes(5).
This method may only be called once in a Applet.process() method.

Returns:
number of bytes read. Returns 0 if no bytes are available.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setIncomingAndReceive() already invoked
or if setOutgoing() or setOutgoingNoChaining() previously invoked.
APDUException.IO_ERROR on I/O error.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

46 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

278

sendBytes
public void sendBytes(short bOff,
 short len)
 throws APDUException

Sends len more bytes from APDU buffer at specified offset bOff.

If the last part of the response is being sent by the invocation of this method, the APDU buffer must
not be altered. If the data is altered, incorrect output may be sent to the CAD. Requiring that the
buffer not be altered allows the implementation to reduce protocol overhead by transmitting the last
part of the response along with the status bytes.

Notes:
If setOutgoingNoChaining() was invoked, output block chaining must not be used.
In T=0 protocol, if setOutgoingNoChaining() was invoked, Le bytes must be transmitted
before response status is returned.
In T=0 protocol, if this method throws an APDUException with NO_T0_GETRESPONSE
reason code, the JCRE will restart APDU command processing using the newly received
command. No more output data can be transmitted. No error status response can be returned.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more output data can be transmitted. No error status response can be returned.

Parameters:
bOff - the offset into APDU buffer.
len - the length of the data in bytes to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingLen() not called or
setOutgoingAndSend() previously invoked or response byte count exeeded or if
APDUException.NO_T0_GETRESPONSE previously thrown.
APDUException.BUFFER_BOUNDS if the sum of bOff and len exceeds the buffer
size.
APDUException.IO_ERROR on I/O error.
APDUException.NO_T0_GETRESPONSE if T=0 protocol is in use and the CAD does
not respond to response status with GET RESPONSE command.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
setOutgoing(), setOutgoingNoChaining()

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 47

Java Card 2.1 API

Appendix JCAPI02

279

sendBytesLong
public void sendBytesLong(byte[] outData,
 short bOff,
 short len)
 throws APDUException

Sends len more bytes from outData byte array starting at specified offset bOff.

If the last of the response is being sent by the invocation of this method, the APDU buffer must not
be altered. If the data is altered, incorrect output may be sent to the CAD. Requiring that the buffer
not be altered allows the implementation to reduce protocol overhead by transmitting the last part of
the response along with the status bytes.

The JCRE may use the APDU buffer to send data to the CAD.

Notes:
If setOutgoingNoChaining() was invoked, output block chaining must not be used.
In T=0 protocol, if setOutgoingNoChaining() was invoked, Le bytes must be transmitted
before response status is returned.
In T=0 protocol, if this method throws an APDUException with NO_T0_GETRESPONSE
reason code, the JCRE will restart APDU command processing using the newly received
command. No more output data can be transmitted. No error status response can be returned.
In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason
code, the JCRE will restart APDU command processing using the newly received command. No
more output data can be transmitted. No error status response can be returned.

Parameters:
outData - the source data byte array.
bOff - the offset into OutData array.
len - the bytelength of the data to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingLen() not called or
setOutgoingAndSend() previously invoked or response byte count exeeded or if
APDUException.NO_T0_GETRESPONSE previously thrown.
APDUException.IO_ERROR on I/O error.
APDUException.NO_T0_GETRESPONSE if T=0 protocol is in use and CAD does not
respond to response status with GET RESPONSE command.
APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an
ABORT S-Block command to abort the data transfer.

See Also:
setOutgoing(), setOutgoingNoChaining()

48 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

280

setOutgoingAndSend
public void setOutgoingAndSend(short bOff,
 short len)
 throws APDUException

This is the "convenience" send method. It provides for the most efficient way to send a short
response which fits in the buffer and needs the least protocol overhead. This method is a combination
of setOutgoing(), setOutgoingLength(len) followed by sendBytes (bOff,
len). In addition, once this method is invoked, sendBytes() and sendBytesLong()
methods cannot be invoked and the APDU buffer must not be altered.

Sends len byte response from the APDU buffer at starting specified offset bOff.

Notes:
No other APDU send methods can be invoked.
The APDU buffer must not be altered. If the data is altered, incorrect output may be sent to the
CAD.
The actual data transmission may only take place on return from Applet.process()

Parameters:
bOff - the offset into APDU buffer.
len - the bytelength of the data to send.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoing() or
setOutgoingAndSend() previously invoked or response byte count exeeded.
APDUException.IO_ERROR on I/O error.

waitExtension
public void waitExtension()
 throws APDUException

Requests additional processsing time from CAD. The implementation should ensure that this method
needs to be invoked only under unusual conditions requiring excessive processing times.

Notes:
In T=0 protocol, a NULL procedure byte is sent to reset the work waiting time (see ISO
7816-3).
In T=1 protocol, the implementation needs to request the same T=0 protocol work waiting time
quantum by sending a T=1 protocol request for wait time extension(see ISO 7816-3).
If the implementation uses an automatic timer mechanism instead, this method may do nothing.

Throws:
APDUException - with the following reason codes:

APDUException.ILLEGAL_USE if setOutgoingNoChaining() previously

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 49

Java Card 2.1 API

Appendix JCAPI02

281

invoked.
APDUException.IO_ERROR on I/O error.

50 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

282

javacard.framework
Class APDUException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.APDUException

public class APDUException
extends CardRuntimeException

APDUException represents an APDU related exception.

The APDU class throws JCRE owned instances of APDUException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
APDU

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 51

Java Card 2.1 API

Appendix JCAPI02

283

Field Summary
static short BAD_LENGTH

 This reason code is used by the APDU.setOutgoingLength() method to
indicate that the length parameter is greater that 256 or if non BLOCK CHAINED data
transfer is requested and len is greater than (IFSD-2), where IFSD is the Outgoing
Block Size.

static short BUFFER_BOUNDS
 This reason code is used by the APDU.sendBytes() method to indicate that
the sum of buffer offset parameter and the byte length parameter exceeds the APDU
buffer size.

static short ILLEGAL_USE
 This APDUException reason code indicates that the method should not be
invoked based on the current state of the APDU.

static short IO_ERROR
 This reason code indicates that an unrecoverable error occurred in the I/O
transmission layer.

static short NO_T0_GETRESPONSE
 This reason code indicates that during T=0 protocol, the CAD did not return a
GET RESPONSE command in response to a <61xx> response status to send additional
data.

static short T1_IFD_ABORT
 This reason code indicates that during T=1 protocol, the CAD returned an
ABORT S-Block command and aborted the data transfer.

Constructor Summary
APDUException(short reason)
 Constructs an APDUException.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of APDUException with the specified reason.

52 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

284

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_USE
public static final short ILLEGAL_USE

This APDUException reason code indicates that the method should not be invoked based on the
current state of the APDU.

BUFFER_BOUNDS
public static final short BUFFER_BOUNDS

This reason code is used by the APDU.sendBytes() method to indicate that the sum of buffer
offset parameter and the byte length parameter exceeds the APDU buffer size.

BAD_LENGTH
public static final short BAD_LENGTH

This reason code is used by the APDU.setOutgoingLength() method to indicate that the
length parameter is greater that 256 or if non BLOCK CHAINED data transfer is requested and len
is greater than (IFSD-2), where IFSD is the Outgoing Block Size.

IO_ERROR
public static final short IO_ERROR

This reason code indicates that an unrecoverable error occurred in the I/O transmission layer.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 53

Java Card 2.1 API

Appendix JCAPI02

285

NO_T0_GETRESPONSE
public static final short NO_T0_GETRESPONSE

This reason code indicates that during T=0 protocol, the CAD did not return a GET RESPONSE
command in response to a <61xx> response status to send additional data. The outgoing transfer has
been aborted. No more data or status can be sent to the CAD in this APDU.process() method.

T1_IFD_ABORT
public static final short T1_IFD_ABORT

This reason code indicates that during T=1 protocol, the CAD returned an ABORT S-Block
command and aborted the data transfer. The incoming or outgoing transfer has been aborted. No
more data can be received from the CAD. No more data or status can be sent to the CAD in this
APDU.process() method.

Constructor Detail

APDUException
public APDUException(short reason)

Constructs an APDUException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of APDUException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

APDUException - always.

54 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

286

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 55

Java Card 2.1 API

Appendix JCAPI02

287

javacard.framework
Class Applet
java.lang.Object
 |
 +--javacard.framework.Applet

public abstract class Applet
extends Object

This abstract class defines an applet in Java Card.

The Applet class should be extended by any applet that is intended to be loaded onto, installed into and
executed on a Java Card compliant smart card.

Example usage of Applet

 public class MyApplet extends javacard.framework.Applet{
 static byte someByteArray[];

 public static void install(byte[] bArray, short bOffset, byte bLength) throws ISOException {
 // make all my allocations here, so I do not run
 // out of memory later
 MyApplet theApplet = new MyApplet();

 // check incoming parameter
 byte bLen = bArray[bOffset];
 if (bLen!=0) { someByteArray = new byte[bLen]; theApplet.register(); return; }
 else ISOException.throwIt(ISO7816.SW_FUNC_NOT_SUPPORTED);
 }

 public boolean select(){
 // selection initialization
 someByteArray[17] = 42; // set selection state
 return true;
 }

 public void process(APDU apdu) throws ISOException{
 byte[] buffer = apdu.getBuffer();
 // .. process the incoming data and reply
 if (buffer[ISO7816.OFFSET_CLA] == (byte)0) {
 switch (buffer[ISO7816.OFFSET_INS]) {
 case ISO.INS_SELECT:
 ...
 // send response data to select command
 short Le = apdu.setOutgoing();
 // assume data containing response bytes in replyData[] array.
 if (Le < ..) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
 apdu.setOutgoingLength((short)replyData.length);
 apdu.sendBytesLong(replyData, (short) 0, (short)replyData.length);
 break;
 case ...
 }
 }

56 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

288

 }

 }

See Also:
SystemException , JCSystem

Constructor Summary
protected Applet()

 Only this class’s install() method should create the applet object.

Method Summary
 void deselect()

 Called by the JCRE to inform this currently selected applet that another (or the
same) applet will be selected.

 Shareable getShareableInterfaceObject(AID clientAID, byte parameter)
 Called by the JCRE to obtain a shareable interface object from this server applet,
on behalf of a request from a client applet.

static void install(byte[] bArray, short bOffset, byte bLength)
 To create an instance of the Applet subclass, the JCRE will call this static
method first.

abstract
 void

process(APDU apdu)
 Called by the JCRE to process an incoming APDU command.

protected
 void

register()
 This method is used by the applet to register this applet instance with the JCRE
and to assign the Applet subclass AID bytes as its instance AID bytes.

protected
 void

register(byte[] bArray, short bOffset, byte bLength)
 This method is used by the applet to register this applet instance with the JCRE
and assign the specified AID bytes as its instance AID bytes.

 boolean select()
 Called by the JCRE to inform this applet that it has been selected.

protected
 boolean

selectingApplet()
 This method is used by the applet process() method to distinguish the
SELECT APDU command which selected this applet, from all other other SELECT
APDU commands which may relate to file or internal applet state selection.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 57

Java Card 2.1 API

Appendix JCAPI02

289

Methods inherited from class java.lang.Object

equals

Constructor Detail

Applet
protected Applet()

Only this class’s install() method should create the applet object.

Method Detail

install
public static void install(byte[] bArray,
 short bOffset,
 byte bLength)
 throws ISOException

To create an instance of the Applet subclass, the JCRE will call this static method first.

The applet should perform any necessary initializations and must call one of the register()
methods. The installation is considered successful when the call to register() completes without
an exception. The installation is deemed unsuccessful if the install method does not call a
register() method, or if an exception is thrown from within the install method prior to the
call to a register() method, or if the register() method throws an exception. If the
installation is unsuccessful, the JCRE must perform all the necessary clean up when it receives
control. Successful installation makes the applet instance capable of being selected via a SELECT
APDU command.

Installation parameters are supplied in the byte array parameter and must be in a format defined by
the applet. The bArray object is a global array. If the applet desires to preserve any of this data, it
should copy the data into its own object.

bArray is zeroed by the JCRE after the return from the install() method.

References to the bArray object cannot be stored in class variables or instance variables or array
components. See Java Card Runtime Environment (JCRE) 2.1 Specification for details.

58 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

290

The implementation of this method provided by Applet class throws an ISOException with
reason code = ISO7816.SW_FUNC_NOT_SUPPORTED.

Note:
Exceptions thrown by this method after successful installation are caught by the JCRE and
processed by the Installer.

Parameters:
bArray - the array containing installation parameters.
bOffset - the starting offset in bArray.
bLength - the length in bytes of the parameter data in bArray. The maximum value of bLength
is 32.

process
public abstract void process(APDU apdu)
 throws ISOException

Called by the JCRE to process an incoming APDU command. An applet is expected to perform the
action requested and return response data if any to the terminal.

Upon normal return from this method the JCRE sends the ISO 7816-4 defined success status (90 00)
in APDU response. If this method throws an ISOException the JCRE sends the associated reason
code as the response status instead.

The JCRE zeroes out the APDU buffer before receiving a new APDU command from the CAD. The
five header bytes of the APDU command are available in APDU buffer[0..4] at the time this method
is called.

The APDU object parameter is a temporary JCRE Entry Point Object. A temporary JCRE Entry Point
Object can be accessed from any applet context. References to these temporary objects cannot be
stored in class variables or instance variables or array components.

Notes:
APDU buffer[5..] is undefined and should not be read or written prior to invoking the
APDU.setIncomingAndReceive() method if incoming data is expected. Altering the
APDU buffer[5..] could corrupt incoming data.

Parameters:
apdu - the incoming APDU object

Throws:
ISOException - with the response bytes per ISO 7816-4

See Also:
APDU

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 59

Java Card 2.1 API

Appendix JCAPI02

291

select
public boolean select()

Called by the JCRE to inform this applet that it has been selected.

It is called when a SELECT APDU command is received and before the applet is selected. SELECT
APDU commands use instance AID bytes for applet selection. See Java Card Runtime Environment
(JCRE) 2.1 Specification for details.

A subclass of Applet should override this method if it should perform any initialization that may be
required to process APDU commands that may follow. This method returns a boolean to indicate that
it is ready to accept incoming APDU commands via its process() method. If this method returns
false, it indicates to the JCRE that this Applet declines to be selected.

The implementation of this method provided by Applet class returns true.

Returns:
true to indicate success, false otherwise.

deselect
public void deselect()

Called by the JCRE to inform this currently selected applet that another (or the same) applet will be
selected. It is called when a SELECT APDU command is received by the JCRE. This method is
invoked prior to another applets or this very applets select() method being invoked.

A subclass of Applet should override this method if it has any cleanup or bookkeeping work to be
performed before another applet is selected.

The default implementation of this method provided by Applet class does nothing.

Notes:
Unchecked exceptions thrown by this method are caught by the JCRE but the applet is
deselected.
Transient objects of JCSystem.CLEAR_ON_DESELECT clear event type are cleared to their
default value by the JCRE after this method.
This method is NOT called on reset or power loss.

getShareableInterfaceObject
public Shareable getShareableInterfaceObject(AID clientAID,
 byte parameter)

60 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

292

Called by the JCRE to obtain a shareable interface object from this server applet, on behalf of a
request from a client applet. This method executes in the applet context of this applet instance. The
client applet initiated this request by calling the
JCSystem.getAppletShareableInterfaceObject() method. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.
Parameters:

clientAID - the AID object of the client applet.
parameter - optional parameter byte. The parameter byte may be used by the client to specify
which shareable interface object is being requested.

Returns:
the shareable interface object or null. Note:

The clientAID parameter is a JCRE owned AID instance. JCRE owned instances of
AID are permanent JCRE Entry Point Objects and can be accessed from any applet
context. References to these permanent objects can be stored and re-used.

See Also:
JCSystem.getAppletShareableInterfaceObject(AID, byte)

register
protected final void register()
 throws SystemException

This method is used by the applet to register this applet instance with the JCRE and to assign the
Applet subclass AID bytes as its instance AID bytes. One of the register() methods must be
called from within install() to be registered with the JCRE. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.
Throws:

SystemException - with the following reason codes:
SystemException.ILLEGAL_AID if the Applet subclass AID bytes are in use or if
the applet instance has previously called one of the register() methods.

register
protected final void register(byte[] bArray,
 short bOffset,
 byte bLength)
 throws SystemException

This method is used by the applet to register this applet instance with the JCRE and assign the
specified AID bytes as its instance AID bytes. One of the register() methods must be called
from within install() to be registered with the JCRE. See Java Card Runtime Environment
(JCRE) 2.1 Specification for details.
Parameters:

bArray - the byte array containing the AID bytes.
bOffset - the start of AID bytes in bArray.
bLength - the length of the AID bytes in bArray.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 61

Java Card 2.1 API

Appendix JCAPI02

293

Throws:
APDUException - with the following reason codes:

SystemException - with the following reason code:
SystemException.ILLEGAL_VALUE if the bLength parameter is less than 5
or greater than 16.
SystemException.ILLEGAL_AID if the specified instance AID bytes are in use
or if the RID portion of the AID bytes in the bArray parameter does not match the
RID portion of the Applet subclass AID bytes or if the applet instance has
previously called one of the register() methods.

selectingApplet
protected final boolean selectingApplet()

This method is used by the applet process() method to distinguish the SELECT APDU
command which selected this applet, from all other other SELECT APDU commands which
may relate to file or internal applet state selection.
Returns:

true if this applet is being selected.

62 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

294

javacard.framework
Class CardException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--javacard.framework.CardException

Direct Known Subclasses:
UserException

public class CardException
extends Exception

The CardException class defines a field reason and two accessor methods getReason() and
setReason(). The reason field encapsulates exception cause identifier in Java Card. All Java Card
checked Exception classes should extend CardException. This class also provides a resource-saving
mechanism (throwIt() method) for using a JCRE owned instance of this class.

Constructor Summary
CardException(short reason)
 Construct a CardException instance with the specified reason.

Method Summary
 short getReason()

 Get reason code

 void setReason(short reason)
 Set reason code

static void throwIt(short reason)
 Throw the JCRE owned instance of CardException class with the specified
reason.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 63

Java Card 2.1 API

Appendix JCAPI02

295

Methods inherited from class java.lang.Object

equals

Constructor Detail

CardException
public CardException(short reason)

Construct a CardException instance with the specified reason. To conserve on resources, use the
throwIt() method to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception

Method Detail

getReason
public short getReason()

Get reason code
Returns:

the reason for the exception

setReason
public void setReason(short reason)

Set reason code
Parameters:

reason - the reason for the exception

throwIt
public static void throwIt(short reason)
 throws CardException

Throw the JCRE owned instance of CardException class with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1

64 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

296

Specification for details.
Parameters:

reason - the reason for the exception
Throws:

CardException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 65

Java Card 2.1 API

Appendix JCAPI02

297

javacard.framework
Class CardRuntimeException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException

Direct Known Subclasses:
APDUException, CryptoException, ISOException, PINException, SystemException,
TransactionException

public class CardRuntimeException
extends RuntimeException

The CardRuntimeException class defines a field reason and two accessor methods
getReason() and setReason(). The reason field encapulates exception cause identifier in Java
Card. All Java Card unchecked Exception classes should extend CardRuntimeException. This class
also provides a resource-saving mechanism (throwIt() method) for using a JCRE owned instance of
this class.

Constructor Summary
CardRuntimeException(short reason)
 Construct a CardRuntimeException instance with the specified reason.

Method Summary
 short getReason()

 Get reason code

 void setReason(short reason)
 Set reason code

static void throwIt(short reason)
 Throw the JCRE owned instance of the CardRuntimeException class with
the specified reason.

66 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

298

Methods inherited from class java.lang.Object

equals

Constructor Detail

CardRuntimeException
public CardRuntimeException(short reason)

Construct a CardRuntimeException instance with the specified reason. To conserve on resources, use
throwIt() method to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception

Method Detail

getReason
public short getReason()

Get reason code
Returns:

the reason for the exception

setReason
public void setReason(short reason)

Set reason code
Parameters:

reason - the reason for the exception

throwIt
public static void throwIt(short reason)
 throws CardRuntimeException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 67

Java Card 2.1 API

Appendix JCAPI02

299

Throw the JCRE owned instance of the CardRuntimeException class with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception
Throws:

CardRuntimeException - always.

68 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

300

javacard.framework
Interface ISO7816

public abstract interface ISO7816

ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4. ISO7816 interface contains
only static fields.

The static fields with SW_ prefixes define constants for the ISO 7816-4 defined response status word. The
fields which use the _00 suffix require the low order byte to be customized appropriately e.g
(ISO7816.SW_CORRECT_LENGTH_00 + (0x0025 & 0xFF)).

The static fields with OFFSET_ prefixes define constants to be used to index into the APDU buffer byte
array to access ISO 7816-4 defined header information.

Field Summary
static byte CLA_ISO7816

 APDU command CLA : ISO 7816 = 0x00

static byte INS_EXTERNAL_AUTHENTICATE
 APDU command INS : EXTERNAL AUTHENTICATE = 0x82

static byte INS_SELECT
 APDU command INS : SELECT = 0xA4

static byte OFFSET_CDATA
 APDU command data offset : CDATA = 5

static byte OFFSET_CLA
 APDU header offset : CLA = 0

static byte OFFSET_INS
 APDU header offset : INS = 1

static byte OFFSET_LC
 APDU header offset : LC = 4

static byte OFFSET_P1
 APDU header offset : P1 = 2

static byte OFFSET_P2
 APDU header offset : P2 = 3

static short SW_APPLET_SELECT_FAILED
 Response status : Applet selection failed = 0x6999;

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 69

Java Card 2.1 API

Appendix JCAPI02

301

static short SW_BYTES_REMAINING_00
 Response status : Response bytes remaining = 0x6100

static short SW_CLA_NOT_SUPPORTED
 Response status : CLA value not supported = 0x6E00

static short SW_COMMAND_NOT_ALLOWED
 Response status : Command not allowed (no current EF) = 0x6986

static short SW_CONDITIONS_NOT_SATISFIED
 Response status : Conditions of use not satisfied = 0x6985

static short SW_CORRECT_LENGTH_00
 Response status : Correct Expected Length (Le) = 0x6C00

static short SW_DATA_INVALID
 Response status : Data invalid = 0x6984

static short SW_FILE_FULL
 Response status : Not enough memory space in the file = 0x6A84

static short SW_FILE_INVALID
 Response status : File invalid = 0x6983

static short SW_FILE_NOT_FOUND
 Response status : File not found = 0x6A82

static short SW_FUNC_NOT_SUPPORTED
 Response status : Function not supported = 0x6A81

static short SW_INCORRECT_P1P2
 Response status : Incorrect parameters (P1,P2) = 0x6A86

static short SW_INS_NOT_SUPPORTED
 Response status : INS value not supported = 0x6D00

static short SW_NO_ERROR
 Response status : No Error = (short)0x9000

static short SW_RECORD_NOT_FOUND
 Response status : Record not found = 0x6A83

static short SW_SECURITY_STATUS_NOT_SATISFIED
 Response status : Security condition not satisfied = 0x6982

static short SW_UNKNOWN
 Response status : No precise diagnosis = 0x6F00

static short SW_WRONG_DATA
 Response status : Wrong data = 0x6A80

static short SW_WRONG_LENGTH
 Response status : Wrong length = 0x6700

70 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

302

static short SW_WRONG_P1P2
 Response status : Incorrect parameters (P1,P2) = 0x6B00

Field Detail

SW_NO_ERROR
public static final short SW_NO_ERROR

Response status : No Error = (short)0x9000

SW_BYTES_REMAINING_00
public static final short SW_BYTES_REMAINING_00

Response status : Response bytes remaining = 0x6100

SW_WRONG_LENGTH
public static final short SW_WRONG_LENGTH

Response status : Wrong length = 0x6700

SW_SECURITY_STATUS_NOT_SATISFIED
public static final short SW_SECURITY_STATUS_NOT_SATISFIED

Response status : Security condition not satisfied = 0x6982

SW_FILE_INVALID
public static final short SW_FILE_INVALID

Response status : File invalid = 0x6983

SW_DATA_INVALID
public static final short SW_DATA_INVALID

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 71

Java Card 2.1 API

Appendix JCAPI02

303

Response status : Data invalid = 0x6984

SW_CONDITIONS_NOT_SATISFIED
public static final short SW_CONDITIONS_NOT_SATISFIED

Response status : Conditions of use not satisfied = 0x6985

SW_COMMAND_NOT_ALLOWED
public static final short SW_COMMAND_NOT_ALLOWED

Response status : Command not allowed (no current EF) = 0x6986

SW_APPLET_SELECT_FAILED
public static final short SW_APPLET_SELECT_FAILED

Response status : Applet selection failed = 0x6999;

SW_WRONG_DATA
public static final short SW_WRONG_DATA

Response status : Wrong data = 0x6A80

SW_FUNC_NOT_SUPPORTED
public static final short SW_FUNC_NOT_SUPPORTED

Response status : Function not supported = 0x6A81

SW_FILE_NOT_FOUND
public static final short SW_FILE_NOT_FOUND

Response status : File not found = 0x6A82

72 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

304

SW_RECORD_NOT_FOUND
public static final short SW_RECORD_NOT_FOUND

Response status : Record not found = 0x6A83

SW_INCORRECT_P1P2
public static final short SW_INCORRECT_P1P2

Response status : Incorrect parameters (P1,P2) = 0x6A86

SW_WRONG_P1P2
public static final short SW_WRONG_P1P2

Response status : Incorrect parameters (P1,P2) = 0x6B00

SW_CORRECT_LENGTH_00
public static final short SW_CORRECT_LENGTH_00

Response status : Correct Expected Length (Le) = 0x6C00

SW_INS_NOT_SUPPORTED
public static final short SW_INS_NOT_SUPPORTED

Response status : INS value not supported = 0x6D00

SW_CLA_NOT_SUPPORTED
public static final short SW_CLA_NOT_SUPPORTED

Response status : CLA value not supported = 0x6E00

SW_UNKNOWN
public static final short SW_UNKNOWN

Response status : No precise diagnosis = 0x6F00

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 73

Java Card 2.1 API

Appendix JCAPI02

305

SW_FILE_FULL
public static final short SW_FILE_FULL

Response status : Not enough memory space in the file = 0x6A84

OFFSET_CLA
public static final byte OFFSET_CLA

APDU header offset : CLA = 0

OFFSET_INS
public static final byte OFFSET_INS

APDU header offset : INS = 1

OFFSET_P1
public static final byte OFFSET_P1

APDU header offset : P1 = 2

OFFSET_P2
public static final byte OFFSET_P2

APDU header offset : P2 = 3

OFFSET_LC
public static final byte OFFSET_LC

APDU header offset : LC = 4

OFFSET_CDATA
public static final byte OFFSET_CDATA

APDU command data offset : CDATA = 5

74 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

306

CLA_ISO7816
public static final byte CLA_ISO7816

APDU command CLA : ISO 7816 = 0x00

INS_SELECT
public static final byte INS_SELECT

APDU command INS : SELECT = 0xA4

INS_EXTERNAL_AUTHENTICATE
public static final byte INS_EXTERNAL_AUTHENTICATE

APDU command INS : EXTERNAL AUTHENTICATE = 0x82

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 75

Java Card 2.1 API

Appendix JCAPI02

307

javacard.framework
Class ISOException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.ISOException

public class ISOException
extends CardRuntimeException

ISOException class encapsulates an ISO 7816-4 response status word as its reason code.

The APDU class throws JCRE owned instances of ISOException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

Constructor Summary
ISOException(short sw)
 Constructs an ISOException instance with the specified status word.

Method Summary
static void throwIt(short sw)

 Throws the JCRE owned instance of the ISOException class with the specified
status word.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

76 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

308

Methods inherited from class java.lang.Object

equals

Constructor Detail

ISOException
public ISOException(short sw)

Constructs an ISOException instance with the specified status word. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

sw - the ISO 7816-4 defined status word

Method Detail

throwIt
public static void throwIt(short sw)

Throws the JCRE owned instance of the ISOException class with the specified status word.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

sw - ISO 7816-4 defined status word
Throws:

ISOException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 77

Java Card 2.1 API

Appendix JCAPI02

309

javacard.framework
Class JCSystem
java.lang.Object
 |
 +--javacard.framework.JCSystem

public final class JCSystem
extends Object

The JCSystem class includes a collection of methods to control applet execution, resource management,
atomic transaction management and inter-applet object sharing in Java Card. All methods in JCSystem
class are static methods.

The JCSystem class also includes methods to control the persistence and transience of objects. The term
persistent means that objects and their values persist from one CAD session to the next, indefinitely.
Persistent object values are updated atomically using transactions.

The makeTransient...Array() methods can be used to create transient arrays with primitive data
components. Transient array data is lost (in an undefined state, but the real data is unavailable)
immediately upon power loss, and is reset to the default value at the occurrence of certain events such as
card reset or deselect. Updates to the values of transient arrays are not atomic and are not affected by
transactions.

The JCRE maintains an atomic transaction commit buffer which is initialized on card reset (or power on).
When a transaction is in progress, the JCRE journals all updates to persistent data space into this buffer so
that it can always guarantee, at commit time, that everything in the buffer is written or nothing at all is
written. The JCSystem includes methods to control an atomic transaction. See Java Card Runtime
Environment (JCRE) 2.1 Specification for details.

See Also:
SystemException, TransactionException, Applet

Field Summary
static byte CLEAR_ON_DESELECT

 This event code indicates that the contents of the transient object are cleared to the
default value on applet deselection event or in CLEAR_ON_RESET cases.

static byte CLEAR_ON_RESET
 This event code indicates that the contents of the transient object are cleared to the
default value on card reset (or power on) event.

static byte NOT_A_TRANSIENT_OBJECT
 This event code indicates that the object is not transient.

78 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

310

Method Summary
static void abortTransaction()

 Aborts the atomic transaction.

static void beginTransaction()
 Begins an atomic transaction.

static void commitTransaction()
 Commits an atomic transaction.

static AID getAID()
 Returns the JCRE owned instance of the AID object associated with the
current applet context.

static Shareable getAppletShareableInterfaceObject(AID serverAID,
byte parameter)
 This method is called by a client applet to get a server applet’s shareable
interface object.

static short getMaxCommitCapacity()
 Returns the total number of bytes in the commit buffer.

static AID getPreviousContextAID()
 This method is called to obtain the JCRE owned instance of the AID object
associated with the previously active applet context.

static byte getTransactionDepth()
 Returns the current transaction nesting depth level.

static short getUnusedCommitCapacity()
 Returns the number of bytes left in the commit buffer.

static short getVersion()
 Returns the current major and minor version of the Java Card API.

static byte isTransient(Object theObj)
 Used to check if the specified object is transient.

static AID lookupAID(byte[] buffer, short offset, byte length)
 Returns the JCRE owned instance of the AID object, if any, encapsulating
the specified AID bytes in the buffer parameter if there exists a successfully
installed applet on the card whose instance AID exactly matches that of the
specified AID bytes.

static boolean[] makeTransientBooleanArray(short length, byte event)
 Create a transient boolean array with the specified array length.

static byte[] makeTransientByteArray(short length, byte event)
 Create a transient byte array with the specified array length.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 79

Java Card 2.1 API

Appendix JCAPI02

311

static Object[] makeTransientObjectArray(short length, byte event)
 Create a transient array of Object with the specified array length.

static short[] makeTransientShortArray(short length, byte event)
 Create a transient short array with the specified array length.

Methods inherited from class java.lang.Object

equals

Field Detail

NOT_A_TRANSIENT_OBJECT
public static final byte NOT_A_TRANSIENT_OBJECT

This event code indicates that the object is not transient.

CLEAR_ON_RESET
public static final byte CLEAR_ON_RESET

This event code indicates that the contents of the transient object are cleared to the default value on
card reset (or power on) event.

CLEAR_ON_DESELECT
public static final byte CLEAR_ON_DESELECT

This event code indicates that the contents of the transient object are cleared to the default value on
applet deselection event or in CLEAR_ON_RESET cases.

Notes:
CLEAR_ON_DESELECT transient objects can be accessed only when the applet which created
the object is the currently the selected applet.
The JCRE will throw a SecurityException if a CLEAR_ON_DESELECT transient object
is accessed when the currently selected applet is not the applet which created the object.

Method Detail

80 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

312

isTransient
public static byte isTransient(Object theObj)

Used to check if the specified object is transient.

Notes:
This method returns NOT_A_TRANSIENT_OBJECT if the specified object is null or is not an
array type.

Parameters:
theObj - the object being queried.

Returns:
NOT_A_TRANSIENT_OBJECT, CLEAR_ON_RESET, or CLEAR_ON_DESELECT.

See Also:
makeTransientBooleanArray(short, byte),
makeTransientByteArray(short, byte),
makeTransientShortArray(short, byte),
makeTransientObjectArray(short, byte)

makeTransientBooleanArray
public static boolean[] makeTransientBooleanArray(short length,
 byte event)
 throws SystemException

Create a transient boolean array with the specified array length.
Parameters:

length - the length of the boolean array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientByteArray
public static byte[] makeTransientByteArray(short length,
 byte event)
 throws SystemException

Create a transient byte array with the specified array length.
Parameters:

length - the length of the byte array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 81

Java Card 2.1 API

Appendix JCAPI02

313

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientShortArray
public static short[] makeTransientShortArray(short length,
 byte event)
 throws SystemException

Create a transient short array with the specified array length.
Parameters:

length - the length of the short array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientObjectArray
public static Object[] makeTransientObjectArray(short length,
 byte event)
 throws SystemException

Create a transient array of Object with the specified array length.
Parameters:

length - the length of the Object array.
event - the CLEAR_ON... event which causes the array elements to be cleared.

Throws:
SystemException - with the following reason codes:

SystemException.ILLEGAL_VALUE if event is not a valid event code.
SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not
available.
SystemException.ILLEGAL_TRANSIENT if the current applet context is not the
currently selected applet context and CLEAR_ON_DESELECT is specified.

82 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

314

getVersion
public static short getVersion()

Returns the current major and minor version of the Java Card API.
Returns:

version number as byte.byte (major.minor)

getAID
public static AID getAID()

Returns the JCRE owned instance of the AID object associated with the current applet context.
Returns null if the Applet.register() method has not yet been invoked.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Returns:

the AID object.

lookupAID
public static AID lookupAID(byte[] buffer,
 short offset,
 byte length)

Returns the JCRE owned instance of the AID object, if any, encapsulating the specified AID bytes in
the buffer parameter if there exists a successfully installed applet on the card whose instance AID
exactly matches that of the specified AID bytes.

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Parameters:

buffer - byte array containing the AID bytes.
offset - offset within buffer where AID bytes begin.
length - length of AID bytes in buffer.

Returns:
the AID object, if any; null otherwise. A VM exception is thrown if buffer is null, or if
offset or length are out of range.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 83

Java Card 2.1 API

Appendix JCAPI02

315

beginTransaction
public static void beginTransaction()
 throws TransactionException

Begins an atomic transaction. If a transaction is already in progress (transactionDepth != 0), a
TransactionException is thrown.
Throws:

TransactionException - with the following reason codes:
TransactionException.IN_PROGRESS if a transaction is already in progress.

See Also:
commitTransaction(), abortTransaction()

abortTransaction
public static void abortTransaction()
 throws TransactionException

Aborts the atomic transaction. The contents of the commit buffer is discarded.

Notes:
Do not call this method from within a transaction which creates new objects because the JCRE
may not recover the heap space used by the new object instances.
The JCRE ensures that any variable of reference type which references an object instantiated
from within this aborted transaction is equivalent to a null reference.

Throws:
TransactionException - with the following reason codes:

TransactionException.NOT_IN_PROGRESS if a transaction is not in progress.
See Also:

beginTransaction(), commitTransaction()

commitTransaction
public static void commitTransaction()
 throws TransactionException

Commits an atomic transaction. The contents of commit buffer is atomically commited. If a
transaction is not in progress (transactionDepth == 0) then a TransactionException is thrown.
Throws:

TransactionException - with the following reason codes:
TransactionException.NOT_IN_PROGRESS if a transaction is not in progress.

See Also:
beginTransaction(), abortTransaction()

84 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

316

getTransactionDepth
public static byte getTransactionDepth()

Returns the current transaction nesting depth level. At present, only 1 transaction can be in progress
at a time.
Returns:

1 if transaction in progress, 0 if not.

getUnusedCommitCapacity
public static short getUnusedCommitCapacity()

Returns the number of bytes left in the commit buffer.
Returns:

the number of bytes left in the commit buffer
See Also:

getMaxCommitCapacity()

getMaxCommitCapacity
public static short getMaxCommitCapacity()

Returns the total number of bytes in the commit buffer. This is approximately the maximum number
of bytes of persistent data which can be modified during a transaction. However, the transaction
subsystem requires additional bytes of overhead data to be included in the commit buffer, and this
depends on the number of fields modified and the implementation of the transaction subsystem. The
application cannot determine the actual maximum amount of data which can be modified during a
transaction without taking these overhead bytes into consideration.
Returns:

the total number of bytes in the commit buffer
See Also:

getUnusedCommitCapacity()

getPreviousContextAID
public static AID getPreviousContextAID()

This method is called to obtain the JCRE owned instance of the AID object associated with the
previously active applet context. This method is typically used by a server applet, while executing a
shareable interface method to determine the identity of its client and thereby control access
privileges.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 85

Java Card 2.1 API

Appendix JCAPI02

317

JCRE owned instances of AID are permanent JCRE Entry Point Objects and can be accessed from
any applet context. References to these permanent objects can be stored and re-used.

See Java Card Runtime Environment (JCRE) 2.1 Specification for details.
Returns:

the AID object of the previous context, or null if JCRE.

getAppletShareableInterfaceObject
public static Shareable getAppletShareableInterfaceObject(AID serverAID,
 byte parameter)

This method is called by a client applet to get a server applet’s shareable interface object.

This method returns null if the Applet.register() has not yet been invoked or if the server
does not exist or if the server returns null.
Parameters:

serverAID - the AID of the server applet.
parameter - optional parameter data.

Returns:
the shareable interface object or null.

See Also:
Applet.getShareableInterfaceObject(AID, byte)

86 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

318

javacard.framework
Class OwnerPIN
java.lang.Object
 |
 +--javacard.framework.OwnerPIN

public class OwnerPIN
extends Object
implements PIN

This class represents an Owner PIN. It implements Personal Identification Number functionality as
defined in the PIN interface. It provides the ability to update the PIN and thus owner functionality.

The implementation of this class must protect against attacks based on program flow prediction.Even if a
transaction is in progress, internal state such as the try counter, the validated flag and the blocking state
must not be conditionally updated during PIN presentation.

If an implementation of this class creates transient arrays, it must ensure that they are CLEAR_ON_RESET
transient objects.

The protected methods getValidatedFlag and setValidatedFlag allow a subclass of this class
to optimize the storage for the validated boolean state.

Some methods of instances of this class are only suitable for sharing when there exists a trust relationship
among the applets. A typical shared usage would use a proxy PIN interface which implements both the
PIN interface and the Shareable interface.

Any of the methods of the OwnerPIN may be called with a transaction in progress. None of the methods
of OwnerPIN class initiate or alter the state of the transaction if one is in progress.

See Also:
PINException, PIN, Shareable, JCSystem

Constructor Summary
OwnerPIN(byte tryLimit, byte maxPINSize)
 Constructor.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 87

Java Card 2.1 API

Appendix JCAPI02

319

Method Summary
 boolean check(byte[] pin, short offset, byte length)

 Compares pin against the PIN value.

 byte getTriesRemaining()
 Returns the number of times remaining that an incorrect PIN can be presented
before the PIN is blocked.

protected
 boolean

getValidatedFlag()
 This protected method returns the validated flag.

 boolean isValidated()
 Returns true if a valid PIN has been presented since the last card reset or last
call to reset().

 void reset()
 If the validated flag is set, this method resets it.

 void resetAndUnblock()
 This method resets the validated flag and resets the PIN try counter to the
value of the PIN try limit.

protected
 void

setValidatedFlag(boolean value)
 This protected method sets the value of the validated flag.

 void update(byte[] pin, short offset, byte length)
 This method sets a new value for the PIN and resets the PIN try counter to the
value of the PIN try limit.

Methods inherited from class java.lang.Object

equals

Constructor Detail

OwnerPIN
public OwnerPIN(byte tryLimit,
 byte maxPINSize)
 throws PINException

Constructor. Allocates a new PIN instance.
Parameters:

tryLimit - the maximum number of times an incorrect PIN can be presented.
maxPINSize - the maximum allowed PIN size. maxPINSize must be >=1.

88 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

320

Throws:
PINException - with the following reason codes:

PINException.ILLEGAL_VALUE if maxPINSize parameter is less than 1.

Method Detail

getValidatedFlag
protected boolean getValidatedFlag()

This protected method returns the validated flag. This method is intended for subclass of this
OwnerPIN to access or override the internal PIN state of the OwnerPIN.
Returns:

the boolean state of the PIN validated flag.

setValidatedFlag
protected void setValidatedFlag(boolean value)

This protected method sets the value of the validated flag. This method is intended for subclass of
this OwnerPIN to control or override the internal PIN state of the OwnerPIN.
Parameters:

value - the new value for the validated flag.

getTriesRemaining
public byte getTriesRemaining()

Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.
Specified by:

getTriesRemaining in interface PIN
Returns:

the number of times remaining

check
public boolean check(byte[] pin,
 short offset,
 byte length)

Compares pin against the PIN value. If they match and the PIN is not blocked, it sets the validated
flag and resets the try counter to its maximum. If it does not match, it decrements the try counter, and
if the counter has reached zero, blocks the PIN. Even if a transaction is in progress, internal state
such as the try counter, the validated flag and the blocking state must not be conditionally updated.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 89

Java Card 2.1 API

Appendix JCAPI02

321

Specified by:
check in interface PIN

Parameters:
pin - the byte array containing the PIN value being checked
offset - the starting offset in the pin array
length - the length of pin.

Returns:
true if the PIN value matches; false otherwise

isValidated
public boolean isValidated()

Returns true if a valid PIN has been presented since the last card reset or last call to reset().
Specified by:

isValidated in interface PIN
Returns:

true if validated; false otherwise

reset
public void reset()

If the validated flag is set, this method resets it. If the validated flag is not set, this method does
nothing.
Specified by:

reset in interface PIN

update
public void update(byte[] pin,
 short offset,
 byte length)
 throws PINException

This method sets a new value for the PIN and resets the PIN try counter to the value of the PIN try
limit. It also resets the validated flag.

This method copies the input pin parameter into an internal representation. If a transaction is in
progress, the new pin and try counter update must be conditional i.e the copy operation must use the
transaction facility.
Parameters:

pin - the byte array containing the new PIN value
offset - the starting offset in the pin array
length - the length of the new PIN.

90 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

322

Throws:
PINException - with the following reason codes:

PINException.ILLEGAL_VALUE if length is greater than configured maximum PIN
size.

See Also:
JCSystem.beginTransaction()

resetAndUnblock
public void resetAndUnblock()

This method resets the validated flag and resets the PIN try counter to the value of the PIN try limit.
This method is used by the owner to re-enable the blocked PIN.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 91

Java Card 2.1 API

Appendix JCAPI02

323

javacard.framework
Interface PIN
All Known Implementing Classes:

OwnerPIN

public abstract interface PIN

This interface represents a PIN. An implementation must maintain these internal values:

PIN value
try limit, the maximum number of times an incorrect PIN can be presented before the PIN is blocked.
When the PIN is blocked, it cannot be validated even on valid PIN presentation.
max PIN size, the maximum length of PIN allowed
try counter, the remaining number of times an incorrect PIN presentation is permitted before the PIN
becomes blocked.
validated flag, true if a valid PIN has been presented. This flag is reset on every card reset.

This interface does not make any assumptions about where the data for the PIN value comparison is
stored.

An owner implementation of this interface must provide a way to initialize/update the PIN value.The
owner implemention of the interface must protect against attacks based on program flow prediction. Even
if a transaction is in progress, internal state such as the try counter, the validated flag and the blocking
state must not be conditionally updated during PIN presentation.

A typical card global PIN usage will combine an instance of OwnerPIN class and a a Proxy PIN interface
which implements both the PIN and the Shareable interfaces. The OwnerPIN instance would be
manipulated only by the owner who has update privilege. All others would access the global PIN
functionality via the proxy PIN interface.

See Also:
OwnerPIN, Shareable

92 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

324

Method Summary
 boolean check(byte[] pin, short offset, byte length)

 Compares pin against the PIN value.

 byte getTriesRemaining()
 Returns the number of times remaining that an incorrect PIN can be presented before
the PIN is blocked.

 boolean isValidated()
 Returns true if a valid PIN value has been presented since the last card reset or last
call to reset().

 void reset()
 If the validated flag is set, this method resets it.

Method Detail

getTriesRemaining
public byte getTriesRemaining()

Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.
Returns:

the number of times remaining

check
public boolean check(byte[] pin,
 short offset,
 byte length)

Compares pin against the PIN value. If they match and the PIN is not blocked, it sets the validated
flag and resets the try counter to its maximum. If it does not match, it decrements the try counter, and
if the counter has reached zero, blocks the PIN. Even if a transaction is in progress, internal state
such as the try counter, the validated flag and the blocking state must not be conditionally updated.
Parameters:

pin - the byte array containing the PIN value being checked
offset - the starting offset in the pin array
length - the length of the PIN value.

Returns:
true if the PIN value matches; false otherwise

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 93

Java Card 2.1 API

Appendix JCAPI02

325

isValidated
public boolean isValidated()

Returns true if a valid PIN value has been presented since the last card reset or last call to
reset().
Returns:

true if validated; false otherwise

reset
public void reset()

If the validated flag is set, this method resets it. If the validated flag is not set, this method does
nothing.

94 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

326

javacard.framework
Class PINException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.PINException

public class PINException
extends CardRuntimeException

PINException represents a OwnerPIN class access-related exception.

The OwnerPIN class throws JCRE owned instances of PINException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
OwnerPIN

Field Summary
static short ILLEGAL_VALUE

 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

Constructor Summary
PINException(short reason)
 Constructs a PINException.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 95

Java Card 2.1 API

Appendix JCAPI02

327

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of PINException with the specified reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

Constructor Detail

PINException
public PINException(short reason)

Constructs a PINException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

96 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

328

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of PINException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

PINException - always.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 97

Java Card 2.1 API

Appendix JCAPI02

329

javacard.framework
Interface Shareable

public abstract interface Shareable

The Shareable interface serves to identify all shared objects. Any object that needs to be shared through
the applet firewall must directly or indirectly implement this interface. Only those methods specified in a
shareable interface are available through the firewall. Implementation classes can implement any number
of shareable interfaces and can extend other shareable implementation classes.

98 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

330

javacard.framework
Class SystemException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.SystemException

public class SystemException
extends CardRuntimeException

SystemException represents a JCSystem class related exception. It is also thrown by the
javacard.framework.Applet.register() methods and by the AID class constructor.

These API classes throw JCRE owned instances of SystemException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem, Applet, AID

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 99

Java Card 2.1 API

Appendix JCAPI02

331

Field Summary
static short ILLEGAL_AID

 This reason code is used by the
javacard.framework.Applet.register() method to indicate that the input
AID parameter is not a legal AID value.

static short ILLEGAL_TRANSIENT
 This reason code is used to indicate that the request to create a transient object is
not allowed in the current applet context.

static short ILLEGAL_VALUE
 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

static short NO_RESOURCE
 This reason code is used to indicate that there is insufficient resource in the Card
for the request.

static short NO_TRANSIENT_SPACE
 This reason code is used by the makeTransient..() methods to indicate that
no room is available in volatile memory for the requested object.

Constructor Summary
SystemException(short reason)
 Constructs a SystemException.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of SystemException with the specified
reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

100 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

332

Methods inherited from class java.lang.Object

equals

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

NO_TRANSIENT_SPACE
public static final short NO_TRANSIENT_SPACE

This reason code is used by the makeTransient..() methods to indicate that no room is
available in volatile memory for the requested object.

ILLEGAL_TRANSIENT
public static final short ILLEGAL_TRANSIENT

This reason code is used to indicate that the request to create a transient object is not allowed in the
current applet context. See Java Card Runtime Environment (JCRE) 2.1 Specification for details.

ILLEGAL_AID
public static final short ILLEGAL_AID

This reason code is used by the javacard.framework.Applet.register() method to
indicate that the input AID parameter is not a legal AID value.

NO_RESOURCE
public static final short NO_RESOURCE

This reason code is used to indicate that there is insufficient resource in the Card for the request.

For example, the Java Card Virtual Machine may throw this exception reason when there is
insufficient heap space to create a new instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 101

Java Card 2.1 API

Appendix JCAPI02

333

Constructor Detail

SystemException
public SystemException(short reason)

Constructs a SystemException. To conserve on resources use throwIt() to use the JCRE owned
instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of SystemException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

SystemException - always.

102 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

334

javacard.framework
Class TransactionException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.framework.TransactionException

public class TransactionException
extends CardRuntimeException

TransactionException represents an exception in the transaction subsystem. The methods referred
to in this class are in the JCSystem class.

The JCSystem class and the transaction facility throw JCRE owned instances of
TransactionException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

See Also:
JCSystem

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 103

Java Card 2.1 API

Appendix JCAPI02

335

Field Summary
static short BUFFER_FULL

 This reason code is used during a transaction to indicate that the commit buffer is
full.

static short IN_PROGRESS
 This reason code is used by the beginTransaction method to indicate a
transaction is already in progress.

static short INTERNAL_FAILURE
 This reason code is used during a transaction to indicate an internal JCRE problem
(fatal error).

static short NOT_IN_PROGRESS
 This reason code is used by the abortTransaction and
commintTransaction methods when a transaction is not in progress.

Constructor Summary
TransactionException(short reason)
 Constructs a TransactionException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of TransactionException with the
specified reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

Methods inherited from class java.lang.Object

equals

104 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

336

Field Detail

IN_PROGRESS
public static final short IN_PROGRESS

This reason code is used by the beginTransaction method to indicate a transaction is already in
progress.

NOT_IN_PROGRESS
public static final short NOT_IN_PROGRESS

This reason code is used by the abortTransaction and commintTransaction methods
when a transaction is not in progress.

BUFFER_FULL
public static final short BUFFER_FULL

This reason code is used during a transaction to indicate that the commit buffer is full.

INTERNAL_FAILURE
public static final short INTERNAL_FAILURE

This reason code is used during a transaction to indicate an internal JCRE problem (fatal error).

Constructor Detail

TransactionException
public TransactionException(short reason)

Constructs a TransactionException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 105

Java Card 2.1 API

Appendix JCAPI02

337

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of TransactionException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Throws:

TransactionException - always.

106 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

338

javacard.framework
Class UserException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--javacard.framework.CardException
 |
 +--javacard.framework.UserException

public class UserException
extends CardException

UserException represents a User exception. This class also provides a resource-saving mechanism
(the throwIt() method) for user exceptions by using a JCRE owned instance.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1 Specification for
details.

Constructor Summary
UserException()
 Constructs a UserException with reason = 0.

UserException(short reason)
 Constructs a UserException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of UserException with the specified reason.

Methods inherited from class javacard.framework.CardException

getReason, setReason

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 107

Java Card 2.1 API

Appendix JCAPI02

339

Methods inherited from class java.lang.Object

equals

Constructor Detail

UserException
public UserException()

Constructs a UserException with reason = 0. To conserve on resources use throwIt() to use
the JCRE owned instance of this class.

UserException
public UserException(short reason)

Constructs a UserException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)
 throws UserException

Throws the JCRE owned instance of UserException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

UserException - always.

108 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

340

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 109

Java Card 2.1 API

Appendix JCAPI02

341

javacard.framework
Class Util
java.lang.Object
 |
 +--javacard.framework.Util

public class Util
extends Object

The Util class contains common utility functions. Some of the methods may be implemented as native
functions for performance reasons. All methods in Util, class are static methods.

Some methods of Util namely arrayCopy(), arrayCopyNonAtomic(),
arrayFillNonAtomic() and setShort(), refer to the persistence of array objects. The term
persistent means that arrays and their values persist from one CAD session to the next, indefinitely. The
JCSystem class is used to control the persistence and transience of objects.

See Also:
JCSystem

110 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

342

Method Summary
static byte arrayCompare(byte[] src, short srcOff, byte[] dest,

short destOff, short length)
 Compares an array from the specified source array, beginning at the specified
position, with the specified position of the destination array from left to right.

static short arrayCopy(byte[] src, short srcOff, byte[] dest,
short destOff, short length)
 Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array.

static short arrayCopyNonAtomic(byte[] src, short srcOff, byte[] dest,
short destOff, short length)
 Copies an array from the specified source array, beginning at the specified
position, to the specified position of the destination array (non-atomically).

static short arrayFillNonAtomic(byte[] bArray, short bOff, short bLen,
byte bValue)
 Fills the byte array (non-atomically) beginning at the specified position, for the
specified length with the specified byte value.

static short getShort(byte[] bArray, short bOff)
 Concatenates two bytes in a byte array to form a short value.

static short makeShort(byte b1, byte b2)
 Concatenates the two parameter bytes to form a short value.

static short setShort(byte[] bArray, short bOff, short sValue)
 Deposits the short value as two successive bytes at the specified offset in the byte
array.

Methods inherited from class java.lang.Object

equals

Method Detail

arrayCopy
public static final short arrayCopy(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 111

Java Card 2.1 API

Appendix JCAPI02

343

 short length)
 throws IndexOutOfBoundsException,
 NullPointerException,
 TransactionException

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array.

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.
If srcOff+length is greater than src.length, the length of the src array a
IndexOutOfBoundsException exception is thrown and no copy is performed.
If destOff+length is greater than dest.length, the length of the dest array an
IndexOutOfBoundsException exception is thrown and no copy is performed.
If src or dest parameter is null a NullPointerException exception is thrown.
If the src and dest arguments refer to the same array object, then the copying is performed
as if the components at positions srcOff through srcOff+length-1 were first copied to a
temporary array with length components and then the contents of the temporary array were
copied into positions destOff through destOff+length-1 of the argument array.
If the destination array is persistent, the entire copy is performed atomically.
The copy operation is subject to atomic commit capacity limitations. If the commit capacity is
exceeded, no copy is performed and a TransactionException exception is thrown.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start copy from.
dest - destination byte array.
destOff - offset within destination byte array to start copy into.
length - byte length to be copied.

Returns:
destOff+length

Throws:
IndexOutOfBoundsException - - if copying would cause access of data outside array bounds.
NullPointerException - - if either src or dest is null.
TransactionException - - if copying would cause the commit capacity to be exceeded.

See Also:
JCSystem.getUnusedCommitCapacity()

arrayCopyNonAtomic
public static final short arrayCopyNonAtomic(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,
 short length)
 throws IndexOutOfBoundsException,
 NullPointerException

112 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

344

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array (non-atomically).

This method does not use the transaction facility during the copy operation even if a transaction is in
progress. Thus, this method is suitable for use only when the contents of the destination array can be
left in a partially modified state in the event of a power loss in the middle of the copy operation.

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.
If srcOff+length is greater than src.length, the length of the src array a
IndexOutOfBoundsException exception is thrown and no copy is performed.
If destOff+length is greater than dest.length, the length of the dest array an
IndexOutOfBoundsException exception is thrown and no copy is performed.
If src or dest parameter is null a NullPointerException exception is thrown.
If the src and dest arguments refer to the same array object, then the copying is performed
as if the components at positions srcOff through srcOff+length-1 were first copied to a
temporary array with length components and then the contents of the temporary array were
copied into positions destOff through destOff+length-1 of the argument array.
If power is lost during the copy operation and the destination array is persistent, a partially
changed destination array could result.
The copy length parameter is not constrained by the atomic commit capacity limitations.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start copy from.
dest - destination byte array.
destOff - offset within destination byte array to start copy into.
length - byte length to be copied.

Returns:
destOff+length

Throws:
IndexOutOfBoundsException - - if copying would cause access of data outside array bounds.
NullPointerException - - if either src or dest is null.

See Also:
JCSystem.getUnusedCommitCapacity()

arrayFillNonAtomic
public static final short arrayFillNonAtomic(byte[] bArray,
 short bOff,
 short bLen,
 byte bValue)
 throws IndexOutOfBoundsException,
 NullPointerException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 113

Java Card 2.1 API

Appendix JCAPI02

345

Fills the byte array (non-atomically) beginning at the specified position, for the specified length with
the specified byte value.

This method does not use the transaction facility during the fill operation even if a transaction is in
progress. Thus, this method is suitable for use only when the contents of the byte array can be left in
a partially filled state in the event of a power loss in the middle of the fill operation.

Notes:
If bOff or bLen parameter is negative an IndexOutOfBoundsException exception is
thrown.
If bOff+bLen is greater than bArray.length, the length of the bArray array an
IndexOutOfBoundsException exception is thrown.
If bArray parameter is null a NullPointerException exception is thrown.
If power is lost during the copy operation and the byte array is persistent, a partially changed
byte array could result.
The bLen parameter is not constrained by the atomic commit capacity limitations.

Parameters:
bArray - the byte array.
bOff - offset within byte array to start filling bValue into.
bLen - byte length to be filled.
bValue - the value to fill the byte array with.

Returns:
bOff+bLen

Throws:
IndexOutOfBoundsException - - if the fill operation would cause access of data outside array
bounds.
NullPointerException - - if bArray is null

See Also:
JCSystem.getUnusedCommitCapacity()

arrayCompare
public static final byte arrayCompare(byte[] src,
 short srcOff,
 byte[] dest,
 short destOff,
 short length)
 throws IndexOutOfBoundsException,
 NullPointerException

Compares an array from the specified source array, beginning at the specified position, with the
specified position of the destination array from left to right. Returns the ternary result of the
comparison : less than(-1), equal(0) or greater than(1).

Notes:
If srcOff or destOff or length parameter is negative an
IndexOutOfBoundsException exception is thrown.

114 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

346

If srcOff+length is greater than src.length, the length of the src array a
IndexOutOfBoundsException exception is thrown.
If destOff+length is greater than dest.length, the length of the dest array an
IndexOutOfBoundsException exception is thrown.
If src or dest parameter is null a NullPointerException exception is thrown.

Parameters:
src - source byte array.
srcOff - offset within source byte array to start compare.
dest - destination byte array.
destOff - offset within destination byte array to start compare.
length - byte length to be compared.

Returns:
the result of the comparison as follows:

0 if identical
-1 if the first miscomparing byte in source array is less than that in destination array,
1 if the first miscomparing byte in source array is greater that that in destination array.

Throws:
IndexOutOfBoundsException - - if comparing all bytes would cause access of data outside array
bounds.
NullPointerException - - if either src or dest is null.

makeShort
public static final short makeShort(byte b1,
 byte b2)

Concatenates the two parameter bytes to form a short value.
Parameters:

b1 - the first byte (high order byte).
b2 - the second byte (low order byte).

Returns:
the short value - the concatenated result

getShort
public static final short getShort(byte[] bArray,
 short bOff)

Concatenates two bytes in a byte array to form a short value.
Parameters:

bArray - byte array.
bOff - offset within byte array containing first byte (the high order byte).

Returns:
the short value - the concatenated result

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 115

Java Card 2.1 API

Appendix JCAPI02

347

setShort
public static final short setShort(byte[] bArray,
 short bOff,
 short sValue)
 throws TransactionException

Deposits the short value as two successive bytes at the specified offset in the byte array.
Parameters:

bArray - byte array.
bOff - offset within byte array to deposit the first byte (the high order byte).
sValue - the short value to set into array.

Returns:
bOff+2

Note:
If the byte array is persistent, this operation is performed atomically. If the commit
capacity is exceeded, no operation is performed and a TransactionException
exception is thrown.

Throws:
TransactionException - - if the operation would cause the commit capacity to be exceeded.

See Also:
JCSystem.getUnusedCommitCapacity()

116 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

348

Package javacard.security
Provides the classes and interfaces for the Java Card security framework.

See:
 Description

Interface Summary

DESKey
DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES
operations.

DSAKey
The DSAKey interface is the base interface for the DSA algorithms private and
public key implementaions.

DSAPrivateKey The DSAPrivateKey interface is used to sign data using the DSA algorithm.

DSAPublicKey
The DSAPublicKey interface is used to verify signatures on signed data using the
DSA algorithm.

Key The Key interface is the base interface for all keys.

PrivateKey
The PrivateKey class is the base class for private keys used in asymmetric
algorithms.

PublicKey
The PublicKey class is the base class for public keys used in asymmetric
algorithms.

RSAPrivateCrtKey
The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm
in its Chinese Remainder Theorem form.

RSAPrivateKey
The RSAPrivateKey class is used to sign data using the RSA algorithm in its
modulus/exponent form.

RSAPublicKey
The RSAPublicKey is used to verify signatures on signed data using the RSA
algorithm.

SecretKey
The SecretKey class is the base interface for keys used in symmetric alogrightms
(e.g. DES).

Class Summary
KeyBuilder The KeyBuilder class is a key object factory.

MessageDigest The MessageDigest class is the base class for hashing algorthims.

RandomData The RandomData abstract class is the base class for random number generation.

Signature The Signature class is the base class for Signature algorthims.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 117

Java Card 2.1 API

Appendix JCAPI02

349

Exception Summary
CryptoException CryptoException represents a cryptography-related exception.

Package javacard.security Description
Provides the classes and interfaces for the Java Card security framework.

118 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

350

javacard.security
Class CryptoException
java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--javacard.framework.CardRuntimeException
 |
 +--javacard.security.CryptoException

public class CryptoException
extends CardRuntimeException

CryptoException represents a cryptography-related exception.

The API classes throw JCRE owned instances of SystemException.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be accessed
from any applet context. References to these temporary objects cannot be stored in class variables or
instance variables or array components.

See Also:
KeyBuilder, MessageDigest, Signature, RandomData, Cipher

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 119

Java Card 2.1 API

Appendix JCAPI02

351

Field Summary
static short ILLEGAL_USE

 This reason code is used to indicate that the signature or cipher algorithm does not
pad the incoming message and the input message is not block aligned.

static short ILLEGAL_VALUE
 This reason code is used to indicate that one or more input parameters is out of
allowed bounds.

static short INVALID_INIT
 This reason code is used to indicate that the signature or cipher object has not
been correctly initialized for the requested operation.

static short NO_SUCH_ALGORITHM
 This reason code is used to indicate that the requested algorithm or key type is not
supported.

static short UNINITIALIZED_KEY
 This reason code is used to indicate that the key is uninitialized.

Constructor Summary
CryptoException(short reason)
 Constructs a CryptoException with the specified reason.

Method Summary
static void throwIt(short reason)

 Throws the JCRE owned instance of CryptoException with the specified
reason.

Methods inherited from class javacard.framework.CardRuntimeException

getReason, setReason

Methods inherited from class java.lang.Object

equals

120 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

352

Field Detail

ILLEGAL_VALUE
public static final short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed bounds.

UNINITIALIZED_KEY
public static final short UNINITIALIZED_KEY

This reason code is used to indicate that the key is uninitialized.

NO_SUCH_ALGORITHM
public static final short NO_SUCH_ALGORITHM

This reason code is used to indicate that the requested algorithm or key type is not supported.

INVALID_INIT
public static final short INVALID_INIT

This reason code is used to indicate that the signature or cipher object has not been correctly
initialized for the requested operation.

ILLEGAL_USE
public static final short ILLEGAL_USE

This reason code is used to indicate that the signature or cipher algorithm does not pad the incoming
message and the input message is not block aligned.

Constructor Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 121

Java Card 2.1 API

Appendix JCAPI02

353

CryptoException
public CryptoException(short reason)

Constructs a CryptoException with the specified reason. To conserve on resources use
throwIt() to use the JCRE owned instance of this class.
Parameters:

reason - the reason for the exception.

Method Detail

throwIt
public static void throwIt(short reason)

Throws the JCRE owned instance of CryptoException with the specified reason.

JCRE owned instances of exception classes are temporary JCRE Entry Point Objects and can be
accessed from any applet context. References to these temporary objects cannot be stored in class
variables or instance variables or array components. See Java Card Runtime Environment (JCRE) 2.1
Specification for details.
Parameters:

reason - the reason for the exception.
Throws:

CryptoException - always.

122 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

354

javacard.security
Interface DESKey

public abstract interface DESKey
extends SecretKey

DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES operations.

When the key data is set, the key is initialized and ready for use.

See Also:
KeyBuilder, Signature, Cipher, KeyEncryption

Method Summary
 byte getKey(byte[] keyData, short kOff)

 Returns the Key data in plain text.

 void setKey(byte[] keyData, short kOff)
 Sets the Key data.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

setKey
public void setKey(byte[] keyData,
 short kOff)
 throws CryptoException

Sets the Key data. The plaintext length of input key data is 8 bytes for DES, 16 bytes for 2 key triple
DES and 24 bytes for 3 key triple DES. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

keyData - byte array containing key initialization data
kOff - offset within keyData to start

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 123

Java Card 2.1 API

Appendix JCAPI02

355

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, keyData is decrypted
using the Cipher object.

getKey
public byte getKey(byte[] keyData,
 short kOff)

Returns the Key data in plain text. The length of output key data is 8 bytes for DES, 16 bytes for 2
key triple DES and 24 bytes for 3 key triple DES. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

keyData - byte array to return key data
kOff - offset within keyData to start.

Returns:
the byte length of the key data returned.

124 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

356

javacard.security
Interface DSAKey
All Known Subinterfaces:

DSAPrivateKey, DSAPublicKey

public abstract interface DSAKey

The DSAKey interface is the base interface for the DSA algorithms private and public key
implementaions. A DSA private key implementation must also implement the DSAPrivateKey
interface methods. A DSA public key implementation must also implement the DSAPublicKey
interface methods.

When all four components of the key (X or Y,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPublicKey, DSAPrivateKey, KeyBuilder, Signature, KeyEncryption

Method Summary
 short getG(byte[] buffer, short offset)

 Returns the subprime parameter value of the key in plain text.

 short getP(byte[] buffer, short offset)
 Returns the base parameter value of the key in plain text.

 short getQ(byte[] buffer, short offset)
 Returns the prime parameter value of the key in plain text.

 void setG(byte[] buffer, short offset, short length)
 Sets the subprime parameter value of the key.

 void setP(byte[] buffer, short offset, short length)
 Sets the base parameter value of the key.

 void setQ(byte[] buffer, short offset, short length)
 Sets the prime parameter value of the key.

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 125

Java Card 2.1 API

Appendix JCAPI02

357

setP
public void setP(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the base parameter value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input base parameter data is copied
into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the base parameter value begins
length - the length of the base parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the base parameter
value is decrypted using the Cipher object.

setQ
public void setQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the prime parameter value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input prime parameter data is copied
into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the prime parameter value begins
length - the length of the prime parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the prime parameter
value is decrypted using the Cipher object.

126 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

358

setG
public void setG(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the subprime parameter value of the key. The plaintext data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte). Input subprime
parameter data is copied into the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the subprime parameter value begins
length - the length of the subprime parameter value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the subprime
parameter value is decrypted using the Cipher object.

getP
public short getP(byte[] buffer,
 short offset)

Returns the base parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the base parameter value starts

Returns:
the byte length of the base parameter value returned

getQ
public short getQ(byte[] buffer,
 short offset)

Returns the prime parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 127

Java Card 2.1 API

Appendix JCAPI02

359

Parameters:
buffer - the output buffer
offset - the offset into the output buffer at which the prime parameter value begins

Returns:
the byte length of the prime parameter value returned

getG
public short getG(byte[] buffer,
 short offset)

Returns the subprime parameter value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the subprime parameter value begins

Returns:
the byte length of the subprime parameter value returned

128 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

360

javacard.security
Interface DSAPrivateKey

public abstract interface DSAPrivateKey
extends PrivateKey, DSAKey

The DSAPrivateKey interface is used to sign data using the DSA algorithm. An implementation of
DSAPrivateKey interface must also implement the DSAKey interface methods.

When all four components of the key (X,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPublicKey, KeyBuilder, Signature, KeyEncryption

Method Summary
 short getX(byte[] buffer, short offset)

 Returns the value of the key in plain text.

 void setX(byte[] buffer, short offset, short length)
 Sets the value of the key.

Methods inherited from interface javacard.security.DSAKey

getG, getP, getQ, setG, setP, setQ

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 129

Java Card 2.1 API

Appendix JCAPI02

361

setX
public void setX(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the key. When the base, prime and subprime parameters are intialized and the key
value is set, the key is ready for use. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the key value is
decrypted using the Cipher object.

getX
public short getX(byte[] buffer,
 short offset)

Returns the value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the key value starts

Returns:
the byte length of the key value returned

130 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

362

javacard.security
Interface DSAPublicKey

public abstract interface DSAPublicKey
extends PublicKey, DSAKey

The DSAPublicKey interface is used to verify signatures on signed data using the DSA algorithm. An
implementation of DSAPublicKey interface must also implement the DSAKey interface methods.

When all four components of the key (Y,P,Q,G) are set, the key is initialized and ready for use.

See Also:
DSAPrivateKey, KeyBuilder, Signature, KeyEncryption

Method Summary
 short getY(byte[] buffer, short offset)

 Returns the value of the key in plain text.

 void setY(byte[] buffer, short offset, short length)
 Sets the value of the key.

Methods inherited from interface javacard.security.DSAKey

getG, getP, getQ, setG, setP, setQ

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 131

Java Card 2.1 API

Appendix JCAPI02

363

setY
public void setY(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the key. When the base, prime and subprime parameters are intialized and the key
value is set, the key is ready for use. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input key data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the key value begins
length - the length of the key value

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with
the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the key value is
decrypted using the Cipher object.

getY
public short getY(byte[] buffer,
 short offset)

Returns the value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the input buffer at which the key value starts

Returns:
the byte length of the key value returned

132 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

364

javacard.security
Interface Key
All Known Subinterfaces:

DESKey, DSAPrivateKey, DSAPublicKey, PrivateKey, PublicKey, RSAPrivateCrtKey,
RSAPrivateKey, RSAPublicKey, SecretKey

public abstract interface Key

The Key interface is the base interface for all keys.

See Also:
KeyBuilder

Method Summary
 void clearKey()

 Clears the key and sets its initialized state to false.

 short getSize()
 Returns the key size in number of bits.

 byte getType()
 Returns the key interface type.

 boolean isInitialized()
 Reports the initialized state of the key.

Method Detail

isInitialized
public boolean isInitialized()

Reports the initialized state of the key. Keys must be initialized before being used.

A Key object sets its initialized state to true only when all the associated set methods have been
invoked at least once since the time the initialized state was set to false.

A newly created Key object sets its initialized state to false. Invocation of the clearKey() method
sets the initialized state to false. A key with transient key data sets its initialized state to false on the
associated clear events.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 133

Java Card 2.1 API

Appendix JCAPI02

365

Returns:
true if the key has been initialized.

clearKey
public void clearKey()

Clears the key and sets its initialized state to false.

getType
public byte getType()

Returns the key interface type.
Returns:

the key interface type.

See Also:
KeyBuilder

getSize
public short getSize()

Returns the key size in number of bits.
Returns:

the key size in number of bits.

134 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

366

javacard.security
Class KeyBuilder
java.lang.Object
 |
 +--javacard.security.KeyBuilder

public class KeyBuilder
extends Object

The KeyBuilder class is a key object factory.

Field Summary
static short LENGTH_DES

 DES Key Length LENGTH_DES = 64.

static short LENGTH_DES3_2KEY
 DES Key Length LENGTH_DES3_2KEY = 128.

static short LENGTH_DES3_3KEY
 DES Key Length LENGTH_DES3_3KEY = 192.

static short LENGTH_DSA_1024
 DSA Key Length LENGTH_DSA_1024 = 1024.

static short LENGTH_DSA_512
 DSA Key Length LENGTH_DSA_512 = 512.

static short LENGTH_DSA_768
 DSA Key Length LENGTH_DSA_768 = 768.

static short LENGTH_RSA_1024
 RSA Key Length LENGTH_RSA_1024 = 1024.

static short LENGTH_RSA_2048
 RSA Key Length LENGTH_RSA_2048 = 2048.

static short LENGTH_RSA_512
 RSA Key Length LENGTH_RSA_512 = 512.

static short LENGTH_RSA_768
 RSA Key Length LENGTH_RSA_768 = 768.

static byte TYPE_DES
 Key object which implements interface type DESKey with persistent key data.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 135

Java Card 2.1 API

Appendix JCAPI02

367

static byte TYPE_DES_TRANSIENT_DESELECT
 Key object which implements interface type DESKey with
CLEAR_ON_DESELECT transient key data.

static byte TYPE_DES_TRANSIENT_RESET
 Key object which implements interface type DESKey with CLEAR_ON_RESET
transient key data.

static byte TYPE_DSA_PRIVATE
 Key object which implements the interface type DSAPrivateKey for the DSA
algorithm.

static byte TYPE_DSA_PUBLIC
 Key object which implements the interface type DSAPublicKey for the DSA
algorithm.

static byte TYPE_RSA_CRT_PRIVATE
 Key object which implements interface type RSAPrivateCrtKey which uses
Chinese Remainder Theorem.

static byte TYPE_RSA_PRIVATE
 Key object which implements interface type RSAPrivateKey which uses
modulus/exponent form.

static byte TYPE_RSA_PUBLIC
 Key object which implements interface type RSAPublicKey.

Method Summary
static Key buildKey(byte keyType, short keyLength,

boolean keyEncryption)
 Creates cryptographic keys for signature and cipher algorithms.

Methods inherited from class java.lang.Object

equals

Field Detail

136 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

368

TYPE_DES_TRANSIENT_RESET
public static final byte TYPE_DES_TRANSIENT_RESET

Key object which implements interface type DESKey with CLEAR_ON_RESET transient key data.

This Key object implicitly performs a clearKey() on power on or card reset.

TYPE_DES_TRANSIENT_DESELECT
public static final byte TYPE_DES_TRANSIENT_DESELECT

Key object which implements interface type DESKey with CLEAR_ON_DESELECT transient key
data.

This Key object implicitly performs a clearKey() on power on, card reset and applet deselection.

TYPE_DES
public static final byte TYPE_DES

Key object which implements interface type DESKey with persistent key data.

TYPE_RSA_PUBLIC
public static final byte TYPE_RSA_PUBLIC

Key object which implements interface type RSAPublicKey.

TYPE_RSA_PRIVATE
public static final byte TYPE_RSA_PRIVATE

Key object which implements interface type RSAPrivateKey which uses modulus/exponent form.

TYPE_RSA_CRT_PRIVATE
public static final byte TYPE_RSA_CRT_PRIVATE

Key object which implements interface type RSAPrivateCrtKey which uses Chinese Remainder
Theorem.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 137

Java Card 2.1 API

Appendix JCAPI02

369

TYPE_DSA_PUBLIC
public static final byte TYPE_DSA_PUBLIC

Key object which implements the interface type DSAPublicKey for the DSA algorithm.

TYPE_DSA_PRIVATE
public static final byte TYPE_DSA_PRIVATE

Key object which implements the interface type DSAPrivateKey for the DSA algorithm.

LENGTH_DES
public static final short LENGTH_DES

DES Key Length LENGTH_DES = 64.

LENGTH_DES3_2KEY
public static final short LENGTH_DES3_2KEY

DES Key Length LENGTH_DES3_2KEY = 128.

LENGTH_DES3_3KEY
public static final short LENGTH_DES3_3KEY

DES Key Length LENGTH_DES3_3KEY = 192.

LENGTH_RSA_512
public static final short LENGTH_RSA_512

RSA Key Length LENGTH_RSA_512 = 512.

LENGTH_RSA_768
public static final short LENGTH_RSA_768

RSA Key Length LENGTH_RSA_768 = 768.

138 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

370

LENGTH_RSA_1024
public static final short LENGTH_RSA_1024

RSA Key Length LENGTH_RSA_1024 = 1024.

LENGTH_RSA_2048
public static final short LENGTH_RSA_2048

RSA Key Length LENGTH_RSA_2048 = 2048.

LENGTH_DSA_512
public static final short LENGTH_DSA_512

DSA Key Length LENGTH_DSA_512 = 512.

LENGTH_DSA_768
public static final short LENGTH_DSA_768

DSA Key Length LENGTH_DSA_768 = 768.

LENGTH_DSA_1024
public static final short LENGTH_DSA_1024

DSA Key Length LENGTH_DSA_1024 = 1024.

Method Detail

buildKey
public static Key buildKey(byte keyType,
 short keyLength,
 boolean keyEncryption)
 throws CryptoException

Creates cryptographic keys for signature and cipher algorithms. Instances created by this method may
be the only key objects used to initialize instances of Signature and Cipher. Note that the object
returned must be cast to their appropriate key type interface.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 139

Java Card 2.1 API

Appendix JCAPI02

371

Parameters:
keyType - the type of key to be generated. Valid codes listed in TYPE.. constants.
keyLength - the key size in bits. The valid key bit lengths are key type dependent. See above.
keyEncryption - if true this boolean requests a key implementation which implements the
javacardx.cipher.KeyEncryption interface.

Returns:
the key object instance of the requested key type, length and encrypted access.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm associated
with the specified type, size of key and key encryption interface is not supported.

140 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

372

javacard.security
Class MessageDigest
java.lang.Object
 |
 +--javacard.security.MessageDigest

public abstract class MessageDigest
extends Object

The MessageDigest class is the base class for hashing algorthims. Implementations of MessageDigest
algorithms must extend this class and implement all the abstract methods.

Field Summary
static byte ALG_MD5

 Message Digest algorithm MD5.

static byte ALG_RIPEMD160
 Message Digest algorithm RIPE MD-160.

static byte ALG_SHA
 Message Digest algorithm SHA.

Constructor Summary
protected MessageDigest()

 Protected Constructor

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 141

Java Card 2.1 API

Appendix JCAPI02

373

Method Summary
abstract short doFinal(byte[] inBuff, short inOffset,

short inLength, byte[] outBuff, short outOffset)
 Generates a hash of all/last input data.

abstract byte getAlgorithm()
 Gets the Message digest algorithm.

static MessageDigest getInstance(byte algorithm, boolean externalAccess)
 Creates a MessageDigest object instance of the selected algorithm.

abstract byte getLength()
 Returns the byte length of the hash.

abstract void update(byte[] inBuff, short inOffset,
short inLength)
 Accumulates a hash of the input data.

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_SHA
public static final byte ALG_SHA

Message Digest algorithm SHA.

ALG_MD5
public static final byte ALG_MD5

Message Digest algorithm MD5.

ALG_RIPEMD160
public static final byte ALG_RIPEMD160

142 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

374

Message Digest algorithm RIPE MD-160.

Constructor Detail

MessageDigest
protected MessageDigest()

Protected Constructor

Method Detail

getInstance
public static final MessageDigest getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Creates a MessageDigest object instance of the selected algorithm.
Parameters:

algorithm - the desired message digest algorithm. Valid codes listed in ALG_.. constants.
See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the MessageDigest instance will also be accessed (via a Shareable
interface) when the owner of the MessageDigest instance is not the currently selected
applet.

Returns:
the MessageDigest object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Message digest algorithm.
Returns:

the algorithm code defined above.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 143

Java Card 2.1 API

Appendix JCAPI02

375

getLength
public abstract byte getLength()

Returns the byte length of the hash.
Returns:

hash length

doFinal
public abstract short doFinal(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] outBuff,
 short outOffset)

Generates a hash of all/last input data. Completes and returns the hash computation after performing
final operations such as padding. The MessageDigest object is reset after this call is made.

The input and output buffer data may overlap.
Parameters:

inBuff - the input buffer of data to be hashed
inOffset - the offset into the input buffer at which to begin hash generation
inLength - the byte length to hash
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes of hash output in outBuff

update
public abstract void update(byte[] inBuff,
 short inOffset,
 short inLength)

Accumulates a hash of the input data. When this method is used temporary storage of intermediate
results is required. This method should only be used if all the input data required for the hash is not
available in one byte array. The doFinal() method is recommended whenever possible.
Parameters:

inBuff - the input buffer of data to be hashed
inOffset - the offset into the input buffer at which to begin hash generation
inLength - the byte length to hash

See Also:
doFinal(byte[], short, short, byte[], short)

144 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

376

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 145

Java Card 2.1 API

Appendix JCAPI02

377

javacard.security
Interface PrivateKey
All Known Subinterfaces:

DSAPrivateKey, RSAPrivateCrtKey, RSAPrivateKey

public abstract interface PrivateKey
extends Key

The PrivateKey class is the base class for private keys used in asymmetric algorithms.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

146 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

378

javacard.security
Interface PublicKey
All Known Subinterfaces:

DSAPublicKey, RSAPublicKey

public abstract interface PublicKey
extends Key

The PublicKey class is the base class for public keys used in asymmetric algorithms.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 147

Java Card 2.1 API

Appendix JCAPI02

379

javacard.security
Interface RSAPrivateCrtKey

public abstract interface RSAPrivateCrtKey
extends PrivateKey

The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm in its Chinese
Remainder Theorem form. It may also be used by the javacardx.crypto.Cipher class to
encrypt/decrypt messages.

Let S = md mod n, where m is the data to be signed, d is the private key exponent, and n is private key
modulus composed of two prime numbers p and q. The following names are used in the initializer
methods in this interface:

P, the prime factor p
Q, the prime factor q.
PQ = q-1 mod p
DP1 = d mod (p - 1)
DQ1 = d mod (q - 1)

When all five components (P,Q,PQ,DP1,DQ1) of the key are set, the key is initialized and ready for use.

See Also:
RSAPrivateKey, RSAPublicKey, KeyBuilder, Signature, Cipher, KeyEncryption

148 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

380

Method Summary
 short getDP1(byte[] buffer, short offset)

 Returns the value of the DP1 parameter in plain text.

 short getDQ1(byte[] buffer, short offset)
 Returns the value of the DQ1 parameter in plain text.

 short getP(byte[] buffer, short offset)
 Returns the value of the P parameter in plain text.

 short getPQ(byte[] buffer, short offset)
 Returns the value of the PQ parameter in plain text.

 short getQ(byte[] buffer, short offset)
 Returns the value of the Q parameter in plain text.

 void setDP1(byte[] buffer, short offset, short length)
 Sets the value of the DP1 parameter.

 void setDQ1(byte[] buffer, short offset, short length)
 Sets the value of the DQ1 parameter.

 void setP(byte[] buffer, short offset, short length)
 Sets the value of the P parameter.

 void setPQ(byte[] buffer, short offset, short length)
 Sets the value of the PQ parameter.

 void setQ(byte[] buffer, short offset, short length)
 Sets the value of the Q parameter.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

setP
public void setP(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 149

Java Card 2.1 API

Appendix JCAPI02

381

Sets the value of the P parameter. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input P parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the P parameter value
is decrypted using the Cipher object.

setQ
public void setQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the Q parameter. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input Q parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the Q parameter value
is decrypted using the Cipher object.

150 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

382

setDP1
public void setDP1(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the DP1 parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input DP1 parameter data is copied into
the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the DP1 parameter
value is decrypted using the Cipher object.

setDQ1
public void setDQ1(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the DQ1 parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input DQ1 parameter data is copied into
the internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the DQ1 parameter
value is decrypted using the Cipher object.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 151

Java Card 2.1 API

Appendix JCAPI02

383

setPQ
public void setPQ(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the value of the PQ parameter. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input PQ parameter data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the parameter value begins
length - the length of the parameter

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input parameter data length is
inconsistent with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the PQ parameter
value is decrypted using the Cipher object.

getP
public short getP(byte[] buffer,
 short offset)

Returns the value of the P parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the P parameter value returned

getQ
public short getQ(byte[] buffer,
 short offset)

Returns the value of the Q parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).

152 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

384

Parameters:
buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the Q parameter value returned

getDP1
public short getDP1(byte[] buffer,
 short offset)

Returns the value of the DP1 parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the DP1 parameter value returned

getDQ1
public short getDQ1(byte[] buffer,
 short offset)

Returns the value of the DQ1 parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the DQ1 parameter value returned

getPQ
public short getPQ(byte[] buffer,
 short offset)

Returns the value of the PQ parameter in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the parameter value begins

Returns:
the byte length of the PQ parameter value returned

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 153

Java Card 2.1 API

Appendix JCAPI02

385

154 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

386

javacard.security
Interface RSAPrivateKey

public abstract interface RSAPrivateKey
extends PrivateKey

The RSAPrivateKey class is used to sign data using the RSA algorithm in its modulus/exponent form.
It may also be used by the javacardx.crypto.Cipher class to encrypt/decrypt messages.

When both the modulus and exponent of the key are set, the key is initialized and ready for use.

See Also:
RSAPublicKey, RSAPrivateCrtKey, KeyBuilder, Signature, Cipher,
KeyEncryption

Method Summary
 short getExponent(byte[] buffer, short offset)

 Returns the private exponent value of the key in plain text.

 short getModulus(byte[] buffer, short offset)
 Returns the modulus value of the key in plain text.

 void setExponent(byte[] buffer, short offset, short length)
 Sets the private exponent value of the key.

 void setModulus(byte[] buffer, short offset, short length)
 Sets the modulus value of the key.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 155

Java Card 2.1 API

Appendix JCAPI02

387

setModulus
public void setModulus(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the modulus value of the key. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input modulus data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input modulus data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the modulus value is
decrypted using the Cipher object.

setExponent
public void setExponent(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the private exponent value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input exponent data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the exponent value begins
length - the length of the exponent

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input exponent data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the exponent value is
decrypted using the Cipher object.

156 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

388

getModulus
public short getModulus(byte[] buffer,
 short offset)

Returns the modulus value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the modulus value starts

Returns:
the byte length of the modulus value returned

getExponent
public short getExponent(byte[] buffer,
 short offset)

Returns the private exponent value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the exponent value begins

Returns:
the byte length of the private exponent value returned

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 157

Java Card 2.1 API

Appendix JCAPI02

389

javacard.security
Interface RSAPublicKey

public abstract interface RSAPublicKey
extends PublicKey

The RSAPublicKey is used to verify signatures on signed data using the RSA algorithm. It may also
used by the javacardx.crypto.Cipher class to encrypt/decrypt messages.

When both the modulus and exponent of the key are set, the key is initialized and ready for use.

See Also:
RSAPrivateKey, RSAPrivateCrtKey, KeyBuilder, Signature, Cipher,
KeyEncryption

Method Summary
 short getExponent(byte[] buffer, short offset)

 Returns the private exponent value of the key in plain text.

 short getModulus(byte[] buffer, short offset)
 Returns the modulus value of the key in plain text.

 void setExponent(byte[] buffer, short offset, short length)
 Sets the public exponent value of the key.

 void setModulus(byte[] buffer, short offset, short length)
 Sets the modulus value of the key.

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

Method Detail

158 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

390

setModulus
public void setModulus(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the modulus value of the key. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input modulus data is copied into the internal
representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the modulus value begins
length - the byte length of the modulus

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input modulus data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the modulus value is
decrypted using the Cipher object.

setExponent
public void setExponent(byte[] buffer,
 short offset,
 short length)
 throws CryptoException

Sets the public exponent value of the key. The plaintext data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input exponent data is copied into the
internal representation.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer at which the exponent value begins
length - the byte length of the exponent

Throws:
CryptoException - with the following reason code:

CryptoException.ILLEGAL_VALUE if the input exponent data length is inconsistent
with the implementation or if input data decryption is required and fails.

Note:
If the key object implements the javacardx.crypto.KeyEncryption interface and
the Cipher object specified via setKeyCipher() is not null, the exponent value is
decrypted using the Cipher object.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 159

Java Card 2.1 API

Appendix JCAPI02

391

getModulus
public short getModulus(byte[] buffer,
 short offset)

Returns the modulus value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the input buffer at which the modulus value starts

Returns:
the byte length of the modulus value returned

getExponent
public short getExponent(byte[] buffer,
 short offset)

Returns the private exponent value of the key in plain text. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).
Parameters:

buffer - the output buffer
offset - the offset into the output buffer at which the exponent value begins

Returns:
the byte length of the public exponent returned

160 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

392

javacard.security
Class RandomData
java.lang.Object
 |
 +--javacard.security.RandomData

public abstract class RandomData
extends Object

The RandomData abstract class is the base class for random number generation. Implementations of
RandomData algorithms must extend this class and implement all the abstract methods.

Field Summary
static byte ALG_PSEUDO_RANDOM

 Utility pseudo random number generation algorithms.

static byte ALG_SECURE_RANDOM
 Cryptographically secure random number generation algorithms.

Constructor Summary
protected RandomData()

 Protected constructor for subclassing.

Method Summary
abstract void generateData(byte[] buffer, short offset, short length)

 Generates random data.

static RandomData getInstance(byte algorithm)
 Creates a RandomData instance of the selected algorithm.

abstract void setSeed(byte[] buffer, short offset, short length)
 Seeds the random data generator.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 161

Java Card 2.1 API

Appendix JCAPI02

393

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_PSEUDO_RANDOM
public static final byte ALG_PSEUDO_RANDOM

Utility pseudo random number generation algorithms.

ALG_SECURE_RANDOM
public static final byte ALG_SECURE_RANDOM

Cryptographically secure random number generation algorithms.

Constructor Detail

RandomData
protected RandomData()

Protected constructor for subclassing.

Method Detail

getInstance
public static final RandomData getInstance(byte algorithm)
 throws CryptoException

Creates a RandomData instance of the selected algorithm. The pseudo random RandomData
instance’s seed is initialized to a internal default value.
Parameters:

algorithm - the desired random number algorithm. Valid codes listed in ALG_.. constants.
See above.

Returns:
the RandomData object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

162 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

394

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

generateData
public abstract void generateData(byte[] buffer,
 short offset,
 short length)

Generates random data.
Parameters:

buffer - the output buffer
offset - the offset into the output buffer
length - the length of random data to generate

setSeed
public abstract void setSeed(byte[] buffer,
 short offset,
 short length)

Seeds the random data generator.
Parameters:

buffer - the input buffer
offset - the offset into the input buffer
length - the length of the seed data

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 163

Java Card 2.1 API

Appendix JCAPI02

395

javacard.security
Interface SecretKey
All Known Subinterfaces:

DESKey

public abstract interface SecretKey
extends Key

The SecretKey class is the base interface for keys used in symmetric alogrightms (e.g. DES).

Methods inherited from interface javacard.security.Key

clearKey, getSize, getType, isInitialized

164 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

396

javacard.security
Class Signature
java.lang.Object
 |
 +--javacard.security.Signature

public abstract class Signature
extends Object

The Signature class is the base class for Signature algorthims. Implementations of Signature
algorithms must extend this class and implement all the abstract methods.

The term "pad" is used in the public key signature algorithms below to refer to all the operations specified
in the referenced scheme to transform the message digest into the encryption block size.

Field Summary
static byte ALG_DES_MAC4_ISO9797_M1

 Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC
(most significant 4 bytes of encrypted block) using DES or triple DES in CBC mode.
This algorithm uses outer CBC for triple DES. Input data is padded according to the ISO
9797 method 1 scheme.

static byte ALG_DES_MAC4_ISO9797_M2
 Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC
(most significant 4 bytes of encrypted block) using DES or triple DES in CBC mode.
This algorithm uses outer CBC for triple DES. Input data is padded according to the ISO
9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_MAC4_NOPAD
 Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most
significant 4 bytes of encrypted block) using DES or triple DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data.

static byte ALG_DES_MAC4_PKCS5
 Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most
significant 4 bytes of encrypted block) using DES or triple DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5
scheme.

static byte ALG_DES_MAC8_ISO9797_M1
 Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC
using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES.
Input data is padded according to the ISO 9797 method 1 scheme.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 165

Java Card 2.1 API

Appendix JCAPI02

397

static byte ALG_DES_MAC8_ISO9797_M2
 Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC
using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES.
Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_MAC8_NOPAD
 Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using
DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES. This
algorithm does not pad input data.

static byte ALG_DES_MAC8_PKCS5
 Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using
DES or triple DES in CBC mode. This algorithm uses outer CBC for triple DES. Input
data is padded according to the PKCS#5 scheme.

static byte ALG_DSA_SHA
 Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using
DSA.

static byte ALG_RSA_MD5_PKCS1
 Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_MD5_RFC2409
 Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest
using RSA. The digest is padded according to the RFC2409 scheme.

static byte ALG_RSA_RIPEMD160_ISO9796
 Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte
RIPE MD-160 digest using RSA. The digest is padded according to the ISO 9796
scheme.

static byte ALG_RSA_RIPEMD160_PKCS1
 Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE
MD-160 digest using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_SHA_ISO9796
 Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the ISO 9796 (EMV’96) scheme.

static byte ALG_RSA_SHA_PKCS1
 Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_SHA_RFC2409
 Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest
using RSA. The digest is padded according to the RFC2409 scheme.

static byte MODE_SIGN
 Used in init() methods to indicate signature sign mode.

166 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

398

static byte MODE_VERIFY
 Used in init() methods to indicate signature verify mode.

Constructor Summary
protected Signature()

 Protected Constructor

Method Summary
abstract byte getAlgorithm()

 Gets the Signature algorithm.

static Signature getInstance(byte algorithm, boolean externalAccess)
 Creates a Signature object instance of the selected algorithm.

abstract short getLength()
 Returns the byte length of the signature data.

abstract void init(Key theKey, byte theMode)
 Initializes the Signature object with the appropriate Key.

abstract void init(Key theKey, byte theMode, byte[] bArray,
short bOff, short bLen)
 Initializes the Signature object with the appropriate Key and algorithm
specific parameters.

abstract short sign(byte[] inBuff, short inOffset, short inLength,
byte[] sigBuff, short sigOffset)
 Generates the signature of all/last input data.

abstract void update(byte[] inBuff, short inOffset, short inLength)
 Accumulates a signature of the input data.

abstract
 boolean

verify(byte[] inBuff, short inOffset, short inLength,
byte[] sigBuff, short sigOffset, short sigLength)
 Verifies the signature of all/last input data against the passed in signature.

Methods inherited from class java.lang.Object

equals

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 167

Java Card 2.1 API

Appendix JCAPI02

399

Field Detail

ALG_DES_MAC4_NOPAD
public static final byte ALG_DES_MAC4_NOPAD

Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. This algorithm does not pad input data. If the input data is not (8 byte) block aligned it throws
CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_MAC8_NOPAD
public static final byte ALG_DES_MAC8_NOPAD

Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using DES or triple DES
in CBC mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data. If the input data is not (8 byte) block aligned it throws CryptoExeption with the reason
code ILLEGAL_USE.

Note:
This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_ISO9797_M1
public static final byte ALG_DES_MAC4_ISO9797_M1

Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_MAC8_ISO9797_M1
public static final byte ALG_DES_MAC8_ISO9797_M1

Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 1 scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

168 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

400

ALG_DES_MAC4_ISO9797_M2
public static final byte ALG_DES_MAC4_ISO9797_M2

Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96)
scheme.

ALG_DES_MAC8_ISO9797_M2
public static final byte ALG_DES_MAC8_ISO9797_M2

Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_PKCS5
public static final byte ALG_DES_MAC4_PKCS5

Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_MAC8_PKCS5
public static final byte ALG_DES_MAC8_PKCS5

Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using DES or triple DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to the
PKCS#5 scheme.

Note:
This algorithm must not be implemented if export restrictions apply.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 169

Java Card 2.1 API

Appendix JCAPI02

401

ALG_RSA_SHA_ISO9796
public static final byte ALG_RSA_SHA_ISO9796

Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_SHA_PKCS1
public static final byte ALG_RSA_SHA_PKCS1

Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_MD5_PKCS1
public static final byte ALG_RSA_MD5_PKCS1

Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_RIPEMD160_ISO9796
public static final byte ALG_RSA_RIPEMD160_ISO9796

Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the ISO 9796 scheme.

ALG_RSA_RIPEMD160_PKCS1
public static final byte ALG_RSA_RIPEMD160_PKCS1

Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_DSA_SHA
public static final byte ALG_DSA_SHA

Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using DSA.

170 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

402

ALG_RSA_SHA_RFC2409
public static final byte ALG_RSA_SHA_RFC2409

Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_RSA_MD5_RFC2409
public static final byte ALG_RSA_MD5_RFC2409

Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the RFC2409 scheme.

MODE_SIGN
public static final byte MODE_SIGN

Used in init() methods to indicate signature sign mode.

MODE_VERIFY
public static final byte MODE_VERIFY

Used in init() methods to indicate signature verify mode.

Constructor Detail

Signature
protected Signature()

Protected Constructor

Method Detail

getInstance
public static final Signature getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 171

Java Card 2.1 API

Appendix JCAPI02

403

Creates a Signature object instance of the selected algorithm.
Parameters:

algorithm - the desired Signature algorithm. See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the Signature instance will also be accessed (via a Shareable interface)
when the owner of the Signature instance is not the currently selected applet.

Returns:
the Signature object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

init
public abstract void init(Key theKey,
 byte theMode)
 throws CryptoException

Initializes the Signature object with the appropriate Key. This method should be used for
algorithms which do not need initialization parameters or use default parameter values.

Note:
DES and triple DES algorithms in CBC mode will use 0 for initial vector(IV) if this method is
used.

Parameters:
theKey - the key object to use for signing or verifying
theMode - one of MODE_SIGN or MODE_VERIFY

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
the Key is inconsistent with theMode or with the Signature implementation.

init
public abstract void init(Key theKey,
 byte theMode,
 byte[] bArray,
 short bOff,
 short bLen)
 throws CryptoException

Initializes the Signature object with the appropriate Key and algorithm specific parameters.

Note:
DES and triple DES algorithms in outer CBC mode expect an 8 byte parameter value for the
initial vector(IV) in bArray.

172 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

404

RSA and DSA algorithms throw CryptoException.ILLEGAL_VALUE.
Parameters:

theKey - the key object to use for signing
theMode - one of MODE_SIGN or MODE_VERIFY
bArray - byte array containing algorithm specific initialization info.
bOff - offset withing bArray where the algorithm specific data begins.
bLen - byte length of algorithm specific parameter data

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
a byte array parameter option is not supported by the algorithm or if the bLen is an
incorrect byte length for the algorithm specific data or if the Key is inconsistent with
theMode or with the Signature implementation.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Signature algorithm.
Returns:

the algorithm code defined above.

getLength
public abstract short getLength()

Returns the byte length of the signature data.
Returns:

the byte length of the signature data.

update
public abstract void update(byte[] inBuff,
 short inOffset,
 short inLength)
 throws CryptoException

Accumulates a signature of the input data. When this method is used temporary storage of
intermediate results is required. This method should only be used if all the input data required for the
signature is not available in one byte array. The sign() or verify() method is recommended
whenever possible.
Parameters:

inBuff - the input buffer of data to be signed
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 173

Java Card 2.1 API

Appendix JCAPI02

405

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
See Also:

sign(byte[], short, short, byte[], short), verify(byte[], short,
short, byte[], short, short)

sign
public abstract short sign(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] sigBuff,
 short sigOffset)
 throws CryptoException

Generates the signature of all/last input data. A call to this method also resets this Signature
object to the state it was in when previously initialized via a call to init(). That is, the object is
reset and available to sign another message.

The input and output buffer data may overlap.
Parameters:

inBuff - the input buffer of data to be signed
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign
sigBuff - the output buffer to store signature data
sigOffset - the offset into sigBuff at which to begin signature data

Returns:
number of bytes of signature output in sigBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Signature object is not initialized or
initialized for signature verify mode.
CryptoException.ILLEGAL_USE if this Signature algorithm does not pad the
message and the message is not block aligned.

verify
public abstract boolean verify(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] sigBuff,
 short sigOffset,
 short sigLength)
 throws CryptoException

174 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

406

Verifies the signature of all/last input data against the passed in signature. A call to this method also
resets this Signature object to the state it was in when previously initialized via a call to init().
That is, the object is reset and available to verify another message.
Parameters:

inBuff - the input buffer of data to be verified
inOffset - the offset into the input buffer at which to begin signature generation
inLength - the byte length to sign
sigBuff - the input buffer containing signature data
sigOffset - the offset into sigBuff where signature data begins.
sigLength - the byte length of the signature data

Returns:
true if signature verifies false otherwise.

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Signature object is not initialized or
initialized for signature sign mode.
CryptoException.ILLEGAL_USE if this Signature algorithm does not pad the
message and the message is not block aligned.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 175

Java Card 2.1 API

Appendix JCAPI02

407

Package javacardx.crypto
Extension package containing security classes and interfaces for export-controlled functionality.

See:
 Description

Interface Summary

KeyEncryption
KeyEncryption interface defines the methods used to enable encrypted key data
access to a key implementation.

Class Summary
Cipher The Cipher class is the abstract base class for Cipher algorthims.

Package javacardx.crypto Description
Extension package containing security classes and interfaces for export-controlled functionality.

176 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

408

javacardx.crypto
Class Cipher
java.lang.Object
 |
 +--javacardx.crypto.Cipher

public abstract class Cipher
extends Object

The Cipher class is the abstract base class for Cipher algorthims. Implementations of Cipher algorithms
must extend this class and implement all the abstract methods.

The term "pad" is used in the public key cipher algorithms below to refer to all the operations specified in
the referenced scheme to transform the message block into the cipher block size.

Field Summary
static byte ALG_DES_CBC_ISO9797_M1

 Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded
according to the ISO 9797 method 1 scheme.

static byte ALG_DES_CBC_ISO9797_M2
 Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded
according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

static byte ALG_DES_CBC_NOPAD
 Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC
mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data.

static byte ALG_DES_CBC_PKCS5
 Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC
mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the PKCS#5 scheme.

static byte ALG_DES_ECB_ISO9797_M1
 Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in
ECB mode. Input data is padded according to the ISO 9797 method 1 scheme.

static byte ALG_DES_ECB_ISO9797_M2
 Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in
ECB mode. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4,
EMV’96) scheme.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 177

Java Card 2.1 API

Appendix JCAPI02

409

static byte ALG_DES_ECB_NOPAD
 Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB
mode. This algorithm does not pad input data.

static byte ALG_DES_ECB_PKCS5
 Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB
mode. Input data is padded according to the PKCS#5 scheme.

static byte ALG_RSA_ISO14888
 Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data
is padded according to the ISO 14888 scheme.

static byte ALG_RSA_ISO9796
 Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is
padded according to the ISO 9796 (EMV’96) scheme.

static byte ALG_RSA_PKCS1
 Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is
padded according to the PKCS#1 (v1.5) scheme.

static byte MODE_DECRYPT
 Used in init() methods to indicate decryption mode.

static byte MODE_ENCRYPT
 Used in init() methods to indicate encryption mode.

Constructor Summary
protected Cipher()

 Protected Constructor

178 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

410

Method Summary
abstract

 short
doFinal(byte[] inBuff, short inOffset, short inLength,
byte[] outBuff, short outOffset)
 Generates encrypted/decrypted output from all/last input data.

abstract byte getAlgorithm()
 Gets the Cipher algorithm.

static Cipher getInstance(byte algorithm, boolean externalAccess)
 Creates a Cipher object instance of the selected algorithm.

abstract void init(Key theKey, byte theMode)
 Initializes the Cipher object with the appropriate Key.

abstract void init(Key theKey, byte theMode, byte[] bArray, short bOff,
short bLen)
 Initializes the Cipher object with the appropriate Key and algorithm specific
parameters.

abstract
 short

update(byte[] inBuff, short inOffset, short inLength,
byte[] outBuff, short outOffset)
 Generates encrypted/decrypted output from input data.

Methods inherited from class java.lang.Object

equals

Field Detail

ALG_DES_CBC_NOPAD
public static final byte ALG_DES_CBC_NOPAD

Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data. If the input data is
not (8 byte) block aligned it throws CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_CBC_ISO9797_M1
public static final byte ALG_DES_CBC_ISO9797_M1

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 179

Java Card 2.1 API

Appendix JCAPI02

411

Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 1
scheme.

ALG_DES_CBC_ISO9797_M2
public static final byte ALG_DES_CBC_ISO9797_M2

Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 2
(ISO 7816-4, EMV’96) scheme.

ALG_DES_CBC_PKCS5
public static final byte ALG_DES_CBC_PKCS5

Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_ECB_NOPAD
public static final byte ALG_DES_ECB_NOPAD

Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB mode. This
algorithm does not pad input data. If the input data is not (8 byte) block aligned it throws
CryptoExeption with the reason code ILLEGAL_USE.

ALG_DES_ECB_ISO9797_M1
public static final byte ALG_DES_ECB_ISO9797_M1

Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_ECB_ISO9797_M2
public static final byte ALG_DES_ECB_ISO9797_M2

Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

180 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

412

ALG_DES_ECB_PKCS5
public static final byte ALG_DES_ECB_PKCS5

Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB mode. Input data is
padded according to the PKCS#5 scheme.

ALG_RSA_ISO14888
public static final byte ALG_RSA_ISO14888

Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data is padded
according to the ISO 14888 scheme.

ALG_RSA_PKCS1
public static final byte ALG_RSA_PKCS1

Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is padded according to
the PKCS#1 (v1.5) scheme.

Note:
This algorithm is only suitable for messages of limited length. The total number of input bytes
processed may not be more than k-11, where k is the RSA key’s modulus size in bytes.

ALG_RSA_ISO9796
public static final byte ALG_RSA_ISO9796

Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is padded
according to the ISO 9796 (EMV’96) scheme.

Note:
This algorithm is only suitable for messages of limited length. The total number of input bytes
processed may not be more than k/2, where k is the RSA key’s modulus size in bytes.

MODE_DECRYPT
public static final byte MODE_DECRYPT

Used in init() methods to indicate decryption mode.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 181

Java Card 2.1 API

Appendix JCAPI02

413

MODE_ENCRYPT
public static final byte MODE_ENCRYPT

Used in init() methods to indicate encryption mode.

Constructor Detail

Cipher
protected Cipher()

Protected Constructor

Method Detail

getInstance
public static final Cipher getInstance(byte algorithm,
 boolean externalAccess)
 throws CryptoException

Creates a Cipher object instance of the selected algorithm.
Parameters:

algorithm - the desired Cipher algorithm. See above.
externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the Cipher instance will also be accessed (via a Shareable interface)
when the owner of the Cipher instance is not the currently selected applet.

Returns:
the Cipher object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not
supported.

init
public abstract void init(Key theKey,
 byte theMode)
 throws CryptoException

Initializes the Cipher object with the appropriate Key. This method should be used for algorithms
which do not need initialization parameters or use default parameter values.

182 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

414

Note:
DES and triple DES algorithms in CBC mode will use 0 for initial vector(IV) if this method is
used.

Parameters:
theKey - the key object to use for signing or verifying
theMode - one of MODE_DECRYPT or MODE_ENCRYPT

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
the Key is inconsistent with the Cipher implementation.

init
public abstract void init(Key theKey,
 byte theMode,
 byte[] bArray,
 short bOff,
 short bLen)
 throws CryptoException

Initializes the Cipher object with the appropriate Key and algorithm specific parameters.

Note:
DES and triple DES algorithms in outer CBC mode expect an 8 byte parameter value for the
initial vector(IV) in bArray.
RSA and DSA algorithms throw CryptoException.ILLEGAL_VALUE.

Parameters:
theKey - the key object to use for signing
theMode - one of MODE_DECRYPT or MODE_ENCRYPT
bArray - byte array containing algorithm specific initialization info.
bOff - offset withing bArray where the algorithm specific data begins.
bLen - byte length of algorithm specific parameter data

Throws:
CryptoException - with the following reason codes:

CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if
a byte array parameter option is not supported by the algorithm or if the bLen is an
incorrect byte length for the algorithm specific data or if the Key is inconsistent with the
Cipher implementation.

getAlgorithm
public abstract byte getAlgorithm()

Gets the Cipher algorithm.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 183

Java Card 2.1 API

Appendix JCAPI02

415

Returns:
the algorithm code defined above.

doFinal
public abstract short doFinal(byte[] inBuff,
 short inOffset,
 short inLength,
 byte[] outBuff,
 short outOffset)
 throws CryptoException

Generates encrypted/decrypted output from all/last input data. A call to this method also resets this
Cipher object to the state it was in when previously initialized via a call to init(). That is, the
object is reset and available to encrypt or decrypt (depending on the operation mode that was
specified in the call to init()) more data.

The input and output buffer data may overlap.

Notes:
On decryption operations (except when ISO 9797 method 1 padding is used), the padding bytes
are not written to outBuff.
On encryption operations, the number of bytes output into outBuff may be larger than
inLength.

Parameters:
inBuff - the input buffer of data to be encrypted/decrypted.
inOffset - the offset into the input buffer at which to begin encryption/decryption.
inLength - the byte length to be encrypted/decrypted.
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes output in outBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Cipher object is not initialized.
CryptoException.ILLEGAL_USE if this Cipher algorithm does not pad the
message and the message is not block aligned or if the input message length is not
supported.

update
public abstract short update(byte[] inBuff,
 short inOffset,

184 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

416

 short inLength,
 byte[] outBuff,
 short outOffset)
 throws CryptoException

Generates encrypted/decrypted output from input data. When this method is used temporary storage
of intermediate results is required. This method should only be used if all the input data required for
the cipher is not available in one byte array. The doFinal() method is recommended whenever
possible.

The input and output buffer data may overlap.

Notes:
On decryption operations(except when ISO 9797 method 1 padding is used), the padding bytes
are not written to outBuff.
On encryption operations, the number of bytes output into outBuff may be larger than
inLength.
On encryption and decryption operations(except when ISO 9797 method 1 padding is used),
block alignment considerations may require that the number of bytes output into outBuff be
smaller than inLength or even 0.

Parameters:
inBuff - the input buffer of data to be encrypted/decrypted.
inOffset - the offset into the input buffer at which to begin encryption/decryption.
inLength - the byte length to be encrypted/decrypted.
outBuff - the output buffer, may be the same as the input buffer
outOffset - the offset into the output buffer where the resulting hash value begins

Returns:
number of bytes output in outBuff

Throws:
CryptoException - with the following reason codes:

CryptoException.UNINITIALIZED_KEY if key not initialized.
CryptoException.INVALID_INIT if this Cipher object is not initialized.
CryptoException.ILLEGAL_USE if the input message length is not supported.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 185

Java Card 2.1 API

Appendix JCAPI02

417

javacardx.crypto
Interface KeyEncryption

public abstract interface KeyEncryption

KeyEncryption interface defines the methods used to enable encrypted key data access to a key
implementation.

See Also:
KeyBuilder, Cipher

Method Summary
 Cipher getKeyCipher()

 Returns the Cipher object to be used to decrypt the input key data and key parameters
in the set methods. Default is null - no decryption performed.

 void setKeyCipher(Cipher keyCipher)
 Sets the Cipher object to be used to decrypt the input key data and key parameters in
the set methods. Default Cipher object is null - no decryption performed.

Method Detail

setKeyCipher
public void setKeyCipher(Cipher keyCipher)

Sets the Cipher object to be used to decrypt the input key data and key parameters in the set
methods.

Default Cipher object is null - no decryption performed.
Parameters:

keyCipher - the decryption Cipher object to decrypt the input key data. null parameter
indicates that no decryption is required.

getKeyCipher
public Cipher getKeyCipher()

186 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

418

Returns the Cipher object to be used to decrypt the input key data and key parameters in the set
methods.

Default is null - no decryption performed.
Returns:

keyCipher the decryption Cipher object to decrypt the input key data. null return indicates
that no decryption is performed.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 187

Java Card 2.1 API

Appendix JCAPI02

419

A B C D E G I J K L M N O P R S T U V W

A
abortTransaction() - Static method in class javacard.framework.JCSystem

Aborts the atomic transaction.
AID - class javacard.framework.AID.

This class encapsulates the Application Identifier(AID) associated with an applet.
AID(byte[], short, byte) - Constructor for class javacard.framework.AID

The JCRE uses this constructor to create a new AID instance encapsulating the specified AID bytes.
ALG_DES_CBC_ISO9797_M1 - Static variable in class javacardx.crypto.Cipher

Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 1
scheme.

ALG_DES_CBC_ISO9797_M2 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the ISO 9797 method 2
(ISO 7816-4, EMV’96) scheme.

ALG_DES_CBC_NOPAD - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. This algorithm does not pad input data.

ALG_DES_CBC_PKCS5 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC mode. This
algorithm uses outer CBC for triple DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_ECB_ISO9797_M1 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_ECB_ISO9797_M2 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in ECB mode. Input
data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

ALG_DES_ECB_NOPAD - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB mode. This
algorithm does not pad input data.

ALG_DES_ECB_PKCS5 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB mode. Input data is
padded according to the PKCS#5 scheme.

ALG_DES_MAC4_ISO9797_M1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 1 scheme.

ALG_DES_MAC4_ISO9797_M2 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4 byte MAC (most significant 4
bytes of encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for
triple DES. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4, EMV’96)
scheme.

188 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

420

ALG_DES_MAC4_NOPAD - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_NOPAD generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. This algorithm does not pad input data.

ALG_DES_MAC4_PKCS5 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4 byte MAC (most significant 4 bytes of
encrypted block) using DES or triple DES in CBC mode. This algorithm uses outer CBC for triple
DES. Input data is padded according to the PKCS#5 scheme.

ALG_DES_MAC8_ISO9797_M1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 1 scheme.

ALG_DES_MAC8_ISO9797_M2 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates a 8 byte MAC using DES or triple
DES in CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to
the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

ALG_DES_MAC8_NOPAD - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC_8_NOPAD generates a 8 byte MAC using DES or triple DES
in CBC mode. This algorithm uses outer CBC for triple DES. This algorithm does not pad input
data.

ALG_DES_MAC8_PKCS5 - Static variable in class javacard.security.Signature
Signature algorithm ALG_DES_MAC8_PKCS5 generates a 8 byte MAC using DES or triple DES in
CBC mode. This algorithm uses outer CBC for triple DES. Input data is padded according to the
PKCS#5 scheme.

ALG_DSA_SHA - Static variable in class javacard.security.Signature
Signature algorithm ALG_DSA_SHA signs/verifies the 20 byte SHA digest using DSA.

ALG_MD5 - Static variable in class javacard.security.MessageDigest
Message Digest algorithm MD5.

ALG_PSEUDO_RANDOM - Static variable in class javacard.security.RandomData
Utility pseudo random number generation algorithms.

ALG_RIPEMD160 - Static variable in class javacard.security.MessageDigest
Message Digest algorithm RIPE MD-160.

ALG_RSA_ISO14888 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA. Input data is padded
according to the ISO 14888 scheme.

ALG_RSA_ISO9796 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_ISO9796 provides a cipher using RSA. Input data is padded
according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_MD5_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_MD5_PKCS1 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_MD5_RFC2409 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_MD5_RFC2409 encrypts the 16 byte MD5 digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_RSA_PKCS1 - Static variable in class javacardx.crypto.Cipher
Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA. Input data is padded according to

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 189

Java Card 2.1 API

Appendix JCAPI02

421

the PKCS#1 (v1.5) scheme.
ALG_RSA_RIPEMD160_ISO9796 - Static variable in class javacard.security.Signature

Signature algorithm ALG_RSA_RIPEMD160_ISO9796 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the ISO 9796 scheme.

ALG_RSA_RIPEMD160_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_RIPEMD160_PKCS1 encrypts the 20 byte RIPE MD-160 digest
using RSA. The digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_SHA_ISO9796 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_ISO9796 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the ISO 9796 (EMV’96) scheme.

ALG_RSA_SHA_PKCS1 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_PKCS1 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the PKCS#1 (v1.5) scheme.

ALG_RSA_SHA_RFC2409 - Static variable in class javacard.security.Signature
Signature algorithm ALG_RSA_SHA_RFC2409 encrypts the 20 byte SHA digest using RSA. The
digest is padded according to the RFC2409 scheme.

ALG_SECURE_RANDOM - Static variable in class javacard.security.RandomData
Cryptographically secure random number generation algorithms.

ALG_SHA - Static variable in class javacard.security.MessageDigest
Message Digest algorithm SHA.

APDU - class javacard.framework.APDU.
Application Protocol Data Unit (APDU) is the communication format between the card and the
off-card applications.

APDUException - exception javacard.framework.APDUException.
APDUException represents an APDU related exception.

APDUException(short) - Constructor for class javacard.framework.APDUException
Constructs an APDUException.

Applet - class javacard.framework.Applet.
This abstract class defines an applet in Java Card.

Applet() - Constructor for class javacard.framework.Applet
Only this class’s install() method should create the applet object.

ArithmeticException - exception java.lang.ArithmeticException.
A JCRE owned instance of ArithmethicException is thrown when an exceptional arithmetic
condition has occurred.

ArithmeticException() - Constructor for class java.lang.ArithmeticException
Constructs an ArithmeticException.

arrayCompare(byte[], short, byte[], short, short) - Static method in class javacard.framework.Util
Compares an array from the specified source array, beginning at the specified position, with the
specified position of the destination array from left to right.

arrayCopy(byte[], short, byte[], short, short) - Static method in class javacard.framework.Util
Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array.

arrayCopyNonAtomic(byte[], short, byte[], short, short) - Static method in class
javacard.framework.Util

Copies an array from the specified source array, beginning at the specified position, to the specified
position of the destination array (non-atomically).

190 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

422

arrayFillNonAtomic(byte[], short, short, byte) - Static method in class javacard.framework.Util
Fills the byte array (non-atomically) beginning at the specified position, for the specified length with
the specified byte value.

ArrayIndexOutOfBoundsException - exception java.lang.ArrayIndexOutOfBoundsException.
A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an array
has been accessed with an illegal index.

ArrayIndexOutOfBoundsException() - Constructor for class
java.lang.ArrayIndexOutOfBoundsException

Constructs an ArrayIndexOutOfBoundsException.
ArrayStoreException - exception java.lang.ArrayStoreException.

A JCRE owned instance of ArrayStoreException is thrown to indicate that an attempt has
been made to store the wrong type of object into an array of objects.

ArrayStoreException() - Constructor for class java.lang.ArrayStoreException
Constructs an ArrayStoreException.

B
BAD_LENGTH - Static variable in class javacard.framework.APDUException

This reason code is used by the APDU.setOutgoingLength() method to indicate that the
length parameter is greater that 256 or if non BLOCK CHAINED data transfer is requested and len
is greater than (IFSD-2), where IFSD is the Outgoing Block Size.

beginTransaction() - Static method in class javacard.framework.JCSystem
Begins an atomic transaction.

BUFFER_BOUNDS - Static variable in class javacard.framework.APDUException
This reason code is used by the APDU.sendBytes() method to indicate that the sum of buffer
offset parameter and the byte length parameter exceeds the APDU buffer size.

BUFFER_FULL - Static variable in class javacard.framework.TransactionException
This reason code is used during a transaction to indicate that the commit buffer is full.

buildKey(byte, short, boolean) - Static method in class javacard.security.KeyBuilder
Creates cryptographic keys for signature and cipher algorithms.

C
CardException - exception javacard.framework.CardException.

The CardException class defines a field reason and two accessor methods getReason()
and setReason().

CardException(short) - Constructor for class javacard.framework.CardException
Construct a CardException instance with the specified reason.

CardRuntimeException - exception javacard.framework.CardRuntimeException.
The CardRuntimeException class defines a field reason and two accessor methods
getReason() and setReason().

CardRuntimeException(short) - Constructor for class javacard.framework.CardRuntimeException
Construct a CardRuntimeException instance with the specified reason.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 191

Java Card 2.1 API

Appendix JCAPI02

423

check(byte[], short, byte) - Method in class javacard.framework.OwnerPIN
Compares pin against the PIN value.

check(byte[], short, byte) - Method in interface javacard.framework.PIN
Compares pin against the PIN value.

Cipher - class javacardx.crypto.Cipher.
The Cipher class is the abstract base class for Cipher algorthims.

Cipher() - Constructor for class javacardx.crypto.Cipher
Protected Constructor

CLA_ISO7816 - Static variable in interface javacard.framework.ISO7816
APDU command CLA : ISO 7816 = 0x00

ClassCastException - exception java.lang.ClassCastException.
A JCRE owned instance of ClassCastException is thrown to indicate that the code has
attempted to cast an object to a subclass of which it is not an instance.

ClassCastException() - Constructor for class java.lang.ClassCastException
Constructs a ClassCastException.

CLEAR_ON_DESELECT - Static variable in class javacard.framework.JCSystem
This event code indicates that the contents of the transient object are cleared to the default value on
applet deselection event or in CLEAR_ON_RESET cases.

CLEAR_ON_RESET - Static variable in class javacard.framework.JCSystem
This event code indicates that the contents of the transient object are cleared to the default value on
card reset (or power on) event.

clearKey() - Method in interface javacard.security.Key
Clears the key and sets its initialized state to false.

commitTransaction() - Static method in class javacard.framework.JCSystem
Commits an atomic transaction.

CryptoException - exception javacard.security.CryptoException.
CryptoException represents a cryptography-related exception.

CryptoException(short) - Constructor for class javacard.security.CryptoException
Constructs a CryptoException with the specified reason.

D
deselect() - Method in class javacard.framework.Applet

Called by the JCRE to inform this currently selected applet that another (or the same) applet will be
selected.

DESKey - interface javacard.security.DESKey.
DESKey contains an 8/16/24 byte key for single/2 key triple DES/3 key triple DES operations.

doFinal(byte[], short, short, byte[], short) - Method in class javacard.security.MessageDigest
Generates a hash of all/last input data.

doFinal(byte[], short, short, byte[], short) - Method in class javacardx.crypto.Cipher
Generates encrypted/decrypted output from all/last input data.

DSAKey - interface javacard.security.DSAKey.
The DSAKey interface is the base interface for the DSA algorithms private and public key
implementaions.

192 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

424

DSAPrivateKey - interface javacard.security.DSAPrivateKey.
The DSAPrivateKey interface is used to sign data using the DSA algorithm.

DSAPublicKey - interface javacard.security.DSAPublicKey.
The DSAPublicKey interface is used to verify signatures on signed data using the DSA algorithm.

E
equals(byte[], short, byte) - Method in class javacard.framework.AID

Checks if the specified AID bytes in bArray are the same as those encapsulated in this AID
object.

equals(Object) - Method in class java.lang.Object
Compares two Objects for equality.

equals(Object) - Method in class javacard.framework.AID
Compares the AID bytes in this AID instance to the AID bytes in the specified object.

Exception - exception java.lang.Exception.
The class Exception and its subclasses are a form of Throwable that indicates conditions that a
reasonable applet might want to catch.

Exception() - Constructor for class java.lang.Exception
Constructs an Exception instance.

G
generateData(byte[], short, short) - Method in class javacard.security.RandomData

Generates random data.
getAID() - Static method in class javacard.framework.JCSystem

Returns the JCRE owned instance of the AID object associated with the current applet context.
getAlgorithm() - Method in class javacard.security.MessageDigest

Gets the Message digest algorithm.
getAlgorithm() - Method in class javacard.security.Signature

Gets the Signature algorithm.
getAlgorithm() - Method in class javacardx.crypto.Cipher

Gets the Cipher algorithm.
getAppletShareableInterfaceObject(AID, byte) - Static method in class javacard.framework.JCSystem

This method is called by a client applet to get a server applet’s shareable interface object.
getBuffer() - Method in class javacard.framework.APDU

Returns the APDU buffer byte array.
getBytes(byte[], short) - Method in class javacard.framework.AID

Called to get the AID bytes encapsulated within AID object.
getDP1(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey

Returns the value of the DP1 parameter in plain text.
getDQ1(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey

Returns the value of the DQ1 parameter in plain text.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 193

Java Card 2.1 API

Appendix JCAPI02

425

getExponent(byte[], short) - Method in interface javacard.security.RSAPrivateKey
Returns the private exponent value of the key in plain text.

getExponent(byte[], short) - Method in interface javacard.security.RSAPublicKey
Returns the private exponent value of the key in plain text.

getG(byte[], short) - Method in interface javacard.security.DSAKey
Returns the subprime parameter value of the key in plain text.

getInBlockSize() - Static method in class javacard.framework.APDU
Returns the configured incoming block size. In T=1 protocol, this corresponds to IFSC (information
field size for ICC), the maximum size of incoming data blocks into the card. In T=0 protocol, this
method returns 1.

getInstance(byte) - Static method in class javacard.security.RandomData
Creates a RandomData instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacard.security.MessageDigest
Creates a MessageDigest object instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacard.security.Signature
Creates a Signature object instance of the selected algorithm.

getInstance(byte, boolean) - Static method in class javacardx.crypto.Cipher
Creates a Cipher object instance of the selected algorithm.

getKey(byte[], short) - Method in interface javacard.security.DESKey
Returns the Key data in plain text.

getKeyCipher() - Method in interface javacardx.crypto.KeyEncryption
Returns the Cipher object to be used to decrypt the input key data and key parameters in the set
methods. Default is null - no decryption performed.

getLength() - Method in class javacard.security.MessageDigest
Returns the byte length of the hash.

getLength() - Method in class javacard.security.Signature
Returns the byte length of the signature data.

getMaxCommitCapacity() - Static method in class javacard.framework.JCSystem
Returns the total number of bytes in the commit buffer.

getModulus(byte[], short) - Method in interface javacard.security.RSAPrivateKey
Returns the modulus value of the key in plain text.

getModulus(byte[], short) - Method in interface javacard.security.RSAPublicKey
Returns the modulus value of the key in plain text.

getNAD() - Method in class javacard.framework.APDU
In T=1 protocol, this method returns the Node Address byte, NAD. In T=0 protocol, this method
returns 0.

getOutBlockSize() - Static method in class javacard.framework.APDU
Returns the configured outgoing block size. In T=1 protocol, this corresponds to IFSD (information
field size for interface device), the maximum size of outgoing data blocks to the CAD. In T=0
protocol, this method returns 258 (accounts for 2 status bytes).

getP(byte[], short) - Method in interface javacard.security.DSAKey
Returns the base parameter value of the key in plain text.

getP(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the P parameter in plain text.

getPQ(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the PQ parameter in plain text.

194 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

426

getPreviousContextAID() - Static method in class javacard.framework.JCSystem
This method is called to obtain the JCRE owned instance of the AID object associated with the
previously active applet context.

getProtocol() - Static method in class javacard.framework.APDU
Returns the ISO 7816 transport protocol type, T=1 or T=0 in progress.

getQ(byte[], short) - Method in interface javacard.security.DSAKey
Returns the prime parameter value of the key in plain text.

getQ(byte[], short) - Method in interface javacard.security.RSAPrivateCrtKey
Returns the value of the Q parameter in plain text.

getReason() - Method in class javacard.framework.CardRuntimeException
Get reason code

getReason() - Method in class javacard.framework.CardException
Get reason code

getShareableInterfaceObject(AID, byte) - Method in class javacard.framework.Applet
Called by the JCRE to obtain a shareable interface object from this server applet, on behalf of a
request from a client applet.

getShort(byte[], short) - Static method in class javacard.framework.Util
Concatenates two bytes in a byte array to form a short value.

getSize() - Method in interface javacard.security.Key
Returns the key size in number of bits.

getTransactionDepth() - Static method in class javacard.framework.JCSystem
Returns the current transaction nesting depth level.

getTriesRemaining() - Method in class javacard.framework.OwnerPIN
Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.

getTriesRemaining() - Method in interface javacard.framework.PIN
Returns the number of times remaining that an incorrect PIN can be presented before the PIN is
blocked.

getType() - Method in interface javacard.security.Key
Returns the key interface type.

getUnusedCommitCapacity() - Static method in class javacard.framework.JCSystem
Returns the number of bytes left in the commit buffer.

getValidatedFlag() - Method in class javacard.framework.OwnerPIN
This protected method returns the validated flag.

getVersion() - Static method in class javacard.framework.JCSystem
Returns the current major and minor version of the Java Card API.

getX(byte[], short) - Method in interface javacard.security.DSAPrivateKey
Returns the value of the key in plain text.

getY(byte[], short) - Method in interface javacard.security.DSAPublicKey
Returns the value of the key in plain text.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 195

Java Card 2.1 API

Appendix JCAPI02

427

I
ILLEGAL_AID - Static variable in class javacard.framework.SystemException

This reason code is used by the javacard.framework.Applet.register() method to
indicate that the input AID parameter is not a legal AID value.

ILLEGAL_TRANSIENT - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that the request to create a transient object is not allowed in the
current applet context.

ILLEGAL_USE - Static variable in class javacard.framework.APDUException
This APDUException reason code indicates that the method should not be invoked based on the
current state of the APDU.

ILLEGAL_USE - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the signature or cipher algorithm does not pad the incoming
message and the input message is not block aligned.

ILLEGAL_VALUE - Static variable in class javacard.framework.PINException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

ILLEGAL_VALUE - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

ILLEGAL_VALUE - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

IN_PROGRESS - Static variable in class javacard.framework.TransactionException
This reason code is used by the beginTransaction method to indicate a transaction is already in
progress.

IndexOutOfBoundsException - exception java.lang.IndexOutOfBoundsException.
A JCRE owned instance of IndexOutOfBoundsException is thrown to indicate that an index
of some sort (such as to an array) is out of range.

IndexOutOfBoundsException() - Constructor for class java.lang.IndexOutOfBoundsException
Constructs an IndexOutOfBoundsException.

init(Key, byte) - Method in class javacard.security.Signature
Initializes the Signature object with the appropriate Key.

init(Key, byte) - Method in class javacardx.crypto.Cipher
Initializes the Cipher object with the appropriate Key.

init(Key, byte, byte[], short, short) - Method in class javacard.security.Signature
Initializes the Signature object with the appropriate Key and algorithm specific parameters.

init(Key, byte, byte[], short, short) - Method in class javacardx.crypto.Cipher
Initializes the Cipher object with the appropriate Key and algorithm specific parameters.

INS_EXTERNAL_AUTHENTICATE - Static variable in interface javacard.framework.ISO7816
APDU command INS : EXTERNAL AUTHENTICATE = 0x82

INS_SELECT - Static variable in interface javacard.framework.ISO7816
APDU command INS : SELECT = 0xA4

install(byte[], short, byte) - Static method in class javacard.framework.Applet
To create an instance of the Applet subclass, the JCRE will call this static method first.

INTERNAL_FAILURE - Static variable in class javacard.framework.TransactionException
This reason code is used during a transaction to indicate an internal JCRE problem (fatal error).

196 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

428

INVALID_INIT - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the signature or cipher object has not been correctly
initialized for the requested operation.

IO_ERROR - Static variable in class javacard.framework.APDUException
This reason code indicates that an unrecoverable error occurred in the I/O transmission layer.

isInitialized() - Method in interface javacard.security.Key
Reports the initialized state of the key.

ISO7816 - interface javacard.framework.ISO7816.
ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4.

ISOException - exception javacard.framework.ISOException.
ISOException class encapsulates an ISO 7816-4 response status word as its reason code.

ISOException(short) - Constructor for class javacard.framework.ISOException
Constructs an ISOException instance with the specified status word.

isTransient(Object) - Static method in class javacard.framework.JCSystem
Used to check if the specified object is transient.

isValidated() - Method in class javacard.framework.OwnerPIN
Returns true if a valid PIN has been presented since the last card reset or last call to reset().

isValidated() - Method in interface javacard.framework.PIN
Returns true if a valid PIN value has been presented since the last card reset or last call to
reset().

J
java.lang - package java.lang

Provides classes that are fundamental to the design of the Java Card technology subset of the Java
programming language.

javacard.framework - package javacard.framework
Provides framework of classes and interfaces for the core functionality of a Java Card applet.

javacard.security - package javacard.security
Provides the classes and interfaces for the Java Card security framework.

javacardx.crypto - package javacardx.crypto
Extension package containing security classes and interfaces for export-controlled functionality.

JCSystem - class javacard.framework.JCSystem.
The JCSystem class includes a collection of methods to control applet execution, resource
management, atomic transaction management and inter-applet object sharing in Java Card.

K
Key - interface javacard.security.Key.

The Key interface is the base interface for all keys.
KeyBuilder - class javacard.security.KeyBuilder.

The KeyBuilder class is a key object factory.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 197

Java Card 2.1 API

Appendix JCAPI02

429

KeyEncryption - interface javacardx.crypto.KeyEncryption.
KeyEncryption interface defines the methods used to enable encrypted key data access to a key
implementation.

L
LENGTH_DES - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES = 64.
LENGTH_DES3_2KEY - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES3_2KEY = 128.
LENGTH_DES3_3KEY - Static variable in class javacard.security.KeyBuilder

DES Key Length LENGTH_DES3_3KEY = 192.
LENGTH_DSA_1024 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_1024 = 1024.
LENGTH_DSA_512 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_512 = 512.
LENGTH_DSA_768 - Static variable in class javacard.security.KeyBuilder

DSA Key Length LENGTH_DSA_768 = 768.
LENGTH_RSA_1024 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_1024 = 1024.
LENGTH_RSA_2048 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_2048 = 2048.
LENGTH_RSA_512 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_512 = 512.
LENGTH_RSA_768 - Static variable in class javacard.security.KeyBuilder

RSA Key Length LENGTH_RSA_768 = 768.
lookupAID(byte[], short, byte) - Static method in class javacard.framework.JCSystem

Returns the JCRE owned instance of the AID object, if any, encapsulating the specified AID bytes in
the buffer parameter if there exists a successfully installed applet on the card whose instance AID
exactly matches that of the specified AID bytes.

M
makeShort(byte, byte) - Static method in class javacard.framework.Util

Concatenates the two parameter bytes to form a short value.
makeTransientBooleanArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient boolean array with the specified array length.
makeTransientByteArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient byte array with the specified array length.
makeTransientObjectArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient array of Object with the specified array length.
makeTransientShortArray(short, byte) - Static method in class javacard.framework.JCSystem

Create a transient short array with the specified array length.

198 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

430

MessageDigest - class javacard.security.MessageDigest.
The MessageDigest class is the base class for hashing algorthims.

MessageDigest() - Constructor for class javacard.security.MessageDigest
Protected Constructor

MODE_DECRYPT - Static variable in class javacardx.crypto.Cipher
Used in init() methods to indicate decryption mode.

MODE_ENCRYPT - Static variable in class javacardx.crypto.Cipher
Used in init() methods to indicate encryption mode.

MODE_SIGN - Static variable in class javacard.security.Signature
Used in init() methods to indicate signature sign mode.

MODE_VERIFY - Static variable in class javacard.security.Signature
Used in init() methods to indicate signature verify mode.

N
NegativeArraySizeException - exception java.lang.NegativeArraySizeException.

A JCRE owned instance of NegativeArraySizeException is thrown if an applet tries to
create an array with negative size.

NegativeArraySizeException() - Constructor for class java.lang.NegativeArraySizeException
Constructs a NegativeArraySizeException.

NO_RESOURCE - Static variable in class javacard.framework.SystemException
This reason code is used to indicate that there is insufficient resource in the Card for the request.

NO_SUCH_ALGORITHM - Static variable in class javacard.security.CryptoException
This reason code is used to indicate that the requested algorithm or key type is not supported.

NO_T0_GETRESPONSE - Static variable in class javacard.framework.APDUException
This reason code indicates that during T=0 protocol, the CAD did not return a GET RESPONSE
command in response to a <61xx> response status to send additional data.

NO_TRANSIENT_SPACE - Static variable in class javacard.framework.SystemException
This reason code is used by the makeTransient..() methods to indicate that no room is
available in volatile memory for the requested object.

NOT_A_TRANSIENT_OBJECT - Static variable in class javacard.framework.JCSystem
This event code indicates that the object is not transient.

NOT_IN_PROGRESS - Static variable in class javacard.framework.TransactionException
This reason code is used by the abortTransaction and commintTransaction methods
when a transaction is not in progress.

NullPointerException - exception java.lang.NullPointerException.
A JCRE owned instance of NullPointerExceptionis thrown when an applet attempts to use
null in a case where an object is required.

NullPointerException() - Constructor for class java.lang.NullPointerException
Constructs a NullPointerException.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 199

Java Card 2.1 API

Appendix JCAPI02

431

O
Object - class java.lang.Object.

Class Object is the root of the Java Card class hierarchy.
Object() - Constructor for class java.lang.Object

OFFSET_CDATA - Static variable in interface javacard.framework.ISO7816

APDU command data offset : CDATA = 5
OFFSET_CLA - Static variable in interface javacard.framework.ISO7816

APDU header offset : CLA = 0
OFFSET_INS - Static variable in interface javacard.framework.ISO7816

APDU header offset : INS = 1
OFFSET_LC - Static variable in interface javacard.framework.ISO7816

APDU header offset : LC = 4
OFFSET_P1 - Static variable in interface javacard.framework.ISO7816

APDU header offset : P1 = 2
OFFSET_P2 - Static variable in interface javacard.framework.ISO7816

APDU header offset : P2 = 3
OwnerPIN - class javacard.framework.OwnerPIN.

This class represents an Owner PIN.
OwnerPIN(byte, byte) - Constructor for class javacard.framework.OwnerPIN

Constructor.

P
partialEquals(byte[], short, byte) - Method in class javacard.framework.AID

Checks if the specified partial AID byte sequence matches the first length bytes of the
encapsulated AID bytes within this AID object.

PIN - interface javacard.framework.PIN.
This interface represents a PIN.

PINException - exception javacard.framework.PINException.
PINException represents a OwnerPIN class access-related exception.

PINException(short) - Constructor for class javacard.framework.PINException
Constructs a PINException.

PrivateKey - interface javacard.security.PrivateKey.
The PrivateKey class is the base class for private keys used in asymmetric algorithms.

process(APDU) - Method in class javacard.framework.Applet
Called by the JCRE to process an incoming APDU command.

PROTOCOL_T0 - Static variable in class javacard.framework.APDU
ISO 7816 transport protocol type T=0

PROTOCOL_T1 - Static variable in class javacard.framework.APDU
ISO 7816 transport protocol type T=1

PublicKey - interface javacard.security.PublicKey.
The PublicKey class is the base class for public keys used in asymmetric algorithms.

200 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

432

R
RandomData - class javacard.security.RandomData.

The RandomData abstract class is the base class for random number generation.
RandomData() - Constructor for class javacard.security.RandomData

Protected constructor for subclassing.
receiveBytes(short) - Method in class javacard.framework.APDU

Gets as many data bytes as will fit without APDU buffer overflow, at the specified offset bOff.
Gets all the remaining bytes if they fit.

register() - Method in class javacard.framework.Applet
This method is used by the applet to register this applet instance with the JCRE and to assign the
Applet subclass AID bytes as its instance AID bytes.

register(byte[], short, byte) - Method in class javacard.framework.Applet
This method is used by the applet to register this applet instance with the JCRE and assign the
specified AID bytes as its instance AID bytes.

reset() - Method in class javacard.framework.OwnerPIN
If the validated flag is set, this method resets it.

reset() - Method in interface javacard.framework.PIN
If the validated flag is set, this method resets it.

resetAndUnblock() - Method in class javacard.framework.OwnerPIN
This method resets the validated flag and resets the PIN try counter to the value of the PIN try limit.

RIDEquals(AID) - Method in class javacard.framework.AID
Checks if the RID (National Registered Application provider identifier) portion of the encapsulated
AID bytes within the otherAID object matches that of this AID object.

RSAPrivateCrtKey - interface javacard.security.RSAPrivateCrtKey.
The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm in its Chinese
Remainder Theorem form.

RSAPrivateKey - interface javacard.security.RSAPrivateKey.
The RSAPrivateKey class is used to sign data using the RSA algorithm in its modulus/exponent
form.

RSAPublicKey - interface javacard.security.RSAPublicKey.
The RSAPublicKey is used to verify signatures on signed data using the RSA algorithm.

RuntimeException - exception java.lang.RuntimeException.
RuntimeException is the superclass of those exceptions that can be thrown during the normal
operation of the Java Card Virtual Machine. A method is not required to declare in its throws clause
any subclasses of RuntimeException that might be thrown during the execution of the method
but not caught.

RuntimeException() - Constructor for class java.lang.RuntimeException
Constructs a RuntimeException instance.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 201

Java Card 2.1 API

Appendix JCAPI02

433

S
SecretKey - interface javacard.security.SecretKey.

The SecretKey class is the base interface for keys used in symmetric alogrightms (e.g. DES).
SecurityException - exception java.lang.SecurityException.

A JCRE owned instance of SecurityException is thrown by the Java Card Virtual Machine to
indicate a security violation. This exception is thrown when an attempt is made to illegally access an
object belonging to a another applet.

SecurityException() - Constructor for class java.lang.SecurityException
Constructs a SecurityException.

select() - Method in class javacard.framework.Applet
Called by the JCRE to inform this applet that it has been selected.

selectingApplet() - Method in class javacard.framework.Applet
This method is used by the applet process() method to distinguish the SELECT APDU command
which selected this applet, from all other other SELECT APDU commands which may relate to
file or internal applet state selection.

sendBytes(short, short) - Method in class javacard.framework.APDU
Sends len more bytes from APDU buffer at specified offset bOff.

sendBytesLong(byte[], short, short) - Method in class javacard.framework.APDU
Sends len more bytes from outData byte array starting at specified offset bOff.

setDP1(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the DP1 parameter.

setDQ1(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the DQ1 parameter.

setExponent(byte[], short, short) - Method in interface javacard.security.RSAPrivateKey
Sets the private exponent value of the key.

setExponent(byte[], short, short) - Method in interface javacard.security.RSAPublicKey
Sets the public exponent value of the key.

setG(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the subprime parameter value of the key.

setIncomingAndReceive() - Method in class javacard.framework.APDU
This is the primary receive method.

setKey(byte[], short) - Method in interface javacard.security.DESKey
Sets the Key data.

setKeyCipher(Cipher) - Method in interface javacardx.crypto.KeyEncryption
Sets the Cipher object to be used to decrypt the input key data and key parameters in the set
methods. Default Cipher object is null - no decryption performed.

setModulus(byte[], short, short) - Method in interface javacard.security.RSAPrivateKey
Sets the modulus value of the key.

setModulus(byte[], short, short) - Method in interface javacard.security.RSAPublicKey
Sets the modulus value of the key.

setOutgoing() - Method in class javacard.framework.APDU
This method is used to set the data transfer direction to outbound and to obtain the expected length of
response (Le).

202 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

434

setOutgoingAndSend(short, short) - Method in class javacard.framework.APDU
This is the "convenience" send method.

setOutgoingLength(short) - Method in class javacard.framework.APDU
Sets the actual length of response data.

setOutgoingNoChaining() - Method in class javacard.framework.APDU
This method is used to set the data transfer direction to outbound without using BLOCK
CHAINING(See ISO 7816-3/4) and to obtain the expected length of response (Le).

setP(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the base parameter value of the key.

setP(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the P parameter.

setPQ(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the PQ parameter.

setQ(byte[], short, short) - Method in interface javacard.security.DSAKey
Sets the prime parameter value of the key.

setQ(byte[], short, short) - Method in interface javacard.security.RSAPrivateCrtKey
Sets the value of the Q parameter.

setReason(short) - Method in class javacard.framework.CardRuntimeException
Set reason code

setReason(short) - Method in class javacard.framework.CardException
Set reason code

setSeed(byte[], short, short) - Method in class javacard.security.RandomData
Seeds the random data generator.

setShort(byte[], short, short) - Static method in class javacard.framework.Util
Deposits the short value as two successive bytes at the specified offset in the byte array.

setValidatedFlag(boolean) - Method in class javacard.framework.OwnerPIN
This protected method sets the value of the validated flag.

setX(byte[], short, short) - Method in interface javacard.security.DSAPrivateKey
Sets the value of the key.

setY(byte[], short, short) - Method in interface javacard.security.DSAPublicKey
Sets the value of the key.

Shareable - interface javacard.framework.Shareable.
The Shareable interface serves to identify all shared objects.

sign(byte[], short, short, byte[], short) - Method in class javacard.security.Signature
Generates the signature of all/last input data.

Signature - class javacard.security.Signature.
The Signature class is the base class for Signature algorthims.

Signature() - Constructor for class javacard.security.Signature
Protected Constructor

SW_APPLET_SELECT_FAILED - Static variable in interface javacard.framework.ISO7816
Response status : Applet selection failed = 0x6999;

SW_BYTES_REMAINING_00 - Static variable in interface javacard.framework.ISO7816
Response status : Response bytes remaining = 0x6100

SW_CLA_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : CLA value not supported = 0x6E00

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 203

Java Card 2.1 API

Appendix JCAPI02

435

SW_COMMAND_NOT_ALLOWED - Static variable in interface javacard.framework.ISO7816
Response status : Command not allowed (no current EF) = 0x6986

SW_CONDITIONS_NOT_SATISFIED - Static variable in interface javacard.framework.ISO7816
Response status : Conditions of use not satisfied = 0x6985

SW_CORRECT_LENGTH_00 - Static variable in interface javacard.framework.ISO7816
Response status : Correct Expected Length (Le) = 0x6C00

SW_DATA_INVALID - Static variable in interface javacard.framework.ISO7816
Response status : Data invalid = 0x6984

SW_FILE_FULL - Static variable in interface javacard.framework.ISO7816
Response status : Not enough memory space in the file = 0x6A84

SW_FILE_INVALID - Static variable in interface javacard.framework.ISO7816
Response status : File invalid = 0x6983

SW_FILE_NOT_FOUND - Static variable in interface javacard.framework.ISO7816
Response status : File not found = 0x6A82

SW_FUNC_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : Function not supported = 0x6A81

SW_INCORRECT_P1P2 - Static variable in interface javacard.framework.ISO7816
Response status : Incorrect parameters (P1,P2) = 0x6A86

SW_INS_NOT_SUPPORTED - Static variable in interface javacard.framework.ISO7816
Response status : INS value not supported = 0x6D00

SW_NO_ERROR - Static variable in interface javacard.framework.ISO7816
Response status : No Error = (short)0x9000

SW_RECORD_NOT_FOUND - Static variable in interface javacard.framework.ISO7816
Response status : Record not found = 0x6A83

SW_SECURITY_STATUS_NOT_SATISFIED - Static variable in interface
javacard.framework.ISO7816

Response status : Security condition not satisfied = 0x6982
SW_UNKNOWN - Static variable in interface javacard.framework.ISO7816

Response status : No precise diagnosis = 0x6F00
SW_WRONG_DATA - Static variable in interface javacard.framework.ISO7816

Response status : Wrong data = 0x6A80
SW_WRONG_LENGTH - Static variable in interface javacard.framework.ISO7816

Response status : Wrong length = 0x6700
SW_WRONG_P1P2 - Static variable in interface javacard.framework.ISO7816

Response status : Incorrect parameters (P1,P2) = 0x6B00
SystemException - exception javacard.framework.SystemException.

SystemException represents a JCSystem class related exception.
SystemException(short) - Constructor for class javacard.framework.SystemException

Constructs a SystemException.

T
T1_IFD_ABORT - Static variable in class javacard.framework.APDUException

This reason code indicates that during T=1 protocol, the CAD returned an ABORT S-Block
command and aborted the data transfer.

204 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

436

Throwable - class java.lang.Throwable.
The Throwable class is the superclass of all errors and exceptions in the Java Card subset of the Java
language.

Throwable() - Constructor for class java.lang.Throwable
Constructs a new Throwable.

throwIt(short) - Static method in class javacard.framework.CardRuntimeException
Throw the JCRE owned instance of the CardRuntimeException class with the specified reason.

throwIt(short) - Static method in class javacard.framework.PINException
Throws the JCRE owned instance of PINException with the specified reason.

throwIt(short) - Static method in class javacard.framework.ISOException
Throws the JCRE owned instance of the ISOException class with the specified status word.

throwIt(short) - Static method in class javacard.framework.CardException
Throw the JCRE owned instance of CardException class with the specified reason.

throwIt(short) - Static method in class javacard.framework.UserException
Throws the JCRE owned instance of UserException with the specified reason.

throwIt(short) - Static method in class javacard.framework.SystemException
Throws the JCRE owned instance of SystemException with the specified reason.

throwIt(short) - Static method in class javacard.framework.TransactionException
Throws the JCRE owned instance of TransactionException with the specified reason.

throwIt(short) - Static method in class javacard.framework.APDUException
Throws the JCRE owned instance of APDUException with the specified reason.

throwIt(short) - Static method in class javacard.security.CryptoException
Throws the JCRE owned instance of CryptoException with the specified reason.

TransactionException - exception javacard.framework.TransactionException.
TransactionException represents an exception in the transaction subsystem.

TransactionException(short) - Constructor for class javacard.framework.TransactionException
Constructs a TransactionException with the specified reason.

TYPE_DES - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with persistent key data.

TYPE_DES_TRANSIENT_DESELECT - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with CLEAR_ON_DESELECT transient key
data.

TYPE_DES_TRANSIENT_RESET - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type DESKey with CLEAR_ON_RESET transient key data.

TYPE_DSA_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements the interface type DSAPrivateKey for the DSA algorithm.

TYPE_DSA_PUBLIC - Static variable in class javacard.security.KeyBuilder
Key object which implements the interface type DSAPublicKey for the DSA algorithm.

TYPE_RSA_CRT_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPrivateCrtKey which uses Chinese Remainder
Theorem.

TYPE_RSA_PRIVATE - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPrivateKey which uses modulus/exponent form.

TYPE_RSA_PUBLIC - Static variable in class javacard.security.KeyBuilder
Key object which implements interface type RSAPublicKey.

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 205

Java Card 2.1 API

Appendix JCAPI02

437

U
UNINITIALIZED_KEY - Static variable in class javacard.security.CryptoException

This reason code is used to indicate that the key is uninitialized.
update(byte[], short, byte) - Method in class javacard.framework.OwnerPIN

This method sets a new value for the PIN and resets the PIN try counter to the value of the PIN try
limit.

update(byte[], short, short) - Method in class javacard.security.MessageDigest
Accumulates a hash of the input data.

update(byte[], short, short) - Method in class javacard.security.Signature
Accumulates a signature of the input data.

update(byte[], short, short, byte[], short) - Method in class javacardx.crypto.Cipher
Generates encrypted/decrypted output from input data.

UserException - exception javacard.framework.UserException.
UserException represents a User exception.

UserException() - Constructor for class javacard.framework.UserException
Constructs a UserException with reason = 0.

UserException(short) - Constructor for class javacard.framework.UserException
Constructs a UserException with the specified reason.

Util - class javacard.framework.Util.
The Util class contains common utility functions.

V
verify(byte[], short, short, byte[], short, short) - Method in class javacard.security.Signature

Verifies the signature of all/last input data against the passed in signature.

W
waitExtension() - Method in class javacard.framework.APDU

Requests additional processsing time from CAD.

A B C D E G I J K L M N O P R S T U V W

206 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Java Card 2.1 API

Appendix JCAPI02

438

Appendix JCAPI03

439

Appendix JCAPI03

440

Appendix JCAPI03

441

Appendix JCAPI04

442

Appendix JCAPI04

443

Appendix JCAPI04

444

Appendix JCAPI04

445

Appendix JCAPI04

446

Java Card ™ 2.1 Runtime Environment (JCRE)
Specification

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Final Revision 1.0, February 24, 1999

Appendix JCRE01

447

Copyright © 1999 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable, worldwide, limited license
(without the right to sublicense) under SUN's intellectual property rights that are essential to practice the Java ™ Card ™
Runtime Environment (JCRE) 2.1 Specification ("Specification") to use the Specification for internal evaluation purposes only.
Other than this limited license, you acquire no right, title, or interest in or to the Specification and you shall have no right to use
the Specification for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, Java Card, HotJava, HotJava Views, Visual Java, Solaris,
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris
sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo,
and Visual Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Appendix JCRE01

448

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. iii

Contents

Preface...vi

1. Introduction...1-1

2. Lifetime of the Java Card Virtual Machine..2-1

3. Java Card Applet Lifetime..3-1

3.1 The Method install ...3-1

3.2 The Method select ...3-2

3.3 The Method process ...3-2

3.4 The Method deselect...3-3

3.5 Power Loss and Reset ...3-3

4. Selection...4-1

4.1 The Default Applet ...4-1

4.2 SELECT Command Processing...4-2

4.3 Non-SELECT Command Processing...4-3

5. Transient Objects ..5-1

5.1 Events That Clear Transient Objects..5-2

6. Applet Isolation and Object Sharing...6-3

6.1 Applet Firewall...6-3

6.1.1 Contexts and Context Switching 6-3

Appendix JCRE01

449

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

iv Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

6.1.2 Object Ownership 6-4

6.1.3 Object Access 6-4

6.1.4 Firewall Protection 6-4

6.1.5 Static Fields and Methods 6-5

6.2 Object Access Across Contexts...6-5

6.2.1 JCRE Entry Point Objects 6-6

6.2.2 Global Arrays 6-6

6.2.3 JCRE Privileges 6-7

6.2.4 Shareable Interfaces 6-7

6.2.5 Determining the Previous Context 6-9

6.2.6 Shareable Interface Details 6-9

6.2.7 Obtaining Shareable Interface Objects 6-10

6.2.8 Class and Object Access Behavior 6-11

6.3 Transient Objects and Contexts...6-14

7. Transactions and Atomicity ..7-1

7.1 Atomicity ...7-1

7.2 Transactions ...7-1

7.3 Transaction Duration ..7-2

7.4 Nested Transactions..7-2

7.5 Tear or Reset Transaction Failure..7-2

7.6 Aborting a Transaction ...7-3

7.6.1 Programmatic Abortion 7-3

7.6.2 Abortion by the JCRE 7-3

7.6.3 Cleanup Responsibilities of the JCRE 7-3

7.7 Transient Objects..7-3

7.8 Commit Capacity..7-3

7.9 Context Switching ..7-4

8. API Topics ...8-5

8.1 Resource Use within the API ..8-5

Appendix JCRE01

450

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. v

8.2 Exceptions thrown by API classes...8-5

8.3 Transactions within the API..8-5

8.4 The APDU Class ..8-6

8.4.1 T=0 specifics for outgoing data transfers 8-6

8.4.2 T=1 specifics for outgoing data transfers 8-8

8.4.3 T=1 specifics for incoming data transfers 8-8

8.5 The Security and Crypto packages ..8-9

8.6 JCSystem Class ..8-9

9. Virtual Machine Topics...9-1

9.1 Resource Failures ...9-1

10. Applet Installer.. 10-1

10.1 The Installer ...10-1

10.1.1 Installer Implementation 10-1

10.1.2 Installer AID 10-2

10.1.3 Installer APDUs 10-2

10.1.4 Installer Behavior 10-2

10.1.5 Installer Privileges 10-3

10.2 The Newly Installed Applet ..10-3

10.2.1 Installation Parameters 10-3

11. API Constants...1

Appendix JCRE01

451

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

vi Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Preface

Java Card technology combines a portion of the Java programming language with a runtime environment
optimized for smart cards and related, small-memory embedded devices. The goal of Java Card technology is to
bring many of the benefits of Java software programming to the resource-constrained world of smart cards.

This document is a specification of the Java Card 2.1 Runtime Environment (JCRE). A vendor of a Java Card-
enabled device provides an implementation of the JCRE. A JCRE implementation within the context of this
specification refers to a vendor’s implementation of the Java Card Virtual Machine (VM), the Java Card
Application Programming Interface (API), or other component, based on the Java Card technology
specifications. A Reference Implementation is an implementation produced by Sun Microsystems, Inc. Applets
written for the Java Card platform are referred to as Java Card applets.

Who Should Use This Specification?
This specification is intended to assist JCRE implementers in creating an implementation, developing a
specification to extend the Java Card technology specifications, or in creating an extension to the Java Card
Runtime Environment (JCRE). This specification is also intended for Java Card applet developers who want a
greater understanding of the Java Card technology specifications.

Before You Read This Specification
Before reading this guide, you should be familiar with the Java programming language, the Java Card
technology specifications, and smart card technology. A good resource for becoming familiar with Java
technology and Java Card technology is the Sun Microsystems, Inc. website, located at:
http://java.sun.com.

How This Specification Is Organized
Chapter 1, “The Scope and Responsibilities of the JCRE,” gives an overview of the services required of a
JCRE implementation.

Chapter 2, “Lifetime of the Java Card Virtual Machine,” defines the lifetime of the Java Card Virtual
Machine.

Appendix JCRE01

452

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. vii

Chapter 3, “Java Card Applet Lifetime,” defines the lifetime of an applet.

Chapter 4, “Selection,” describes how the JCRE handles applet selection.

Chapter 5, “Transient Objects,” describes the properties of transient objects.

Chapter 6, “Applet Isolation and Object Sharing,” describes applet isolation and object sharing.

Chapter 7, “Transactions and Atomicity,” describes the functionality of atomicity and transactions.

Chapter 8, “API Topics,” describes API functionality required of a JCRE but not completely specified in the
Java Card 2.1 API Specification.

Chapter 9, “Virtual Machine Topics,” describes virtual machine specifics.

Chapter 10, “Applet Installer,” provides an overview of the Applet Installer and JCRE required behavior.

Chapter 11, “API Constants,” provides the numeric value of constants that are not specified in the Java Card
2.1 API Specification.

Glossary is a list of words and their definitions to assist you in using this book.

Related Documents and Publications
References to various documents or products are made in this manual. You should have the following
documents available:

■ Java Card 2.1 API Specification, Sun Microsystems, Inc.

■ Java Card 2.1 Virtual Machine Specification, Sun Microsystems, Inc.

■ Java Card Applet Developer’s Guide, Sun Microsystems, Inc.

■ The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele. Addison-Wesley, 1996,
ISBN 0-201-63451-1.

■ The Java Virtual Machine Specification (Java Series) by Tim Lindholm and Frank Yellin. Addison-
Wesley, 1996, ISBN 0-201-63452-X.

■ The Java Class Libraries: An Annotated Reference (Java Series) by Patrick Chan and Rosanna Lee.
Addison-Wesley, two volumes, ISBN: 0201310023 and 0201310031.

■ ISO 7816 Specification Parts 1-6.

■ EMV ’96 Integrated Circuit Card Specification for Payment Systems.

Appendix JCRE01

453

Appendix JCRE01

454

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1-1

1. Introduction

The Java Card 2.1 Runtime Environment (JCRE) contains the Java Card Virtual Machine (VM), the Java Card
Application Programming Interface (API) classes (and industry-specific extensions), and support services.

This document, the Java Card 2.1 Environment (JCRE) Specification, specifies the JCRE functionality required
by the Java Card technology. Any implementation of Java Card technology shall provide this necessary
behavior and environment.

Appendix JCRE01

455

Appendix JCRE01

456

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 2-1

2. Lifetime of the Java Card Virtual Machine

In a PC or workstation, the Java Virtual Machine runs as an operating system process. When the OS process is
terminated, the Java applications and their objects are automatically destroyed.

In Java Card technology the execution lifetime of the Virtual Machine (VM) is the lifetime of the card. Most of
the information stored on a card shall be preserved even when power is removed from the card. Persistent
memory technology (such as EEPROM) enables a smart card to store information when power is removed.
Since the VM and the objects created on the card are used to represent application information that is persistent,
the Java Card VM appears to run forever. When power is removed, the VM only stops temporarily. When the
card is next reset, the VM starts up again and recovers its previous object heap from persistent storage.

Aside from its persistent nature, the Java Card Virtual Machine is just like the Java Virtual Machine.

The card initialization time is the time after masking, and prior to the time of card personalization and issuance.
At the time of card initialization, the JCRE is initialized. The framework objects created by the JCRE exist for
the lifetime of the Virtual Machine. Because the execution lifetime of the Virtual Machine and the JCRE
framework span CAD sessions of the card, the lifetimes of objects created by applets will also span CAD
sessions. (CAD means Card Acceptance Device, or card reader. Card sessions are those periods when the card
is inserted in the CAD, powered up, and exchanging streams of APDUs with the CAD. The card session ends
when the card is removed from the CAD.) Objects that have this property are called persistent objects.

The JCRE implementer shall make an object persistent when:

• The Applet.register method is called. The JCRE stores a reference to the instance of the applet object.
The JCRE implementer shall ensure that instances of class applet are persistent.

• A reference to an object is stored in a field of any other persistent object or in a class’s static field. This
requirement stems from the need to preserve the integrity of the JCRE’s internal data structures.

Appendix JCRE01

457

Appendix JCRE01

458

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3-1

3. Java Card Applet Lifetime

For the purposes of this specification, a Java Card applet’s lifetime begins at the point that it has been correctly
loaded into card memory, linked, and otherwise prepared for execution. (For the remainder of this specification,
applet refers to an applet written for the Java Card platform.) Applets registered with the Applet.register
method exist for the lifetime of the card. The JCRE initiates interactions with the applet via the applet’s public
methods install, select, deselect, and process. An applet shall implement the static
install(byte[], short, byte) method. If the install(byte[], short, byte) method is not
implemented, the applet’s objects cannot be created or initialized. A JCRE implementation shall call an applet’s
install, select, deselect, and process methods as described below.

When the applet is installed on the smart card, the static install(byte[], short, byte) method is called
once by the JCRE for each applet instance created. The JCRE shall not call the applet’s constructor directly.

3.1 The Method install
When the install(byte[], short, byte) method is called, no objects of the applet exist. The main task
of the install method within the applet is to create an instance of the Applet subclass using its constructor,
and to register the instance. All other objects that the applet will need during its lifetime can be created as is
feasible. Any other preparations necessary for the applet to be selected and accessed by a CAD also can be done
as is feasible. The install method obtains initialization parameters from the contents of the incoming byte
array parameter.

Typically, an applet creates various objects, initializes them with predefined values, sets some internal state
variables, and calls either the Applet.register() method or the Applet.register(byte[], short,
byte) method to specify the AID (applet IDentifier as defined in ISO 7816-5) to be used to select it. This
installation is considered successful when the call to the Applet.register method completes without an
exception. The installation is deemed unsuccessful if the install method does not call the
Applet.register method, or if an exception is thrown from within the install method prior to the
Applet.register method being called, or if the Applet.register method throws an exception. If the
installation is unsuccessful, the JCRE shall perform all cleanup when it regains control. That is, all persistent
objects shall be returned to the state they had prior to calling the install method. If the installation is
successful, the JCRE can mark the applet as available for selection.

Appendix JCRE01

459

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

3-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

3.2 The Method select
Applets remain in a suspended state until they are explicitly selected. Selection occurs when the JCRE receives
a SELECT APDU in which the name data matches the AID of the applet. Selection causes an applet to become
the currently selected applet.

Prior to calling SELECT, the JCRE shall deselect the previously selected applet. The JCRE indicates this to the
applet by invoking the applet’s deselect method.

The JCRE informs the applet of selection by invoking its select() method.

The applet may decline to be selected by returning false from the call to the select method or by throwing
an exception. If the applet returns true, the actual SELECT APDU command is supplied to the applet in the
subsequent call to its process method, so that the applet can examine the APDU contents. The applet can
process the SELECT APDU command exactly like it processes any other APDU command. It can respond to
the SELECT APDU with data (see the process method for details), or it can flag errors by throwing an
ISOException with the appropriate SW (returned status word). The SW and optional response data are
returned to the CAD.

The Applet.selectingApplet method shall return true when called during the select method. The
Applet.selectingApplet method will continue to return true during the subsequent process method,
which is called to process the SELECT APDU command.

If the applet declines to be selected, the JCRE will return an APDU response status word of
ISO7816.SW_APPLET_SELECT_FAILED to the CAD. Upon selection failure, the JCRE state is set to indicate
that no applet is selected. (See section 4.2 for more details).

After successful selection, all subsequent APDUs are delivered to the currently selected applet via the process
method.

3.3 The Method process
All APDUs are received by the JCRE, which passes an instance of the APDU class to the process(APDU)
method of the currently selected applet.

Note – A SELECT APDU might cause a change in the currently selected applet prior to the call to the
process method. (The actual change occurs before the call to the select method).

On normal return, the JCRE automatically appends 0x9000 as the completion response SW to any data already
sent by the applet.

At any time during process, the applet may throw an ISOException with an appropriate SW, in which case
the JCRE catches the exception and returns the SW to the CAD.

If any other exception is thrown during process, the JCRE catches the exception and returns the status word
ISO7816.SW_UNKNOWN to the CAD.

Appendix JCRE01

460

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3-3

3.4 The Method deselect
When the JCRE receives a SELECT APDU command in which the name matches the AID of an applet, the
JCRE calls the deselect() method of the currently selected applet. This allows the applet to perform any
cleanup operations that may be required in order to allow some other applet to execute.

The Applet.selectingApplet method shall return false when called during the deselect method.
Exceptions thrown by the deselect method are caught by the JCRE, but the applet is deselected.

3.5 Power Loss and Reset
Power loss occurs when the card is withdrawn from the CAD or if there is some other mechanical or electrical
failure. When power is reapplied to the card and on card reset (warm or cold) the JCRE shall ensure that:

• Transient data is reset to the default value.

• The transaction in progress, if any, when power was lost (or reset occurred) is aborted.

• The applet that was selected when power was lost (or reset occurred) becomes implicitly deselected. (In
this case the deselect method is not called.)

• If the JCRE implements default applet selection (see section 4.1), the default applet is selected as the
currently selected applet, and the default applet’s select method is called. Otherwise, the JCRE sets its
state to indicate that no applet is selected.

Appendix JCRE01

461

Appendix JCRE01

462

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 4-1

4. Selection

Cards receive requests for service from the CAD in the form of APDUs. The SELECT APDU is used by the
JCRE to designate a currently selected applet. Once selected, an applet receives all subsequent APDUs until the
applet becomes deselected.

There is no currently selected applet when either of the following occurs:

• The card is reset and no applet has been pre-designated as the default applet.

• A SELECT command fails when attempting to select an applet via its select method .

4.1 The Default Applet
Normally, applets become selected only via a successful SELECT command. However, some smart card CAD
applications require that there be a default applet that is implicitly selected after every card reset. The behavior
is:

1. After card reset (or power on, which is a form of reset) the JCRE performs its initializations and checks
to see if its internal state indicates that a particular applet is the default applet. If so, the JCRE makes this
applet the currently selected applet, and the applet’s select method is called. If the applet’s select
method throws an exception or returns false, then the JCRE sets its state to indicate that no applet is
selected. (The applet’s process method is not called during default applet selection because there is no
SELECT APDU.) When a default applet is selected at card reset, it shall not require its process
method to be called.

2. The JCRE ensures that the ATR has been sent and the card is now ready to accept APDU commands.

If a default applet was successfully selected, then APDU commands can be sent directly to this applet. If a
default applet was not selected, then only SELECT commands for applet selection can be processed.

The mechanism for specifying a default applet is not defined in the Java Card 2.1 API. It is a JCRE
implementation detail and is left to the individual JCRE implementers.

Appendix JCRE01

463

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

4-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

4.2 SELECT Command Processing
The SELECT APDU command is used to select an applet. Its behavior is:

1. The SELECT APDU is always processed by the JCRE regardless of which, if any, applet is active.

2. The JCRE searches the internal applet table which lists all successfully installed applets on the card for a
matching AID. The JCRE shall support selecting an applet where the full AID is present in the SELECT
command.

JCRE implementers are free to enhance their JCRE to support other selection criterion. An example of this
is selection via partial AID match as specified in ISO 7816-4. The specific requirements are as follows:

Note – An asterisk indicates binary notation(%b) using bit numbering as in ISO7816. Most significant bit = b8.
Least significant bit = b1.

a) Applet SELECT command uses CLA=0x00, INS=0xA4.

b) Applet SELECT command uses "Selection by DF name". Therefore, P1=0x04.

c) Any other value of P1 implies that is not an applet select. The APDU is processed by the currently
selected applet.

d) JCRE shall support exact DF name (AID) selection (i.e. P2=%b0000xx00). (b4,b3* are don’t
care).

e) All other partial DF name SELECT options (b2,b1*) are JCRE implementation dependent.

f) All file control information option codes (b4,b3*) shall be supported by the JCRE and interpreted
and processed by the applet.

3. If no AID match is found:

a. If there is no currently selected applet, the JCRE responds to the SELECT command with status code
0x6999 (SW_APPLET_SELECT_FAILED).

b. Otherwise, the SELECT command is forwarded to the currently selected applet’s process method.
A context switch into the applet’s context occurs at this point. (Context of an applet is defined in
section 6.1.1.) Applets may use the SELECT APDU command for their own internal SELECT
processing.

4. If a matching AID is found, the JCRE prepares to select the new applet. If there is an currently selected
applet, it is deselected via a call to its deselect method. A context switch into the deselected applet’s
context occurs at this point. The JCRE context is restored upon exit from deselect.

5. The JCRE now clears the fields of all CLEAR_ON_DESELECT transient objects (see section 5.1) owned
by the applet being deselected.

6. The JCRE sets the new currently selected applet. The new applet is selected via a call to its select method,
and a context switch into the new applet’s context occurs

a. If the applet’s select method throws an exception or returns false, then the JCRE state is set so
that no applet is selected. The JCRE responds to the SELECT command with status code 0x6999
(SW_APPLET_SELECT_FAILED).

Appendix JCRE01

464

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 4-3

b. The new currently selected applet’s process method is then called with the SELECT APDU as an
input parameter. A context switch into the applet’s context occurs.

Notes –

If there is no matching AID, the SELECT command is forwarded to the currently selected applet (if any) for
processing as a normal applet APDU command.

If there is a matching AID and the SELECT command fails, the JCRE always enters the state where no applet is
selected.

If the matching AID is the same as the currently selected applet, the JCRE still goes through the process of
deselecting the applet and then selecting it. Reselection could fail, leaving the card in a state where no applet is
selected.

4.3 Non-SELECT Command Processing
When a non-SELECT APDU is received and there is no currently selected applet, the JCRE shall respond to the
APDU with status code 0x6999 (SW_APPLET_SELECT_FAILED).

When a non-SELECT APDU is received and there is a currently selected applet, the JCRE invokes the
process method of the currently selected applet passing the APDU as a parameter. This causes a context
switch from the JCRE context into the currently selected applet’s context. When the process method exits,
the VM switches back to the JCRE context. The JCRE sends a response APDU and waits for the next command
APDU.

Appendix JCRE01

465

Appendix JCRE01

466

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 5-1

5. Transient Objects

Applets sometimes require objects that contain temporary (transient) data that need not be persistent across
CAD sessions. Java Card does not support the Java keyword transient. However, Java Card technology
provides methods to create transient arrays with primitive components or references to Object.

The term “transient object” is a misnomer. It can be incorrectly interpreted to mean that the object itself is
transient. However, only the contents of the fields of the object (except for the length field) have a transient
nature. As with any other object in the Java programming language, transient objects within the Java Card
platform exist as long as they are referenced from:

• The stack
• Local variables
• A class static field
• A field in another existing object

A transient object within the Java Card platform has the following required behavior:

• The fields of a transient object shall be cleared to the field’s default value (zero, false, or null) at the
occurrence of certain events (see section 5.1).

• For security reasons, the fields of a transient object shall never be stored in a “persistent memory
technology.” Using current smart card technology as an example, the contents of transient objects can be
stored in RAM, but never in EEPROM. The purpose of this requirement is to allow transient objects to be
used to store session keys.

• Writes to the fields of a transient object shall not have a performance penalty. (Using current smart card
technology as an example, the contents of transient objects can be stored in RAM, while the contents of
persistent objects can be stored in EEPROM. Typically, RAM technology has a much faster write cycle
time than EEPROM.)

• Writes to the fields of a transient object shall not be affected by “transactions.” That is, an
abortTransaction will never cause a field in a transient object to be restored to a previous value.

This behavior makes transient objects ideal for small amounts of temporary applet data that is frequently
modified, but that need not be preserved across CAD or select sessions.

Appendix JCRE01

467

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

5-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

5.1 Events That Clear Transient Objects
Persistent objects are used for maintaining states that shall be preserved across card resets. When a transient
object is created, one of two events is specified that causes its fields to be cleared. CLEAR_ON_RESET
transient objects are used for maintaining states that shall be preserved across applet selections, but not across
card resets. CLEAR_ON_DESELECT transient objects are used for maintaining states that must be preserved
while an applet is selected, but not across applet selections or card resets.

Details of the two clear events are as follows:

• CLEAR_ON_RESET—the object’s fields (except for the length field) are cleared when the card is reset.
When a card is powered on, this also causes a card reset.

Note – It is not necessary to clear the fields of transient objects before power is removed from a card.
However, it is necessary to guarantee that the previous contents of such fields cannot be recovered once
power is lost.

• CLEAR_ON_DESELECT—the object’s fields (except for the length field) are cleared whenever the applet
is deselected. Because a card reset implicitly deselects the currently selected applet, the fields of
CLEAR_ON_DESELECT objects are also cleared by the same events specified for CLEAR_ON_RESET.

The currently selected applet is explicitly deselected (its deselect method is called) only when a SELECT
command is processed. The currently selected applet is deselected and then the fields of all
CLEAR_ON_DESELECT transient objects owned by the applet are cleared regardless of whether the SELECT
command:

• Fails to select an applet.
• Selects a different applet.
• Reselects the same applet.

Appendix JCRE01

468

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-3

6. Applet Isolation and Object Sharing

Any implementation of the JCRE shall support isolation of contexts and applets. Isolation means that one applet
can not access the fields or objects of an applet in another context unless the other applet explicitly provides an
interface for access. The JCRE mechanisms for applet isolation and object sharing are detailed in the sections
below.

6.1 Applet Firewall
The applet firewall within Java Card technology is runtime-enforced protection and is separate from the Java
technology protections. The Java language protections still apply to Java Card applets. The Java language
ensures that strong typing and protection attributes are enforced.

Applet firewalls are always enforced in the Java Card VM. They allow the VM to automatically perform
additional security checks at runtime.

6.1.1 Contexts and Context Switching

Firewalls essentially partition the Java Card platform’s object system into separate protected object spaces
called contexts. The firewall is the boundary between one context and another. The JCRE shall allocate and
manage a context for each applet that is installed on the card. (But see section 6.1.1.2 below for a discussion of
group contexts.)

In addition, the JCRE maintains its own JCRE context. This context is much like the context of an applet, but it
has special system privileges so that it can perform operations that are denied to contexts of applets.

At any point in time, there is only one active context within the VM. (This is called the currently active
context.) All bytecodes that access objects are checked at runtime against the currently active context in order to
determine if the access is allowed. A java.lang.SecurityException is thrown when an access is
disallowed.

When certain well-defined conditions are met during the execution of invoke-type bytecodes as described in
section 6.2.8, the VM performs a context switch. The previous context is pushed on an internal VM stack, a new
context becomes the currently active context, and the invoked method executes in this new context. Upon exit
from that method the VM performs a restoring context switch. The original context (of the caller of the method)
is popped from the stack and is restored as the currently active context. Context switches can be nested. The
maximum depth depends on the amount of VM stack space available.

Appendix JCRE01

469

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6-4 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Most method invocations in Java Card technology do not cause a context switch. Context switches only occur
during invocation of and return from certain methods, as well as during exception exits from those methods (see
6.2.8).

During a context-switching method invocation, an additional piece of data, indicating the currently active
context, is pushed onto the return stack. This context is restored when the method is exited.

Further details of contexts and context switching are provided in later sections of this chapter.

6.1.1.1 Group Contexts

Usually, each instance of a Java Card applet defines a separate context. But with Java Card 2.1 technology, the
concept of group context is introduced. If more than one applet is contained in a single Java package, they share
the same context. Additionally, all instances of the same applet class share the same context. In other words,
there is no firewall between two applet instances in a group context.

The discussion of contexts and context switching above in section 6.1.1 assumes that each applet instance is
associated with a separate context. In Java Card 2.1 technology, contexts are compared to enforce the firewall,
and the instance AID is pushed onto the stack. Additionally, this happens not only when the context switches,
but also when control switches from an object owned by one applet instance to an object owned by another
instance within the same package.

6.1.2 Object Ownership

When a new object is created, it is associated with the currently active context. But the object is owned by the
applet instance within the currently active context when the object is instantiated. An object is owned by an
applet instance, or by the JCRE.

6.1.3 Object Access

In general, an object can only be accessed by its owning context, that is, when the owning context is the
currently active context. The firewall prevents an object from being accessed by another applet in a different
context.

In implementation terms, each time an object is accessed, the object’s owner context is compared to the
currently active context. If these do not match, the access is not performed and a SecurityException is
thrown.

An object is accessed when one of the following bytecodes is executed using the object’s reference:

getfield, putfield, invokevirtual, invokeinterface,
athrow, <T>aload, <T>astore, arraylength, checkcast, instanceof

<T> refers to the various types of array bytecodes, such as baload, sastore, etc.

This list includes any special or optimized forms of these bytecodes implemented in the Java Card VM, such as
getfield_b, sgetfield_s_this, etc.

6.1.4 Firewall Protection

The Java Card firewall provides protection against the most frequently anticipated security concern: developer
mistakes and design oversights that might allow sensitive data to be “leaked” to another applet. An applet may
be able to obtain an object reference from a publicly accessible location, but if the object is owned by an applet
in another context, the firewall ensures security.

Appendix JCRE01

470

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-5

The firewall also provides protection against incorrect code. If incorrect code is loaded onto a card, the firewall
still protects objects from being accessed by this code.

The Java Card 2.1 JCRE Specification specifies the basic minimum protection requirements of contexts and
firewalls because the features described in this document are not transparent to the applet developer. Developers
shall be aware of the behavior of objects, APIs, and exceptions related to the firewall.

JCRE implementers are free to implement additional security mechanisms beyond those of the applet firewall,
as long as these mechanisms are transparent to applets and do not change the externally visible operation of the
VM.

6.1.5 Static Fields and Methods

It should also be noted that classes are not owned by contexts. There is no runtime context check that can be
performed when a class static field is accessed. Neither is there a context switch when a static method is
invoked. (Similarly, invokespecial causes no context switch.)

Public static fields and public static methods are accessible from any context: static methods execute in the
same context as their caller.

Objects referenced in static fields are just regular objects. They are owned by whomever created them and
standard firewall access rules apply. If it is necessary to share them across multiple contexts, then these objects
need to be Shareable Interface Objects (SIOs). (See section 6.2.4 below.)

Of course, the conventional Java technology protections are still enforced for static fields and methods. In
addition, when applets are installed, the Installer verifies that each attempt to link to an external static field or
method is permitted. Installation and specifics about linkage are beyond the scope of this specification.

6.1.5.1 Optional static access checks

The JCRE may perform optional runtime checks that are redundant with the constraints enforced by a verifier.
A Java Card VM may detect when code violates fundamental language restrictions, such as invoking a private
method in another class, and report or otherwise address the violation.

6.2 Object Access Across Contexts
To enable applets to interact with each other and with the JCRE, some well-defined yet secure mechanisms are
provided so one context can access an object belonging to another context.

These mechanisms are provided in the Java Card 2.1 API and are discussed in the following sections:

• JCRE Entry Point Objects
• Global Arrays
• JCRE Privileges
• Shareable Interfaces

Appendix JCRE01

471

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6-6 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

6.2.1 JCRE Entry Point Objects

Secure computer systems must have a way for non-privileged user processes (that are restricted to a subset of
resources) to request system services performed by privileged “system” routines.

In the Java Card 2.1 API, this is accomplished using JCRE Entry Point Objects. These are objects owned by the
JCRE context, but they have been flagged as containing entry point methods.

The firewall protects these objects from access by applets. The entry point designation allows the methods of
these objects to be invoked from any context. When that occurs, a context switch to the JCRE context is
performed. These methods are the gateways through which applets request privileged JCRE system services.

There are two categories of JCRE Entry Point Objects :

� Temporary JCRE Entry Point Objects

Like all JCRE Entry Point Objects, methods of temporary JCRE Entry Point Objects can be invoked from
any context. However, references to these objects cannot be stored in class variables, instance variables or
array components. The JCRE detects and restricts attempts to store references to these objects as part of the
firewall functionality to prevent unauthorized re-use.

The APDU object and all JCRE owned exception objects are examples of temporary JCRE Entry Point
Objects.

� Permanent JCRE Entry Point Objects

Like all JCRE Entry Point Objects, methods of permanent JCRE Entry Point Objects can be invoked from
any context. Additionally, references to these objects can be stored and freely re-used.

JCRE owned AID instances are examples of permanent JCRE Entry Point Objects.

The JCRE is responsible for:

• Determining what privileged services are provided to applets.
• Defining classes containing the entry point methods for those services.
• Creating one or more object instances of those classes.
• Designating those instances as JCRE Entry Point Objects.
• Designating JCRE Entry Point Objects as temporary or permanent.
• Making references to those objects available to applets as needed.

Note – Only the methods of these objects are accessible through the firewall. The fields of these objects are still
protected by the firewall and can only be accessed by the JCRE context.

Only the JCRE itself can designate Entry Point Objects and whether they are temporary or permanent. JCRE
implementers are responsible for implementing the mechanism by which JCRE Entry Point Objects are
designated and how they become temporary or permanent.

6.2.2 Global Arrays

The global nature of some objects requires that they be accessible from any context. The firewall would
ordinarily prevent these objects from being used in a flexible manner. The Java Card VM allows an object to be
designated as global.

All global arrays are temporary global array objects. These objects are owned by the JCRE context, but can be
accessed from any context. However, references to these objects cannot be stored in class variables, instance

Appendix JCRE01

472

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-7

variables or array components. The JCRE detects and restricts attempts to store references to these objects as
part of the firewall functionality to prevent unauthorized re-use.

For added security, only arrays can be designated as global and only the JCRE itself can designate global
arrays. Because applets cannot create them, no API methods are defined. JCRE implementers are responsible
for implementing the mechanism by which global arrays are designated.

At the time of publication of this specification, the only global arrays required in the Java Card 2.1 API are the
APDU buffer and the byte array input parameter (bArray) to the applet’s install method.

Note – Because of its global status, the Java Card 2.1 API Specification specifies that the APDU buffer is
cleared to zeroes whenever an applet is selected, before the JCRE accepts a new APDU command. This is to
prevent an applet’s potentially sensitive data from being “leaked” to another applet via the global APDU buffer.
The APDU buffer can be accessed from a shared interface object context and is suitable for passing data across
different contexts. The applet is responsible for protecting secret data that may be accessed from the APDU
buffer.

6.2.3 JCRE Privileges

Because it is the “system” context, the JCRE context has a special privilege. It can invoke a method of any
object on the card. For example, assume that object X is owned by applet A. Normally, only the context of A
can access the fields and methods of X. But the JCRE context is allowed to invoke any of the methods of X.
During such an invocation, a context switch occurs from the JCRE context to the context of the applet that
owns X.

Note – The JCRE can access both methods and fields of X. Method access is the mechanism by which the
JCRE enters the context of an applet. Although the JCRE could invoke any method through the firewall, it shall
only invoke the select, process, deselect, and getShareableInterfaceObject (see 6.2.7.1) methods
defined in the Applet class, and methods on the objects passed to the API as parameters.

The JCRE context is the currently active context when the VM begins running after a card reset. The JCRE
context is the “root” context and is always either the currently active context or the bottom context saved on the
stack.

6.2.4 Shareable Interfaces

Shareable interfaces are a new feature in the Java Card 2.1 API to enable applet interaction. A shareable
interface defines a set of shared interface methods. These interface methods can be invoked from one context
even if the object implementing them is owned by an applet in another context.

In this specification, an object instance of a class implementing a shareable interface is called a Shareable
Interface Object (SIO).

To the owning context, the SIO is a normal object whose fields and methods can be accessed. To any other
context, the SIO is an instance of the shareable interface, and only the methods defined in the shareable
interface are accessible. All other fields and methods of the SIO are protected by the firewall.

Shareable interfaces provide a secure mechanism for inter-applet communication, as follows:

6.2.4.1 Server applet A builds a Shareable Interface Object

1. To make an object available for sharing with another applet in a different context, applet A first defines a
shareable interface, SI. A shareable interface extends the interface

Appendix JCRE01

473

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6-8 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

javacard.framework.Shareable. The methods defined in the shareable interface, SI, represent the
services that applet A makes accessible to other applets.

2. Applet A then defines a class C that implements the shareable interface SI. C implements the methods
defined in SI. C may also define other methods and fields, but these are protected by the applet firewall.
Only the methods defined in SI are accessible to other applets.

3. Applet A creates an object instance O of class C. O belongs to applet A, and the firewall allows A to access
any of the fields and methods of O.

6.2.4.2 Client applet B obtains the Shareable Interface Object

1. To access applet A’s object O, applet B creates an object reference SIO of type SI.

2. Applet B invokes a special method (JCSystem.getAppletShareableInterfaceObject, described in
section 6.2.7.2) to request a shared interface object reference from applet A.

3. Applet A receives the request and the AID of the requester (B) via
Applet.getShareableInterfaceObject, and determines whether or not it will share object O with
applet B. A’s implementation of the getShareableInterfaceObject method executes in A’s context.

4. If applet A agrees to share with applet B, A responds to the request with a reference to O. As this reference
is returned as type Shareable, none of the fields or methods of O are visible.

5. Applet B receives the object reference from applet A, casts it to the interface type SI, and stores it in object
reference variable SIO. Even though SIO actually refers to A’s object O, SIO is an interface of type SI.
Only the shareable interface methods defined in SI are visible to B. The firewall prevents the other fields
and methods of O from being accessed by B.

In the above sequence, applet B initiates communication with applet A using the special system method in the
JCSystem class to request a Shareable Interface Object from applet A. Once this communication is established,
applet B can obtain other Shareable Interface Objects from applet A using normal parameter passing and return
mechanisms. It can also continue to use the special JCSystem method described above to obtain other
Shareable Interface Objects.

6.2.4.3 Client applet B requests services from applet A

1. Applet B can request service from applet A by invoking one of the shareable interface methods of SIO.
During the invocation the Java Card VM performs a context switch. The original currently active context
(B) is saved on a stack and the context of the owner (A) of the actual object (O) becomes the new currently
active context. A’s implementation of the shareable interface method (SI method) executes in A’s context.

2. The SI method can find out the AID of its client (B) via the JCSystem.getPreviousContextAID
method. This is described in section 6.2.5. The method determines whether or not it will perform the
service for applet B.

3. Because of the context switch, the firewall allows the SI method to access all the fields and methods of
object O and any other object in the context of A. At the same time, the firewall prevents the method from
accessing non-shared objects in the context of B.

4. The SI method can access the parameters passed by B and can provide a return value to B.

5. During the return, the Java Card VM performs a restoring context switch. The original currently active
context (B) is popped from the stack, and again becomes the current context.

Appendix JCRE01

474

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-9

6. Because of the context switch, the firewall again allows B to access any of its objects and prevents B from
accessing non-shared objects in the context of A.

6.2.5 Determining the Previous Context

When an applet calls JCSystem.getPreviousContextAID, the JCRE shall return the instance AID of the
applet instance active at the time of the last context switch.

6.2.5.1 The JCRE Context

The JCRE context does not have an AID. If an applet calls the getPreviousContextAID method when the
context of the applet was entered directly from the JCRE context, this method returns null.

If the applet calls getPreviousContextAID from a method that may be accessed either from within the
applet itself or when accessed via a shareable interface from an external applet, it shall check for null return
before performing caller AID authentication.

6.2.6 Shareable Interface Details

A shareable interface is simply one that extends (either directly or indirectly) the tagging interface
javacard.framework.Shareable. This Shareable interface is similar in concept to the Remote interface
used by the RMI facility, in which calls to the interface methods take place across a local/remote boundary.

6.2.6.1 The Java Card Shareable Interface

Interfaces extending the Shareable tagging interface have this special property: calls to the interface
methods take place across Java Card’s applet firewall boundary via a context switch.

The Shareable interface serves to identify all shared objects. Any object that needs to be shared through the
applet firewall shall directly or indirectly implement this interface. Only those methods specified in a shareable
interface are available through the firewall.

Implementation classes can implement any number of shareable interfaces and can extend other shareable
implementation classes.

Like any Java platform interface, a shareable interface simply defines a set of service methods. A service
provider class declares that it “implements” the shareable interface and provides implementations for each of
the service methods of the interface. A service client class accesses the services by obtaining an object
reference, casting it to the shareable interface type, and invoking the service methods of the interface.

The shareable interfaces within the Java Card technology shall have the following properties:

• When a method in a shareable interface is invoked, a context switch occurs to the context of the object’s
owner.

• When the method exits, the context of the caller is restored.

• Exception handling is enhanced so that the currently active context is correctly restored during the stack
frame unwinding that occurs as an exception is thrown.

Appendix JCRE01

475

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6-10 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

6.2.7 Obtaining Shareable Interface Objects

Inter-applet communication is accomplished when a client applet invokes a shareable interface method of a SIO
belonging to a server applet. In order for this to work, there must be a way for the client applet to obtain the SIO
from the server applet in the first place. The JCRE provides a mechanism to make this possible. The Applet
class and the JCSystem class provide methods to enable a client to request services from the server.

6.2.7.1 The Method Applet.getShareableInterfaceObject(AID, byte)

This method is implemented by the server applet instance. It shall be called by the JCRE to mediate between a
client applet that requests to use an object belonging to another applet, and the server applet that makes its
objects available for sharing.

The default behavior shall return null, which indicates that an applet does not participate in inter-applet
communication.

A server applet that is intended to be invoked from another applet needs to override this method. This method
should examine the clientAID and the parameter. If the clientAID is not one of the expected AIDs, the
method should return null. Similarly, if the parameter is not recognized or if it is not allowed for the
clientAID, then the method also should return null. Otherwise, the applet should return an SIO of the
shareable interface type that the client has requested.

The server applet need not respond with the same SIO to all clients. The server can support multiple types of
shared interfaces for different purposes and use clientAID and parameter to determine which kind of SIO
to return to the client.

6.2.7.2 The Method JCSystem.getAppletShareableInterfaceObject

The JCSystem class contains the method getAppletShareableInterfaceObject, which is invoked by a
client applet to communicate with a server applet.

The JCRE shall implement this method to behave as follows:

1. The JCRE searches its internal applet table which lists all successfully installed applets on the card for one
with serverAID. If not found, null is returned.

2. The JCRE invokes this applet’s getShareableInterfaceObject method, passing the clientAID of
the caller and the parameter.

3. A context switch occurs to the server applet, and its implementation of getShareableInterfaceObject
proceeds as described in the previous section. The server applet returns a SIO (or null).

4. getAppletShareableInterfaceObject returns the same SIO (or null) to its caller.

For enhanced security, the implementation shall make it impossible for the client to tell which of the following
conditions caused a null value to be returned:

• The serverAID was not found.
• The server applet does not participate in inter-applet communication.
• The server applet does not recognize the clientAID or the parameter.
• The server applet won’t communicate with this client.
• The server applet won’t communicate with this client as specified by the parameter.

Appendix JCRE01

476

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-11

6.2.8 Class and Object Access Behavior

A static class field is accessed when one of the following Java bytecodes is executed:

getstatic, putstatic

An object is accessed when one of the following Java bytecodes is executed using the object’s reference:

getfield, putfield, invokevirtual, invokeinterface, athrow,
<T>aload, <T>astore, arraylength, checkcast, instanceof

<T> refers to the various types of array bytecodes, such as baload, sastore, etc.

This list also includes any special or optimized forms of these bytecodes that may be implemented in the Java
Card VM, such as getfield_b, sgetfield_s_this, etc.

Prior to performing the work of the bytecode as specified by the Java VM, the Java Card VM will perform an
access check on the referenced object. If access is denied, then a java.lang.SecurityException is thrown.

The access checks performed by the Java Card VM depend on the type and owner of the referenced object, the
bytecode, and the currently active context. They are described in the following sections.

6.2.8.1 Accessing Static Class Fields

Bytecodes:

getstatic, putstatic

■ If the JCRE is the currently active context, then access is allowed.

■ Otherwise, if the bytecode is putstatic and the field being stored is a reference type and the reference
being stored is a reference to a temporary JCRE Entry Point Object or a global array, then access is denied.

■ Otherwise, access is allowed.

6.2.8.2 Accessing Array Objects

Bytecodes:

<T>aload, <T>astore, arraylength, checkcast, instanceof

■ If the JCRE is the currently active context, then access is allowed.

■ Otherwise, if the bytecode is aastore and the component being stored is a reference type and the
reference being stored is a reference to a temporary JCRE Entry Point Object or a global array, then access
is denied.

■ Otherwise, if the array is owned by an applet in the currently active context, then access is allowed.

■ Otherwise, if the array is designated global, then access is allowed.

■ Otherwise, access is denied.

Appendix JCRE01

477

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6-12 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

6.2.8.3 Accessing Class Instance Object Fields

Bytecodes:

getfield, putfield

■ If the JCRE is the currently active context, then access is allowed.

■ Otherwise, if the bytecode is putfield and the field being stored is a reference type and the reference
being stored is a reference to a temporary JCRE Entry Point Object or a global array, then access is denied.

■ Otherwise if the object is owned by an applet in the currently active context, then access is allowed.

■ Otherwise, access is denied.

6.2.8.4 Accessing Class Instance Object Methods

Bytecodes:

invokevirtual

■ If the object is owned by an applet in the currently active context, then access is allowed. Context is
switched to the object owner’s context.

■ Otherwise, if the object is designated a JCRE Entry Point Object, then access is allowed. Context is
switched to the object owner’s context (shall be JCRE).

■ Otherwise, if JCRE is the currently active context, then access is allowed. Context is switched to the object
owner’s context.

■ Otherwise, access is denied.

6.2.8.5 Accessing Standard Interface Methods

Bytecodes:

invokeinterface

■ If the object is owned by an applet in the currently active context, then access is allowed.

■ Otherwise, if the JCRE is the currently active context, then access is allowed. Context is switched to the
object owner’s context.

■ Otherwise, access is denied.

6.2.8.6 Accessing Shareable Interface Methods

Bytecodes:

invokeinterface

■ If the object is owned by an applet in the currently active context, then access is allowed.

■ Otherwise, if the object’s class implements a Shareable interface, and if the interface being invoked
extends the Shareable interface, then access is allowed. Context is switched to the object owner’s
context.

Appendix JCRE01

478

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 6-13

■ Otherwise, if the JCRE is the currently active context, then access is allowed. Context is switched to the
object owner’s context.

■ Otherwise, access is denied.

6.2.8.7 Throwing Exception Objects

Bytecodes:

athrow

■ If the object is owned by an applet in the currently active context, then access is allowed.

■ Otherwise, if the object is designated a JCRE Entry Point Object, then access is allowed.

■ Otherwise, if the JCRE is the currently active context, then access is allowed.

■ Otherwise, access is denied.

6.2.8.8 Accessing Class Instance Objects

Bytecodes:

checkcast, instanceof

■ If the object is owned by an applet in the currently active context, then access is allowed.

■ Otherwise, if the object is designated a JCRE Entry Point Object, then access is allowed.

■ Otherwise, if the JCRE is the currently active context, then access is allowed.

■ Otherwise, access is denied.

6.2.8.9 Accessing Standard Interfaces

Bytecodes:

checkcast, instanceof

■ If the object is owned by an applet in the currently active context, then access is allowed.

■ Otherwise, if the JCRE is the currently active context, then access is allowed.

■ Otherwise, access is denied.

6.2.8.10 Accessing Shareable Interfaces

Bytecodes:

checkcast, instanceof

■ If the object is owned by an applet in the currently active context, then access is allowed.

■ Otherwise, if the object’s class implements a Shareable interface, and if the object is being cast into
(checkcast) or is an instance of (instanceof) an interface that extends the Shareable interface, then access
is allowed.

■ Otherwise, if the JCRE is the currently active context, then access is allowed.

Appendix JCRE01

479

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

6-14 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

■ Otherwise, access is denied.

6.3 Transient Objects and Contexts
Transient objects of CLEAR_ON_RESET type behave like persistent objects in that they can be accessed only
when the currently active context is the same context as the owner of the object (the currently active context at
the time when the object was created).

Transient objects of CLEAR_ON_DESELECT type can only be created or accessed when the currently active
context is the context of the currently selected applet. If any of the makeTransient factory methods of
JCSystem class are called to create a CLEAR_ON_DESELECT type transient object when the currently active
context is not the context of the currently selected applet, the method shall throw a
java.lang.SystemException with reason code of ILLEGAL_TRANSIENT. If an attempt is made to
access a transient object of CLEAR_ON_DESELECT type when the currently active context is not the context of
the currently selected applet, the JCRE shall throw a java.lang.SecurityException.

Applets that are part of the same package share the same group context. Every applet instance from a package
shares all its object instances with all other instances from the same package. (This includes transient objects of
both CLEAR_ON_RESET type and CLEAR_ON_DESELECT type owned by these applet instances.)

The transient objects of CLEAR_ON_DESELECT type owned by any applet instance within the same package
shall be accessible when any of the applet instances in this package is the currently selected applet.

Appendix JCRE01

480

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 7-1

7. Transactions and Atomicity

A transaction is a logical set of updates of persistent data. For example, transferring some amount of money
from one account to another is a banking transaction. It is important for transactions to be atomic: either all of
the data fields are updated, or none are. The JCRE provides robust support for atomic transactions, so that card
data is restored to its original pre-transaction state if the transaction does not complete normally. This
mechanism protects against events such as power loss in the middle of a transaction, and against program errors
that might cause data corruption should all steps of a transaction not complete normally.

7.1 Atomicity
Atomicity defines how the card handles the contents of persistent storage after a stop, failure, or fatal exception
during an update of a single object or class field or array component. If power is lost during the update, the
applet developer shall be able to rely on what the field or array component contains when power is restored.

The Java Card platform guarantees that any update to a single persistent object or class field will be atomic. In
addition, the Java Card platform provides single component level atomicity for persistent arrays. That is, if the
smart card loses power during the update of a data element (field in an object/class or component of an array)
that shall be preserved across CAD sessions, that data element shall be restored to its previous value.

Some methods also guarantee atomicity for block updates of multiple data elements. For example, the atomicity
of the Util.arrayCopy method guarantees that either all bytes are correctly copied or else the destination
array is restored to its previous byte values.

An applet might not require atomicity for array updates. The Util.arrayCopyNonAtomic method is provided
for this purpose. It does not use the transaction commit buffer even when called with a transaction in progress.

7.2 Transactions
An applet might need to atomically update several different fields or array components in several different
objects. Either all updates take place correctly and consistently, or else all fields/components are restored to
their previous values.

The Java Card platform supports a transactional model in which an applet can designate the beginning of an
atomic set of updates with a call to the JCSystem.beginTransaction method. Each object update after this

Appendix JCRE01

481

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

7-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

point is conditionally updated. The field or array component appears to be updated—reading the field/array
component back yields its latest conditional value—but the update is not yet committed.

When the applet calls JCSystem.commitTransaction, all conditional updates are committed to persistent
storage. If power is lost or if some other system failure occurs prior to the completion of
JCSystem.commitTransaction, all conditionally updated fields or array components are restored to their
previous values. If the applet encounters an internal problem or decides to cancel the transaction, it can
programmatically undo conditional updates by calling JCSystem.abortTransaction.

7.3 Transaction Duration
A transaction always ends when the JCRE regains programmatic control upon return from the applet’s select,
deselect, process or install methods.. This is true whether a transaction ends normally, with an applet’s
call to commitTransaction, or with an abortion of the transaction (either programmatically by the applet, or
by default by the JCRE). For more details on transaction abortion, refer to section 7.6.

Transaction duration is the life of a transaction between the call to JCSystem.beginTransaction, and either
a call to commitTransaction or an abortion of the transaction.

7.4 Nested Transactions
The model currently assumes that nested transactions are not possible. There can be only one transaction in
progress at a time. If JCSystem.beginTransaction is called while a transaction is already in progress, then
a TransactionException is thrown.

The JCSystem.transactionDepth method is provided to allow you to determine if a transaction is in
progress.

7.5 Tear or Reset Transaction Failure
If power is lost (tear) or the card is reset or some other system failure occurs while a transaction is in progress,
then the JCRE shall restore to their previous values all fields and array components conditionally updated since
the previous call to JCSystem.beginTransaction.

This action is performed automatically by the JCRE when it reinitializes the card after recovering from the
power loss, reset, or failure. The JCRE determines which of those objects (if any) were conditionally updated,
and restores them.

Note – Object space used by instances created during the transaction that failed due to power loss or card reset
can be recovered by the JCRE.

Appendix JCRE01

482

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 7-3

7.6 Aborting a Transaction
Transactions can be aborted either by an applet or by the JCRE.

7.6.1 Programmatic Abortion

If an applet encounters an internal problem or decides to cancel the transaction, it can programmatically undo
conditional updates by calling JCSystem.abortTransaction. If this method is called, all conditionally
updated fields and array components since the previous call to JCSystem.beginTransaction are restored to
their previous values, and the JCSystem.transactionDepth value is reset to 0.

7.6.2 Abortion by the JCRE

If an applet returns from the select, deselect, process, or install methods with a transaction in
progress, the JCRE automatically aborts the transaction. If a return from any of select, deselect, process
or install methods occurs with a transaction in progress, the JCRE acts as if an exception was thrown.

7.6.3 Cleanup Responsibilities of the JCRE

Object instances created during the transaction that is being aborted can be deleted only if references to these
deleted objects can no longer be used to access these objects. The JCRE shall ensure that a reference to an
object created during the aborted transaction is equivalent to a null reference.

7.7 Transient Objects
Only updates to persistent objects participate in the transaction. Updates to transient objects are never undone,
regardless of whether or not they were “inside a transaction.”

7.8 Commit Capacity
Since platform resources are limited, the number of bytes of conditionally updated data that can be accumulated
during a transaction is limited. The Java Card technology provides methods to determine how much commit
capacity is available on the implementation. The commit capacity represents an upper bound on the number of
conditional byte updates available. The actual number of conditional byte updates available may be lower due
to management overhead.

A TransactionException is thrown if the commit capacity is exceeded during a transaction.

Appendix JCRE01

483

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

7-4 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

7.9 Context Switching
Context switches shall not alter the state of a transaction in progress. If a transaction is in progress at the time of
a context switch (see section 6.1.1), updates to persistent data continue to be conditional in the new context
until the transaction is committed or aborted.

Appendix JCRE01

484

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 8-5

8. API Topics

The topics in this chapter complement the requirements specified in the Java Card 2.1 API Specification.

8.1 Resource Use within the API
Unless specified in the Java Card 2.1 API Specification, the implementation shall support the invocation of API
instance methods, even when the owner of the object instance is not the currently selected applet. In other
words, unless specifically called out, the implementation shall not use resources such as transient objects of
CLEAR_ON_DESELECT type.

8.2 Exceptions thrown by API classes
All exception objects thrown by the API implementation shall be temporary JCRE Entry Point Objects.
Temporary JCRE Entry Point Objects cannot be stored in class variables, instance variables or array
components (See section 6.2.1).

8.3 Transactions within the API
Unless explicitly called out in the API descriptions, implementation of the Java Card 2.1 API methods shall not
initiate or otherwise alter the state of a transaction in progress. Even if a transaction is in progress, updates to
implementation persistent state within the API need not be conditional unless specifically called out by the API
method.

Appendix JCRE01

485

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

8-6 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

8.4 The APDU Class
The APDU class encapsulates access to the ISO 7816-4 based I/O across the card serial line. The APDU Class is
designed to be independent of the underlying I/O transport protocol.

The JCRE may support T=0 or T=1 transport protocols or both.

8.4.1 T=0 specifics for outgoing data transfers

For compatibility with legacy CAD/terminals that do not support block chained mechanisms, the APDU Class
allows mode selection via the setOutgoingNoChaining method.

8.4.1.1 Constrained transfers with no chaining

When the no chaining mode of output transfer is requested by the applet by calling the
setOutgoingNoChaining method, the following protocol sequence shall be followed:

Note – when the no chaining mode is used (i.e. after the invocation of the setOutgoingNoChaining
method), calls to the waitExtension method shall throw an APDUException with reason code
ILLEGAL_USE.

Notation
Le = CAD expected length.

Lr = Applet response length set via setOutgoingLength method.

<INS> = the protocol byte equal to the incoming header INS byte, which indicates that all data bytes
will be transferred next.

<~INS> = the protocol byte that is the complement of the incoming header INS byte, which indicates
that 1 data byte will be transferred next.

<SW1,SW2> = the response status bytes as in ISO7816-4.

ISO 7816-4 CASE 2

Le == Lr
1. The card sends Lr bytes of output data using the standard T=0 <INS> or <~INS> procedure
byte mechanism.

2. The card sends <SW1,SW2> completion status on completion of the Applet.process
method.

Lr < Le
1. The card sends <0x61,Lr> completion status bytes

2. The CAD sends GET RESPONSE command with Le = Lr.

Appendix JCRE01

486

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 8-7

3. The card sends Lr bytes of output data using the standard T=0 <INS> or <~INS> procedure
byte mechanism.

4. The card sends <SW1,SW2> completion status on completion of the Applet.process
method.

Lr > Le
1. The card sends Le bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

2. The card sends <0x61,(Lr-Le)> completion status bytes

3. The CAD sends GET RESPONSE command with new Le <= Lr.

4. The card sends (new) Le bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

5. Repeat steps 2-4 as necessary to send the remaining output data bytes (Lr) as required.

6. The card sends <SW1,SW2> completion status on completion of the Applet.process
method.

ISO 7816-4 CASE 4
In Case 4, Le is determined after the following initial exchange:

1. The card sends <0x61,Lr status bytes>

2. The CAD sends GET RESPONSE command with Le <= Lr.

The rest of the protocol sequence is identical to CASE 2 described above.

If the applet aborts early and sends less than Le bytes, zeros shall be sent instead to fill out the length of the
transfer expected by the CAD.

8.4.1.2 Regular Output transfers

When the no chaining mode of output transfer is not requested by the applet (that is, the setOutgoing
method is used), any ISO-7816-3/4 compliant T=0 protocol transfer sequence may be used.

Note – The waitExtension method may be invoked by the applet at any time. The waitExtension
method shall request an additional work waiting time (ISO 7816-3) using the 0x60 procedure byte.

8.4.1.3 Additional T=0 requirements

At any time, when the T=0 output transfer protocol is in use, and the APDU class is awaiting a GET
RESPONSE command from the CAD in reaction to a response status of <0x61, xx> from the card, if the CAD
sends in a different command, the sendBytes or the sendBytesLong methods shall throw an
APDUException with reason code NO_T0_GETRESPONSE.

Calls to sendBytes or sendBytesLong methods from this point on shall result in an APDUException with
reason code ILLEGAL_USE. If an ISOException is thrown by the applet after the NO_T0_GETRESPONSE
exception has been thrown, the JCRE shall discard the response status in its reason code. The JCRE shall restart
APDU processing with the newly received command and resume APDU dispatching.

Appendix JCRE01

487

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

8-8 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

8.4.2 T=1 specifics for outgoing data transfers

8.4.2.1 Constrained transfers with no chaining

When the no chaining mode of output transfer is requested by the applet by calling the
setOutgoingNoChaining method, the following protocol specifics shall be followed:

Notation
Le = CAD expected length.

Lr = Applet response length set via setOutgoingLength method.

The transport protocol sequence shall not use block chaining. Specifically, the M-bit (more data bit) shall not be
set in the PCB of the I-blocks during the transfers (ISO 7816-3). In other words, the entire outgoing data (Lr
bytes) shall be transferred in one I-block.

If the applet aborts early and sends less than Lr bytes, zeros shall be sent instead to fill out the remaining length
of the block.

Note – When the no chaining mode is used (i.e. after the invocation of the setOutgoingNoChaining
method), calls to the waitExtension method shall throw an APDUException with reason code
ILLEGAL_USE.

8.4.2.2 Regular Output transfers

When the no chaining mode of output transfer is not requested by the applet (i.e. the setOutgoing method is
used) any ISO-7816-3/4 compliant T=1 protocol transfer sequence may be used.

Note – The waitExtension method may be invoked by the applet at anytime. The waitExtension
method shall send an S-block command with WTX request of INF units, which is equivalent to a request of 1
additional work waiting time in T=0 mode. (See ISO 7816-3).

8.4.2.2.1 Chain abortion by the CAD
If the CAD aborts a chained outbound transfer using an S-block ABORT request (see ISO 7816-3), the
sendBytes or sendBytesLong method shall throw an APDUException with reason code T1_IFD_ABORT.

Calls to sendBytes or sendBytesLong methods from this point on shall result in an APDUException with
reason code ILLEGAL_USE. If an ISOException is thrown by the applet after the T1_IFD_ABORT exception
has been thrown, the JCRE shall discard the response status in its reason code. The JCRE shall restart APDU
processing with the newly received command, and resume APDU dispatching.

8.4.3 T=1 specifics for incoming data transfers

8.4.3.1 Incoming transfers using chaining

8.4.3.1.1 Chain abortion by the CAD

Appendix JCRE01

488

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 8-9

If the CAD aborts a chained inbound transfer using an S-block ABORT request (see ISO 7816-3), the
setIncomingAndReceive or receiveBytes method shall throw an APDUException with reason code
T1_IFD_ABORT.

Calls to receiveBytes , sendBytes or sendBytesLong methods from this point on shall result in an
APDUException with reason code ILLEGAL_USE. If an ISOException is thrown by the applet after the
T1_IFD_ABORT exception has been thrown, the JCRE shall discard the response status in its reason code. The
JCRE shall restart APDU processing with the newly received command, and resume APDU dispatching.

8.5 The Security and Crypto packages
The getInstance method in the following classes return an implementation instance in the context of the
calling applet of the requested algorithm:

javacard.security.MessageDigest

javacard.security.Signature

javacard.security.RandomData

javacardx.crypto.Cipher

An implementation of the JCRE may implement 0 or more of the algorithms listed in the Java Card 2.1 API
Specification. When an algorithm that is not implemented is requested this method shall throw a
CryptoException with reason code NO_SUCH_ALGORITHM.

Implementations of the above classes shall extend the corresponding base class and implement all the abstract
methods. All data allocation associated with the implementation instance shall be performed at the time of
instance construction to ensure that any lack of required resources can be flagged early during the installation of
the applet.

Similarly, the buildKey method of the javacard.security.keyBuilder class returns an
implementation instance of the requested Key type. The JCRE may implement 0 or more types of keys. When a
key type that is not implemented is requested, the method shall throw a CryptoException with reason code
NO_SUCH_ALGORITHM.

Implementations of key types shall implement the associated interface. All data allocation associated with the
key implementation instance shall be performed at the time of instance construction to ensure that any lack of
required resources can be flagged early during the installation of the applet.

8.6 JCSystem Class
In Java Card 2.1, the getVersion method shall return (short) 0x0201.

Appendix JCRE01

489

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

8-10 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Appendix JCRE01

490

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 9-1

9. Virtual Machine Topics

The topics in this chapter detail virtual machine specifics.

9.1 Resource Failures
A lack of resources condition (such as heap space) which is recoverable shall result in a SystemException
with reason code NO_RESOURCE. The factory methods in JCSystem used to create transient arrays throw a
SystemException with reason code NO_TRANSIENT_SPACE to indicate lack of transient space.

All other (non-recoverable) virtual machine errors such as stack overflow shall result in a virtual machine error.
These conditions shall cause the virtual machine to halt. When such a non-recoverable virtual machine error
occurs, an implementation can optionally require the card to be muted or blocked from further use.

Appendix JCRE01

491

Appendix JCRE01

492

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 10-1

10. Applet Installer

Applet installation on smart cards using Java Card technology is a complex topic. The design of the Java Card
2.1 API Specification is intended to give JCRE implementers as much freedom as possible in their
implementations. However, some basic common specifications are required in order to allow Java Card applets
to be installed without knowing the implementation details of a particular installer.

This specification defines the concept of an Installer and specifies minimal installation requirements in order to
achieve interoperability across a wide range of possible Installer implementations.

The Applet Installer is an optional part of the Java Card 2.1 Environment (JCRE) Specification. That is, an
implementation of the JCRE does not necessarily need to include a post-issuance Installer. However, if
implemented, the installer is required to support the behavior specified in this chapter.

10.1 The Installer
The mechanisms necessary to install an applet on smart cards using Java Card technology are embodied in an
on-card component called the Installer.

To the CAD the Installer appears to be an applet. It has an AID, and it becomes the currently selected applet
when this AID is successfully processed by a SELECT command. Once selected, the Installer behaves in much
the same way as any other applet:

• It receives all APDUs just like any other selected applet.

• Its design specification prescribes the various kinds and formats of APDUs that it expects to receive along
with the semantics of those commands under various preconditions.

• It processes and responds to all APDUs that it receives. Incorrect APDUs are responded to with an error
condition of some kind.

• When another applet is selected (or when the card is reset or when power is removed from the card), the
Installer becomes deselected and remains suspended until the next time that it is SELECTed.

10.1.1 Installer Implementation

The Installer need not be implemented as an applet on the card. The requirement is only that the Installer
functionality be SELECTable. The corollary to this requirement is that Installer component shall not be able to
be invoked when a non-Installer applet is selected nor when no applet is selected.

Appendix JCRE01

493

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

10-2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

Obviously, a JCRE implementer could choose to implement the Installer as an applet. If so, then the Installer
might be coded to extend the Applet class and respond to invocations of the select, process, and
deselect methods.

But a JCRE implementer could also implement the Installer in other ways, as long as it provides the
SELECTable behavior to the outside world. In this case, the JCRE implementer has the freedom to provide
some other mechanism by which APDUs are delivered to the Installer code module.

10.1.2 Installer AID

Because the Installer is SELECTable, it shall have an AID. JCRE implementers are free to choose their own
AID by which their Installer is selected. Multiple installers may be implemented.

10.1.3 Installer APDUs

The Java Card 2.1 API does not specify any APDUs for the Installer. JCRE implementers are entirely free to
choose their own APDU commands to direct their Installer in its work.

The model is that the Installer on the card is initiated by an installation program running on the CAD. In order
for installation to succeed, this CAD installation program shall be able to:

• Recognize the card.

• SELECT the Installer on the card.

• Coordinate the installation process by sending the appropriate APDUs to the card Installer. These APDUs
will include:
À Authentication information, to ensure that the installation is authorized.
À The applet code to be loaded into the card’s memory.
À Linkage information to link the applet code with code already on the card.
À Instance initialization parameter data to be sent to the applet’s install method.

The Java Card 2.1 API Specification does not specify the details of the CAD installation program nor the
APDUs passed between it and the Installer.

10.1.4 Installer Behavior

JCRE implementers shall also define other behaviors of their Installer, including:

• Whether or not installation can be aborted and how this is done.
• What happens if an exception, reset, or power fail occurs during installation.
• What happens if another applet is selected before the Installer is finished with its work.

The JCRE shall guarantee that an applet will not be deemed successfully installed if:

• the applet package must link with another package already resident on the card , but the version of the
resident package is not binary compatible with the applet package. For more information on binary
compatibility in the Java programming language please see The Java Language Specification. Binary
compatibility in Java Card technology is discussed in the Java Card 2.1 Virtual Machine Specification.

• the applet’s install method throws an exception before successful return from the Applet.register
method (see section 3.1).

Appendix JCRE01

494

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 10-3

10.1.5 Installer Privileges

Although an Installer may be implemented as an applet, an Installer will typically require access to features that
are not available to "other" applets. For example, depending on the JCRE implementer’s implementation, the
Installer will need to:

• Read and write directly to memory, bypassing the object system and/or standard security.
• Access objects owned by other applets or by the JCRE.
• Invoke non-entry point methods of the JCRE.
• Be able to invoke the install method of a newly installed applet.

Again, it is up to each JCRE implementer to determine the Installer implementation and supply such features in
their JCRE implementations as necessary to support their Installer. JCRE implementers are also responsible for
the security of such features, so that they are not available to normal applets.

10.2 The Newly Installed Applet
There is a single interface between the Installer and the applet that is being installed. After the Installer has
correctly prepared the applet for execution (performed steps such as loading and linking), the Installer shall
invoke the applet’s install method. This method is defined in the Applet class.

The precise mechanism by which an applet’s install(byte[], short, byte) method is invoked from the
Installer is a JCRE implementer-defined implementation detail. However, there shall be a context switch so that
any context-related operations performed by the install method (such as creating new objects) are done in
the context of the new applet and not in the context of the Installer. The Installer shall also ensure that array
objects created during applet class initialization (<clinit>) methods are also owned by the context of the new
applet.

The installation of an applet is deemed complete if all steps are completed without failure or an exception being
thrown, up to and including successful return from executing the Applet.register method. At that point, the
installed applet will be selectable.

The maximum size of the parameter data is 32 bytes. And for security reasons, the bArray parameter is zeroed
after the return (just as the APDU buffer is zeroed on return from an applet’s process method.)

10.2.1 Installation Parameters

Other than the maximum size of 32 bytes, the Java Card 2.1 API does not specify anything about the contents
of the global byte array installation parameter. This is fully defined by the applet designer and can be in any
format desired. In addition, these installation parameters are intended to be opaque to the Installer.

JCRE implementers should design their Installers so that it is possible for an installation program running in a
CAD to specify an arbitrary byte array to be delivered to the Installer. The Installer simply forwards this byte
array to the target applet’s install method in the bArray parameter. A typical implementation might define a
JCRE implementer-proprietary APDU command that has the semantics “call the applet’s install method
passing the contents of the accompanying byte array.”

Appendix JCRE01

495

Appendix JCRE01

496

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1

11. API Constants

Some of the API classes don’t have values specified for their constants in the Java Card 2.1 API Specification.
If constant values are not specified consistently by implementers of this Java Card 2.1 Environment (JCRE)
Specification, industry-wide interoperability is impossible. This chapter provides the required values for
constants that are not specified in the Java Card 2.1 API Specification.

Class javacard.framework.APDU
public static final byte PROTOCOL_T0 = 0;
public static final byte PROTOCOL_T1 = 1;

Class javacard.framework.APDUException
public static final short ILLEGAL_USE = 1;
public static final short BUFFER_BOUNDS = 2;
public static final short BAD_LENGTH = 3;
public static final short IO_ERROR = 4;
public static final short NO_T0_GETRESPONSE = 0xAA;
public static final short T1_IFD_ABORT = 0xAB;

Interface javacard.framework.ISO7816
public final static short SW_NO_ERROR = (short)0x9000;
public final static short SW_BYTES_REMAINING_00 = 0x6100;
public final static short SW_WRONG_LENGTH = 0x6700;
public static final short SW_SECURITY_STATUS_NOT_SATISFIED = 0x6982;
public final static short SW_FILE_INVALID = 0x6983;
public final static short SW_DATA_INVALID = 0x6984;
public final static short SW_CONDITIONS_NOT_SATISFIED = 0x6985;
public final static short SW_COMMAND_NOT_ALLOWED = 0x6986;
public final static short SW_APPLET_SELECT_FAILED = 0x6999;
public final static short SW_WRONG_DATA = 0x6A80;
public final static short SW_FUNC_NOT_SUPPORTED = 0x6A81;
public final static short SW_FILE_NOT_FOUND = 0x6A82;
public final static short SW_RECORD_NOT_FOUND = 0x6A83;
public final static short SW_INCORRECT_P1P2 = 0x6A86;
public final static short SW_WRONG_P1P2 = 0x6B00;
public final static short SW_CORRECT_LENGTH_00 = 0x6C00;
public final static short SW_INS_NOT_SUPPORTED = 0x6D00;
public final static short SW_CLA_NOT_SUPPORTED = 0x6E00;
public final static short SW_UNKNOWN = 0x6F00;
public static final short SW_FILE_FULL = 0x6A84;
public final static byte OFFSET_CLA = 0;
public final static byte OFFSET_INS = 1;
public final static byte OFFSET_P1 = 2;

Appendix JCRE01

497

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

public final static byte OFFSET_P2 = 3;
public final static byte OFFSET_LC = 4;
public final static byte OFFSET_CDATA= 5;
public final static byte CLA_ISO7816 = 0x00;
public final static byte INS_SELECT = (byte) 0xA4;
public final static byte INS_EXTERNAL_AUTHENTICATE = (byte) 0x82;

Class javacard.framework.JCSystem
public static final byte NOT_A_TRANSIENT_OBJECT = 0;
public static final byte CLEAR_ON_RESET = 1;
public static final byte CLEAR_ON_DESELECT = 2;

Class javacard.framework.PINException
public static final short ILLEGAL_VALUE = 1;

Class javacard.framework.SystemException
public static final short ILLEGAL_VALUE = 1;
public static final short NO_TRANSIENT_SPACE = 2;
public static final short ILLEGAL_TRANSIENT = 3;
public static final short ILLEGAL_AID = 4;
public static final short NO_RESOURCE = 5;

Class javacard.framework.TransactionException
public static final short IN_PROGRESS = 1;
public static final short NOT_IN_PROGRESS = 2;
public static final short BUFFER_FULL = 3;
public static final short INTERNAL_FAILURE = 4;

Class javacard.security.CryptoException
public static final short ILLEGAL_VALUE = 1;
public static final short UNINITIALIZED_KEY = 2;
public static final short NO_SUCH_ALGORITHM = 3;
public static final short INVALID_INIT = 4;
public static final short ILLEGAL_USE = 5;

Class javacard.security.KeyBuilder
public static final byte TYPE_DES_TRANSIENT_RESET = 1;
public static final byte TYPE_DES_TRANSIENT_DESELECT = 2;
public static final byte TYPE_DES = 3;
public static final byte TYPE_RSA_PUBLIC = 4;
public static final byte TYPE_RSA_PRIVATE = 5;
public static final byte TYPE_RSA_CRT_PRIVATE = 6;
public static final byte TYPE_DSA_PUBLIC = 7;
public static final byte TYPE_DSA_PRIVATE = 8;
public static final short LENGTH_DES = 64;
public static final short LENGTH_DES3_2KEY = 128;
public static final short LENGTH_DES3_3KEY = 192;
public static final short LENGTH_RSA_512 = 512;
public static final short LENGTH_RSA_768 = 768;
public static final short LENGTH_RSA_1024 = 1024;
public static final short LENGTH_RSA_2048 = 2048;
public static final short LENGTH_DSA_512 = 512;
public static final short LENGTH_DSA_768 = 768;
public static final short LENGTH_DSA_1024 = 1024;

Class javacard.security.MessageDigest
public static final byte ALG_SHA = 1;
public static final byte ALG_MD5 = 2;
public static final byte ALG_RIPEMD160 = 3;

Appendix JCRE01

498

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3

Class javacard.security.RandomData
public static final byte ALG_PSEUDO_RANDOM = 1;
public static final byte ALG_SECURE_RANDOM = 2;

Class javacard.security.Signature
public static final byte ALG_DES_MAC4_NOPAD = 1;
public static final byte ALG_DES_MAC8_NOPAD = 2;
public static final byte ALG_DES_MAC4_ISO9797_M1 = 3;
public static final byte ALG_DES_MAC8_ISO9797_M1 = 4;
public static final byte ALG_DES_MAC4_ISO9797_M2 = 5;
public static final byte ALG_DES_MAC8_ISO9797_M2 = 6;
public static final byte ALG_DES_MAC4_PKCS5 = 7;
public static final byte ALG_DES_MAC8_PKCS5 = 8;
public static final byte ALG_RSA_SHA_ISO9796 = 9;
public static final byte ALG_RSA_SHA_PKCS1 = 10;
public static final byte ALG_RSA_MD5_PKCS1 = 11;
public static final byte ALG_RSA_RIPEMD160_ISO9796 = 12;
public static final byte ALG_RSA_RIPEMD160_PKCS1 = 13;
public static final byte ALG_DSA_SHA = 14;
public static final byte ALG_RSA_SHA_RFC2409 = 15;
public static final byte ALG_RSA_MD5_RFC2409 = 16;
public static final byte MODE_SIGN = 1;
public static final byte MODE_VERIFY = 2;

Class javacardx.crypto.Cipher
public static final byte ALG_DES_CBC_NOPAD = 1;
public static final byte ALG_DES_CBC_ISO9797_M1 = 2;
public static final byte ALG_DES_CBC_ISO9797_M2 = 3;
public static final byte ALG_DES_CBC_PKCS5 = 4;
public static final byte ALG_DES_ECB_NOPAD = 5;
public static final byte ALG_DES_ECB_ISO9797_M1 = 6;
public static final byte ALG_DES_ECB_ISO9797_M2 = 7;
public static final byte ALG_DES_ECB_PKCS5 = 8;
public static final byte ALG_RSA_ISO14888 = 9;
public static final byte ALG_RSA_PKCS1 = 10;
public static final byte ALG_RSA_ISO9796 = 11;
public static final byte MODE_DECRYPT = 1;
public static final byte MODE_ENCRYPT = 2;

Appendix JCRE01

499

Appendix JCRE01

500

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 1

Glossary

AID is an acronym for Application IDentifier as defined in ISO 7816-5.

APDU is an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

API is an acronym for Application Programming Interface. The API defines calling conventions by which an
application program accesses the operating system and other services.

Applet within the context of this document means a Java Card Applet, which is the basic unit of selection,
context, functionality, and security in Java Card technology.

Applet developer refers to a person creating a Java Card applet using the Java Card technology specifications.

Applet firewall is the mechanism in the Java Card technology by which the VM prevents an applet in one
context from making unauthorized accesses to objects owned by an applet in another context or the JCRE
context, and reports or otherwise addresses the violation.

Atomic operation is an operation that either completes in its entirety (if the operation succeeds) or no part of
the operation completes at all (if the operation fails).

Atomicity refers to whether a particular operation is atomic or not and is necessary for proper data recovery in
cases in which power is lost or the card is unexpectedly removed from the CAD.

ATR is an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java Card after a reset
condition.

CAD is an acronym for Card Acceptance Device. The CAD is the device in which the card is inserted.

Cast is the explicit conversion from one data type to another.

cJCK is the test suite to verify the compliance of the implementation of the Java Card Technology
specifications. The cJCK uses the JavaTest tool to run the test suite.

Class is the prototype for an object in an object-oriented language. A class may also be considered a set of
objects that share a common structure and behavior. The structure of a class is determined by the class variables
that represent the state of an object of that class and the behavior is given by a set of methods associated with
the class.

Classes are related in a class hierarchy. One class may be a specialization (a subclass) of another (its
superclass), it may have reference to other classes, and it may use other classes in a client-server relationship.

Context (See Applet execution context.)

Currently active context. The JCRE keeps track of the currently active Java Card context. When a virtual
method is invoked on an object, and a context switch is required and permitted, the currently active context is

Appendix JCRE01

501

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

2 Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc.

changed to correspond to the context of the applet that owns the object. When that method returns, the previous
context is restored. Invocations of static methods have no effect on the currently active context. The currently
active context and sharing status of an object together determine if access to an object is permissible.

Currently selected applet. The JCRE keeps track of the currently selected Java Card applet. Upon receiving a
SELECT command with this applet’s AID, the JCRE makes this applet the currently selected applet. The JCRE
sends all APDU commands to the currently selected applet.

EEPROM is an acronym for Electrically Erasable, Programmable Read Only Memory.

Firewall (see Applet Firewall).

Framework is the set of classes that implement the API. This includes core and extension packages.
Responsibilities include dispatching of APDUs, applet selection, managing atomicity, and installing applets.

Garbage collection is the process by which dynamically allocated storage is automatically reclaimed during
the execution of a program.

Instance variables, also known as fields, represent a portion of an object’s internal state. Each object has its
own set of instance variables. Objects of the same class will have the same instance variables, but each object
can have different values.

Instantiation, in object-oriented programming, means to produce a particular object from its class template.
This involves allocation of a data structure with the types specified by the template, and initialization of
instance variables with either default values or those provided by the class’s constructor function.

JAR is an acronym for Java Archive. JAR is a platform-independent file format that combines many files into
one.

Java Card Runtime Environment (JCRE) consists of the Java Card Virtual Machine, the framework, and the
associated native methods.

JC21RI is an acronym for the Java Card 2.1 Reference Implementation.

JCRE implementer refers to a person creating a vendor-specific implementation using the Java Card API.

JCVM is an acronym for the Java Card Virtual Machine. The JCVM is the foundation of the OP card
architecture. The JCVM executes byte code and manages classes and objects. It enforces separation between
applications (firewalls) and enables secure data sharing.

JDK is an acronym for Java Development Kit. The JDK is a Sun Microsystems, Inc. product that provides the
environment required for programming in Java. The JDK is available for a variety of platforms, but most
notably Sun Solaris and Microsoft Windows®.

Method is the name given to a procedure or routine, associated with one or more classes, in object-oriented
languages.

Namespace is a set of names in which all names are unique.

Object-Oriented is a programming methodology based on the concept of an object, which is a data structure
encapsulated with a set of routines, called methods, which operate on the data.

Objects, in object-oriented programming, are unique instances of a data structure defined according to the
template provided by its class. Each object has its own values for the variables belonging to its class and can
respond to the messages (methods) defined by its class.

Appendix JCRE01

502

 Java Card ™ 2.1 Runtime Environment (JCRE) Specification

Final Revision 1.0 Copyright © February 24, 1999 Sun Microsystems, Inc. 3

Package is a namespace within the Java programming language and can have classes and interfaces. A package
is the smallest unit within the Java programming language.

Persistent object Persistent objects and their values persist from one CAD session to the next, indefinitely.
Objects are persistent by default. Persistent object values are updated atomically using transactions. The term
persistent does not mean there is an object-oriented database on the card or that objects are
serialized/deserialized, just that the objects are not lost when the card loses power.

Shareable interface Defines a set of shared interface methods. These interface methods can be invoked from
an applet in one context when the object implementing them is owned by an applet in another context.

Shareable interface object (SIO) An object that implements the shareable interface.

Transaction is an atomic operation in which the developer defines the extent of the operation by indicating in
the program code the beginning and end of the transaction.

Transient object. The values of transient objects do not persist from one CAD session to the next, and are reset
to a default state at specified intervals. Updates to the values of transient objects are not atomic and are not
affected by transactions.

Appendix JCRE01

503

901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300 fax 415 969-9131

Sun Microsystems, Inc.

Java Card 2.1 Virtual
Machine Specification

Final Revision 1.0, March 3, 1999

Appendix JCVM01

504

Please
Recycle

Copyright © 1999 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
worldwide, limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice the Java Card 2.1 Virtual Machine Specification ("Specification") to use the
Specification for internal evaluation purposes only. Other than this limited license, you acquire no right,
title, or interest in or to the Specification and you shall have no right to use the Specification for productive
or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, Java Card, HotJava, HotJava Views,
Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava,
PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun
Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The
Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo, and Visual Java are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS PUBLICATION AT ANY TIME.

Appendix JCVM01

505

Contents iii

Contents

Figures vii

Tables ix

1. Introduction 1

1.1 Motivation 1

1.2 The Java Card Virtual Machine 2

1.3 Java Language Security 4

1.4 Java Card Runtime Environment Security 4

2. A Subset of the Java Virtual Machine 7

2.1 Why a Subset is Needed 7

2.2 Java Card Language Subset 7

2.2.1 Unsupported Items 8

2.2.2 Supported Items 10

2.2.3 Optionally Supported Items 12

2.2.4 Limitations of the Java Card Virtual Machine 12

2.3 Java Card VM Subset 14

2.3.1 class File Subset 15

2.3.2 Bytecode Subset 18

2.3.3 Exceptions 20

Appendix JCVM01

506

iv Java Card 2.1 Virtual Machine Specification • March 3, 1999

3. Structure of the Java Card Virtual Machine 25

3.1 Data Types and Values 25

3.2 Words 26

3.3 Runtime Data Areas 26

3.4 Contexts 26

3.5 Frames 27

3.6 Representation of Objects 27

3.7 Special Initialization Methods 27

3.8 Exceptions 28

3.9 Binary File Formats 28

3.10 Instruction Set Summary 28

3.10.1 Types and the Java Card Virtual Machine 29

4. Binary Representation 33

4.1 Java Card File Formats 33

4.1.1 Export File Format 34

4.1.2 CAP File Format 34

4.1.3 JAR File Container 34

4.2 AID-based Naming 35

4.2.1 The AID Format 35

4.2.2 AID Usage 36

4.3 Token-based Linking 37

4.3.1 Externally Visible Items 37

4.3.2 Private Tokens 37

4.3.3 The Export File and Conversion 38

4.3.4 References – External and Internal 38

4.3.5 Installation and Linking 39

4.3.6 Token Assignment 39

4.3.7 Token Details 39

4.4 Binary Compatibility 42

Appendix JCVM01

507

Contents v

4.5 Package Versions 44

4.5.1 Assigning 44

4.5.2 Linking 45

5. The Export File Format 47

5.1 Export File Name 48

5.2 Containment in a Jar File 48

5.3 Export File 48

5.4 Constant Pool 50

5.4.1 CONSTANT_Package 51

5.4.2 CONSTANT_Interfaceref 52

5.4.3 CONSTANT_Integer 53

5.4.4 CONSTANT_Utf8 53

5.5 Classes and Interfaces 54

5.6 Fields 57

5.7 Methods 59

5.8 Attributes 61

5.8.1 ConstantValue Attribute 61

6. The CAP File Format 63

6.1 Component Model 64

6.1.1 Containment in a JAR File 65

6.1.2 Defining New Components 65

6.2 Installation 66

6.3 Header Component 67

6.4 Directory Component 69

6.5 Applet Component 72

6.6 Import Component 74

6.7 Constant Pool Component 75

6.7.1 CONSTANT_Classref 77

Appendix JCVM01

508

vi Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.7.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref 78

6.7.3 CONSTANT_StaticFieldref and CONSTANT_StaticMethodref 80

6.8 Class Component 82

6.8.1 interface_info and class_info 84

6.9 Method Component 90

6.9.1 exception_handler_info 91

6.9.2 method_info 92

6.10 Static Field Component 95

6.11 Reference Location Component 98

6.12 Export Component 100

6.13 Descriptor Component 103

6.13.1 class_descriptor_info 104

6.13.2 field_descriptor_info 106

6.13.3 method_descriptor_info 108

6.13.4 type_descriptor_info 110

7. Java Card Virtual Machine Instruction Set 113

7.1 Assumptions: The Meaning of “Must” 113

7.2 Reserved Opcodes 114

7.3 Virtual Machine Errors 114

7.4 Security Exceptions 115

7.5 The Java Card Virtual Machine Instruction Set 115

8. Tables of Instructions 245

Glossary 249

Appendix JCVM01

509

Figures vii

Figures

FIGURE 1-1 Java Card Applet Conversion 2

FIGURE 1-2 Java Card Applet Installation 3

FIGURE 4-1 AID Format 36

FIGURE 4-2 Mapping package identifiers to AIDs 36

FIGURE 4-3 Tokens for Instance Fields 41

FIGURE 4-4 Binary compatibility example 43

FIGURE 7-1 An example instruction page 116

Appendix JCVM01

510

viii Java Card 2.1 Virtual Machine Specification • March 3, 1999

Appendix JCVM01

511

Tables ix

Tables

TABLE 2-1 Unsupported Java constant pool tags 15

TABLE 2-2 Supported Java constant pool tags. 16

TABLE 2-3 Support of Java checked exceptions 21

TABLE 2-4 Support of Java runtime exceptions 22

TABLE 2-5 Support of Java errors 23

TABLE 3-1 Type support in the Java Card Virtual Machine Instruction Set 30

TABLE 3-2 Storage types and computational types 31

TABLE 4-1 Token Range, Type and Scope 39

TABLE 5-1 Export file constant pool tags 50

TABLE 5-2 Export file package flags 51

TABLE 5-3 Export file class access and modifier flags 55

TABLE 5-4 Export file field access and modifier flags 58

TABLE 5-5 Export file method access and modifier flags 60

TABLE 6-1 CAP file component tags 64

TABLE 6-2 CAP file component file names 65

TABLE 6-3 Reference component install order 66

TABLE 6-4 CAP file package flags 68

TABLE 6-5 CAP file constant pool tags 76

Appendix JCVM01

512

x Java Card 2.1 Virtual Machine Specification • March 3, 1999

TABLE 6-6 CAP file interface and class flags 84

TABLE 6-7 CAP file method flags 93

TABLE 6-8 Segments of a static field image 95

TABLE 6-9 Static field sizes 95

TABLE 6-10 Array types 97

TABLE 6-11 One-byte reference location example 99

TABLE 6-12 CAP file class descriptor flags 104

TABLE 6-13 CAP file field descriptor flagss 106

TABLE 6-14 Primitive type descriptor values 107

TABLE 6-15 CAP file method descriptor flags 108

TABLE 6-16 Type descriptor values 111

TABLE 6-17 Encoded reference type p1.c1 111

TABLE 6-18 Encoded byte array type 111

TABLE 6-19 Encoded reference array type p1.c1 112

TABLE 6-20 Encoded method signature ()V 112

TABLE 6-21 Encoded method signature (Lp1.ci;)S 112

TABLE 8-1 Instructions by Opcode Value 245

TABLE 8-2 Instructions by Opcode Mnemonic 247

Appendix JCVM01

513

Preface xi

Preface

Java Card technology combines a subset of the Java programming language with a
runtime environment optimized for smart cards and similar small-memory
embedded devices. The goal of Java Card technology is to bring many of the benefits
of Java software programming to the resource-constrained world of devices such as
smart cards.

The Java Card platform is defined by three specifications: this Java Card 2.1 Virtual
Machine Specification, the Java Card 2.1 Application Programming Interface, and the
Java Card 2.1 Runtime Environment (JCRE) Specification.

This specification describes the required behavior of the Java Card 2.1 Virtual
Machine (VM) that developers should adhere to when creating an implementation. An
implementation within the context of this document refers to a licensee’s
implementation of the Java Card Virtual Machine (VM), Application Programming
Interface (API), Converter, or other component, based on the Java Card technology
specifications. A Reference Implementation is an implementation produced by Sun
Microsystems, Inc. Application software written for the Java Card platform is
referred to as a Java Card applet.

Who Should Use This Specification?
This document is for licensees of the Java Card technology to assist them in creating
an implementation, developing a specification to extend the Java Card technology
specifications, or in creating an extension to the Java Card Runtime Environment
(JCRE). This document is also intended for Java Card applet developers who want a
more detailed understanding of the Java Card technology specifications.

Appendix JCVM01

514

xii Java Card 2.1 Virtual Machine Specification • March 3, 1999

Before You Read This Specification
Before reading this document, you should be familiar with the Java programming
language, the Java Card technology specifications, and smart card technology. A
good resource for becoming familiar with Java technology and Java Card technology
is the Sun Microsystems, Inc. website, located at: http://java.sun.com.

How This Book Is Organized
Chapter 1, “Introduction,” provides an overview of the Java Card Virtual Machine
architecture.

Chapter 2, “A Subset of the Java Virtual Machine,” describes the subset of the Java
programming language and Virtual Machine that is supported by the Java Card
specification.

Chapter 3, “Structure of the Java Card Virtual Machine,” describes the differences
between the Java Virtual Machine and the Java Card Virtual Machine.

Chapter 4, “Binary Representation,” provides information about how Java Card
programs are represented in binary form.

Chapter 5, “The Export File,” describes the Converter export file used to link code
against another package.

Chapter 6, “The CAP File Format,” describes the format of the CAP file.

Chapter 7, “Instruction Set,” describes the byte codes (opcodes) that comprise the
Java Card Virtual Machine instruction set.

Chapter 8, “Tables of Instructions,” summarizes the Java Card Virtual Machine
instructions in two different tables: one sorted by Opcode Value and the other sorted
by Mnemonic.

Glossary is a list of words and their definitions to assist you in using this book.

Prerequisites
This specification is not intended to stand on its own; rather it relies heavily on
existing documentation of the Java platform. In particular, two books are required
for the reader to understand the material presented here.

[1] Gosling, James, Bill Joy, and Guy Steele. The Java™ Language Specification.
Addison-Wesley, 1996, ISBN 0-201-63451-1 – contains the definitive definition of the
Java programming language. The Java Card 2.1 language subset defined here is
based on the language specified in this book.

Appendix JCVM01

515

xiii

[2] Lindholm, Tim, and Frank Yellin. The Java™ Virtual Machine Specification.
Addison-Wesley, 1996, ISBN 0-201-63452-X – defines the standard operation of the
Java Virtual Machine. The Java Card virtual machine presented here is based on the
definition specified in this book.

Related Documents
References to various documents or products are made in this manual. You should
have the following documents available:

• Java Card 2.1 Application Programming Interface, Sun Microsystems, Inc.

• Java Card 2.1 Runtime Environment (JCRE) 2.1 Specification, Sun Microsys-
tems, Inc.

• Java Card 2.1 Applet Developer’s Guide, Sun Microsystems, Inc.

• The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele.
Addison-Wesley, 1996, ISBN 0-201-63451-1.

• The Java Virtual Machine Specification (Java Series) by Tim Lindholm and
Frank Yellin. Addison-Wesley, 1996, ISBN 0-201-63452-X.

• The Java Class Libraries: An Annotated Reference (Java Series) by Patrick Chan
and Rosanna Lee. Addison-Wesley, ISBN: 0201634589.

• ISO 7816 International Standard, First Edition 1987-07-01.

• EMV ’96 Integrated Circuit Card Specification for Payment Systems, Version 3.0,
June 30, 1996.

Ordering Sun Documents
The SunDocs™ program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the
SunExpress™ Internet site at http://www.sun.com/sunexpress.

Appendix JCVM01

516

xiv Java Card 2.1 Virtual Machine Specification • March 3, 1999

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Acknowledgements
Java Card technology is based on Java technology. This specification could not exist
without all the hard work that went into the development of the Java platform
specifications. In particular, this specification is based significantly on the Java™
Virtual Machine Specification. In order to maintain consistency with that specification,
as well as to make differences easier to notice, we have, where possible, used the
words, the style, and even the visual design of that book. Many thanks to Tim
Lindholm and Frank Yellin for providing a solid foundation for our work.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Java code, Java keywords or
variables, or class files.

The token item of a
CONSTANT_StaticFieldref_info
structure ...

bytecode Java language bytecodes invokespecial

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.
You must be root to do this.

Appendix JCVM01

517

1

CHAPTER 1

Introduction

1.1 Motivation
Java Card technology enables programs written in the Java programming language
to be run on smart cards and other small, resource-constrained devices. Developers
can build and test programs using standard software development tools and
environments, then convert them into a form that can be installed onto a Java Card
technology enabled device. Application software for the Java Card platform is called
an applet, or more specifically, a Java Card applet or card applet (to distinguish it
from browser applets).

While Java Card technology enables programs written in the Java programming
language to run on smart cards, such small devices are far too under-powered to
support the full functionality of the Java platform. Therefore, the Java Card platform
supports only a carefully chosen, customized subset of the features of the Java
platform. This subset provides features that are well-suited for writing programs for
small devices and preserves the object-oriented capabilities of the Java programming
language.

A simple approach to specifying a Java Card virtual machine would be to describe
the subset of the features of the Java virtual machine that must be supported to
allow for portability of source code across all Java Card technology enabled devices.
Combining that subset specification and the information in the Java Virtual Machine
Specification, smart card manufacturers could construct their own Java Card
implementations. While that approach is feasible, it has a serious drawback. The
resultant platform would be missing the important feature of binary portability of
Java Card applets.

The standards that define the Java platform allow for binary portability of Java
programs across all Java platform implementations. This “write once, run anywhere”
quality of Java programs is perhaps the most significant feature of the platform. Part

Appendix JCVM01

518

2 Java Card 2.1 Virtual Machine Specification • March 3, 1999

of the motivation for the creation of the Java Card platform was to bring just this
kind of binary portability to the smart card industry. In a world with hundreds of
millions or perhaps even billions of smart cards with varying processors and
configurations, the costs of supporting multiple binary formats for software
distribution could be overwhelming.

This Java Card 2.1 Virtual Machine Specification is the key to providing binary
portability. One way of understanding what this specification does is to compare it
to its counterpart in the Java platform. The Java Virtual Machine Specification defines a
Java virtual machine as an engine that loads Java class files and executes them with
a particular set of semantics. The class file is a central piece of the Java architecture,
and it is the standard for the binary compatibility of the Java platform. The Java Card
2.1 Virtual Machine Specification also defines a file format that is the standard for
binary compatibility for the Java Card platform: the CAP file format is the form in
which software is loaded onto devices which implement a Java Card virtual
machine.

1.2 The Java Card Virtual Machine
The role of the Java Card virtual machine is best understood in the context of the
process for production and deployment of Java Card software. There are several
components that make up a Java Card system, including the Java Card virtual
machine, the Java Card Converter, a terminal installation tool, and an installation
program that runs on the device, as shown in Figures 1-1 and 1-2.

FIGURE 1-1 Java Card Applet Conversion

Development System

Converter

export
files

class
files

CAP file

Appendix JCVM01

519

Chapter 1 Introduction 3

FIGURE 1-2 Java Card Applet Installation

Development of a Java Card applet begins as with any other Java program: a
developer writes one or more Java classes, and compiles the source code with a Java
compiler, producing one or more class files. The applet is run, tested and debugged
on a workstation using simulation tools to emulate the device environment. Then,
when an applet is ready to be downloaded to a device, the class files comprising
the applet are converted to a CAP (converted applet) file using a Java Card Converter.

The Java Card Converter takes as input not only the class files to be converted, but
also one or more export files. An export file contains name and link information
for the contents of other packages that are imported by the classes being converted.
When an applet or library package is converted, the converter can also produce an
export file for that package.

After conversion, the CAP file is copied to a card terminal, such as a desktop
computer with a card reader peripheral. Then an installation tool on the terminal
loads the CAP file and transmits it to the Java Card technology enabled device. An
installation program on the device receives the contents of the CAP file and prepares
the applet to be run by the Java Card virtual machine. The virtual machine itself
need not load or manipulate CAP files; it need only execute the applet code found in
the CAP file that was loaded onto the device by the installation program.

The division of functionality between the Java Card virtual machine and the
installation program keeps both the virtual machine and the installation program
small. The installation program may be implemented as a Java program and
executed on top of the Java Card virtual machine. Since Java Card instructions are
denser than typical machine code, this may reduce the size of the installer. The
modularity may enable different installers to be used with a single Java Card virtual
machine implementation.

Device

Installer
Virtual

Machine

Program Memory

Terminal

Installation
Tool

CAP file

Appendix JCVM01

520

4 Java Card 2.1 Virtual Machine Specification • March 3, 1999

1.3 Java Language Security
One of the fundamental features of the Java virtual machine is the strong security
provided in part by the class file verifier. Many devices that implement the Java
Card platform may be too small to support verification of CAP files on the device
itself. This consideration led to a design that enables verification on a device but
does not rely on it. The data in a CAP file that is needed only for verification is
packaged separately from the data needed for the actual execution of its applet. This
allows for flexibility in how security is managed in an implementation.

There are several options for providing language-level security on a Java Card
technology enabled device. The conceptually simplest is to verify the contents of a
CAP file on the device as it is downloaded or after it is downloaded. This option
might only be feasible in the largest of devices. However, some subset of verification
might be possible even on smaller devices. Other options rely on some combination
of one or more of: physical security of the installation terminal, a cryptographically
enforced chain of trust from the source of the CAP file, and pre-download verification
of the contents of a CAP file.

The Java Card platform standards say as little as possible about CAP file installation
and security policies. Since smart cards must serve as secure processors in many
different systems with different security requirements, it is necessary to allow a great
deal of flexibility to meet the needs of smart card issuers and users.

1.4 Java Card Runtime Environment
Security
The standard runtime environment for the Java Card platform is the Java Card
Runtime Environment (JCRE). The JCRE consists of an implementation of the Java
Card virtual machine along with the Java Card API classes. While the Java Card
virtual machine has responsibility for ensuring Java language-level security, the
JCRE imposes additional runtime security requirements on devices that implement
the JCRE, which results in a need for additional features on the Java Card virtual
machine. Throughout this document, these additional features are designated as
JCRE-specific.

Appendix JCVM01

521

Chapter 1 Introduction 5

The basic runtime security feature imposed by the JCRE enforces isolation of applets
using what is called an applet firewall. The applet firewall prevents the objects that
were created by one applet from being used by another applet. This prevents
unauthorized access to both the fields and methods of class instances, as well as the
length and contents of arrays.

Isolation of applets is an important security feature, but it requires a mechanism to
allow applets to share objects in situations where there is a need to interoperate. The
JCRE allows such sharing using the concept of shareable interface objects. These
objects provide the only way an applet can make its objects available for use by
other applets. For more information about using sharable interface objects, see the
description of the interface javacard.framework.Shareable in the Java Card 2.1
Application Programming Interface specification. Some descriptions of firewall-related
features will make reference to the Shareable interface.

The applet firewall also protects from unauthorized use the objects owned by the
JCRE itself. The JCRE can use mechanisms not reflected in the Java Card API to
make its objects available for use by applets. A full description of the JCRE-related
isolation and sharing features can be found in the Java Card 2.1 Runtime Environment
Specification.

Appendix JCVM01

522

6 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Appendix JCVM01

523

7

CHAPTER 2

A Subset of the Java Virtual Machine

This chapter describes the subset of the Java virtual machine and language that is
supported in the Java Card 2.1 platform.

2.1 Why a Subset is Needed
It would be ideal if programs for smart cards could be written using all of the Java
programming language, but a full implementation of the Java virtual machine is far
too large to fit on even the most advanced resource-constrained devices available
today.

A typical resource-constrained device has on the order of 1K of RAM, 16K of non-
volatile memory (EEPROM or flash) and 24K of ROM. The code for implementing
string manipulation, single and double-precision floating point arithmetic, and
thread management would be larger than the ROM space on such a device. Even if it
could be made to fit, there would be no space left over for class libraries or
application code. RAM resources are also very limited. The only workable option is
to implement Java Card technology as a subset of the Java platform.

2.2 Java Card Language Subset
Applets written for the Java Card platform are written in the Java programming
language. They are compiled using Java compilers. Java Card technology uses a
subset of the Java language, and familiarity with the Java platform is required to
understand the Java Card platform.

Appendix JCVM01

524

8 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The items discussed in this section are not described to the level of a language
specification. For complete documentation on the Java programming language, see
The Java Language Specification (§1.1).

2.2.1 Unsupported Items
The items listed in this section are elements of the Java programming language and
platform that are not supported by the Java Card platform.

2.2.1.1 Unsupported Features

Dynamic Class Loading

Dynamic class loading is not supported in the Java Card platform. An
implementation of the Java Card platform is not able to load classes dynamically.
Classes are either masked into the card during manufacturing or downloaded
through an installation process after the card has been issued. Programs executing
on the card may only refer to classes that already exist on the card, since there is no
way to download classes during the normal execution of application code.

Security Manager

Security management in the Java Card platform differs significantly from that of the
Java platform. In the Java platform, there is a Security Manager class
(java.lang.SecurityManager) responsible for implementing security features. In
the Java Card platform, language security policies are implemented by the virtual
machine. There is no Security Manager class that makes policy decisions on whether
to allow operations.

Garbage Collection & Finalization

Java Card technology does not require a garbage collector. Nor does Java Card
technology allow explicit deallocation of objects, since this would break the Java
programming language’s required pointer-safety. Therefore, application
programmers cannot assume that objects that are allocated are ever deallocated.
Storage for unreachable objects will not necessarily be reclaimed.

Finalization is also not required. finalize() will not necessarily be called
automatically by the Java Card virtual machine, and programmers should not rely
on this behavior.

Appendix JCVM01

525

Chapter 2 A Subset of the Java Virtual Machine 9

Threads

The Java Card virtual machine does not support multiple threads of control. Java
Card programs cannot use class Thread or any of the thread-related keywords in the
Java programming language.

Cloning

The Java Card platform does not support cloning of objects. Java Card API class
Object does not implement a clone method, and there is no Cloneable interface
provided.

Access Control in Java Packages

The Java Card language subset supports the package access control defined in the
Java language. However, there are two cases that are not supported.

■ If a class implements a method with package access visibility, a subclass cannot
override the method and change the access visibility of the method to protected
or public.

■ An interface that is defined with package access visibility cannot be extended by
an interface with public access visibility.

2.2.1.2 Keywords

The following keywords indicate unsupported options related to native methods,
threads and memory management.

2.2.1.3 Unsupported Types

The Java Card platform does not support types char, double, float or long, or
operations on those types. It also does not support arrays of more than one
dimension.

native synchronized transient volatile

Appendix JCVM01

526

10 Java Card 2.1 Virtual Machine Specification • March 3, 1999

2.2.1.4 Classes

In general, none of the Java core API classes are supported in the Java Card
platform. Some classes from the java.lang package are supported (see §2.2.2.4), but
none of the rest are. For example, classes that are not supported are String, Thread
(and all thread-related classes), wrapper classes such as Boolean and Integer, and
class Class.

System

Class java.lang.System is not supported. Java Card technology supplies a class
javacard.framework.JCSystem, which provides an interface to system behavior.

2.2.2 Supported Items
If a language feature is not explicitly described as unsupported, it is part of the
supported subset. Notable supported features are described in this section.

2.2.2.1 Features

Packages

Software written for the Java Card platform follows the standard rules for the Java
platform packages. Java Card API classes are written as Java source files, which
include package designations. Package mechanisms are used to identify and control
access to classes, static fields and static methods. Except as noted in “Access Control
in Java Packages” (§2.2.1.1), packages in the Java Card platform are used exactly the
way they are in the Java platform.

Dynamic Object Creation

The Java Card platform programs supports dynamically created objects, both class
instances and arrays. This is done, as usual, by using the new operator. Objects are
allocated out of the heap.

As noted in “Garbage Collection & Finalization” (§2.2.1.1), a Java Card virtual
machine will not necessarily garbage collect objects. Any object allocated by a virtual
machine may continue to exist and consume resources even after it becomes
unreachable.

Appendix JCVM01

527

Chapter 2 A Subset of the Java Virtual Machine 11

Virtual Methods

Since Java Card objects are Java programming language objects, invoking virtual
methods on objects in a program written for the Java Card platform is exactly the
same as in a program written for the Java platform. Inheritance is supported,
including the use of the super keyword.

Interfaces

Java Card classes may define or implement interfaces as in the Java programming
language. Invoking methods on interface types works as expected. Type checking
and the instanceof operator also work correctly with interfaces.

Exceptions

Java Card programs may define, throw and catch exceptions, as in Java programs.
Class Throwable and its relevant subclasses are supported. (Some Exception and
Error subclasses are omitted, since those exceptions cannot occur in the Java Card
platform. See §2.3.3 for specification of errors and exceptions.)

2.2.2.2 Keywords

The following keywords are supported. Their use is the same as in the Java
programming language.

2.2.2.3 Types

Java programming language types boolean, byte, short, and int are supported.
Objects (class instances and single-dimensional arrays) are also supported. Arrays
can contain the supported primitive data types, objects, and other arrays.

abstract default if private this

boolean do implements protected throw

break else import public throws

byte extends instanceof return try

case final int short void

catch finally interface static while

class for new super

continue goto package switch

Appendix JCVM01

528

12 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Some Java Card implementations might not support use of the int data type. (Refer
to §2.2.3.1.)

2.2.2.4 Classes

Most of the classes in the java.lang package are not supported in Java Card. The
following classes from java.lang are supported on the card in a limited form.

Object

Java Card classes descend from java.lang.Object, just as in the Java programming
language. Most of the methods of Object are not available in the Java Card API, but
the class itself exists to provide a root for the class hierarchy.

Throwable

Class Throwable and its subclasses are supported. Most of the methods of
Throwable are not available in the Java Card API, but the class itself exists to
provide a common ancestor for all exceptions.

2.2.3 Optionally Supported Items
This section describes the optional features of the Java Card platform. An optional
feature is not required to be supported in a Java Card compatible implementation.
However, if an implementation does include support for an optional feature, it must
be supported fully, and exactly as specified in this document.

2.2.3.1 int

The int keyword and 32-bit integer data types need not be supported in a Java Card
implementation. A Java Card virtual machine that does not support the int data
type will reject programs which use the int data type or 32-bit intermediate values.

2.2.4 Limitations of the Java Card Virtual Machine
The limitations of resource-constrained hardware prevent Java Card programs from
supporting the full range of functionality of certain Java platform features. The
features in question are supported, but a particular virtual machine may limit the
range of operation to less than that of the Java platform.

Appendix JCVM01

529

Chapter 2 A Subset of the Java Virtual Machine 13

To ensure a level of portability for application code, this section establishes a
minimum required level for partial support of these language features.

The limitations here are listed as maximums from the application programmer’s
perspective. Applets that do not violate these maximum values can be converted
into Java Card CAP files, and will be portable across all Java Card implementations.
From the Java Card virtual machine implementer’s perspective, each maximum
listed indicates a minimum level of support that will allow portability of applets.

2.2.4.1 Classes

Classes in a Package

A package can contain at most 255 public classes and interfaces.

Interfaces

A class can implement at most 15 interfaces, including interfaces implemented by
superclasses.

An interface can inherit from at most 15 superinterfaces.

Static Fields

A class can have at most 256 public or protected static fields.

Static Methods

A class can have at most 256 public or protected static methods.

2.2.4.2 Objects

Methods

A class can implement a maximum of 128 public or protected instance methods, and
a maximum of 128 instance methods with package visibility. These limits include
inherited methods.

Appendix JCVM01

530

14 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Class Instances

Class instances can contain a maximum of 255 fields, where an int data type is
counted as occupying two fields.

Arrays

Arrays can hold a maximum of 32767 fields.

2.2.4.3 Methods

The maximum number of local variables that can be used in a method is 255, where
an int data type is counted as occupying two local variables.

A method can have at most 32767 Java Card virtual machine bytecodes. The number
of Java Card bytecodes may differ from the number of Java bytecodes in the Java
virtual machine implementation of that method.

2.2.4.4 Switch Statements

The format of the Java Card virtual machine switch instructions limits switch
statements to a maximum of 65536 cases. This limit is far greater than the limit
imposed by the maximum size of methods (§2.2.4.3).

2.2.4.5 Class Initialization

There is limited support for initialization of static field values in <clinit> methods.
Static fields of applets may only be initialized to primitive compile-time constant
values, or arrays of primitive compile-time constants. Static fields of user libraries
may only be initialized to primitive compile-time constant values. Primitive constant
data types include boolean, byte, short, and int.

2.3 Java Card VM Subset
Java Card technology uses a subset of the Java virtual machine, and familiarity with
the Java platform is required to understand the Java Card virtual machine.

Appendix JCVM01

531

Chapter 2 A Subset of the Java Virtual Machine 15

The items discussed in this section are not described to the level of a virtual machine
specification. For complete documentation on the Java virtual machine, refer to §1.1
of The Java™ Virtual Machine Specification.

2.3.1 class File Subset
The operation of the Java Card virtual machine can be defined in terms of standard
Java platform class files. Since the Java Card virtual machine supports only a
subset of the behavior of the Java virtual machine, it also supports only a subset of
the standard class file format.

2.3.1.1 Not Supported in Class Files

Field Descriptors

Field descriptors may not contain BaseType characters C, D, F or L. ArrayType
descriptors for arrays of more than one dimension may not be used.

Constant Pool

Constant pool table entry tags that indicate unsupported types are not supported.

TABLE 2-1 Unsupported Java constant pool tags

Constant pool structures for types CONSTANT_String_info, CONSTANT_Float_info,
CONSTANT_Long_info and CONSTANT_Double_info are not supported.

Fields

In field_info structures, the access flags ACC_VOLATILE and ACC_TRANSIENT are
not supported.

Constant Type Value

CONSTANT_String 8

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

Appendix JCVM01

532

16 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Methods

In method_info structures, the access flags ACC_SYNCHRONIZED and ACC_NATIVE are
not supported.

2.3.1.2 Supported in Class Files

ClassFile

All items in the ClassFile structure are supported.

Field Descriptors

Field descriptors may contain BaseType characters B, I, S and Z, as well as any
ObjectType. ArrayType descriptors for arrays of a single dimension may also be used.

Method Descriptors

All forms of method descriptors are supported.

Constant pool

Constant pool table entry tags for supported data types are supported.

TABLE 2-2 Supported Java constant pool tags.

Constant pool structures for types CONSTANT_Class_info,
CONSTANT_Fieldref_info, CONSTANT_Methodref_info,
CONSTANT_InterfaceMethodref_info, CONSTANT_Integer_info,
CONSTANT_NameAndType_info and CONSTANT_Utf8_info are supported.

Constant Type Value

CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_Integer 3

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

Appendix JCVM01

533

Chapter 2 A Subset of the Java Virtual Machine 17

Fields

In field_info structures, the supported access flags are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC and ACC_FINAL.

The remaining components of field_info structures are fully supported.

Methods

In method_info structures, the supported access flags are ACC_PUBLIC,
ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC, ACC_FINAL and ACC_ABSTRACT.

The remaining components of method_info structures are fully supported.

Attributes

The attribute_info structure is supported. The Code, ConstantValue,
Exceptions and LocalVariableTable attributes are supported.

Appendix JCVM01

534

18 Java Card 2.1 Virtual Machine Specification • March 3, 1999

2.3.2 Bytecode Subset
The following sections detail the bytecodes that are either supported or unsupported
in the Java Card platform. For more details, refer to Chapter 6, “Instruction Set.”

2.3.2.1 Unsupported Bytecodes

lconst_<l> fconst_<f> dconst_<d> ldc2_w2
lload fload dload lload_<n>

fload_<n> dload_<n> laload faload
daload caload lstore fstore
dstore lstore_<n> fstore_<n> dstore_<n>
lastore fastore dastore castore
ladd fadd dadd lsub
fsub dsub lmul fmul
dmul ldiv fdiv ddiv
lrem frem drem lneg

fneg dneg lshl lshr
lushr land lor lxor
i2l i2f i2d l2i
l2f l2d f2i f2d
d2i d2l d2f i2c
lcmp fcmpl fcmpg dcmpl
dcmpg lreturn freturn dreturn
monitorenter monitorexit multianewarray goto_w

jsr_w

Appendix JCVM01

535

Chapter 2 A Subset of the Java Virtual Machine 19

2.3.2.2 Supported Bytecodes

2.3.2.3 Static Restrictions on Bytecodes

For it to be acceptable to a Java Card virtual machine, a class file must conform to
the following restrictions on the static form of bytecodes.

ldc, ldc_w

The ldc and ldc_w bytecodes can only be used to load integer constants. The constant
pool entry at index must be a CONSTANT_Integer entry. If a program contains an ldc
or ldc_w instruction that is used to load an integer value less than -32768 or greater
than 32767, that program will require the optional int instructions (§2.2.3.1).

lookupswitch

The value of the npairs operand must be less than 65536. The bytecode can contain at
most 65535 cases. This limit is far greater than the limit imposed by the maximum
size of methods (§2.2.4.3). If a program contains a lookupswitch instruction that uses
keys of type int, that program will require the optional int instructions (§2.2.3.1).
Otherwise, key values must be in the range -32768 to 32767.

nop aconst_null iconst_<i> bipush

sipush ldc ldc_w iload

aload iload_<n> aload_<n> iaload

aaload baload saload istore

astore istore_<n> astore_<n> iastore

aastore bastore sastore pop

pop2 dup dup_x1 dup_x2

dup2 dup2_x1 dup2_x2 swap

iadd isub imul idiv

irem ineg ior ishl

ishr iushr iand ixor

iinc i2b i2s if<cond>

ificmp_<cond> ifacmp_<cond> goto jsr

ret tableswitch lookupswitch ireturn

areturn return getstatic putstatic

getfield putfield invokevirtual invokespecial

invokestatic invokeinterface new newarray

anewarray arraylength athrow checkcast

instanceof wide ifnull ifnonnull

Appendix JCVM01

536

20 Java Card 2.1 Virtual Machine Specification • March 3, 1999

tableswitch

The values of the high and low operands must both be at least -32768 and at most
32767 (so they can fit in a short). The bytecode can contain at most 65536 cases. This
limit is far greater than the limit imposed by the maximum size of methods
(§2.2.4.3).If a program contains a tableswitch instruction that uses indexes of type int,
that program will require the optional int instructions (§2.2.3.1). Otherwise, index
values must be in the range -32768 to 32767.

wide

The wide bytecode cannot be used to generate local indices greater than 127, and it
cannot be used with any instructions other than iinc. It can only be used with an iinc
bytecode to extend the range of the increment constant.

2.3.3 Exceptions
Java Card provides full support for the Java platform’s exception mechanism. Users
can define, throw and catch exceptions just as in the Java platform. Java Card also
makes use of the exceptions and errors defined in The Java Language Specification [1].
An updated list of the Java platform’s exceptions is provided in the JDK
documentation.

Not all of the Java platform’s exceptions are supported in Java Card. Exceptions
related to unsupported features are naturally not supported. Class loader exceptions
(the bulk of the checked exceptions) are not supported. And no exceptions or errors
defined in packages other than java.lang are supported.

Note that some exceptions may be supported to the extent that their error conditions
are detected correctly, but classes for those exceptions will not necessarily be present
in the API.

The supported subset is described in the tables below.

2.3.3.1 Uncaught and Uncatchable Exceptions

In the Java platform, uncaught exceptions and errors will cause the virtual machine’s
current thread to exit. As the Java Card virtual machine is single-threaded, uncaught
exceptions or errors will cause the virtual machine to halt. Further response to
uncaught exceptions or errors after halting the virtual machine is an
implementation-specific policy, and is not mandated in this document.

Appendix JCVM01

537

Chapter 2 A Subset of the Java Virtual Machine 21

Some error conditions are known to be unrecoverable at the time they are thrown.
Throwing a runtime exception or error that cannot be caught will also cause the
virtual machine to halt. As with uncaught exceptions, implementations may take
further responses after halting the virtual machine. Uncatchable exceptions and
errors which are supported by the Java Card platform may not be reflected in the
Java Card API, though the Java Card platform will correctly detect the error
condition.

2.3.3.2 Checked Exceptions

TABLE 2-3 Support of Java checked exceptions

Exception Supported Not Supported

ClassNotFoundException •
CloneNotSupportedException •
IllegalAccessException •
InstantiationException •
InterruptedException •
NoSuchFieldException •
NoSuchMethodException •

Appendix JCVM01

538

22 Java Card 2.1 Virtual Machine Specification • March 3, 1999

2.3.3.3 Runtime Exceptions

TABLE 2-4 Support of Java runtime exceptions

Runtime Exception Supported Not Supported

ArithmeticException •
ArrayStoreException •
ClassCastException •
IllegalArgumentException •
IllegalThreadStateException •
NumberFormatException •
IllegalMonitorStateException •
IllegalStateException •
IndexOutOfBoundsException •
ArrayIndexOutOfBoundsException •
StringIndexOutOfBoundsException •
NegativeArraySizeException •
NullPointerException •
SecurityException •

Appendix JCVM01

539

Chapter 2 A Subset of the Java Virtual Machine 23

2.3.3.4 Errors

TABLE 2-5 Support of Java errors

Error Supported Not Supported

LinkageError •
ClassCircularityError •
ClassFormatError •
ExceptionInInitializerError •
IncompatibleClassChangeError •
AbstractMethodError •
IllegalAccessError •
InstantiationError •
NoSuchFieldError •
NoSuchMethodError •
NoClassDefFoundError •
UnsatisfiedLinkError •
VerifyError •
ThreadDeath •
VirtualMachineError •
InternalError •
OutOfMemoryError •
StackOverflowError •
UnknownError •

Appendix JCVM01

540

24 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Appendix JCVM01

541

25

CHAPTER 3

Structure of the Java Card Virtual
Machine

The specification of the Java Card virtual machine is in many ways quite similar to
that of the Java Virtual Machine. This similarity is of course intentional, as the design
of the Java Card virtual machine was based on that of the Java Virtual Machine.
Rather than reiterate all the details of this specification which are shared with that of
the Java Virtual Machine, this chapter will mainly refer to its counterpart in the Java
Virtual Machine Specification, 1st Edition, providing new information only where the
Java Card virtual machine differs.

3.1 Data Types and Values
The Java Card virtual machine supports the same two kinds of data types as the Java
Virtual Machine: primitive types and reference types. Likewise, the same two kinds of
values are used: primitive values and reference values.

The primitive data types supported by the Java Card virtual machine are the numeric
types and the returnAddress type. The numeric types consist only of the integral
types:

■ byte, whose values are 8-bit signed two’s complement integers
■ short, whose values are 16-bit signed two’s complement integers

Some Java Card virtual machine implementations may also support an additional
integral type:

■ int, whose values are 32-bit signed two’s complement integers

Support for reference types is identical to that in the Java Virtual Machine.

Appendix JCVM01

542

26 Java Card 2.1 Virtual Machine Specification • March 3, 1999

3.2 Words
The Java Card virtual machine is defined in terms of an abstract storage unit called a
word. This specification does not mandate the actual size in bits of a word on a
specific platform. A word is large enough to hold a value of type byte, short,
reference or returnAddress. Two words are large enough to hold a value of type
int.

The actual storage used for values in an implementation is platform-specific. There
is enough information present in the descriptor component of a CAP file to allow an
implementation to optimize the storage used for values in variables and on the
stack.

3.3 Runtime Data Areas
The Java Card virtual machine can support only a single thread of execution. Any
runtime data area in the Java Virtual Machine which is duplicated on a per-thread
basis will have only one global copy in the Java Card virtual machine.

The Java Card virtual machine’s heap is not required to be garbage collected. Objects
allocated from the heap will not necessarily be reclaimed.

This specification does not include support for native methods, so there are no
native method stacks.

Otherwise, the runtime data areas are as documented for the Java Virtual Machine.

3.4 Contexts
Each applet running on a Java Card virtual machine is associated with an execution
context. The Java Card virtual machine uses the context of the current frame to
enforce security policies for inter-applet operations.

There is a one-to-one mapping between contexts and packages in which applets are
defined. An easy way to think of a context is as the runtime equivalent of a package,
since Java packages are compile-time constructs and have no direct representation at
runtime. As a consequence, all applets managed by applet instances of applet classes
from the same package will share the same context.

Appendix JCVM01

543

Chapter 3 Structure of the Java Card Virtual Machine 27

The Java Card Runtime Environment also has its own context. Framework objects
execute in this JCRE context.

The context of the currently executing method is known as the current context. Every
object in a Java Card virtual machine is owned by a particular context. The owning
context is the context that was current when the object was created.

When a method in one context successfully invokes a method on an object in another
context, the Java Card virtual machine performs a context switch. Afterwards the
invoked method’s context becomes the current context. When the invoked method
returns, the current context is switched back to the previous context.

3.5 Frames
Java Card virtual machine frames are very similar to those defined for the Java
Virtual Machine. Each frame has a set of local variables and an operand stack.
Frames also contain a reference to a constant pool, but since all constant pools for all
classes in a package are merged, the reference is to the constant pool for the current
class’ package.

Each frame also includes a reference to the context in which the current method is
executing.

3.6 Representation of Objects
The Java Card virtual machine does not mandate a particular internal structure for
objects or a particular layout of their contents. However, the core components in a
CAP file are defined assuming a default structure for certain runtime structures
(such as descriptions of classes), and a default layout for the contents of dynamically
allocated objects. Information from the descriptor component of the CAP file can be
used to format objects in whatever way an implementation requires.

3.7 Special Initialization Methods
The Java Card virtual machine supports instance initialization methods exactly as does
the Java Virtual Machine.

Appendix JCVM01

544

28 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The Java Card virtual machine includes only limited support for class or interface
initialization methods. There is no general mechanism for executing <clinit>
methods on a Java Card virtual machine. Instead, a CAP file includes information
for initializing class data as defined in Chapter 2, “A Subset of the Java Virtual
Machine.”

3.8 Exceptions
Exception support in the Java Card virtual machine is identical to support for
exceptions in the Java Virtual Machine.

3.9 Binary File Formats
This specification defines two binary file formats which enable platform-
independent development, distribution and execution of Java Card software.

The CAP file format describes files that contain executable code and can be
downloaded and installed onto a Java Card enabled device. A CAP file is produced
by a Java Card Converter tool, and contains a converted form of an entire package of
Java classes. This file format's relationship to the Java Card virtual machine is
analogous to the relationship of the class file format to the Java Virtual Machine.

The export file format describes files that contain the public linking information of
Java Card packages. A package's export file is used when converting client
packages of that package.

3.10 Instruction Set Summary
The Java Card virtual machine instruction set is quite similar to the Java Virtual
Machine instruction set. Individual instructions consist of a one-byte opcode and zero
or more operands. The pseudo-code for the Java Card virtual machine's instruction
fetch-decode-execute loop is the same. Multi-byte operand data is also encoded in
big-endian order.

There are a number of ways in which the Java Card virtual machine instruction set
diverges from that of the Java Virtual Machine. Most of the differences are due to the
Java Card virtual machine's more limited support for data types. Another source of

Appendix JCVM01

545

Chapter 3 Structure of the Java Card Virtual Machine 29

divergence is that the Java Card virtual machine is intended to run on 8-bit and 16-
bit architectures, whereas the Java Virtual Machine was designed for a 32-bit
architecture. The rest of the differences are all oriented in one way or another toward
optimizing the size or performance of either the Java Card virtual machine or Java
Card programs. These changes include inlining constant pool data directly in
instruction opcodes or operands, adding multiple versions of a particular instruction
to deal with different datatypes, and creating composite instructions for operations
on the current object.

3.10.1 Types and the Java Card Virtual Machine
The Java Card virtual machine supports only a subset of the types supported by the
Java Virtual Machine. This subset is described in Chapter 2, “A Subset of the Java
Virtual Machine.” Type support is reflected in the instruction set, as instructions
encode the data types on which they operate.

Given that the Java Card virtual machine supports fewer types than the Java Virtual
Machine, there is an opportunity for better support for smaller data types. Lack of
support for large numeric data types frees up space in the instruction set. This extra
instruction space has been used to directly support arithmetic operations on the
short data type.

Some of the extra instruction space has also been used to optimize common
operations. Type information is directly encoded in field access instructions, rather
than being obtained from an entry in the constant pool.

TABLE 3-1 summarizes the type support in the instruction set of the Java Card virtual
machine. Only instructions that exist for multiple types are listed. Wide and
composite forms of instructions are not listed either. A specific instruction, with type
information, is built by replacing the T in the instruction template in the opcode
column by the letter representing the type in the type column. If the type column for
some instruction is blank, then no instruction exists supporting that operation on
that type. For instance, there is a load instruction for type short, sload, but there is
no load instruction for type byte.

Appendix JCVM01

546

30 Java Card 2.1 Virtual Machine Specification • March 3, 1999

opcode byte short int reference

Tspush bspush sspush

Tipush bipush sipush iipush
Tconst sconst iconst aconst
Tload sload iload aload
Tstore sstore istore astore
Tinc sinc iinc
Taload baload saload iaload aaload
Tastore bastore sastore iastore aastore
Tadd sadd iadd
Tsub ssub isub
Tmul smul imul
Tdiv sdiv idiv

Trem srem irem
Tneg sneg ineg
Tshl sshl ishl
Tshr sshr ishr
Tushr sushr iushr
Tand sand iand
Tor sor ior
Txor sxor ixor
s2T s2b s2i
i2T i2b i2s
Tcmp icmp
if_TcmpOP if_scmpOP if_acmpOP

Tlookupswitch slookupswitch ilookupswitch
Ttableswitch stableswitch itableswitch
Treturn sreturn ireturn areturn
getstatic_T getstatic_b getstatic_s getstatic_i getstatic_a
putstatic_T putstatic_b putstatic_s putstatic_i putstatic_a
getfield_T getfield_b getfield_s getfield_i getfield_a
putfield_T putfield_b putfield_s putfield_i putfield_a

TABLE 3-1 Type support in the Java Card Virtual Machine Instruction Set

Appendix JCVM01

547

Chapter 3 Structure of the Java Card Virtual Machine 31

The mapping between Java storage types and Java Card virtual machine
computational types is summarized in TABLE 3-2.

Chapter 7, “Java Card Virtual Machine Instruction Set,” describes the Java Card
virtual machine instruction set in detail.

Java (Storage) Type
Size in
Bits

Computational
Type

byte 8 short

short 16 short

int 32 int

TABLE 3-2 Storage types and computational types

Appendix JCVM01

548

32 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Appendix JCVM01

549

33

CHAPTER 4

Binary Representation

This chapter presents information about the binary representation of Java Card
programs. Java Card binaries are usually contained in files, therefore this chapter
addresses binary representation in terms of this common case.

Several topics relating to binary representation are covered. The first section
describes the basic organization of program representation in export and CAP files,
as well as the use of the JAR file containers. The second section covers how Java
Card applets and packages are named using unique identifiers. The third section
presents the scheme used for naming and linking items within Java Card packages.
The fourth and fifth sections describe the constraints for upward compatibility
between different versions of a Java Card binary program file, and versions assigned
based upon that compatibility.

4.1 Java Card File Formats
Java programs are represented in compiled, binary form as class files. Java class
files are used not only to execute programs on a Java virtual machine, but also to
provide type and name information to a Java compiler. In the latter role, a class file
is essentially used to document the API of its class to client code. That client code is
compiled into its own class file, including symbolic references used to dynamically
link to the API class at runtime.

Java Card technology uses a different strategy for binary representation of programs.
Executable binaries and interface binaries are represented in two separate files.
These files are respectively called CAP files (for converted applet) and export files.

Appendix JCVM01

550

34 Java Card 2.1 Virtual Machine Specification • March 3, 1999

4.1.1 Export File Format
Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of
the virtual machine on a device. An export file can be produced by a Java Card
converter when a package is converted. This package’s export file can be used later
to convert another package that imports classes from the first package. Information
in the export file is included in the CAP file of the second package, then is used on
the device to link the contents of the second package to items imported from the first
package.

A Java Card export file contains the public interface information for an entire
package of classes. This means that an export file only contains information about
the public API of a package, and does not include information used to link classes
within a package.

The name of an export file is the last portion of the package specification followed
by the extension ‘.exp’. For example, the name of the export file of the
javacard.framework package must be framework.exp. Operating systems that
impose limitations on file name lengths may transform an export file’s name
according to their own conventions.

For a complete description of the Java Card export file format, see Chapter 5.

4.1.2 CAP File Format
A Java Card CAP file contains a binary representation of a package of classes that can
be installed on a device and used to execute the package’s classes on a Java Card
virtual machine.

A CAP file is produced by a Java Card converter when a package of classes is
converted. A CAP file can contain a user library, or one or more applet definitions. A
CAP file consists of a set of components, each of which describes a different aspect of
the contents. The set of components in a CAP file can vary, depending on whether the
file contains a library or applet definition(s).

For a complete description of the Java Card CAP File format, see Chapter 6.

4.1.3 JAR File Container
The JAR file format is used as the container format for CAP files. What this
specification calls a “CAP file” is just a JAR file that contains the required set of CAP
components (see Chapter 6).

Appendix JCVM01

551

Chapter 4 Binary Representation 35

CAP component files in a JAR file are located in a subdirectory called javacard that
is in a directory representing the package. For example, the CAP component files of
the package com.sun.framework are located in the directory com/sun/framework/
javacard.

An export file may also be contained in a JAR file, whether that JAR file contains
CAP component files or not. If an export file is included, it must be located in the
same directory as the CAP component files for that package would be.

The name of a JAR file containing CAP component files is not defined as part of this
specification. Other files, including other CAP files, may also reside in a JAR file that
contains CAP component files.

4.2 AID-based Naming
This section describes the mechanism used for naming applets and packages in Java
Card CAP files and export files, and custom components in Java Card CAP files. Java
class files use Unicode strings to name Java packages. As the Java Card platform
does not include support for strings, an alternative mechanism for naming is
provided.

ISO 7816 is a multipart standard that describes a broad range of technology for
building smart card systems. ISO 7816-5 defines the AID (application identifier) data
format to be used for unique identification of card applications (and certain kinds of
files in card file systems). The Java Card platform uses the AID data format to
identify applets and packages. AIDs are administered by the International Standards
Organization (ISO), so they can be used as unique identifiers.

4.2.1 The AID Format
This section presents a minimal description of the AID data format used in Java
Card technology. For complete details, refer to ISO 7816-5, AID Registration
Category ‘D’ format.

Appendix JCVM01

552

36 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The AID format used by the Java Card platform is an array of bytes that can be
interpreted as two distinct pieces, as shown in FIGURE 4-1. The first piece is a 5-byte
value known as a RID (resource identifier). The second piece is a variable length
value known as a PIX (proprietary identifier extension). A PIX can be from 0 to 11
bytes in length. Thus an AID can be from 5 to 16 bytes in total length.

FIGURE 4-1 AID Format

ISO controls the assignment of RIDs to companies, with each company obtaining its
own unique RID from the ISO. Companies manage assignment of PIXs for AIDs
using their own RIDs.

4.2.2 AID Usage
In the Java platform, packages are uniquely identified using Unicode strings and a
naming scheme based on internet domain names. In the Java Card platform,
packages and applets are identified using AIDs.

Any package that is represented in an export file must be assigned a unique AID.
The AID for a package is constructed from the concatenation of the company’s RID
and a PIX for that package. This AID corresponds to the string name for the package,
as shown in FIGURE 4-2.

FIGURE 4-2 Mapping package identifiers to AIDs

Each applet installed on a Java Card technology enabled device must also have a
unique AID. This AID is constructed similarly to a package AID. It is a
concatenation of the applet provider’s RID and PIX for that applet. An applet AID
must not have the same value as the AID of any package or the AID of any other
applet. If a CAP file defines multiple applets, all applet AIDs in that CAP file must
have the same RID.

Custom components defined in a CAP file are also identified using AIDs. Like AIDs
for applets and packages, component AIDs are formed by concatenating a RID and a
PIX. All AIDs of new components must have the same RID as the AID for the
package defined in the CAP file.

RID (5 bytes) PIX (0-11 bytes)

Sun’s RID com.sun.card.test PIX

package com.sun.card.test;

Appendix JCVM01

553

Chapter 4 Binary Representation 37

4.3 Token-based Linking
This section describes a scheme that allows downloaded software to be linked
against APIs on a Java Card technology enabled device. The scheme represents
referenced items as opaque tokens, instead of Unicode strings as are used in Java
class files. The two basic requirements of this linking scheme are that it allows
linking on the device, and that it does not require internal implementation details of
APIs to be revealed to clients of those APIs. Secondary requirements are that the
scheme be efficient in terms of resource use on the device, and have acceptable
performance for linking. And of course, it must preserve the semantics of the Java
language.

4.3.1 Externally Visible Items
Classes (including Interfaces) in Java packages may be declared with public or
package visibility. A class’s methods and fields may be declared with public,
protected, package or private visibility. For purposes of this document, we define
public classes, public or protected fields, and public or protected methods to be
externally visible from the package. All externally visible items are described in a
package’s export file.

Each externally visible item must have a token associated with it to enable references
from other packages to the item to be resolved on a device. There are six kinds of
items in a package that require external identification.

■ Classes (including Interfaces)
■ Static Fields
■ Static Methods
■ Instance Fields
■ Virtual Methods
■ Interface Methods

4.3.2 Private Tokens
Items that are not externally visible are internally visible. Internally visible items are
not described in a package’s export file, but some such items use private tokens to
represent internal references. External references are represented by public tokens.
There are two kinds of items that can be assigned private tokens.

■ Instance Fields
■ Virtual Methods

Appendix JCVM01

554

38 Java Card 2.1 Virtual Machine Specification • March 3, 1999

4.3.3 The Export File and Conversion
Each externally visible item in a package has an entry in the package’s export file.
Each entry holds the item’s name and its token. Some entries may include additional
information as well. For detailed information on the export file format, see
Chapter 5, “The Export File Format.”

The export file is used to map names for imported items to tokens during package
conversion. The Java Card converter uses these tokens to represent references to
items in an imported package.

For example, during the conversion of the class files of applet A, the export file of
javacard.framework is used to find tokens for items in the API that are used by the
applet. Applet A creates a new instance of framework class OwnerPIN. The
framework export file contains an entry for javacard.framework.OwnerPIN that
holds the token for this class. The converter places this token in the CAP file’s
constant pool to represent an unresolved reference to the class. The token value is
later used to resolve the reference on a device.

4.3.4 References – External and Internal
In the context of a CAP file, references to items are made indirectly through a
package’s constant pool. References to items in other packages are called external,
and are represented in terms of tokens. References to items in the same CAP file are
called internal, and are represented either in terms of tokens, or in a different internal
format.

An external reference to a class is composed of a package token and a class token.
Together those tokens specify a certain class in a certain package. An internal
reference to a class is a 15-bit value that is a pointer to the class structure’s location
within the CAP file.

An external reference to a static class member, either a field or method, consists of a
package token, a class token, and a token for the static field or static method. An
internal reference to a static class member is a 16-bit value that is a pointer to the
item’s location in the CAP file.

References to instance fields, virtual methods and interface methods consist of a
class reference and a token of the appropriate type. The class reference determines
whether the reference is external or internal.

Appendix JCVM01

555

Chapter 4 Binary Representation 39

4.3.5 Installation and Linking
External references in a CAP file can be resolved on a device from token form into the
internal representation used by the virtual machine.

A token can only be resolved in the context of the package that defines it. Just as the
export file maps from a package’s externally visible names to tokens, there is a set
of link information for each package on the device that maps from tokens to resolved
references.

4.3.6 Token Assignment
Tokens for an API are assigned by the API’s developer and published in the package
export file(s) for that API. Since the name-to-token mappings are published, an API
developer may choose any order for tokens (subject to the constraints listed below).

A particular device platform can resolve tokens into whatever internal
representation is most useful for that implementation of a Java Card virtual machine.
Some tokens may be resolved to indices. For example, an instance field token may be
resolved to an index into a class instance’s fields. In such cases, the token value is
distinct from and unrelated to the value of the resolved index.

4.3.7 Token Details
Each kind of item in a package has its own independent scope for tokens of that
kind. The token range and assignment rules for each kind are listed in TABLE 4-1.

TABLE 4-1 Token Range, Type and Scope

Token Type Range Type Scope

Package 0 - 127 Private CAP File
Class 0 - 255 Public Package
Static Field 0 - 255 Public Class

Static Method 0 - 255 Public Class
Instance Field 0 - 255 Public or Private Class
Virtual Method 0 - 127 Public or Private Class

Hierarchy
Interface Method 0 - 127 Public Class

Appendix JCVM01

556

40 Java Card 2.1 Virtual Machine Specification • March 3, 1999

4.3.7.1 Package

All package references from within a CAP file are assigned private package tokens;
package tokens will never appear in an export file. Package token values must be in
the range from 0 to 127, inclusive. The tokens for all the packages referenced from
classes in a CAP file are numbered consecutively starting at zero. The ordering of
package tokens is not specified.

4.3.7.2 Classes and Interfaces

All externally visible classes in a package are assigned public class tokens. Package-
visible classes are not assigned tokens. Class token values must be in the range from
0 to 255, inclusive. The tokens for all the public classes in a package are numbered
consecutively starting at zero. The ordering of class tokens is not specified.

4.3.7.3 Static Fields

All externally visible static fields in a package are assigned public static field tokens.
Package-visible and private static fields are not assigned tokens. No tokens are
assigned for final static fields that are initialized to primitive, compile-time
constants, as these fields are never linked on a device. The tokens for all other
externally visible static fields in a class are numbered consecutively starting at zero.
Static fields token values must be in the range from 0 to 255, inclusive. The ordering
of static field tokens is not specified.

4.3.7.4 Static Methods

All externally visible static methods in a package are assigned public static method
tokens, including statically bound instance methods. Static method token values must
be in the range from 0 to 255, inclusive. Package-visible and private static methods
are not assigned tokens. The tokens for all the externally visible static methods in a
class are numbered consecutively starting at zero. The ordering of static method
tokens is not specified.

4.3.7.5 Instance Fields

All instance fields defined in a package are assigned either public or private instance
field tokens. Instance field token values must be in the range from 0 to 255, inclusive.
Public and private tokens for instance fields are assigned from the same namespace.
The tokens for all the instance fields in a class are numbered consecutively starting
at zero, except that the token after an int field is skipped and the token for the
following field is numbered two greater than the token of the int field. Tokens for

Appendix JCVM01

557

Chapter 4 Binary Representation 41

externally visible fields must be numbered less than the tokens for package and
private fields. For public tokens, the tokens for reference type fields must be
numbered greater than the tokens for primitive type fields. For private tokens, the
tokens for reference type fields must be numbered less than the tokens for primitive
type fields. Beyond that the ordering of instance field tokens in a class is not
specified.

FIGURE 4-3 Tokens for Instance Fields

4.3.7.6 Virtual Methods

All virtual methods defined in a package are assigned either public or private virtual
method tokens. Virtual method token values must be in the range from 0 to 127,
inclusive. Public and private tokens for virtual methods are assigned from different
namespaces. The high bit of the byte containing a virtual method token is set to one
if the token is a private token.

Public tokens for the externally visible introduced virtual methods in a class are
numbered consecutively starting at one greater than the highest numbered public
virtual method token of the class’s superclass. If a method overrides a method
implemented in the class’s superclass, that method uses the same token number as
the method in the superclass. The high bit of the byte containing a public virtual
method token is always set to zero, to indicate it is a public token. The ordering of
public virtual method tokens in a class is not specified.

Private virtual method tokens are assigned differently from public virtual method
tokens. If a class and its superclass are defined in the same package, the tokens for
the package-visible introduced virtual methods in that class are numbered
consecutively starting at one greater than the highest numbered private virtual
method token of the class’s superclass. If the class and its superclass are defined in
different packages, the tokens for the package-visible introduced virtual methods in
that class are numbered consecutively starting at zero. If a method overrides a
method implemented in the class’s superclass, that method uses the same token

Visibility Category Type Token Value

public and
protected fields
(public tokens)

primitive boolean 0

byte 1

short 2

references byte[] 3

Applet 4

package and
private fields
(private tokens)

references short[] 5

Object 6

primitive int 7

short 9

Appendix JCVM01

558

42 Java Card 2.1 Virtual Machine Specification • March 3, 1999

number as the method in the superclass. The definition of the Java programming
language specifies that overriding a package-visible virtual method is only possible
if both the class and its superclass are defined in the same package. The high bit of
the byte containing a virtual method token is always set to one, to indicate it is a
private token. The ordering of private virtual method tokens in a class is not
specified.

4.3.7.7 Interface Methods

All interface methods defined in a package are assigned public interface method
tokens, as interface methods are always public. Interface methods tokens values must
be in the range from 0 to 127, inclusive. The tokens for all the interface methods
defined in or inherited by an interface are numbered consecutively starting at zero.
The token value for an interface method in a given interface is unrelated to the token
values of that same method in any of the interface’s superinterfaces. The high bit of
the byte containing an interface method token is always set to zero, to indicate it is a
public token. The ordering of interface method tokens is not specified.

4.4 Binary Compatibility
In the Java programming language the granularity of binary compatibility can be
between classes since binaries are stored in individual class files. In Java Card
systems Java packages are processed as a single unit, and therefore the granularity of
binary compatibility is between packages. In Java Card systems the binary of a
package is represented in a CAP file, and the API of a package is represented in an
export file.

In a Java Card system, a change to a type in a Java package results in a new CAP file.
A new CAP file is binary compatible with (equivalently, does not break compatibility
with) a preexisting CAP file if another CAP file converted using the export file of the
preexisting CAP file can link with the new CAP file without errors.

FIGURE 4-4 shows an example of binary compatible CAP files, p1 and p1’. The
preconditions for the example are: the package p1 is converted to create the p1 CAP
file and p1 export file, and package p1 is modified and converted to create the p1’
CAP file. Package p2 imports package p1, and therefore when the p2 CAP file is

Appendix JCVM01

559

Chapter 4 Binary Representation 43

created the export file of p1 is used. In the example, p2 is converted using the
original p1 export file. Because p1’ is binary compatible with p1, p2 may be linked
with either the p1 CAP file or the p1’ CAP file.

FIGURE 4-4 Binary compatibility example

Any modification that causes binary incompatibility in the Java programming
language also causes binary incompatibility in Java Card systems. These
modifications are described as causing a potential error in The Java Language
Specification. Any modification that does not cause binary incompatibility in the Java
programming language does not cause binary incompatibility in a Java Card system,
except under the following conditions:

■ the value of a token assigned to an element in the API of a package is changed;
■ the value of an externally visible final static field (compile-time constant) is

changed;
■ an externally visible virtual method that does not override a preexisting

method is added to a non-final public class.

Tokens are used to resolve references to imported elements of a package. If a token
value is modified, a linker on a device is unable to associate the new token value
with the previous token value of the element, and therefore is unable to resolve the
reference correctly.

Compile-time constants are not stored as fields in CAP files. Instead their values are
recorded in export files and placed inline in the bytecodes in CAP files. These values
are said to be pre-linked in a CAP file of a package that imports those constants.

p2
CAP file

p1’
CAP File

p1
Export File

convert
with

link with
(either)

p1
CAP File

binary
compatible

with

Appendix JCVM01

560

44 Java Card 2.1 Virtual Machine Specification • March 3, 1999

During execution, information is not available to determine whether the value of an
inlined constant is the same as the value defined by the binary of the imported
package.

As described above, tokens assigned to public and protected virtual methods are
scoped to the hierarchy of a class. Tokens assigned to public and protected virtual
methods introduced in a subclass have values starting at one greater than the
maximum token value assigned in a superclass. If a new, non-override, public or
protected virtual method is introduced in a superclass it is assigned a token value
that would otherwise have been assigned in a subclass. Therefore, two unique
virtual methods could be assigned the same token value within the same class
hierarchy, making resolution of a reference to one of the methods ambiguous.

4.5 Package Versions
Each implementation of a package in a Java Card system is assigned a pair of major
and minor version numbers. These version numbers are used to indicate binary
compatibility or incompatibility between successive implementations of a package.

4.5.1 Assigning
The major and minor versions of a package are assigned by the package provider. It
is recommended that the initial implementation of a package be assigned a major
version of 1 and a minor version of 0. However, any values may be chosen. It is also
recommended that when either a major or a minor version is incremented, it is
incremented exactly by 1.

A major version must be changed when a new implementation of a package is not
binary compatible with the previous implementation. The value of the new major
version must be greater than the major version of the previous implementation.
When a major version is changed, the associated minor version must be assigned the
value of 0.

When a new implementation of a package is binary compatible with the previous
implementation, it must be assigned a major version equal to the major version of
the previous implementation. The minor version assigned to the new
implementation must be greater than the minor version of the previous
implementation.

Appendix JCVM01

561

Chapter 4 Binary Representation 45

4.5.2 Linking
Both an export file and a CAP file contain the major and minor version numbers of
the package described. When a CAP file is installed on a Java Card enabled device a
resident image of the package is created, and the major and minor version numbers
are recorded as part of that image. When an export file is used during preparation
of a CAP file, the version numbers indicated in the export file are recorded in the
CAP file.

During installation, references from the package of the CAP file being installed to an
imported package can be resolved only when the version numbers indicated in the
export file used during preparation of the CAP file are compatible with the version
numbers of the resident image. They are compatible when the major version
numbers are equal and the minor version of the export file is less than or equal to
the minor version of the resident image.

Appendix JCVM01

562

46 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Appendix JCVM01

563

47

CHAPTER 5

The Export File Format

This chapter describes the Java Card virtual machine export file format. Compliant
Java Card Converters must be capable of producing and consuming all export files
that conform to the specification provided in this chapter. (Refer to Chapter 4,
“Binary Representation.”)

An export file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are
constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high-order
bytes come first.

This chapter defines its own set of data types representing Java Card export file
data: The types u1, u2, and u4 represent an unsigned one-, two-, and four-byte
quantities, respectively.

The Java Card export file format is presented using pseudo structures written in a
C-like structure notation. To avoid confusion with the fields of Java Card virtual
machine classes and class instances, the contents of the structures describing the Java
Card export file format are referred to as items. Unlike the fields of a C structure,
successive items are stored in the Java Card file sequentially, without padding or
alignment.

Variable-sized tables, consisting of variable-sized items, are used in several export
file structures. Although we will use C-like array syntax to refer to table items, the
fact that tables are streams of varying-sized structures means that it is not possible to
directly translate a table index into a byte offset into the table.

In a data structure that is referred to as an array, the elements are equal in size.

Appendix JCVM01

564

48 Java Card 2.1 Virtual Machine Specification • March 3, 1999

5.1 Export File Name
As described in §4.1.1, the name of a export file must be the last portion of the
package specification followed by the extension ‘.exp’. For example, the name of the
export file of the javacard.framework package must be framework.exp.
Operating systems that impose limitations on file name lengths may transform an
export file’s name according to its conventions.

5.2 Containment in a Jar File
As described in §4.1.3, Java Card CAP files are contained in a JAR file. If an export
file is also stored in a JAR file, it must also be located in a directory called javacard
that is a subdirectory package’s directory. For example, the framework.exp file
would be located in the subdirectory javacard/framework/javacard.

5.3 Export File
An export file is defined by the following structure:

ExportFile {
u4 magic
u1 minor_version
u1 major_version
u2 constant_pool_count
cp_info constant_pool[constant_pool_count]
u2 this_package
u1 export_class_count
class_info classes[export_class_count]

}

The items in the ExportFile structure are as follows:

magic

The magic item contains the magic number identifying the ExportFile for-
mat; it has the value 0x00FACADE.

Appendix JCVM01

565

Chapter 5 The Export File Format 49

minor_version, major_version

The minor_version and major_version items are the minor and major ver-
sion numbers of this export file. An implementation of a Java Card virtual
machine supports export files having a given major version number and
minor version numbers in the range 0 through some particular
minor_version.

If a Java Card virtual machine encounters an export file with the supported
major version but an unsupported minor version, the Java Card virtual
machine must not attempt to interpret the content of the export file. However,
it will be feasible to upgrade a Java Card virtual machine to support the newer
minor version.

A Java Card virtual machine must not attempt to interpret a export file with a
different major version. A change of the major version number indicates a
major incompatibility change, one that requires a fundamentally different Java
Card virtual machine.

In this specification, the major version of the export file has the value 2 and
the minor version has the value 1. Only Sun Microsystems, Inc. may define the
meaning and values of new export file versions.

constant_pool_count

The constant_pool_count item is a non-zero, positive value that indicates
the number of constants in the constant pool.

constant_pool[]

The constant_pool is a table of variable-length structures representing vari-
ous string constants, class names, field names and other constants referred to
within the ExportFile structure.

Each of the constant_pool table entries, including entry zero, is a variable-
length structure whose format is indicated by its first “tag” byte.

There are no ordering constrains on entries in the constant_pool table.

this_package

The value of this_package must be a valid index into the constant_pool
table. The constant_pool entry at that index must be a
CONSTANT_Package_info (§5.4.1) structure representing the package
defined by this ExportFile.

export_class_count

The value of the export_class_count item gives the number of elements in
the classes table.

Appendix JCVM01

566

50 Java Card 2.1 Virtual Machine Specification • March 3, 1999

classes[]

Each value of the classes table is a variable-length class_info structure
(§5.5) giving the description of a publicly accessible class or interface declared
in this package. If the ACC_LIBRARY flag item in the CONSTANT_Package_info
(§5.4.1) structure indicated by the this_package item is set, the classes
table has an entry for each public class and interface declared in this package.
If the ACC_LIBRARY flag item is not set, the classes table has an entry for each

shareable interface declared in this package.1

5.4 Constant Pool
All constant_pool table entries have the following general format:

cp_info {
u1 tag
u1 info[]

}

Each item in the constant_pool must begin with a 1-byte tag indicating the kind of
cp_info entry. The content of the info array varies with the value of tag. The valid
tags and their values are listed in TABLE 5-1. Each tag byte must be followed by two
or more bytes giving information about the specific constant. The format of the
additional information varies with the tag value.

TABLE 5-1 Export file constant pool tags

1. This restriction of exporting only shareable interfaces in non-library packages is imposed by the firewall
defined in the Java Card Runtime Environment (JCRE) 2.1 Specification.

Constant Type Value

CONSTANT_Package 13

CONSTANT_Interfaceref 7

CONSTANT_Integer 3

CONSTANT_Utf8 1

Appendix JCVM01

567

Chapter 5 The Export File Format 51

5.4.1 CONSTANT_Package
The CONSTANT_Package_info structure is used to represent a package:

CONSTANT_Package_info {
u1 tag
u1 flags
u2 name_index
u1 minor_version
u1 major_version
u1 aid_length
u1 aid[aid_length]

}

The items of the CONSTANT_Package_info structure are the following:

tag

The tag item has the value of CONSTANT_Package (13).

flags

The flags item is a mask of modifiers that apply to this package. The flags
modifiers are shown in the following table.

TABLE 5-2 Export file package flags

The ACC_LIBRARY flag has the value of one if this package does not define and
declare any applets. In this case it is called a library package. Otherwise
ACC_LIBRARY has the value of zero.

If the package is not a library package this export file can only contain share-
able interfaces.1 A shareable interface is either the javacard.frame-
work.Shareable interface or an interface that extends the
javacard.framework.Shareable interface.

All other flag values are reserved by the Java Card virtual machine. Their val-
ues must be zero.

Flags Value

ACC_LIBRARY 0x01

1. This restriction is imposed by the firewall defined in the Java Card Runtime Environment (JCRE) 2.1
Specification.

Appendix JCVM01

568

52 Java Card 2.1 Virtual Machine Specification • March 3, 1999

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java package
name.

As in Java class files, ASCII periods (‘.’) that normally separate the identifiers
in a package name are replaced by ASCII forward slashes (‘/’). For example,
the package name javacard.framework is represented in a
CONSTANT_Utf8_info structure as javacard/framework.

minor_version, major_version

The minor_version and major_version items are the minor and major ver-
sion numbers of this package. These values uniquely identify the particular
implementation of this package and indicate the binary compatibility between
packages. See §4.5 for a description of assigining and using package version
numbers.

aid_length

The value of the aid_length item gives the number of bytes in the aid array.
Valid values are between 5 and 16, inclusive.

aid[]

The aid array contains the ISO AID of this package (§4.2).

5.4.2 CONSTANT_Interfaceref
The CONSTANT_Interfaceref_info structure is used to represent an interface:

CONSTANT_Interfaceref_info {
u1 tag
u2 name_index

}

The items of the CONSTANT_Interfaceref_info structure are the following:

tag

The tag item has the value of CONSTANT_Interface (7).

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid fully qualified
Java interface name. These names are fully qualified because they may be
defined in a package other than the one described in the export file.

Appendix JCVM01

569

Chapter 5 The Export File Format 53

As in Java class files, ASCII periods (‘.’) that normally separate the identifiers
in a class or interface name are replaced by ASCII forward slashes (‘/’). For
example, the interface name javacard.framework.Shareable is represented
in a CONSTANT_Utf8_info structure as javacard/framework/Shareable.

5.4.3 CONSTANT_Integer
The CONSTANT_Integer_info structure is used to represent four-byte numeric (int)
constants:

CONSTANT_Integer_info {
u1 tag
u4 bytes

}

The items of the CONSTANT_Integer_info structure are the following:

tag

The tag item has the value of CONSTANT_Integer (3).

bytes

The bytes item of the CONSTANT_Integer_info structure contains the value
of the int constant. The bytes of the value are stored in big-endian (high byte
first) order.

5.4.4 CONSTANT_Utf8
The CONSTANT_Utf8_info structure is used to represent constant string values.
UTF-8 strings are encoded in the same way as described in The Java Virtual Machine
Specification (§ 4.4.7).

The CONSTANT_Utf8_info structure is:

CONSTANT_Utf8_info {
u1 tag
u2 length
u1 bytes[length]

}

The items of the CONSTANT_Utf8_info structure are the following:

tag

The tag item has the value of CONSTANT_Utf8 (1).

Appendix JCVM01

570

54 Java Card 2.1 Virtual Machine Specification • March 3, 1999

length

The value of the length item gives the number of bytes in the bytes array (not
the length of the resulting string). The strings in the CONSTANT_Utf8_info
structure are not null-terminated.

bytes[]

The bytes array contains the bytes of the string. No byte may have the value
(byte)0 or (byte)0xF0-(byte)0xFF.

5.5 Classes and Interfaces
Each class and interface is described by a variable-length class_info structure. The
format of this structure is:

class_info {
u1 token
u2 access_flags
u2 name_index
u2 export_interfaces_count
u2 interfaces[export_interfaces_count]
u2 export_fields_count
field_info fields[export_fields_count]
u2 export_methods_count
method_info methods[export_methods_count]

}

The items of the class_info structure are as follows:

token

The value of the token item is the class token (§4.3.7.2) assigned to this class or
interface.

access_flags

The value of the access_flags item is a mask of modifiers used with class
and interface declarations. The access_flags modifiers are shown in the fol-

Appendix JCVM01

571

Chapter 5 The Export File Format 55

lowing table.

TABLE 5-3 Export file class access and modifier flags

The ACC_SHAREABLE flag indicates whether this class or interface is shareable.1
A class is shareable if it implements (directly or indirectly) the javac-
ard.framework.shareable interface. An interface is shareable if it is or
implements (directly or indirectly) the javacard.framework.Shareable
interface.

All other class access and modifier flags are defined in the same way and with
the same restrictions as described in The Java Virtual Machine Specification.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java class

name stored as a simple (not fully qualified) name, that is, as a Java identifier.2

export_interfaces_count

The value of the export_interface_count item indicates the number of
entries in the interfaces array.

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be
accessed from
outside its package

Class,
interface

ACC_FINAL 0x0010 Is final; no
subclasses allowed.

Class

ACC_INTERFACE 0x0200 Is an interface Interface
ACC_ABSTRACT 0x0400 Is abstract; may not

be instantiated
Class,
interface

ACC_SHAREABLE 0x0800 Is shareable, may be
shared between Java
Card applets.

Class,
interface

1. The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall
restrictions defined by the Java Card 2.1 Runtime Environment (JCRE) Specification.

2. In Java class files class names are fully qualified. In Java Card export files all classes and interfaces
enumerated are defined in the package of the export file making it unnecessary for class names to be fully
qualified.

Appendix JCVM01

572

56 Java Card 2.1 Virtual Machine Specification • March 3, 1999

interfaces[]

The interfaces array contains an entry for each public interface imple-
mented by this class or interface. It does not include package visible interfaces.
It does include all public superinterfaces in the hierarchy of public interfaces
implemented by this class or interface.

Each value in the interfaces array must be a valid index into the
constant_pool table. The constant_pool entry at each value of inter-
faces[i], where 0 <= i < export_interfaces_count, must be a
CONSTANT_Interfaceref_info structure representing an interface which is
an public superinterface of this class or interface type, in the left-to-right order
given in the source for the type and its superclasses or superinterfaces.

export_fields_count

The value of the export_fields_count item gives the number of entries in
the fields table.

fields[]

Each value in the fields table is a variable-length field_info (§5.6) struc-
ture. The field_info contains an entry for each publicly accessible field, both
class variables and instance variables, declared by this class or interface. It does
not include items representing fields that are inherited from superclasses or
superinterfaces.

export_methods_count

The value of the export_methods_count item gives the number of entries in
the methods table.

methods[]

Each value in the methods table is a method_info (§5.7) structure. The
method_info structure contains an entry for each publicly accessible class
(static or constructor) method defined by this class, and each publicly accessi-
ble instance method defined by this class or its superclasses, or defined by this
interface or its super-interfaces.

Appendix JCVM01

573

Chapter 5 The Export File Format 57

5.6 Fields
Each field is described by a variable-length field_info structure. The format of this
structure is:

field_info {
u1 token
u2 access_flags
u2 name_index
u2 descriptor_index
u2 attributes_count
attribute_info attributes[attributes_count]

}

The items of the field_info structure are as follows:

token

The token item is the token assigned to this field. There are three scopes for
field tokens: final static fields of primitive types (compile-time constants),
all other static fields, and instance fields.

If this field is a compile-time constant, the value of the token item is 0xFFFF.
Compile-time constants are represented in export files, but are not assigned
token values suitable for late binding. Instead Java Card Converters must
replace bytecodes that reference final static fields with bytecodes that load

the constant value of the field.1

If this field is static, but is not a compile-time constant, the token item repre-
sents a static field token (§4.3.7.3).

If this field is an instance field, the token item represents an instance field token
(§4.3.7.5).

1. Although Java compilers ordinarily replace references to final static fields of primitive types with primitive
constants, this functionality is not required.

Appendix JCVM01

574

58 Java Card 2.1 Virtual Machine Specification • March 3, 1999

access_flags

The value of the access_flags item is a mask of modifiers used with fields.
The access_flags modifiers are shown in the following table.

TABLE 5-4 Export file field access and modifier flags

Field access and modifier flags are defined in the same way and with the same
restrictions as described in The Java Virtual Machine Specification.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java field name
stored as a simple (not fully qualified) name, that is, as a Java identifier.

descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java field
descriptor.

Representation of a field descriptor in an export file is the same as in a Java
class file. See the specification described in The Java Virtual Machine Specifica-
tion (§ 4.3.2).

attributes_count

The value of the attributes_count item indicates the number of additional
attributes of this field. The only field_info attribute currently defined is the
ConstantValue attribute (§5.8.1). For static final fields of primitive types,
the value must be 1; that is, when both the ACC_STATIC and ACC_FINAL bits in
the flags item are set an attribute must be present. For all other fields the value

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be
accessed from outside
its package.

Any field

ACC_PROTECTED 0x0004 Is protected; may be
accessed within
subclasses.

Class field

ACC_STATIC 0x0008 Is static. Class field
ACC_FINAL 0x0010 Is final; no further

overriding or
assignment after
initialization.

Any field

Appendix JCVM01

575

Chapter 5 The Export File Format 59

of the attributes_count item must be 0.

attributes[]

The only attribute defined for the attributes table of a field_info structure
by this specification is the ConstantValue attribute (§5.8.1). This must be
defined for static final fields of primitives (boolean, byte, short, and
int).

5.7 Methods
Each method is described by a variable-length method_info structure. The format of
this structure is:

method_info {
u1 token
u2 access_flags
u2 name_index
u2 descriptor_index

}

The items of the method_info structure are as follows:

token

The token item is the token assigned to this method. If this method is a static
method or constructor, the token item represents a static method token
(§4.3.7.4). If this method is a virtual method, the token item represents a vir-
tual method token (§4.3.7.6).

Appendix JCVM01

576

60 Java Card 2.1 Virtual Machine Specification • March 3, 1999

access_flags

The value of the access_flags item is a mask of modifiers used with meth-
ods. The access_flags modifiers are shown in the following table.

TABLE 5-5 Export file method access and modifier flags

Method access and modifier flags are defined in the same way and with the
same restrictions as described in The Java Virtual Machine Specification.

Unlike in Java class files, the ACC_NATIVE flag is not supported in export files.
Whether a method is native is an implementation detail that is not relevant to
importing packages. The Java Card virtual machine reserves all other flag val-
ues. Their values must be zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing either the special inter-
nal method name for constructors, <init>, or a valid Java method name
stored as a simple (not fully qualified) name.

descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing a valid Java method
descriptor.

Representation of a method descriptor in an export file is the same as in a Java
class file. See the specification described in The Java Virtual Machine Specifica-
tion (§ 4.3.3).

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be
accessed from outside its
package.

Any method

ACC_PROTECTED 0x0004 Is protected; may be
accessed within
subclasses.

Class/
instance
method

ACC_STATIC 0x0008 Is static. Class/
instance
method

ACC_FINAL 0x0010 Is final; no further
overriding or assignment
after initialization.

Class/
instance
method

ACC_ABSTRACT 0x0400 Is abstract; no
implementation is
provided

Any method

Appendix JCVM01

577

Chapter 5 The Export File Format 61

5.8 Attributes
Attributes are used in the field_info (§5.6) structure of the export file format. All
attributes have the following general format:

attribute_info {
u2 attribute_name_index
u4 attribute_length
u1 info[attribute_length]

}

5.8.1 ConstantValue Attribute
The ConstantValue attribute is a fixed-length attribute used in the attributes
table of the field_info structures. A ConstantValue attribute represents the value
of a final static field (compile-time constant); that is, both the ACC_STATIC and
ACC_FINAL bits in the flags item of the field_info structure must be set. There
can be no more than one ConstantValue attribute in the attributes table of a
given field_info structure.

The ConstantValue attribute has the format:

ConstantValue_attribute {
u2 attribute_name_index
u4 attribute_length
u2 constantvalue_index

}

The items of the ConstantValue_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (§5.4.4) structure representing the string “Con-
stantValue.”

attribute_length

The value of the attribute_length item of a ConstantValue_attribute
structure must be 2.

constantvalue_index

The value of the constantvalue_index item must be a valid index into the

Appendix JCVM01

578

62 Java Card 2.1 Virtual Machine Specification • March 3, 1999

constant_pool table. The constant_pool entry at that index must give the
constant value represented by this attribute.

The constant_pool entry must be of a type CONSTANT_Integer (§5.4.3).

Appendix JCVM01

579

63

CHAPTER 6

The CAP File Format

This chapter describes the Java Card CAP (converted applet) file format. Each CAP file
contains all of the classes and interfaces defined in one Java package. Java Card
Converters must be capable of producing CAP files that conform to the specification
provided in this chapter.

A CAP file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are
constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high-order
bytes come first. The first bit read of an 8-bit quantity is considered the high bit.

This chapter defines its own set of data types representing Java Card CAP file data:
The types u1, and u2 represent an unsigned one-, and two-byte quantities,
respectively. Some u1 types are represented as bitfield structures, consisting of arrays
of bits. The zeroeth bit in each bit array represents the most significant bit, or high
bit.

The Java Card CAP file format is presented using pseudo structures written in a C-
like structure notation. To avoid confusion with the fields of Java Card virtual
machine classes and class instances, the contents of the structures describing the Java
Card CAP file format are referred to as items. Unlike the fields of a C structure,
successive items are stored in the Java Card file sequentially, without padding or
alignment.

Variable-sized tables, consisting of variable-sized items, are used in several CAP file
data structures. Although we will use C-like array syntax to refer to table items, the
fact that tables are streams of variable-sized structures means that it is not possible
to directly translate a table index into a byte offset into the table.

A data structure referred to as an array consists of items equal in size.

Some items in the structures of the CAP file format are describe using a C-like union
notation. The bytes contained in a union structure have one of the two formats.
Selection of the two formats is based on the value of the high bit of the structure.

Appendix JCVM01

580

64 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.1 Component Model
A Java Card CAP file consists of a set of components. Each component describes a set
of elements in the Java package defined, or an aspect of the CAP file. A complete CAP
file must contain all of the required components specified in this chapter. Two
components are optional: the Applet Component (§6.5) and Export Component
(§6.12). The Applet Component is included only if one or more Applets are defined
in the package. The Export Component is included only if classes in other packages
may import elements in the package defined.

The content of each component defined in a CAP file must conform to the
corresponding format specified in this chapter. All components have the following
general format:

component {
u1 tag
u2 size
u1 info[]

}

Each component begins with a 1-byte tag indicating the kind of component. Valid
tags and their values are listed in TABLE 6-1. The size item indicates the number of
bytes in the info array of the component, not including the tag and size items.

The content and format of the info array varies with the type of component.

TABLE 6-1 CAP file component tags

Sun may define additional components in future versions of this Java Card vitural
machine specification. It is guaranteed that additional components will have tag
values between 12 and 127, inclusive.

Component Type Value

COMPONENT_Header 1

COMPONENT_Directory 2

COMPONENT_Applet 3

COMPONENT_Import 4

COMPONENT_ConstantPool 5

COMPONENT_Class 6

COMPONENT_Method 7

COMPONENT_StaticField 8

COMPONENT_ReferenceLocation 9

COMPONENT_Export 10

COMPONENT_Descriptor 11

Appendix JCVM01

581

Chapter 6 The CAP File Format 65

6.1.1 Containment in a JAR File
All CAP file components are stored in individual files contained in a JAR File. The
component file names are enumerated in TABLE 6-2. These names are not case
sensitive.

TABLE 6-2 CAP file component file names

As described in §4.1.3, the path to the CAP file component files in a JAR file consists
of a directory called javacard that is in a subdirectory representing the package’s
directory. For example, the CAP file component files of the package
javacard.framework are located in the subdirectory javacard/framework/
javacard.

The name of a JAR file containing CAP file component files is not defined as part of
this specification. Other files, including other CAP files, may also reside in a JAR file
that contains CAP file component files.

6.1.2 Defining New Components
Java Card CAP files are permitted to contain new, or custom, components. All new
components not defined as part of this specification must not affect the semantics of
the specified components, and Java Card virtual machines must be able to accept
CAP files that do not contain new components. Java Card virtual machine
implementations are required to silently ignore components they do not recognize.

New components are identified in two ways: they are assigned both an ISO 7816-5
AID (§4.2) and a tag value. Valid tag values are between 128 and 255, inclusive. Both
of these identifiers are recorded in the custom_component item of the Directory
Component (§6.4).

Component Type File Name

COMPONENT_Header Header.cap

COMPONENT_Directory Directory.cap

COMPONENT_Applet Applet.cap

COMPONENT_Import Import.cap

COMPONENT_ConstantPool ConstantPool.cap

COMPONENT_Class Class.cap

COMPONENT_Method Method.cap

COMPONENT_StaticField StaticField.cap

COMPONENT_ReferenceLocation RefLocation.cap

COMPONENT_Export Export.cap

COMPONENT_Descriptor Descriptor.cap

Appendix JCVM01

582

66 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The new component must conform to the general component format defined in this
chapter, with a tag value, a size value indicating the number of bytes in the
component (excluding the tag and size items), and an info item containing the
content of the new component.

A new component file is stored in a JAR file, following the same restrictions as those
specified in §4.1.3. That is, the file containing the new component must be located in
the <package_directory>/javacard subdirectory of the JAR file and must have
the extension ‘.cap’.

6.2 Installation
Installing a CAP file onto a Java Card enabled device entails communication between
a Java Card enabled terminal and that device. While it is beyond the scope of this
specification to define an installation protocol between a terminal and a device, the
CAP file component order shown in TABLE 6-3 is a reference load order suitable for an
implementation with a simple memory management model on a limited memory
device.

TABLE 6-3 Reference component install order

Component Type

COMPONENT_Header

COMPONENT_Directory

COMPONENT_Import

COMPONENT_Applet

COMPONENT_Class

COMPONENT_Method

COMPONENT_StaticField

COMPONENT_Export

COMPONENT_ConstantPool

COMPONENT_ReferenceLocation

COMPONENT_Descriptor (optional)

Appendix JCVM01

583

Chapter 6 The CAP File Format 67

6.3 Header Component
The Header Component contains general information about this CAP file and the
package it defines. It is described by the following variable-length structure:

header_component {
u1 tag
u2 size
u4 magic
u1 minor_version
u1 major_version
u1 flags
package_info this_package

}

The items in the header_component structure are as follows:

tag

The tag item has the value COMPONENT_Header (1).

size

The size item indicates the number of bytes in the header_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

magic

The magic item supplies the magic number identifying the Java Card CAP file
format; it has the value 0xDECAFFED.

minor_version, major_version

The minor_version and major_version items are the minor and major ver-
sion numbers of this CAP file. An implementation of a Java Card virtual
machine must support CAP files having a specific major version number and
minor version numbers in the range of 0 through some particular
minor_version.

If a Java Card virtual machine encounters a CAP file with the supported major
version but an unsupported minor version, the Java Card virtual machine
must not attempt to interpret the content of the CAP file. However, it will be
feasible to upgrade a Java Card virtual machine to support the newer minor
version.

A Java Card virtual machine must not attempt to interpret a CAP file with a dif-
ferent major version. A change of the major version number indicates a major
incompatibility change, one that requires a fundamentally different Java Card

Appendix JCVM01

584

68 Java Card 2.1 Virtual Machine Specification • March 3, 1999

virtual machine.

In this specification, the major version of the CAP file has the value 2 and the
minor version has the value 1. Only Sun Microsystems, Inc. may define the
meaning and values of new CAP file versions.

flags

The flags item is a mask of modifiers that apply to this package. The flags
modifiers are shown in the following table.

TABLE 6-4 CAP file package flags

The ACC_INT flag has the value of one if the Java int type is used in this pack-
age. The int type is used if one or more of the following is present:

■ a parameter to a method of type int,
■ a local variable of type int,
■ a field of type int,
■ a field of type int array, or
■ an instruction of type int.

Otherwise the ACC_INT flag has the value of 0.

The ACC_EXPORT flag has the value of one if an Export Component (§6.12) is
included in this CAP file. Otherwise it has the value of 0.

The ACC_APPLET flag has the value of one if an Applet Component (§6.5) is
included in this CAP file. Otherwise it has the value of 0.

All other bits in the flags item not defined in TABLE 6-4 are reserved for future
use. Their values must be zero and they must be ignored by Java Card virtual
machines.

this_package

The this_package item describes the package defined in this CAP file. It is
represented as a package_info structure:

package_info {
u1 minor_version
u1 major_version
u1 AID_length
u1 AID[AID_length]

}

Flags Value

ACC_INT 0x01

ACC_EXPORT 0x02

ACC_APPLET 0x04

Appendix JCVM01

585

Chapter 6 The CAP File Format 69

The items in the package_info structure are as follows:

minor_version, major_version
The minor_version and major_version items are the minor and
major version numbers of this package. These values uniquely iden-
tify the particular implementation of this package and indicate the
binary compatibility between packages. See §4.5 for a description of
assigining and using package version numbers.

AID_length
The AID_length item represents the number of bytes in the AID item.
Valid values are between 5 and 16, inclusive.

AID[]
The AID item represents the Java Card name of the package. See ISO
7816-5 for the definition of an AID (§4.2).

6.4 Directory Component
The Directory Component lists the size of each of the components defined in this
CAP file. When an optional component is not included, such as the Applet
Component (§6.5) or Export Component (§6.12), it is represented in the Directory
Component with size equal to zero. The Directory Component also includes entries
for new (or custom) components.

The Directory Component is described by the following variable-length structure:

directory_component {
u1 tag
u2 size
u2 component_sizes[11]
static_field_size_info static_field_size
u1 import_count
u1 applet_count
u1 custom_count
custom_component_info custom_components[custom_count]

}

The items in the directory_component structure are as follows:

tag

The tag item has the value COMPONENT_Directory (2).

Appendix JCVM01

586

70 Java Card 2.1 Virtual Machine Specification • March 3, 1999

size

The size item indicates the number of bytes in the directory_component
structure, excluding the tag and size items. The value of the size item must
be greater than zero.

component_sizes[]

The component_sizes item is an array representing the number of bytes in
each of the components in this CAP file. All of the 11 components defined in this
chapter are represented in the component_sizes array. The value of an index
into the array is equal to the value of the tag of the component represented at
that entry, minus 1.

The value in each entry in the component_sizes array is that same as the
size item in the corresponding component. It represents the number of bytes
in the component, excluding the tag and size items.

The value of an entry in the component_sizes array is zero for components
not included in this CAP file. Components that may not be included are the
Applet Component (§6.5) and the Export Component (§6.12). For all other
components the value is greater than zero.

static_field_size

The static_field_size item is a static_field_size_info structure. The
structure is defined as:

static_field_size_info {
u2 image_size
u2 array_init_count
u2 array_init_size

}

The items in the static_field_size_info structure are the following:

image_size
The image_size item has the same value as the image_size item in
the Static Field Component (§6.10). It represents the total number of
bytes in the static fields defined in this package, excluding final
static fields of primitive types.

array_init_count
The array_init_count item has the same value as the
array_init_count item in the Static Field Component (§6.10). It rep-
resents the number of arrays initialized in all of the <clinit> meth-
ods in this package.

array_init_size
The array_init_size item represents the sum of the count items in

Appendix JCVM01

587

Chapter 6 The CAP File Format 71

the array_init table item of the Static Field Component (§6.10). It is
the total number of bytes in all of the arrays initialized in all of the
<clinit> methods in this package.

import_count

The import_count item indicates the number of packages imported by classes
and interfaces in this package. This item has the same value as the count item
in the Import Component (§6.6).

applet_count

The applet_count item indicates the number of applets defined in this pack-
age. If an Applet Component (§6.5) is not included in this CAP file, the value of
the applet_count item is zero. Otherwise the value of the applet_count
item is the same as the value of the count item in the Applet Component
(§6.5).

custom_count

The custom_count item indicates the number of entries in the
custom_components table. Valid values are between 0 and 127, inclusive.

custom_components[]

The custom_components item is a table of variable-length
custom_component_info structures. Each new component defined in this
CAP file must be represented in the table. These components are not defined in
this standard.

The custom_component_info structure is defined as:

custom_component_info {
u1 component_tag
u1 size
u1 AID_length
u1 AID[AID_length]

}

The items in entries of the custom_component_info structure are:

component_tag
The component_tag item represents the tag of the component. Valid
values are between 128 and 255, inclusive.

size
The size item represents the number of bytes in the component,
excluding the tag and size items.

AID_length
The AID_length item represents the number of bytes in the AID item.

Appendix JCVM01

588

72 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Valid values are between 5 and 16, inclusive.

AID[]
The AID item represents the Java Card name of the component. See
ISO 7816-5 for the definition of an AID (§4.2).

Each component is assigned an AID conforming to the ISO 7816-5
standard. The RID (first 5 bytes) of all of the custom component AIDs
must have the same value. In addition, the RID of the custom compo-
nent AIDs must have the same value as the RID of the package
defined in this CAP file.

6.5 Applet Component
The Applet Component contains an entry for each of the applets defined in this
package. Applets are defined by implementing a non-abstract subclass, direct or
indirect, of the javacard.framework.Applet class.1 If no applets are defined, this
component must not be present in this CAP file.

The Applet Component is described by the following variable-length structure:

applet_component {
u1 tag
u2 size
u1 count
{ u1 AID_length
 u1 AID[AID_length]
 u2 install_method_offset
} applets[count]

}

The items in the applet_component structure are as follows:

tag

The tag item has the value COMPONENT_Applet (3).

size

The size item indicates the number of bytes in the applet_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

1. Restrictions placed on an applet definition are imposed by the Java Card Runtime Environment (JCRE) 2.1
specification.

Appendix JCVM01

589

Chapter 6 The CAP File Format 73

count

The count item indicates the number of applets defined in this package.

applets[]

The applets item represents a table of variable-length structures each describ-
ing an applet defined in this package.

The items in each entry of the applets table are defined as follows:

AID_length
The AID_length item represents the number of bytes in the AID item.
Valid values are between 5 and 16, inclusive.

AID[]
The AID item represents the Java Card name of the applet.

Each applet is assigned an AID conforming to the ISO 7816-5 standard
(§4.2). The RID (first 5 bytes) of all of the applet AIDs must have the
same value. In addition, the RID of each applet AIDs must have the
same value as the RID of the package defined in this CAP file.

install_method_offset
The value of the install_method_offset item must be a 16-bit off-
set into the info item of the Method Component (§6.9). The item at
that offset must be a method_info structure that represents the static

install(byte[],short,byte) method of the applet.1 The
install(byte[],short,byte) method must be defined in a class
that extends the javacard.framework.applet class, directly or indi-
rectly. The install(byte[],short,byte) method is called to ini-
tialize the applet.

1. Restrictions placed on the install(byte[],short,byte) method of an applet are imposed by the Java Card
Runtime Environment (JCRE) 2.1 specification.

Appendix JCVM01

590

74 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.6 Import Component
The Import Component lists the set of packages imported by the classes in this
package. It does not include an entry for the package defined in this CAP file. The
Import Component is represented by the following structure:

import_component {
u1 tag
u2 size
u1 count
package_info packages[count]

}

The items in the import_component structure are as follows:

tag

The tag item has the value COMPONENT_Import (4).

size

The size item indicates the number of bytes in the import_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

count

The count item indicates the number of items in the packages table. The
value of the count item must be between 0 and 127, inclusive.

packages[]

The packages item represents a table of variable-length package_info struc-
tures as defined for this_package under §6.3. The table contains an entry for
each of the packages referenced in the CAP file, not including the package
defined.

The major and minor version numbers specified in the package_info struc-
ture are equal to the major and minor versions specified in the imported pack-
age’s export file. See §4.5 for a description of assigining and using package
version numbers.

Components of this CAP file refer to an imported package by using a index in
this packages table. The index is called a package token (§4.3.7.1).

Appendix JCVM01

591

Chapter 6 The CAP File Format 75

6.7 Constant Pool Component
The Constant Pool Component contains an entry for each of the classes, methods,
and fields referenced by elements in the Method Component (§6.9) of this CAP file.
The referencing elements in the Method Component may be instructions in the
methods or exception handler catch types in the exception handler table.

Entries in the Constant Pool Component reference elements in the Class Component
(§6.8), Method Component (§6.9), and Static Field Component (§6.10). The Import
Component (§6.6) is also accessed using a package token (§4.3.7.1) to describe
references to classes, methods and fields defined in imported packages. Entries in
the Constant Pool Component do not reference other entries internal to itself.

The Constant Pool Component is described by the following structure:

constant_pool_component {
u1 tag
u2 size
u2 count
cp_info constant_pool[count]

}

The items in the constant_pool_component structure are as follows:

tag

The tag item has the value COMPONENT_ConstantPool (5).

size

The size item indicates the number of bytes in the
constant_pool_component structure, excluding the tag and size items. The
value of the size item must be greater than zero.

count

The count item represents the number entries in the constant_pool array.
Valid values are between 0 and 65535, inclusive.

constant_pool

The constant_pool item represents an array of cp_info structures:

cp_info {
u1 tag
u1 info[3]

}

Each item in the constant_pool array is a 4-byte structure. Each structure

Appendix JCVM01

592

76 Java Card 2.1 Virtual Machine Specification • March 3, 1999

must begin with a 1-byte tag indicating the kind of cp_info entry. The content
and format of the 3-byte info array varies with the value of the tag. The valid
tags and their values are listed in the following table.

TABLE 6-5 CAP file constant pool tags

Java Card constant types are more specific than those in Java class files. The
categories indicate not only the type of the item referenced, but also the man-
ner in which it is referenced.

For example, in the Java constant pool there is one constant type for method
references, while in the Java Card constant pool there are three constant types
for method references: one for virtual method invocations using the invokevir-
tual bytecode, one for super method invocations using the invokespecial byte-
code, and one for static method invocations using either the invokestatic or
invokespecial bytecode.1 The additional information provided by a constant
type in Java Card technologies simplifies resolution of references.

There are no ordering constraints on constant pool entries. It is recommended,
however, that CONSTANT_InstanceFieldref (§6.7.2) constants occur early in
the array to permit using getfield_T and putfield_T bytecodes instead of
getfield_T_w and putfield_T_w bytecodes. The former have 1-byte constant pool
index parameters while the latter have 2-byte constant pool index parameters.

Constant Type Tag

CONSTANT_Classref 1

CONSTANT_InstanceFieldref 2

CONSTANT_VirtualMethodref 3

CONSTANT_SuperMethodref 4

CONSTANT_StaticFieldref 5

CONSTANT_StaticMethodref 6

1. The constant pool index parameter of an invokespecial bytecode is to a CONSTANT_StaticMethodref when the
method referenced is a constructor or a private virtual method. In these cases the method invoked is fully
known when the CAP file is created. In the cases of virtual method and super method references, the method
invoked is dependent upon an instance of a class and its hierarchy, both of which may be partially unknown
when the CAP file is created.

Appendix JCVM01

593

Chapter 6 The CAP File Format 77

6.7.1 CONSTANT_Classref
The CONSTANT_Classref_info structure is used to represent a reference to a class
or an interface. The class or interface may be defined in this package or in an
imported package.

CONSTANT_Classref_info {
u1 tag
union {

u2 internal_class_ref
{ u1 package_token
 u1 class_token
} external_class_ref

} class_ref
u1 padding

}

The items in the CONSTANT_Classref_info structure are the following:

tag

The tag item has the value CONSTANT_Classref (1).

class_ref

The class_ref item represents a reference to a class or interface. If the class or
interface is defined in this package the structure represents an
internal_class_ref and the high bit of the structure is zero. If the class or
interface is defined in another package the structure represents an
external_class_ref and the high bit of the structure is one.

internal_class_ref
The internal_class_ref structure represents a 16-bit offset into the
info item of the Class Component (§6.8) to an interface_info or
class_info structure. The interface_info or class_info struc-
ture must represent the referenced class or interface.

The value of the internal_class_ref item must between 0 and
32767, inclusive, making the high bit equal to zero.

external_class_ref
The external_class_ref structure represents a reference to a class
or interface defined in an imported package. The high bit of this struc-
ture is one.

package_token
The package_token item represents a package token
(§4.3.7.1) defined in the Import Component (§6.6) of this CAP
file. The value of this token must be a valid index into the

Appendix JCVM01

594

78 Java Card 2.1 Virtual Machine Specification • March 3, 1999

packages table item of the import_component structure.
The package represented at that index must be the imported
package.

The value of the package token must be between 0 and 127,
inclusive.

The high bit of the package_token item is equal to one.

class_token
The class_token item represents the token of the class or
interface (§4.3.7.2) of the referenced class or interface. It has
the value of the class token of the class as defined in the
Export file of the imported package.

padding

The padding item has the value zero. It is present to make the size of a
CONSTANT_Classref_info structure the same as all other constants in the
constant_pool array.

6.7.2 CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref
References to instance fields, and virtual methods are represented by similar
structures:

CONSTANT_InstanceFieldref_info {
u1 tag
class_ref class
u1 token

}

CONSTANT_VirtualMethodref_info {
u1 tag
class_ref class
u1 token

}

CONSTANT_SuperMethodref_info {
u1 tag
class_ref class
u1 token

}

Appendix JCVM01

595

Chapter 6 The CAP File Format 79

The items in these structures are as follows:

tag

The tag item of a CONSTANT_InstanceFieldref_info structure has the value
CONSTANT_InstanceFieldref (2).

The tag item of a CONSTANT_VirtualMethodref_info structure has the value
CONSTANT_VirtualMethodref (3).

The tag item of a CONSTANT_SuperMethodref_info structure has the value
CONSTANT_SuperMethodref (4).

class

The class item represents the class associated with the referenced instance
field, virtual method, or super method invocation. It is a class_ref structure
(§6.7.1). If the referenced class is defined in this package the high bit is equal to
zero. If the reference class is defined in an imported package the high bit of this
structure is equal to one.

The class referenced in the CONSTANT_InstanceField_info structure must
be the class that contains the declaration of the instance field.

The class referenced in the CONSTANT_VirtualMethodref_info structure
must be a class that contains a declaration or definition of the virtual method.

The class referenced in the CONSTANT_SuperMethodref_info structure must
always be internal to the class that defines the method that contains the Java
language-level super invocation. The class must be defined in this package.

token

The token item in the CONSTANT_InstanceFieldref_info structure repre-
sents an instance field token (§4.3.7.5) of the referenced field. The value of the
instance field token is defined within the scope of the class indicated by the
class item.

The token item of the CONSTANT_VirtualMethodref_info structure repre-
sents the virtual method token (§4.3.7.6) of the referenced method. The virtual
method token is defined within the scope of the hierarchy of the class indicated
by the class item. If the referenced method is public or protected the high
bit of the token item is zero. If the referenced method is package-visible the
high bit of the token item is one. In this case the class item must represent a
reference to a class defined in this package.

The token item of the CONSTANT_SuperMethodref_info structure represents
the virtual method token (§4.3.7.6) of the referenced method. Unlike in the
CONSTANT_VirtualMethodref_info structure, the virtual method token is
defined within the scope of the hierarchy of the superclass of the class indi-
cated by the class item. If the referenced method is public or protected the

Appendix JCVM01

596

80 Java Card 2.1 Virtual Machine Specification • March 3, 1999

high bit of the token item is zero. If the referenced method is package-visible
the high bit of the token item is one. In the latter case the class item must
represent a reference to a class defined in this package and at least one super-
class of the class that contains a defintion of the virtual method must also be
defined in this package.

6.7.3 CONSTANT_StaticFieldref and
CONSTANT_StaticMethodref
References to static fields and methods are represented by similar structures:

CONSTANT_StaticFieldref_info {
u1 tag
union {

{ u1 padding
 u2 offset
} internal_ref
{ u1 package_token
 u1 class_token
 u1 token
} external_ref

} static_field_ref
}

CONSTANT_StaticMethodref_info {
u1 tag
union {

{ u1 padding
 u2 offset
} internal_ref
{ u1 package_token
 u1 class_token
 u1 token
} external_ref

} static_method_ref
}

The items in these structures are as follows:

tag

The tag item of a CONSTANT_StaticFieldref_info structure has the value
CONSTANT_StaticFieldref (5).

The tag item of a CONSTANT_StaticMethodref_info structure has the value
CONSTANT_StaticMethodref (6).

Appendix JCVM01

597

Chapter 6 The CAP File Format 81

static_field_ref and static_method_ref

The static_field_ref and static_method_ref item represents a reference
to a static field or static method, respectively. Static method references
include references to static methods, constructors, and private virtual
methods.

If the referenced item is defined in this package the structure represents an
internal_ref and the high bit of the structure is zero. If the referenced item
is defined in another package the structure represents an external_ref and
the high bit of the structure is one.

internal_ref
The internal_ref item represents a reference to a static field or
method defined in this package. The items in the structure are:

padding
The padding item is equal to 0.

offset
The offset item of a CONSTANT_StaticFieldref_info
structure represents a 16-bit offset into the Static Field Image
defined by the Static Field component (§6.10) to this static
field.

The offset item of a CONSTANT_StaticMethodref_info
structure represents a 16-bit offset into the info item of the
Method Component (§6.9) to a method_info structure. The
method_info structure must represent the referenced
method.

external_ref
The external_ref item represents a reference to a static field or
method defined in an imported package. The items in the structure
are:

package_token
The package_token item represents a package token
(§4.3.7.1) defined in the Import Component (§6.6) of this CAP
file. The value of this token must be a valid index into the
packages table item of the import_component structure.
The package represented at that index must be the imported
package.

The value of the package token must be between 0 and 127,
inclusive.

The high bit of the package_token item is equal to one.

Appendix JCVM01

598

82 Java Card 2.1 Virtual Machine Specification • March 3, 1999

class_token
The class_token item represents the token (§4.3.7.2) of the
class of the referenced class. It has the value of the class token
of the class as defined in the Export file of the imported
package.

The class indicated by the class_token item must define the
referenced field or method.

token
The token item of a CONSTANT_StaticFieldref_info
structure represents a static field token (§4.3.7.3) as defined in
the Export file of the imported package. It has the value of
the token of the referenced field.

The token item of a CONSTANT_StaticMethodref_info
structure represents a static method token (§4.3.7.4) as
defined in the Export file of the imported package. It has the
value of the token of the referenced method.

6.8 Class Component
The Class Component describes each of the classes and interfaces defined in this
package. It does not contain complete access information and content details for each
class and interface. Instead, the information included is limited to that required to
execute operations associated with a particular class or interface, without
performing verification. Complete details regarding the classes and interfaces
defined in this package are included in the Descriptor Component (§6.13).

The information included in the Class Component for each interface is sufficient to
uniquely identify the interface and to test whether or not a cast to that interface is
valid.

The information included in the Class Component for each class is sufficient to
resolve operations associated with instances of a class. The operations include
creating an instance, testing whether or not a cast of the instance is valid,
dispatching virtual method invocations, and dispatching interface method
invocations. Also included is sufficient information to locate instance fields of type
reference, including arrays.

The classes represented in the Class Component reference other entries in the Class
Component in the form of superclass, superinterface and implemented interface
references. When a superclass, superinterface or implemented interface is defined in
an imported package the Import Component is used in the representation of the
reference.

Appendix JCVM01

599

Chapter 6 The CAP File Format 83

The classes represented in the Class Component also contain references to virtual
methods defined in the Method Component (§6.9) of this CAP file. References to
virtual methods defined in imported packages are not explicitly described. Instead
such methods are located through a superclass within the hierarchy of the class,
where the superclass is defined in the same imported package as the virtual method.

The Constant Pool Component (§6.7), Export Component (§6.12) and Descriptor
Component (§6.13) reference classes and interfaces defined in the Class Component.
No other CAP file components reference the Class Component.

The Class Component is represented by the following structure:

class_component {
u1 tag
u2 size
interface_info interfaces[]
class_info classes[]

}

The items in the class_component structure are as follows:

tag

The tag item has the value COMPONENT_Class (6).

size

The size item indicates the number of bytes in the class_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

interfaces[]

The interfaces item represents an array of interface_info structures.
Each interface defined in this package is represented in the array. The entries
are ordered based on hierarchy such that a superinterface has a lower index
than any of its subinterfaces.

classes[]

The classes item represents a table of variable-length class_info structures.
Each class defined in this package is represented in the array. The entries are
ordered based on hierarchy such that a superclass has a lower index than any
of its subclasses.

Appendix JCVM01

600

84 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.8.1 interface_info and class_info
The interface_info and class_info structures represent interfaces and classes,
respectively. The two are differentiated by the value of the high bit in the structures.
They are defined as follows:

interface_info {
u1 bitfield {

 bit[4] flags
 bit[4] interface_count

}
class_ref superinterfaces[interface_count]

}

class_info {
u1 bitfield {

 bit[4] flags
 bit[4] interface_count

}
class_ref super_class_ref
u1 declared_instance_size
u1 first_reference_index
u1 reference_count
u1 public_method_table_base
u1 public_method_table_count
u1 package_method_table_base
u1 package_method_table_count
u2 public_virtual_method_table[public_method_table_count]
u2 package_virtual_method_table[package_method_table_count]
implemented_interface_info interfaces[interface_count]

}

The items of the interface_info and class_info structure are as follows:

flags

The flags item is a mask of modifiers used to describe this interface or class.
Valid values are shown in the following table:

TABLE 6-6 CAP file interface and class flags

The ACC_INTERFACE flag indicates whether this interface_info or
class_info structure represents an interface or a class. The value must be 1 if
it represents an interface_info structure and 0 if a class_info structure.

The ACC_SHAREABLE flag in an interface_info structure indicates whether

Name Value

ACC_INTERFACE 0x8

ACC_SHAREABLE 0x4

Appendix JCVM01

601

Chapter 6 The CAP File Format 85

this interface is shareable. The value of this flag must be one if and only if the
interface is javacard.framework.Shareable interface or implements that
interface directly or indirectly.

The ACC_SHAREABLE flag in a class_info structure indicates whether this
class is shareable.1 The value of this flag must be one if and only if this class or
any of its superclasses implements an interface that is shareable.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

interface_count

The interface_count item of the interface_info structure indicates the
number of entries in the superinterfaces table item. The value represents
the number of immediate superinterfaces of this interface.It does not include
superinterfaces of the superinterfaces. Valid values are between 0 and 15, inclu-
sive.

The interface_count item of the class_info structure indicates the num-
ber of entries in the interfaces table item. The value represents the number
of interfaces implemented by this class, including superinterfaces of those
interfaces and potentially interfaces implemented by superclasses of this class.
Valid values are between 0 and 15, inclusive.

superinterfaces

The superinterfaces item of the interface_info structure is an array of
class_ref structures representing the superinterfaces of this interface. The
class_ref structure is defined as part of the CONSTANT_Classref_info
structure (§6.7.1). This array is empty if this interface has no superinterfaces.
Only immediate superinterfaces are represented in the array. Superinterfaces
of superinterfaces are not included, and class Object is not included either.

super_class_ref

The super_class_ref item of the class_info structure is a class_ref
structure representing the superclass of this class. The class_ref structure is
defined as part of the CONSTANT_Classref_info structure (§6.7.1).

The super_class_ref item has the value of 0xFFFF only if this class does not
have a superclass. Otherwise the value of the super_class_ref item is lim-
ited only by the constraints of the class_ref structure.

declared_instance_size

The declared_instance_size item of the class_info structure represents
the number of 16-bit cells required to represent the instance fields declared by

1. A Java Card virtual machine uses the ACC_SHAREABLE flag to implement the firewall restrictions defined by
the Java Card Runtime Environment (JCRE) 2.1 specification.

Appendix JCVM01

602

86 Java Card 2.1 Virtual Machine Specification • March 3, 1999

this class. It does not include instance fields declared by superclasses of this
class.

Instance fields of type int are represented in two 16-bit cells, while all other
field types are represented in one 16-bit cell.

first_reference_token

The first_reference_token item of the class_info structure represents
the instance field token (§4.3.7.5) value of the first reference type instance
field defined by this class. It does not include instance fields defined by super-
classes of this class.

If this class does not define any reference type instance fields, the value of
the first_reference_token is 0xFF. Otherwise the value of the
first_reference_token item must be within the range of the set of instance
field tokens of this class.

reference_count

The reference_count item of the class_info structure represents the num-
ber of reference type instance field defined by this class. It does not include
reference type instance fields defined by superclasses of this class.

Valid values of the reference_count item are between 0 and the maximum
number of instance fields defined by this class.

public_method_table_base

The public_method_table_base item of the class_info structure is equal
to the virtual method token value (§4.3.7.6) of the first method in the
public_virtual_method_table array. If the
public_virtual_method_table array is empty the value of the
public_method_table_base item is equal to the
public_method_table_base item of the class_info structure of this class’
superclass plus the public_method_table_count item of the class_info
structure of this class’ superclass. If this class has no superclass and the
public_virtual_method_table array is empty, the value of the
public_method_table_base item is zero.

public_method_table_count

The public_method_table_count item of the class_info structure indi-
cates the number of entries in the public_virtual_method_table array.

If this class does not define any public or protected override methods, the
minimum valid value of public_method_table_count item is the number of
public and protected virtual methods declared by this class. If this class
defines one or more public or protected override methods, the minimum
valid value of public_method_table_count item is the value of the largest
public or protected virtual method token, minus the value of the smallest

Appendix JCVM01

603

Chapter 6 The CAP File Format 87

public or protected virtual override method token, plus one.

The maximum valid value of the public_method_table_count item is the
value of the largest public or protected virtual method token, plus one.

Any value for the public_method_table_count item between the minimum and
maximum specified here is valid. However, the value must correspond to the
number of entries in the public_virtual_method_table array.

package_method_table_base

The package_method_table_base item of the class_info structure is equal
to the virtual method token value (§4.3.7.6) of the first entry in the
package_virtual_method_table array. If the
package_virtual_method_table array is empty the value of the
package_method_table_base item is equal to the
package_method_table_base item of the class_info structure of this class’
superclass plus the package_method_table_count item of the class_info
structure of this class’ superclass. If this class has no superclass or inherits from a
class defined in another package and the package_virtual_method_table
array is empty, the value of the package_method_table_base item is zero.

package_method_table_count

The package_method_table_count item of the class_info structure indi-
cates the number of entries in the package_virtual_method_table array.

If this class does not define any override methods, the minimum valid value of
package_method_table_count item is the number of package visible virtual
methods declared by this class. If this class defines one or more package visible
override methods, the minimum valid value of
package_method_table_count item is the value of the largest package visi-
ble virtual method token, minus the value of the smallest package visible vir-
tual override method token, plus one.

The maximum valid value of the package_method_table_count item is the
value of the largest package visible method token, plus one.

Any value for the package_method_table_count item between the mini-
mum and maximum specified here are valid. However, the value must corre-
spond to the number of entries in the package_virtual_method_table.

public_virtual_method_table

The public_virtual_method_table item of the class_info structure rep-
resents an array of public and protected virtual methods. These methods can
be invoked on an instance of this class. The public_virtual_method_table
array includes methods declared or defined by this class. It may also include
methods declared or defined by any or all of its superclasses. The value of an
index into this table must be equal to the value of the virtual method token of

Appendix JCVM01

604

88 Java Card 2.1 Virtual Machine Specification • March 3, 1999

the indicated method, minus the value of the public_method_table_base
item.

Entries in the public_virtual_method_table array that represent methods
defined or declared in this package contain offsets into the info item of the
Method Component (§6.9) to the method_info structure representing the
method. Entries that represent methods defined or declared in an imported
package contain the value 0xFFFF.

Entries for methods that are declared abstract, not including those defined by
interfaces, are represented in the public_virtual_method_table array in
the same way as non-abstract methods.

package_virtual_method_table

The package_virtual_method_table item of the class_info structure rep-
resents an array of package-visible virtual methods. These methods can be
invoked on an instance of this class. The package_virtual_method_table
array includes methods declared or defined by this class. It may also include
methods declared or defined by any or all of its superclasses that are defined in
this package. The value of an index into this table must be equal to the value of
the virtual method token of the indicated method & 0x7F, minus the value of
the package_method_table_base item.

All entries in the package_virtual_method_table array represent methods
defined or declared in this package. They contain offsets into the info item of
the Method Component (§6.9) to the method_info structure representing the
method.

Entries for methods that are declared abstract, not including those defined by
interfaces, are represented in the package_virtual_method_table array in
the same way as non-abstract methods.

interfaces[]

The interfaces item of the class_info structure represents a table of vari-
able-length implemented_interface_info structures. The table must con-
tain an entry for each of the implemented interfaces indicated in the
declaration of this class and each of the interfaces in the hierarchies of those
interfaces. Interfaces that occur more than once are represented by a single
entry. Interfaces implemented by superclasses of this class may optionally be
represented.

Given the declarations below, the number of entries for class c0 is 1 and the
entry in the interfaces array is i0. The minimum number of entries for class
c1 is 3 and the entries in the interfaces array are i1, i2, and i3. The entries for
class c1 may also include interface i0, which is implemented by the superclass
of c1.

Appendix JCVM01

605

Chapter 6 The CAP File Format 89

interface i0 {}
interface i1 {}
interface i2 extends i1 {}
interface i3 {}
class c0 implements i0 {}
class c1 extends c0 implements i2, i3 {}

The implemented_interface_info structure is defined as follows:

implemented_interface_info {
class_ref interface
u1 count
u1 index[count]

}

The items in the implemented_interface_info structure are defined as fol-
lows:

interface
The interface item has the form of a class_ref structure. The
class_ref structure is defined as part of the
CONSTANT_Classref_info structure (§6.7.1). The interface_info
structure referenced by the interface item represents an interface
implemented by this class.

count
The count item indicates the number of entries in the index array.

index
The index item is an array that maps declarations of interface meth-
ods to implementations of those methods in this class. It is a represen-
tation of a the set of methods declared by the interface and its
superinterfaces.

Entries in the index array must be ordered such that the interface
method token value (§4.3.7.7) of the interface method is equal to the
index into the array. The interface method token value is assigned to
the method within the scope of the interface definition and its super-
interfaces, not within the scope of this class.

The values in the index array represent the virtual method tokens
(§4.3.7.6) of the implementations of the interface methods. The virtual
method token values are defined within the scope of the hierarchy of
this class.

Appendix JCVM01

606

90 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.9 Method Component
The Method Component describes each of the methods declared in this package,
excluding <clinit> methods and interface method declarations. The exception
handlers associated with each method are also described.

The Method Component does not contain complete access information and
descriptive details for each method. Instead, the information is limited to that
required to execute each method, without performing verification. Complete details
regarding the methods defined in this package are included in the Descriptor
Component (§6.13).

Instructions and exception handler catch types in the Method Component reference
entries in the Constant Pool Component (§6.7). No other CAP file components,
including the Method Component, are referenced by the elements in the Method
Component.

The Applet Component (§6.5), Constant Pool Component (§6.7), Export Component
(§6.12), and Descriptor Component (§6.13) reference methods defined in the Method
Component. The Reference Location Component (§6.11) references all constant pool
indices contained in the Method Component. No other CAP file components
reference the Method Component.

The Method Component is represented by the following structure:

method_component {
u1 tag
u2 size
u1 handler_count
exception_handler_info
exception_handlers[handler_count]
method_info methods[]

}

The items in the method_component structure are as follows:

tag

The tag item has the value COMPONENT_Method (7).

size

The size item indicates the number of bytes in the method_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

Appendix JCVM01

607

Chapter 6 The CAP File Format 91

handler_count

The handler_count item represents the number of entries in the
exception_handlers array. Valid values are between 0 and 255, inclusive.

exception_handlers[]

The exception_handlers item represents an array of 8-byte
exception_handler_info structures. Each exception_handler_info
structure represents a catch or finally block defined in a method of this
package.

Entries in the exception_handlers array are sorted in ascending order by the
distance between the beginning of the Method Component to the endpoint of
each exception handler range in the methods item.

methods[]

The methods item represents a table of variable-length method_info struc-
tures. Each entry represents a method declared in a class of this package.
<clinit> methods and interface method declaration are not included; all
other methods, including non-interface abstract methods, are.

6.9.1 exception_handler_info
The exception_handler_info structure is defined as follows:

exception_handler_info {
u2 start_offset
u2 active_length
u2 handler_offset
u2 catch_type_index

}

The items in the exception_handler_info structure are as follows:

start_offset, active_length

The active_length item is encoded to indicate whether the active range of
this exception handler is nested within another exception handler. The high bit
of the active_length item is equal to 1 if the active range is not contained
within another exception handler, and this exception handler is the last han-
dler applicable to the active range. The high bit is equal to 0 if the active range
is contained within the active range of another exception handler, or there are
successive handlers applicable to the same active range.

end_offset is defined as start_offset plus active_length & 0x7FFF.

The start_offset item and end_offset are byte offsets into the info item of

Appendix JCVM01

608

92 Java Card 2.1 Virtual Machine Specification • March 3, 1999

the Method Component. They indicate the ranges in a bytecode array at which
the exception handler is active. The value of the start_offset must be a valid
offset into a bytecodes array of a method_info structure to an opcode of an
instruction. The value of the end_offset either must be a valid offset into a byte-
codes array of a method_info structure to an opcode of an instruction or must
be equal to a method’s bytecode count, the length of the bytecodes array of a
method_info structure. The value of the start_offset must be less than the
value of the end_offset.

The start_offset is inclusive and the end_offset is exclusive; that is, the
exception handler must be active while the execution address is within the
interval [start_offset, end_offset).

handler_offset

The handler_offset item represents a byte offset into the info item of the
Method Component. It indicates the start of the exception handler. The value
of the item must be a valid offset into a bytecodes array of a method_info
structure to an opcode of an instruction, and must be less than the value of the
method’s bytecode count.

catch_type_index

If the value of the catch_type_index item is non-zero, it must be a valid
index into the constant_pool array of the Constant Pool Component (§6.7).
The constant_pool entry at that index must be a CONSTANT_Classref_info
structure, representing the class of the exception caught by this
exception_handlers array entry.

If the exception_handlers table entry represents a finally block, the value of
the catch_type_index item is zero. In this case the exception handler is
called for all exceptions that are thrown within the start_offset and
end_offset range.

6.9.2 method_info
The method_info structure is defined as follows:

method_info {
method_header_info method_header
u1 bytecodes[]

}

The items in the method_info structure are as follows:

method_header

The method_header item represents either a method_header_info or an

Appendix JCVM01

609

Chapter 6 The CAP File Format 93

extended_method_header_info structure:

method_header_info {
u1 bitfield {

 bit[4] flags
 bit[4] max_stack
}
u1 bitfield {
 bit[4] nargs
 bit[4] max_locals
}

}

extended_method_header_info {
u1 bitfield {
 bit[4] flags
 bit[4] padding
}
u1 max_stack
u1 nargs

u1 max_locals
}

The items of the method_header_info and extended_method_header_info structures
are as follows:

flags

The flags item is a mask of modifiers defined for this method. Valid flag values
are shown in the following table.

TABLE 6-7 CAP file method flags

The value of the ACC_EXTENDED flag must be one if the method_header is rep-
resented by an extended_method_header_info structure. Otherwise the
value must be zero.

The value of the ACC_ABSTRACT flag must be one if this method is defined as
abstract. In this case the bytecodes array must be empty. If this method is not
abstract the value of the ACC_ABSTRACT flag must be zero.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

Flags Values

ACC_EXTENDED 0x8

ACC_ABSTRACT 0x4

Appendix JCVM01

610

94 Java Card 2.1 Virtual Machine Specification • March 3, 1999

padding

The padding item has the value of zero. This item is only defined for the
extended_method_header_info structure.

max_stack

The max_stack item indicates the maximum number of 16-bit cells required
on the operand stack during execution of this method.

Stack entries of type int are represented in two 16-bit cells, while all others are
represented in one 16-bit cell.

nargs

The nargs item indicates the number of 16-bit cells required to represent the
parameters passed to this method, including the this pointer if this method is
a virtual method.

Parameters of type int are represented in two 16-bit cells, while all others are
represented in one 16-bit cell.

max_locals

The max_locals item indicates the number of 16-bit cells required to represent
the local variables declared by this method, not including the parameters
passed to this method on invocation.1

Local variables of type int are represented in two 16-bit cells, while all others
are represented in one 16-bit cell. The number of cells required for overloaded
local variables is two if one or more of the overloaded variables is of type int.

bytecodes[]

The bytecodes item represents an array of Java Card bytecodes that imple-
ment this method. Valid instructions are defined in Chapter 7, “Java Card Vir-
tual Machine Instruction Set”. The impdep1 and impdep2 bytecodes can not be
present in the bytecodes array item.

If this method is abstract the bytecodes item must contain zero elements.

1. Unlike in Java Card CAP files, in Java class files the max_locals item includes both the local variables
declared by the method and the parameters passed to the method.

Appendix JCVM01

611

Chapter 6 The CAP File Format 95

6.10 Static Field Component
The Static Field Component contains all of the information required to create and
initialize an image of all of the static fields defined in this package, referred to as the
static field image. Final static fields of primitive types are not represented in the
static field image. Instead these compile-time constants are placed in line in Java
Card instructions.

The Static Field Component does not reference any other component in this CAP file.
The Constant Pool Component (§6.7), Export Component (§6.12) and Descriptor
Component (§6.13) reference fields defined in the Static Field Component.

The ordering constraints, or segments, associated with a static field image are shown
in TABLE 6-8. Reference types occur first in the image. Arrays initialized through
Java <clinit> methods occur first within the set of reference types. Primitive
types occur last in the image, and primitive types initialized to non-default values
occur last within the set of primitive types.

TABLE 6-8 Segments of a static field image

The number of bytes used to represent each field type in the static field image is
shown in the following table.

TABLE 6-9 Static field sizes

category segment content

reference
types

1 arrays of primitive types initialized by <clinit>
methods

2 reference types initialized to null

primitive
types

3 primitive types initialized to default values

4 primitive types initialized to non-default values

Type Bytes

boolean 1

byte 1

short 2

int 4

reference, including arrays 2

Appendix JCVM01

612

96 Java Card 2.1 Virtual Machine Specification • March 3, 1999

The static_field_component structure is defined as:

static_field_component {
u1 tag
u2 size
u2 image_size
u2 reference_count
u2 array_init_count
array_init_info array_init[array_init_count]
u2 default_value_count
u2 non_default_value_count
u1 non_default_values[non_default_values_count]

}

The items in the static_field_component structure are as follows:

tag

The tag item has the value COMPONENT_StaticField (8).

size

The size item indicates the number of bytes in the
static_field_component structure, excluding the tag and size items. The
value of the size item must be greater than zero.

image_size

The image_size item indicates the number of bytes required to represent the
static fields defined in this package, excluding final static fields of primitive
types. This value is the number of bytes in the static field image. The number of
bytes required to represent each field type is shown in TABLE 6-9.

The value of the image_size item does not include the number of bytes
require to represent the initial values of array instances enumerated in the
Static Field Component.

reference_count

The reference_count item indicates the number of reference type static
fields defined in this package. This is the number of fields represented in seg-
ments 1 and 2 of the static field image as described in TABLE 6-8.

The value of the reference_count item may be 0 if no reference type fields
are defined in this package. Otherwise it must be equal to the number of ref-
erence type fields defined.

array_init_count

The array_init_count item indicates the number of elements in the
array_init array. This is the number of fields represented in segment 1 of the
static field image as described in TABLE 6-8. It represents the number of arrays

Appendix JCVM01

613

Chapter 6 The CAP File Format 97

initialized in all of the <clinit> methods in this package.

If this CAP file defines a library package the value of array_init_count must
be zero.

array_init[]

The array_init item represents an array of array_init_info structures that
specify the initial array values of static fields of arrays of primitive types.
These initial values are indicated in Java <clinit> methods. The
array_init_info structure is defined as:

array_init_info {
u1 type
u2 count
u1 values[count]

}

The items in the array_init_info structure are defined as follows:

type
The type item indicates the type of the primitive array. Valid values
are shown in the following table.

TABLE 6-10 Array types

count
The count item indicates the number of bytes in the values array. It
does not represent the number of elements in the static field array
(referred to as length in Java), since the values array is an array of
bytes and the static field array may be a non-byte type. The Java
length of the static field array is equal to the count item divided by
the number of bytes required to represent the static field type
(TABLE 6-9) indicated by the type item.

values
The values item represents a byte array containing the initial values
of the static field array. The number of entries in the values array is
equal to the size in bytes of the type indicated by the type item. The
size in bytes of each type is shown in TABLE 6-9.

Type Value

boolean 2

byte 3

short 4

int 5

Appendix JCVM01

614

98 Java Card 2.1 Virtual Machine Specification • March 3, 1999

default_value_count

The default_value_count item indicates the number of bytes required to
initialize the set of static fields represented in segment 3 of the static field
image as described in TABLE 6-8. These static fields are primitive types initial-
ized to default values. The number of bytes required to initialize each static
field type is equal to the size in bytes of the type as shown in TABLE 6-9.

non_default_value_count

The non_default_value_count item represents the number bytes in the
non_default_values array. This value is equal to the number of bytes in seg-
ment 4 of the static field image as described in TABLE 6-8. These static fields are
primitive types initialized to non-default values.

non_default_values[]

The non_default_values item represents an array of bytes of non-default
initial values. This is the exact image of segment 4 of the static field image as
described in TABLE 6-8. The number of entries in the non_default_values
array for each static field type is equal to the size in bytes of the type as shown
in TABLE 6-9.

6.11 Reference Location Component
The Reference Location Component represents lists of offsets into the info item of
the Method Component (§6.9) to operands that contain indices into the
constant_pool array of the Constant Pool Component (§6.7). Some of the constant
pool indices are represented in one-byte values while others are represented in two-
byte values.

The Reference Location Component is not referenced by any other component in this
CAP file.

The Reference Location Component structure is defined as:

reference_location_component {
u1 tag
u2 size
u2 byte_index_count
u1 offsets_to_byte_indices[byte_index_count]
u2 byte2_index_count
u1 offsets_to_byte2_indices[byte2_index_count]

}

The items of the reference_location_component structure are as follows:

Appendix JCVM01

615

Chapter 6 The CAP File Format 99

tag

The tag item has the value COMPONENT_ReferenceLocation (9).

size

The size item indicates the number of bytes in the
reference_location_component structure, excluding the tag and size
items. The value of the size item must be greater than zero.

byte_index_count

The byte_index_count item represents the number of elements in the
offsets_to_byte_indices array.

offsets_to_byte_indices[]

The offsets_to_byte_indices item represents an array of 1-byte jump off-
sets into the info item of the Method Component to each 1-byte
constant_pool array index. Each entry represents the number of bytes (or
distance) between the current index to the next. If the distance is greater than or
equal to 255 then there are n entries equal to 255 in the array, where n is equal
to the distance divided by 255. The nth entry of 255 is followed by an entry
containing the value of the distance modulo 255.

An example of the jump offsets in an offsets_to_byte_indices array is
shown in the following table.

TABLE 6-11 One-byte reference location example

All 1-byte constant_pool array indices in the Method Component must be
represented in offsets_to_byte_indices array.

byte2_index_count

The byte2_index_count item represents the number of elements in the
offsets_to_byte2_indices array.

offsets_to_byte2_indices[]

The offsets_to_byte2_indices item represents an array of 1-byte jump off-

Instruction
Offset to
Operand Jump Offset

getfield_a 0 10 10

putfield_b 2 65 55

255

255

getfield_s 1 580 5

255

putfield_a 0 835 0

getfield_i 3 843 8

Appendix JCVM01

616

100 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sets into the info item of the Method Component to each 2-byte
constant_pool array index. Each entry represents the number of bytes (or
distance) between the current index to the next. If the distance is greater than or
equal to 255 then there are n entries equal to 255 in the array, where n is equal
to the distance divided by 255. The nth entry of 255 is followed by an entry
containing the value of the distance modulo 255.

An example of the jump offsets in an offsets_to_byte_indices array is shown in
TABLE 6-11. The same example applies to the offsets_to_byte2_indices array if
the instructions are changed to those with 2-byte constant_pool array indi-
ces.

All 2-byte constant_pool array indices in the Method Component must be
represented in offsets_to_byte2_indices array, including those repre-
sented in catch_type_index items of the exception_handler_info array.

6.12 Export Component
The Export Component lists all static elements in this package that may be imported
by classes in other packages. Instance fields and virtual methods are not represented
in the Export Component.

If this CAP file does not include an Applet Component (§6.5) (called a library
package) , the Export Component contains an entry for each public class and
public interface defined in this package. Furthermore, for each public class there is
an entry for each public or protected static field defined in that class, for each
public or protected static method defined in that class, and for each public or
protected constructor defined in that class. Final static fields of primitive types
(compile-time constants) are not included.

If this CAP file includes an Applet Component (§6.5) (called an applet package) the
Export Component includes entries only for all public interfaces that are shareable.1
An interface is sharable if and only if it is the javacard.framework.Shareable
interface or implements (directly or indirectly) that interface.

Elements in the Export Component reference elements in the Class Component
(§6.8), Method Component (§6.9), and Static Field Component (§6.10). No other
component in this CAP file references the Export Component.

1. The restriction on shareable functionality is imposed by the firewall as defined in the Java Card Runtime
Environment (JCRE) 2.1 specification.

Appendix JCVM01

617

Chapter 6 The CAP File Format 101

The Export Component is represented by the following structure:

export_component {
u1 tag
u2 size
u1 class_count
class_export_info {

u2 class_offset
u1 static_field_count
u1 static_method_count
u2 static_field_offsets[static_field_count]
u2 static_method_offsets[static_method_count]

} class_exports[class_count]
}

The items of the export_component structure are as follows:

tag

The tag item has the value COMPONENT_Export (10).

size

The size item indicates the number of bytes in the export_component struc-
ture, excluding the tag and size items. The value of the size item must be
greater than zero.

class_count

The class_count item represents the number of entries in the
class_exports table.

class_exports[]

The class_exports item represents a variable-length table of
class_export_info structures. If this package is a library package, the table
contains an entry for each of the public classes and public interfaces defined
in this package. If this package is an applet package, the table contains an entry
for each of the public shareable interfaces defined in this package.

An index into the table to a particular class or interface is equal to the token
value of that class or interface (§4.3.7.2). The token value is published in the
Export file (§5.5) of this package.

The items in the class_export_info structure are:

class_offset
The class_offset item represents a byte offset into the info item of
the Class Component (§6.8). If this package defines a library package,
the item at that offset must be either an interface_info or a
class_info structure. The interface_info or class_info struc-

Appendix JCVM01

618

102 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ture at that offset must represent the exported class or interface.

If this package defines an applet package, the item at the
class_offset in the info item of the Class Component must be an
interface_info structure. The interface_info structure at that
offset must represent the exported, shareable interface. In particular,
the ACC_SHAREABLE flag of the interface_info structure must be
equal to 1.

static_field_count
The static_field_count item represents the number of elements in
the static_field_offsets array. This value indicates the number
of public and protected static fields defined in this class, exclud-
ing final static fields of primitive types.

If the class_offset item represents an offset to an interface_info
structure, the value of the static_field_count item must be zero.

static_method_count
The static_method_count item represents the number of elements
in the static_method_offsets array. This value indicates the num-
ber of public and protected static methods and constructors
defined in this class.

If the class_offset item represents an offset to an interface_info
structure, the value of the static_method_count item must be zero.

static_field_offsets[]
The static_field_offsets item represents an array of 2-byte off-
sets into the static field image defined by the Static Field Component
(§6.10). Each offset must be to the beginning of the representation of
the exported static field.

An index into the static_field_offsets array must be equal to the
token value of the field represented by that entry. The token value is
published in the Export file (§5.7) of this package.

static_method_offsets[]
The static_method_offsets item represents a table of 2-byte offsets
into the info item of the Method Component (§6.9). Each offset must
be to the beginning of a method_info structure. The method_info
structure must represent the exported static method or constructor.

An index into the static_method_offsets array must be equal to
the token value of the method represented by that entry.

Appendix JCVM01

619

Chapter 6 The CAP File Format 103

6.13 Descriptor Component
The Descriptor Component provides sufficient information to parse and verify all
elements of the CAP file. It references, and therefore describes, elements in the
Constant Pool Component (§6.7), Class Component (§6.8), Method Component
(§6.9), and Static Field Component (§6.10). No components in the CAP file reference
the Descriptor Component.

The Descriptor Component is represented by the following structure:

descriptor_component {
u1 tag
u2 size
u1 class_count
class_descriptor_info classes[class_count]
type_descriptor_info types

}

The items of the descriptor_component structure are as follows:

tag

The tag item has the value COMPONENT_Descriptor (11).

size

The size item indicates the number of bytes in the descriptor_component
structure, excluding the tag and size items. The value of the size item must
be greater than zero.

class_count

The class_count item represents the number of entries in the classes table.

classes[]

The classes item represents a table of variable-length
class_descriptor_info structures. Each class and interface defined in this
package is represented in the table.

types

The types item represents a type_descriptor_info structure. This structure
lists the set of field types and method signatures of the fields and methods
defined or referenced in this package. Those referenced are enumerated in the
Constant Pool Component.

Appendix JCVM01

620

104 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.13.1 class_descriptor_info
The class_descriptor_info structure is used to describe a class or interface
defined in this package:

class_descriptor_info {
u1 token
u1 access_flags
class_ref this_class_ref
u1 interface_count
u2 field_count
u2 method_count
class_ref interfaces [interface_count]
field_descriptor_info fields[field_count]
method_descriptor_info methods[method_count]

}

The items of the class_descriptor_info structure are as follows:

token

The token item represents the class token (§4.3.7.2) of this class or interface. If
this class or interface is package-visible it does not have a token assigned. In
this case the value of the token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access per-
mission to and properties of this class or interface. The access_flags modifi-
ers for classes and interfaces are shown in the following table.

TABLE 6-12 CAP file class descriptor flags

The class access and modifier flags defined in the table above are a subset of
those defined for classes and interfaces in a Java class file. They have the
same meaning, and are set under the same conditions, as the corresponding
flags in a Java class file.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

Name Value

ACC_PUBLIC 0x01

ACC_FINAL 0x10

ACC_INTERFACE 0x40

ACC_ABSTRACT 0x80

Appendix JCVM01

621

Chapter 6 The CAP File Format 105

this_class_ref

The this_class_ref item is a class_ref structure indicating the location of
the class_info structure in the Class Component (§6.8). The class_ref
structure is defined as part of the CONSTANT_Classref_info structure
(§6.7.1).

interface_count

The interface_count item represents the number of entries in the inter-
faces array.

field_count

The field_count item represents the number of entries in the fields array.
If this class_descriptor_info structure represents an interface, the value of
the field_count item is equal to zero.

method_count

The method_count item represents the number of entries in the methods
array.

interfaces[]

The interfaces item represents an array of interfaces implemented by this
class or interface. The elements in the array are class_ref structures indicat-
ing the location of the class_info structure in the Class Component (§6.8).
The class_ref structure is defined as part of the CONSTANT_Classref_info
structure (§6.7.1).

fields[]

The fields item represents an array of field_descriptor_info structures.
Each field declared by this class is represented in the array.

methods[]

The methods item represents an array of method_descriptor_info struc-
tures. Each method declared or defined by this class or interface is represented
in the array.

Appendix JCVM01

622

106 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.13.2 field_descriptor_info
The field_descriptor_info structure is used to describe a field defined in this
package:

field_descriptor_info {
u1 token
u1 access_flags
union {

static_field_ref static_field
instance_field_ref instance_field

} field_ref
union {

u2 primitive_type
u2 reference_type

} type
}

The items of the field_descriptor_info structure is as follows:

token

The token item represents the token of this field. If this field is private or
package-visible static field it does not have a token assigned. In this case the
value of the token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access per-
mission to and properties of this field. The access_flags modifiers for fields
are shown in the following table.

TABLE 6-13 CAP file field descriptor flagss

The field access and modifier flags defined in the table above are a subset of
those defined for fields in a Java class file. They have the same meaning, and
are set under the same conditions, as the corresponding flags in a Java class
file.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

Name Value

ACC_PUBLIC 0x01

ACC_PRIVATE 0x02

ACC_PROTECTED 0x04

ACC_STATIC 0x08

ACC_FINAL 0x10

Appendix JCVM01

623

Chapter 6 The CAP File Format 107

field_ref

The field_ref item represents a reference to this field. If the ACC_STATIC
flag is equal to 1, this item represents a static_field_ref as defined in the
CONSTANT_StaticFieldref structure (§6.7.3).

If the ACC_STATIC flag is equal to 0, this item represents an
instance_field_ref as defined in the CONSTANT_InstanceFieldref struc-
ture (§6.7.2).

type

The type item indicates the type of this field. directly or indirectly. If this field
is a primitive type (boolean, byte, short, or int) the high bit of this item is
equal to 1, otherwise the high bit of this item is equal to 0.

primitive_type
The primitive_type item represents the type of this field using the
values in the table below. As noted above, the high bit of the
primitive_type item is equal to 1.

TABLE 6-14 Primitive type descriptor values

reference_type
The reference_type item represents a 15-bit offset into the
type_descriptor_info structure. The item at the offset must repre-
sent the reference type of this field. As noted above, the high bit of
the reference_type item is equal to 0.

Data Type Value

boolean 0x0002

byte 0x0003

short 0x0004

int 0x0005

Appendix JCVM01

624

108 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.13.3 method_descriptor_info
The method_descriptor_info structure is used to describe a method defined in
this package:

method_descriptor_info {
u1 token
u1 access_flags
u2 method_offset
u2 type_offset
u2 bytecode_count
u2 exception_handler_count
u2 exception_handler_index

}

The items of the method_descriptor_info structure are as follows:

token

The token item represents the static method token (§4.3.7.4) or virtual method
token (§4.3.7.6) or interface method token (§4.3.7.7) of this method. If this
method is a private or package-visible static method, a private or package-visi-
ble constructor, or a private virtual method it does not have a token assigned.
In this case the value of the token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access per-
mission to and properties of this method. The access_flags modifiers for
methods are shown in the following table.

TABLE 6-15 CAP file method descriptor flags

The method access and modifier flags defined in the table above, except the
ACC_INIT flag, are a subset of those defined for methods in a Java class file.
They have the same meaning, and are set under the same conditions, as the
corresponding flags in a Java class file.

The ACC_INIT flag is set if the method descriptor identifies a constructor meth-

Name Value

ACC_PUBLIC 0x01

ACC_PRIVATE 0x02

ACC_PROTECTED 0x04

ACC_STATIC 0x08

ACC_FINAL 0x10

ACC_ABSTRACT 0x40

ACC_INIT 0x80

Appendix JCVM01

625

Chapter 6 The CAP File Format 109

ods. In Java a constructor method is recognized by its name, <init>, but in
Java Card the name is replaced by a token. As in the Java verifier, these meth-
ods require special checks by the Java Card verifier.

The Java Card virtual machine reserves all other flag values. Their values must
be zero.

method_offset

If the class_descriptor_info structure that contains this
method_descriptor_info structure represents a class, the method_offset
item represents a byte offset into the info item of the Method Component
(§6.9). The element at that offset must be the beginning of a method_info
structure. The method_info structure must represent this method.

If the class_descriptor_info structure that contains this
method_descriptor_info structure represents an interface, the value of the
method_offset item must be zero.

type_offset

The type_offset item must be a valid offset into the
type_descriptor_info structure. The type described at that offset repre-
sents the signature of this method.

bytecode_count

The bytecode_count item represents the number of bytecodes in this method.
The value is equal to the length of the bytecodes array item in the
method_info structure in the method component (§6.9) of this method.

exception_handler_count

The exception_handler_count item represents the number of exception
handlers implemented by this method.

exception_handler_index

The exception_handler_index item represents the index to the first
exception_handlers table entry in the method component (§6.9) imple-
mented by this method. Succeeding exception_handlers table entries, up to
the value of the exception_handler_count item, are also exception handlers
implemented by this method.

The value of the exception_handler_index item is 0 if the value of the
exception_handler_count item is 0.

Appendix JCVM01

626

110 Java Card 2.1 Virtual Machine Specification • March 3, 1999

6.13.4 type_descriptor_info
The type_descriptor_info structure represents the types of fields and signatures
of methods defined in this package:

type_descriptor_info {
u2 constant_pool_count
u2 constant_pool_types[constant_pool_count]
{ u1 nibble_count;
 u1 type[(nibble_count+1) / 2];
} type_desc[]

}

The type_descriptor_info structure contains the following elements:

constant_pool_count

The constant_pool_count item represents the number of entries in the
constant_pool_types array. This value is equal to the number of entries in
the constant_pool array of the Constant Pool Component (§6.7).

constant_pool_types[]

The constant_pool_types item is an array that describes the types of the
fields and methods referenced in the Constant Pool Component. This item has
the same number of entries as the constant_pool array of the Constant Pool
Component, and each entry describes the type of the corresponding entry in
the constant_pool array.

If the corresponding constant_pool array entry represents a class or interface
reference, it does not have an associated type. In this case the value of the entry
in the constant_pool_types array item is 0xFFFF.

If the corresponding constant_pool array entry represents a field or method,
the value of the entry in the constant_pool_types array is an offset into the
type_descriptor_info structure. The element at that offset must describe
the type of the field or the signature of the method.

type_desc[]

The type_desc item represents a table of variable-length type descriptor struc-
tures. These descriptors represent the types of fields and signatures of meth-
ods. The elements in the structure are:

nibble_count
The nibble_count value represents the number of nibbles required
to describe the type encoded in the type array. This is different from
the length of the type array if the value of the nibble_count item is
odd. In this case the length of the type array is one greater than the
value of nibble_count.

Appendix JCVM01

627

Chapter 6 The CAP File Format 111

type[]
The type array contains an encoded description of the type, com-
posed of individual nibbles. If the nibble_count item is an odd
number, the last nibble in the type array must be 0x0. The values of
the type descriptor nibbles are defined in the following table.

TABLE 6-16 Type descriptor values

Class reference types are described using the reference nibble 0x6, followed by a
2-byte (4-nibble) class_ref structure. The class_ref structure is defined as part of
the CONSTANT_Classref_info structure (§6.7.1). For example, a field of type
reference to p1.c1 in a CAP file defining package p0 is described as:

TABLE 6-17 Encoded reference type p1.c1

The following are examples of the array types:

TABLE 6-18 Encoded byte array type

Type Value

void 0x1

boolean 0x2

byte 0x3

short 0x4

int 0x5

reference 0x6

array of boolean 0xA

array of byte 0xB

array of short 0xC

array of int 0xD

array of reference 0xE

Nibble Value Description

0 0x6 reference

1 <p1> package token
(high bit on)2

3 <c1> class token

4

5 0x0 padding

Nibble Value Description

0 0xB array of byte

1 0x0 padding

Appendix JCVM01

628

112 Java Card 2.1 Virtual Machine Specification • March 3, 1999

TABLE 6-19 Encoded reference array type p1.c1

Method signatures are encoded in the same way, with the last nibble indicating the
return type of the method. For example:

TABLE 6-20 Encoded method signature ()V

TABLE 6-21 Encoded method signature (Lp1.ci;)S

Nibble Value Description

0 0xE array of reference

1 <p1> package token
(high bit on)2

3 <c1> class token

4

5 0x0 padding

Nibble Value Description

0 0x1 void

1 0x0 padding

Nibble Value Description

0 0x6 reference

1 <p1> package token
(high bit on)2

3 <c1> class token

4

5 0x4 short

Appendix JCVM01

629

115

CHAPTER 7

Java Card Virtual Machine
Instruction Set

A Java Card virtual machine instruction consists of an opcode specifying the
operation to be performed, followed by zero or more operands embodying values to
be operated upon. This chapter gives details about the format of each Java Card
virtual machine instruction and the operation it performs.

7.1 Assumptions: The Meaning of “Must”
The description of each instruction is always given in the context of Java Card
virtual machine code that satisfies the static and structural constraints of Chapter 6,
“The CAP File Format.”

In the description of individual Java Card virtual machine instructions, we
frequently state that some situation “must” or “must not” be the case: “The value2
must be of type int.” The constraints of Chapter 6, “The CAP File Format”
guarantee that all such expectations will in fact be met. If some constraint (a “must”
or “must not”) in an instruction description is not satisfied at run time, the behavior
of the Java Card virtual machine is undefined.

Appendix JCVM01

630

116 Java Card 2.1 Virtual Machine Specification • March 3, 1999

7.2 Reserved Opcodes
In addition to the opcodes of the instructions specified later this chapter, which are
used in Java Card CAP files (see Chapter 6, “The CAP File Format”), two opcodes are
reserved for internal use by a Java Card virtual machine implementation. If Sun
extends the instruction set of the Java Card virtual machine in the future, these
reserved opcodes are guaranteed not to be used.

The two reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have the mnemonics
impdep1 and impdep2, respectively. These instructions are intended to provide “back
doors” or traps to implementation-specific functionality implemented in software
and hardware, respectively.

Although these opcodes have been reserved, they may only be used inside a Java
Card virtual machine implementation. They cannot appear in valid CAP files.

7.3 Virtual Machine Errors
A Java Card virtual machine may encounter internal errors or resource limitations
that prevent it from executing correctly written Java programs. While the Java
Virtual Machine Specification allows reporting and handling of virtual machine
errors, it also states that they cannot ordinarily be handled by application code. This
Java Card Virtual Machine Specification is more restrictive in that it does not allow
for any reporting or handling of unrecoverable virtual machine errors at the
application code level. A virtual machine error is considered unrecoverable if further
execution could compromise the security or correct operation of the virtual machine
or underlying system software. When an unrecoverable error occurs, the virtual
machine will halt bytecode execution. Responses beyond halting the virtual machine
are implementation-specific policies and are not mandated in this specification.

In the case where the virtual machine encounters a recoverable error, such as
insufficient memory to allocate a new object, it will throw a SystemException with
an error code describing the error condition. The Java Card Virtual Machine
Specification cannot predict where resource limitations or internal errors may be
encountered and does not mandate precisely when they can be reported. Thus, a
SystemException may be thrown at any time during the operation of the Java Card
virtual machine.

Appendix JCVM01

631

Chapter 7 Java Card Virtual Machine Instruction Set 117

7.4 Security Exceptions
Instructions of the Java Card virtual machine throw an instance of the class
SecurityException when a security violation has been detected. The Java Card
virtual machine does not mandate the complete set of security violations that can or
will result in an exception being thrown. However, there is a minimum set that must
be supported.

In the general case, any instruction that de-references an object reference must throw
a SecurityException if the context (§3.4) in which the instruction is executing is
different than the owning context (§3.4) of the referenced object. The list of
instructions includes the instance field get and put instructions, the array load and
store instructions, as well as the arraylength, invokeinterface, invokespecial, invokevirtual,
checkcast, instanceof and athrow instructions.

There are several exceptions to this general rule that allow cross-context use of
objects or arrays. These exceptions are detailed in Chapter 6 of the Java Card 2.1
Runtime Environment (JCRE) Specification. An important detail to note is that any
cross-context method invocation will result in a context switch (§3.4).

The Java Card virtual machine may also throw a SecurityException if an
instruction violates any of the static constraints of Chapter 6, “The CAP File
Format.” The Java Card Virtual Machine Specification does not mandate which
instructions must implement these additional security checks, or to what level.
Therefore, a SecurityException may be thrown at any time during the operation
of the Java Card virtual machine.

7.5 The Java Card Virtual Machine
Instruction Set
Java Virtual Machine instructions are represented in this chapter by entries of the
form shown in the figure below, an example instruction page, in alphabetical order
and each beginning on a new page.

Appendix JCVM01

632

118 Java Card 2.1 Virtual Machine Specification • March 3, 1999

FIGURE 7-1 An example instruction page

Each cell in the instruction format diagram represents a single 8-bit byte. The
instruction’s mnemonic is its name. Its opcode is its numeric representation and is
given in both decimal and hexadecimal forms. Only the numeric representation is
actually present in the Java Card virtual machine code in a CAP file.

mnemonic mnemonic
Short description of the instruction

Format
mnemonic
operand1
operand2
…

Forms

mnemonic = opcode

Stack

…, value1, value2 ⇒
…, value3

Description

A longer description detailing constraints on operand stack
contents or constant pool entries, the operation performed, the
type of the results, etc.

Runtime Exceptions

If any runtime exceptions can be thrown by the execution of an
instruction they are set off one to a line, in the order in which
they must be thrown.

Other than the runtime exceptions, if any, listed for an
instruction, that instruction must not throw any runtime
exceptions except for instances of SystemException.

Notes

Comments not strictly part of the specification of an instruction
are set aside as notes at the end of the description.

Appendix JCVM01

633

Chapter 7 Java Card Virtual Machine Instruction Set 119

Keep in mind that there are “operands” generated at compile time and embedded
within Java Card virtual machine instructions, as well as “operands” calculated at
run time and supplied on the operand stack. Although they are supplied from
several different areas, all these operands represent the same thing: values to be
operated upon by the Java Card virtual machine instruction being executed. By
implicitly taking many of its operands from its operand stack, rather than
representing them explicitly in its compiled code as additional operand bytes,
register numbers, etc., the Java Card virtual machine’s code stays compact.

Some instructions are presented as members of a family of related instructions
sharing a single description, format, and operand stack diagram. As such, a family
of instructions includes several opcodes and opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line lists
all member mnemonics and opcodes. For example, the forms line for the sconst_<s>
family of instructions, giving mnemonic and opcode information for the two
instructions in that family (sconst_0 and sconst_1), is

Forms sconst_0 = 3 (0x3),
sconst_1 = 4 (0x4)

In the description of the Java Card virtual machine instructions, the effect of an
instruction’s execution on the operand stack (§3.5) of the current frame (§3.5) is
represented textually, with the stack growing from left to right and each word
represented separately. Thus,

Stack…, value1, value2 ⇒
…, result

shows an operation that begins by having a one-word value2 on top of the operand
stack with a one-word value1 just beneath it. As a result of the execution of the
instruction, value1 and value2 are popped from the operand stack and replaced by a
one-word result, which has been calculated by the instruction. The remainder of the
operand stack, represented by an ellipsis (…), is unaffected by the instruction’s
execution.

The type int takes two words on the operand stack. In the operand stack
representation, each word is represented separately using a dot notation:

Stack…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

The Java Card Virtual Machine Specification does not mandate how the two words
are used to represent the 32-bit int value; it only requires that a particular
implementation be internally consistent.

Appendix JCVM01

634

120 Java Card 2.1 Virtual Machine Specification • March 3, 1999

aaload aaload
Load reference from array

Format

Forms

aaload = 36 (0x24)

Stack

…, arrayref, index ⇒
…, value

Description

The arrayref must be of type reference and must refer to an array whose
components are of type reference. The index must be of type short. Both arrayref
and index are popped from the operand stack. The reference value in the
component of the array at index is retrieved and pushed onto the top of the operand
stack.

Runtime Exceptions

If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
aaload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the aaload instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

aaload

Appendix JCVM01

635

Chapter 7 Java Card Virtual Machine Instruction Set 121

aastore aastore
Store into reference array

Format

Forms

aastore = 55 (0x37)

Stack

…, arrayref, index, value ⇒
…

Description

The arrayref must be of type reference and must refer to an array whose
components are of type reference. The index must be of type short and the value
must be of type reference. The arrayref, index and value are popped from the
operand stack. The reference value is stored as the component of the array at index.

The type of value must be assignment compatible with the type of the components
of the array referenced by arrayref. Assignment of a value of reference type S
(source) to a variable of reference type T (target) is allowed only when the type S
supports all of the operations defined on type T. The detailed rules follow:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type, then:

■ If T is a class type, then T must be Object (§2.2.2.4);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type1, namely the type SC[], that is, an array of components of
type SC, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

■ TC and SC are the same primitive type (§3.1).

■ TC and SC are reference types (§3.1) with type SC assignable to TC, by these
rules.

aastore

1. This version of the Java Card virtual machine specification does not allow for arrays of more than one
dimension. Therefore, neither S or T can be an array type, and the rules for array types do not apply.

Appendix JCVM01

636

122 Java Card 2.1 Virtual Machine Specification • March 3, 1999

aastore (cont.) aastore (cont.)
■ If T is an interface type, T must be one of the interfaces implemented by

arrays1.

Runtime Exceptions

If arrayref is null, aastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
aastore instruction throws an ArrayIndexOutOfBoundsException.

Otherwise, if arrayref is not null and the actual type of value is not assignment
compatible with the actual type of the component of the array, aastore throws an
ArrayStoreException.

Notes

In some circumstances, the aastore instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

1. In the Java Card 2.1 API, arrays do not implement any interfaces. Therefore, T cannot be an interface type
when S is an array type, and this rule does not apply.

Appendix JCVM01

637

Chapter 7 Java Card Virtual Machine Instruction Set 123

aconst_null aconst_null
Push null

Format

Forms

aconst_null = 1 (0x1)

Stack

… ⇒
…, null

Description

Push the null object reference onto the operand stack.

aconst_null

Appendix JCVM01

638

124 Java Card 2.1 Virtual Machine Specification • March 3, 1999

aload aload
Load reference from local variable

Format

Forms

aload = 21 (0x15)

Stack

… ⇒
…, objectref

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The local variable at index must contain a reference. The
objectref in the local variable at index is pushed onto the operand stack.

Notes

The aload instruction cannot be used to load a value of type returnAddress from a
local variable onto the operand stack. This asymmetry with the astore instruction is
intentional.

aload
index

Appendix JCVM01

639

Chapter 7 Java Card Virtual Machine Instruction Set 125

aload_<n> aload_<n>
Load reference from local variable

Format

Forms

aload_0 = 24 (0x18)
aload_1 = 25 (0x19)
aload_2 = 26 (0x1a)
aload_3 = 27 (0x1b)

Stack

… ⇒
…, objectref

Description

The <n> must be a valid index into the local variables of the current frame (§3.5).
The local variable at <n> must contain a reference. The objectref in the local variable
at <n> is pushed onto the operand stack.

Notes

An aload_<n> instruction cannot be used to load a value of type returnAddress
from a local variable onto the operand stack. This asymmetry with the
corresponding astore_<n> instruction is intentional.

Each of the aload_<n> instructions is the same as aload with an index of <n>, except
that the operand <n> is implicit.

aload_<n>

Appendix JCVM01

640

126 Java Card 2.1 Virtual Machine Specification • March 3, 1999

anewarray anewarray
Create new array of reference

Format

Forms

anewarray = 145 (0x91)

Stack

…, count ⇒
…, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count
represents the number of components of the array to be created. The unsigned
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the
current package (§3.5), where the value of the index is (indexbyte1 << 8) | indexbyte2.
The item at that index in the constant pool must be of type CONSTANT_Classref
(§6.7.1), a reference to a class or interface type. The reference is resolved. A new
array with components of that type, of length count, is allocated from the heap, and
a reference arrayref to this new array object is pushed onto the operand stack. All
components of the new array are initialized to null, the default value for reference
types.

Runtime Exception

If count is less than zero, the anewarray instruction throws a
NegativeArraySizeException.

anewarray
indexbyte1
indexbyte2

Appendix JCVM01

641

Chapter 7 Java Card Virtual Machine Instruction Set 127

areturn areturn
Return reference from method

Format

Forms

areturn = 119 (0x77)

Stack

…, objectref ⇒
[empty]

Description

The objectref must be of type reference. The objectref is popped from the operand
stack of the current frame (§3.5) and pushed onto the operand stack of the frame of
the invoker. Any other values on the operand stack of the current method are
discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

areturn

Appendix JCVM01

642

128 Java Card 2.1 Virtual Machine Specification • March 3, 1999

arraylength arraylength
Get length of array

Format

Forms

arraylength = 146 (0x92)

Stack

…, arrayref ⇒
…, length

Description

The arrayref must be of type reference and must refer to an array. It is popped from
the operand stack. The length of the array it references is determined. That length is
pushed onto the top of the operand stack as a short.

Runtime Exception

If arrayref is null, the arraylength instruction throws a NullPointerException.

Notes

In some circumstances, the arraylength instruction may throw a SecurityException
if the current context (§3.4) is not the owning context (§3.4) of the array referenced
by arrayref. The exact circumstances when the exception will be thrown are specified
in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

arraylength

Appendix JCVM01

643

Chapter 7 Java Card Virtual Machine Instruction Set 129

astore astore
Store reference into local variable

Format

Forms

astore = 40 (0x28)

Stack

…, objectref ⇒
…

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The objectref on the top of the operand stack must be of type
returnAddress or of type reference. The objectref is popped from the operand
stack, and the value of the local variable at index is set to objectref.

Notes

The astore instruction is used with an objectref of type returnAddress when
implementing Java’s finally keyword. The aload instruction cannot be used to load
a value of type returnAddress from a local variable onto the operand stack. This
asymmetry with the astore instruction is intentional.

astore
index

Appendix JCVM01

644

130 Java Card 2.1 Virtual Machine Specification • March 3, 1999

astore_<n> astore_<n>
Store reference into local variable

Format

Forms

astore_0 = 43 (0x2b)
astore_1 = 44 (0x2c)
astore_2 = 45 (0x2d)
astore_3 = 46 (0x2e)

Stack

…, objectref ⇒
…

Description

The <n> must be a valid index into the local variables of the current frame (§3.5).
The objectref on the top of the operand stack must be of type returnAddress or of
type reference. It is popped from the operand stack, and the value of the local
variable at <n> is set to objectref.

Notes

An astore_<n> instruction is used with an objectref of type returnAddress when
implementing Java’s finally keyword. An aload_<n> instruction cannot be used to
load a value of type returnAddress from a local variable onto the operand stack.
This asymmetry with the corresponding astore_<n> instruction is intentional.

Each of the aload_<n> instructions is the same as aload with an index of <n>, except
that the operand <n> is implicit.

astore_<n>

Appendix JCVM01

645

Chapter 7 Java Card Virtual Machine Instruction Set 131

athrow athrow
Throw exception or error

Format

Forms

athrow = 147 (0x93)

Stack

…, objectref ⇒
objectref

Description

The objectref must be of type reference and must refer to an object that is an
instance of class Throwable or of a subclass of Throwable. It is popped from the
operand stack. The objectref is then thrown by searching the current frame (§3.5) for
the most recent catch clause that catches the class of objectref or one of its
superclasses.

If a catch clause is found, it contains the location of the code intended to handle this
exception. The pc register is reset to that location, the operand stack of the current
frame is cleared, objectref is pushed back onto the operand stack, and execution
continues. If no appropriate clause is found in the current frame, that frame is
popped, the frame of its invoker is reinstated, and the objectref is rethrown.

If no catch clause is found that handles this exception, the virtual machine exits.

Runtime Exception

If objectref is null, athrow throws a NullPointerException instead of objectref.

Notes

In some circumstances, the athrow instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

athrow

Appendix JCVM01

646

132 Java Card 2.1 Virtual Machine Specification • March 3, 1999

baload baload
Load byte or boolean from array

Format

Forms

baload = 37 (0x25)

Stack

…, arrayref, index ⇒
…, value

Description

The arrayref must be of type reference and must refer to an array whose
components are of type byte or of type boolean. The index must be of type short.
Both arrayref and index are popped from the operand stack. The byte value in the
component of the array at index is retrieved, sign-extended to a short value, and
pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
baload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the baload instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

baload

Appendix JCVM01

647

Chapter 7 Java Card Virtual Machine Instruction Set 133

bastore bastore
Store into byte or boolean array

Format

Forms

bastore = 56 (0x38)

Stack

…, arrayref, index, value ⇒
…

Description

The arrayref must be of type reference and must refer to an array whose
components are of type byte or of type boolean. The index and value must both be
of type short. The arrayref, index and value are popped from the operand stack. The
short value is truncated to a byte and stored as the component of the array indexed
by index.

Runtime Exceptions

If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
bastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the bastore instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

bastore

Appendix JCVM01

648

134 Java Card 2.1 Virtual Machine Specification • March 3, 1999

bipush bipush
Push byte

Format

Forms

bipush = 18 (0x12)

Stack

… ⇒
…, value.word1, value.word2

Description

The immediate byte is sign-extended to an int, and the resulting value is pushed
onto the operand stack.

Notes

If a virtual machine does not support the int data type, the bipush instruction will
not be available.

bipush
byte

Appendix JCVM01

649

Chapter 7 Java Card Virtual Machine Instruction Set 135

bspush bspush
Push byte

Format

Forms

bspush = 16 (0x10)

Stack

… ⇒
…, value

Description

The immediate byte is sign-extended to a short, and the resulting value is pushed
onto the operand stack.

bspush
byte

Appendix JCVM01

650

136 Java Card 2.1 Virtual Machine Specification • March 3, 1999

checkcast checkcast
Check whether object is of given type

Format

Forms

checkcast = 148 (0x94)

Stack

…, objectref ⇒
…, objectref

Description

The unsigned byte atype is a code that indicates if the type against which the object
is being checked is an array type or a class type. It must take one of the following
values or zero:

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2
must be zero, and the value of atype indicates the array type against which to check
the object. Otherwise the unsigned indexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current package (§3.5), where the value of the
index is (indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool
must be of type CONSTANT_Classref (§6.7.1), a reference to a class or interface type.
The reference is resolved. If the value of atype is 14, the object is checked against an
array type that is an array of object references of the type of the resolved class. If the
value of atype is zero, the object is checked against a class or interface type that is the
resolved class.

The objectref must be of type reference. If objectref is null or can be cast to the
specified array type or the resolved class or interface type, the operand stack is
unchanged; otherwise the checkcast instruction throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can be
cast to the resolved type: if S is the class of the object referred to by objectref and T is

checkcast
atype

indexbyte1
indexbyte2

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

Appendix JCVM01

651

Chapter 7 Java Card Virtual Machine Instruction Set 137

checkcast (cont.) checkcast (cont.)
the resolved class, array or interface type, checkcast determines whether objectref can
be cast to type T as follows:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type, then:

■ If T is a class type, then T must be Object (§2.2.2.4);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type, namely the type SC[], that is, an array of components of type
SC1, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

■ TC and SC are the same primitive type (§3.1).

■ TC and SC are reference types (§3.1) with type SC assignable to TC, by these
rules.

■ If T is an interface type, T must be one of the interfaces implemented by
arrays2.

Runtime Exception

If objectref cannot be cast to the resolved class, array, or interface type, the checkcast
instruction throws a ClassCastException.

Notes

The checkcast instruction is fundamentally very similar to the instanceof instruction. It
differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

In some circumstances, the checkcast instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

1. This version of the Java Card virtual machine specification does not allow for arrays of more than one
dimension. Therefore, neither SC or TC can be an array type.

2. In the Java Card 2.1 API, arrays do not implement any interfaces. Therefore, T cannot be an interface type
when S is an array type, and this rule does not apply.

Appendix JCVM01

652

138 Java Card 2.1 Virtual Machine Specification • March 3, 1999

checkcast (cont.) checkcast (cont.)
If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

Appendix JCVM01

653

Chapter 7 Java Card Virtual Machine Instruction Set 139

dup dup
Duplicate top operand stack word

Format

Forms

dup = 61 (0x3d)

Stack

…, word ⇒
…, word, word

Description

The top word on the operand stack is duplicated and pushed onto the operand stack.

The dup instruction must not be used unless word contains a 16-bit data type.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup
instruction operates on an untyped word, ignoring the type of data it contains.

dup

Appendix JCVM01

654

140 Java Card 2.1 Virtual Machine Specification • March 3, 1999

dup_x dup_x
Duplicate top operand stack words and insert below

Format

Forms

dup_x = 63 (0x3f)

Stack

…, wordN, …, wordM, …, word1 ⇒
…, wordM, …, word1, wordN, …, wordM, …, word1

Description

The unsigned byte mn is used to construct two parameter values. The high nibble,
(mn & 0xf0) >> 4, is used as the value m. The low nibble, (mn & 0xf), is used as the
value n. Permissible values for m are 1 through 4. Permissible values for n are 0 and
m through m+4.

For positive values of n, the top m words on the operand stack are duplicated and
the copied words are inserted n words down in the operand stack. When n equals 0,
the top m words are copied and placed on top of the stack.

The dup_x instruction must not be used unless the ranges of words 1 through m and
words m+1 through n each contain either a 16-bit data type, two 16-bit data types, a
32-bit data type, a 16-bit data type and a 32-bit data type (in either order), or two 32-
bit data types.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup_x
instruction operates on untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the permissible values for m
are 1 or 2, and permissible values for n are 0 and m through m+2.

dup_x
mn

Appendix JCVM01

655

Chapter 7 Java Card Virtual Machine Instruction Set 141

dup2 dup2
Duplicate top two operand stack words

Format

Forms

dup2 = 62 (0x3e)

Stack

…, word2, word1 ⇒
…, word2, word1, word2, word1

Description

The top two words on the operand stack are duplicated and pushed onto the
operand stack, in the original order.

The dup2 instruction must not be used unless each of word1 and word2 is a word that
contains a 16-bit data type or both together are the two words of a single 32-bit
datum.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup2
instruction operates on untyped words, ignoring the types of data they contain.

dup2

Appendix JCVM01

656

142 Java Card 2.1 Virtual Machine Specification • March 3, 1999

getfield_<t> getfield_<t>
Fetch field from object

Format

Forms

getfield_a = 131 (0x83)
getfield_b = 132 (0x84)
getfield_s = 133 (0x85)
getfield_i = 134 (0x86)

Stack

…, objectref ⇒
…, value

OR

…, objectref ⇒
…, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned index is used as an index into the constant pool of the current package
(§3.5). The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

Runtime Exception

If objectref is null, the getfield_<t> instruction throws a NullPointerException.

getfield_<t>
index

Appendix JCVM01

657

Chapter 7 Java Card Virtual Machine Instruction Set 143

getfield_<t> (cont.) getfield_<t> (cont.)
Notes

In some circumstances, the getfield_<t> instruction may throw a SecurityException
if the current context (§3.4) is not the owning context (§3.4) of the object referenced
by objectref. The exact circumstances when the exception will be thrown are specified
in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the getfield_i instruction will
not be available.

Appendix JCVM01

658

144 Java Card 2.1 Virtual Machine Specification • March 3, 1999

getfield_<t>_this getfield_<t>_this
Fetch field from current object

Format

Forms

getfield_a_this = 173 (0xad)
getfield_b_this = 174 (0xae)
getfield_s_this = 175 (0xaf)
getfield_i_this = 176 (0xb0)

Stack

… ⇒
…, value

OR

… ⇒
…, value.word1, value.word2

Description

The currently executing method must be an instance method. The local variable at
index 0 must contain a reference objectref to the currently executing method’s this
parameter. The unsigned index is used as an index into the constant pool of the
current package (§3.5). The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

getfield_<t>_this
index

Appendix JCVM01

659

Chapter 7 Java Card Virtual Machine Instruction Set 145

getfield_<t>_this (cont.) getfield_<t>_this (cont.)
Runtime Exception

If objectref is null, the getfield_<t>_this instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t>_this instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the getfield_i_this instruction
will not be available.

Appendix JCVM01

660

146 Java Card 2.1 Virtual Machine Specification • March 3, 1999

getfield_<t>_w getfield_<t>_w
Fetch field from object (wide index)

Format

Forms

getfield_a_w = 169 (0xa9)
getfield_b_w = 170 (0xaa)
getfield_s_w = 171 (0xab)
getfield_i_w = 172 (0xac)

Stack

…, objectref ⇒
…, value

OR

…, objectref ⇒
…, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. The
item must resolve to a field of type reference. If the field is protected, then it
must be either a member of the current class or a member of a superclass of the
current class, and the class of objectref must be either the current class or a subclass of
the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

getfield_<t>_w
indexbyte1
indexbyte2

Appendix JCVM01

661

Chapter 7 Java Card Virtual Machine Instruction Set 147

getfield_<t>_w (cont.) getfield_<t>_w (cont.)
Runtime Exception

If objectref is null, the getfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t>_w instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the getfield_i_w instruction
will not be available.

Appendix JCVM01

662

148 Java Card 2.1 Virtual Machine Specification • March 3, 1999

getstatic_<t> getstatic_<t>
Get static field from class

Format

Forms

getstatic_a = 123 (0x7b)
getstatic_b = 124 (0x7c)
getstatic_s = 125 (0x7d)
getstatic_i = 126 (0x7e)

Stack

… ⇒
…, value

OR

… ⇒
…, value.word1, value.word2

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at the index must be of type
CONSTANT_StaticFieldref (§6.7.3), a reference to a static field. If the field is
protected, then it must be either a member of the current class or a member of a
superclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a class field is determined by the field type specified in the instruction.
The item is resolved, determining the field offset. The item is resolved, determining
the class field. The value of the class field is fetched. If the value is of type byte or
boolean, it is sign-extended to a short. The value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the getstatic_i instruction
will not be available.

getstatic_<t>
indexbyte1
indexbyte2

Appendix JCVM01

663

Chapter 7 Java Card Virtual Machine Instruction Set 149

goto goto
Branch always

Format

Forms

goto = 112 (0x70)

Stack

No change

Description

The value branch is used as a signed 8-bit offset. Execution proceeds at that offset
from the address of the opcode of this goto instruction. The target address must be
that of an opcode of an instruction within the method that contains this goto
instruction.

goto
branch

Appendix JCVM01

664

150 Java Card 2.1 Virtual Machine Specification • March 3, 1999

goto_w goto_w
Branch always (wide index)

Format

Forms

goto_w = 168 (0xa8)

Stack

No change

Description

The unsigned bytes branchbyte1 and branchbyte2 are used to construct a signed 16-bit
branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds
at that offset from the address of the opcode of this goto instruction. The target
address must be that of an opcode of an instruction within the method that contains
this goto instruction.

goto_w
branchbyte1
branchbyte2

Appendix JCVM01

665

Chapter 7 Java Card Virtual Machine Instruction Set 151

i2b i2b
Convert int to byte

Format

Forms

i2b = 93 (0x5d)

Stack

…, value.word1, value.word2 ⇒
…, result

Description

The value on top of the operand stack must be of type int. It is popped from the
operand stack and converted to a byte result by taking the low-order 16 bits of the
int value, and discarding the high-order 16 bits. The low-order word is truncated to
a byte, then sign-extended to a short result. The result is pushed onto the operand
stack.

Notes

The i2b instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

If a virtual machine does not support the int data type, the i2b instruction will not
be available.

i2b

Appendix JCVM01

666

152 Java Card 2.1 Virtual Machine Specification • March 3, 1999

i2s i2s
Convert int to short

Format

Forms

i2s = 94 (0x5e)

Stack

…, value.word1, value.word2 ⇒
…, result

Description

The value on top of the operand stack must be of type int. It is popped from the
operand stack and converted to a short result by taking the low-order 16 bits of the
int value and discarding the high-order 16 bits. The result is pushed onto the
operand stack.

Notes

The i2s instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

If a virtual machine does not support the int data type, the i2s instruction will not
be available.

i2s

Appendix JCVM01

667

Chapter 7 Java Card Virtual Machine Instruction Set 153

iadd iadd
Add int

Format

Forms

iadd = 66 (0x42)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is value1 + value2. The result is pushed onto the operand stack.

If an iadd instruction overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement format. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

Notes

If a virtual machine does not support the int data type, the iadd instruction will not
be available.

iadd

Appendix JCVM01

668

154 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iaload iaload
Load int from array

Format

Forms

iaload = 39 (0x27)

Stack

…, arrayref, index ⇒
…, value.word1, value.word2

Description

The arrayref must be of type reference and must refer to an array whose
components are of type int. The index must be of type short. Both arrayref and index
are popped from the operand stack. The int value in the component of the array at
index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
iaload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the iaload instruction may throw a SecurityException if the
current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the iaload instruction will
not be available.

iaload

Appendix JCVM01

669

Chapter 7 Java Card Virtual Machine Instruction Set 155

iand iand
Boolean AND int

Format

Forms

iand = 84 (0x54)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. They are popped from the operand stack.
An int result is calculated by taking the bitwise AND (conjunction) of value1 and
value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iand instruction will not
be available.

iand

Appendix JCVM01

670

156 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iastore iastore
Store into int array

Format

Forms

iastore = 58 (0x3a)

Stack

…, arrayref, index, value.word1, value.word2 ⇒
…

Description

The arrayref must be of type reference and must refer to an array whose
components are of type int. The index must be of type short and value must be of
type int. The arrayref, index and value are popped from the operand stack. The int
value is stored as the component of the array indexed by index.

Runtime Exception

If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
iastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the iastore instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the iastore instruction will
not be available.

iastore

Appendix JCVM01

671

Chapter 7 Java Card Virtual Machine Instruction Set 157

icmp icmp
Compare int

Format

Forms

icmp = 95 (0x5f)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result

Description

Both value1 and value2 must be of type int. They are both popped from the operand
stack, and a signed integer comparison is performed. If value1 is greater than value2,
the short value 1 is pushed onto the operand stack. If value1 is equal to value2, the
short value 0 is pushed onto the operand stack. If value1 is less than value2, the
short value –1 is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the icmp instruction will not
be available.

icmp

Appendix JCVM01

672

158 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iconst_<i> iconst_<i>
Push int constant

Format

Forms

iconst_m1 = 10 (0x09)
iconst_0 = 11 (0xa)
iconst_1 = 12 (0xb)
iconst_2 = 13 (0xc)
iconst_3 = 14 (0xd)
iconst_4 = 15 (0xe)
iconst_5 = 16 (0xf)

Stack

… ⇒
…, <i>.word1, <i>.word2

Description

Push the int constant <i> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iconst_<i> instruction
will not be available.

iconst_<i>

Appendix JCVM01

673

Chapter 7 Java Card Virtual Machine Instruction Set 159

idiv idiv
Divide int

Format

Forms

idiv = 72 (0x48)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is the value of the Java expression value1 / value2. The result is
pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for int values in n/
d is an int value q whose magnitude is as large as possible while satisfying | d · q |
= | n |. Moreover, q is a positive when | n | = | d | and n and d have the same sign,
but q is negative when | n | = | d | and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of the largest possible magnitude for the int type, and the divisor is –1, then
overflow occurs, and the result is equal to the dividend. Despite the overflow, no
exception is thrown in this case.

Runtime Exception

If the value of the divisor in an int division is 0, idiv throws an
ArithmeticException.

Notes

If a virtual machine does not support the int data type, the idiv instruction will not
be available.

idiv

Appendix JCVM01

674

160 Java Card 2.1 Virtual Machine Specification • March 3, 1999

if_acmp<cond> if_acmp<cond>
Branch if reference comparison succeeds

Format

Forms

if_acmpeq = 104 (0x68)
if_acmpne = 105 (0x69)

Stack

…, value1, value2 ⇒
…

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparisons are as follows:
• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if_acmp<cond>
instruction. The target address must be that of an opcode of an instruction within the
method that contains this if_acmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_acmp<cond> instruction.

if_acmp<cond>
branch

Appendix JCVM01

675

Chapter 7 Java Card Virtual Machine Instruction Set 161

if_acmp<cond>_w if_acmp<cond>_w
Branch if reference comparison succeeds (wide index)

Format

Forms

if_acmpeq_w = 160 (0xa0)
if_acmpne_w = 161 (0xa1)

Stack

…, value1, value2 ⇒
…

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparisons are as follows:
• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used
to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
if_acmp<cond>_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this if_acmp<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_acmp<cond>_w instruction.

if_acmp<cond>_w
branchbyte1
branchbyte2

Appendix JCVM01

676

162 Java Card 2.1 Virtual Machine Specification • March 3, 1999

if_scmp<cond> if_scmp<cond>
Branch if short comparison succeeds

Format

Forms

if_scmpeq = 106 (0x6a)
if_scmpne = 107 (0x6b)
if_scmplt = 108 (0x6c)
if_scmpge = 109 (0x6d)
if_scmpgt = 110 (0x6e)
if_scmple = 111 (0x6f)

Stack

…, value1, value2 ⇒
…

Description

Both value1 and value2 must be of type short. They are both popped from the
operand stack and compared. All comparisons are signed. The results of the
comparisons are as follows:
• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

• lt succeeds if and only if value1 < value2

• le succeeds if and only if value1 ≤ value2

• gt succeeds if and only if value1 > value2

• ge succeeds if and only if value1 ≥ value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if_scmp<cond>
instruction. The target address must be that of an opcode of an instruction within the
method that contains this if_scmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_scmp<cond> instruction.

if_scmp<cond>
branch

Appendix JCVM01

677

Chapter 7 Java Card Virtual Machine Instruction Set 163

if_scmp<cond>_w if_scmp<cond>_w
Branch if short comparison succeeds (wide index)

Format

Forms

if_scmpeq_w = 162 (0xa2)
if_scmpne_w = 163 (0xa3)
if_scmplt_w = 164 (0xa4)
if_scmpge_w = 165 (0xa5)
if_scmpgt_w = 166 (0xa6)
if_scmple_w = 167 (0xa7)

Stack

…, value1, value2 ⇒
…

Description

Both value1 and value2 must be of type short. They are both popped from the
operand stack and compared. All comparisons are signed. The results of the
comparisons are as follows:
• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

• lt succeeds if and only if value1 < value2

• le succeeds if and only if value1 ≤ value2

• gt succeeds if and only if value1 > value2

• ge succeeds if and only if value1 ≥ value2

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used
to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
if_scmp<cond>_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this if_scmp<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_scmp<cond>_w instruction.

if_scmp<cond>_w
branchbyte1
branchbyte2

Appendix JCVM01

678

164 Java Card 2.1 Virtual Machine Specification • March 3, 1999

if<cond> if<cond>
Branch if short comparison with zero succeeds

Format

Forms

ifeq = 96 (0x60)
ifne = 97 (0x61)
iflt = 98 (0x62)
ifge = 99 (0x63)
ifgt = 100 (0x64)
ifle = 101 (0x65)

Stack

…, value ⇒
…

Description

The value must be of type short. It is popped from the operand stack and compared
against zero. All comparisons are signed. The results of the comparisons are as
follows:
• eq succeeds if and only if value = 0

• ne succeeds if and only if value ≠ 0

• lt succeeds if and only if value < 0

• le succeeds if and only if value ≤ 0

• gt succeeds if and only if value > 0

• ge succeeds if and only if value ≥ 0

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if<cond> instruction.
The target address must be that of an opcode of an instruction within the method
that contains this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if<cond> instruction.

if<cond>
branch

Appendix JCVM01

679

Chapter 7 Java Card Virtual Machine Instruction Set 165

if<cond>_w if<cond>_w
Branch if short comparison with zero succeeds (wide index)

Format

Forms

ifeq_w = 152 (0x98)
ifne_w = 153 (0x99)
iflt_w = 154 (0x9a)
ifge_w = 155 (0x9b)
ifgt_w = 156 (0x9c)
ifle_w = 157 (0x9d)

Stack

…, value ⇒
…

Description

The value must be of type short. It is popped from the operand stack and compared
against zero. All comparisons are signed. The results of the comparisons are as
follows:
• eq succeeds if and only if value = 0

• ne succeeds if and only if value ≠ 0

• lt succeeds if and only if value < 0

• le succeeds if and only if value ≤ 0

• gt succeeds if and only if value > 0

• ge succeeds if and only if value ≥ 0

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used
to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
if<cond>_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this if<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if<cond>_w instruction.

if<cond>_w
branchbyte1
branchbyte2

Appendix JCVM01

680

166 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ifnonnull ifnonnull
Branch if reference not null

Format

Forms

ifnonnull = 103 (0x67)

Stack

…, value ⇒
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is not null, branch is used as signed 8-bit offset, and execution proceeds at that
offset from the address of the opcode of this ifnonnull instruction. The target address
must be that of an opcode of an instruction within the method that contains this
ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnonnull instruction.

ifnonnull
branch

Appendix JCVM01

681

Chapter 7 Java Card Virtual Machine Instruction Set 167

ifnonnull_w ifnonnull_w
Branch if reference not null (wide index)

Format

Forms

ifnonnull_w = 159 (0x9f)

Stack

…, value ⇒
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is not null, the unsigned bytes branchbyte1 and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
ifnonnull_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this ifnonnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnonnull_w instruction.

ifnonnull_w
branchbyte1
branchbyte2

Appendix JCVM01

682

168 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ifnull ifnull
Branch if reference is null

Format

Forms

ifnull = 102 (0x66)

Stack

…, value ⇒
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is null, branch is used as signed 8-bit offset, and execution proceeds at that
offset from the address of the opcode of this ifnull instruction. The target address
must be that of an opcode of an instruction within the method that contains this
ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull
instruction.

ifnull
branch

Appendix JCVM01

683

Chapter 7 Java Card Virtual Machine Instruction Set 169

ifnull_w ifnull_w
Branch if reference is null (wide index)

Format

Forms

ifnull_w = 158 (0x9e)

Stack

…, value ⇒
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is null, the unsigned bytes branchbyte1 and branchbyte2 are used to construct a
signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2.
Execution proceeds at that offset from the address of the opcode of this ifnull_w
instruction. The target address must be that of an opcode of an instruction within the
method that contains this ifnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnull_w instruction.

ifnull_w
branchbyte1
branchbyte2

Appendix JCVM01

684

170 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iinc iinc
Increment local int variable by constant

Format

Forms

iinc = 90 (0x5a)

Stack

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the
local variables of the current frame (§3.5). The local variables at index and index + 1
together must contain an int. The const is an immediate signed byte. The value const
is first sign-extended to an int, then the int contained in the local variables at index
and index + 1 is incremented by that amount.

Notes

If a virtual machine does not support the int data type, the iinc instruction will not
be available.

iinc
index
const

Appendix JCVM01

685

Chapter 7 Java Card Virtual Machine Instruction Set 171

iinc_w iinc_w
Increment local int variable by constant

Format

Forms

iinc_w = 151 (0x97)

Stack

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the
local variables of the current frame (§3.5). The local variables at index and index + 1
together must contain an int. The immediate unsigned byte1 and byte2 values are
assembled into an intermediate short where the value of the short is (byte1 << 8) |
byte2. The intermediate value is then sign-extended to an int const. The int
contained in the local variables at index and index + 1 is incremented by const.

Notes

If a virtual machine does not support the int data type, the iinc_w instruction will
not be available.

iinc_w
index
byte1
byte2

Appendix JCVM01

686

172 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iipush iipush
Push int

Format

Forms

iipush = 20 (0x14)

Stack

… ⇒
…, value1.word1, value1.word2

Description

The immediate unsigned byte1, byte2, byte3, and byte4 values are assembled into a
signed int where the value of the int is (byte1 << 24) | (byte2 << 16) | (byte3 << 8) |
byte4. The resulting value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iipush instruction will
not be available.

iipush
byte1
byte2
byte3
byte4

Appendix JCVM01

687

Chapter 7 Java Card Virtual Machine Instruction Set 173

iload iload
Load int from local variable

Format

Forms

iload = 23 (0x17)

Stack

… ⇒
…, value1.word1, value1.word2

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the
local variables of the current frame (§3.5). The local variables at index and index + 1
together must contain an int. The value of the local variables at index and index + 1 is
pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iload instruction will not
be available.

iload
index

Appendix JCVM01

688

174 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iload_<n> iload_<n>
Load int from local variable

Format

Forms

iload_0 = 32 (0x20)
iload_1 = 33 (0x21)
iload_2 = 34 (0x22)
iload_3 = 35 (0x23)

Stack

… ⇒
…, value1.word1, value1.word2

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current
frame (§3.5). The local variables at <n> and <n> + 1 together must contain an int.
The value of the local variables at <n> and <n> + 1 is pushed onto the operand stack.

Notes

Each of the iload_<n> instructions is the same as iload with an index of <n>, except
that the operand <n> is implicit.

If a virtual machine does not support the int data type, the iload_<n> instruction
will not be available.

iload_<n>

Appendix JCVM01

689

Chapter 7 Java Card Virtual Machine Instruction Set 175

ilookupswitch ilookupswitch
Access jump table by key match and jump

Format

Pair Format

Forms

ilookupswitch = 118 (0x76)

Stack

…, key.word1, key.word2 ⇒
…

Description

An ilookupswitch instruction is a variable-length instruction. Immediately after the
ilookupswitch opcode follow a signed 16-bit value default, an unsigned 16-bit value
npairs, and then npairs pairs. Each pair consists of an int match and a signed 16-bit
offset. Each match is constructed from four unsigned bytes as (matchbyte1 << 24) |
(matchbyte2 << 16) | (matchbyte3 << 8) | matchbyte4. Each offset is constructed from
two unsigned bytes as (offsetbyte1 << 8) | offsetbyte2.

The table match-offset pairs of the ilookupswitch instruction must be sorted in
increasing numerical order by match.

The key must be of type int and is popped from the operand stack and compared
against the match values. If it is equal to one of them, then a target address is
calculated by adding the corresponding offset to the address of the opcode of this
ilookupswitch instruction. If the key does not match any of the match values, the target
address is calculated by adding default to the address of the opcode of this
ilookupswitch instruction. Execution then continues at the target address.

ilookupswitch
defaultbyte1
defaultbyte2

npairs1
npairs2

match-offset pairs…

matchbyte1
matchbyte2
matchbyte3
matchbyte4
offsetbyte1
offsetbyte2

Appendix JCVM01

690

176 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ilookupswitch (cont.) ilookupswitch (cont.)
The target address that can be calculated from the offset of each match-offset pair, as
well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains this ilookupswitch instruction.

Notes

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

If a virtual machine does not support the int data type, the ilookupswitch instruction
will not be available.

Appendix JCVM01

691

Chapter 7 Java Card Virtual Machine Instruction Set 177

imul imul
Multiply int

Format

Forms

imul = 70 (0x46)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is value1 * value2. The result is pushed onto the operand stack.

If an imul instruction overflows, then the result is the low-order bits of the
mathematical product as an int. If overflow occurs, then the sign of the result may
not be the same as the sign of the mathematical product of the two values.

Notes

If a virtual machine does not support the int data type, the imul instruction will not
be available.

imul

Appendix JCVM01

692

178 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ineg ineg
Negate int

Format

Forms

ineg = 76 (0x4c)

Stack

…, value.word1, value.word2 ⇒
…, result.word1, result.word2

Description

The value must be of type int. It is popped from the operand stack. The int result is
the arithmetic negation of value, -value. The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero. Because the Java Card
virtual machine uses two’s-complement representation for integers and the range of
two’s-complement values is not symmetric, the negation of the maximum negative
int results in that same maximum negative number. Despite the fact that overflow
has occurred, no exception is thrown.

For all int values x, -x equals (~x) + 1.

Notes

If a virtual machine does not support the int data type, the imul instruction will not
be available.

ineg

Appendix JCVM01

693

Chapter 7 Java Card Virtual Machine Instruction Set 179

instanceof instanceof
Determine if object is of given type

Format

Forms

instanceof = 149 (0x95)

Stack

…, objectref ⇒
…, result

Description

The unsigned byte atype is a code that indicates if the type against which the object
is being checked is an array type or a class type. It must take one of the following
values or zero:

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2
must be zero, and the value of atype indicates the array type against which to check
the object. Otherwise the unsigned indexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current package (§3.5), where the value of the
index is (indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool
must be of type CONSTANT_Classref (§6.7.1), a reference to a class or interface type.
The reference is resolved. If the value of atype is 14, the object is checked against an
array type that is an array of object references of the type of the resolved class. If the
value of atype is zero, the object is checked against a class or interface type that is the
resolved class.

The objectref must be of type reference. It is popped from the operand stack. If
objectref is not null and is an instance of the resolved class, array or interface, the
instanceof instruction pushes a short result of 1 on the operand stack. Otherwise it
pushes a short result of 0.

instanceof
atype

indexbyte1
indexbyte2

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

Appendix JCVM01

694

180 Java Card 2.1 Virtual Machine Specification • March 3, 1999

instanceof (cont.) instanceof (cont.)
The following rules are used to determine whether an objectref that is not null is an
instance of the resolved type: if S is the class of the object referred to by objectref and
T is the resolved class, array or interface type, instanceof determines whether objectref
is an instance of T as follows:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type, then:

■ If T is a class type, then T must be Object (§2.2.2.4);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type, namely the type SC[], that is, an array of components of type
SC1, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

■ TC and SC are the same primitive type (§3.1).

■ TC and SC are reference types (§3.1) with type SC assignable to TC, by these
rules.

■ If T is an interface type, T must be one of the interfaces implemented by
arrays2.

Notes

The instanceof instruction is fundamentally very similar to the checkcast instruction. It
differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

In some circumstances, the instanceof instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

1. This version of the Java Card virtual machine specification does not allow for arrays of more than one
dimension. Therefore, neither SC or TC can be an array type.

2. In the Java Card 2.1 API, arrays do not implement any interfaces. Therefore, T cannot be an interface type
when S is an array type, and this rule does not apply.

Appendix JCVM01

695

Chapter 7 Java Card Virtual Machine Instruction Set 181

invokeinterface invokeinterface
Invoke interface method

Format

Forms

invokeinterface = 142 (0x8e)

Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at that index must be of type
CONSTANT_Classref (§6.7.1), a reference to an interface class. The specified method
is resolved. The interface method must not be <init>, an instance initialization
method, or <clinit>, a class or interface initialization method.

The nargs operand is an unsigned byte that must not be zero. The method operand is
an unsigned byte that is the interface method token for the method to be invoked.
The objectref must be of type reference and must be followed on the operand stack
by nargs – 1 words of arguments. The number of words of arguments and the type
and order of the values they represent must be consistent with those of the selected
interface method.

The interface table of the class of the type of objectref is determined. If objectref is an
array type, then the interface table of class Object (§2.2.2.4) is used. The interface
table is searched for the resolved interface. The result of the search is a table that is
used to map the method token to a index.

The index is an unsigned byte that is used as an index into the method table of the
class of the type of objectref. If the objectref is an array type, then the method table of
class Object is used. The table entry at that index includes a direct reference to the
method’s code and modifier information.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A
new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with arg1 in
local variable at index 0, arg1 in local variable at offset 2, arg2 immediately following

invokeinterface
nargs

indexbyte1
indexbyte2

method

Appendix JCVM01

696

182 Java Card 2.1 Virtual Machine Specification • March 3, 1999

invokeinterface (cont.) invokeinterface (cont.)
that, and so on. The new stack frame is then made current, and the Java Card virtual
machine pc is set to the opcode of the first instruction of the method to be invoked.
Execution continues with the first instruction of the method.

Runtime Exception

If objectref is null, the invokeinterface instruction throws a NullPointerException.

Notes

In some circumstances, the invokeinterface instruction may throw a
SecurityException if the current context (§3.4) is not the context (§3.4) of the
object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification. If the current context is not the object’s context and the JCRE permits
invocation of the method, the invokeinterface instruction will cause a context switch
(§3.4) to the object’s context before invoking the method, and will cause a return
context switch to the previous context when the invoked method returns.

Appendix JCVM01

697

Chapter 7 Java Card Virtual Machine Instruction Set 183

invokespecial invokespecial
Invoke instance method; special handling for superclass, private, and instance
initialization method invocations

Format

Forms

invokespecial = 140 (0x8c)

Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. If the invoked method is a private instance method or
an instance initialization method, the constant pool item at index must be of type
CONSTANT_StaticMethodref (§6.7.3), a reference to a statically linked instance
method. If the invoked method is a superclass method, the constant pool item at
index must be of type CONSTANT_SuperMethodref (§6.7.2), a reference to an instance
method of a specified class. The reference is resolved. The resolved method must not
be <clinit>, a class or interface initialization method. If the method is <init>, an
instance initialization method, then the method must only be invoked once on an
uninitialized object, and before the first backward branch following the execution of
the new instruction that allocated the object. Finally, if the method is protected,
then it must be either a member of the current class or a member of a superclass of
the current class, and the class of objectref must be either the current class or a
subclass of the current class.

The resolved method includes the code for the method, an unsigned byte nargs that
must not be zero, and the method’s modifier information.

The objectref must be of type reference, and must be followed on the operand stack
by nargs – 1 words of arguments, where the number of words of arguments and the
type and order of the values they represent must be consistent with those of the
selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A
new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame is

invokespecial
indexbyte1
indexbyte2

Appendix JCVM01

698

184 Java Card 2.1 Virtual Machine Specification • March 3, 1999

invokespecial (cont.) invokespecial (cont.)
then made current, and the Java Card virtual machine pc is set to the opcode of the
first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

Runtime Exception

If objectref is null, the invokespecial instruction throws a NullPointerException.

Appendix JCVM01

699

Chapter 7 Java Card Virtual Machine Instruction Set 185

invokestatic invokestatic
Invoke a class (static) method

Format

Forms

invokestatic = 141 (0x8d)

Stack

…, [arg1, [arg2 …]] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at that index must be of type
CONSTANT_StaticMethodref (§6.7.3), a reference to a static method. The method
must not be <init>, an instance initialization method, or <clinit>, a class or
interface initialization method. It must be static, and therefore cannot be
abstract. Finally, if the method is protected, then it must be either a member of
the current class or a member of a superclass of the current class.

The resolved method includes the code for the method, an unsigned byte nargs that
may be zero, and the method’s modifier information.

The operand stack must contain nargs words of arguments, where the number of
words of arguments and the type and order of the values they represent must be
consistent with those of the resolved method .

The nargs words of arguments are popped from the operand stack. A new stack
frame is created for the method being invoked, and the words of arguments are
made the values of its first nargs words of local variables, with arg1 in local variable
0, arg2 in local variable 1, and so on. The new stack frame is then made current, and
the Java Card virtual machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction of the method.

invokestatic
indexbyte1
indexbyte2

Appendix JCVM01

700

186 Java Card 2.1 Virtual Machine Specification • March 3, 1999

invokevirtual invokevirtual
Invoke instance method; dispatch based on class

Format

Forms

invokevirtual = 139 (0x8b)

Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at that index must be of type
CONSTANT_VirtualMethodref (§6.7.2), a reference to a class and a virtual method
token. The specified method is resolved. The method must not be <init>, an
instance initialization method, or <clinit>, a class or interface initialization
method. If the method is protected, then it must be either a member of the current
class or a member of a superclass of the current class, and the class of objectref must
be either the current class or a subclass of the current class.

The resolved method reference includes an unsigned index into the method table of
the resolved class and an unsigned byte nargs that must not be zero.

The objectref must be of type reference. The index is an unsigned byte that is used as
an index into the method table of the class of the type of objectref. If the objectref is an
array type, then the method table of class Object (§2.2.2.4) is used. The table entry
at that index includes a direct reference to the method’s code and modifier
information.

The objectref must be followed on the operand stack by nargs – 1 words of arguments,
where the number of words of arguments and the type and order of the values they
represent must be consistent with those of the selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A
new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame is
then made current, and the Java Card virtual machine pc is set to the opcode of the
first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

invokevirtual
indexbyte1
indexbyte2

Appendix JCVM01

701

Chapter 7 Java Card Virtual Machine Instruction Set 187

invokevirtual (cont.) invokevirtual (cont.)
Runtime Exception

If objectref is null, the invokevirtual instruction throws a NullPointerException.

In some circumstances, the invokevirtual instruction may throw a
SecurityException if the current context (§3.4) is not the context (§3.4) of the
object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification. If the current context is not the object’s context and the JCRE permits
invocation of the method, the invokevirtual instruction will cause a context switch
(§3.4) to the object’s context before invoking the method, and will cause a return
context switch to the previous context when the invoked method returns.

Appendix JCVM01

702

188 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ior ior
Boolean OR int

Format

Forms

ior = 86 (0x56)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by taking the bitwise inclusive OR of value1 and
value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the ior instruction will not
be available.

ior

Appendix JCVM01

703

Chapter 7 Java Card Virtual Machine Instruction Set 189

irem irem
Remainder int

Format

Forms

irem = 74 (0x4a)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is the value of the Java expression value1 – (value1 / value2) *
value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative int of largest
possible magnitude for its type and the divisor is –1 (the remainder is 0). It follows
from this rule that the result of the remainder operation can be negative only if the
dividend is negative and can be positive only if the dividend is positive. Moreover,
the magnitude of the result is always less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, irem throws an
ArithmeticException.

Notes

If a virtual machine does not support the int data type, the irem instruction will not
be available.

irem

Appendix JCVM01

704

190 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ireturn ireturn
Return int from method

Format

Forms

ireturn = 121 (0x79)

Stack

…, value.word1, value.word2 ⇒
[empty]

Description

The value must be of type int. It is popped from the operand stack of the current
frame (§3.5) and pushed onto the operand stack of the frame of the invoker. Any
other values on the operand stack of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

Notes

If a virtual machine does not support the int data type, the ireturn instruction will
not be available.

ireturn

Appendix JCVM01

705

Chapter 7 Java Card Virtual Machine Instruction Set 191

ishl ishl
Shift left int

Format

Forms

ishl = 78 (0x4e)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by shifting value1 left by s bit positions, where s is
the value of the low five bits of value2. The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The
shift distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the ishl instruction will not
be available.

ishl

Appendix JCVM01

706

192 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ishr ishr
Arithmetic shift right int

Format

Forms

ishr = 80 (0x50)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by shifting value1 right by s bit positions, with sign
extension, where s is the value of the low five bits of value2. The result is pushed onto
the operand stack.

Notes

The resulting value is (value1) / 2s, where s is value2 & 0x1f. For nonnegative value1,
this is equivalent (even if overflow occurs) to truncating int division by 2 to the
power s. The shift distance actually used is always in the range 0 to 31, inclusive, as
if value2 were subjected to a bitwise logical AND with the mask value 0x1f.

Notes

If a virtual machine does not support the int data type, the ishr instruction will not
be available.

ishr

Appendix JCVM01

707

Chapter 7 Java Card Virtual Machine Instruction Set 193

istore istore
Store int into local variable

Format

Forms

istore = 42 (0x2a)

Stack

…, value.word1, value.word2 ⇒
…

Description

The index is an unsigned byte. Both index and index + 1 must be a valid index into the
local variables of the current frame (§3.5). The value on top of the operand stack must
be of type int. It is popped from the operand stack, and the local variables at index
and index + 1 are set to value.

Notes

If a virtual machine does not support the int data type, the istore instruction will not
be available.

istore
index

Appendix JCVM01

708

194 Java Card 2.1 Virtual Machine Specification • March 3, 1999

istore_<n> istore_<n>
Store int into local variable

Format

Forms

istore_0 = 51 (0x33)
istore_1 = 52 (0x34)
istore_2 = 53 (0x35)
istore_3 = 54 (0x36)

Stack

…, value.word1, value.word2 ⇒
…

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current
frame (§3.5). The value on top of the operand stack must be of type int. It is popped
from the operand stack, and the local variables at index and index + 1 are set to value.

Notes

If a virtual machine does not support the int data type, the istore_<n> instruction
will not be available.

istore_<n>

Appendix JCVM01

709

Chapter 7 Java Card Virtual Machine Instruction Set 195

isub isub
Subtract int

Format

Forms

isub = 68 (0x44)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. The int result is value1 - value2. The result is pushed onto the operand stack.

For int subtraction, a – b produces the same result as a + (–b). For int values,
subtraction from zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may
have a different sign than the true mathematical result, execution of an isub
instruction never throws a runtime exception.

Notes

If a virtual machine does not support the int data type, the isub instruction will not
be available.

isub

Appendix JCVM01

710

196 Java Card 2.1 Virtual Machine Specification • March 3, 1999

itableswitch itableswitch
Access jump table by int index and jump

Format

Offset Format

Forms

itableswitch = 116 (0x74)

Stack

…, index ⇒
…

Description

An itableswitch instruction is a variable-length instruction. Immediately after the
itableswitch opcode follow a signed 16-bit value default, a signed 32-bit value low, a
signed 32-bit value high, and then high – low + 1 further signed 16-bit offsets. The
value low must be less than or equal to high. The high – low + 1 signed 16-bit offsets
are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (byte1 << 8) | byte2. Each of the signed 32-bit values is
constructed from four unsigned bytes as (byte1 << 24) | (byte2 << 16) | (byte3 << 8) |
byte4.

The index must be of type int and is popped from the stack. If index is less than low
or index is greater than high, then a target address is calculated by adding default to
the address of the opcode of this itableswitch instruction. Otherwise, the offset at
position index – low of the jump table is extracted. The target address is calculated by
adding that offset to the address of the opcode of this itableswitch instruction.
Execution then continues at the target address.

itableswitch
defaultbyte1
defaultbyte2

lowbyte1
lowbyte2
lowbyte3
lowbyte4
highbyte1
highbyte2
highbyte3
highbyte4

jump offsets…

offsetbyte1
offsetbyte2

Appendix JCVM01

711

Chapter 7 Java Card Virtual Machine Instruction Set 197

itableswitch (cont.) itableswitch (cont.)
The target addresses that can be calculated from each jump table offset, as well as
the one calculated from default, must be the address of an opcode of an instruction
within the method that contains this itableswitch instruction.

Notes

If a virtual machine does not support the int data type, the itableswitch instruction
will not be available.

Appendix JCVM01

712

198 Java Card 2.1 Virtual Machine Specification • March 3, 1999

iushr iushr
Logical shift right int

Format

Forms

iushr = 82 (0x52)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by shifting the result right by s bit positions, with
zero extension, where s is the value of the low five bits of value2. The result is pushed
onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >> s;
if value1 is negative, the result is equal to the value of the expression (value1 >> s) +
(2 << ~s). The addition of the (2 << ~s) term cancels out the propagated sign bit. The
shift distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the iushr instruction will not
be available.

iushr

Appendix JCVM01

713

Chapter 7 Java Card Virtual Machine Instruction Set 199

ixor ixor
Boolean XOR int

Format

Forms

ixor = 88 (0x58)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand
stack. An int result is calculated by taking the bitwise exclusive OR of value1 and
value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the ixor instruction will not
be available.

ixor

Appendix JCVM01

714

200 Java Card 2.1 Virtual Machine Specification • March 3, 1999

jsr jsr
Jump subroutine

Format

Forms

jsr = 113 (0x71)

Stack

… ⇒
…, address

Description

The address of the opcode of the instruction immediately following this jsr instruction
is pushed onto the operand stack as a value of type returnAddress. The unsigned
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset, where the
offset is (branchbyte1 << 8) | branchbyte2. Execution proceeds at that offset from the
address of this jsr instruction. The target address must be that of an opcode of an
instruction within the method that contains this jsr instruction.

Notes

The jsr instruction is used with the ret instruction in the implementation of the
finally clause of the Java language. Note that jsr pushes the address onto the stack
and ret gets it out of a local variable. This asymmetry is intentional.

jsr
branchbyte1
branchbyte2

Appendix JCVM01

715

Chapter 7 Java Card Virtual Machine Instruction Set 201

new new
Create new object

Format

Forms

new = 143 (0x8f)

Stack

… ⇒
…, objectref

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool must be of
type CONSTANT_Classref (§6.7.1), a reference to a class or interface type. The
reference is resolved and must result in a class type (it must not result in an interface
type). Memory for a new instance of that class is allocated from the heap, and the
instance variables of the new object are initialized to their default initial values. The
objectref, a reference to the instance, is pushed onto the operand stack.

Notes

The new instruction does not completely create a new instance; instance creation is
not completed until an instance initialization method has been invoked on the
uninitialized instance.

new
indexbyte1
indexbyte2

Appendix JCVM01

716

202 Java Card 2.1 Virtual Machine Specification • March 3, 1999

newarray newarray
Create new array

Format

Forms

newarray = 144 (0x90)

Stack

…, count ⇒
…, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count
represents the number of elements in the array to be created.

The unsigned byte atype is a code that indicates the type of array to create. It must
take one of the following values:

A new array whose components are of type atype, of length count, is allocated from
the heap. A reference arrayref to this new array object is pushed onto the operand
stack. All of the elements of the new array are initialized to the default initial value
for its type.

Runtime Exception

If count is less than zero, the newarray instruction throws a
NegativeArraySizeException.

Notes

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

newarray
atype

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

Appendix JCVM01

717

Chapter 7 Java Card Virtual Machine Instruction Set 203

nop nop
Do nothing

Format

Forms

nop = 0 (0x0)

Stack

No change

Description

Do nothing.

nop

Appendix JCVM01

718

204 Java Card 2.1 Virtual Machine Specification • March 3, 1999

pop pop
Pop top operand stack word

Format

Forms

pop = 59 (0x3b)

Stack

…, word ⇒
…

Description

The top word is popped from the operand stack.

Notes

The pop instruction operates on an untyped word, ignoring the type of data it
contains.

pop

Appendix JCVM01

719

Chapter 7 Java Card Virtual Machine Instruction Set 205

pop2 pop2
Pop top two operand stack words

Format

Forms

pop2 = 60 (0x3c)

Stack

…, word2, word1 ⇒
…

Description

The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of word1 and word2 is a word that
contains a 16-bit data type or both together are the two words of a single 32-bit
datum.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the pop2
instruction operates on an untyped word, ignoring the type of data it contains.

pop2

Appendix JCVM01

720

206 Java Card 2.1 Virtual Machine Specification • March 3, 1999

putfield_<t> putfield_<t>
Set field in object

Format

Forms

putfield_a = 135 (0x87)
putfield_b = 136 (0x88)
putfield_s = 137 (0x89)
putfield_i = 138 (0x8a)

Stack

…, objectref, value ⇒
…

OR

…, objectref, value.word1, value.word2 ⇒
…

Description

The unsigned index is used as an index into the constant pool of the current package
(§3.5). The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The objectref, which
must be of type reference, and the value are popped from the operand stack. If the
field is of type byte or type boolean, the value is truncated to a byte. The field at
the offset from the start of the object referenced by objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t> instruction throws a NullPointerException.

putfield_<t>
index

Appendix JCVM01

721

Chapter 7 Java Card Virtual Machine Instruction Set 207

putfield_<t> (cont.) putfield_<t> (cont.)
Notes

In some circumstances, the putfield_<t> instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the putfield_i instruction will
not be available.

Appendix JCVM01

722

208 Java Card 2.1 Virtual Machine Specification • March 3, 1999

putfield_<t>_this putfield_<t>_this
Set field in current object

Format

Forms

putfield_a_this = 181 (0xb5)
putfield_b_this = 182 (0xb6)
putfield_s_this = 183 (0xb7)
putfield_i_this = 184 (0xb8)

Stack

…, value ⇒
…

OR

…, value.word1, value.word2 ⇒
…

Description

The currently executing method must be an instance method that was invoked using
the invokevirtual, invokeinterface or invokespecial instruction. The local variable at index
0 must contain a reference objectref to the currently executing method’s this
parameter. The unsigned index is used as an index into the constant pool of the
current package (§3.5). The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The value is
popped from the operand stack. If the field is of type byte or type boolean, the
value is truncated to a byte. The field at the offset from the start of the object
referenced by objectref is set to the value.

putfield_<t>_this
index

Appendix JCVM01

723

Chapter 7 Java Card Virtual Machine Instruction Set 209

putfield_<t>_this (cont.) putfield_<t>_this (cont.)
Runtime Exception

If objectref is null, the putfield_<t>_this instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t>_this instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the putfield_i_this instruction
will not be available.

Appendix JCVM01

724

210 Java Card 2.1 Virtual Machine Specification • March 3, 1999

putfield_<t>_w putfield_<t>_w
Set field in object (wide index)

Format

Forms

putfield_a_w = 177 (0xb1)
putfield_b_w = 178 (0xb2)
putfield_s_w = 179 (0xb3)
putfield_i_w = 180 (0xb4)

Stack

…, objectref, value ⇒
…

OR

…, objectref, value.word1, value.word2 ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at the index must be of type
CONSTANT_InstanceFieldref (§6.7.2), a reference to a class and a field token. If the
field is protected, then it must be either a member of the current class or a member
of a superclass of the current class, and the class of objectref must be either the
current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset. The objectref, which
must be of type reference, and the value are popped from the operand stack. If the
field is of type byte or type boolean, the value is truncated to a byte. The field at
the offset from the start of the object referenced by objectref is set to the value.

putfield<t>_w
indexbyte1
indexbyte2

Appendix JCVM01

725

Chapter 7 Java Card Virtual Machine Instruction Set 211

putfield_<t>_w (cont.) putfield_<t>_w (cont.)
Runtime Exception

If objectref is null, the putfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t>_w instruction may throw a
SecurityException if the current context (§3.4) is not the owning context (§3.4) of
the object referenced by objectref. The exact circumstances when the exception will be
thrown are specified in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE)
Specification.

If a virtual machine does not support the int data type, the putfield_i_w instruction
will not be available.

Appendix JCVM01

726

212 Java Card 2.1 Virtual Machine Specification • March 3, 1999

putstatic_<t> putstatic_<t>
Set static field in class

Format

Forms

putstatic_a = 127 (0x7f)
putstatic_b = 128 (0x80)
putstatic_s = 129 (0x81)
putstatic_i = 130 (0x82)

Stack

…, value ⇒
…

OR

…, value.word1, value.word2 ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (§3.5), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The constant pool item at the index must be of type
CONSTANT_StaticFieldref (§6.7.3), a reference to a static field. If the field is
protected, then it must be either a member of the current class or a member of a
superclass of the current class.

The item must resolve to a field with a type that matches t, as follows:
• a field must be of type reference

• b field must be of type byte or type boolean

• s field must be of type short

• i field must be of type int

The width of a class field is determined by the field type specified in the instruction.
The item is resolved, determining the class field. The value is popped from the
operand stack. If the field is of type byte or type boolean, the value is truncated to a
byte. The field is set to the value.

putstatic_<t>
indexbyte1
indexbyte2

Appendix JCVM01

727

Chapter 7 Java Card Virtual Machine Instruction Set 213

putstatic_<t> (cont.) putstatic_<t> (cont.)
Notes

In some circumstances, the putstatic_a instruction may throw a SecurityException
if the current context (§3.4) is not the owning context (§3.4) of the object being stored
in the field. The exact circumstances when the exception will be thrown are specified
in Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

If a virtual machine does not support the int data type, the putstatic_i instruction
will not be available.

Appendix JCVM01

728

214 Java Card 2.1 Virtual Machine Specification • March 3, 1999

ret ret
Return from subroutine

Format

Forms

ret = 114 (0x72)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The local variable at index must contain a value of type
returnAddress. The contents of the local variable are written into the Java Card
virtual machine’s pc register, and execution continues there.

Notes

The ret instruction is used with the jsr instruction in the implementation of the
finally keyword of the Java language. Note that jsr pushes the address onto the
stack and ret gets it out of a local variable. This asymmetry is intentional.

The ret instruction should not be confused with the return instruction. A return
instruction returns control from a Java method to its invoker, without passing any
value back to the invoker.

ret
index

Appendix JCVM01

729

Chapter 7 Java Card Virtual Machine Instruction Set 215

return return
Return void from method

Format

Forms

return = 122 (0x7a)

Stack

… ⇒
[empty]

Description

Any values on the operand stack of the current method are discarded. The virtual
machine then reinstates the frame of the invoker and returns control to the invoker.

return

Appendix JCVM01

730

216 Java Card 2.1 Virtual Machine Specification • March 3, 1999

s2b s2b
Convert short to byte

Format

Forms

s2b = 91 (0x5b)

Stack

…, value ⇒
…, result

Description

The value on top of the operand stack must be of type short. It is popped from the
top of the operand stack, truncated to a byte result, then sign-extended to a short
result. The result is pushed onto the operand stack.

Notes

The s2b instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

s2b

Appendix JCVM01

731

Chapter 7 Java Card Virtual Machine Instruction Set 217

s2i s2i
Convert short to int

Format

Forms

s2i = 92 (0x5c)

Stack

…, value ⇒
…, result.word1, result.word2

Description

The value on top of the operand stack must be of type short. It is popped from the
operand stack and sign-extended to an int result. The result is pushed onto the
operand stack.

Notes

The s2i instruction performs a widening primitive conversion. Because all values of
type short are exactly representable by type int, the conversion is exact.

If a virtual machine does not support the int data type, the s2i instruction will not
be available.

s2i

Appendix JCVM01

732

218 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sadd sadd
Add short

Format

Forms

sadd = 65 (0x41)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 + value2. The result is pushed onto the
operand stack.

If a sadd instruction overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement format. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

sadd

Appendix JCVM01

733

Chapter 7 Java Card Virtual Machine Instruction Set 219

saload saload
Load short from array

Format

Forms

saload = 38 (0x46)

Stack

…, arrayref, index ⇒
…, value

Description

The arrayref must be of type reference and must refer to an array whose
components are of type short. The index must be of type short. Both arrayref and
index are popped from the operand stack. The short value in the component of the
array at index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
saload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the saload instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

saload

Appendix JCVM01

734

220 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sand sand
Boolean AND short

Format

Forms

sand = 83 (0x53)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 are popped from the operand stack. A short result is
calculated by taking the bitwise AND (conjunction) of value1 and value2. The result is
pushed onto the operand stack.

sand

Appendix JCVM01

735

Chapter 7 Java Card Virtual Machine Instruction Set 221

sastore sastore
Store into short array

Format

Forms

sastore = 57 (0x39)

Stack

…, arrayref, index, value ⇒
…

Description

The arrayref must be of type reference and must refer to an array whose
components are of type short. The index and value must both be of type short. The
arrayref, index and value are popped from the operand stack. The short value is stored
as the component of the array indexed by index.

Runtime Exception

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
sastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the sastore instruction may throw a SecurityException if
the current context (§3.4) is not the owning context (§3.4) of the array referenced by
arrayref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Java Card 2.1 Runtime Environment (JCRE) Specification.

sastore

Appendix JCVM01

736

222 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sconst_<s> sconst_<s>
Push short constant

Format

Forms

sconst_m1 = 2 (0x2)
sconst_0 = 3 (0x3)
sconst_1 = 4 (0x4)
sconst_2 = 5 (0x5)
sconst_3 = 6 (0x6)
sconst_4= 7 (0x7)
sconst_5 = 8 (0x8)

Stack

… ⇒
…, <s>

Description

Push the short constant <s> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

sconst_<s>

Appendix JCVM01

737

Chapter 7 Java Card Virtual Machine Instruction Set 223

sdiv sdiv
Divide short

Format

Forms

sdiv = 71 (0x47)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is the value of the Java expression value1 / value2.
The result is pushed onto the operand stack.

A short division rounds towards 0; that is, the quotient produced for short values
in n/d is a short value q whose magnitude is as large as possible while satisfying |
d · q | = | n |. Moreover, q is a positive when | n | = | d | and n and d have the
same sign, but q is negative when | n | = | d | and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of the largest possible magnitude for the short type, and the divisor is –1,
then overflow occurs, and the result is equal to the dividend. Despite the overflow,
no exception is thrown in this case.

Runtime Exception

If the value of the divisor in a short division is 0, sdiv throws an
ArithmeticException.

sdiv

Appendix JCVM01

738

224 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sinc sinc
Increment local short variable by constant

Format

Forms

sinc = 89 (0x59)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variable of the
current frame (§3.5). The const is an immediate signed byte. The local variable at
index must contain a short. The value const is first sign-extended to a short, then
the local variable at index is incremented by that amount.

sinc
index
const

Appendix JCVM01

739

Chapter 7 Java Card Virtual Machine Instruction Set 225

sinc_w sinc_w
Increment local short variable by constant

Format

Forms

sinc_w = 150 (0x96)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variable of the
current frame (§3.5). The immediate unsigned byte1 and byte2 values are assembled
into a short const where the value of const is (byte1 << 8) | byte2. The local variable
at index, which must contain a short, is incremented by const.

sinc_w
index
byte1
byte2

Appendix JCVM01

740

226 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sipush sipush
Push short

Format

Forms

sipush = 19 (0x13)

Stack

… ⇒
…, value1.word1, value1.word2

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short
where the value of the short is (byte1 << 8) | byte2. The intermediate value is then
sign-extended to an int, and the resulting value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the sipush instruction will
not be available.

sipush
byte1
byte2

Appendix JCVM01

741

Chapter 7 Java Card Virtual Machine Instruction Set 227

sload sload
Load short from local variable

Format

Forms

sload = 22 (0x16)

Stack

… ⇒
…, value

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The local variable at index must contain a short. The value
in the local variable at index is pushed onto the operand stack.

sload
index

Appendix JCVM01

742

228 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sload_<n> sload_<n>
Load short from local variable

Format

Forms

sload_0 = 28 (0x1c)
sload_1 = 29 (0x1d)
sload_2 = 30 (0x1e)
sload_3 = 31 (0x1f)

Stack

… ⇒
…, value

Description

The <n> must be a valid index into the local variables of the current frame (§3.5).
The local variable at <n> must contain a short. The value in the local variable at <n>
is pushed onto the operand stack.

Notes

Each of the sload_<n> instructions is the same as sload with an index of <n>, except
that the operand <n> is implicit.

sload_<n>

Appendix JCVM01

743

Chapter 7 Java Card Virtual Machine Instruction Set 229

slookupswitch slookupswitch
Access jump table by key match and jump

Format

Pair Format

Forms

slookupswitch = 117 (0x75)

Stack

…, key ⇒
…

Description

A slookupswitch instruction is a variable-length instruction. Immediately after the
slookupswitch opcode follow a signed 16-bit value default, an unsigned 16-bit value
npairs, and then npairs pairs. Each pair consists of a short match and a signed 16-bit
offset. Each of the signed 16-bit values is constructed from two unsigned bytes as
(byte1 << 8) | byte2.

The table match-offset pairs of the slookupswitch instruction must be sorted in
increasing numerical order by match.

The key must be of type short and is popped from the operand stack and compared
against the match values. If it is equal to one of them, then a target address is
calculated by adding the corresponding offset to the address of the opcode of this
slookupswitch instruction. If the key does not match any of the match values, the target
address is calculated by adding default to the address of the opcode of this
slookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as
well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains this slookupswitch instruction.

slookupswitch
defaultbyte1
defaultbyte2

npairs1
npairs2

match-offset pairs…

matchbyte1
matchbyte2
offsetbyte1
offsetbyte2

Appendix JCVM01

744

230 Java Card 2.1 Virtual Machine Specification • March 3, 1999

slookupswitch (cont.) slookupswitch (cont.)
Notes

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

Appendix JCVM01

745

Chapter 7 Java Card Virtual Machine Instruction Set 231

smul smul
Multiply short

Format

Forms

smul = 69 (0x45)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 * value2. The result is pushed onto the
operand stack.

If a smul instruction overflows, then the result is the low-order bits of the
mathematical product as a short. If overflow occurs, then the sign of the result may
not be the same as the sign of the mathematical product of the two values.

smul

Appendix JCVM01

746

232 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sneg sneg
Negate short

Format

Forms

sneg = 72 (0x4b)

Stack

…, value ⇒
…, result

Description

The value must be of type short. It is popped from the operand stack. The short
result is the arithmetic negation of value, -value. The result is pushed onto the operand
stack.

For short values, negation is the same as subtraction from zero. Because the Java
Card virtual machine uses two’s-complement representation for integers and the
range of two’s-complement values is not symmetric, the negation of the maximum
negative short results in that same maximum negative number. Despite the fact that
overflow has occurred, no exception is thrown.

For all short values x, -x equals (~x) + 1.

sneg

Appendix JCVM01

747

Chapter 7 Java Card Virtual Machine Instruction Set 233

sor sor
Boolean OR short

Format

Forms

sor = 85 (0x55)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by taking the bitwise inclusive OR of
value1 and value2. The result is pushed onto the operand stack.

sor

Appendix JCVM01

748

234 Java Card 2.1 Virtual Machine Specification • March 3, 1999

srem srem
Remainder short

Format

Forms

srem = 73 (0x49)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is the value of the Java expression value1 – (value1 /
value2) * value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative short of
largest possible magnitude for its type and the divisor is –1 (the remainder is 0). It
follows from this rule that the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend is positive.
Moreover, the magnitude of the result is always less than the magnitude of the
divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, srem throws an
ArithmeticException.

srem

Appendix JCVM01

749

Chapter 7 Java Card Virtual Machine Instruction Set 235

sreturn sreturn
Return short from method

Format

Forms

sreturn = 120 (0x78)

Stack

…, value ⇒
[empty]

Description

The value must be of type short. It is popped from the operand stack of the current
frame (§3.5) and pushed onto the operand stack of the frame of the invoker. Any
other values on the operand stack of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

sreturn

Appendix JCVM01

750

236 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sshl sshl
Shift left short

Format

Forms

sshl = 77 (0x4d)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by shifting value1 left by s bit positions,
where s is the value of the low five bits of value2. The result is pushed onto the
operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The
shift distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1f.

sshl

Appendix JCVM01

751

Chapter 7 Java Card Virtual Machine Instruction Set 237

sshr sshr
Arithmetic shift right short

Format

Forms

sshr = 79 (0x4f)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by shifting value1 right by s bit positions,
with sign extension, where s is the value of the low five bits of value2. The result is
pushed onto the operand stack.

Notes

The resulting value is (value1) / 2s, where s is value2 & 0x1f. For nonnegative value1,
this is equivalent (even if overflow occurs) to truncating short division by 2 to the
power s. The shift distance actually used is always in the range 0 to 31, inclusive, as
if value2 were subjected to a bitwise logical AND with the mask value 0x1f.

sshr

Appendix JCVM01

752

238 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sspush sspush
Push short

Format

Forms

sspush = 17 (0x11)

Stack

… ⇒
…, value

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short
where the value of the short is (byte1 << 8) | byte2. The resulting value is pushed onto
the operand stack.

sspush
byte1
byte2

Appendix JCVM01

753

Chapter 7 Java Card Virtual Machine Instruction Set 239

sstore sstore
Store short into local variable

Format

Forms

sstore = 41 (0x29)

Stack

…, value ⇒
…

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (§3.5). The value on top of the operand stack must be of type
short. It is popped from the operand stack, and the value of the local variable at
index is set to value.

sstore
index

Appendix JCVM01

754

240 Java Card 2.1 Virtual Machine Specification • March 3, 1999

sstore_<n> sstore_<n>
Store short into local variable

Format

Forms

sstore_0 = 47 (0x2f)
sstore_1 = 48 (0x30)
sstore_2 = 49 (0x31)
sstore_3 = 50 (0x32)

Stack

…, value ⇒
…

Description

The <n> must be a valid index into the local variables of the current frame (§3.5).
The value on top of the operand stack must be of type short. It is popped from the
operand stack, and the value of the local variable at <n> is set to value.

sstore_<n>

Appendix JCVM01

755

Chapter 7 Java Card Virtual Machine Instruction Set 241

ssub ssub
Subtract short

Format

Forms

ssub = 67 (0x43)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 - value2. The result is pushed onto the
operand stack.

For short subtraction, a – b produces the same result as a + (–b). For short values,
subtraction from zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may
have a different sign than the true mathematical result, execution of a ssub
instruction never throws a runtime exception.

ssub

Appendix JCVM01

756

242 Java Card 2.1 Virtual Machine Specification • March 3, 1999

stableswitch stableswitch
Access jump table by short index and jump

Format

Offset Format

Forms

stableswitch = 115 (0x73)

Stack

…, index ⇒
…

Description

A stableswitch instruction is a variable-length instruction. Immediately after the
stableswitch opcode follow a signed 16-bit value default, a signed 16-bit value low, a
signed 16-bit value high, and then high – low + 1 further signed 16-bit offsets. The
value low must be less than or equal to high. The high – low + 1 signed 16-bit offsets
are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (byte1 << 8) | byte2.

The index must be of type short and is popped from the stack. If index is less than
low or index is greater than high, than a target address is calculated by adding default
to the address of the opcode of this stableswitch instruction. Otherwise, the offset at
position index – low of the jump table is extracted. The target address is calculated by
adding that offset to the address of the opcode of this stableswitch instruction.
Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as
the one calculated from default, must be the address of an opcode of an instruction
within the method that contains this stableswitch instruction.

stableswitch
defaultbyte1
defaultbyte2

lowbyte1
lowbyte2
highbyte1
highbyte2

jump offsets…

offsetbyte1
offsetbyte2

Appendix JCVM01

757

Chapter 7 Java Card Virtual Machine Instruction Set 243

sushr sushr
Logical shift right short

Format

Forms

sushr = 81 (0x51)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by sign-extending value1 to 32 bits and
shifting the result right by s bit positions, with zero extension, where s is the value of
the low five bits of value2. The resulting value is then truncated to a 16-bit result. The
result is pushed onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >> s;
if value1 is negative, the result is equal to the value of the expression (value1 >> s) +
(2 << ~s). The addition of the (2 << ~s) term cancels out the propagated sign bit. The
shift distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1f.

sushr

Appendix JCVM01

758

244 Java Card 2.1 Virtual Machine Specification • March 3, 1999

swap_x swap_x
Swap top two operand stack words

Format

Forms

swap_x = 64 (0x40)

Stack

…, wordM+N, …, wordM+1, wordM, …, word1 ⇒
…, wordM, …, word1, wordM+N, …, wordM+1

Description

The unsigned byte mn is used to construct two parameter values. The high nibble,
(mn & 0xf0) >> 4, is used as the value m. The low nibble, (mn & 0xf), is used as the
value n. Permissible values for both m and n are 1 and 2.

The top m words on the operand stack are swapped with the n words immediately
below.

The swap_x instruction must not be used unless the ranges of words 1 through m and
words m+1 through n each contain either a 16-bit data type, two 16-bit data types, a
32-bit data type, a 16-bit data type and a 32-bit data type (in either order), or two 32-
bit data types.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the swap_x
instruction operates on untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the only permissible value
for both m and n is 1.

swap_x
mn

Appendix JCVM01

759

Chapter 7 Java Card Virtual Machine Instruction Set 245

sxor sxor
Boolean XOR short

Format

Forms

sxor = 87 (0x57)

Stack

…, value1, value2 ⇒
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by taking the bitwise exclusive OR of
value1 and value2. The result is pushed onto the operand stack.

sxor

Appendix JCVM01

760

246 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Appendix JCVM01

761

245

CHAPTER 8

Tables of Instructions

TABLE 8-1 Instructions by Opcode Value

dec hex mnemonic dec hex mnemonic
0 00 nop 47 2F sstore_0
1 01 aconst_null 48 30 sstore_1
2 02 sconst_m1 49 31 sstore_2
3 03 sconst_0 50 32 sstore_3
4 04 sconst_1 51 33 istore_0
5 05 sconst_2 52 34 istore_1
6 06 sconst_3 53 35 istore_2
7 07 sconst_4 54 36 istore_3
8 08 sconst_5 55 37 aastore
9 09 iconst_m1 56 38 bastore
10 0A iconst_0 57 39 sastore
11 0B iconst_1 58 3A iastore
12 0C iconst_2 59 3B pop
13 0D iconst_3 60 3C pop2
14 0E iconst_4 61 3D dup
15 0F iconst_5 62 3E dup2
16 10 bspush 63 3F dup_x
17 11 sspush 64 40 swap_x
18 12 bipush 65 41 sadd
19 13 sipush 66 42 iadd
20 14 iipush 67 43 ssub
21 15 aload 68 44 isub
22 16 sload 69 45 smul
23 17 iload 70 46 imul
24 18 aload_0 71 47 sdiv
25 19 aload_1 72 48 idiv
26 1A aload_2 73 49 srem
27 1B aload_3 74 4A irem
28 1C sload_0 75 4B sneg
29 1D sload_1 76 4C ineg
30 1E sload_2 77 4D sshl
31 1F sload_3 78 4E ishl
32 20 iload_0 79 4F sshr
33 21 iload_1 80 50 ishr
34 22 iload_2 81 51 sushr
35 23 iload_3 82 52 iushr
36 24 aaload 83 53 sand
37 25 baload 84 54 iand
38 26 saload 85 55 sor
39 27 iaload 86 56 ior
40 28 astore 87 57 sxor
41 29 sstore 88 58 ixor
42 2A istore 89 59 sinc
43 2B astore_0 90 5A iinc
44 2C astore_1 91 5B s2b
45 2D astore_2 92 5C s2i
46 2E astore_3 93 5D i2b

Appendix JCVM01

762

246 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Table 8-1 (continued) Instructions by Opcode Value

dec hex mnemonic dec hex mnemonic
94 5E i2s 141 8D invokestatic
95 5F icmp 142 8E invokeinterface
96 60 ifeq 143 8F new
97 61 ifne 144 90 newarray
98 62 iflt 145 91 anewarray
99 63 ifge 146 92 arraylength
100 64 ifgt 147 93 athrow
101 65 ifle 148 94 checkcast
102 66 ifnull 149 95 instanceof
103 67 ifnonnull 150 96 sinc_w
104 68 if_acmpeq 151 97 iinc_w
105 69 if_acmpne 152 98 ifeq_w
106 6A if_scmpeq 153 99 ifne_w
107 6B if_scmpne 154 9A iflt_w
108 6C if_scmplt 155 9B ifge_w
109 6D if_scmpge 156 9C ifgt_w
110 6E if_scmpgt 157 9D ifle_w
111 6F if_scmple 158 9E ifnull_w
112 70 goto 159 9F ifnonnull_w
113 71 jsr 160 A0 if_acmpeq_w
114 72 ret 161 A1 if_acmpne_w
115 73 stableswitch 162 A2 if_scmpeq_w
116 74 itableswitch 163 A3 if_scmpne_w
117 75 slookupswitch 164 A4 if_scmplt_w
118 76 ilookupswitch 165 A5 if_scmpge_w
119 77 areturn 166 A6 if_scmpgt_w
120 78 sreturn 167 A7 if_scmple_w
121 79 ireturn 168 A8 goto_w
122 7A return 169 A9 getfield_a_w
123 7B getstatic_a 170 AA getfield_b_w
124 7C getstatic_b 171 AB getfield_s_w
125 7D getstatic_s 172 AC getfield_i_w
126 7E getstatic_i 173 AD getfield_a_this
127 7F putstatic_a 174 AE getfield_b_this
128 80 putstatic_b 175 AF getfield_s_this
129 81 putstatic_s 176 B0 getfield_i_this
130 82 putstatic_i 177 B1 putfield_a_w
131 83 getfield_a 178 B2 putfield_b_w
132 84 getfield_b 179 B3 putfield_s_w
133 85 getfield_s 180 B4 putfield_i_w
134 86 getfield_i 181 B5 putfield_a_this
135 87 putfield_a 182 B6 putfield_b_this
136 88 putfield_b 183 B7 putfield_s_this
137 89 putfield_s 184 B8 putfield_i_this
138 8A putfield_i …
139 8B invokevirtual 254 FE impdep1
140 8C invokespecial 255 FF impdep2

Appendix JCVM01

763

Chapter 8 Tables of Instructions 247

TABLE 8-2 Instructions by Opcode Mnemonic

mnemonic dec hex mnemonic dec hex
aaload 36 24 iand 84 54
aastore 55 37 iastore 58 3A
aconst_null 1 01 icmp 95 5F
aload 21 15 iconst_0 10 0A
aload_0 24 18 iconst_1 11 0B
aload_1 25 19 iconst_2 12 0C
aload_2 26 1A iconst_3 13 0D
aload_3 27 1B iconst_4 14 0E
anewarray 145 91 iconst_5 15 0F
areturn 119 77 iconst_m1 9 09
arraylength 146 92 idiv 72 48
astore 40 28 if_acmpeq 104 68
astore_0 43 2B if_acmpeq_w 160 A0
astore_1 44 2C if_acmpne 105 69
astore_2 45 2D if_acmpne_w 161 A1
astore_3 46 2E if_scmpeq 106 6A
athrow 147 93 if_scmpeq_w 162 A2
baload 37 25 if_scmpge 109 6D
bastore 56 38 if_scmpge_w 165 A5
bipush 18 12 if_scmpgt 110 6E
bspush 16 10 if_scmpgt_w 166 A6
checkcast 148 94 if_scmple 111 6F
dup 61 3D if_scmple_w 167 A7
dup_x 63 3F if_scmplt 108 6C
dup2 62 3E if_scmplt_w 164 A4
getfield_a 131 83 if_scmpne 107 6B
getfield_a_this 173 AD if_scmpne_w 163 A3
getfield_a_w 169 A9 ifeq 96 60
getfield_b 132 84 ifeq_w 152 98
getfield_b_this 174 AE ifge 99 63
getfield_b_w 170 AA ifge_w 155 9B
getfield_i 134 86 ifgt 100 64
getfield_i_this 176 B0 ifgt_w 156 9C
getfield_i_w 172 AC ifle 101 65
getfield_s 133 85 ifle_w 157 9D
getfield_s_this 175 AF iflt 98 62
getfield_s_w 171 AB iflt_w 154 9A
getstatic_a 123 7B ifne 97 61
getstatic_b 124 7C ifne_w 153 99
getstatic_i 126 7E ifnonnull 103 67
getstatic_s 125 7D ifnonnull_w 159 9F
goto 112 70 ifnull 102 66
goto_w 168 A8 ifnull_w 158 9E
i2b 93 5D iinc 90 5A
i2s 94 5E iinc_w 151 97
iadd 66 42 iipush 20 14
iaload 39 27 iload 23 17

Appendix JCVM01

764

248 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Table 8-2 (continued) Instructions by Opcode Mnemonic

mnemonic dec hex mnemonic dec hex
iload_0 32 20 putstatic_s 129 81
iload_1 33 21 ret 114 72
iload_2 34 22 return 122 7A
iload_3 35 23 s2b 91 5B
ilookupswitch 118 76 s2i 92 5C
imul 70 46 sadd 65 41
ineg 76 4C saload 38 26
instanceof 149 95 sand 83 53
invokeinterface 142 8E sastore 57 39
invokespecial 140 8C sconst_0 3 03
invokestatic 141 8D sconst_1 4 04
invokevirtual 139 8B sconst_2 5 05
ior 86 56 sconst_3 6 06
irem 74 4A sconst_4 7 07
ireturn 121 79 sconst_5 8 08
ishl 78 4E sconst_m1 2 02
ishr 80 50 sdiv 71 47
istore 42 2A sinc 89 59
istore_0 51 33 sinc_w 150 96
istore_1 52 34 sipush 19 13
istore_2 53 35 sload 22 16
istore_3 54 36 sload_0 28 1C
isub 68 44 sload_1 29 1D
itableswitch 116 74 sload_2 30 1E
iushr 82 52 sload_3 31 1F
ixor 88 58 slookupswitch 117 75
jsr 113 71 smul 69 45
new 143 8F sneg 75 4B
newarray 144 90 sor 85 55
nop 0 00 srem 73 49
pop 59 3B sreturn 120 78
pop2 60 3C sshl 77 4D
putfield_a 135 87 sshr 79 4F
putfield_a_this 181 B5 sspush 17 11
putfield_a_w 177 B1 sstore 41 29
putfield_b 136 88 sstore_0 47 2F
putfield_b_this 182 B6 sstore_1 48 30
putfield_b_w 178 B2 sstore_2 49 31
putfield_i 138 8A sstore_3 50 32
putfield_i_this 184 B8 ssub 67 43
putfield_i_w 180 B4 stableswitch 115 73
putfield_s 137 89 sushr 81 51
putfield_s_this 183 B7 swap_x 64 40
putfield_s_w 179 B3 sxor 87 57
putstatic_a 127 7F
putstatic_b 128 80
putstatic_i 130 82

Appendix JCVM01

765

249

Glossary

AID is an acronym for Application IDentifier as defined in ISO 7816-5.

API is an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system and
other services.

Applet is the basic unit of selection, context, functionality, and security in Java Card
technology.

Applet developer refers to a person creating a Java Card applet using the Java Card
technology specifications.

Atomic operation is an operation that either completes in its entirety (if the
operation succeeds) or no part of the operation completes at all (if the operation
fails).

Atomicity refers to whether a particular operation is atomic or not and is necessary
for proper data recovery in cases where power is lost or the card is unexpectedly
removed from the CAD.

Cast is the explicit conversion from one data type to another.

Class is the prototype for an object in an object-oriented language. A class may also
be considered a set of objects which share a common structure and behavior. The
structure of a class is determined by the class variables which represent the state of
an object of that class and the behavior is given by a set of methods associated with
the class.

Classes are related in a class hierarchy. One class may be a specialization (a
“subclass”) of another (one of its “superclasses”), it may be composed of other
classes, or it may use other classes in a client-server relationship.

Context is the object space partition associated with a package. Applets within the
same Java package belong to the same context. The firewall is the boundary between
contexts (see Current context).

Appendix JCVM01

766

250 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Current context. The JCRE keeps track of the current Java Card context. When a
virtual method is invoked on an object, and a context switch is required and
permitted, the current context is changed to correspond to the context of the applet
that owns the object. When that method returns, the previous context is restored.
Invocations of static methods have no effect on the current context. The current
context and sharing status of an object together determine if access to an object is
permissible.

Firewall is the mechanism in the Java Card technology by which the Java Card VM
prevents an applet in one context from making unauthorized accesses to objects
owned by an applet in another context or the JCRE context, and reports or otherwise
addresses the violation.

Framework is the set of classes which implement the API. This includes core and
extension packages. Responsibilities include dispatching of APDUs, applet selection,
managing atomicity, and installing applets.

Garbage collection is the process by which dynamically allocated storage is
automatically reclaimed during the execution of a program.

Instance variables (also known as fields) represent a portion of an object’s internal
state. Each object has its own set of instance variables. Objects of the same class will
have the same instance variables, but each object can have different values.

Instantiation (in object-oriented programming) means to produce a particular object
from its class template. This involves allocation of a data structure with the types
specified by the template, and initialization of instance variables with either default
values or those provided by the class’s constructor function.

JAR is an acronym for Java Archive. JAR is a platform-independent file format that
combines many files into one.

Java Card Runtime Environment (JCRE) consists of the Java Card Virtual Machine,
the framework, and the associated native methods.

JCRE implementer refers to a person creating a vendor-specific framework using the
Java Card 2.1 API.

JCVM is an acronym for the Java Card Virtual Machine. The JCVM executes byte
code and manages classes and objects. It enforces separation between applets
(firewalls) and enables secure data sharing.

Method is the name given to a procedure or routine, associated with one or more
classes, in object-oriented languages.

Namespace is a set of names in which all names are unique.

Object-Oriented is a programming methodology based on the concept of an “object”
which is a data structure encapsulated with a set of routines, called “methods,”
which operate on the data.

Appendix JCVM01

767

Glossary 251

Objects, in object-oriented programming, are unique instances of a data structure
defined according to the template provided by its class. Each object has its own
values for the variables belonging to its class and can respond to the messages
(methods) defined by its class.

Package is a namespace within the Java programming language and can have classes
and interfaces. A package is the smallest unit within the Java programming
language.

Appendix JCVM01

768

252 Java Card 2.1 Virtual Machine Specification • March 3, 1999

Appendix JCVM01

769

Appendix FINKENZELLER01

770

Appendix FINKENZELLER01

771

Appendix FINKENZELLER01

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

	Appendices.pdf
	Appendix JCAPI01 - University jcapi.pdf
	
	Java CardTM 2.1 Platform API Specification Final Revision 1.0

	Java Card 2.1 API Notes
	Referenced Standards
	ISO - International Standards Organization
	RSA Data Security, Inc.
	EMV
	IPSec

	Standard Names for Security and Crypto

	Parameter Checking
	Policy
	Exceptions to the Policy

	
	Hierarchy For All Packages
	Class Hierarchy
	Interface Hierarchy

	
	Package java.lang
	Package java.lang Description

	
	java.lang Class ArithmeticException
	ArithmeticException

	
	java.lang Class ArrayIndexOutOfBoundsException
	ArrayIndexOutOfBoundsException

	
	java.lang Class ArrayStoreException
	ArrayStoreException

	
	java.lang Class ClassCastException
	ClassCastException

	
	java.lang Class Exception
	Exception

	
	java.lang Class IndexOutOfBoundsException
	IndexOutOfBoundsException

	
	java.lang Class NegativeArraySizeException
	NegativeArraySizeException

	
	java.lang Class NullPointerException
	NullPointerException

	
	java.lang Class Object
	Object
	equals

	
	java.lang Class RuntimeException
	RuntimeException

	
	java.lang Class SecurityException
	SecurityException

	
	java.lang Class Throwable
	Throwable

	
	Package javacard.framework
	Package javacard.framework Description

	
	javacard.framework Class AID
	AID
	getBytes
	equals
	equals
	partialEquals
	RIDEquals

	
	javacard.framework Class APDU
	PROTOCOL_T0
	PROTOCOL_T1
	getBuffer
	getInBlockSize
	getOutBlockSize
	getProtocol
	getNAD
	setOutgoing
	setOutgoingNoChaining
	setOutgoingLength
	receiveBytes
	setIncomingAndReceive
	sendBytes
	sendBytesLong
	setOutgoingAndSend
	waitExtension

	
	javacard.framework Class APDUException
	ILLEGAL_USE
	BUFFER_BOUNDS
	BAD_LENGTH
	IO_ERROR
	NO_T0_GETRESPONSE
	T1_IFD_ABORT
	APDUException
	throwIt

	
	javacard.framework Class Applet
	Applet
	install
	process
	select
	deselect
	getShareableInterfaceObject
	register
	register
	selectingApplet

	
	javacard.framework Class CardException
	CardException
	getReason
	setReason
	throwIt

	
	javacard.framework Class CardRuntimeException
	CardRuntimeException
	getReason
	setReason
	throwIt

	
	javacard.framework Interface ISO7816
	SW_NO_ERROR
	SW_BYTES_REMAINING_00
	SW_WRONG_LENGTH
	SW_SECURITY_STATUS_NOT_SATISFIED
	SW_FILE_INVALID
	SW_DATA_INVALID
	SW_CONDITIONS_NOT_SATISFIED
	SW_COMMAND_NOT_ALLOWED
	SW_APPLET_SELECT_FAILED
	SW_WRONG_DATA
	SW_FUNC_NOT_SUPPORTED
	SW_FILE_NOT_FOUND
	SW_RECORD_NOT_FOUND
	SW_INCORRECT_P1P2
	SW_WRONG_P1P2
	SW_CORRECT_LENGTH_00
	SW_INS_NOT_SUPPORTED
	SW_CLA_NOT_SUPPORTED
	SW_UNKNOWN
	SW_FILE_FULL
	OFFSET_CLA
	OFFSET_INS
	OFFSET_P1
	OFFSET_P2
	OFFSET_LC
	OFFSET_CDATA
	CLA_ISO7816
	INS_SELECT
	INS_EXTERNAL_AUTHENTICATE

	
	javacard.framework Class ISOException
	ISOException
	throwIt

	
	javacard.framework Class JCSystem
	NOT_A_TRANSIENT_OBJECT
	CLEAR_ON_RESET
	CLEAR_ON_DESELECT
	isTransient
	makeTransientBooleanArray
	makeTransientByteArray
	makeTransientShortArray
	makeTransientObjectArray
	getVersion
	getAID
	lookupAID
	beginTransaction
	abortTransaction
	commitTransaction
	getTransactionDepth
	getUnusedCommitCapacity
	getMaxCommitCapacity
	getPreviousContextAID
	getAppletShareableInterfaceObject

	
	javacard.framework Class OwnerPIN
	OwnerPIN
	getValidatedFlag
	setValidatedFlag
	getTriesRemaining
	check
	isValidated
	reset
	update
	resetAndUnblock

	
	javacard.framework Interface PIN
	getTriesRemaining
	check
	isValidated
	reset

	
	javacard.framework Class PINException
	ILLEGAL_VALUE
	PINException
	throwIt

	
	javacard.framework Interface Shareable

	
	javacard.framework Class SystemException
	ILLEGAL_VALUE
	NO_TRANSIENT_SPACE
	ILLEGAL_TRANSIENT
	ILLEGAL_AID
	NO_RESOURCE
	SystemException
	throwIt

	
	javacard.framework Class TransactionException
	IN_PROGRESS
	NOT_IN_PROGRESS
	BUFFER_FULL
	INTERNAL_FAILURE
	TransactionException
	throwIt

	
	javacard.framework Class UserException
	UserException
	UserException
	throwIt

	
	javacard.framework Class Util
	arrayCopy
	arrayCopyNonAtomic
	arrayFillNonAtomic
	arrayCompare
	makeShort
	getShort
	setShort

	
	Package javacard.security
	Package javacard.security Description

	
	javacard.security Class CryptoException
	ILLEGAL_VALUE
	UNINITIALIZED_KEY
	NO_SUCH_ALGORITHM
	INVALID_INIT
	ILLEGAL_USE
	CryptoException
	throwIt

	
	javacard.security Interface DESKey
	setKey
	getKey

	
	javacard.security Interface DSAKey
	setP
	setQ
	setG
	getP
	getQ
	getG

	
	javacard.security Interface DSAPrivateKey
	setX
	getX

	
	javacard.security Interface DSAPublicKey
	setY
	getY

	
	javacard.security Interface Key
	isInitialized
	clearKey
	getType
	getSize

	
	javacard.security Class KeyBuilder
	TYPE_DES_TRANSIENT_RESET
	TYPE_DES_TRANSIENT_DESELECT
	TYPE_DES
	TYPE_RSA_PUBLIC
	TYPE_RSA_PRIVATE
	TYPE_RSA_CRT_PRIVATE
	TYPE_DSA_PUBLIC
	TYPE_DSA_PRIVATE
	LENGTH_DES
	LENGTH_DES3_2KEY
	LENGTH_DES3_3KEY
	LENGTH_RSA_512
	LENGTH_RSA_768
	LENGTH_RSA_1024
	LENGTH_RSA_2048
	LENGTH_DSA_512
	LENGTH_DSA_768
	LENGTH_DSA_1024
	buildKey

	
	javacard.security Class MessageDigest
	ALG_SHA
	ALG_MD5
	ALG_RIPEMD160
	MessageDigest
	getInstance
	getAlgorithm
	getLength
	doFinal
	update

	
	javacard.security Interface PrivateKey

	
	javacard.security Interface PublicKey

	
	javacard.security Interface RSAPrivateCrtKey
	setP
	setQ
	setDP1
	setDQ1
	setPQ
	getP
	getQ
	getDP1
	getDQ1
	getPQ

	
	javacard.security Interface RSAPrivateKey
	setModulus
	setExponent
	getModulus
	getExponent

	
	javacard.security Interface RSAPublicKey
	setModulus
	setExponent
	getModulus
	getExponent

	
	javacard.security Class RandomData
	ALG_PSEUDO_RANDOM
	ALG_SECURE_RANDOM
	RandomData
	getInstance
	generateData
	setSeed

	
	javacard.security Interface SecretKey

	
	javacard.security Class Signature
	ALG_DES_MAC4_NOPAD
	ALG_DES_MAC8_NOPAD
	ALG_DES_MAC4_ISO9797_M1
	ALG_DES_MAC8_ISO9797_M1
	ALG_DES_MAC4_ISO9797_M2
	ALG_DES_MAC8_ISO9797_M2
	ALG_DES_MAC4_PKCS5
	ALG_DES_MAC8_PKCS5
	ALG_RSA_SHA_ISO9796
	ALG_RSA_SHA_PKCS1
	ALG_RSA_MD5_PKCS1
	ALG_RSA_RIPEMD160_ISO9796
	ALG_RSA_RIPEMD160_PKCS1
	ALG_DSA_SHA
	ALG_RSA_SHA_RFC2409
	ALG_RSA_MD5_RFC2409
	MODE_SIGN
	MODE_VERIFY
	Signature
	getInstance
	init
	init
	getAlgorithm
	getLength
	update
	sign
	verify

	
	Package javacardx.crypto
	Package javacardx.crypto Description

	
	javacardx.crypto Class Cipher
	ALG_DES_CBC_NOPAD
	ALG_DES_CBC_ISO9797_M1
	ALG_DES_CBC_ISO9797_M2
	ALG_DES_CBC_PKCS5
	ALG_DES_ECB_NOPAD
	ALG_DES_ECB_ISO9797_M1
	ALG_DES_ECB_ISO9797_M2
	ALG_DES_ECB_PKCS5
	ALG_RSA_ISO14888
	ALG_RSA_PKCS1
	ALG_RSA_ISO9796
	MODE_DECRYPT
	MODE_ENCRYPT
	Cipher
	getInstance
	init
	init
	getAlgorithm
	doFinal
	update

	
	javacardx.crypto Interface KeyEncryption
	setKeyCipher
	getKeyCipher

	
	A
	B
	C
	D
	E
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Appendix JCAPI02 - JavaCard21API.pdf
	
	Java CardTM 2.1 Platform API Specification Final Revision 1.0

	Java Card 2.1 API Notes
	Referenced Standards
	ISO - International Standards Organization
	RSA Data Security, Inc.
	EMV
	IPSec

	Standard Names for Security and Crypto

	Parameter Checking
	Policy
	Exceptions to the Policy

	
	Hierarchy For All Packages
	Class Hierarchy
	Interface Hierarchy

	
	Package java.lang
	Package java.lang Description

	
	java.lang Class ArithmeticException
	ArithmeticException

	
	java.lang Class ArrayIndexOutOfBoundsException
	ArrayIndexOutOfBoundsException

	
	java.lang Class ArrayStoreException
	ArrayStoreException

	
	java.lang Class ClassCastException
	ClassCastException

	
	java.lang Class Exception
	Exception

	
	java.lang Class IndexOutOfBoundsException
	IndexOutOfBoundsException

	
	java.lang Class NegativeArraySizeException
	NegativeArraySizeException

	
	java.lang Class NullPointerException
	NullPointerException

	
	java.lang Class Object
	Object
	equals

	
	java.lang Class RuntimeException
	RuntimeException

	
	java.lang Class SecurityException
	SecurityException

	
	java.lang Class Throwable
	Throwable

	
	Package javacard.framework
	Package javacard.framework Description

	
	javacard.framework Class AID
	AID
	getBytes
	equals
	equals
	partialEquals
	RIDEquals

	
	javacard.framework Class APDU
	PROTOCOL_T0
	PROTOCOL_T1
	getBuffer
	getInBlockSize
	getOutBlockSize
	getProtocol
	getNAD
	setOutgoing
	setOutgoingNoChaining
	setOutgoingLength
	receiveBytes
	setIncomingAndReceive
	sendBytes
	sendBytesLong
	setOutgoingAndSend
	waitExtension

	
	javacard.framework Class APDUException
	ILLEGAL_USE
	BUFFER_BOUNDS
	BAD_LENGTH
	IO_ERROR
	NO_T0_GETRESPONSE
	T1_IFD_ABORT
	APDUException
	throwIt

	
	javacard.framework Class Applet
	Applet
	install
	process
	select
	deselect
	getShareableInterfaceObject
	register
	register
	selectingApplet

	
	javacard.framework Class CardException
	CardException
	getReason
	setReason
	throwIt

	
	javacard.framework Class CardRuntimeException
	CardRuntimeException
	getReason
	setReason
	throwIt

	
	javacard.framework Interface ISO7816
	SW_NO_ERROR
	SW_BYTES_REMAINING_00
	SW_WRONG_LENGTH
	SW_SECURITY_STATUS_NOT_SATISFIED
	SW_FILE_INVALID
	SW_DATA_INVALID
	SW_CONDITIONS_NOT_SATISFIED
	SW_COMMAND_NOT_ALLOWED
	SW_APPLET_SELECT_FAILED
	SW_WRONG_DATA
	SW_FUNC_NOT_SUPPORTED
	SW_FILE_NOT_FOUND
	SW_RECORD_NOT_FOUND
	SW_INCORRECT_P1P2
	SW_WRONG_P1P2
	SW_CORRECT_LENGTH_00
	SW_INS_NOT_SUPPORTED
	SW_CLA_NOT_SUPPORTED
	SW_UNKNOWN
	SW_FILE_FULL
	OFFSET_CLA
	OFFSET_INS
	OFFSET_P1
	OFFSET_P2
	OFFSET_LC
	OFFSET_CDATA
	CLA_ISO7816
	INS_SELECT
	INS_EXTERNAL_AUTHENTICATE

	
	javacard.framework Class ISOException
	ISOException
	throwIt

	
	javacard.framework Class JCSystem
	NOT_A_TRANSIENT_OBJECT
	CLEAR_ON_RESET
	CLEAR_ON_DESELECT
	isTransient
	makeTransientBooleanArray
	makeTransientByteArray
	makeTransientShortArray
	makeTransientObjectArray
	getVersion
	getAID
	lookupAID
	beginTransaction
	abortTransaction
	commitTransaction
	getTransactionDepth
	getUnusedCommitCapacity
	getMaxCommitCapacity
	getPreviousContextAID
	getAppletShareableInterfaceObject

	
	javacard.framework Class OwnerPIN
	OwnerPIN
	getValidatedFlag
	setValidatedFlag
	getTriesRemaining
	check
	isValidated
	reset
	update
	resetAndUnblock

	
	javacard.framework Interface PIN
	getTriesRemaining
	check
	isValidated
	reset

	
	javacard.framework Class PINException
	ILLEGAL_VALUE
	PINException
	throwIt

	
	javacard.framework Interface Shareable

	
	javacard.framework Class SystemException
	ILLEGAL_VALUE
	NO_TRANSIENT_SPACE
	ILLEGAL_TRANSIENT
	ILLEGAL_AID
	NO_RESOURCE
	SystemException
	throwIt

	
	javacard.framework Class TransactionException
	IN_PROGRESS
	NOT_IN_PROGRESS
	BUFFER_FULL
	INTERNAL_FAILURE
	TransactionException
	throwIt

	
	javacard.framework Class UserException
	UserException
	UserException
	throwIt

	
	javacard.framework Class Util
	arrayCopy
	arrayCopyNonAtomic
	arrayFillNonAtomic
	arrayCompare
	makeShort
	getShort
	setShort

	
	Package javacard.security
	Package javacard.security Description

	
	javacard.security Class CryptoException
	ILLEGAL_VALUE
	UNINITIALIZED_KEY
	NO_SUCH_ALGORITHM
	INVALID_INIT
	ILLEGAL_USE
	CryptoException
	throwIt

	
	javacard.security Interface DESKey
	setKey
	getKey

	
	javacard.security Interface DSAKey
	setP
	setQ
	setG
	getP
	getQ
	getG

	
	javacard.security Interface DSAPrivateKey
	setX
	getX

	
	javacard.security Interface DSAPublicKey
	setY
	getY

	
	javacard.security Interface Key
	isInitialized
	clearKey
	getType
	getSize

	
	javacard.security Class KeyBuilder
	TYPE_DES_TRANSIENT_RESET
	TYPE_DES_TRANSIENT_DESELECT
	TYPE_DES
	TYPE_RSA_PUBLIC
	TYPE_RSA_PRIVATE
	TYPE_RSA_CRT_PRIVATE
	TYPE_DSA_PUBLIC
	TYPE_DSA_PRIVATE
	LENGTH_DES
	LENGTH_DES3_2KEY
	LENGTH_DES3_3KEY
	LENGTH_RSA_512
	LENGTH_RSA_768
	LENGTH_RSA_1024
	LENGTH_RSA_2048
	LENGTH_DSA_512
	LENGTH_DSA_768
	LENGTH_DSA_1024
	buildKey

	
	javacard.security Class MessageDigest
	ALG_SHA
	ALG_MD5
	ALG_RIPEMD160
	MessageDigest
	getInstance
	getAlgorithm
	getLength
	doFinal
	update

	
	javacard.security Interface PrivateKey

	
	javacard.security Interface PublicKey

	
	javacard.security Interface RSAPrivateCrtKey
	setP
	setQ
	setDP1
	setDQ1
	setPQ
	getP
	getQ
	getDP1
	getDQ1
	getPQ

	
	javacard.security Interface RSAPrivateKey
	setModulus
	setExponent
	getModulus
	getExponent

	
	javacard.security Interface RSAPublicKey
	setModulus
	setExponent
	getModulus
	getExponent

	
	javacard.security Class RandomData
	ALG_PSEUDO_RANDOM
	ALG_SECURE_RANDOM
	RandomData
	getInstance
	generateData
	setSeed

	
	javacard.security Interface SecretKey

	
	javacard.security Class Signature
	ALG_DES_MAC4_NOPAD
	ALG_DES_MAC8_NOPAD
	ALG_DES_MAC4_ISO9797_M1
	ALG_DES_MAC8_ISO9797_M1
	ALG_DES_MAC4_ISO9797_M2
	ALG_DES_MAC8_ISO9797_M2
	ALG_DES_MAC4_PKCS5
	ALG_DES_MAC8_PKCS5
	ALG_RSA_SHA_ISO9796
	ALG_RSA_SHA_PKCS1
	ALG_RSA_MD5_PKCS1
	ALG_RSA_RIPEMD160_ISO9796
	ALG_RSA_RIPEMD160_PKCS1
	ALG_DSA_SHA
	ALG_RSA_SHA_RFC2409
	ALG_RSA_MD5_RFC2409
	MODE_SIGN
	MODE_VERIFY
	Signature
	getInstance
	init
	init
	getAlgorithm
	getLength
	update
	sign
	verify

	
	Package javacardx.crypto
	Package javacardx.crypto Description

	
	javacardx.crypto Class Cipher
	ALG_DES_CBC_NOPAD
	ALG_DES_CBC_ISO9797_M1
	ALG_DES_CBC_ISO9797_M2
	ALG_DES_CBC_PKCS5
	ALG_DES_ECB_NOPAD
	ALG_DES_ECB_ISO9797_M1
	ALG_DES_ECB_ISO9797_M2
	ALG_DES_ECB_PKCS5
	ALG_RSA_ISO14888
	ALG_RSA_PKCS1
	ALG_RSA_ISO9796
	MODE_DECRYPT
	MODE_ENCRYPT
	Cipher
	getInstance
	init
	init
	getAlgorithm
	doFinal
	update

	
	javacardx.crypto Interface KeyEncryption
	setKeyCipher
	getKeyCipher

	
	A
	B
	C
	D
	E
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Appendix JCAPI03 - IA JavaCard21API Record.pdf
	Appendix JCAPI03 a
	Appendix JCAPI03 b

	Appendix JCAPI04 - Sun Microsystems Page.pdf
	Appendix JCAPI04 a
	JCAPI04 b
	JCAPI 04 c

	Appendix FINKENZELLER01 - PSU MARC with header.pdf
	1
	2

