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Adoptive transfer of genetically modified
T cells is an attractive approach for gener-
ating antitumor immune responses. We
treated a patient with advanced follicular
lymphoma by administering a preparative
chemotherapy regimen followed by au-
tologous T cells genetically engineered
to express a chimeric antigen receptor
(CAR) that recognized the B-cell antigen
CD19. The patient’s lymphoma under-
went a dramatic regression, and B-cell

precursors were selectively eliminated
from the patient’s bone marrow after infu-
sion of anti–CD19-CAR-transduced
T cells. Blood B cells were absent for at
least 39 weeks after anti–CD19-CAR-
transduced T-cell infusion despite prompt
recovery of other blood cell counts. Con-
sistent with eradication of B-lineage cells,
serum immunoglobulins decreased to
very low levels after treatment. The pro-
longed and selective elimination of B-

lineage cells could not be attributed to
the chemotherapy that the patient re-
ceived and indicated antigen-specific
eradication of B-lineage cells. Adoptive
transfer of anti–CD19-CAR-expressing
T cells is a promising new approach for
treating B-cell malignancies. This study
is registered at www.clinicaltrials.gov as
#NCT00924326. (Blood. 2010;116(20):
4099-4102)

Introduction

T cells can be genetically modified to express chimeric antigen
receptors (CARs).1-5 CARs consist of an antigen-recognition
moiety, such as antibody-derived, single-chain variable fragments,
coupled to T-cell activation domains.1-4 T cells have been geneti-
cally engineered to express CARs that can recognize a variety of
tumor-associated antigens, including the B-lineage antigen CD19,
in a non-human leukocyte antigen-restricted manner.4-15 Expres-
sion of the cell-surface protein CD19 is restricted to normal mature
B cells, malignant B cells, B-cell precursors, and plasma cells.16-19

We have designed a CAR that targets CD19 and initiated a clinical
trial of autologous T cells expressing this CAR (www.clinicaltrials.
gov; #NCT00924326).

Methods

This clinical trial was approved by the National Cancer Institute Institu-
tional Review Board. Design and construction of the mouse stem cell
virus-based splice-gag retroviral vector MSGV-FMC63-28Z encoding the
anti-CD19 CAR used in our clinical trial have been described (GenBank
HM852952).7 The anti-CD19 CAR contains an antigen-recognition
moiety consisting of the variable regions of the FMC63 monoclonal
antibody joined to part of the CD28 molecule and the signaling domains
of the CD3� molecule.

Peripheral blood mononuclear cells were transduced with retroviruses
encoding the anti-CD19 CAR and cultured in an almost identical manner as
previously described.20 As measured by flow cytometry, the CAR was
expressed on 64% of the infused cells, which were 98% CD3� T cells
(supplemental Figure 1, available on the Blood Web site; see the Supplemen-

tal Materials link at the top of the online article). The T cells were 66%
CD8� and 34% CD4�. The anti–CD19-CAR-transduced T cells specifi-
cally recognized CD19� target cells (supplemental Table 1). Methods of
T-cell preparation, flow cytometry, polymerase chain reaction, and immuno-
histochemistry are in the supplemental data. For the immunohistochemistry
images in Figures 1 and 2, images were obtained via digital microscopy
using an Olympus BX51 microscope (Olympus America) equipped with a
UPlanFL 10�/0.3 numeric aperture and UPlanFL 40�/0.75 numeric aperture
objectives. Images were captured using an Olympus DP70 digital camera system.
Imaging software wasAdobe Photoshop CS3 (Adobe Systems).

Results and discussion

The patient was diagnosed with grade 1, stage IVB follicular
lymphoma in 2002. Before enrollment on our protocol, he had
received the following treatments for his lymphoma: PACE (pred-
nisone, doxorubicin, cyclophosphamide, and etoposide), an idio-
type vaccine, the anti–CTLA-4 monoclonal antibody ipilimumab,
and EPOCH-R (etoposide, prednisone, vincristine, cyclophospha-
mide, doxorubicin, and rituximab). The last cycle of EPOCH-R
was administered in January 2008. The EPOCH-R caused a partial
remission; however, progressive disease was noted in July 2008.
The patient received no further treatment before he was evaluated
for enrollment on our trial of anti–CD19-CAR-transduced T cells.

When we evaluated the patient in May 2009, he had progressive
lymphoma that involved all major lymph node areas (Figure 1A).
He had bilateral pleural effusions, night sweats, and a recent weight
loss of 10 pounds. Flow cytometry of a fine needle aspirate from an
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enlarged cervical lymph node demonstrated a monoclonal B-cell
process consistent with follicular lymphoma that uniformly ex-
pressed CD19, CD20, CD22, CD10, and IgM-kappa. Flow cytom-
etry showed that 14.5% of the blood lymphoid cells had a
phenotype that was consistent with the lymphoma and 0.7% of the
blood lymphoid cells were normal polyclonal B cells (data not
shown). Before treatment, 35% of bone marrow lymphoid cells
expressed CD19 (Figure 1B). A total of 55% of these CD19� cells
were monoclonal �-positive and �-negative lymphoma cells; 45%
of the bone marrow CD19� cells were normal surface-immuno-
globulin (Ig)–negative immature B-cell precursors (Figure 1C).
The immature B-cell precursors demonstrated a pattern of antigen
expression consistent with normal maturation, namely, CD22�

B cells with decreasing CD10 expression correlating with increas-
ing CD20 expression (Figure 1D-E).21,22 Large numbers of bone
marrow CD19� cells and CD79a� cells were detected by immuno-
histochemistry before treatment (Figures 1G, 2A).

The patient underwent apheresis, and peripheral blood
mononuclear cells were used to prepare anti–CD19-CAR-
transduced T cells. The patient received a lymphocyte-depleting
regimen consisting of 60 mg/kg cyclophosphamide daily for
2 days followed by 5 daily doses of 25 mg/m2 fludarabine. The

day after the last fludarabine dose, the patient received 1 � 108

anti–CD19-CAR-transduced T cells intravenously. The next
day, he received 3 � 108 anti–CD19-CAR-transduced T cells intra-
venously. After the second anti–CD19-CAR-transduced T-cell
infusion, the patient received 720 000 IU/kg interleukin-2 (IL-2)
intravenously every 8 hours. Eight doses of IL-2 were adminis-
tered. The only acute toxicities that the patient experienced were
cytopenias that were attributable to chemotherapy and a fever that
lasted 2 days (maximum temperature, 38.5°C). The patient was
discharged 11 days after his second anti–CD19-CAR-transduced
T-cell infusion, and he resumed full-time employment.

After therapy, computed tomography scans revealed an impres-
sive partial remission of the lymphoma that lasted 32 weeks (Figure
1A); 32 weeks after treatment, progressive CD19� lymphoma was
noted in right cervical and retroperitoneal lymph nodes.

Blood B cells were absent from 9 weeks after anti–CD19-CAR-
transduced T-cell infusion until at least 39 weeks after anti–CD19-CAR-
transduced T-cell infusion (Figure 2C; supplemental Figure 2). This
prolonged B-cell depletion cannot be attributed to the chemotherapy that
the patient received. Neither the New York esophageal squamous cell
carcinoma antigen-1 (NY-ESO) nor the melanoma antigen gp100 is
expressed by B cells.23,24 In prior clinical trials, patients treated with the

Figure 1. B-lineage cells, including B-cell precur-
sors, were eradicated from the bone marrow after
treatment with anti–CD19-CAR-transduced T cells.
(A) Representative pretreatment computed tomography
scan images and images from 18 weeks after treatment
demonstrate regression of lymphoma masses in the
chest and abdomen after treatment with chemotherapy
followed by anti–CD19-CAR-transduced T cells plus IL-2.
(B) Flow cytometric evaluation of a pretreatment bone
marrow aspirate was conducted with a forward versus
side light scatter analysis gate of lymphoid cells. The left
upper quadrant contains CD19� B-lineage cells (35% of
lymphoid cells), and the right lower quadrant contains
CD3� T cells. (C) Flow cytometric evaluation of a pretreat-
ment bone marrow aspirate with a CD19� analysis gate
is shown. �- and �-negative, CD19�, mostly immature
B-lineage cells that are not part of the malignant lym-
phoma clone are in the rectangle. The cells outside the
rectangle are mostly lymphoma cells. (D) Flow cytomet-
ric evaluation of a pretreatment bone marrow aspirate
with a forward versus side light scatter analysis gate of
lymphoid cells. Immature B-cell precursors in the oval
are CD22� and CD20�. (E) Flow cytometric evaluation
of a pretreatment bone marrow aspirate with a forward
versus side light scatter analysis gate of lymphoid cells.
Immature B-cell precursors in the polyhedral demon-
strate decreasing CD10 correlating with increasing CD20
expression. (F) Flow cytometric evaluation of a bone
marrow aspirate from 36 weeks after treatment with a
forward versus side light scatter analysis gate of lym-
phoid cells. CD19� B-lineage cells are absent.
(G) Immunohistochemistry staining of a pretreatment
bone marrow biopsy reveals a large population of CD19�

cells that includes lymphoma cells as well as nonmalig-
nant B-lineage cells. (H) Immunohistochemistry staining
of a bone marrow biopsy from 36 weeks after infusion of
anti–CD19-CAR-transduced T cells demonstrates a com-
plete absence of CD19� cells. (I) High-power view of the
same anti-CD19 staining shown in panel H.
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same chemotherapy and IL-2 regimen as the patient described in this
report along with T cells retrovirally transduced with receptors that
recognized either NY-ESO or gp100 did not experience prolonged
B-cell depletion (Figure 2D).

Except for B cells and a mild thrombocytopenia, all blood cell
counts, including neutophils, erythrocytes, T cells, and NK cells, of
the patient treated with anti–CD19-CAR-transduced T cells recov-
ered to normal levels by 9 weeks after treatment (Figure 2E-F).

Thirty-six weeks after anti–CD19-CAR-transduced T cells were
infused, CD19� cells were absent from the bone marrow as measured
by flow cytometry (Figure 1F) and immunohistochemistry (Figure
1H-I). CD79a� cells were undetectable in the bone marrow by
immunohistochemistry 14 weeks after treatment (data not shown).
CD79a� cells were detected at greatly below normal frequency 36
weeks after anti–CD19-CAR-transduced T-cell infusion (Figure 2B).
CD79a is expressed earlier in B-cell development than CD19,25 so the
presence of a small number of CD79a� cells while CD19� cells were
absent suggests early recovery of B-lineage cells.

A decrease in serum IgG levels occurred after treatment (Figure
2G). Serum IgM was undetectable from 9 to at least 39 weeks after
treatment. Serum IgA was 66.8 mg/dL before treatment. Serum IgA
decreased to below the detectable limit of 10 mg/dL after treatment
(supplemental Figure 3). Five months after treatment, the patient

developed pneumonia of unknown etiology that required hospital-
ization. After a course of antibiotics, the patient recovered com-
pletely. The patient has subsequently received intravenous Ig
replacement, and he has not had further infections.

The anti-CD19 CAR transgene was detected in peripheral blood
mononuclear cells from one to 27 weeks after anti–CD19-CAR-
transduced T-cell infusion with a quantitative real-time polymerase
chain reaction assay (Figure 2H).

This is the first patient treated on our trial and the only patient
with long enough follow-up to evaluate B-cell depletion. The
prolonged elimination of CD19� cells in this patient indicates in
vivo antigen-specific activity of anti–CD19-CAR-expressing T cells.
Our findings should encourage continued study of anti–CD19-CAR-
transduced T cells.
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Figure 2. Prolonged B-cell depletion after anti–CD19-
CAR-transduced T-cell infusion. (A) Immunohistochem-
istry staining of a pretreatment bone marrow biopsy
shows a large population of CD79a� cells. (B) Thirty-six
weeks after anti–CD19-CAR-transduced T-cell infusion,
rare CD79a� cells were detected by immunohistochem-
isty staining of a bone marrow biopsy. The cells did not
appear to be plasma cells morphologically. The number
of CD79a� cells was substantially below normal limits.
The arrow indicates one of the rare CD79a� cells.
(C) The blood B-cell count of the patient treated with
anti–CD19-CAR-transduced T cells is shown before treat-
ment and at multiple time points after treatment. B cells
were measured by flow cytometry for CD19. The dashed
line indicates the lower limit of normal. Day 0 is the day of
the second anti–CD19-CAR-transduced T-cell infusion.
(D) The mean � SEM blood B-cell count is shown for
patients who received infusions of T cells targeted to
either the NY-ESO antigen or the gp100 antigen. The
patients all received the same chemotherapy and IL-2
regimen as the patient who received anti–CD19-CAR-
transduced T cells. NY-ESO and gp100 are not ex-
pressed by B cells. Day 0 is the day of T-cell infusion. All
available B-cell counts were included for each time point
(pretreatment, n � 28; 4-5 weeks after T-cell infusion,
n � 29; 8-11 weeks after T-cell infusion, n � 31;
14-19 weeks after T-cell infusion, n � 20). All patients
with available samples had a B-cell count in the normal
range by 14 to 19 weeks after T-cell infusion. (E) The
blood CD3� T-cell count of the patient treated with
anti–CD19-CAR-transduced T cells is shown before treat-
ment and at multiple time points after treatment. (F) The
blood NK cell count of the patient treated with anti–CD19-
CAR-transduced T cells is shown before treatment and
at multiple time points after treatment. NK cells were
measured by flow cytometry as CD3�, CD16�, CD56�

cells. (E-F) Day 0 is the day of the second anti–CD19-
CAR-transduced T-cell infusion, and the dashed line
indicates the lower limit of normal. (G) The serum IgG
level of the patient treated with anti–CD19-CAR-trans-
duced T cells is shown before treatment and at multiple
time points after treatment. Day 0 is the day of the second
anti–CD19-CAR-transduced T-cell infusion. (H) Real-
time polymerase chain reaction was performed with a
primer and probe set that was specific for the anti-CD19
CAR. Anti–CD19-CAR-transduced T cells were undetect-
able in pretreatment blood samples. The anti–CD19 CAR
transgene was detected in the peripheral blood of the
patient who received anti–CD19-CAR-transduced T cells
from 1 to 27 weeks after anti–CD19-CAR-transduced
T-cell infusion.
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