IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002 193

Formal Specification and Verification of Safety and
Performance of TCP Selective Acknowledgment

Mark A. Smith and K. K. Ramakrishnan, Member, IEEE

Abstract—We present a formal specification of the selective ac- introduces is the potential for earlier recovery, especially when
knowledgment (SACK) mechanism that is being proposed as a new multiple packets are lost in round-trip time (RTT). This quicker
standard option for TCP. The formal specification allows one to recovery may also result in higher throughput because the more
reason about the SACK protocol; thus, we are able to formally fi hani ti ked
prove that the SACK mechanism does not violate the safety proper- severe congestion feCQVGW mec anlsm_s_are no |_n_v0 ed.
ties (reliable, at most once, and in order message delivery) oftheac- 1€ SACK mechanism includes sufficient additional com-
knowledgment (ACK) mechanism that is currently used with TCP. plexity that we believe it is important to examine whether it
The new mechanismis being proposed to improve the performance operates correctly. It is not obvious from reading the English
of TCP when multiple packets are lost from one window of data. |3ngyage specification of [10] that it satisfies the safety proper-
The proposed mechanism for implementing the SACK option for ti fthe ACK hani Simulati . ts h b
TCP is sufficiently complicated that it is not obvious that it is in- 1es of the mechanism. simula 'on experiments _ave een
deed safe, so we think it is important to formally verify its safety done to understand the performance improvement with SACK
properties. [1], and while these lend confidence that the protocol operates
~ In addition to safety, we are also able to show that SACK can as expected, simulations do not ensure that the protocol is cor-
improve the time it takes for the sender to recover from multiple = ot Formal specifications and verification help significantly in

packet losses. With the additional information available at a SACK .
sender, the round-trip time that a cumulative ACK sender waits ensuring that protocols operate correctly. Therefore, we feel that

before retransmitting each subsequent packet lost after the very @ formal specification and verification of the safety properties of
first loss can be saved. We also show that SACK can improve per- the mechanism is useful. We have developed a formal specifi-

formance even with window sizes as small as four packets and in cation of the SACK mechanism using the 1/0 automaton model

situations where acknowledgment packets are lost. of Lynch and Tuttle [7]. The formal specification of the SACK
Index Terms—Congestion control, formal verification, 1/0 au- mechanism allows one to reason about the protocol in a rig-
tomata, TCP performance, TCP SACK. orous manner. For the formal verification of safety, we use in-

variant assertion and simulation (refinement) techniques. These
methods are used for proving trace inclusion relationships be-
~tween concurrent systems. Trace inclusion means the external
| RANSMISSION Control Protocol (TCP) offers applica-hehaviors of one system is the subset of the external behaviors
tions the semantics of a reliable, flow-controlled channebt another system. For this verification, we use the methods to
The acknowledgment (ACK) mechanism of TCP is an impoknow that the external behaviors of TCP with the SACK option,
tant part of what makes the protocol reliable. By reliable, Wghich we refer to simply as SACK, is a subset of the external
mean data from the sender is not lost, duplicated, or receigéhaviors of a simple abstract specification for end-to-end reli-
out of order. TCP guarantees these properties, which we refgfe message delivery. We use the formalization of simulations
to as safety properties, even though the underlying communiggveloped by Lynch and Vaandrager [8].
tion medium may lose, duplicate, or reorder packets. We assume, key aspect of our formal specification of the SACK mech-
corrupted packets are dropped. anisms is that it allows more nondeterminism than the English
Selective Acknowledgments (SACK) [10] have been praanguage specification [10]. Our specification focuses on key
posed as a complement to the traditional approach of usiggpects of the protocol needed for safety while leaving certain
cumulative acknowledgments for TCP. SACK is proposegspects of the protocol, such as retransmission strategy, unspeci-
as a standard option to be used by cooperating senders &g This means our correctness proof is quite general and holds
receivers. Thfa receiver can take_advantage of the SACK optigjp any implementation of the protocol that uses a specific re-
toreport thatit has received multiple packets out of sequenceyAnsmission strategy or other specific behaviors that we leave
sender receiving a SACK has the opportunity to retransmit thgndeterministic in our specification.
packets that comprise the holes in the sequence number spagge extend the specification used to prove safety properties
as indicated in the SACK. The new functionality that SACKg include time using the general timed automaton model of
Lynch [6]. We use this model to calculate the latency of packets
))) in a window of data in a worst-case scenario and prove that
Manuscript received May 12, 1999; reV|se_d March 7, 2001; approved @ACK lead to i d f lative to th la-
IEEE/ACM TRANSACTIONS ONNETWORKING Editor K. Calvert. - canlea oilmprove periormance re a 'V_e 0 - € cumula
M. A. Smith is with Bell Labs, Murray Hill, NJ 07974 USA (e-mail: mas- tive ACK mechanism. In fact, we prove that in situations where
smith@lucent.com). , the multiple packet loss comes early in the transmission of a
K. K. Ramakrishnan is with TeraOptic Networks, Inc., Sunnyvale, CA 94085 . d fd he i d f ith SACK i
USA (e-mail: kk@teraoptic.com) window of data, the improved performance wit is pro-
Publisher Item Identifier S 1063-6692(02)03106-0. portional toRTT * (k — 1), wherek is the number of packets

[A)OCKET

L A R M Find authenticated court documents without watermarks at docketalarm.com.

|. INTRODUCTION

AAr~A ~AAAAINAGRAI T AN A AAAA -

https://www.docketalarm.com/

194 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

lost in a window. We also show that SACK can improve pesuffer greatly. After retransmitting the first packet in the
formance even when window sizes are small and/or when aetransmission buffer, the sender may be forced to wait for a
knowledgment packets are lost. retransmission timeout to retransmit subsequent “holes” in the
Inthe next section, we present an informal description of bothceiver's sequence number space.
the cumulative ACK and SACK mechanisms. In Section Ill, we To remedy the problem that occurs when multiple packets in
present the abstract requirements of the reliable message alesund trip are lost, a selective acknowledgment mechanism
livery service, and we also present a brief description of thie being proposed as a new standard option for TCP [10]. The
formal model we use in the paper. In Section IV, we present theechanism allows the receiver of data to acknowledge noncon-
formal specification of the SACK mechanisms. Section V hdaguous and isolated blocks of data that have been received and
the proof of safety along with a short description of the proafueued, in addition to the cumulative acknowledgment of con-
technigues we use. In Section VI, we prove that SACK can letiguous data. By isolated, we mean the segment just below the
to improved performance, and we conclude in Section VII. THdock and just above the block have not been received. Each
paper also contains two appendices. Appendix | gives formabck is defined by a pair of sequence numbers. The first number
definitions for the notation used in the abstract specification of the left edge of the block and is the sequence number of the
the reliable message delivery problem and the formal descrijpst segment of data in the block that was received. The second
tion of the SACK mechanism, and Appendix Il contains theumber is the right edge of the block and is the number im-
proof of the invariants in Section V. mediately following the last sequence number of the block that
was received. The retransmission strategy of the sender also
changes to use the additional information available with selec-
tive acknowledgment. Now, in addition to the data segments
in the retransmission buffer, there is a flag bit which indicates
TCP uses aliding windowmechanism for its flow control, Whether a segment has been “SACKed.” A segment with the
acknowledgment, and retransmission policy. The basic ideaSACKed bit turned on is not retransmitted, but segments with
that there is a window of size > 0, that determines how the SACKed bit turned off and sequence number less than the
many successive segments of data can be sent in the abséi@eest SACKed segment are available for retransmission.
of a new acknowledgment. Each segment of data is sequen-
tially numbered, so the sender is not allowed to send segméntAn Example With Cumulative ACK
i+ n before segmenthas been acknowledged. Thus; i§ the In Fig. 1, we show a simple example that illustrates how the
largest acknowledgment number received by the sender, thergismulative) ACK mechanism works with TCP Reno [5]. The
a window of data numberedo ¢ + n — 1 which the sender can figure shows the retransmission buffer of the sender and the
transmit. As successively higher numbered acknowledgmebtsfer at the receiver. Let the window size be 8 for this example.
are received, the window slides forward. The acknowledgmeFiie threshold of the number of duplicate acknowledgments that
mechanism is cumulative in that if the receiver acknowledgeged to be received before the fast retransmit algorithm is trig-
segmentk, it means it has successfully received all segmengered is assumed to be 3. The numbers in the buffers and the
up to and including:. Segment: is acknowledged by sending anumbers on the segments sent by the sender represents the ac-
request for segmentt 1. Data that is transmitted is kept on a retual segment of data and is the sequence number of that segment
transmission buffer until it has been acknowledged. In a simpdédata. The variablend_una is the sequence number of the seg-
go-backn protocol, ift < n-+4, the sender may retransmit segment at the head of the retransmission buffer. It is also the oldest
mentsk + 1 to n + ¢ from the retransmission buffer. Howeverunacknowledged segment of data. e nxt variable is the
in TCP the decision to retransmit these segments dependsnert contiguous segment of data expected by the receiver. This
the receipt of duplicate acknowledgments and on timeouts. Withriable is the acknowledgment number that the receiver sends
TCP Reno, only the first packet in the retransmission bufféack to the sender. The execution illustrated in Fig. 1 begins
is sent. Subsequently, the sender waits until the retransmitteith the sender transmitting segment 26. Next, segment 27 gets
packet is acknowledged. This strategy potentially reduces tin@nsmitted, but is lost due to, say, congestion. Subsequently,
unnecessary retransmissions compared to the simple gorbadegments 28 and 29 are delivered. The acknowledgments gen-
protocol. erated by the receiver on receipt of segments 26, 28, and 29 all
Of particular interest are the mechanisms which TCP usesihalicate that the next segment expected is segment 27. In the ex-
recover from loss, including algorithms féast retransmif4]. ample, segment 30 is also lost. Thus, two segments 27 and 30 are
With fast retransmit, when the source receideduplicate ac- lost in the current window of 8 segments. Subsequently, when
knowledgments (e.gd = 3) for the same segment (sa), it segment 31 is received, the acknowledgment generated triggers
determines that segmehtwas lost. The source chooses to rethe fast retransmit algorithm. This causes segment 27 to be re-
transmit segmerit right away, rather than wait for a retransmistransmitted without waiting for a retransmit timeout. Notice that
sion timer to expire. It must be noted that the sender retransneten after the source retransmits segment 27, acknowledgments
one packet (or segment for the purposes of this paper) only. are received with the next expected segment being 27 (sent in
The limitation of the cumulative acknowledgment strategsesponse to packets 32 and 33 sent before the retransmission
is that it can only indicate that every segment up: toas been of segment 27). This allows the sender to send new segments,
received andt + 1 has not been received. When multipldut not retransmit any more segments from the retransmission

Nnanrlate ara lnct fram a windnwe tha thraninhnit af TOD ~dmiffar cinca it dnoc nnt I'nnwiwhich canmante noad tn ha cant

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

Il. INFORMAL DESCRIPTION OF THEACKNOWLEDGMENT
MECHANISMS

https://www.docketalarm.com/

SMITH AND RAMAKRISHNAN: SAFETY AND PERFORMANCE OF TCP SELECTIVE ACKNOWLEDGMENT 1

[(=]
(&)

sendex’s . sendexr’s
retransmission buffer receive buffer reg:anmi:;ion buffer receive buffer
2 [T 1111} = 2 T 111} e
snd_una = 26 snd_una = 26
e ems N - :
ezl T [T T[] R N %g _ ezl T 111 1] R Py Rl TTTTTT]
ack=27 rev_nxt=27 X k=21 =
ach rev_nxt = 27
000
(2627128 [[] [] 2 (26[27128] [[[T] 2
29
000 29
27l2sf29]] [T [] 26] J28 T T][] (2rlzslas] [T T[] 26 sl TTT T
snd_una =27 L 30 ack=27 snd_una = 27
~ 000 0
[27128[2903d [T [| = ~..}&°“ack=z7 (26 [osl2ol [T[] 2l2s[2930] [[1] e[8ol T T []
01000
27128]29030[3 [[| 31 [27]28[29[30[31] []
01 1000
GRS RN 2 D20l UL [] Gafasfadladaisd 1 [26] Todl2s] o] T |
01 10000
PR DR WEE B A RN
snd_una = 27
01 10100
. I ET P I T) R v o o P T 26 T2829] 313233
. 0110100
:] RIES S s PLFLFEP B
retransmission timeout rev_nxt = 30 01101 rev_nxt = 30
[27]28[29] 30(3132[33]]
01 11
: (26]27]28]29[30]31] 32[33]
o [3233] [[[] rov_nxt = 34
[3of3f32[3d | T [] sad_una = 30 -
snd_una = 30
(26]27] 28 29[30[31[32[33

rev_nxt=34
Fig. 2. Example illustrating the workings of the SACK mechanism of TCP.
Fig. 1. Example illustrating the workings of the ACK mechanism of TCP.
furthermore that two blocks of data were received with an inter-
h\éening gap of segment 30. The regular fast retransmit algorithm

next segment in the buffer, which is segment 28. But this would tnggerezoI? on relcelpErcr)]f third duplicate SA_‘CK mdmanr;g tgat
be a wasteful retransmission. Hence, the sender desists fromsﬁagment was lost. The source retransmits segment 27. But at

transmitting any new packets (but can use the opportunitytﬁ'Je sa;mebtlme,lthe ser_ldg_r has dt_he Ir?fog,z?:t}? nSt_hat sigment 30
send new segments if the window allows it). It is only after Qas aiso been lost as indicated in the - Since the source

new acknowledgment is received indicating successful rece w has the information of specifically which segments have

of segment 27 can the sender potentially consider retransnfige” [0St (segment 27 and 30), it has the ability to retransmit
ting another packet from its retransmission buffer. However, tHg°T® than one of the lost segments. Therefore, the sender can
second loss in a window is interpreted as a more serious siie° retransmit segment 30 and fill the second hole in the se-
ation—hence the fast retransmission algorithm is not invok@€Nce number space. The sender does not need to wait for a
to recover from this loss. The second segment that was 5efransmit timeout for retransmitting segment 30.

in this window (30) is not retransmitted until a retransmission A further detail to be observed is the maintenance of the
timeout. Because this timeout is necessarily large, the send&tACK flags at the source, associated with the segments still
window is likely to be shut. Thus, during this timeout, the sendd? the retransmission buffer. In the figure SACKed segments
is unable to make progress, resulting in degraded throughp€ not removed from the retransmission buffer even though in
This timeout also results in the sender dropping the congestié¥s example, these segments are not retransmitted. However,

window size to 1 based on the congestion control algorithms d8& SACK mechanism allows the receiver to drop segments that
scribed in [4]. have been SACKed if it runs out of buffer space. Thus, it is pos-

sible that these segments may need to be retransmitted. Since
they are not retransmitted if the SACK flag is set, there must be
B. An Example With SACK a mechanism for resetting the flags to 0. In the SACK mecha-
nism proposed for TCP when a retransmission timeout expires
Fig. 2 illustrates how the SACK mechanism works on thiyr any sequence of data, all the SACKed bits in the retransmis-
same set of data as in Fig. 1. With selective acknowledgmesion buffer are reset to 0.
the receiver sends back the regular cumulative acknowledgmenthus, the SACK option allows the sender to recover from
number and SACK blocks. In the proposed implementation pfsing multiple packets in a round-trip time, and “fill” all the
the SACK mechanism described in [10], there are at most thrggles” in the receiver's sequence number space based on the
SACK blocks in an acknowledgment packet. SACK blocks received. Further, it allows for the separation of
Initially, when the receiver gets segment 28 (after the losise flow control and congestion control mechanisms from being
of segment 27), it sends a SACK for segment 27 and a furthiatricately tied to the error recovery procedures, as we illustrated
SACK block indicating that segment 28 was received and sag-the example. It allows the source the ability to be somewhat
ment 29 was awaited after that. When segment 31 is receivadre aggressive in both retransmitting from the buffer on mul-
after the loss of segment 30, the SACK sent indicates that @3le packet losses, and not dropping the congestion window

(thoa nartinn ranracantinn tha ~ciimiilativia ACK) ic awaitad _ambhwwin all tho wwiav tn 1

OCKET

L A R M Find authenticated court documents without watermarks at docketalarm.com.

If it were to decide to retransmit, it would have to retransmit t

https://www.docketalarm.com/

196 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

Ill. FORMAL MODEL AND SERVICE REQUIREMENTS automaton Reliableq

signature
input send(m: Seq{Bytel)
output deliver (m: Seq[Byte])}

The safety properties we want to show for TCP with the
SACK mechanism are that data from the sender is not lost, du-
plicated, or received out of order. Our model does not capture

. . states
data corruption, and we assume corrupted packets are discarded. queue: Seq[Byte] := {}
In this work, we do not try to verify the safety of TCP in its en- 5
. . . transitions
tirety. We are only concerned with the effects of replacing the input send (m)
ACK mechanism with the SACK mechanism. Therefore, we as- eff queue := queue || m

sume that connection setup and teardown work correctly, and
that crash recovery works correctly. Consequently, in our mod-

output deliver (m)
pre queue # {}

m € prefixes(queue)

eling of the SACK mechanism, we assume that the connection !
eff queue := tail(queue, |m])

between the sender and receiver is already established and that
there are no crashes. Before we present the specification, pygs.
give a brief description of the formal model we use.

Model of the requirements of the reliable message delivery problem.

the receiver side, data is passed to the user withéhéver(m)
A. Automaton Model action.

The formal model we use to describe the acknowledgmentWe define a simple automaton which is an abstract represen-
mechanisms is based on the 1/0O automaton model of [7]. Aation of the safety properties that we want to show are satis-
automatonA consists of four components: 1) a settes(A) fied by the SACK mechanism. The automaton, which we call
of states; 2) a nonempty setart(A) Cof states(A) of start ReliableQ is shown in Fig. 3. We describe the automaton in
states; 3) a sefcts(A) of actions; and 4) a sateps(A) C the style of the IOA language [2] for describing I/O automata,
states(A) x acts(A) x states(A) of steps. The seicis(A) butwe do not strictly follow the syntax of the formal language.
can be partitioned into three disjoint seits(A), out(A),, and In the IOA language, an automaton is described by first giving
inl(A) of input actionsputput actions, anihternal actions, re- its name followed by the four components of the model men-
spectively. The union of the input actions and output actions wiened above. That is, we have the action signatsigngature),
denote agxternal actions, those actions visible to the envirorihe states and start statatates), and the set of stepgsansi-
ment. tions). Transitions are written in precondition, effectashion.

When an automaton runs, it generates a string representing&at is, the states in which an action is enabled is given as a pre-
execution of the system it models. &xecution fragment of ~condition, and the resulting states are given by the effects of the
automatond is a finite or infinite sequencey, a1, s;,as,..., Aaction.
of alternating states and actions .dfstarting in a start state, The only state variable of the automatomjigeue which has
and if the execution fragment is finite, ending in a state suéypeSeq[Byte] and is initially empty. The typ€eq[Byte]
that (s;, a;11,5:41) iS a step ofA for everysi. We denote by is an ordered list or sequence with elements of Bgte. We
fstate(r) the first state of the execution fragment, and if it islenote the empty sequence fgs The input actionsend(m)
finite lstate(«) denotes the last state. A statés said to be from the user causes datdo be added to the tail of the queue.
reachablef there exists a finite execution of that includess. The symbol|| is the concatenation operator. The output action

Supposey = sg, a1, S1, a2, . .. iS an execution fragment of deliver(m) passes data from the head of the queue to the re-
A. Thentrace (o) or trace(e) if A is clear, is defined to be ceiver side user. Therefixes operator returns the set of pre-
the subsequence of consisting of only the external actionsfixes of the queue, and theil(queue, |m|) operation removes
We say thaf3 is a trace of4 if there exists an executiamof A the first|m| elements from the queue. Since the queue does not
with trace(a) = S. lose, duplicate, or reorder data, it is easy to see that the speci-

In specifying a complex distributed system, it is useful to bécation ReliableQ gives the safety properties we want. The
able to specify each process individually and then obtain a speeefixes, tail and all the operators used in subsequent sec-
ification of the entire system as tiparallel compositiorof the tions are formally defined in Appendix I.
specifications of the processes. The parallel composition oper-
ator|| in this model uses a synchronization style where automata IV. FORMAL SPECIFICATION OFSACK

synchronize on their common actions and evolve independentlyl-cp has the basic structure shown in Fig. 4. There is a sender,
on the others. . a receiver, a channel for packets from the sender to the receiver,
~ To show that an automatofiimplements another automaton, ., 5 channel for packets from the receiver to the sender. The

B, we show drace inclusion relaﬂqnshlp between them. Thepro}ocol is only run at the sender and the receiver, but it assumes
Sfet, of tracgs of an automaton consists of the set of S€quUeNceRBlchannels, so the channels must be modeled. We model each
visible actions that the automaton can perform. component as an automaton, and the complete system is the
parallel composition of the four component automata.

In our models of the sender and the receiver below, we specify

For the formal description of the service requirements, we artain state variables as unbounded integers. However, in the
sume a very simple user interface—there is an input action fratual protocol, the siz&3?) of these variables is bounded. Cer-

tha1icar nn tha candar cida tn cond Aata moeessddn) and nn_ tain acnanrte nf niir nrnnf nf tha ~carrartnoacce nf tha nratacnl ralice

[A)OCKET

LARM

B. Service Requirements

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

D
A

SMITH AND RAMAKRISHNAN: SAFETY AND PERFORMANCE OF TCP SELECTIVE ACKNOWLEDGMENT 197

send-pkt_ (t) rev-pkt (t) automaton C,,(T: type)
send (m) deliver (m) signature
. input send-pktgs(t: T)
rcv—pktm(t)- send-pkt, (t) internal drop,,(t: T)
rs

internal duplicate,,(t: T)
output rcv-pkt,.{(t: T)
Fig. 4. Structure and the four basic components of the model for SACK.

states
in_transit,,: Mset([T} := {}
on being able to make accurate comparisons of the relative size ransiti
of some of these variables. When the variables are unbounded, it wHons
is easy to see that these comparisons are accurate. However, with input send-pkt,, (t)
a bounded number space that may wrap around, it is not so clear eff in_transit,. := in_transit,, U {t}
that these comparisons, which must now be made mafiilo internal drop,, (t)
can be done accurately. TCP uses various timing mechanisms pre t € in_transit,,
. . eff in transit,. := in_transit,, \ {t}

coupled with the relatively large number space to ensure that
the relative size of variables are not confused. For further de- wtpu: rev-pkt,y ()

. L . pre € in_transit,,
tails and formal proofs as to why the timing mechanisms work, eff in_transit,. := in_transit.. \ {t}

see [11]. The mechanisms do not vary between standard TCP .
and SACK TCP, so we do not focus on them here. Instead, we internal duplicate,, (t)
. . pre t € in_transit,,
use unbounded counters to simplify our models and proofs. eff in_transit,, := in_transit,, U {t}

A. Channel Automaton Fig. 5. Model for the channel for packets from the sender to the receiver.

The channels in our model can lose, duplicate, and reorder)) o
packets, but they do not corrupt or create spurious packets. TR&€ retransmitted. Each byte of data is grouped with its se-

/0 automaton model for the channel from the sender to the [@€nce number and a flag indicating whether the byte of data
ceiver,Csr(T), is shown in Fig. 5. The model for the channelt@s been selectively acknowledged. Both buffers are initially

from the receiver to the sender is essentially the same, so webgaP- Thesegment variable is the current segment being
nt,snd_una is the sequence number of the oldest unacknowl-

not show it here. The basic difference is that the subscriptssl X

the names of the state variable and the actions in the signat ed bytesnd nxt is the sequence number of the next byte to
are different and reflect the directional flow of packets in thac >SNt antteady.to_send is a fiag that enables the sending
channels. The channels have a packet type that is the channe%?—egment.S when the. transmission window is open.

rameterT. The state variablén_transit,, (for the receiver to hput actionsend(m) is the action by the user that passes data

sender channel the variableiis_transit,) holds the packets o the sender, anﬂ_repare-new-seg_(s) prepares a new seg-
. . ment to be sent. It is only enabled if the sender is not currently
placed on the channel. Since the channels may have duplicaté | h .
copies of a packet, this variable is a multisets of tjp&he _enab edto send a Segm?ﬁ&eady‘to‘se.nd).’ the send buffer
' s not empty, and the available window size is greater than 0 (we

. . |
fact that itis a multiset means the packets are not ordered. Thils, .2 o 4\ indow size of WS). This action nondeter-

packets may be received in a different order from the way th?T)ﬁnistically chooses the portion of data to be sent. This portion

Wefl[ﬁ sent. . t acti | ketin th Iof data,s, must be a prefix of the send buffer and its length,
esend-pktgy (t) input action places a packet in the muly o |s|, must be less than or equal to the minimum of the

tiset. The complementary output aCtm'Pktsr(fc) réMOVES maximum segment size (MSS) and the available window size.
the packet.fr.or.n the channel. The internal aCthsr,(t) The effect of this action is to remowefrom the send buffer,
nondeterministically removes an element from the multiset. Tlaﬁd then to pair each element ofwith its sequence number.
set minus operator for the.multiset only removes one copy pf #is pairing is done by thenun(s, snd.nxt) operation. The new
element. The internal actiofuplicateg,(t) adds one addi- it forms the segment to be sent and is assigned to the vari-
tional copy of an element to the multiset. ablesegment. A SACK flag that is initialized to false is added
to each pair in the segment sequence before it is concatenated
to the retransmission buffer. THeit_flag operator performs
In this section, we present a formal /O automaton model ftiis initialization.
the sender protocol of the SACK mechanism. The automaton, The send-pktg,(seg) action places a segment on the
is shown in Fig. 6. We first specify the type definitions neededutgoing channelsr(T), of the sender, anflcv-pktg(ack)
to describe some components of the automaton Bittelnt takes a simple ACK packet fronCrg(T). First ack is
type is the set of pairs that has a byte as the first element, atebcked to see that it acknowledges data that was sent,
an integer as the second element. The tgpgte is the set snd una < ack < snd.nxt. If this condition is true, the
of triples formed by a byte, an integer sequence number, andcknowledged data is removed from the retransmission
Boolean flag. The typ8lk is a pair of integers, and indicatesbuffer, and snd una is updated. When a SACK packet
the left and right edges of a block of data. is received, rcv-pktyg(ack, bl, b2, b3), the sender
The states of the sender includesnd buf which is a se- sets the SACK flag of the bytes indicated by the SACK
guence of bytes, and it holds data received from the user. Tilecks to true with the assignment afetran buf to

ratrancmiccinn hiiffasa+ran haaf hnlde Aata that mav naodaa+ an~lrlvadrman haaf WA 1o w2\

B. Sender Automaton

OCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

