
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002 193

Formal Specification and Verification of Safety and
Performance of TCP Selective Acknowledgment

Mark A. Smith and K. K. Ramakrishnan, Member, IEEE

Abstract—We present a formal specification of the selective ac-
knowledgment (SACK) mechanism that is being proposed as a new
standard option for TCP. The formal specification allows one to
reason about the SACK protocol; thus, we are able to formally
prove that the SACK mechanism does not violate the safety proper-
ties (reliable, at most once, and in order message delivery) of the ac-
knowledgment (ACK) mechanism that is currently used with TCP.
The new mechanism is being proposed to improve the performance
of TCP when multiple packets are lost from one window of data.
The proposed mechanism for implementing the SACK option for
TCP is sufficiently complicated that it is not obvious that it is in-
deed safe, so we think it is important to formally verify its safety
properties.

In addition to safety, we are also able to show that SACK can
improve the time it takes for the sender to recover from multiple
packet losses. With the additional information available at a SACK
sender, the round-trip time that a cumulative ACK sender waits
before retransmitting each subsequent packet lost after the very
first loss can be saved. We also show that SACK can improve per-
formance even with window sizes as small as four packets and in
situations where acknowledgment packets are lost.

Index Terms—Congestion control, formal verification, I/O au-
tomata, TCP performance, TCP SACK.

I. INTRODUCTION

T RANSMISSION Control Protocol (TCP) offers applica-
tions the semantics of a reliable, flow-controlled channel.

The acknowledgment (ACK) mechanism of TCP is an impor-
tant part of what makes the protocol reliable. By reliable, we
mean data from the sender is not lost, duplicated, or received
out of order. TCP guarantees these properties, which we refer
to as safety properties, even though the underlying communica-
tion medium may lose, duplicate, or reorder packets. We assume
corrupted packets are dropped.

Selective Acknowledgments (SACK) [10] have been pro-
posed as a complement to the traditional approach of using
cumulative acknowledgments for TCP. SACK is proposed
as a standard option to be used by cooperating senders and
receivers. The receiver can take advantage of the SACK option
to report that it has received multiple packets out of sequence. A
sender receiving a SACK has the opportunity to retransmit the
packets that comprise the holes in the sequence number space
as indicated in the SACK. The new functionality that SACK

Manuscript received May 12, 1999; revised March 7, 2001; approved by
IEEE/ACM TRANSACTIONS ONNETWORKING Editor K. Calvert.

M. A. Smith is with Bell Labs, Murray Hill, NJ 07974 USA (e-mail: mas-
smith@lucent.com).

K. K. Ramakrishnan is with TeraOptic Networks, Inc., Sunnyvale, CA 94085
USA (e-mail: kk@teraoptic.com).

Publisher Item Identifier S 1063-6692(02)03106-0.

introduces is the potential for earlier recovery, especially when
multiple packets are lost in round-trip time (RTT). This quicker
recovery may also result in higher throughput because the more
severe congestion recovery mechanisms are not invoked.

The SACK mechanism includes sufficient additional com-
plexity that we believe it is important to examine whether it
operates correctly. It is not obvious from reading the English
language specification of [10] that it satisfies the safety proper-
ties of the ACK mechanism. Simulation experiments have been
done to understand the performance improvement with SACK
[1], and while these lend confidence that the protocol operates
as expected, simulations do not ensure that the protocol is cor-
rect. Formal specifications and verification help significantly in
ensuring that protocols operate correctly. Therefore, we feel that
a formal specification and verification of the safety properties of
the mechanism is useful. We have developed a formal specifi-
cation of the SACK mechanism using the I/O automaton model
of Lynch and Tuttle [7]. The formal specification of the SACK
mechanism allows one to reason about the protocol in a rig-
orous manner. For the formal verification of safety, we use in-
variant assertion and simulation (refinement) techniques. These
methods are used for proving trace inclusion relationships be-
tween concurrent systems. Trace inclusion means the external
behaviors of one system is the subset of the external behaviors
of another system. For this verification, we use the methods to
show that the external behaviors of TCP with the SACK option,
which we refer to simply as SACK, is a subset of the external
behaviors of a simple abstract specification for end-to-end reli-
able message delivery. We use the formalization of simulations
developed by Lynch and Vaandrager [8].

A key aspect of our formal specification of the SACK mech-
anisms is that it allows more nondeterminism than the English
language specification [10]. Our specification focuses on key
aspects of the protocol needed for safety while leaving certain
aspects of the protocol, such as retransmission strategy, unspeci-
fied. This means our correctness proof is quite general and holds
for any implementation of the protocol that uses a specific re-
transmission strategy or other specific behaviors that we leave
nondeterministic in our specification.

We extend the specification used to prove safety properties
to include time using the general timed automaton model of
Lynch [6]. We use this model to calculate the latency of packets
in a window of data in a worst-case scenario and prove that
SACK can lead to improved performance relative to the cumula-
tive ACK mechanism. In fact, we prove that in situations where
the multiple packet loss comes early in the transmission of a
window of data, the improved performance with SACK is pro-
portional to , where is the number of packets

1063-6692/02$17.00 © 2002 IEEE

HTT "' (k: - 1) k:

IPR2022-00833
CommScope, Inc. Exhibit 1023

Page 1 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

194 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

lost in a window. We also show that SACK can improve per-
formance even when window sizes are small and/or when ac-
knowledgment packets are lost.

In the next section, we present an informal description of both
the cumulative ACK and SACK mechanisms. In Section III, we
present the abstract requirements of the reliable message de-
livery service, and we also present a brief description of the
formal model we use in the paper. In Section IV, we present the
formal specification of the SACK mechanisms. Section V has
the proof of safety along with a short description of the proof
techniques we use. In Section VI, we prove that SACK can lead
to improved performance, and we conclude in Section VII. The
paper also contains two appendices. Appendix I gives formal
definitions for the notation used in the abstract specification of
the reliable message delivery problem and the formal descrip-
tion of the SACK mechanism, and Appendix II contains the
proof of the invariants in Section V.

II. I NFORMAL DESCRIPTION OF THEACKNOWLEDGMENT

MECHANISMS

TCP uses asliding windowmechanism for its flow control,
acknowledgment, and retransmission policy. The basic idea is
that there is a window of size , that determines how
many successive segments of data can be sent in the absence
of a new acknowledgment. Each segment of data is sequen-
tially numbered, so the sender is not allowed to send segment

before segmenthas been acknowledged. Thus, ifis the
largest acknowledgment number received by the sender, there is
a window of data numberedto which the sender can
transmit. As successively higher numbered acknowledgments
are received, the window slides forward. The acknowledgment
mechanism is cumulative in that if the receiver acknowledges
segment , it means it has successfully received all segments
up to and including . Segment is acknowledged by sending a
request for segment . Data that is transmitted is kept on a re-
transmission buffer until it has been acknowledged. In a simple
go-back- protocol, if , the sender may retransmit seg-
ments to from the retransmission buffer. However,
in TCP the decision to retransmit these segments depends on
the receipt of duplicate acknowledgments and on timeouts. With
TCP Reno, only the first packet in the retransmission buffer
is sent. Subsequently, the sender waits until the retransmitted
packet is acknowledged. This strategy potentially reduces the
unnecessary retransmissions compared to the simple go-back-
protocol.

Of particular interest are the mechanisms which TCP uses to
recover from loss, including algorithms forfast retransmit[4].
With fast retransmit, when the source receivesduplicate ac-
knowledgments (e.g.,) for the same segment (say,), it
determines that segmentwas lost. The source chooses to re-
transmit segment right away, rather than wait for a retransmis-
sion timer to expire. It must be noted that the sender retransmits
one packet (or segment for the purposes of this paper) only.

The limitation of the cumulative acknowledgment strategy
is that it can only indicate that every segment up tohas been
received and has not been received. When multiple
packets are lost from a window, the throughput of TCP can

suffer greatly. After retransmitting the first packet in the
retransmission buffer, the sender may be forced to wait for a
retransmission timeout to retransmit subsequent “holes” in the
receiver’s sequence number space.

To remedy the problem that occurs when multiple packets in
a round trip are lost, a selective acknowledgment mechanism
is being proposed as a new standard option for TCP [10]. The
mechanism allows the receiver of data to acknowledge noncon-
tiguous and isolated blocks of data that have been received and
queued, in addition to the cumulative acknowledgment of con-
tiguous data. By isolated, we mean the segment just below the
block and just above the block have not been received. Each
block is defined by a pair of sequence numbers. The first number
is the left edge of the block and is the sequence number of the
first segment of data in the block that was received. The second
number is the right edge of the block and is the number im-
mediately following the last sequence number of the block that
was received. The retransmission strategy of the sender also
changes to use the additional information available with selec-
tive acknowledgment. Now, in addition to the data segments
in the retransmission buffer, there is a flag bit which indicates
whether a segment has been “SACKed.” A segment with the
SACKed bit turned on is not retransmitted, but segments with
the SACKed bit turned off and sequence number less than the
highest SACKed segment are available for retransmission.

A. An Example With Cumulative ACK

In Fig. 1, we show a simple example that illustrates how the
(cumulative) ACK mechanism works with TCP Reno [5]. The
figure shows the retransmission buffer of the sender and the
buffer at the receiver. Let the window size be 8 for this example.
The threshold of the number of duplicate acknowledgments that
need to be received before the fast retransmit algorithm is trig-
gered is assumed to be 3. The numbers in the buffers and the
numbers on the segments sent by the sender represents the ac-
tual segment of data and is the sequence number of that segment
of data. The variable is the sequence number of the seg-
ment at the head of the retransmission buffer. It is also the oldest
unacknowledged segment of data. The variable is the
next contiguous segment of data expected by the receiver. This
variable is the acknowledgment number that the receiver sends
back to the sender. The execution illustrated in Fig. 1 begins
with the sender transmitting segment 26. Next, segment 27 gets
transmitted, but is lost due to, say, congestion. Subsequently,
segments 28 and 29 are delivered. The acknowledgments gen-
erated by the receiver on receipt of segments 26, 28, and 29 all
indicate that the next segment expected is segment 27. In the ex-
ample, segment 30 is also lost. Thus, two segments 27 and 30 are
lost in the current window of 8 segments. Subsequently, when
segment 31 is received, the acknowledgment generated triggers
the fast retransmit algorithm. This causes segment 27 to be re-
transmitted without waiting for a retransmit timeout. Notice that
even after the source retransmits segment 27, acknowledgments
are received with the next expected segment being 27 (sent in
response to packets 32 and 33 sent before the retransmission
of segment 27). This allows the sender to send new segments,
but not retransmit any more segments from the retransmission
buffer, since it does not know which segments need to be sent.

i+n

n > 0

i

i i+n-1

k
k k
k+l

n k < n+i
k+l n+i

k

k + l

d=3
k

't

snd_una

rcv....nxt

n

d
k

k

IPR2022-00833
CommScope, Inc. Exhibit 1023

Page 2 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SMITH AND RAMAKRISHNAN: SAFETY AND PERFORMANCE OF TCP SELECTIVE ACKNOWLEDGMENT 195

Fig. 1. Example illustrating the workings of the ACK mechanism of TCP.

If it were to decide to retransmit, it would have to retransmit the
next segment in the buffer, which is segment 28. But this would
be a wasteful retransmission. Hence, the sender desists from re-
transmitting any new packets (but can use the opportunity to
send new segments if the window allows it). It is only after a
new acknowledgment is received indicating successful receipt
of segment 27 can the sender potentially consider retransmit-
ting another packet from its retransmission buffer. However, the
second loss in a window is interpreted as a more serious situ-
ation—hence the fast retransmission algorithm is not invoked
to recover from this loss. The second segment that was lost
in this window (30) is not retransmitted until a retransmission
timeout. Because this timeout is necessarily large, the sender’s
window is likely to be shut. Thus, during this timeout, the sender
is unable to make progress, resulting in degraded throughput.
This timeout also results in the sender dropping the congestion
window size to 1 based on the congestion control algorithms de-
scribed in [4].

B. An Example With SACK

Fig. 2 illustrates how the SACK mechanism works on the
same set of data as in Fig. 1. With selective acknowledgment,
the receiver sends back the regular cumulative acknowledgment
number and SACK blocks. In the proposed implementation of
the SACK mechanism described in [10], there are at most three
SACK blocks in an acknowledgment packet.

Initially, when the receiver gets segment 28 (after the loss
of segment 27), it sends a SACK for segment 27 and a further
SACK block indicating that segment 28 was received and seg-
ment 29 was awaited after that. When segment 31 is received
after the loss of segment 30, the SACK sent indicates that 27
(the portion representing the cumulative ACK) is awaited, and

Fig. 2. Example illustrating the workings of the SACK mechanism of TCP.

furthermore that two blocks of data were received with an inter-
vening gap of segment 30. The regular fast retransmit algorithm
is triggered on receipt of third duplicate SACK indicating that
segment 27 was lost. The source retransmits segment 27. But at
the same time, the sender has the information that segment 30
has also been lost as indicated in the SACK. Since the source
now has the information of specifically which segments have
been lost (segment 27 and 30), it has the ability to retransmit
more than one of the lost segments. Therefore, the sender can
also retransmit segment 30 and fill the second hole in the se-
quence number space. The sender does not need to wait for a
retransmit timeout for retransmitting segment 30.

A further detail to be observed is the maintenance of the
SACK flags at the source, associated with the segments still
in the retransmission buffer. In the figure SACKed segments
are not removed from the retransmission buffer even though in
this example, these segments are not retransmitted. However,
the SACK mechanism allows the receiver to drop segments that
have been SACKed if it runs out of buffer space. Thus, it is pos-
sible that these segments may need to be retransmitted. Since
they are not retransmitted if the SACK flag is set, there must be
a mechanism for resetting the flags to 0. In the SACK mecha-
nism proposed for TCP when a retransmission timeout expires
for any sequence of data, all the SACKed bits in the retransmis-
sion buffer are reset to 0.

Thus, the SACK option allows the sender to recover from
losing multiple packets in a round-trip time, and “fill” all the
“holes” in the receiver’s sequence number space based on the
SACK blocks received. Further, it allows for the separation of
the flow control and congestion control mechanisms from being
intricately tied to the error recovery procedures, as we illustrated
in the example. It allows the source the ability to be somewhat
more aggressive in both retransmitting from the buffer on mul-
tiple packet losses, and not dropping the congestion window
down all the way to 1.

sender's
retransmission buffer

snd_una= 26

snd_una = 27

12,12s1w13ij 31I 3zj33I
snd_una = 27

retransmission timeout

l3ol31l32I 3~ 1 1 I I
snd_una = 30

receive buffer

l26I I I I
rcv_nxt= 27

l2~ l2~291 l31I I

l26I l2slwl 1311321

l26I 12s1w1 I 311321331

I 26I 21I 2sl 291 I 311321331
rcv_nxt = 30

I 26I 27I 28I 29I 3W 3II 32l331
rcv_nxt = 34

sender's
retransmission buffer

0

126I I I I I I
snd_una = 26

0 0

snd una = 27
0 0 0 0

01 10000
l21l2Bl29l30I 31134331
01 10100

121l2Blwl3ol 31)32j331
0110100

l21l2Bl29l3ol 31l32j33j
0110111

l21l2sl291 aj 31)32)33I
0 1 1 1

snd_una = 30

27
--- loss ---x

receive buffer

l261 I I I I I I I
rcv_nxt = 27

l26I l28l291 j31j I

l26I l28l291 l31l32I

l26I 12s12~ l31I 32l33I

12612,1 2sl 291 f 31132l33I
rcv_nxt = 30

I 2~21l2Blwl30l31I 321331
rcv_nxt = 34

IPR2022-00833
CommScope, Inc. Exhibit 1023

Page 3 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

196 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

III. FORMAL MODEL AND SERVICE REQUIREMENTS

The safety properties we want to show for TCP with the
SACK mechanism are that data from the sender is not lost, du-
plicated, or received out of order. Our model does not capture
data corruption, and we assume corrupted packets are discarded.
In this work, we do not try to verify the safety of TCP in its en-
tirety. We are only concerned with the effects of replacing the
ACK mechanism with the SACK mechanism. Therefore, we as-
sume that connection setup and teardown work correctly, and
that crash recovery works correctly. Consequently, in our mod-
eling of the SACK mechanism, we assume that the connection
between the sender and receiver is already established and that
there are no crashes. Before we present the specification, we
give a brief description of the formal model we use.

A. Automaton Model

The formal model we use to describe the acknowledgment
mechanisms is based on the I/O automaton model of [7]. An
automaton consists of four components: 1) a set
of states; 2) a nonempty set of of start
states; 3) a set of actions; and 4) a set

of steps. The set
can be partitioned into three disjoint sets, , and

of input actions,output actions, andinternal actions, re-
spectively. The union of the input actions and output actions we
denote asexternal actions, those actions visible to the environ-
ment.

When an automaton runs, it generates a string representing an
execution of the system it models. Anexecution fragment of
automaton is a finite or infinite sequence, ,
of alternating states and actions ofstarting in a start state,
and if the execution fragment is finite, ending in a state such
that is a step of for every . We denote by

the first state of the execution fragment, and if it is
finite denotes the last state. A stateis said to be
reachableif there exists a finite execution of that includes .

Suppose is an execution fragment of
. Then or if is clear, is defined to be

the subsequence of consisting of only the external actions.
We say that is a trace of if there exists an executionof
with .

In specifying a complex distributed system, it is useful to be
able to specify each process individually and then obtain a spec-
ification of the entire system as theparallel compositionof the
specifications of the processes. The parallel composition oper-
ator in this model uses a synchronization style where automata
synchronize on their common actions and evolve independently
on the others.

To show that an automatonimplements another automaton
, we show atrace inclusion relationship between them. The

set of traces of an automaton consists of the set of sequences of
visible actions that the automaton can perform.

B. Service Requirements

For the formal description of the service requirements, we as-
sume a very simple user interface—there is an input action from
the user on the sender side to send data message , and on

Fig. 3. Model of the requirements of the reliable message delivery problem.

the receiver side, data is passed to the user with the
action.

We define a simple automaton which is an abstract represen-
tation of the safety properties that we want to show are satis-
fied by the SACK mechanism. The automaton, which we call
ReliableQ is shown in Fig. 3. We describe the automaton in
the style of the IOA language [2] for describing I/O automata,
but we do not strictly follow the syntax of the formal language.
In the IOA language, an automaton is described by first giving
its name followed by the four components of the model men-
tioned above. That is, we have the action signature (signature),
the states and start states (states), and the set of steps (transi-
tions). Transitions are written in aprecondition, effectfashion.
That is, the states in which an action is enabled is given as a pre-
condition, and the resulting states are given by the effects of the
action.

The only state variable of the automaton isqueue which has
typeSeq[Byte] and is initially empty. The typeSeq[Byte]
is an ordered list or sequence with elements of typeByte. We
denote the empty sequence as. The input action
from the user causes datato be added to the tail of the queue.
The symbol is the concatenation operator. The output action

passes data from the head of the queue to the re-
ceiver side user. Theprefixes operator returns the set of pre-
fixes of the queue, and the operation removes
the first elements from the queue. Since the queue does not
lose, duplicate, or reorder data, it is easy to see that the speci-
fication ReliableQ gives the safety properties we want. The
prefixes, tail and all the operators used in subsequent sec-
tions are formally defined in Appendix I.

IV. FORMAL SPECIFICATION OFSACK

TCP has the basic structure shown in Fig. 4. There is a sender,
a receiver, a channel for packets from the sender to the receiver,
and a channel for packets from the receiver to the sender. The
protocol is only run at the sender and the receiver, but it assumes
the channels, so the channels must be modeled. We model each
component as an automaton, and the complete system is the
parallel composition of the four component automata.

In our models of the sender and the receiver below, we specify
certain state variables as unbounded integers. However, in the
actual protocol, the size of these variables is bounded. Cer-
tain aspects of our proof of the correctness of the protocol relies

A
start(A) C

acts(A)
states(A) x acts(A) x states(A)

int(A)

A

(si, ai+l, Si+1)

£state(a)
lstate(cv)

A

cv = s0 , a1, s1, a2, ...

A

A traceA(a) trace(a) A
a

{3 A
trace(cv) = {3

A
B

states(A)
states(A)

steps(A) ~
acts(A)

in(A), out(A),

a

s

A s

CV A

send(m)

II
deliver(m)

1ml

automaton ReliableQ

signature
input send(m: Seq[Byte))
output deliver(m: Seq[Byte))

states
queue: Seq[Byte) := {}

transitions
input send (m)
eff queue : = queue II m

output deliver (m)
pre queue =f- {}

m E prefixes(queue)
eff queue := tail(queue, 1ml)

{}
m

tail(queue, 1ml)

deliver(m)

send(m)

IPR2022-00833
CommScope, Inc. Exhibit 1023

Page 4 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SMITH AND RAMAKRISHNAN: SAFETY AND PERFORMANCE OF TCP SELECTIVE ACKNOWLEDGMENT 197

Fig. 4. Structure and the four basic components of the model for SACK.

on being able to make accurate comparisons of the relative size
of some of these variables. When the variables are unbounded, it
is easy to see that these comparisons are accurate. However, with
a bounded number space that may wrap around, it is not so clear
that these comparisons, which must now be made modulo,
can be done accurately. TCP uses various timing mechanisms
coupled with the relatively large number space to ensure that
the relative size of variables are not confused. For further de-
tails and formal proofs as to why the timing mechanisms work,
see [11]. The mechanisms do not vary between standard TCP
and SACK TCP, so we do not focus on them here. Instead, we
use unbounded counters to simplify our models and proofs.

A. Channel Automaton

The channels in our model can lose, duplicate, and reorder
packets, but they do not corrupt or create spurious packets. The
I/O automaton model for the channel from the sender to the re-
ceiver, , is shown in Fig. 5. The model for the channel
from the receiver to the sender is essentially the same, so we do
not show it here. The basic difference is that the subscripts in
the names of the state variable and the actions in the signatures
are different and reflect the directional flow of packets in the
channels. The channels have a packet type that is the channel pa-
rameter . The state variable (for the receiver to
sender channel the variable is) holds the packets
placed on the channel. Since the channels may have duplicate
copies of a packet, this variable is a multisets of type. The
fact that it is a multiset means the packets are not ordered. Thus,
packets may be received in a different order from the way they
were sent.

The - input action places a packet in the mul-
tiset. The complementary output action - removes
the packet from the channel. The internal action
nondeterministically removes an element from the multiset. The
set minus operator for the multiset only removes one copy of an
element. The internal action adds one addi-
tional copy of an element to the multiset.

B. Sender Automaton

In this section, we present a formal I/O automaton model for
the sender protocol of the SACK mechanism. The automaton,,
is shown in Fig. 6. We first specify the type definitions needed
to describe some components of the automaton. TheByteInt
type is the set of pairs that has a byte as the first element, and
an integer as the second element. The typeSbyte is the set
of triples formed by a byte, an integer sequence number, and a
Boolean flag. The typeBlk is a pair of integers, and indicates
the left and right edges of a block of data.

The states of the sender includes which is a se-
quence of bytes, and it holds data received from the user. The
retransmission buffer, , holds data that may need

Fig. 5. Model for the channel for packets from the sender to the receiver.

to be retransmitted. Each byte of data is grouped with its se-
quence number and a flag indicating whether the byte of data
has been selectively acknowledged. Both buffers are initially
empty. Thesegment variable is the current segment being
sent, is the sequence number of the oldest unacknowl-
edged byte, is the sequence number of the next byte to
be sent, and is a flag that enables the sending
of segments when the transmission window is open.

Input action is the action by the user that passes data
to the sender, and - - prepares a new seg-
ment to be sent. It is only enabled if the sender is not currently
enabled to send a segment , the send buffer
is not empty, and the available window size is greater than 0 (we
assume a constant window size of WS). This action nondeter-
ministically chooses the portion of data to be sent. This portion
of data, , must be a prefix of the send buffer and its length,
written , must be less than or equal to the minimum of the
maximum segment size (MSS) and the available window size.
The effect of this action is to removefrom the send buffer,
and then to pair each element ofwith its sequence number.
This pairing is done by the s snd nxt operation. The new
list forms the segment to be sent and is assigned to the vari-
ablesegment. A SACK flag that is initialized to false is added
to each pair in the segment sequence before it is concatenated
to the retransmission buffer. The operator performs
this initialization.

The - action places a segment on the
outgoing channel, , of the sender, and -
takes a simple ACK packet from . First ack is
checked to see that it acknowledges data that was sent,

. If this condition is true, the
acknowledged data is removed from the retransmission
buffer, and is updated. When a SACK packet
is received, - , the sender
sets the SACK flag of the bytes indicated by the SACK
blocks to true with the assignment of to

.

send(m) 0send-pkt (tl I c,,.(T)

s
rev-pkt (t) C (Tl

rs

I rcv-pkt..,.(t) •

send-pkt,.(t)

Csr(T)

T

send pktsr(t)

in_transitsr
in_transitrs

T

232

rev pktsr(t)
d.r0 Psr(t)

duplieatesr(t)

s

send_buf

retran_buf

automaton c.,. (T: type)

signature
input send-pkt.,. (t: Tl
internal drop.,.(t: T)
Internal duplicate.,.(t: T)
output rcv-pkt.,.(t: Tl

states
in_transit.,.: Mset(TJ :a{}

transitions

input send-pkt.,.(t)
elf in_transit.,. := in_transit.,. U {t}

Internal drop.,.(t)
pn t e in...transit.,.
elf in_transit.,. := in_transit.,. \ {t}

output rcv-pkt.,.(t)
pn t E in_transit.,.
elf in_transit.,. := in...transit.,. \ {t}

internal duplicate,,.(tl
pre t E in_transit ...
elf in_transitor := in_transit,,. U {t}

snd_una

s

Isl

snd__nxt
ready_to_send

send(m)
prepare new seg(s)

(,ready _to_send)

s

enum(,

s

init_flag

send pktsr(seg)
Csr(T) rev pktrs(aek)

Crs(T)

snd_una < aek ::; snd__nxt

snd_una
rev pktrs(aek, bl, b2, b3)

retran_buf
set_saek(retran_buf, bl, b2, b3)

IPR2022-00833
CommScope, Inc. Exhibit 1023

Page 5 of 15
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

