Network Working Group Request for Comments: 790 J. Postel ISI September 1981

Obsoletes RFCs: 776, 770, 762, 758, 755, 750, 739, 604, 503, 433, 349 Obsoletes IENs: 127, 117, 93

ASSIGNED NUMBERS

This Network Working Group Request for Comments documents the currently assigned values from several series of numbers used in network protocol implementations. This RFC will be updated periodically, and in any case current information can be obtained from Jon Postel. The assignment of numbers is also handled by Jon. If you are developing a protocol or application that will require the use of a link, socket, port, protocol, or network number please contact Jon to receive a number assignment.

Jon Postel
USC - Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90291

phone: (213) 822-1511

ARPANET mail: POSTEL@ISIF

Most of the protocols mentioned here are documented in the RFC series of notes. The more prominent and more generally used are documented in the Protocol Handbook [17] prepared by the Network Information Center (NIC). Some of the items listed are undocumented. In all cases the name and mailbox of the responsible individual is indicated. In the lists that follow, a bracketed entry, e.g., [17,iii], at the right hand margin of the page indicates a reference for the listed protocol, where the number cites the document and the "iii" cites the person.

Postel [Page 1]

RFC 790

September 1981 Assigned Numbers

Network Numbers

ASSIGNED NETWORK NUMBERS

This list of network numbers is used in the internet address [33]. The Internet Protocol (IP) uses a 32 bit address and divides that address into a network part and a "rest" or local address part. The division takes 3 forms or classes.

The first type, or class a, of address has a 7-bit network number and a 24-bit local address. This allows 128 class a networks.

								1										2										3	
0 1	2	3 4	- 5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+-+	+-+	-+-	+	+	+	+	+	+	+	+	+	+	+	+	+	-	١	+-+		4	 -	+	-	 -	+- -	- - +	+-+		+-+
0	N	ETV	<i>I</i> ORI	K										Le	oca	a 1	A	ddr	es	SS									
+-+	+-+	-+-	+	+	+	+	+- -	+	+	+	+	+	+	+	+		١	+-4			 -	+	-	 -	+- -				+-+

Class A Address

The second type, or class b, of address has a 14-bit network number and a 16-bit local address. This allows 16,384 class b networks.

	1	2	3			
0123456	7 8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5	5678901			
+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-	-+-+-+-+-+			
1 0	NETWORK	Local Add	dress			
+-						

Class B Address

The third type, or class c, of address has a 21-bit network number and a 8-bit local address. This allows 2,097,152 class c networks.

Class C Address

One notation for internet host addresses commonly used divides the 32-bit address into four 8-bit fields and specifies the value of each field as a decimal number with the fields separated by periods. For example, the internet address of ISIF is 010.020.000.052.

This notation will be used in the listing of assigned network

Postel [Page 2]

https://datatracker.ietf.org/doc/html/rfc790

RFC 790

September 1981 Assigned Numbers

Network Numbers

numbers. The class a networks will have nnn.rrr.rrr, the class b networks will have nnn.nnn.rrr.rrr, and the class c networks will have nnn.nnn.nrr, where nnn represents part or all of a network number and rrr represents part or all of a local address or rest field.

Assigned Network Numbers

Class A Networks

Internet Address	Name	Network	References
000.rrr.rrr.rrr		Reserved	[JBP]
001.rrr.rrr.rrr	BBN-PR	BBN Packet Radio Networ	k [DCA2]
002.rrr.rrr.rrr	SF-PR-1	SF Packet Radio Network	(1) [JEM]
003.rrr.rrr.rrr	BBN-RCC	BBN RCC Network	[SGC]
004.rrr.rrr.rrr	SATNET	Atlantic Satellite Netw	ork [DM11]
005.rrr.rrr.rrr	SILL-PR	Ft. Sill Packet Radio N	etwork[JEM]
006.rrr.rrr.rrr	SF-PR-2	SF Packet Radio Network	(2) [JEM]
007.rrr.rrr.rrr	CHAOS	MIT CHAOS Network	[MOON]
008.rrr.rrr.rrr	CLARKNET	SATNET subnet for Clark	sburg[DM11]
009.rrr.rrr.rrr	BRAGG-PR	Ft. Bragg Packet Radio	Net [JEM]
010.rrr.rrr.rrr	ARPANET	ARPANET	[17,1,VGC]
011.rrr.rrr.rrr	UCLNET	University College Lond	on [PK]
012.rrr.rrr.rrr	CYCLADES	CYCLADES	[VGC]
013.rrr.rrr.rrr		Unassigned	[JBP]
014.rrr.rrr.rrr	TELENET	TELENET	[VGC]
015.rrr.rrr.rrr	EPSS	British Post Office EPS	- []
016.rrr.rrr.rrr	DATAPAC	DATAPAC	[VGC]
017.rrr.rrr.rrr	TRANSPAC	TRANSPAC	[VGC]
018.rrr.rrr.rrr	LCSNET	MIT LCS Network [43,10,DDC2]
019.rrr.rrr.rrr	TYMNET	TYMNET	[VGC]
020.rrr.rrr.rrr	DC-PR	D.C. Packet Radio Netwo	rk [VGC]
021.rrr.rrr.rrr	EDN	DCEC EDN	[EC5]
022.rrr.rrr.rrr	DIALNET		[26,16,MRC]
023.rrr.rrr.rrr	MITRE	MITRE Cablenet	[44,APS]
024.rrr.rrr.rrr	BBN-LOCAL	BBN Local Network	[SGC]
025.rrr.rrr.rrr	RSRE-PPSN	RSRE / PPSN	[BD2]
026.rrr.rrr.rrr	AUTODIN-II	AUTODIN II	[EC5]
027.rrr.rrr.rrr	NOSC-LCCN	NOSC / LCCN	[KTP]
028.rrr.rrr.rrr	WIDEBAND	Wide Band Satellite Net	
029.rrr.rrr.rrr	DCN-COMSAT	COMSAT Dist. Comp. Netw	
030.rrr.rrr.rrr	DCN-UCL	UCL Dist. Comp. Network	
031.rrr.rrr.rrr	BBN-SAT-TEST	BBN SATNET Test Network	
032.rrr.rrr.rrr	UCL-CR1	UCL Cambridge Ring 1	[PK]
033.rrr.rrr.rrr	UCL-CR2	UCL Cambridge Ring 2	[PK]
034.rrr.rrr.rrr	MATNET	Mobile Access Terminal	L
035.rrr.rrr.rrr	NULL	UCL/RSRE Null Network	[BD2]

Postel [Page 3]

https://datatracker.ietf.org/doc/html/rfc790

RFC 790

September 1981 Assigned Numbers

Network Numbers

036.rrr.rrr.rrr	SU-NET	Stanford University Ethernet	[MRC]
037.rrr.rrr.rrr	DECNET	Digital Equipment Network	[DRL]
038.rrr.rrr.rrr	DECNET-TEST	Test Digital Equipment Net	[DRL]
039.rrr.rrr.rrr	SRINET	SRI Local Network	[GEOF]
040.rrr.rrr.rrr	CISLNET	CISL Multics Network	[CH2]
041.rrr.rrr.rrr	BBN-LN-TEST	BBN Local Network Testbed	[KTP]
042.rrr.rrr.rrr	S1NET	LLL-S1-NET	[EAK]
043.rrr.rrr.rrr	INTELPOST	COMSAT INTELPOST	[DLM1]
044.rrr.rrr.rrr	AMPRNET	Amature Radio Experiment Net	[HM]
044.rrr.rrr.rr-12	6.rrr.rrr.rr	Unassigned	[JBP]
127.rrr.rrr.rrr		Reserved	[JBP]

Class B Networks

Internet Address	Name	Network	References
128.000.rrr.rrr		Reserved	[JBP]
128.001.rrr.rrr-12	28.254.rrr.rrr	Unassigned	[JBP]
191.255.rrr.rrr		Reserved	[JBP]

Class C Networks

Internet Address Name	Network	References
192.000.001.rrr	Reserved	[JBP]
192.000.001.rrr-223.255.254.rrr	Unassigned	[JBP]
223.255.255.rrr	Reserved	[JBP]

Other Reserved Internet Addresses

Internet Address	Name	Network	References
224.000.000.000-2	55.255.255.255	Reserved	[JBP]

Postel [Page 4]

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

