
The JiniTM Specification

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 1

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

The Jini™ Technology Series
Lisa Friendly, Series Editor
Ken Arnold, Technical Editor
For more information see: http://java.sun.com/docs/books/jini/

This series, written by those who design, implement, and document the Jini'" technology,
shows how to use, deploy, and create Jini applications. Jini technology aims to erase the
hardware/software distinction, to foster spontaneous networking among devices, and to
make pervasive a service-based architecture. In doing so, the Jini architecture is r.adically
changing the way we think about computing. Books in The Jini Technology Seriies are
aimed at serious developers looking for accurate, insightful, thorough, and practical
material on Jini technology.

The Jini Technology Series web site contains detailed information on the Series,
including existing and upcoming titles, updates, errata, sources, sample code, and
other Series-related resources.

Ken Arnold, Bryan O'Sullivan, Robert W. Scheifler, Jim Waldo, Ano Wollrath, The lint" Specification
ISBN 0-201-61634-3

Eric Freeman, Susaooe Hupfer, and Ken Arnold, JavaSpaces'" Principles, Patterns, and Practice
ISBN 0-201-30955-6

I

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 2

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

y,

!y

tion

The Jini™ Specification

Ken i\.rnold
Bryan O'Sullivan

Robert W. Scheifler
Jim \Valdo

Ann \Vollrath

J~
ADDISON--WESLEY

An impdnt of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California

Berkeley, California • Don Mills, Ontario • Sydney
Bonn • Amsterdam • Tokyo • Mexico City

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 3

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

This book is dedicated to the Jini team
without whom this book

would not have been necessary

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 4

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

Co1t1tents

Foreword xvii

Preface . xix

PART 1 Overview and Examples

The Jini Architecture: An Introduction 3
1 Overview 3

1.1 · Goals 4
1.2 Architecture . 5
1.3 What the Jini Archittxlure Depends Upon 7
1.4 The Value of a Proxy 7
1.5 The Lookup Service . 9

1.5.1 Attributes 10
1.5 .2 Membership Management . 11
1.5.3 Lookup Groups 12
1.5.4 Lookup Service Compared to Naming/Directory

Services .. : ·. 13
1.6 Conclusion 14
1.7 Notes on the Example Code 16

1.7.1 Package Structure 16

2 Writing a Client 19
2.1 The MessageStream Interface 19
2.2 The Client . 20
2.3 In Conclusion 27

vii

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 5

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

viii

3 Writing a Service 29
3.1 Good Lookup Citizenship 29

3.1.1 The Joi nManager Utility . 30
3.2 The FortuneStream Service 30

3.2.l The Implementation Design 32
3.2.2 Creating the Service. 32
3.2.3 The Running Service 34

3.3 The ChatStream Service . 37
3.3.1 "Service" versus "Server" 41
3.3.2 Creating the Service. 41
3.3.3 The Chat Server 43
3.3.4 Implementing nextinL i ne 50
3.3.5 Notes on Improving ChatServerimpl 51
3.3.6 The Clients . 52

4 The Rest of This Book . 57

P A R T 2 The Jini Specification

AR The Jini Architecture Specification 61
AR.1 Introduction 61

AR.1.1 Goals of the System 61
AR.1.2 Environmental Assumptions . 63

AR.2 System Overview 65
AR.2.1 Key Concepts . 65

AR.2.1 .1 Services . 65
AR.2.1.2 Lookup Service . 66
AR.2.1.3 Java Remote Method Invocation (RMI) 66
AR.2.1.4 Security 67
AR.2.1.5 Leasing . 67
AR.2.1.6 Transactions . 67
AR.2.1.7 Events 67

AR.2.2 Component Overview ·.· .. 68
AR.2.2.1 Infrastructure : . 69
AR.2.2.2 Programming Model . 69
AR.2.2.3 Services . 71

AR.2.3 Service Architecture . 72
AR.2.3.1 Discovery and Lookup Protocols 72
AR.2.3.2 Service Implementation . 75

AR.3 An Example 77
AR.3.1 Registering the Printer Service . 77

AR.3.1.1 Discovering the Lookup Service 77

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 6

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

AR.3.1.2 Joining the Lookup Service 77
AR.3.1.3 Optional Configuration 78
AR.3.1.4 Staying Alive 78

AR.3.2 Printing 78
AR.3.2.1 Locate the Lookup Service 78
AR.3.2.2 Search for Printing Services 79
AR.3.2.3 Configuring the Printer 79
AR.3.2.4 Requesting That the Image Be Printed 79
AR.3.2.5 Registering for Notification 80
AR.3.2.6 Receiving Notification 80

AR.4 For More Information 81

DJ The Jini Discovery and Join Specification 83
DJ.1 Introduction : 83

DJ.1.1 Terminology 83
DJ.1.2 Host Requirements 84

DJ.1.2.1 Protocol Stack Requirements for IP Networks 84
DJ.1.3 Protocol Overview . 85
DJ.1.4 Discovery in Brief . 85

DJ.1.4.1 Groups 85
DJ.1.4.2 The Multicast Request Protocol 86
DJ.1.4.3 The Multicast Announcement Protocol 87
DJ.1.4.4 The Unicast Discovery Protocol 88

DJ. 1.5 Dependencies 88
DJ.2 The Discovery Protocols 89

DJ.2.1 Protocol Roles . 89
DJ.2.2 The Multicast Request Protocol 89

DJ.2.2.1 Protocol Participants 89
DJ .2.2.2 The Multicast Request Service 90
DJ.2.2.3 Request Packet Format 91
DJ.2.2.4 The Multicast Response Service 93

DJ.2.3 Discovery Using the Multicast Request Protocol 93
DJ.2.3.1 Steps Taken by the Discovering Entity 93
DJ.2.3.2 Steps Taken by the Multicast Request Server 94
DJ.2.3.3 Handling Responses from Multiple Djinns 95

DJ .2.4 The Multicast Announcement Protocol 95
DJ.2.4.1 The Multicast Announcement Service 95
DJ.2.4.2 The Protocol 97

DJ.2.5 Unicast Discovery . : 97
DJ.2.5.1 The Protocol 98
DJ.2.5.2 Request Format 99
DJ.2.5.3 Response Format 100

ix

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 7

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

DJ.3 The Join Protocol 101
DJ.3.1 Persistent State 101
DJ.3.2 The Join Protocol . 101

DJ.3.2.1 Initial Discovery and Registration 102
DJ.3.2.2 Lease Renewal and Handling of Communication

Problems . 102
DJ.3.2.3 Making Changes and Performing Updates 103
DJ.3.2.4 Joining or Leaving a Group 103

DJ.4 Network Issues 105
DJ.4.1 Properties of the Underlying Transport 105

DJ.4.1.1 Limitations on Packet Sizes 105
DJ.4.2 Bridging Calls to the Discovery Request Service 105
DJ.4.3 Limiting the Scope of Multicasts . 106
DJ.4.4 Using Multicast IP as the Underlying Transport 106
DJ.4.5 Address and Port Mappings for TCP and Multicast UDP . . . 106

DJ.5 LookupLocator Class 107
DJ.5. 1 Jini Technology URL Syntax . 108
DJ.5.2 Serialized Form . 109

DU The Jini Discovery Utilities Specification 111
DU.1 Introduction 111

DU. 1.1 Dependencies . 111

DU.2 Multicast Discovery Utility 113
DU.2.1 The LookupDi scovery Class 114
DU.2.2 Useful Constants . 115
DU.2.3 Changing the Set of Groups to Discover 115
DU.2.4 The Di scove ryEvent Class . 116
DU.2.5 TheDiscoverylistenerlnterface 116
DU.2.6 Security and Multicast Discovery . 117
DU.2.7 Serialized Forms . 118

DU.3 Protocol Utilities 119
DU.3.1 Marshalling Multicast Requests . 119
DU.3.2 Unmarshalling Multicast Requests . 120
DU.3.3 Marshalling Multicast Announcements 121
DU.3.4 Unmarshalling Multicast Announcements 122
DU.3.5 Easy Access to Constants . 122
DU.3.6 Marshalling Unicast Discovery Requests 123
DU.3.7 Unmarshalling Unicast Discovery Requests 123
DU.3.8 Marshalling Unicast Discovery Responses 124
DU.3.9 Unmarshalling Unicast Discovery Responses 124

EN The
EN.:

EU Thi
EU.

LE Th
LE

LE

LI

R

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 8

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

EN The Jini Entry Specification 127
EN.1 Entries and Templates . 127

EN. 1.1 Operations 127
EN.1.2 Entry . 128
EN.1.3 Serializing Entry Objects . 128
EN.1.4 UnusableEntryException : 129
EN. 1.5 Templates and Matching 131
EN.1.6 Serialized Form 131

EU The Jini Entry Utilities Specification 133
EU.1 Entry Utilities 133

EU.1.1 AbstractEntry 133
EU.1.2 Serialized Form 134

LE The Jini Distributed Leasing Specification 137
LE.1 Introduc,tion . 137

LE.1.1 Leasing and Distributed Systems 137
LE.1.2 Goals and Requirements 140
LE.1.3 Dependencies 140

LE.2 Basic Leasing Interfaces 141
LE.2.1 Characteristics of a Lease 141
LE.2.2 Basic Operations 142
LE.2.3 Leasing and Time 147
LE.2.4 Serialized Forms . 148

LE.3 Example Supporting Classes 149
LE.3.1 A Renewal Class 149
LE.3.2 A Renewal Service . 151

EV The Jini Distributed Event Specification 155
EV.1 Introduction . 155

EV. l. 1 Distributed Events and Notifications . 155
EV.1.2 Goals and Requirements 1;>6
EV.1.3 Dependencies 157

EV.2 The Basic Interfaces ·. 159
EV.2.1 Entities Involved 159
EV.2.2 Overview of the Interfaces and Classes 161
EV.2.3 Details of the Interfaces and Classes . 163

EV.2.3.1 The RemoteEventL i stene·r Interface 163
EV.2.3.2 The RemoteEvent Class 164
EV.2.3.3 The UnknownEventExcepti on 165
EV.2.3.4 An Example EventGenerator Interface 166
EV.2.3.5 The EventRegi strati on Class 168

xi I

1
I'

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 9

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

EV.2.4 Sequence Numbers, Leasing and Transactions 169
EV .2.5 Serialized Forms . 170

EV.3 Third-Party Objects 171
EV.3.1 Store-and-Forward Agents 171
EV.3.2 Notification Filters 173

EV .3.2.1 Notification Multiplexing 174
EV.3.2.2 Notification Demultiplexing 174

EV.3.3 Notification Mailboxes . 175
EV.3.4 Compositionality 176

EV.4 Integration with JavaBeans Components 1791

EV.4.1 Differences with the JavaBeans Component Event Model .. 180
EV.4.2 Converting Distributed Events to JavaBeans Events 182

~X The Jini Transaction Specification . 18S
TX.1 Introduction 18S

TX.1.1 Model and Terms 186
TX.1.2 Distributed Transactions and ACID Properties 188
TX.1.3 Requirements . 189
TX.1.4 Dependencies . 190

TX.2 The Two-Phase Commit Protocol 191l
TX.2.1 Starting a Transaction . 192
TX.2.2 Starting a Nested Transaction . 193
TX.2.3 Joining a Transaction . 195
TX.2.4 Transaction States . 196
TX.2.5 Completing a Transaction: The Client's View 197
TX.2.6 Completing a Transaction: A Participant's View 199
TX.2.7 Completing a Transaction: The Manager's View 202
TX.2.8 Crash Recovery . .. 204

TX.2.8.1 The Roll Decision . 20.S
TX.2.9 Durability . 205

TX.3 Default Transaction Semantics 207
TX.3.1 Transaction and Nestabl eTransacti on Interfaces 207
TX.3.2 Transaction Factory Class . 209
TX.3.3 ServerTransacti on and Ne stab l eServerTransacti on

Classes ,210
TX.3.4 CannotNestException Class 212
TX.3.5 Semantics 212
TX.3.6 Serialized Forms 214

LU The Jini Lookup Service Specification 21'7
LU.1 Introduction 217

LU. 1.1 The Lookup Service Model . 217
LU.1.2 Attributes . 218

LU.2

LS The
LS.l

LS.2

LS.J

LS.•

JS Tl
JS

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 10

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

i

LU.1.3 Dependencies 219

LU.2 The ServiceRegistrar 221
LU.2.1 Servi ceID 221
LU.2.2 Servi ceitem 222
LU.2.3 Servi ceTemplate and Item Matching 223
LU.2.4 Other Supporting Types 224
LU.2.5 Servi ceRegi s trar 225
LU.2.6 Servi ceRegi strati on 229
LU.2.7 Serialized Fotms 230

LS The Jini Lookup Attribute Schema Specificatilon 233
LS.1 Introduction 233

LS. 1.1 Terminology 234
LS.1.2 Design Issues 234
LS.1.3 Dependencies 235

LS.2 Human Access to Attributes . 237
LS.2.1 Providing a Single View of an Attribute's Value 237

LS.3 JavaBeans Components and Design Patterns 239
LS.3.1 Allowing Display and Modification of Attributes 239

LS.3.1.1 Using JavaBeans Components with Entry Classes 239
LS.3.2 Associating JavaBeans Components with Entry Classes 240
LS.3.3 Supporting Interfaces and Classes 241

LS.4 Generic Attribute Classes . 243
LS.4.1 Indicating User Modifiability 243
LS.4.2 Basic Service Information 243
LS.4.3 More Specific Information 245
LS.4.4 Naming a Service 246
LS.4.5 Adding a Comment to a Service : 246
LS.4.6 Physical Location 247
LS.4.7 Status Information 248
LS.4.8 Serialized Forms 249

JS The JavaSpaces Specification 253
JS.1 Introduction. 253

JS.1.1 The JavaSpaces Application Model and Terms : . 253
JS. l.1.1 Distributed Persistence 254
JS. l.1.2 Distributed Algorithms as Flows of Objects 254

JS.1.2 Benefits 256
JS.1.3
JS .1.4
JS.1.5
JS.1.6

JavaSpaces Technology and Databases 257
JavaSpaces System Design and Linda Systems 258
Goals and Requirements . 259
Dependencies . 260

xiii

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 11

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

xiv

JS.2 Operations 261
JS.2.1 Entries . 261
JS.2.2 net . j i ni . space. J avaSpace . 262

JS.2.2.1 Interna 1 SpaceExcepti on 263
JS.2.3 write . 264
JS.2.4 readifExi sts and read . 264
JS.2.5 takeifExi sts and take . 265
JS.2.6 snapshot . 265
JS.2.7 notify 266
JS.2.8 Operation Ordering 268
JS.2.9 Serialized Form . 268

JS.3 Transactions . 269
JS.3.1 Operations under Transactions 269
JS.3.2 Transactions and ACID Properties 270

JS.4 Further Reading 273
JS.4.1 Linda Systems 273
JS.4.2 The Java Platform . 273
JS.4.3 Distributed Computing . 274

DA The Jini Device Architecture Specification 277
DA.1 Introduction 277

DA. 1.1 Requirements from the Jini Lookup Service 278
DA.2 Basic Device Architecture Examples 281

PART 3

DA.2.1 Devices with Resident Java Virtual Machines 281
DA.2.2 Devices Using Specialized Virtual Machines 283
DA.2.3 Clustering Devices with a Shared Virtual Machine

(Physical Option) . 284
DA.2.4 Clustering Devices with a Shared Virtual Machine

(Network Option) . 286
DA.2.5 Jini Software Services over the Internet Inter-Operability

Protocol . 288

Supplemental Material

The Jini Technology Glossary . 293

Appendix A: A Note on Distributed Computing 307
A.1 Introduction ... 307

A. 1.1 Terminology . 308

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 12

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

A.2 The Vision of Unified Objects . 308
A.3 Deja Vu All Over Again 311
A.4 Local and Distributed Computing . 312

A.4.1 Latency . 312
A.4.2 Memory Access 314

A.5 Partial Failure and Concurrency . 316
A.6 The Myth of "Quality of Service" 318
A.7 Lessons From NFS 320
A.8 Taking the Difference Seriously . 322
A.9 A Middle Ground . 324
A.10 References . 325
A.11 Observations for this Reprinting . 326

Appendix B: The Example Code 327

Index 371

Colophon 385

xv

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 13

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

Foreword

THE emergence of the Internet has led computing into a new e:ra. It is no longer
what your computer can do that matters. Instead, your computer can have access
to the power of everything that is connected to the network: The Network is the
Computer™. This network of devices and services is the computing environment
of the future.

The Java™ programming language brought reliable object-oriented programs
to the net. The power of the Java platform is its simplicity, which allows program-

. mers to be fully fluent in the language. This simplicity allows debugged Java pro
grams to be written in about a quarter the time it takes to write programs in C++.
We believe that use of the Java platform is the key to the eme1rgence of a "best
practices" discipline in software construction to give us the reliability we need in
our software systems as they become more and more widely used.

The Jini™ architecture is designed to bring reliability and simplicity to the
construction of networked devices and services. The philosophy behind Jini is lan
guage-based systems: a Jini system is a collection of interacting Java programs,
and you can understand the behavior of this Jini system completely by under
standing the semantics of the Java programming language and the nature of the
network, namely that networks have limited bandwidth, inherent latency, and par
tial fai 1 ure.

Because the Jini architecture focuses on a few simple principles, we can teach
Java language programmers the full power of the Jini technology in a few days. To
do this, we introduce remote objects (they just throw a RemoteExcepti on), leas
ing (commitments in a Jini system are of limited duration), distributed events (in
the network events aren' t as predictable on a i;ingle machine), and the need for
two-phase commit (because the network is a world of partial failures). This small.
set of additional concepts allows distributed applications to be written, and we can
illustrate this with the JavaSpaces™ service, which is also speci:fied here.

For me, the Jini architecture represents the results of almost 20 years of yearn
ing for a new substrate for distributed computing. Ever since][shipped the first

xvii

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 14

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

FOREWORD

widely used implementation of TCP/IP with the Berkeley UNIX system, I have
wanted to raise the level of discourse on the network from the bits and bytes of
TCP/IP to the level of objects. Objects have the enormous advantage of combining
the data with the code, greatly improving the reliability and integrity of systems.
For me, the Jini architecture represents the culmination of this dream.

I would like to thank the entire Jini team for their continuing hard work and
commitment. I would especially like to thank my longtime collaborator Mike
Clary for helping to get the Jini project started and for directing the project; 1he
Jini architects Jim Waldo, Ken Arnold, Bob Scheiffler, and Ann Wollrath for
designing and implementing such a simple and elegant system; Mark Hodapp for
bis excellent engineering management; and Samir Mitra for committing early to
the Jini project, helping us understand how to explain it and what problems it
would solve, and for driving the key business development that helped give Jini
technology the momentum it has in the marketplace today. I would also like to
thank Mark Tolliver, the head of the Consumer and Embedded Division, which
the Jini project became part of, for his support.

Finally, I would like to thank Scott McNealy, with me a founder of Sun
Microsystems™, Inc., and its longtime CEO. It is his continuing support for
breakthrough technologies such as Java and Jini that makes them possible. As
Machiavelli noted, it is hard to introduce new ideas, and support like Scott's is
essential to our continuing success.

BILL JOY

ASPEN, COLORADO
APRIL, 1999

THEJini :
Networks a
existing thi
are therefo1
tiple procei

These
changes ap
A distribut
change. Tt

This b
architectur
following ·
first sectio
cal manag

The st
you withi1
of them a:
tern. As~
can start)

The s
specificat:
ture.

The t

defines tt
design, a1

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 15

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

Prteface

Perfection is reached, not when there is no longer anything to add,
but when there is no longer anything to take away.

-Antoine de Saint-Exupery

THE Jini architecture is designed for deploying and using services in a network.
Networks are by nature dynamic: new things are added, old things are removed,
existing things are changed, and parts of the network fail and are re:paired. There
are therefore problems unlike any that will appear in a single process or even mul
tiple processes in a single machine.

These differences require an approach that takes them into account, makes
changes apparent, and allows older parts to work with newer parts that are added.
A distributed system must adapt as the network changes since the network will
change. The Jini architecture is designed to be adaptable.

This book contains three parts. The first part gives an overview of the Jini
architecture, its design philosophy, and its application. This overview sets up the
following sections, which contain examples of programming in a Jini system. The
first section of the introduction is also usable as a high-level overview for techni
cal managers.

The sections of the introduction that contain examples are designed to orient
you within the Jini technology and architecture. They are not a full tutorial: Think
of them as a tour through the process of design and implementation in a Jini sys
tem. As with any tour, you can get the flavor of how things work a nd where you
can start your own investigation.

The second part of the book is the specification itself. Each chapter of the
specification has a brief introduction describing its place in the ov,erall architec
ture .

The third part of the book contains supplementary material: a glossary that
defines terms used in the specifications and in talking about Jini. architecture,
design, and technology, and two appendices. Appendix A is a reprint of "A Note

xix

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 16

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

PREFACE

on Distributed Computing," which describes critical differences between local and
remote programming. Appendix B contains the full source code for the examples
in the introductory material.

HlsTORY

The Jini architecture is the result of a rather extraordinary string of events. But
then almost everything is. The capriciousness of life-and to the fortunate, its
occasional serendipity-is always extraordinary. It is only in retrospect that we
examine the causes and antecedents of something interesting and decide that,
because they shaped · that interesting result, we will call them "extraordinary."
Other events, however remarkable, go unremarked because they are unexamilned.
Those of us who wrote the Jini architecture, along with the many who contributed
to its growth, are lucky to have a reason to examine our particular history to notice
its pleasures.

This is not the proper place for a long history of the project, but it seems
appropriate to give a brief summary of the highlights. The project had its origins
in Sun Microsystems Laboratories, where Jim Waldo ran the Large Scale D:istri
bution research project. Jim Waldo and Ken Arnold had previously been involved
with the Object Management Group 's first CORBA specification while working
for Hewlett-Packard. Jim brought that experience and a long-tenn background in
distributed computing with him to Sun Labs.

Soon after joining the Labs, Jim made Ann Wollrath part of the team. Soon
after, observations about many common approaches in the field of distributed
computing led Jim, Ann, and the other authors to write "A Note on Distributed
Computing," which outlined core distinctions between local and distributed
design. Many people had been trying to hide those differences under the general
rubric of "local/remote transparency." The "Note" argued that this was nol possi
ble. It has become the most cited Sun Laboratories technical report, and the les
sons it distills are at the core of the design approach taken by the project.

At this time the project was using Modula 3 Network Objects for experiments
in distributed computing. As Modula 3 ceased to be developed, the team looked
around for a replacement language. At thi t time Oak, the language an internal Sun
project; seemed a viable replacement with some interesting new properties. To a
research project, the fact that Oak was commercially insignificant was irrelevant.
It was at this time that Ken rejoined Jim on his new team.

Soon after, Oak was renamed "Java."
When it was still Oak, it once had a remote method invocation mechan:ism,

but that was removed when the mechanism failed- it, too, had fallen into the
local/remote transparency trap. When Bill Joy and James Gosling wanted to cre
ate a working distributed computing mechanism, they asked Jim to lead the effort,

"""r:'I!

PREFACE

which swi
As the firs
anexplon
uted comJ
tral appro

After
its horizo
name "Jir
a separate
was soon
rience frc
architect\

As tr
the archi
lookup d
time tog
and run
Brian M
tecture c
impleme
Adrian<
Charlie :
nies, sla
team to
duction
to worki
over the
structur,

OUI
dan Da1
Emily ~

Romani
Hurley
Marksj
ness d
McNer
Vasque
the Jini

1 Jini
It ii

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 17

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

PREFACE

which switched our team from the laboratories into the J avaSoft prodluct group.
As the first result of this effort, Ann, as the Java RMI architect, steered the team on
an exploration of what could be done with a language-centric approach to distrib
uted computing (most distributed computing systems are built on language-neu
tral approaches).

After RMI became part of the Java platform, Bill Joy asked the team to expand
its horizons to include a platform for easier distributed computing, coining the
name "Jini."1 He convinced Sun management to put the RMI and Jini project into
a separate unit. This new unit started with Jim, Ann, Ken, and Peter Jones, and
was soon joined by Bob Scheiffler who had extensive distributed computing expe
rience from the X Windows project that he ran. This put together the original core
architectural team: Jim, Ann, Ken, and Bob.

As the team grew, many people had a hand in the direction of various parts of
the architecture, including Bryan O'Sullivan who took over the design of the
lookup discovery protocol. Mike Clary took the project under his win_g to give it
time to grow. Mark Hodapp joined the team to manage its software development
and run it in partnership with its technical leadership. Gary Holness, Zane Pan,
Brian Murphy, John McClain, and Bob Resendes all reviewed the primary archi
tecture documents and had responsibility for various parts of the tool design,
implementation design, and the .implementations themselves. Laird Domin and
Adrian Colley joined the RMI sub-team to continue and expand its development.
Charlie Lamb joined the architectural team to oversee work with outside compa
nies, starting with printing and storage service standards. Jen McGinn joined the
team to document what we had done, later with the help of Susan Snyder on pro
duction support. Jimmy Torres started out as our release engineer and has changed
to working on helping build our public developer community. Frank Barnaby took
over the release engineering duties. Helen Leary joined early and kept our infra
structure bumming along.

Our QA team was Mark Schuldenfrei and Anand Dhingra, managed by Bren
dan Daly. Alan Mortensen wrote the conformance tests and their infrastructure.
Emily Suter and Theresa Lanowitz started out our marketing team, with Franc
Romano, Donna Michael, Joan MacEachern, and Paula Kozak joining later. Jim
Hurley started setting up our support organization, and Keith Thompson and Peter
Marks joined to work on sales engineering. Sarnir Mitra led a marketing and busi
ness development team that included Jon Bostrom, Jaclyn Dahlby, Mike
McNemy, Miko Matsamura, Darryl Mocek, Sharam Moradpour, and Vince
Vasquez. Many others, too numerous to mention, did important work: that made
the Jini architecture possible and real.

1 Jini is not an acronym. To remember this, think of it as standing for "Jini Is Not initials."
It is pronounced the same as "genie."

xxi

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 18

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

xxii
PREFACE

ACKNOWLEDGMENTS

As the specifications were written, almost every member of the team made impor
tant contributions. Their names are listed above; we note the fact here to express our gratitude. A good idea and a dollar will buy a bad cup of espresso-you need people who will make that idea live, sand off any rough edges, and help you
rework any bad parts of the idea into good ones. We had those people-some of
the best we've ever worked with. Without them the Jini architecture would be some rather nice ideas on paper. Because of their commitment to adopt the vision
as their own, to make it better, and to make it real, there are people (like you, the reader) who care about these ideas and can do something with them. \Ve thank the entire team for what they have done to improve the Jini architecture and to help us
write and release the Jini technology.

Bill Joy created the environment in which the Jini architecture could be developed and nurtured, and fed the architecture with his own reviews and ideas. His
vision and support inside and outside of Sun made the project possible. This book
itself is also bis idea.

Bob Sproull gave the Large Scale Distribution project scope and support that has continued to this day, through all its many twists and turns, even aft.er we were
no longer were part of his Sun Labs organization. Mike Clary's protection and
guidance was critical to fostering the creative atmosphere around the Ji:ni project.

Jen McGinn and Susan.Snyder did a lot of work to make this book possible, including hours in front of a screen converting the specification documents from
their original form into that of the book. Jen also worked hard to improve the content of the specifications and introductory material during their creation, making
them clearer and their English more correct. Dick Gabriel contributed to the con
tent and organization of the Jini Architecture Specification, making it clearer and easier to use.

Many people reviewed the introductory material, making comments that
improved it tremendously: Liz Blair, Charlie Lamb, John McClain, Bob Resendes, and Bob Sproull. Lisa Friendly has applied her experience as series edi
tor with the Java Series to help us create this sibling Jini Series. We would also like to thank the people at Addison-Wesley's Professional Computing g roup who worked with us on this book and the series: Mike Hendrickson, Julie DeBaggis,
Sarah Weaver, Marina Lang, and Diane Freed. And without Susan Stambaugb's help, communicating with Bill (and sometimes Mike) is not merely difficult, but
probably theoretically impossible.

To these and many others too numerous to mention we give our thanks and
appreciation for what they did to make these ideas and this book possibl,e.

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 19

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

E •• * c ,. ' " . I

PART 1
Overview and

, Exami:~les

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 20

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

The Jini Archite•cture:

1 Overview

An Introdl1ction

The man who sets out to carry a cat by its tail
learns something that wi'll always be useful
and which never will grow dim or doubtful.

-Mark 1\vain

J INI technology is a simple infrastructure for providing services in a network,
and for creating spontaneous interactions between programs that use these ser
vices. Services can join or leave the network in a robust fashion, and clients can
rely upon the availability of visible services, or at least upon clear failure condi
tions. When you interact with a service, you do so through a Java -object provided
by that service. This object is downloaded into your program so that you can talk
to the service even if you have never seen its kind before-the downloaded object
knows how to do the talking.

That's the whole system in a nutshell. It's not very much to say (although you
will learn a lot more about the details). But like many ideas that are relatively sim
ple to explain, there is a lot of power in those few ideas. Together, they allow you
to build systems that are dynamic, flexible, and robust, and to build them out of
many parts, created independently by many providers.

This book contains the formal specifications for the Jini technology, preceded
by this introductory part that gives you an overview of the design and basic usage.
The specifications that follow give you the details that make this flexibility possi
ble. Each specification has a brief introduction that places it in context.

In this section you will find discussion of several examples. Some of these
will come from standard office environments and talk about printers, fax

3

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 21

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

GOALS

machines, and desktop systems. But others will come from less traditional networking environments: home entertainment systems, cars, and houses . These environments are quickly becoming networked, and Jini systems, with their relatively small size, are ideal for such use.

1.1 Goals

The Jini architecture is designed to allow a service on a network be available to anyone who can reach it, and to do so in a type-safe and robust way. The g;oals of the architecture are:

• Network plug-and-work: You should be able to plug a service into the network and have it be visible and available to those who want to use it. Plugging something into a network should be an or almost all you need ti:> do to deploy the service.
• Erase the hardware/software distinction: You want a service. You don' t particularly care what part of it is software and what part is hardware as long as it does what you need. A service on the network should be available in the same way under the same rules whether i t is implemented in hardware, software, or a combination of the two.
• Enable spontaneous networking: When services plug into the network and are available, they can be discovered and used by clients and by other services. When clients and services work in a flexible network of services, they can organize themselves in the most appropriate way for the set of services that are actually available in the environment.
• Promote service-based architecture: With a simple mechanism for deploying services in a network, more products can be designed as se:rvices instead of stand-alone applications. Inside almost every application is a service or two struggling to get out. An application lets people who are iJn particular places (such as in front of a keyboard and monitor) use its underlying service. The easier it is to make the service itself available on the network, the more services you will find on the network.
• Simplicity: We are aesthetically driven to make things simple because simple systems please us. Much of our design time is spent trying to throw things out of a design. We try to throw out everything we can, and whe1re we can't throw something out, we try to invent reusable pieces so that one: idea can do duty in many places. You benefit because the resulting system is easier to learn to use and easier to provide systems in. Being a well-behaved Jini service is relatively simple, and much of what you need to do can be auto-

THE JIN/ A

m
E<
m

1.2 l

Each Jin
is where
be one o

Whe
find the
lookup~
impleme
a proxy
also ca1
FaxRecE

Ac
use. Ac
ments ti

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 22

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN! ARCHITECTURE: AN INTRODUCTION

mated by other tools, leaving you with a few necessary pieces of work to do.
Equally important, a large system built on simple principles is go:ing to be
more robust than a large complicated system.

t.2 Architecture

Each Jini system is built around one or more lookup services. The lookup service
is where services advertise their availability so that you can find them. There may
be one or more lookup services running in a network.

When a service is booted on the network, it uses a process called discovery to
find the local lookup services. The service then registers its proxy object with each
lookup service. The proxy object is a Java object, and its types-the inte:rfaces it
implements and its superclasses-define the service it is providing. For example,
a proxy object for a printer willimplement a Printer interface. If the printer is
also capable of receiving faxes, the proxy object wi!J also implement the
FaxRecei ve r interface.

Lookup Service

Pri nter
Interface

Printer Service

A client program asks for services by the Java language type the client will
use. A client wanting a printer will ask the lookup service for a service that imple
ments the Printer interface. When the lookup service returns the printer·•s proxy

5

I · ,
I

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 23

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

ARCHITECTURE

object, the client will automatically download the code for that object if it doesn't
have it already.

Printer
Interface- -,

Lookup Service

The client issues printer requests by invoking methods on the proxy object.
The proxy communicates with the printer as it needs to in order to execute the
requests. The Jini system does not define what the protocol between the proxy and
its service should be; that is defined by the printer and its proxy object.

Printer
Interface

Print
request

Client Printer Service

Proxy -

In fact, the proxy may talk to any number of remote systems to impl,ement a
single method, including zero. Whoever writes the proxy object determines when
it talks to whom to get what, constrained, of course, by the security environment
in which it executes. As long as the proxy object provides the services advertised
by its interfaces and/or classes, the client will be satisfied. This encapsulation is
one of the basic powers of object-oriented programming. The invoker of a method
cares only that the method implementation does what is expected, not how it does
it. The proxy object in a Jini system extends the benefits of this encapsulation to
services on the network.

THE JIM

In
deman,
encour
ent's c,
needed

1.3

The Ji1

•

•

•

•

•

Taken
work i
on dy1
useful
dation

1.4

Thep1
a serv
ever v
basic
know

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 24

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN! ARCHJTEC7VRE: AN INTRODUCTION

In effect, the proxy object is a driver for the printer that is downloaded on
demand. This allows a client to speak to a kind of printer it has never before
encountered without any human having to install the printer's driver on the cli
ent's computer. When the driver is needed, it is downloaded. When :it is no longer
needed, it can be disposed of automatically.

1.3 What the Jini Architecture Depends Upon

The Jini architecture relies upon several properties of the Java virtual machine:

♦ Homogeneity: The Java virtual machine provides a homogeneous plat
form-a single execution environment that allows downloaded code to
behave the same everywhere.

♦ A Single Type System: This homogeneity results in types that mean the
same thing on all platforms. The same typing system can be used for local
and remote objects and the objects passed between them.

• Serialization: Java objects typically can be serialized into a transportable
form that can later be deserialized.

• Code Downloading: Serialization can mark an object with a ,:::odebase: the
place or places from which the object's code can be downloaded. Deserial
ization can then download the code for an object when needed.

♦ Safety and Security: The Java virtual machine protects the c:tient machine
from viruses that could otherwise come with downloaded code. Downloaded
code is restricted to operations that the virtual machine's secu1ity allows.

Taken together, these properties mean that objects can be moved ar,ound the net
work in a consistent and trustable manner. These prope1ties enable a system built
on dynamic service proxies moving object state and implementatiolll to the most
useful patts of a system when they are needed. Such proxies are part of the foun
dation on which the Jini architecture is built.

1.4 The Value of a Proxy

The proxy object is central to the benefit of using a Jini system. The proxy defines
a service type by being of a particular Java type. It implements that type in what
ever way is appropriate for the service implementation that registered it. This is
basic object-oriented philosophy: You know what the object does because you
know its Java language type, but you don 't know how it implements the methods

7

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 25

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

8 THE VALUE OF A PROXY

defined by that type. The proxy is the part of the service that runs in the client's
virtual machine.

This encapsulation allows the Printer interface to be designed as a good cli
ent AP! without requiring it to be a good network protocol for talking to a remote
printer. The Printer interface should be designed at the abstraction level appro
priate for client code. Each proxy object that implements the Printer interface
does so in the right way for the particular printer, using that printer's network pro
tocol. While it is very useful for everyone to agree on the design of the Printer
interface, nobody needs to agree on the network protocol. The Printer inter
face's pri ntText method would be implemented differently for a PostScript
printer than for one that had a different printer language. The pr-oxy object encap
sulates such differences so the client can simply invoke the method.

And anyone can write a proxy object. If the printer manufacturer does not pro
vide a Jini service proxy, you can write your own or buy one from someone else.
As long as the proxy correctly implements the appropriate interface it is a valid
proxy for the printer. If your use of a Jini system relies upon, say, a video camera,
and the camera's manufacturer hasn' t yet provided a proxy impkmcntation you
need, you can write it yourself or find someone else who has already done so. This
works for integration of legacy services of any kind, not just devices. An existing ·
database server can be made available through a Jini service's proxy, usually with
out modifying the server.

The service defines where the proxy code is loaded from. This allows the ser
vice to be its own HTTP server for its classes or to rely on an HTTP server some
where else in the network. The service can, in fact, be unrelated to the hardware
and software on which it is based. A service might, for exampl,e, be built from a
server that monitors the network for some legacy hardware and when the hard
ware is present, registers a proxy on that hardware's behalf, unregistering the ser
vice when the hardware is disconnected. In such a model the service is completely
uncoupled from the hardware on which it relies.

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 26

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN! ARCHITECTURE: AN INTRODUCTION

1.5 The Lookup Service

Each lookup service provides a list of available services, the proxy objects that
know how to talk to the service, and attributes defined by either the local adminis
trator or the service itself.

Client
Client

Client

D
Client

D Client
Client

D D D D
. Lookup Service

~
Proxies

Service Service

.CJ Service

CJ CJ
When a service is first booted up, it uses a discovery protocol to find local

lookup services. This protocol will vary depending upon the kind of network, but
its basic outline is:

• The service sends a "looking for lookup services" message to the local net
work. This is repeated for some period of time after initial startup.

♦ Each look-up service on the network responds wilh a proxy fo.- itself.

♦ The service registers with each lookup service using its proxy by providing
the service's proxy object and any desired initial attributes.

A client that wants a service goes through a matching protocol:

♦ The client sends a "looking for lookup services" message to the local net
work.

♦ Each lookup service in the network responds with a proxy for itself.

9

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 27

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

10 THE ,WOKUP SERVICE

• The client searches for types of services it needs using the proxies of one or

more lookup services. The lookup service returns one or more matching

proxy objects, whose code is downloaded to the c]jent if neoessary.

The discovery protocol is how services and clients find near·by lookup ser

vices. A client or service can also be configured to locate specific lookup services

as well as (or instead of) ones discovered on the local network. For example, when

you plug in your laptop in a hotel, you might want not only to find the lookup ser

vice for your hotel room, but also to contact the lookup service in your home so

you can interact with services there (such as programming the "Call Me" button

on your home's telephone to call your hotel and ask for your :room). Once a

lookup service is located, rather than discovered, the registration and lookup steps

are the same for service and client.
Matching in the lookup service is performed using standard Java language

typing rules. If you ask for Pri nter objects, you will get only objects that imple

ment the Printer interface. The actual object you get may also implement other

interfaces, includjng subinterfaces of Printer, such as ColorPr-inter. As with

any other object you can check to see what types it supports. For example, you

could check to see whether the Printer proxy implements the ColorPrinter

interface, printing in color if it does, and otherwise printing in black and white.

Sometimes a service will be attached to a network when no lookup service

can be found, for example in a broken network. The service's " looking for lookup

services" message will therefore not reach the loo.kup service, and so the service

cannot register. When the network is repaired, the service will be available but

invisible. In order that this invisibility be temporary, each lookup service intermit

tently sends a "here I am" message to the network. When a service gets such a

message, it registers with that lookup service if it isn't currently registered.

1.5.1 Attributes

When you look up an object by type you wi.U get an object with the capabilities

you need, but it might not be the one you want. If you have two television sets in

your house connected on one network, you will want to connect your VCR to the

one you are about to watch. Both televisions will be Vi deoDi splay objects, so

bow do you distinguish between them?

Each proxy object in the lookup service can have attributes. These are objects

that describe features relevant to distinguish one service from ano1her in ways that

are not reflected by the interfaces supported by the service. These often reflect

ways to choose among services of the same type but are different in some way that

is important to a human. In a home entertainment service, naming each television

set by its location is probably enough-you can set the VCR to s-end its output to

THE

the
env
that

Thi
ror
fin
th(

or

fa,

ar

j.

2

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 28

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN/ ARCHITECTURE: AN INTRODUCTION

the Vi deoDi splay object with the Name attribute "living room". In an office
environment you might use Location attributes to help you choose the printer
that is near your office, not at the other end of the hallway.

The Jini architecture does not define which attributes a service should have.
The local administrator will decide which attributes are helpful in the local envi
ronment, and the service designer will decide which ones help use:rs and clients
find the right service. The Jini architecture does define a few examploe attributes in
the package net . j i ni. lookup. entry as suggestions, but whether to use these,
or others, or none, is up to service designers and local administrative policies.

An attribute is an object that is an entry, that is, it must implement the inter
face net.jini .core.entry.Entry, and have the associated semantics, which
are:

• All non-static, non-transient, non-final fields must be public.

♦ Each field must be of an object type, not a primitive type (int, char, ...).

♦ The class must be public and have a public no-arg constructor ..

An entry may have other kinds of fields, but they will not be saved when an
attribute (entry) is stamped on a proxy or considered when matching attributes in
lookup requests.

Attribute matching is done with simple expressions that use exact matching.
You can say one of two things about an attribute: You require an attribute of that
class (including a subclass) to be stamped on the proxy, or you don't care. Within
each attribute you require, you can say a similar thing about each field: You
require the field to have exactly some value or you don't care abomt its value. If
you specify more than one attribute, the lookup service will return only proxies
that match all the attributes you specify.

Attributes are properties of the service, not of its proxy in each individual
lookup service. A service will have the same attributes in all looku:P services in
which it is registered (although network delays may allow you to see inconsistent
sets of attributes in different lookup services while the service is updating its
registrations).

1.5.2 Membership Management

When a service registers with a lookup service, it gets back (among other things) a
lease on its presence in the lookup service. Leases are a programming model
within the Jini architecture designed to allow providers of resources to clean up
when the resource is no longer needed. In the lookup service case, for example,
the lease keeps the list of available services fresh-as long as a service is up and

11

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 29

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

12 THE LOOKUP SERVICE

running, it will renew its lease. If the service crashes or the network between the
service and the lookup service breaks, the service will fail to renew its lease and
thus be evicted from the lookup service.

This means that the list of services you find in a lookup service is a list of ser
vices that are available to you, modulo the time allowed by the lease. For example,
if the lease time given to services by the lookup service (both ini1tially and upon
renewal) i s five minutes, each service you see in the lookup service spoke to the
lookup service within the last five minutes. Most lookup service implementations
will let you tune this time to your required tolerances.

When combined with discovery of lookup services, the leased membership
gives a powerful result: The list of services is current, self-healing, and self-repli
cating:

• It is current (modulo the lease times) because the leases make it so. Any net
work or host failure will force the removal of unreachable services.

• It is self-healing because if a network failure isolates a service from a lookup
service, when the network is fixed, the service will receive a "here I am"
message from the lookup service and rejoin.

• It is self-replicating because a service joins each lookup service it belongs
to. If you want replication to increase robustness, just start another lookup
service. All the services will simply register with both lookup services. If the
only host running your lookup service crashes, just start a new one on a new
host, and all the services will register with the new lookup service.

These features work together. If you run two lookup services on different
hosts and the network between them fails, after the leases expire each will have
the available services on its part of the network. When the network i s fixed, each
lookup service's "here I am" message will reconnect it with the services that were
lost.

1.5.3 Lookup Groups

The discovery request may encounter many lookup services, but yo u might want a
service to be visible in only a few of them. For example, if you have a lookup ser
vice that represents those services available to users of a conference room (fax
machine, printer, projector, telephone, web server), you do not want those services
available as default resources for the people who sit in offices next to the confer
ence room. Nor do you want the people in the conference room to accidentally use
a printer down the hall.

p

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 30

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN/ ARCHITECTURE: AN INTRODUCTION

To limit a lookup service's scope, you place the lookup service :in the confer
ence room in its own group and configure each of the room's services to join only
lookups in that group. The lookup discovery messages include the _groups of the
parties involved. Lookup services ignore discovery messages that are for groups
they are not in, and services ignore ''here I am" messages of lookup services in
groups they are not configured to join. So when new services are added to the
neighborhood, they will not be registered in the conference room's lookup service
unless they are explicitly configured to join lookups in the right group.

1.5.4 Lookup Service Compared to Naming/Directory Services

A lookup service in a Jini system is the nexus where clients locate network ser
vices. In this sense its role is analogous to what are called naming or directory ser
vices in other distributed systems. The analogy is real, but it fails at some crucial
junctures. In discussing the failures of the analogy we will use the term "naming
services" to mean both naming and directory services, which are equivalent for
this discussion.

In a directory system, services are stored by name, a human-readable string.
The string is split up by conventional symbols that separate the components. For
example, all printers may be stored under the directory "/devices/printers".
If you want to see the printers that are available in the directory service, you ask it
for all the references to remote objects in this directory. Each installed printer will
be placed in the directory when it is installed.

This system starts becoming unwieldy as you increase the number of services
and their types. Color printers, for example, might be placed in the printers' direc
tory, or possibly in a separate "/devices/printers/color" dire,;;tory, or both
so that people finding regular printers can find color printers, which after all can
also be used as printers. Printers that are also fax machines would certainly be
placed in at least two directories, since nobody would think to look for a fax
machine in the printers' directory.

Also, note that the correlation between "/devices/printers" and print ser
vices is purely conventional. Should someone mistakenly place a fax service in
the directory, clients will get very confused when the remote reference they get
back is not actually a printer.

To find a service in a directory-based system, your client does the following:

1. . Takes a string that is bound by convention to printers.

2. Asks the directory service what it has bound under that strin1~-

13

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 31

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

CONCLUSION

3. Takes what it gets back and tries to use it as a Printer object (in the Java

programming language this would be by casting it to the type Printer after

checking, if you want a robust program, to be sure that it is a Printer) .

Because the strings in a directory service are related only by convention to the

type you need, failures to follow convention lead to errors for the client. The

human-readable strings are actually of no value to the client except as a (risky)

means to an end. The Jini Lookup service architecture gives your client a way to

get at that end directly:

1. Asks the lookup service for a Printer object.

2. Takes the Pri nter object it gets back and uses it.

This directness also provides the benefits of object-oriented polymorphism:

The object you get back will be at least a Printe r, but it may in addition be some

thing more: a ColorPrinter, possibly, or a FaxSender, FaxReceiver, or

Scanner. You can use it as a Printer without regard to these extra capabilities, or

you can test for their presence using the i ns tanceof operator in the language.

People want to name things, of course. Most computers, printers, and other

major systems in network are named. In a Jini system those names are attrib·utes

on the service that help humans distinguish between services. As attributes, names

can be used to distinguish between services of identical type, but the primary

mechanism a program uses to find services is the thing the program most cares

about: the type of the service it wiJJ use.

1.6 Conclusion

The Jini architecture provides a platform for deploying services in a network. 'This

platform is robust at many levels :

• It is robust in the face of network failures. The set of services automatically

adapts the actual state of the network and service topology.

• It is robust in the face of changes in the implementation of services. As :long

as the service interface is implemented correctly, the details of the service

implementation can change as you buy new equipment and as equipment

generally becomes more capable.

• It is robust in the face of old services. It is relatively easy to incorporate old

devices and servers seamlessly instead of leaving them as an impediment to

progress.

THE JIN/ ARCHrr.

• It is rob
cooper:
service
vice)
on con
compa
MyCom
genen

• It is ro
and ca

The Jini
a few ways i

• Youc
exam
ask fc
simp
tions
vice
as a .

♦ You
prov
trav<
Exp,

soft

• You
sev<
tor
the1
tiot
"se
fro
thi:

Thes,

nology. 1
and servi

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 32

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN! ARCHITECTURE: AN INTRODUCTION

+ It is robust in the face of competition. The minimum standards necessary for
cooperation are defined in the architecture-the definition of what defines a
service (a Java language type) and how you find a service (in a lookup ser
vice)-and lets variation exist where it needs to. An industry can standardize
on common ground (such as the basic Printer interface) and individual
companies can add specific features in company-specific interfaces (such as
MyCompanysPrinter) for clients that want to use them, without breaking
generic clients that want only the common Printer functionality.

+ It is robust in the face of scale. Jini services can be very large: or very small,
and can work with small devices via a supporting virtual machine.

The Jini architecture is not only robust, it is also flexible. Here are sketches of
a few ways in which it can be used.

+ You could design a kiosk that allowed the user to download information. For
example, I might plug my PDA (personal digital assistant) int•o the kiosk and
ask for directions to someplace. The kiosk can publish the information as a
simple TextPubl i sher service which I would use to download the direc
tions onto a text device such as a pager, as well as an HTMLPubl i sher ser
vice which I wou]d use to download them onto a more capable device, such
as a laptop computer.

• You could have expense sources (such as a taxi meter or credilt card scanner)
provide an ExpenseSou rce service that my PDA could use to download
travel expense details. When I return to my office, my PDA c,ould be its own
ExpenseSou rce service that my spreadsheet or company expense report
software could use as a source for expense report information.

♦ You could make sensors in a water supply system be Jini services and have
several monitoring and report-generating applications adapt automatically
to new sensors that are added to the network. Adding a new sensor would
then be as simple as plugging it into the network: The moniltoring applica
tions would find the new service and incorporate it into the data flow. New
"sensors" could be software services that aggregate and analyze information
from sensors into higher-level data. The clients will be blissf1ully unaware of
this hardware-software distinction.

These examples suggest the flavor of the benefits you can find using Jini tech
nology. The example code that follows introduces you to the design of Jini clients
and services. The specification that comes afterwards give you the details.

15

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 33

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

6 NOTES ON THE EXAMPLE CODE

1.7 Notes on the Example Code

In the following two sections you will see an example service, an example client
that uses that service, and two example implementations of that service. There are
a few things you should know before we get started.

First, we have kept the examples as simple as possible. This means, for exam
ple, that we are using command line programs instead of graphical user interfaces.
Graphical user interfaces require a good deal of programming, and explaining that
part of the code would teach you nothing about using the Jini technology. We have
also used very simple error-checking and handling except where more sophisti
cated techniques help us explain how you should use the Jini architecture.

We have also not shown some parts of the code that do not explain anything
about programming in a Jini system-file system manipulation, string parsing,
and so on. The full code for all the examples is in Appendix B.

1.7.1 Package Structure

The Jini technology is expressed in Java language interfaces and classes that live
in three major package categories:

♦ net . ji ni. core: Standard interfaces and classes that are central ("core") to
the Jini architecture live in subpackages of net . j i ni . core.

• net . j i ni: Interfaces and classes that are standards in the Jini architecture
are in subpackages of net. ji ni (except the net. ji ni . core subp.ackage).

♦ com . sun . j i ni: Some interfaces and classes that are non-standard but
potentially useful live in the subpackages of com. sun . j i ni. These pack
ages may contain utility classes that help you write clients and services,
example implementations of standard services, or utility classes used inside
the example implementations.

As an example, there are actually three separate lookup packages:

• net. j i ni . core .lookup: The interfaces and class that comprise the lookup
service that is at the heart of the Jini architecture.

♦ net .jini . lookup: An interface (DiscoveryAdmin) that lookup services
can support to allow administrators to configure which lookup groups the
service will be a member of. This interface is advisory but standard: you
need not use it, but it is a common, traditional way to enable such changes.

THEJINI A

♦ cc
in

These pl
(defined
(useful 1

♦ rn

si

• n•

• n

• n

♦ n

• n
ti

• n
r

• r

♦ r

♦ I

♦ I

1

♦ I

♦

♦

♦

♦

♦

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 34

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN! ARCHITECTURE: AN INTRODUCTION

♦ com.sun.jini. lookup: A utility class (JoinManager) that helps service
implementations to manage registration with appropriate lookup services.

These packages progress from the core (the lookup service itself) to the standard
(defined, though optional, ways to administer a lookup service) to the extended
(useful utilities you may choose to use). Broken out these ways, the packages are:

♦ net. ji ni . core . discovery: A class (Lookuplocator) that col(}_nects to a
single lookup service

♦ net. j i ni . core . entry: The Entry interface that defines attributes

♦ net. ji ni . core. event: The interfaces and classes for distribute:d events

♦ net . j i ni . core.lease: The interfaces and classes for distributed leases

• net. ji ni . core . lookup: The interfaces and classes for the lookup service

♦ net. j i ni . core . transaction: The interfaces and classes for the clients of
the transaction service

♦ net. ji ni . core . transaction. server: The interfaces and classes for the
manager and participants in the transaction service

♦ net. j i ni . admi n: Some standard administrative interfaces for s,~rvices

♦ net. j i ni . discovery: Some standard utility classes that help clients and
service implementations with the discovery protocol

♦ net . jini . entry: A useful base utility class (Abst ractEntry) for entry
(attribute) classes

♦ net. ji ni . lookup: A standard administrative interface (Di scov,eryAdmi n)
for lookup services

♦ net. j i ni . lookup.entry: Some standard attribute interfaces and classes
you can use

♦ net . j i ni . space: The interfaces and classes that define the JavaSpaces
technology

♦ com. sun. j i ni . admi n: Interfaces for administering some common service
necessities

♦ com.sun . jini .discovery: A utility class (LookuplocatorDiscovery)
that helps you contact specific lookup services

♦ com. sun. j i ni . lease: Some utility classes that may help your ,:::lient man
age the leases that it gets from services (such as a lookup service)

♦ com. sun . j i ni . lease.landlord: Some utility classes that maJ help your
service implement and manage the leases it exports to its clients

17

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 35

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

NOTES ON THE EXAMPLE CODE

♦ com. sun. ji ni. lookup: A utility class (Joi nManager) to help your service
implementation discover and join lookup services in the network, and man
age its attributes in those lookup services

♦ com. sun. j i ni. lookup. entry: Some utility classes for working with
lookup service attributes.

Other com.sun. j i ni classes exist. We have listed here the ones that you are most
likely to find valuable in implementing your own clients and services.

As you will notice, we have taken a fine-grained approach to packag,e struc
ture-we make each package contain only related interfaces and classes. This
leads to many well-focused packages instead of a few packages with many loosely
related interfaces and classes. As the Jini architecture evolves, other packages will
be added to this list. The notions of "core," "standard," and "extended" are cur
rently mapped directly to package names. Future additions might not be able to
follow this. For example, if a standard evolves that becomes core to the Jini archi
tecture it could be viewed as "core" without renaming the package with a
net.jini .core name. Such decisions are still in the future, and we cannot yet
define a fixed policy until we have examples to consider.

You will see code from many of these packages in our example code. We will
name the package of each Jini architecture interface or class when it first appears.
The packages of the example classes themselves will be described at the begin
i:ting of the example. To keep the code to a reasonable size for the text, we will not
show the import statements in the chapters. The full source (including import
statements) is in Appendix B.

THE JIN! ARC

2 V

A SU(

L ET'S !
write a cl
would w
client. W

2.1 1

The exa1
message

pac

pub

}

The ne:
method
the stre

Th
will shi
service
Becaw
type o1
entcai

o ,
reques
ways.

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 36

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JTNI ARCHITECTURE: AN INTRODUCTION

2 Writing a Client

A successful [software 1 tool is one that was used to do something undreamed of by its author.

-S.C. Johnson

L ET'S make this architecture more concrete, first by showing how you would

write a client that uses the Jini architecture. The next section will show bow you

would write two corresponding service implementations that are usable by this

client. We will first describe the service being performed.

2.1 The MessageStream Interface

The example interface MessageStream provides an iterator through a stream of

messages. It provides one method that returns the next message in the stream:

package message;

public interface MessageStream {

Object nextMessage()
throws E0FException, RemoteException ;

}

The nextMessage method returns the next message as an object whose t:oStri ng

method prints out its default printed form. An EOFExcepti on signals the end of

the stream. A RemoteExcepti on reflects failures in network messaging.

This simple interface could be used for many situations; in the next section we

will show two: a "fortune cookie" service that returns a random saying, and a chat

service whose messages are the utterances of the speakers in the discussion.

Because the stream interface is general, the client that reads it can work with any

type of message stream. The implementations of each stream will vary, but the cli

ent can do the same thing.

Our example client will simply find a user-specified stream and print out the

requested number of messages. Other general clients could be fancier in many

ways. In fact, many design features of our example client and service implementa-

19

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 37

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

20 Tl-JECUENT

tions are optimized for simplicity to keep the focus on the relevant Jini architec
ture and technology. You will see command line applications instead of graphical
user interfaces, basic choices available rather than rich ones, and simple error han
dling. These simplifying choices help teaching by keeping the focus on the rele
vant parts of the code, even if they are sometimes unrealistic for ;product design
(although simple choices for products are very often correct ones, 1:00). The com
plete code for all examples is in Appendix B.

2.2 The Client

. Now let's look at how you would write a client that finds and uses a message
stream. Your users will need to give you enough information to p:ick the correct
stream from among the available streams. Our example client allows the user to
specify:

+ Lookup groups that will be used in discovery or a specific lookup service

♦ The type of the service

+ Attributes to use in selecting the service

The client bundles the service type and attribute information into a search tem
plate, queries the appropriate lookup services to find a matching service, and
prints out one or more messages.

We will examine the client from the top down. Parts of the code that have little
to do with learning the Jini architecture have been left out of the code presented
here. The complete source to all examples is in Appendix B.

The command line syntax looks like this:

java [java-options] client . StreamReader [-c count]
[groups I 1ookup-ur1] [stream- type I attributes ...]

The Java-options will typically include setting a security policy file. The name
of our client class is client. StreamReader (the StreamReader class in the
client package). The -c option lets the user specify a count of messages to read;
the default is one message. The user must choose from the set of lookup services
by providing either a group specification for lookup discovery or an explicit
lookup locator, which specifies a particular lookup service by its URL, which has
the fonn jini ://host[:port]. The user may also specify a type of stream,
which must be a subtype of MessageStream, and/or a list of attributes. To sim
plify parsing, attributes are specified by either their type name, or their type name
and a String parameter for the constructor. This means that only attributes with

TH

nc
St

atl

In
pl
ar
fc
" (

se

C

1
a
C

a

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 38

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN/ ARCHITECTURE: AN INTRODUCTION

no-arg constructors or with single-argument String constructors can be used with
StreamReader (a fancier client could let the user specify a richer set of
attributes.)

A typical invocation might look like this:

java -Djava.security.policy=/policies/policy
client.StreamReader "" fortune .Fo rtuneStream
fortune.FortuneTheme:General

In this invocation the group will be the empty string, which is the name of the
public group; the type of the stream must be at least fortune. ForturieStream;
and the registration in the lookup service must at least have an attribute of the type
fortune . Fortune Theme that matches an attribute created with the string
"General". We will discuss the fortune package types when we show how the
service is written.

When a user invokes the client command line, the main method o:f the class
client. StreamReader will be invoked:

package client;

public cl ass StreamReader i mplements Discoverylistener {
private int count;

}

private String[] groups= new String[0];
private String lookupURL;
private String[] typeArgs ;

public static void main(String[] args) throws Exception
{

}

StreamReader reader= new StreamReader(args);
reader.execute();

// ...

The main method simply creates a StreamReader object with the command line
arguments and then invokes the object's execute method. The StreamReader
constructor parses the command line to set the fields count, groups, l ookupURL,
and typeArgs. This parsing is shown only in the full source.

21

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 39

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

22 THE CLIENT

The execute method starts discovering lookup services:

public void execute() throws Exception {
if (System.getSecurityManager() == null)

System.setSecurityManager(new RMISecurityManager());

// Create lookup discovery object and have it notify us
LookupDiscovery ld ~ new LookupDiscovery(groups);
ld. addDiscoverylistener(this);

searchDiscovered(); // search discovered lookup services
}

First we set a security manager to protect the client against misbehaving down
loaded code. RMI requires a security manager to be in place during calls to ensure
that you have thought about the security aspects of the code it wi11 download. This
code uses the RMISecurityManager, which is quite conservative about what it
permits.

LookupDi scovery is a utility class that you can use to help y,ou perform the
lookup discovery protocol. It lives in the net.jini . discovery package. Each
LookupDi scovery object starts a thread that notifies listeners wh,en new lookup
services are discovered or when known ones have gone away. We create a
LookupDi scovery object and tell it that this StreamReade r object is a listener.
Once this is set up, we will have two threads of control running :in parallel: the
main thread in which execute was invoked and a separate th:read in which
LookupDi scovery will invoke callback methods. Our implementation uses a sim
ple model to coordinate these threads-the registrars field contains a list of
known net . j i ni. 1 ookup. Servi ceRegi strar objects (the main interface for
the lookup service).

LookupDi scovery does its callbacks via the Di scoveryL i stener interface
(also in the net .jini .discovery package), which declares the methods
discovered and discarded. We use these methods to maintain the registrars
list:

public synchronized void discovered(DiscoveryEvent ev) {
ServiceRegistrar[] regs= ev.getRegistrars();

}

for (inti= 0; i < regs.length; i ++)
registrar s . add(regs[i]);

noti fyA 11 (); // notify wai ters that the list has changed

public synchronized void discarded(DiscoveryEvent ev) {

.JI

THE

w ;

re

m
0 1

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 40

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

