
THE JIN/ ARCHITECTURE: AN INTRODUC110N

}

ServiceRegistrar[] regs= ev.getRegistrars();
for (inti= 0; i < regs.length; i++)

registrars.remove(regs[i]) ;
notifyAll(); II notify waiters that the list has changed

Each invocation of discovered represents one or more newly discovered lookup
services. Our implementation gets the array of Servi ceRegi strar objects (the
lookup service's primary interface) and adds each to the list of known registrars.
When it is complete, it invokes noti fyA 11 in case searchDi scove red is blocked
waiting for the list to have some elements. Our discarded irnple:mentation
removes elements from the list.

The searchDi scovered method invoked by execute loops checking out
members of that list until it finds a matching service or until MAX_WAIT millisec
onds have passed:

private List regist rars= new LinkedList();

private final static int MAX_WAIT = 5000; II five seconds

private synchronized void searchDiscovered()
throws Exception

{
ServiceTemplate serviceTmpl = bui l dTmpl(typeArgs);

II Loop searching in discovered lookup services
long end= System.currentTimeMillis() + MAX_WAIT ;;
for(::){

II wait until a lookup is discovered or time expires
long timeleft = end - System. currentTimeMillis();
while (timeleft > 0 && registrars.isEmpty()) {

wait(timeleft);
timeLeft = end - System.currentTimeMillis():

}
if (timeleft <= 0)

break ;

II Check out the next lookup service
ServiceRegistrar reg=

(ServiceRegistrar)registrars . remove(0);
try {

MessageStream stream=

23

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 41

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

}

}

THE CLIENT

(MessageStream)reg.lookup(serviceTmpl);
if (stream!= null) {

readSt ream(stream);
return;

}

} catch (RemoteException e) {

}
continue; II skip on to next

System .err .printl n("No service found");
System . exit(l); II nothing happened in time

First the method uses the command line arguments to build up a template. It then
starts looping. Each time through the loop the list of registrars is checked. If it is
empty, we wait until either the remaining time expires or the list ceases to be
empty. During the invocation of wait the dis cove red method can be invoked by
LookupDiscovery in its thread, adding registrars to the list. When registrars are
added, the noti fyA 11 in the discovered method will allow the wa i t in
searchDi scovered to return. The code in searchDi scovered then takes the
first element from the list and asks it to look up a service that matches our tem
plate. If it finds one, it asks read Stream to try and read messages from the stream
(you will see readStream shortly).

If readStream executes successfully, searchDi scovered will return, which
signals successful execution. If searchDi scovered does not find a readable
stream within the allotted time, it prints out an error message and exits with a non
zero status, indicating failure of the command.

The buildTmpl method creates the net.jini. lookup .Servi ceTemp,late
object that is passed to the lookup service's lookup method. Let's look at how the
template is built:

private ServiceTemplate buildTmpl(String[J typeNames)
throws ClassNotFoundException, IllegalAccessException,

InstantiationException, NoSuchMethodException,
InvocationTargetException

{

Set typeSet new HashSet();
Set attrSet new HashSet();

// service types
// attribute objects

II MessageStream class is always required
typeSet.add(MessageStream.class);

THE JlNl ARC,

}

}

The bui l
line. The
name fol
t ype(ar

has an op
the argur
has been
Cl ass ol
so an ot
method,
must be
port. W t
and att
priate a

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 42

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JTNI ARCHITECTURE: AN INTRODUCTION

}

for (inti= 0; i < typeNames.length; i++) {

}

// break the type name up into name and argument
StringTokenizer tokens= // breaks up string

new StringTokenizer(typeNames[i], ":");
String typeName = tokens.nextToken();
String arg = null; // string argument
if (tokens. hasMoreTokens ())

arg = tokens .nextToken();
Class cl = Cl ass . forName(typeName);

// test if it is a type of Entry (an attribute)
if (Entry.class . isAssignableFrom(cl))

attrSet . add(attribute(cl, arg));
else

typeSet.add(cl);

// create the arrays from the sets
Entry [] attrs = (Entry[])

attrSet .toArray(new Entry[attrSet.size()]);
Class[] types= (Class[])

typeSet.toArray(new Class[typeSet.size()]);

return new ServiceTemplate(null, types, attrs);

The bui l dTmp l method loops through the type arguments given on the command
line. The argUJm:nts can be either a type name or, in the case of attributes, a type
name followed by a String argument to pass to the constructor, of the form
type(arg). The first part of the loop takes the name and checks to see whether it
has an open parenthesis. If it does, it strips any closing parenthesis and remembers
the argument in the variable arg, which is otherwise null. Once any argument
has been stripped off from the class name in cName, we translate the narm: inlo a
Cl ass object for the type. If the type is assignable to Entry it is an attribute, and
so an object is created of that attribute type, using arg if it was present-the
method attribute (not shown) does this work. If it is not assignable to Entry, it
must be a service type, and so we add its type to the types the service must sup
port. When the loop is finished, typeset contains all the required service types
and attrSet contains all the required attribute templates. We then create appro
priate arrays from the contents of these sets and pass the arrays to the

25

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 43

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

26 THE CLIENT

Servi ceTempl ate constructor (the first null argument would be the service ID if
we needed to match on a specific one).

As you have seen, when searchDi scovered finds a matching service, it tries
to read the stream by invoking the readStream method:

}

private final static int MAX_RETRIES = 5;

public void readStream(MessageStream stream)

{
throws RemoteException

int errorCount = 0;
int msgNum = 0;
while (msgNum < count) {

II# of errors seen this message
II# of messages

}

try {
Object msg = stream.nextMessage();
printMessage(msgNum, msg);
msgNum++; II successful read
errorCount = 0; II clear error count

} catch (EOFException e) {
System.out.println("-- -EOF---") ;
break;

} catch (RemoteException e) {
e .pri ntStackTrace();

}

if (++errorCount > MAX_RETRIES) {

}

if (msgNum == 0) II got no messages
throw e;

else {

}

System.err .println("too many error·s");
System .exit(l);

try {
Thread . sleep(l000); II wait 1 second, retry

} catch (InterruptedExcepti on ie) {
System.err.println("---Interrupted.:.--");
System.exit (1);

}

THE J!Nl

pul

}

The r E
reads·
ing on(
gle me
contint
its fa il1
and a J

ber of

2.3

Let us
that cc
(an int
fortu
condu,
are fo1
our di
searc
ing str
it out.
match

A
user s:
attribl
works
will r
proxy
servic
next ~

Stre,

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 44

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

WE JIN! ARCHFFECTURE: AN llffRODUCf!ON

public void printMessage(int msgNum , Object msg) {

if (msgNum > 0) // print separator
System.out .println("---");

System.out.printl n(msg);
}

The read St ream method will try to read the number of messages desired. If

readStream gets a RemoteException, it retries up to MAX_RETRIES times,. wait

ing one second (1,000 milliseconds) between each try. If it fai ls to read even a sin

gle message it throws RemoteExcepti on, letting the loop in searchDi scovered

continue looking for a usable stream. Jf it reads at least one message, it prints out

its failure and exits, so that the user will not see some messages from one stream

and a few more from the next one should a failure occur before the desired num

ber of messages are read.

2.3 In Conclusion

Let us revisit the example execution of StreamReader from page 21. If y,ou use

that command line, the client will look for a fortune. FortuneStream service

(an interface that we will define in the next section) with an attribute that is of type

fortune. Fortune Theme created with the string "General". This search will be

conducted in lookup services that manage the public group. If any such lookups

are found, the LookupDi scovery utility object we created in execute will invoke

our discovered method, which adds it to the list of known lookup services. The

searchDi scovered method looks in each discovered lookup service for a match

ing stream, and invokes readStream to read one message from a stream and print

it out. When all this is complete, you should (assuming there is an avaiJable

matching fortune cookie service) have a fortune cookie message on your screen.

Again, notice that this client can work with any MessageStream service. The

user specifies which particular service to use by the service's type and any desired

attributes. Each message stream service implementation provides a proxy that

works properly for the service's needs. The StreamReader client you have seen

will print messages from any implementation of a message stream, using the

proxy as an adaptor from the service definition (MessageStream) to the particular

service that was matched (FortuneStream, ChatStream, or whatever). Y.ou will

next see bow to write two different message stream services that can be used by

StreamReader or any other MessageStream client.

27

I

I

I

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 45

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN! ARCHITECTURE: AN INTRODUCTION

3 Writing a Service

Dare to be nai've.
- R. Buckminster Fuller

THE MessageStream interface is designed to work for many purposes. We will
now show you two example implementations of a message stream service. The
first will be a FortuneStream subinterface that returns randomly sekcted "for
tune cookie" messages. The second will provide a chat stream that records a his
tory of a conversation among several speakers. First, though, we must talk about
what it means to be a Jini service.

A service differs from a client in that a service registers a proxy object with a
lookup service, thereby advertising its services-the interfaces and classes that
make up its type. A client finds one or more services in a lookup service that it
wants to use. Of course, a service might rely on other services and therefore be
both a service and a client of those other services.

3.1 Good Lookup Citizenship

To be a usable service, the service implementation must register with appropriate
lookup services. In other words, it must be a good lookup citizen, which means:

• When starting, discovering lookup services of appropriate groups and regis
tering with any that reply

+ When running, listening for lookup service "here I am" message::s and, after
filtering by group, registering with any new ones

+ Remembering its join configuration- the list of groups it should join and the
lookup locators for specific lookup services

+ Remembering all attributes stamped on it and informing all lookups of
changes in those attributes

+ Maintaining all leases in lookup services for as long as the service is avail

able

29

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 46

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

30 THE FortuneSt,·eamSERVTCE

+ Remembering the service ID assigned to the service by the first lookup ser
vice, so that all regis trations of the same service, no matter when made, will
be under the same service ID

3.1.1 The Joi nManager Utility

Although the work for these tasks is not a vast amount of labor, it is also more
than trivial. Services may provide these behaviors in a number of ways. The utility
class com.sun.jini. lookup.JoinManager (part of the first release ,of the Jini
Technology Software Kit) handles most of these tasks on a service's behalf,
except for the management of storage for attributes and service IDs whi,:::h the ser
vice implementation must provide.

Our example service implementations use Joi nManage r to manage lookup
membership. You are not required to do so--you might find other mechanisms
more to your liking, or you might want or need to invent your own.

3.2 The FortuneStream Service

Our first example service will extend MessageStream to provide a "fortune
cookie" service, which returns a randomly selected message from a se:t of mes
sages. Typically, such messages are intended to be amusing, informative, or
inspiring. The collections are often broken up into various themes. The most gen
eral theme is to be amusing, but collections drawn from particular television
shows, movie types, comic strips, or inspirational speakers also exist. Our
FortuneStream interface looks like this:

package fortune;

interface FortuneStream extends MessageStream, Remote {
String getTheme() throws RemoteException;

}

As with all the classes defined in this example, this interface is in the fortune
package. The FortuneStream interface extends the MessageStream interface
because it is a particular kind of message stream. FortuneStream extends the
interface Remote, which indicates to RMI that objects implementing the
FortuneStream interface are accessible remotely using RMI.

The getTheme method returns the theme of the particular stream. As you will
see, the theme is primarily reflected as an attribute on the service so that a user can

THE JIN/ 1

select a
added h

Eac
getThe
stream 1

put

{

}

The F1

of our
of For

Tl
objecl
conve
Forti
getTI
strear
it WO

obtai
F

ment
ing
Abst
impl
troll1
istra
Ser 1

cont

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 47

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

select a FortuneStream with a theme to their liking. The getThem1:? method is added here to allow queries after a stream has been selected. Each fortune stream's theme is represented both in the interface via the getTheme method and as an attribute in the lookup service to help users find a stream that gives the types of fortunes they want:
public class FortuneTheme extends AbstractEnt r y implements ServiceControlled
{

public String theme;

public FortuneTheme() {}

public FortuneTheme(String theme) { this.theme = t heme;
}

}

The FortuneTheme attribute is part of the service definition, and is independent of our particular implementation of FortuneStream-a different implementation of FortuneStream would use the same attribute type. The Fortune Theme attribute fits the requirements for all entries: It has public object-typed fields and a public no-arg constructor. It adds another constructor for convenience. Each FortuneStream service expresses its theme . as both a FortuneTheme attribute and a value returned by the FortuneStream class's getTheme method. This redundancy has a purpose--it allows a client of .a fortune stream to be written independently of the code that finds the service. For example, it would be possible for a fortune stream client to display the theme of a stream it obtained without using a Fortune Theme attribute. FortuneTheme extends net .jini . entry.AbstractEntry, which implements Entry and provides useful semantics for entry classes, specifically in defining semantics for the equals, hashCode, and toStri ng methods . Using AbstractEntry is optional-we use it for convenience. FortuneTheme also implements Servi ceCont rolled, which marks the attribute as one that is controlled by the service itself, as opposed to one placed on the service by an administrator. Any tools that let administrators modify attributes should not Jet Servi ceContro 11 ed attributes be changed. Only attributes that are exclusively controlled by the service itself should be marked with this interface.

31

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 48

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

32 THE FortuneStreamSERVlCE

3.2.1 The bnplementation Design

The overall fortune service implementation looks like this:

Lookup Service

FortuneStreamimpl Stub

FortuneStream
Interface

Client

nextMessage

The running service is composed of three parts:

fortunes

• A database of fortunes, consisting of the collection of fortunes and position
offsets for the start of each fortune. The position information is built by read
ing the fortune collection.

• ·A server that runs on the same system that contains the database. This server
reads the database, choosing a fortune at random each time it needs to return
the next message.

• A proxy for the service. This proxy is the object installed in the lookup ser
vice to represent the fortune stream service in the Jini system. In this pattic
ular case, the proxy is simply a Java RMI stub that passes method invocations
directly to the remote server.

3.2.2 Creating the Service

Our FortuneStream implementation is provided by the FortuneStreamimpl
class, which is a Java Rl\fl remote object. Requests for the next message in the

TH

str
se

ra
d a
d;:
ye

T
d
S(

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 49

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

. -----------------------------

THE JIN/ ARCHITECTURE: AN INTRODUCTION

stream will be sent directly to this remote object that will return a random fortune
selected from its database.

The fortune database lives in a particular directory, which is set up by a sepa
rate FortuneAdmi n program that creates the database of fortunes from the raw
data. The FortuneAdmi n program is run before the service is created to set up the
database a running FortuneStream service will use. When the database is ready,
you will run FortuneStreamimpl to get the service going.

The FortuneStreamAdmin command line looks like this:

java [java-options] fortune.FortuneAdmin database-dir

The database-di r parameter is the directory in which the database hves. This
directory must initially contain a file named fortunes, which contains fortunes
separated by lines that start with %%, as in:

"As an adolescent I aspired to lasting fame, I craved
factual certainty, and I thirsted for a meaningful vision
of human life -- so I became a scientist. This is like
becoming an archbishop so you can meet girls."

Matt Cartmi 11
%%
As far as the laws of mathematics refer to reality, they
are not certain, and as far as they are certain, they do
not refer to reality.

Albert Einstein
%%
As far as we know , our computer has never had an unde1cected
error.

The FortuneAdmi n program creates the position database in that directory if it
does not already exist or if it is older than the fortune database file. The position
database is stored in a file named pos. A typical invocation might look like this:

java fortune.FortuneAdmin /files/fortunes/general

FortuneAdmi n will look in the directory /fi les/fortunes/general for a
fortunes file and will read it to create a/fi les/fortunes/general / pos file. 1

The source to FortuneAdmi n just manipulates files, so we will not describe it
here.

1 On a Windows system it would be something like C: \files\ fortunes\gene ra·1; on a
MacOS system it would be more like Hard Disk:fortunes:general. We use POSJX
style paths in this book.

33

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 50

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

34 THE FortuneStream SERVICE

3.2.3 The Running Service

The fortune service is started by the main method of FortuneStrea1mimpl. The
command Jine looks like this:

java [java-options] fortune.FortuneStreamimpl database-dir
groups! 1ookup-ur1 theme

The java-options must include a security policy file and the RMI server code
base URL. The database-di r should be the directory given to For·tuneAdmi n.
The running service will join lookup services with the given groups or the speci
fied lookup service, with a FortuneTheme attribute with the given name. A typi
cal invocation might look like this:

java -Djava.security.policy=/file/policies/policy
-Djava.rmi.server.codebase=http: //server/fortune-dl.jar
fortune . FortuneStreamimpl /files/fortunes/general ""
General

Our implementation of the fortune stream service executes in the virtual
machine this command creates, and therefore lives onJy as long as that virtual
machine is running. Later you will see how to write services that live longer than
the life of a single virtual machine.

Here is the code that starts the service running:

public class FortuneStreamimpl implements FortuneStream {
private String[] groups = new String[0];

}

private String lookupURL;
private String dir;
private String theme;
private Random random = new Random();
private long[] positions;
private RandomAccessFile fortunes;
private JoinManager joinMgr;

public static void main(String[] args) throws Exception
{

}

II

FortuneStreamimpl f = new FortuneStreamimpl(args);
f. execute() ;

r
THEJI~

Them
tialize
comrr
methc

p

Firs1
exp<
the ,
mac
dies
acfr
vice
st:n

bas,
ple:
imI

ide
Jo-

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 51

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE J/Nl ARCHITECTURE: AN INTRODUCTION

The main method creates a FortuneStreamimpl object, whose constructor ini
tializes the groups, l ookupURL, di r, theme, and i ni ti alAttrs fields from the
command line arguments. The rest of the work is done in the object's execute
method:

private void execute() throws IOException {
System.setSecurityManager(new RMISecurityManager());
UnicastRemoteObject.exportObject(this);

}

II Set up the fortune database
setupFortunes ();

II set our FortuneTheme attribute
FortuneTheme themeAttr = new FortuneTheme(theme);
Entry[] initialAttrs = new Entry[] { themeAttr };

Lookuplocator[] locators = null;
if (lookupURL != null) {

}

Lookuplocator loc = new Lookuplocator(lookupURL);
locators= new Lookuplocator [] { loc };

joinMgr = new JoinManager(this, initialAttrs,
groups, locators, null, null);

First execute sets a security manager, as you saw done in the client. Next we
export the FortuneStreamimpl object as an RMI object. Specifically, we export
the object as a UnicastRemoteObject, which means that as long as this virtual
machine is running, the object will be usable remotely. When the virtual machine
dies, the remote object that it represents dies too. RMI provides a mechanism for
activatable servers that will be restarted when necessary; most Jini software ser
vices are actually best written as activatable services. You will see an activatable
service in the next example.

We then call setupFortunes to initialize this server's use of its fortune data
base. We do not show the code for that here because it is not relevant to the exam
ple; setupFortunes sets the positions and fortunes fields that are used by the
implementation of nextMessage.

The next two lines create the service-owned Fortune Theme attribute that will
identify the theme of this fortune stream in the lookup service. Then we create the
Joi nManager, which manages all the interactions with lookup services in the net-

35

I
I

I
I

i'
'

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 52

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE FortuneStream SERVICE

work. To do so, you must te11 the Joi nManager several things. The construct,or
used by execute (there are others) talces the following parameters:

♦ The proxy object for the service. We use this because RMI will convert
this to the remote stub for the FortuneStreamimpl object, which is what
we want in this case. (FortuneStreamimpl implements a Remote inter
face-FortuneStream extends Remote-so when a FortuneStreamimpl
object is marshalled, it gets replaced by its stub.)

♦ An Entry array that is the initial set of attributes to be associated with the
service. Here we provide an array that contains only our Fortune Theme.

♦ A String array that is the initial set of lookup groups. In our case this will
be talcen from the command line and be either an array of the groups speci
fied or an empty array if a URL was specified instead.

♦ A net . ji ni. discovery. Lookuplocator array. Lookuplocator is a
class that locates lookup services by URL. The array has a Lookuplocatc,r
for the URL specified, or null if groups were specified instead.

♦ A com. sun . j i ni . lookup . Servi ceIDLi stener object. The interface
Servi ceIDL i stener provides a method to be caUed when the service's ID
is assigned. This is a hook that lets the service store its ID persistently if it
needs to. Since our particular service does not outlive its virtual machine
there is no need to store the ID. We therefore pass null , meaning the service
will not be notified. (The next example will show this feature in action.)

• A com . sun. j i ni . lease . LeaseRenewa l Manager object to manage
renewing the leases returned by lookup services. We use nul 1, which tells
the Joi nManager to create and use its own LeaseRenewalManager. In
another situation (for example, exporting multiple services in the same vir
tual machine) you might want to specify this parameter (in our example, by
using the same object in each service's Joi nManager to reduce the numbeir
of lease manager objects).

When execute is finished we have a service ready to receive messages and,
)Y virtue of its Joi nManage r, the service registers with all appropriate lookup ser
, ices and will continue to register appropriately so as long as the service is run
ling. In other words, at this point we have a running Jini service. When execute
·eturns, so does main. RMI will keep the virtual machine running in another
bread, waiting to receive requests.

The rest of the code implements nextMessage by picking a random fortune
md getTheme by returning the theme field. Again, since these parts show no Jini
:ervice code, we leave them to Appendix B.

THE JIN! ARCH/TE•

3.3 The Cl

For a more inv,
the utterances ,
there must be a
at random, so ,
will want the n

Consider \11

occurs. Either c

♦ Thenetv

Client

[
♦ Thereq1

respons1

Client

[
These are ver
guish betweer
was stored at
either messag

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 53

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN/ ARCHITECfURE: AN INTRODUCTION

3.3 The ChatStream Service

For a more involved example, we provide a message stream whose messages are
the utterances of people in a conversation, such as in a chat room. In this case
there must be an order to the messages. The fortune stream was picking a message
at random, so any message was as good as any other. For a conversation clients
will want the messages in the order in which they were spoken.

Consider what happens when nextMessage is invoked and a network failure
occurs. Either of two interesting situations may have occurred:

• The network failure prevented the request from getting to the remove server:

Network Failure

Client Server

• The request made it to the remote server, but the network failure blocked the
response:

Client Server

Network Failure

These are very different situations, but the client has no possible way to distin
guish between the two cases. If the current position in the stream for each client
was stored at the server, the next call to nextMessage by the client could return
either message 29 (in the first case, in which the server never got the ,::iriginal,

37

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 54

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE ChatStreamSERVICE

failed request) or message 30 (in the second case, in which the server thought it
had returned message 29 but it didn't get to the client).

The nextMessage method of MessageStream is documented to be idempo
tent, that is, it can be re-invoked after an error to get the same result that would
have come had there been no error. For FortuneStream idempotency was easy
the fortune was picked at random, so the next message will be equally random, no
matter which of the failure situations actually happened.

But for ChatStream, this is not good enough. If the proxy was designed
nai:Vely, an utterance might be skipped, and the utterance skipped could be the
most important one of the discussion. If a call to nextMessage throws an excep
tion because of a communication failure, the next time the client invokes
nextMessage it should get the same message from the list that it would have got
ten on the previous call had there been no failure. Suppose, for example, that we
used the same strategy for a ChatStream proxy that we did for the
FortuneStreamimpl proxy-an RMI stub. Then, after getting message number
28 from the server, a network exception is thrown when trying to get message
number 29 .

So the proxy object registered with lookup services for a ChatStream cannot
be a simple RMI stub. It must contain enough state to help the service return the
right message even in the face of a network failure. To accomplish this, the proxy
object will implement the ChatStream interface for the client to use, but the
server will have an implementation-specific interface that the proxy uses to tell. the
server which message should be next. It will look like this:

Lookup Service

Chat Proxy

ChatStream
Interface

Client

nextMessage

ChatServer
'----~-Interface

ChatServerimpl

j
Chat

History

r
THE JIN/ ARCTilTE(

The proxy will
cessfully retrie\
interface. That i
the ChatStrea1
maintain the id1

The Chats
inherits nextM1
ods of its own:

package c

public ir
publ ·

}

publ ·
publ ·

Like all the cc
method lets p(
is the name of
what the subje
These last twc

used to look u
When arr

public <
pri,
pri,

pub·

}

pub

pub

pub

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 55

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JINI ARCHITECTURE: AN INTRODUCTION

The proxy will use its internal stored state (the number of the last message suc
cessfully retrieved) as an argument to the nextinL i ne method of the ChatServer
interface. That method is hidden from the client, and different implementations of
the ChatStream service are welcome to use a different mechanism so long as they
maintain the idempotency of nextMessage.

The ChatStream interface-the public service interface that the clients use
inherits nextMessage from the MessageStream interfaces, and adds· a few meth
ods of its own:

package chat;

public interface ChatStream extends MessageStream {
public void add(Stri ng speaker , String[] message)

throws RemoteException;

}

public String getSubject() throws RemoteException;
public Stri ng[] getSpeakers() throws RemoteException;

Like all the code in this example this class is part of the chat package. The add
method lets people add new messages to the discussion. The speaker parameter
is the name of the speaker; message is what they say. You can ask a ChatStream
what the subject of the chat is, and for the names of the people who have spoken.
These last two things are also stored as attributes of the service so they can be
used to look up streams.

When a message is read, it will be a ChatMessage object:

public class ChatMessage implements Serializable {
private Stri ng speaker;
private St ring[] content;

public ChatMessage(String speaker, String[] content) {
this . speaker speaker;
this.content= content;

}

public String getSpeaker() { return speaker; }

public String[] getContent() { return content; }

public String toString() {
StringBuffer buf = new StringBuffer(speaker);
buf. append(": ") ;

39

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 56

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

40

}
}

THE ChatStream SERVICE

for (inti= 0; i < content.length; i++)
buf.append(content[i]).append('\n');

buf.setlength(buf.length() - 1); // strip newline
return buf.toString();

ChatMessage has methods to pick out the pieces of the message-its speaker and
the content-and its toStri ng method prints out a reasonable default representa
tion of the message.

When looking for a ChatStream, a user might want to choose the subject, so
we define a ChatSubject attribute type:

public class ChatSubject extends AbstractEntry
implements ServiceControlled

{

}

public Stri ng subject;

public ChatSubject() {}

public ChatSubject(String subject) {
this.subject= subject;

}

A ChatStream service should mark itself as being on a certailn subject- the same
subject that getSubject would return. A user might also wa10t to search for chats
that had particular speakers, so a stream should also mark itself with a
ChatSpeaker attribute for each speaker:

public class ChatSpeaker extends AbstractEntry
implements ServiceControlled

{

}

public String speaker ;

public ChatSpeaker() {}

public ChatSpeaker(String speaker) {
this.speaker = speaker;

}

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 57

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN! ARCHITECTURE: AN INTRODUCTION

(Remember that we have chosen to use string-based attributes to simplify the
examples in this text. Fields in attributes can be any serializable type, so when you
design your own attributes, don't use the string-based nature of our examples with
a requirement of attributes in general. Use the types you need, not just strings.)

3.3.1 "Service" versus "Server"

At this point it is important to discuss the difference between the word "service"
and the word "server." A service is a logical notion that bas at least one object
the object registered in the lookup service. It usually has other parts as well. Often
at least one of those parts will be a server-a process running on a machine in the
network.

Our fortune service is made up of a proxy object (the Rlvll stub), a fontune
server (the FortuneStreamimpl object running on some host), and the underly
ing storage. A service may use one or more servers to provide its service. In both
the fortune and chat examples, each service uses exactly one remote object, which
in turn uses an underlying store. Other services might talk to no remote servers
(doing all computation locally in the proxy) or several (combining the information
from more than one server).

3.3.2 Creating the Service

As we stated before, the chat service's proxy (which runs on the client) needs to
hold some state so that it can tell the server which message was last returned suc
cessfully. The communication between the proxy and the server must include this
information. The nextMessage method has no way to impart that data, so the
proxy will need a different way to talk to the server in order to pass it along. For
.this purpose the implementation of our service adds an internal, package-accessi
ble interface:

interface ChatServer extends Remote {
ChatMessage nextinline(int lastindex)

throws E0FException, RemoteException;
void add(String speaker, String[] msg)

throws RemoteException;

}

String getSubject() throws RemoteException;
String[] getSpeakers() throws RemoteException;

The proxy will use the nextinL i ne method to get the message following the last
successful one, which it represents by index. The message is returned to the client
by the proxy's nextMessage method, and the new index is remembered for the

41

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 58

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

42 THE ChatStream SERVICE

next invocation. The other methods do not require any different treatment from
those in the ChatStream interface, and so they are declared identically.

The proxy implementation is pretty simple: The proxy object contains an RMI
reference to the server that implements ChatServer and the index of the last suc
cessfully returned message:

}

class Cha~Proxy implements ChatStream, Serializable {
private final ChatServer server;
private int lastindex = - 1;
private transient String subject;

ChatProxy(ChatServer server) {
this.server= server;

}

public synchronized Object nextMessage()
throws RemoteException, EOFException

{

}

ChatMessage msg = server.nextinline(lastlndex);
l astindex++;
return msg ;

public void add(String speaker, String[] msg)
throws RemoteException

{

server.add(speaker, msg);
}

public synchronized String getSubject()
throws RemoteException

{

}

if (subject== null)
subject= server.getSubject();

return subject;

public String[] getSpeakers() throws RemoteException {
return server.getSpeakers();

}

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 59

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE J/Nl ARCHITECTURE: AN INTRODUCTION

When the client invokes nextMessage, the proxy invokes the remote server's
next!nl i ne method, passing in the 1 astindex field. If nextinL i ne re:turns suc
cessfully, it increments its notion of the last message index and then returns the
message. If instead nextinL i ne throws an exception, the code following the
invocation will not be executed, leaving the value of l astindex unchanged. So in
our example, even if a network failure happens after the request reaches the
server, the client will get an exception and so the next invocation of nex tMessage
by the client will cause a nextinL i ne to be sent that gets the same message
again.2

The proxy's add and getSpeakers methods simply forward the request along
to the remote server. The proxy's getSubj ect method uses the fact that the sub
ject of a single Cha tSt ream never changes-once the proxy gets the subject it can
be remembered to avoid a round trip to the server to get it again. Here again the
proxy adds value.

3.3.3 The Chat Server

Now let us look at the server side. Our chat server implementation is decidedly
simple to keep the example focused on the Jini service. We will allow an adminis
trator to create a new chat service, which means creating a remotely accessible
ChatServerimpl object that implements the ChatServer interface. This object
registers a ChatProxy object with the lookup service, giving it the appropriate
ChatSubj ect attribute and (initially) no ChatSpeaker attributes. The ChatProxy
object contains a reference to its ChatServerimpl object.

The ChatServerimpl object will be activatable, that is, it will use the RMI
activation mechanism to ensure that it is always available, even if the system it is
running on crashes and reboots. The fortune service you saw before lives only as
long as its virtual machine .. Should the machine on which it runs die, it will die
too. This may be acceptable for some services, but not others. Many Ji11i services
wilt need to be activatable, or use some other mechanism to outlast reboots.

This service will be activatable, but this is not the place for a full itutorial on
writing activatable services. We will give an overview, point out the places in the
code where activation is visible, and provide the full code in Appendix B .

Activation works by having an activation system that starts virtual machines
for remotely accessible objects when needed. Each activatable object is part of an
activation group-remotely accessible objects that are part of the same group will

2 Note that the proxy's implementation of nextMessage is synchronized. This ensures that
two threads in the same virtual machine invoking nextMessage at the same time on the
same proxy object will not both use or modify l astindex inconsistently.

43

I
I

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 60

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

44 THE ChatStreamSERVJCE

always be activated in the same virtual machine, while objects that are in different
groups will always be in different virtual machines.

An activatable object is created by registering it with the activation system,
telling the system which group the object belongs to, providing a storage key that
can be used by the object when it is activated to find its persistent state, and
optionally a "keep active" flag. This registration returns a remote reference to a
newly available remote object. The reference can be sent around the network like
any other remote reference.

If the "keep active" flag is true, the activation system will always keep the
object active when it can. For example, when a system is rebooted, the activation
system will activate each "keep active" object. If the flag is false, the activation
system will wait until it gets the first message for the object and then activate it. In
our example we will set the "keep active" flag to be true so the active service can
register with the lookup service and maintain its lease. Otherwise the service
would be inactive, unable to renew its leases, and so would never be found by any
one looking for a chat stream.

Activation of an object is done via its activation constructor--a constructor
with the following signature:

public Activatab7eC7ass(ActivationID id,
Marshalled0bject state)

{

II .. .
}

During activation the activation system first either creates a virtual machine to
manage the group, or finds the existing virtual machine that is already doing so. It
then has that virtual machine create a new local object of the correct class using its
activation constructor.

An activatable class must extend j ava. rmi . activation. Act i vatab le-in
which case the activation constructor must invoke super(i d)--or invoke the
static method java . rmi . activation . Activatabl e0bject. export0bj ect.
Either of these actions lets the activation system know that the object is ready to
receive incoming messages.

Once the activation constructor returns, the activation system will tell clients
of the remote object to talk directly to the running server object. This means that
at most the first message from a client to an activatable object requires talking to
the activation system (unless there is an intervening server crash). All subsequent
requests go directly to the running service.

Cha1
serv1

Cha·
for 1

duri
doe:
info
tain
sam
virt1
diff,

last
you
fi 1
n111:
the
Thi
pol
pol

Th
sar
stc
pu
en
an
qu

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 61

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN/ ARCHITECTURE: AN INTRODUCTION

In our example we will provide a ChatServerlmpl class that provides a ChatStream service by registration with the activation system. You create a new server with the following command:

java [java-options] chat.ChatServerAdmi n directory subje,ct [groupsl 1ookup-ur7 c1asspath codebase po1icy-fi1e]
ChatServerAdmi n is a class that creates an activatable ChatServerlmpl object for the server. The java-options typically include the security policy file used during creation. The di rectory will define an activation group. If the directory does not exist it will be created; a new activation group will also be created and its information written into a file in that directory. If the directory does exist and contains such a file, that information will be used to place the new chat stream into the same activation group. A typical chat stream will not significantly occupy a single virtual machine, so grouping multiple activatable ChatServerlmpl objects for different subjects into the same virtual machine will keep overall overhead low. If you want to create a new activation group for the stream, you must give the last four parameters: the groups or 1ookup-ur1 to specify the lookup services you want the chat registered with, and the c 7 ass path, codebase, and po 1 icyfi 1 e for the activated virtual machine. The classpath will be the one for the: running server, the codebase will be where clients will download the remote parts of the service from, and the policy tile will be the one used by the running server. This is different from the policy file provided in the java-options, which is the policy file used only during creation. The po 1 i cy-fi1 e parameter defines the policy file that will be used by the activated virtual machine.

So a typical invocation to create a new chat stream in a new group would look like this:

java -Djava.security .pol icy-/policies/creation
chat.ChatServerAdmin /fi les/ chats/ technical "Cats" ""
/jars/chat.jar http: //serve r/ chat- dl .jar
/ policies/ runtime

This invocation would create the /files/ chats/technical directory (if neces-• sary), create a new activation group, store the group information in it, and put the storage for the "Cats" chat in that directory. The service would register with the public group, ti ti. The server would run using classes from /jars/ chat.jar, clients would download code from the codebase http ://server/chat-dl .jar, and the server's security policy file would be / policies/ runtime. The subsequent command

java -Djava.security.poli cy=/poli cies/creation
chat.ChatServerAdmin / files/chats/ technical "Dogs"

45

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 62

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

46 THE Chat5tream SERVICE

would create a "Dogs" chat stream in the same activation group as the stream for
the subject "Cats", and therefore with the same lookup group, classpath, code
base, and security policy because these are defined by the activation group-all
objects sharing an activation group will, by virtue of sharing a single virtual
machine, have the same lookup registration, classpatb, codebase, and security
policy.

Let us look at ChatServerAdmi n. main:

public static void main(String[] args) throws Exception
{

i f (args.length != 2
usage();
System.exit(l);

}

&& args.length != 6) {

// print usage message

File dir = new File(args[0]);
String subject= args[l];

ActivationGroupID group= null;
if (args .length == 2)

group = getGroup(dir);
else {

}

String[] groups = ParseUtil.parseGroups(args[2]);
String lookupURL =

(args[2].indexOf(':') > 0? args[2] : null);
String cl asspath = args[3];
String codebase = args[4];
String policy= args[S];
group= createGroup(dir, groups, lookupURL,

classpath, codebase, policy);

File data= new File(dir, subject);
MarshalledObject state= new MarshalledObject(data);
ActivationDesc desc =

new ActivationDesc(group , "chat.ChatServerimpl " ,
null, state, true);

Remote newObj = Activatable.register(desc);
ChatServer server= (ChatServer)newObj;

TH£ J!NJJ

}

The mai
a new gi

that cor
that is p
ing it to
mation
true i1
getSub
this fi rs
server t

Thi
When .1

setup o
in that ;
stream,
given ,

piece o
its acti1

it whet

the act
future,
way, b1

Th
Chats,
to the :
the acl
syste rr
it is al
sent di
messa;

Tt
mand

3 A
sh,

1n:
pa
it :

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 63

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JJNI ARCHITECTURE: AN INTRODUCTION

}

Strings= server.getSubject(); II force server up
System.out.println("server created for"+ s);

The ma i n method first figures out whether it is using an existing gmup or creating
a new group, and gets the group accordingly. It then creates a Marsha 11 ed0bject
that contains the directory and subject; this Marshalled0bject will be the one
that is passed in to the activation constructor when each stream is activated, allow
ing it to recover its state, as you will see shortly.3 With the group and startup infor
mation in hand, we can tell the activation system to register this new object. The
true in the registration call is the "keep active" flag. We then invoke the
getSubj ect method to force the chat stream to be active for the firnt time. Until
this first caJI, the chat stream object will be inactive. Once getSubjEict forces the
server to be active, it will start its discovery and registration.

This process of creation and subsequent activating is shown in Figure 3-1.
When main invokes createGroup, the activation system remembers the group
setup options. After register, the activation system bas a record of a new object
in that activation group. When main invokes getSubject on the newly registered
stream, the activation system (1) starts up a new virtual machine using the settings
given when the group was created; and then (2) tells the virtual machine (via a
piece of its own code running in it) to create a new ChatStreamimp·1 object using
its activation constructor, passing the persistent state Marsha 11 ed0b j ect given to
it when the object was registered. When the constructor invokes export0bj ect,
the activation system views the object as ready for incoming messages. In the
future, when the activation system starts up it will start up the object in the same
way, but without requiring any method invocation to get things going.

The figure shows all this work being handled internally by the client's
ChatServerimpl stub. A stub for an activatable object contains a direct reference
to the remote service. When the stub is first used, it sets this reference by asking
the activation system for a direct reference to the remote server. The activation
system either activates the service to get a direct reference and then returns it or, if
it is already active, simply returns the direct reference. The actual messages are
sent directly to the service. Once the stub bas a direct reference, it sends all future
messages directly to the remote server without contacting the activation system.

The createGroup method creates the activation group, setting up the com
mand line that will start the virtual machine to use the correct classpath, codebase, ·

3 A java . rmi .MarshalledObject stores an object in the same way as it wo·uld be mar
shalled to be passed as an argument in an Rt\11 method call. Its get method returns the un
marshalled object. The activation system uses a Marsha 11 edObj ect for the persistence
parameter becl!-use it does not use the object- it just holds on to it and passes it back-so
it has no need to download any required code for the persistence parameter.

47

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 64

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

ChatServerAdmin Activation System

register(group, state,
execution setup,
"keep active") j

~
~

invokes getSubject
~eference

..t) I
~
<-,

' '

return L t
refere~

......----- I - 'b . . ge1;su Ject
'

FIGURE 3-1: Registration and Activation in Cha tAdm in

THE ChatStream SERVICE

ChatServerlmpl server

and policy file. It then serializes the group descriptor into a file so that future cre
ations that want to share it can find it, adding the lookup groups and URL to the
file for the server to use. The getGroup method finds an existing group by open
ing up the directory's group description file and returning the deserialized
ActivationGroupID. The details of this activation and file work are in the full
code in Appendix B.

THE JIN/ARCH

When C
system rest,
to create the

public

{

}

th

Fi
st
Ch

Lo
i f

}
jo

Ac

The activat
find the dir
the director

Then
server is fir
to know w
provide a <
when the
ChatServE
store for fu

cl ass
i I

{

/ ,
pl

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 65

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN/ ARCHITECTURE: AN INTRODUCTION

When ChatServerAdmi n . main invokes getSubject or when the activation
system restarts, the ChatServerimpl class's activation constructor gets ilnvoked
to create the local object in the activated virtual machine:

public ChatServerimpl(ActivationID actID,

{

}

MarshalledObject state)
throws IOException, ClassNotFoundException

File dir = (File) state.get();
store= new ChatStore(dir);
ChatProxy proxy= new ChatProxy(this);

Lookuplocator[] locators= null;
if (lookupURL != null) {

}

Lookuplocator loc = new Lookuplocator(lookupURL);
locators= new Lookuplocator[] { loc };

joinMgr = new JoinManager(proxy, getAttrs(), groups,
locato rs, store, renewer);

Activatable.exportObject(this, actID, 0);

The activation constructor uses the state object stored by ChatSe rver.,\dmi n to
find the directory in which the chat record is stored and to find its record within
the directory (by the subject name).

The ChatStore object manages the server's persistent storage. ·when the
server is first activated, the Jini service ID has not yet been assigned, so we want
to know when the ID gets assigned. The Joi nManager constructor allows us to
provide a com . sun. ji ni. lookup. Servi ceIDL i stener object that will be told
when the identifier is assigned. The ChatStore class is an inner class of
ChatServerimpl that implements this interface, adding the ID to the persistent
store for future use. The relevant part of ChatStore looks like this:

class ChatStore extends LogHandler
implements Servi ceIDLi stener

{

// ...
public void serviceIDNotify(ServiceID serviceID) {

try {
log.update(serviceID);

} catch (IOException e) {
unexpectedException(e);

49

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 66

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

50 THE ChatStream SERVICE

}

ChatServerimpl.this.serviceID serviceID;
}

}

The servi ceIDNoti fy method is invoked by the join manager when the service
ID is first allocated. Our implementation stores it in the file system for future use.
The log field and the LogHandl er interface are part of a "reliablle log" subsystem
from the com . sun. j i ni . rel i ab l elog package in the release of the Jini technol
ogy; the details are left for the full source in Appendix B.

3.3.4 Implementing nextlnl ine

The nextinl i ne method of the chat server takes the incoming message number,
looks up the message associated with it, and returns it:

public synchronized ChatMessage nextinline(int ·index) {
try {

}

int nextindex =index+ 1;
whi le (nextindex >= messages.size())

wait();
return (ChatMessage)messages.get(nextindex);

} catch (InterruptedException e) {
unexpectedException(e);
return null; // keeps the compiler happy

}

If the next message isn 't available yet, nextinl i ne waits until someone bas put
one in using add:

public synchronized void add(String speaker, String[] lines)
{

}

ChatMessage msg = new ChatMessage(speaker, l ines);
store.add(msg);
addSpeaker(speaker);
messages.add(msg);
noti fyA 11 () ;

private synchronized void addSpeaker(String speaker) {
if (speakers.contains(speaker))

Tl

\I
a
k
a

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 67

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN! ARCHrI'ECTURE: AN INTRODUCTION 51

}

return;
speakers.add(speaker);
Entry speakerAtt r = new ChatSpeaker(speaker);
attrs.add(speakerAttr);
joinMgr.addAttributes(new Entry[] { speakerAttr });

When a new message is added, we create the ChatMessage object for the message
and then store it in the log. We then add the speaker (addSpeaker ignores already
known speakers), add the message to our in-memory list of messages, and notify
any waiting nextlnl i ne method that there is a new message to return.

If the speaker is a new one, addSpeaker creates a new ChatSpeaker attribute
object and stamps it on itself by using the join manager's addAttri butes
method. The join manager will add this attribute to all current and future lookup
service registrations.

We have not shown the store. add method because it consists only of file
system and data structure management, not Jini service implementation. The full
code in Appendix B, of course, shows its implementation.

3.3.5 Notes on Improving ChatServerimpl

As shown ChatServerlmpl works, but it does not scale to large systems well.
Each client uses up a thread in the server virtual machine when nextlnl i ne
blocks waiting for a future message. If there are hundreds of observers of a discus
sion, the number of threads blocked in the server will also be hundreds as each cli
ent waits for its invocation of nextlnl i ne to return. There are many possible
solutions to this problem. The most interesting is to rewrite the proxy/server inter
action to use event notification as described in the distributed event specification.
The design would look something like this:

♦ The nextlnl i ne method takes a RemoteEventL i stener object. When
nextlnl i ne has no message to return, it returns an event registratiion instead
of a message.

♦ When a new message is added, all registered listeners are notified.

• A proxy that gets an event registration will renew the registratiion's lease
until it receives notification from the server that a new message is available.
It will then resume asking for the nextlnl i ne until it is blocked again.

We leave an actual implementation of this as an exercise to the reader, as well as
other things that could be done to improve the service, such as:

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 68

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

52 THE ChatStreamSERVICE

♦ Making add idempotent.

♦ Handling the results of system crashes that result in partial creation of the
service. The activation constructor should detect such corrupt data and
unregister itself.

♦ A way to mark a chat as being completed so that people can see a record of
it without adding to it. This might require adding a new method or two in
ChatStream.

• Administrative interfaces to allow users and administrators to add their own
attributes to the service and to configure · a running service as to which
lookup groups and lookup URLs it will join. As examples, see the interface
net.jini .admin.JoinAdmin.

Other improvements could be made as well. You might find it useful to get the
existing source compiled and running, and then try adding om! or more improve
ments to it to get a better feel for Jini service implementation.

3.3.6 The Clients

When a chat stream service is created, we will have a service that can be used any
where in the network that can reach the relevant lookup services. The generic
StreamReader client can read a chat discussion stream from the beginning. A
more specialized client would let users add messages to the chat stream. The
generic client has more limited functionality but can work across a broader array
of services. A specialized chat client uses the extended features of a ChatStream.
Both use the same service in different ways.

As an example of a specialized client, here is a Chatter client that will use a
command line to provide access to a ChatStream:

package chatter;

public class Chatter extends StreamReader {
public static void main(String[] args) throws Exception
{

String[] fullargs = new String[a~gs.length + 3];
full args [0] = " -c" ;
fullargs[l] = String.valueOf(Integer.MAX_VALUE);
System.arraycopy(args, 0, full args , 2, args.length);
fullargs[fullargs.length - 1] = "chat.ChatStream";
Chatter chatter = new Chatter(fullarg.s);
chatter.execute();

p

T

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 69

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JlNI ARCHITECTURE: AN INTRODUCTION

}

}

private Chatter(String[] args) {
super(args);

}

public void readStream(MessageStream msgStream)
throws RemoteException

{

}

ChatStream stream= (ChatStream)msgStream;
new ChatterThread(stream).start();
super.readStream(stream);

public void printMessage(int msgNum , Object msg) {
if (!(msg instanceof ChatMessage))

super .printMessage(msgNum, msg);

}

else {

}

ChatMessage cmsg = (ChatMessage)msg;
System. out. pri ntl n (cmsg. getSpeaker() + ": ");
String[] lines= cmsg.getContent();
for (int i = 0; i < lines.length; i++) {

System.out . print(" ");
System .out.println(lines[i]);

}

All the client code in this section is in the chatter package. Chatter extends
StreamReader (the generic client described in Section 2) to force an effectively
infinite count of messages to read, and to require that the stream found be at least
a ChatStream, not simply a MessageStream. It overrides readStream so that
when the stream is found, a new thread will be created to read the user's input.
The pri ntMessage method is overridden to take advantage of the knowledge that
the message object is a ChatMessage.

ChatterThread uses the stream's add method when the user types some
thing:

class ChatterThread extends Thread {
private ChatStream stream;

53

I

I

' I

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 70

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

54
r

THE ChatStreamSERVICE

ChatterThread(ChatStream stream) {
this.stream= stream;

}

public void run() {
BufferedReader in= new BufferedReader(

new InputStreamReader(System.in));
String user= System.getProperty("user.name");
List msg = new Arraylist();
String[] msgArray = new String[0];
for (; ;) {

try {
String line= in.readline() ;
if (line== null)

System. exit(0);

boolean more= line.endsWith("\\");
if (more) { // strip trailing backslash

}

int stripped= line.length() - 1;
line= line.substring(0 , stripped);

msg.add(line);
if (!more) {

}

msgArray = (String[])
msg.toArray(new String[msg.size()J);

stream.add(user, msgArray);
msg . clear();

} catch (RemoteException e) {
System.out.println("RemoteException:retry");
for (; ;) {

try {
Thread.sleep(l000);
stream.add(user, msgArray);
msg.clear();
break;

} catch (RemoteException re) {
continue; / / 1t ry again

} catch (InterruptedException ie) {
System.exit(l);

}

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 71

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JJNJ ARCHITECTURE: AN INTRODUCTION

}

}

}

}

} catch (IOException e) {
System .exit(l);

}

The run method will be invoked by the virtual machine when the thread is started.
It reads lines from the user to build up messages and uses add to add each mes
sage to the chat. Lines that end in \ (backslash) mean that the message continues
on the next line. When the user types a line that doesn' t end in backslash that line
is put together with any preceding lines to create the message. The value defined
in the user. name property (provided by the virtual machine) will be use·r's name
in the chat. If add throws a RemoteException we retry adding the message until
we succeed or until the user kills the application.

When the end of input has been reached, readl i ne returns nul 1, and this
thread will invoke System.exi t to bring down the entire virtual machine, includ
ing the thread that is reading other speakers' messages.

55

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 72

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN/ ARCHITECTURE: AN INTRODUCTION

4 The Rest of This Book

A good question is never answered.

It is not a bolt to be tightened into place but a seed to be planted

and to bear more seed toward the hope of greening the landscape of idea.
-John Ciardi

Bv now you should have an overview of how the Jini technology works and

what it takes to write a client and service. The rest of this book contains the speci

fication of the Jioi architecture. Each subpart of the specification is prefaced by a

short paragraph describing where it fits into the architecture. After llhe specifica

tion you will find a glossary that defines terms used in the specifica1ions. Appen

dix A is a reprint of "A Note on Distributed Computing," whose thinking

undergirds the Jini architecture. You can follow the Jini architecture and related

technical discussions at http: / /j i ni . org. Appendix B contains the full code for

the examples.
Each specification bas a two-letter code. For example, the Jini Architecture

Specification has the code "AR." This provides a common name fo:r each part of

the specification (for example AR.2.1) no matter what order the parts are placed

in. For example, in this book we have placed the parts in a reasonable reading

order. In another book it might be best to publish only relevant parts of the specifi

cation, or publish the parts in a different order. The common names let you talk

with others about specification sections using the same section names no matter

where each of you read the work. The two letter codes are shown at the beginning

of each specification part, in the section and figure numbers within that part, and

on the black thumb tabs at the edge of the right-hand pages.

This book is the first in a series that will come " ... from the source"- from

those who design, implement, and document the Jini system. These books will all

be written either by the originators of the work in question or by people who work

closely with them to document the designs and technologies. Other good books

and web sites will; we expect, also follow from other sources. We hope that the

Jini system and its designs prove useful to you both as user and as developer. At

our series' web site http: //java. sun.com/docs/books/ji ni / you will find

57

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 73

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

58 IHE ChatStream SERVTCE

related resources including a downloadable version of the source in the series'
books (including this book's source), errata, and other series-related information.

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 74

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE]ZN! ARCHITECTURE SPECIFICATION defines the top-level view of the Jini
architecture, its components, and the systems on which the Jini

JINr

architecture is layered. This will give you a high-level
view of the architecture that will be filled out in the
following specifications.

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 75

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

AR
The Jini Architecture

Specification

AR.1 Introduction

T HLS document describes the high-level architecture of a Jini software system,

defines the different components that make up the system, characterizes the use of

those components, discusses some of the component interactions, and gives an

example. This document identifies those parts of the system that are necessary

infrastructure, those that are part of the programming model, and those that are

optional services that can live within the system.

AR.1.1 Goals of the System

A Jini system is a distributed system based on the idea of federating groups of

users and the resources required by those users. The overall goal is to turn the net

work into a flexible, easily administered tool with which resources can be found

by human and computational clients. Resources can be implemented as either

hardware devices, software programs, or a combination of the two. The focus of

the system is to make the network a more dynamic entity that better reflects the

dynamic nature of the workgroup by enabling the ability to add and delete ser

vices flexibly.
A Jini system consists of the following parts:

• A set of components that provides an infrastructure for federating services

in a distributed system

61

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 76

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

62 GOALS OF THE SYSTEM

• A programming model that supports and encourages the production of reli
able distributed services

• Services that can be made part of a federated Jini system and that offer func
tionality to any other member of the federation

Although these pieces are separable and distinct, they are interrelated, which
can blur the distinction in practice. The components that make up the Jini technol
ogy infrastructure make use of the Jini programming model; services that reside
within the infrastructure also use that model; and the programming model is well
supported by components in the infrastructure.

The end goals of the system span a number of different audiences; these goals
include the following:

♦ Enabling users to share services and resources over a network

♦ Providing users easy access to resources anywhere on the network while
allowing the network location of the user to change

♦ Simplifying the task of building, maintaining, and altering a network of
devices, software, and users

The Jini system extends the Java application environment from a single vir
tual machine to a network of machines. The Java application environment pro
vides a good computing platform for distributed computing because both code
and data can move from machine to machine. The environment has built-in secu
rity that allows the confidence to run code downloaded from another machine.
Strong typing in the Java application environment enables identifying the class of
an ohject to he run on a virtual machine even when the object did not originate on
that machine. The result is a system in which the network supports a fluid config
uration of objects that can move from place to place as needed and can call any
part of the network to perform operations.

The Jini architecture exploits these characteristics of the Java application
environment to simplify the construction of a distributed system. The Jini archi
tecture adds mechanisms that allow fluidity of all components in a distributed sys
tem, extending the easy movement of objects to the entire networked system.

The Jini technology infrastructure provides mechanisms for devices, services,
and users to join and detach from a network. Joining and !leaving a Jini system are
easy and natural, often automatic, occurrences. Jini systems are far more dynamic
than is currently possible in networked groups where configuring a network is a
centralized function done by hand.

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 77

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JJNl ARCHITECTURE SPECIFICATION

AR.1.2 Environmental Assumptions

The Jini system federates computers and computing devices into what appears to
the user as a single system. It relies on the existence of a network of reasonable
speed connecting those computers and devices. Some devices require much higher
bandwidth and others can do with much less-displays and printers are examples
of extreme points. We assume that the latency of the network is reas-onable.

We assume that each Jini technology-enabled device has some memory and
processing power. Devices without processing power or memory may be con
nected to a Jini system, but those devices are controlled by another :piece of hard
ware and/or software, called a proxy, that presents the device to the Jini system
and itself contains both processing power and memory. The architecture for
devices not equipped with a Java virtual machine (JVM) is discussed more fully in
a separate document.

The Jini system is Java technology centered. The Jini architecture gains much
of its simplicity from assuming that the Java programming language is the imple
mentation language for components. The ability to dynamically download and run
code is central to a number of the features of the Jini architecture. However, the
Java technology-centered nature of the Jini architecture depends on lhe Java appli
cation environment rather than on the Java programming language. Any program
ming language can be supported by a Jini system if it has a compiler that produces
compliant bytecodes for the Java programming language.

63

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 78

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

THE JIN/ ARCHITECTURE SPECIFICATION

AR.2 System Overview

AR.2.1 Key Concepts

THE purpose of the Jini architecture is to federate groups of devices and soft
ware components into a single, dynamic distributed system. The resulting federa
tion provides the simplicity of access, ease of administration, and support for
sharing that are provided by a large monolithic system while retainrng the flexibil
ity, uniform response, and control provided by a personal computer or worksta
tion.

The architecture of a single Jini system is targeted to the workgroup. Mem
bers of the federation are assumed to agree on basic notions of trust, administra
tion, identification, and policy. It is possible to federate Jim systems themselves
for larger orgamzations.

AR.2.1.1 Services

The most important concept within the Jini architecture is that of a service. A ser
vice is an entity that can be used by a person , a program, or another service. A ser
vice may be a computation, storage, a communication channel to another user, a
software filter, a hardware device, or another user. 1\vo examples of services are
printing a document and translating from one word-processor format to some
other.

Members of a Jini system federate to share access to services. A Jini system
should not be thought of as sets of clients and servers, users and programs, or even
programs and files. Instead, a Jini system consists of services that can be collected
together for the performance of a particular task. Services may make use of other
services, and a client of one service may itself be a service with clients of its own.
The dynamic nature of a Jini system enables services to be added or withdrawn
from a federation at any time according to demand, need, or the changing require
ments of the workgroup using the system.

Jini systems provide mechanisms for service construction, lookup, commum
cation, and use in a distributed system. Examples of services include: devices such

65

Smart Mobile Technologies LLC, Exhibit 2002
Page 2002 - 79

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

