
(/)

(https://tuxcare.com/live-patching-services/live-patching-education/?
utm_source=linux_journal&utm_medium=banner&utm_campaign=live_patching_edu)

Creating a Client-Server Database System with
Windows 95 and Linux

HOW-TOs (/tag/how-tos)

by Liu Kwong Ip on October 31, 1999

About half a year ago, we began a project called NORA to develop an information
system for a private dental clinic in Hong Kong. The basic requirement was that the
clinical information, including patient folders, appointment books, laboratory work, etc.,
could be retrieved and edited by any client PC in the clinic. In addition, the users hoped
they could access the data from another clinic using the same system. The system is
now in beta testing. We gained some valuable experience during this project, which may
be useful for someone wishing to develop a similar system, especially for small- to
medium-sized businesses.

We established the following requirements:

a client-server database system
multi-site (de-centralized)

Smart Mobile Technologies LLC, Exhibit 2015
Page 2015 - 1

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

connectivity between LANs on demand
dial-up service
Windows 95 client
Big5 Character set support
low transaction rate
portability

Since the system would be needed by several users (a dentist and nurses) at the same
time, a client-server system is expected. The users do not know much about computers,
but they do know Microsoft. They insist on using Windows 95 as the operating system of
the client PC, so that they can use their favorite office suite with the same machine. For
the server part, they have no preference, so we could decide. We considered both
Windows NT and Linux. After considering the stability, ease of installation, cost, flexibility
and the requirements listed above, we chose Linux. We think we made the right choice;
otherwise, the other system requirements could not be easily fulfilled.

The system is used by a group of several clinics. Users wished to retrieve and update all
data easily from any clinic. We considered implementing the system on a single big
server, with all clinics connected to it by telephone line or ISDN. However, we found that
not only are the communication costs and efficiency worse than the decentralized system
(i.e., each clinic has its own server), but also much work would be necessary if another
clinic joined the centralized system, since the data in both databases would need to be
merged.

As we chose to have one server in each clinic, the connections between clinics should
be made on demand, i.e., the connection should be established only when needed. We
could install a modem for each client, so that one could dial the server of another clinic to
access the data independently. However, this is not an effective method, since every
client machine would need a modem and telephone line, and most of the time they are
idle. We proposed that the connection be established by the servers, and the clients
access the data at another clinic through the servers on demand.

We tried to use diald (dial daemon) on Linux to provide this function. However, most of
the documentation on diald assumes the user is using it on a stand-alone workstation or
to dial an ISP to access the Internet. The consequence is that the connection is not two-
way, i.e., the machine on the Internet cannot access the local workstations. Moreover,
the configuration in the document did not consider having dial-in service on the same
machine, and the two kinds of service may or may not be compatible.

Smart Mobile Technologies LLC, Exhibit 2015
Page 2015 - 2

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

We found a way to configure diald and dial-in service on Linux harmoniously. Thus, all
machines in one clinic can access the database server in another clinic based on dial-on-
demand, while the machines in the other clinic can access the database in the first clinic
at the same time.

Dial-in service is needed for the dial-in request from the server in another clinic to
connect the two LANs. Moreover, the users want to access the data, even when they are
at home, by a stand-alone Windows 95 workstation with a modem.

As mentioned above, the users insist on using Windows 95 as their front end. Finding
proper method for connecting the client software in Windows 95 to display the data in the
Linux server was a problem. This is because some of the database servers for Linux do
not provide this feature.

Another constraint for the server is that it must support Big5 characters, since most of the
patients use their Chinese name and address for registration. This almost forces us to
the final choice of database server, the MySQL server.

We estimated the transaction rate of the system server and found it should be relatively
low, about ten SQL executions per minute in the peak period. We think this property is
common for small- to medium-sized business applications, so the loading performance of
the database server is not crucial.

Finally, we always kept portability in mind. Even though the client software is
implemented on Windows 95, we hope to port it to another platform in the future.
Database Server Consideration
When this article was being written, Informix-SE for Linux was just becoming available,
and Oracle had started to port their database server to Linux. We did not consider these
two popular databases. We considered only database servers with these basic
properties:

It follows the relational model and supports SQL (or a subset of SQL). The relational
model has become a standard for modern database servers. Our client software can
communicate with the database in the standard way using SQL. Therefore, even if we
change the database server software in the future, most of our client code will not
need to be changed.
It is free or low cost. We believe one can find good software for free or low cost in the
Linux world so we considered the free database servers first. If none had satisfied our
requirements, we could then have considered a commercial one.

Smart Mobile Technologies LLC, Exhibit 2015
Page 2015 - 3

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

It is open source, if possible. We wanted the source code of our whole system
including operating system, client-server software and database server, so that our
system would not be affected by any standard or format changes by third parties. Of
course, we cannot have the code to Windows 95, which is why we want to port the
client software to another platform.

The database servers were compared in four aspects: available C API, available ODBC
driver, Big5 code support and concurrency control method. C API is important for the
client software running on Linux. The ODBC driver is for client software running on
Windows 95. Big5 code support, as mentioned above, is one of the basic requirements
of our system. Since it is a multi-client system, the method for preventing concurrent
client data access from interfering with each other is also important. We carried out a
survey of four popular database systems: PostgreSQL, Beagle SQL, mSQL and MySQL.
All source code to these systems is available. Both PostgreSQL and Beagle SQL are
free of charge. mSQL is free if you use it in academic and registered charity
organizations, otherwise it costs $250 US for a single license. MySQL is free if you don't
sell it; otherwise, it costs $200 US per copy. The results are shown in Table1.

Table 1. (/files/linuxjournal.com/linuxjournal/articles/031/3191/3191t1.html)

MySQL was chosen as our database server. The most important reasons were that it has
an ODBC driver for Windows 95, and it supports Big5 characters. MySQL is a multi-
threaded process, with one thread for each connection. Moreover, many support utilities
such as table repairing tools are provided. We recompiled it for Big5 support. During beta
testing, we found the system to be stable, efficient and reliable on Red Hat 4.2. However,
we found it could not successfully compile and run on Red Hat 5.0, even when we strictly
followed the manual. We think the main reason is library incompatibility.
Client-Side Consideration
We considered different C++ (or C) compilers for Windows 95, and finally chose Borland
(Inprise) C++Builder as our client-side software development environment. Some visual
objects are in C++Builder (similar to Delphi and Visual Basic) to access the content of a
table in the database directly. They are supposed to be simple and easy to use.
However, when the program becomes large, maintenance of the code with these kinds of
objects is not easy, because the behavior of each database widget is almost
independent. We decided to develop a layer of database objects to act as a bridge
between the visual objects and the database content. The SQL statements are
embedded in the database objects. In this way, the clinical objects can be defined as
database objects naturally and consistently. Moreover, security checks can be
implemented in this layer of objects to protect the data being displayed on the visual
objects. We expect the portability of the software will be improved as well.

Smart Mobile Technologies LLC, Exhibit 2015
Page 2015 - 4

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

System Architecture
Figure 1. (/files/linuxjournal.com/linuxjournal/articles/031/3191/3191f1.jpg)

The proposed system architecture of NORA is shown in Figure 1. In order to simplify the
discussion, we assume the connection is between two servers. The configuration can be
generalized to connections among several servers. For each clinic, there is a Linux
server for the database and diald. The Windows 95 clients are connected to the local or
remote database server through ODBC drivers. diald starts the connection to another
server, if needed.
Configuring a Dial-Up Server
Now we come to connection and configuration. Basically, we will follow the FAQs and
man pages on these topics. Since an agent is needed to receive the dial-up call from
another computer, we installed mgetty to answer the call from the modem. If the call is
normal data communication, login will be executed to prompt the user on the other side.
One of the nice features of mgetty is that it can also act as a fax receiver if the call is a
fax, forwarding it to e-mail or printing it. mgetty should be started by init and specified in
inittab.

The user on the other side can start pppd after logging in to the Linux server. The
options file of pppd should be kept in the simplest form, i.e., IP address, netmask, etc.,
should not be specified. This is necessary because this configuration is used by any
execution instance of pppd, even one started by diald. For example, if an IP address is
specified in the options file, the dial-out connection (by diald) IP address will be fixed to
the same address. It is incorrect, since this address should be assigned by the target
server when the server dials out. A suggested PPP option file, called options, is shown
here:

proxyarp
lock
crtscts
modem

Listing 1. (/files/linuxjournal.com/linuxjournal/articles/031/3191/3191l1.html)

We leave the other configuration options to the connection script. An example of a script
for the dial-in PPP startup, called startppp, is shown in Listing 1. It should be noted that
defaultroute may not be necessary for dial-up from a stand-alone PC, but it is necessary

Smart Mobile Technologies LLC, Exhibit 2015
Page 2015 - 5

IPR2022-00807, Apple Inc. et al. v. Smart Mobile Technologies LLC

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

