Foundation

Sas Jacobs

Foreword by Keith Peters,
co-author of Extending Flash MX 2004

Learn how XML works

Build simple XML-driven Flash applications with Microsoft Office
applications, ASP.NET, or PHP

frien -
dsof k' Consume web services and display their results in Flash
., P Facebook's Exhibit No. 1005

B Page 001

an Apress company

Page 1 of 140 GOOGLE EXHIBIT 1005

Foundation XML for Flash

Sas Jacobs
Jt

ool Q)

lllllllllllllllll

an Apress® company

Facebook's Exhibit No. 1005
Page 002

Page 2 of 140 GOOGLE EXHIBIT 1005

4}1/47,;
Foundation XML for Flash /77>

Copyright © 2006 by Sas jacobs (A

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN (pbk): 1-59059-543-2
Printed and bound in the United States of America987654321

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springez-sbm.com, OF Visit www. springezonline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, OF Visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Source Code section.

o Credis

Technical Reviewer
Kevin Ruse

Editorial Board

Steve Anglin, Dan Appleman
Ewan Buckingham, Gary Cornell
Tony Davis, Jason Gilmore
Jonathan Hassell, Chris Mills
Dominic Shakeshaft, Jim Sumser

Associate Publisher
Grace Wong

Project Manager
Pat Christenson

Copy Edit Manager
Nicole LeClerc

LC Control Number
‘Copy Editor

M HH Liz Welch

2006 273493

(32
1o Vﬂ]@"‘ 18 Lead Editor Assistant Production Director
Chris Mills Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor
Katy Freer

Proofreader
Lori Bring

Indexer
Broccoli Information Management

Artist
Katy Freer

Cover Designers
Corné van Dooren, Kurt Krames

Manufacturing Director
Tom Debolski

Facebook's Exhibit No. 1005
Page 003

Page 3 of 140

GOOGLE EXHIBIT 1005

3=

For my parents, David and Sherry-Anne, and my sister, Lucy.
Thanks for all your support. | feel lucky to have been born into
such a terrific family.

Facebook's Exhibit No. 1005
Page 004

Page 4 of 140 GOOGLE EXHIBIT 1005

CONTENTS AT A GLANCE

Foreword i i i it i ittt it xvii
AbouttheAuthor v i i v ittt i e Xix
About the Technical Reviewer XX
AbouttheCoverlmage i i i i vt vt v oo xXi
Acknowledgments @ i it it e e e xxii
Introduction i e e e e xxiii
Chapter1:Flashand XML 1
Chapter 2: Introductionto XML 19
Chapter 3: XMLDocumentsot v oo 57
Chapter 4: Usingthe XMLClasso 125
Chapter 5: Working with XMLinWord 2003 217
Chapter 6: Working with XML in Excel 2003 257
Chapter 7: Working with XML in Access 2003 291
Chapter 8: Using the Data Components with XML 325
Chapter 9: Consuming Web ServiceswithFlash 367
Chapter 10: Using the XMLSocket Class 411
Chapter 11: Which XML Option Is BestforMe? 427
Appendix: Useful OnlineResources 439
Index. i i e e e e e e e 445

Facebook's Exhibit No. 1005 v
Page 005

Page 5 of 140 GOOGLE EXHIBIT 1005

CONTENTS

Foreword i v v o vt e e e e o e e e s e e e e e e xvii
Aboutthe AUthOr & v 4 v v i e b et v s s e s e s s e XX
About the Technical Reviewer ¢ ¢ ¢ttt v e v s s+« XX

Aboutthe Coverimage« oo e v v ensnn Xxi

Acknowledgments CEERTE A e ¢ e s ®a s s XKl
Introduction v v v v f t e e e e e . . Xxiii
Chapter1: Flashand XML 1
Flash o e e e e e e e e e s EE EE e e e e R e s e e 2
4,7, O I T AP R 3
Multimedia capabilities e 4
Visualizing complex informationo e 5
Simplifying the display of information, 7
Displaying content from Office 2003 for PCs 7
Displaying content fromawebservice oo 9
ACCeSSING yoUr COMPULEr oottt i e 10
Separating content and presentation Lo a oL 12
Specific applications for Flash 15
Flashasalearningtool e 15
Creating Flash applicationswith Flex 17
SUMMAIY . o o vt v e e e e e e e e e e e e e e e 17

Facebook's Exhibit No. 1005 Vii
Page 006

Page 6 of 140 GOOGLE EXHIBIT 1005

CONTENTS

Chapter 2: Introductionto XMLc.c.... 19

What is XML? . . . o o e e e e e e s 20
How did XML start? o ot e it e e e i e e e e 21
Goals Of XML v v ot e v e o v e @ E e W RS B e wee s 22

Creating XML documents i it e e e 22
Elements e e e e e e e e e e 23
ALHDULES e e e e e e e e e e e e 24
= O S A G R I S S 26
ENtities o e e e e e e e e e 26
COMMENES . . . o o e e e e e e e e e e 27
CDATA . o o o e e e e e e e e e e e G R R G SN B B PR 8w B Eses 28
Anexample 28

XML document parts o e e e e e 28
Document Prolog v v o i e e e e e e e 28

XML declaration i i e e e e e e e e 29
Processing instructions 29
Document Type Definitions L e 30
T00E o v e e e e e e e e e e e R ARG G R W S F BRTE @ RS RS 30
DOCUMENE FOOL + « v v v v e e e e e e e e e e e e e e s 30
WHIte SPACe . . . v v o v e e e e e e e e e e 30
NaAMESPACES . .+ o o o e et e 31

Asimple XMLdocument e e s 32

Requirements for well-formed documents 34
Element SErUCLUr® . . o o o o o e e e e e e e e e e e e e e e s 35
Elements mustbe closed s 36
Elements must nest correctly 36
Use quotes for attributes Lo 37
Documents that aren'twell formed e 37
Well-formed XHTML documents o .o i i v oo o et e e e e s e n s 38

Working with XML documentso i e 39
Generating XML content oo oo e e 39
Using XML informationt 40

XML, HTML, and XHTML o o e e e e e e e e e e e e 43

Why XML? . . e 46
SIMPle . . e e e 47
Flexible . . . ot vt i e e e s e e e s 47
DESCriPLIVE .+ v v v v e e e e 47
ACCESSIDlE e e e e e e e e 48
Independent 48
Precise . . . v v v e e e e e e e e e e F SRR W W Sl NN G EASE R R R o E 49
(37 T S R P e S S G RN IR TT 49

What canyoudowith XML? oo e 50
Storing and sharing information 50
Querying and consuming web services 52
Describing configuration settings 52
Interacting with databases 53
interacting with Office 2003 documents R R 53

Why is XML important to web developers? o 54

SUMMANY . o o e et e e e e e e e 55

viii Facebook's Exhibit No. 1005
Page 007
Page 7 of 140 GOOGLE EXHIBIT 1005

CONTENTS

Chapter 3: XML Documentso v w57

Creating XML content i e e 57
Usingatexteditor i e e 58
XML @ditOrs . . v o o o e e e e e e e e e e e e e e e e 59
Server-side files e e e e e e s 64
Office 200372004 e e e e s 66

Word 2003 . . . L e e e e e e e e e 67
= =1 A A T PR 73
ACCESS .« v v o o e e e e e e e e e e e e e e e e e s 80
InfoPath o e e e e s 86
Office 2003 and data structure ittt 86
Consumingaweb service e 86
Using web services to interact with Amazon 87

Transforming XML content i e 91
S o it e e e e e e e e e e e e E G wEEe A N E w6 W e 91
3 T A PN 94

XPath . . . o e e e e 94
oY 15 O I 95
Transforming content 96
Sortingcontent e 98
Filteringcontent L 99
Conditional content e e e 99
Anexample . . . o .o 99
Other methods of applying transformations 101

Determiningvalid XMLo e e 102
Comparing DTDs and schemas 102
Document Type Definitions 103

Elements . . . o o ot e e e e e e e e e e 104
Attributes e e e e e B R R TS N e e W 106
ENtities . . . o e e e e e e e e e e e e e e 107
Asample DTD e e 108
XML SChemas v oot e e e e e e e s 109
SIMPle tYPeS . . . o o e e e 110
Complex types o o e e e 1M
Ordering child elements i 113
Element OCCUTTENCES . . . v o v v v e e e e e e it e e e i e 113
Creating undefined content i 114
ANNOtAtioNS e e e e e e e e 114
Includingaschema e 114
Anexample e s 115

XML documents and Flash e 116
Creatingan XML document e 116
Creatingaschema it in s 120
Linking the schema with an XML document 121

SUMMANY . . v v e v e e e et e et e et e et e e e e 122

Facebook's Exhibit No. 1005 ix
Page 008

Page 8 of 140 GOOGLE EXHIBIT 1005

CONTENTS

Chapter 4: Usingthe XML Class« v v v v o v v v oo v e 125

Loading an XML documentinto Flasho oo 126
Usingthe load method« oot oo e 126
Understanding the order of thecode oo i e 127
Understanding the onLoad function 128
Testing if a document has beenloadedo 129
Locating errorsinan XMLfile i 130
Testing for percentloaded 134

Navigating an XML Object« v vt e 136
Mapping an XML document tree i e 137
Understanding node types i s e 139
Creating node ShOFtCULS o o v oot c oo e 141
Finding the rootnode oo it i e e 141

Setting arootnodevariable 142
Displaying the root node nameo 142
Locating child nodeso oot e 143
Working with specific child nodeso 143
Working with the childNodes collection 145
Creating recursive funCtionso 147
Locating Siblings o v o e 148
Locating parent nOdes oo 150
Extracting information from attributes e 150

Putting it all togethero 152
Loading dynamic XML documentso ot 162
INStalling 115« « v e e e e 162

Creating XML content within Flasho o e 175
Creatingan XMLStringo oo 176
Creating XML using methodso vt 178

Creating new elements oo vv i 178
Creating new text NOdEs« oo oo v v v 180
Creating attributes oot 182
Adding an XML declarationo 182
Adding a DOCTYPE declarationoouiuvvu v 183
Limits of XML methods o ot i e e e 183
Putting it alltogether o e 184

Modifying XML content within Flasho oo e 187

Changing existing valueso oo 188
Changingatextnodeo v vt 188
Changing an attribute valueo e 189
Changing anode NAamMe« v v v v et e e e 190

Duplicating an existing nodeo e 9N

Deleting existing content i 192

Puttingitall together o i 194

Sending XML content from Flasho e 197
Usingthesendmethod oo e o m e e 197
Using the sendAndLoad method v v 200
Adding custom HTTP headerso oovvoivv oo 202
Putting it all togethero i e 204

Limits of the XML classin Flash o oo oo vo e v e e e 208

Facebook's Exhibit No. 1005
Page 009

<_
Page 9 of 140 GOOGLE EXHIBIT 1005

CONTENTS
No real-time interaction e 208
Novalidation e e e e 209
Flash cannot update external XML documents 209
Security restrictions L e 209
Creating a cross-domain policy file0 209
Proxying externaldata 210
Tips for workingwith XMLinFlash o 210
XML file structure e e e 211
Usethe XMLNode class v o v v v o e e e e e 211
Create XMLwithastring i 21
Validate your XML documentso 211
Use the right tool for your dynamiccontent oL 212
Summary of the properties, methods, and events of the XML class 212
SUMMEAIY & & v v e e e e e e e e e et e e e e e 215
Chapter 5: Working with XML in Word 2003 ce. s 217
Why use Microsoft Office? e 218
Which Office packagescan luse? v 219
Understanding data structures e 219
XMLINnWord 2003 ot e e 220
Opening an existing XML document 220
Transforming the document view i 221
Dealingwith errors e 224
Creating XML contentwith Save as oo 225
Understanding WordprocessingMLo e e 226
Structuring content withinWord Lo 227
Working with the schemalibrary o 228
Adding aschematothelibrary 229
Adding a transformation to aschema 0 230
Creating a new Word XML documento 233
Attaching a schema to aWord documento 233
Adding XML tags to the document e 235
Adding placeholders for empty XMLtagsy 238
Adding attributes e 241
Saving a structured XMLdocumento 243
Saving transformed XML content 245
Editing XML contentinWord 247
Puttingitalltogether s 250
SUMMAIY © . v v e e e et e e et e e e e e e e e e 255
Facebook's Exhibit No. 1005 xi

Page 0010

Page 10 of 140 GOOGLE EXHIBIT 1005

CONTENTS

Chapter 6: Working with XML in Excel2003 257

Opening an existing XML document 258
Openingasalist. e 258
Dealing with errors e 261
Opening as a read-only workbook 262
Opening with the XML Source pane vt i i 263
Opening a document withaschema 265
Opening a document with an attached stylesheet 265
Dealing with nonrepeating content 266
Dealing with mixed content 267
Dealing with complicated structuresinalist 268

Creating XML contentwithSave As e 272

Understanding SpreadsheetML e 274

Creating structured XML from an Excel document 275
Creatingan XML map in Excel e e 275
Adding XML elements to Exceldata. 277
Saving a structured XML document L. 279
Editing XML contentin Excel. o i e e e 284

Using the List toolbar e e e e e 284

Putting it all together e 285

SUMMANY & . . o e e e e e e e e e e e e e e e 289

Chapter 7: Working with XML in Access 2003 291

xii

Exporting contentas XML e e e 292
Exporting a table object 292
Exportinga query e e e 294
Exporting areport e e e e 296
Creating a schema from Access it 296
Creating a style sheet from Access0.... 298
Setting export options L. 300
Exporting linked tables e 300
Applying a custom transformation L. 303
Other export options e 306

Importing data from an externalfile, 308
Dealing with import errors e 310
Transforming content L. L e 312
Using a style sheet to import attributes 314

Putting it all together e e 316

Access XML resources e e e e e 322

SUMMARY .« . L o e e e e 323

Facebook's Exhibit No. 1005
Page 0011

Page 11 of 140

GOOGLE EXHIBIT 1005

CONTENTS

Chapter 8: Using the Data Components with XML 325

Understanding data components e 325
Understanding the XMLConnector i 327
Displaying read-only XMLdata 0. 327
Displaying updatable XML data 328
Configuring the XMLConnector e 328
Using the Component Inspector v o 329
Creating a schema from an XML document 330
Creating a schema by adding fields 331
Understanding schema settings 332
Triggering the component 334
Testing for a loaded XML document 336
Loading an XML documentintoFlash 336
Binding XML data directly to Ul components 338
Addingabinding 338
Configuring the binding 339
Using the DataSet component 344
Binding to a DataSet component o 345
Adding an XUpdateResolver component 346
Putting it all together e 348
The XMLConnector class« . oo vt e e 354
Setting the XMLConnector properties 355
Displaying theresults 355
Working withthe XML class 356
Binding the results to components with ActionScript 357
Including the DataBindingClasses component 357
Creating EndPoints 358
Creatingthebinding 358
Summary of the properties, methods, and events of the XMLConnector class 363
SUMMAMY & o v v v v e e e e et e e e e e e e e 365

Chapter 9: Consuming Web Services with Flash 367

Consuming RESTweb services it 369
Using RESTinFlash i e e e 370
Creatingaproxyfile e 370
Understanding an ASPNET proxy fileo 370
Consumingthe XML content e 371
ConsuminganRSSfeed e 375
Using the WebServiceConnector with SOAP web services 380
Using SOAPInFlash e 380
Using the WebServiceConnectoro 380
Configuring the WebServiceConnector 381
Bindingtheparams 382
Triggering the web servicescall 0. 384
Bindingtheresults 386
Viewing the Web Servicespanel 387
Working with XML content from the WebServiceConnector 391

Facebook's Exhibit No. 1005 Xiii
Page 0012

Page 12 of 140 GOOGLE EXHIBIT 1005

CONTENTS

The WebServiceConnector class o it i i e e 398
Setting the WebServiceConnector properties 398
Sending data to the web serviceo 399
Displaying theresults 399

Summary of the properties, methods, and events of the

WebServiceConnector class e e 403

The Web Service classes o i i i it e e e 404

Creating a WebService object e 404

Viewing the raw XML content 405

Loggingthe details 405

SUMMAMY © o v v o v e e e et e et e et e e e e e e e e 409
Chapter 10: Using the XMLSocket Class R Y)
Socket server considerations L. e 412
What socket servers are available? oo o e 412
Installing the Unity 2 socketserver 413

Downloading the trial versionof Unity 2o oo 413

Unpacking the unity files o o 414

Configuring the server 414

Starting the server e 415

Using the XMLSocket class oo i i 416

Creating an XMLSocket connection oo 417

Sendingdata. “om oW e 419

Respondingtodata 420

Closing the connection e 420

Summary of the methods and event handlers of the XMLSocket class 424
SUMMANY . o v v v e e e e e e e e e e e e e 425
Chapter 11: Which XML Option Is Best for Me? s« aowe s A27
Is XML the best choice? e 428

Is response speed an issue? 428

Where isthe datastored? 429
XML AOCUMENE . . . v o e e e e e e e e e e 429
Database e e e 429
Other software package 430
Office 2003 document o i e e 430

How will the data be maintained? L 430

Do you need server-side interaction? Lo 430

Making the decision 431

How should you include the XML contentinFlash? 432

Usingthe XML Class oo oo e e 432

Using data COMPONENES o v v v i vt e e e e e e e e e 432

Using the XMLConnector, WebServiceConnector, and Web Service classes 432

Using the XMLSocket class i i i it 433

Facebook's Exhibit No. 1005
Page 0013

xiv

__————d

Page 13 of 140 GOOGLE EXHIBIT 1005

CONTENTS

Making the decision 433

Do you need real-time interaction?o e e e 433

Is the information time sensitive?o 433

Which version of Flashdoyouown? 434

Which Flash players are you targeting? 434

Do you prefer towork visually? oL 434
Adecisiondiagram e e e e e e 434
SUMMAIY & o v o v e e e e et e e e e et e e e e e e 436
Appendix: Useful Online Resources 439

INDEX. & &+ v v v v v o s s o o s s o s s s e st s e aaeasas. 445

Facebook's Exhibit No. 1005 Xv
Page 0014

Page 14 of 140 GOOGLE EXHIBIT 1005

~ Page 15 of 140

Facebook's Exhibit No. 1005 |

Page 0015

i —
GOOGLE EXHIBIT 1005

Chapter 1

FLASH AND XML

How can you create dynamic Macromedia Flash movies that share their content with
other software applications and people? How can you store your data so that is simple
to use but also adheres to web standards? The answer to both of these questions is to
use Extensible Markup Language (XML) with your Flash movies. Storing your data in
XML documents provides you with a flexible, platform-independent solution that is
simple to implement in Flash.

This book is about using Flash with XML documents. Although it's not a substitute for
an XML reference book, you'll learn the important points about working with XML.
You'll also learn where and how to use XML documents within your Flash applications.

If you're new to XML, this book helps you to make your Flash movies more dynamic
and interactive. Flash developers who've worked with dynamic content benefit by
learning more about data binding with XML and Flash web services. Whatever your
level, this book provides you with some new insights and ideas about Flash and XML.

Before we learn more about XML and its role within Flash, it's important to
understand a little of the history of both areas. In this chapter, | look briefly at this
history as well as the reasons why Flash can be a useful tool for working with XML
information. | also show you some Flash applications that use XML to provide their
data. Chapters 2 and 3 provide you with more detail about XML.

When you develop interactive websites, Flash provides many advantages over HTML
web pages. Couple Flash with an external XML data source and you have a flexible
and powerful solution for both web and stand-alone applications.

Facebook's Exhibit No. 1005 1
Page 0016

Page 16 of 140 GOOGLE EXHIBIT 1005

CHAPTER 1

Some of the reasons you might choose Flash to work with XML documents are

| The multimedia capabilities of Flash

B The ability of Flash to visualize and interact with complicated information
B The ability of Flash to simplify the display of information

| The separation of content from presentation that is possible within Flash

Flash

Flash is an amazing piece of software. It began as a simple animation tool and has grown into a sophis-
ticated, high-end application for web developers and designers alike. Most people are familiar with
the powerful animation features that are available within Flash, It is a great alternative to animated
GIFs and helps web designers avoid some of the cross-browser issues associated with using Dynamic
Hypertext Markup Language (DHTML).

Nowadays, the uses for Flash are many and varied. Flash creates everything from simple animations to
entire websites and applications, as well as broadcast-quality animations and content for mobile
devices. Developers have used Flash for e-learning and online help applications. Flash even challenges
Microsoft PowerPoint as a tool for creating online presentations.

The Flash Player is one of the most popular web browser plug-ins in the history of the Internet. In
March 2005, Macromedia stated that Flash content had reached 98.3 percent of Internet viewers. This
means that designers and developers can rely on some version of the Flash Player being available on
most computers. You can find out more about the popularity of Flash compared with other plug-ins at
www.macromedia.com/software/player_census/flashplayer/.

People are less familiar with the role of Flash in rich-media applications. Flash creates flexible and styl-
ish front-ends for web applications as well as for stand-alone projects. The more recent releases of
Flash include a range of tools for creating complex graphical user interfaces (GUIs). The standard Ul
components included with Flash make it easy for both designers and developers to create interactive
movies. These components are also great for rapid prototyping of applications.

Flash movies can include dynamic content from a number of different sources—databases, text files,
and XML documents. A Flash movie can work like a template where you fill in the blanks with the
external data. To change the contents of a dynamic Flash movie, simply update the data source. You
don't even have to open Flash.

While we’ve been watching Flash evolve, the area of web development has changed dramatically. We've
seen a move from static, brochure-style websites to more interactive sites that offer real functionality
to users. Think about the Internet banking applications that are available from most major banks.

Web pages have become increasingly complicated to cope with more sophisticated information and
higher expectations from website visitors. The original HTML specification has struggled to meet the
demands of modern web pages. As a result, different flavors of HTML have emerged, each tied to spe-
cific software packages and versions.

Facebook's Exhibit No. 1005
Page 0017

Page 17 of 140

—

GOOGLE EXHIBIT 1005

FLASH AND XML

A high proportion of websites are now driven by content management systems. These systems allow
website owners to maintain their own content without writing a single line of HTML. Increasingly,
these sites draw content from sources such as database and mainframe systems. The role of website
designer has changed from updating static web pages to creating systems that allow clients to update
their own content.

XML

There have been many other changes in the workings of the World Wide Web, including the intro-
duction of XML in 1998. Since that time, the World Wide Web Consortium (W3C) has released many
different recommendations for working with XML documents. XML has become a standard for
exchanging electronic data both on and off the Web. Software packages like databases and web
browsers now offer the ability to work with XML documents. Even Microsoft Office 2003 for PCs offers
support for information in XML format.

The W3C published the first XML specification back in 1998. XML provides a way to create new
markup languages and sets out some strict rules for the creation process. in 2000, applying XML rules
to the HTML recommendation created a new recommendation, Extensible Hypertext Markup
Language (XHTML).

Since that time, XML has filtered into the web development world and its expansion looks set to con-
tinue. XML documents provide structured data for both humans and software applications to read.
Websites can use XML documents to provide content. Web services allow us to share information
across the Internet using an XML format.

XML is a powerful tool for use in building web applications. It is browser and platform independent,
and isn’t tied to any commercial organization. XML processing software is also available on virtually
every platform.

Flash 5 was the first version to introduce XML support. It has remained an important tool in sub-
sequent releases of Flash. The built-in XML parser means that Flash movies can include content from
external XML documents. Flash can also generate XML to send to external files.

Flash MX 2004 included data components that automated the process of connecting to an XML
document. Developers could incorporate XML content with a single line of ActionScript. The compo-
nents also allowed for binding between XML content and Ul components.

The advanced multimedia and GUI development tools within Flash make it a perfect front-end
for applications that use XML documents. You can generate XML from diverse sources, and it's even
possible to use Office 2003 on a PC to update the XML content in your Flash movies.

Before we continue, | need to point out that XML is not necessarily the best solution for all dynamic
Flash movies. XML documents are a useful option, but other solutions might be more appropriate,
such as storing content in a text file or database. Chapter 11 looks at some of the issues you need to
consider when deciding which approach to use in your Flash movies.

Facebook's Exhibit No. 1005 3
Page 0018

Page 18 of 140 GOOGLE EXHIBIT 1005

CHAPTER 1

Page 19 of 140

Multimedia capabilities

Everyone is familiar with the multimedia capabilities within Flash. Flash movies can include sound,
video, and animations, and you’ve probably seen at least one game or application built in Flash that
uses these capabilities. One of the strengths of Flash is its ability to produce this multimedia content
with relatively small file sizes.

Often, information is easier to understand when it is in a visual form. Everyone knows that a picture is
worth a thousand words! The multimedia capabilities of Flash make it ideal for displaying some types of
data. Flash also adds a level of interactivity that isn’t easy to achieve when you use formats like HTML.

One of the common multimedia applications for Flash movies is the photo gallery. You’ve probably
seen variations on this theme in several places on the Internet. My own website, www. sasjacobs. com,
has a Flash photo gallery that | use to display my travel photos. You can see a screenshot in Figure 1-1.

:g gallery - Microsoft Internet Explorer l = ﬂ

Sas Jacobs

Photo gallery 3ol 10

M back fwd Pl
Ormiston Gorge, Central Australia

Ormiston Gorge is
incredibly beautiful full of
the colours in Central
Australia. This view looks
out of the gorge over water.
The sides of the gorge are
datted with rock wallabies
and there is water at the
base at certain times of the
year.

All images copyright Sas Jacohs 2004

Figure 1-1. A Flash photo gallery application that uses content from an XML document

| use an XML file to store the information about my photos. The XML document includes a file name,
category, caption, and description for each photo. The categories display in a ComboBox component.
Users select a category and use the back and forward buttons to view each image. As the image loads,
the relevant details from the XML document display in the Flash movie.

Each photo is loaded into the gallery only when the user requests the image. This makes the gallery oper-
ate much more quickly than if | displayed all photos on a single web page. I've also added a fade-in and
fade-out, which would have been very difficult to achieve, cross-browser, with JavaScript and HTML.

| can update the photos in the gallery by changing the XML document. | use an XML editor and type
in the changes. You'll learn how to build a similar photo gallery application later in this book.

Facebook's Exhibit No. 1005
Page 0019

_—

GOOGLE EXHIBIT 1005

FLASH AND XML

You can see another variation on the Flash XML Photo gallery application at www.davidrumsey.com/
ticker.html. Figure 1-2 shows a screenshot.

—— = ——— — = e
" Collections Ticker - Microsoft Internet Explorer u 1 m

[

Fgure 1-2. A ticker-style Flash F:h_oto_galler_y_application

This is a new take on an old favorite and a clever way to display image thumbnails. The gallery uses a
“ticker” to display image thumbnails, simitar to a stock ticker. You can choose whether to view an
ordered or random display. The information for the images in the ticker comes from an XML file. The
application is simple to update and can easily be used for other image collections.

Visualizing complex information

Another strength of Flash is its ability to provide a visual representation of complex information. If you
search for Flash maps in your favorite search engine, you'll find many commercial products that use
Flash to display location maps. Some of these offer XML support for plotting specific points.

In another example, Bernhard Gaul has used Flash as an interface for a global airport weather web
service. The information comes from the Cape Science GlobalWeather web service in XML format;
Figure 1-3 shows a screenshot.

= - = ——- - = ==
. = = J =l Az
& Global Airport Weather - Microsoft Internet Explorer =1 i E
Favstali . N
[austalia =] preveiling wod @& 2.501 s
Fiom W (2707
w E
Tirrastomp (Yo ces simed 5
Men #ar ? D04CCID GMT=0800 22235
Sk
cear sky
no celling
Aane
coc —|
S¢0C
200¢
Jnne
|
Budc
500C |
£00C
- 10
| ARER L <
EIUR
2o0C
1nc — _— " Uisiz |y i beyers L8068
Temperature Pressure vt . .
12c(s7 RE) le2zrd

Figure 1-3. Global airport weather information displayed in a Flash movie with
content from a web service

Facebook's Exhibit No. 1005 5
Page 0020

Page 20 of 140 GOOGLE EXHIBIT 1005

CHAPTER 1

Strong visual elements show information such as wind direction, temperature, and pressure. It's much
easier to get a sense of the weather from this Flash movie compared with reading a list of figures. You
can find out more at www11.brinkster.com/bgx/webservices/weather.html.

You can also find this at www11.brinkster.com/bgx/webservices/weather.html. Open the website in
your favorite browser and click the “View the Flash Visualization” link.

Another example of visualizing information is in the periodic table of elements. We've probably all seen
this in high school science classes. Within the periodic table, the position of each element is based on
the element’s bonding abilities. It is a visual way to represent repeating patterns within elements.

Many web pages provide a visual representation of this table. A Flash representation of the same con-
tent makes the information much easier to access. In the Flash version shown in Figure 1-4, rolling the
mouse over an element displays the element name. Clicking the element pops up more information
about each element. You can see the example at the GalaxyGoo website at www . galaxygoo. com/
chemistry/PeriodicTable.htm.

-J.f Periodic Table of Elements with Flash and webMathematica -AM:ru-soh Ir\umet];uhnr '| T H =.-'”ﬂ
] Fie Edt wiew Favcites Tc_(s & i . gL _?
(3 uacc - A search avomss off Meda & Llv L [To S8 3 L2
=1 2] Ttp fvasowgaizny Joocomich e sty AzpcTabls Hm el A)

July 11, 20U {Last Updated: December 2/, 1UUS) ¥kat's going on here | Lommens? | 1 skt plugim required

H He
3155 - o
1 He s F Na
Silicon :
)2 1 3
MNa Ma At §&i Ar
s S s e (N ot (o [AL %)) 1L e £V) ‘vi
K Ca SUITi V| Cr MilFe Co NilCu ZnlGs Gu Av e B K
37 | 25| 23 (40 a1 | 22 D42 iTae 145 Risot ka7 Ry < o e
Kb Sr ¥ 2r Kb Mo lc Ru Ry PdAg Cd 10 5o =b e | Xe
SRS U] BAITRG) 0 el) T B R
Cs|Balla|HF Tal wirelOs| Ir ‘PtiAulHg| T °b 21 Po AL IRA

B | e [R0A TR TA0R Y 10w

Fi Ra Ac Rl 44 Sy 31 He Ml

TRRTE G0 1162 o3 64|65 567 086z 7]
ca dr Nd Pm S~ Zu Gec Tb Dy Ho Er-Tm Yb

% :3 % Gy 8 an et a7 G s wn 00 e cdT
Th Ea 1 e Ao B CF RS Fin Ml Noirg -

r;ﬂr‘"' ;’;Iu.lwri

Figure 1-4. An interactive periodic table created in Flash, XML, and webMathematica

Incidentally, this example uses an XML document to provide the basic information about each ele-
ment. That allows other applications to use the same information. The website also includes a spelling
game (see www.galaxygoo.com/games/tabletoy/tabletoy.html) that uses the same XML content.

6 Facebook's Exhibit No. 1005
Page 0021

Page 21 of 140 GOOGLE EXHIBIT 1005

T
FLASH AND XML

Simplifying the display of information

Information displayed in lists and tables can often be difficult to process. Humans are more comfort-
able with visual or summarized information thatscans easily. Flash is very good at taking complicated
information and displaying it in a simplified manner. It can alter the visual appearance by reducing the
amount of information that displays. Flash can also add sorting, animation, or other kinds of visual
cues to the data.

Displaying content from Office 2003 for PCs

Microsoft Office 2003 is a very popular PC software suite for business and personal users alike. At the
time of writing, the latest version of Office for Macintosh users is Office 2004. The Mac version offers
limited XML functionality only within Excel, so the example that follows isn't applicable to Macintosh
users.

Organizations frequently store complicated tables of information in Excel spreadsheets. If the infor-
mation is stored in these software packages, how can you make selected parts available to your
clients? You may need to simplify a complex Excel structure into something more manageable. You
might also have to restrict access to the full worksheet for commercial reasons.

One of my clients, Dura-lite, faced this problem. Dura-lite works with heat transfer products and main-
tains a complex set of related part numbers within an Excel workbook. The company uses Excel for
complicated lookups between two different sets of numbering systems.

Dura-lite needed to make the lookup available to their clients. The existing structure was complicated
and contained confidential information so they couldn't just send out their Excel workbook. The
clients would have found it difficult to understand and use the content.

Dura-lite also wanted to place this information on their website and on a CD-ROM catalog that could
be run offline. However, they felt most comfortable maintaining the data in their Excel workbook.
They didn’t want to re-create the data in a database and wanted to use the same content for both the
website and CD-ROM.

| used Flash to create a catalog for the Excel information. The content for the catalog comes from the
Excel workbook via an XML document. Dura-lite updates the workbook and from time to time saves
the information from Excel in XML format. The catalog is available on the Dura-lite website in a pass-
word-protected area. They also distribute it on a CD-ROM.

The structure of the Excel workbook they use is relatively complex. It contains seven worksheets, each
corresponding to a manufacturer. Each worksheet contains information about a model and engine
with corresponding part numbers. An additional sheet provides a cross-lookup between part numbers.

Figure 1-5 shows the structure of the workbook. For commercial reasons, I've removed the data, but
imagine the structure populated with long part numbers. It would be very difficult to read!

Facebook's Exhibit No. 1005 7
Page 0022

Page 22 of 140 GOOGLE EXHIBIT 1005

CHAPTER 1

gm!m Excel -Calalquuisvucmrw.xk e L o g N m

Lﬁ_a] B BR @ fecd Rl Bre Do Sk Bk AddaP0E Tewaquestior siads v - & X
e g RN DAY TR

A | 5 0] = I E I G 1 H i =
Model Engine Comments Dura-lite Part No /OEM Part No 1/ DEM Part No 2 OEM Part No 3 DEM Fart No 4 |OEM Part N

i Pyt oG erinn! masnns

Thin Arcncn vt parmady coaian mismaen inferTalinn it eaa heon

1 — -

wcr|-i[w vaan w (s =
-

EER

s

1;

y 0
[! ! !
W < » W\FORD/ FREIGTHLINER ; INTERNATIONAL 7 KENWORTH / MACK / VOLVO / WESTERNSTAR |+ [(79

s

Ready o] A

Figure 1-5. The Excel workbook structure for Dura-lite parts

Figure 1-6 shows the same content displayed in the Flash catalog.

= Microsoft Internet Explorer o ' |i; I E; EE

Welcome to the Dura-lite web si

Fiz Edr viaw FRavotes Toos D
L& 1= D seench Ty Tavortss @ Medn G2 0 1 3 SLE B a_,
B e T L N BT L e b R \:-] B«
|~
|
| = B
‘ Samrch by *QEM Part No | |
Saarch by "Make “OPn \J |
“Madel SR . |
‘ “reaurvd Engine - Telecr Arping — o SCARDH AT E
— 1€ e ehang -
Wakg Model ﬁ tNumbers
CIH 14
‘ Bt | e "
Fual A UHAL el R e S, AL I e
| UL
FGAD FREUNG Z00AC 258 (36067, 30236, " 43€1) 11, FE-T0C IHE, FIHZEKT73) &, F3HTEC29R7,
EATR G AIE A A AL T
|_7 - - — o —————— — — l‘!
£ Lore) xemer

Figure 1-6. The Flash catalog for Dura-lite parts

Facebook's Exhibit No. 1005
8 Page 0023 |

b
Page 23 of 140 GOOGLE EXHIBIT 1005

FLASH AND XML

There are two ways to use the catalog. If the user knows the original equipment manufacturer (OEM)
part number, they enter it and click Search. Otherwise, they select a manufacturer from a drop-down
list. This populates the Model drop-down list with all related models. The Engine drop-down list is
then populated. The user can optionally choose an engine before they click Search.

The results display in a list below the search form. The text is selectable so that clients can copy and
paste the part numbers. You can't see this example on the Web as it is in a password-protected area.

The Flash catalog is much easier to use than the Excel workbook. It simplifies the information available
to the user and offers a simple but powerful means of searching for data. An XML document provides
the link between Excel and Flash. Dura-lite can update their content at any time using their Excel file,
and they don't need to rely on me to make changes for them. Likewise, | don’t have to make numer-
ous small updates on their behalf. | can leave control of the content up to Dura-lite and focus on
design and development issues.

Displaying content from a web service

Web services provide another example where Flash simplifies the display of complex information.
Many organizations make their data available to the public through web services. Data arrives in an
XML document, and the built-in XML parser within Flash can translate this document into a simple
visual display for users.

Earlier in the chapter, we saw an example of a web service that provides airport weather information.
In the next example, we look at how Flash can consume a news service from Moreover. The new head-
lines update on a daily basis, but the structure of the XML document providing the information never
changes. Users can view up-to-date news items any time they open the Flash movie.

Figure 1-7 shows a sample XML document from Moreover displayed in a web browser.

-k bt VKK bovockes (306 A o, r3
Qak - 2 @A Jsae dvhes @ren @ (2L O PHE 3 4
PSS e F v [Y5e
5|
| = <iroreo 5
- alieil="_0"s
< uirhita:/ /www.edapebsf.com/clickthrough.coal?
dh text ition=7001& tid=bhnhbhngbhnlb j arwrxleid=1Rid=797550288& query=computir
3Aweb%
20designBclickid=77921078&UNQ=00111015853720924020&cgraup=Webdevelopernews < /url>
<neadlire text>Advance Your Career Teday</headline zax:y
| =spuxerAd - http:/ /www.KaplanUniversityOnline.com«<fsources-
ypertext</mcdla_type™
« moreover...< flusbe >
< b ~>http:/ fwww.edapebaf.cam /dickthrough.caol?
db=context@position=70018&ti hnl) srwrxbieid=1&id=797 v i Figure 1-7.
2Aweb% An XML
20designBiclickid=77921078UNQ=00111015853720924020& pernews-.decuricrt url> n
oy document
from
“ Moreover

» news

h'&ua}.lman

Facebook's Exhibit No. 1005 9
Page 0024

Page 24 of 140 GOOGLE EXHIBIT 1005

CHAPTER 1

| requested the daily web developer news and this XML document was provided. It contains a set of
articles. Each article has related information such as an id, URL, and headline.

It’s not easy for me to scan this document to read the news headlines. The document isn’t designed to
be read by humans. | can look through the list for the <headline_text> element but it's pretty hard
work. If | want to see the news item in full, I'll have to copy the <url> text and paste it into the address
line of a web browser.

Compare the XML document with Figure 1-8, which shows the same information displayed within a
Flash movie.

E's m‘r’lre;us-‘m;:roswft Internet Explorer . o - " o - ﬂﬂ}a

FI2 Edr v Foveres Toos Hebd o

o Seerch =vortas WMl 4 - B (%] E] i3 |
B>

& P _h.gm,n rani

Figure 1-8. Moreover news headlines displayed in a Flash movie

Flash has extracted the relevant information and the headline displays in a DataGrid component. It has
also colored every second line to make it easy to view the headlines. Each headline links to an HTML
page that displays more detail when clicked.

I could change the display by adding extra columns or by using different colors. | could also make this
movie more interactive. For example, the source for the news item could display as the user moves their
mouse over the title. | could also add a button that allows me to look up news items from earlier dates.

Flash provides a presentation layer that makes the information much more accessible. You'll build
something similar later in this book.

Accessing your computer

10

Page 25 of 140

Another example of simplifying information with Flash is using it to interact with parts of your
computer—for example, the files and folders. Flash can't interact with files and folders directly so you
have to use a server-side file. This is important for security reasons—you don’t really want a user being
able to delete the contents of your hard drive by using a Flash misgieebook's Exhibit No. 1005

Page 0025

d

GOOGLE EXHIBIT 1005

FLASH AND XML

Server-side languages like ColdFusion, PHP, and VB .NET allow you to work with folders and files on
your computer. You could use them to generate a list of characteristics such as file and folder names,
file sizes, or the last modified date of a document. You can also use server-side languages to edit and
delete files and folders, as well as to change the contents inside text files.

Flash can use a server-side language to work with files and folders on a computer. The server-side file
can generate an XML representation of your files and folders. Flash then has access to the information
about them in a structured format.

So when would this be useful? Well, any time you wanted to create an up-to-date list of files for use
within a Flash movie. In this book, one of the examples we’ll look at is an MP3 player.

I've backed up most of my CDs in MP3 format so | can listen to them while | work. | have also built a
Flash MP3 player that can play the files. The MP3 player loads the file list from an XML document.

| could type the names of all of my MP3s into an XML file and display the list in Flash. However, given
the number of CDs | own, that’s likely to take me a long time and I'd have to update the file each time
| add new songs.

Instead, | wrote a server-side file that gets the details of the folders and MP3 files in my library, and
creates the XML document automatically. However, the XML document doesn’t exist in a physical file.
Instead, it’s generated as a stream of XML information whenever | open the Flash movie.

Figure 1-9 shows the XML document that | have generated from my folders and MP3 files. | used an
ASP.NET file to create this document. At the time of writing, there were 542 lines in the file. I'd hate to
have to maintain the list manually by typing the content myself!

MmJAncahMEMLm - Mlcmso&hlumet G . pp—] _la i\ﬁ
= . — Sty =)
ETS En n« Avwrbe Toob -4 i

E1 R oswa . rzvomes w@van £ e T D) S B @
" ETOTVPILSAR R " [L=
afxml verstan=") 0" pacnding="011-11" stancalone="na" > &
<mp3

ar nave=acid jazz";
Illenu «="Acid Jazz - Smokin' with Superman - e funk.mp3 /=
anc acid jazz - Snatch - Movie -~ SoundTrack - The Herballser Sensual Wonmen.mp3” /=

= Carl_Cox_Dr_Funk.mp3 />
< Digable Planets - Rebirth Of Slick {Cool Like Dat).mp3" />
enave= Diggibla Planats - I'm Cool Like That.mp3 ;>
filenuie= Saint Germaine - Alabama Bl.mp3" />
solders
Jer nwine= beatles” />
< er nzme chillout":-

e filunase="Adagio (Dream Mix).mp3" ;>
<song filename At The River.mp3" /-
<sona tllenane= Rarbar's Adagio For Strings.mp3" />
<suig filenuse= Cantus (Song Of Tears).mp3 /%
<oonc tlenawe Chi Mai.mp3' />
; filenjzie= Children.mp3" />

z filensme Daydiream In Blue.mp3” />
<& tlena~ie= Embrace.mp3” />
8 filenooie— Grooving.mp3" />
«saaz Hlename= Miszsing (Todd Terry Club Mix-Radio Edit).mp3’ />
2soig filkny = Nimrod.mp3" />
<s01g filenae No Ordinary Moming.mp3" /3
anoru; filenaime= Novie.mpd"
<sog filanaie Oxypene Part 2.mp3" />
<snan Hlena™e= Pavana Opus. 50.mp3 />
¢ Nlenye= Porcelain.mp3” />
<coa0 tllznasic Rose (Instrumental).mp3” /- &
Q] nara \JJlrnI arrsy

Figure 1-9. An XML document containing a list of MP3 files generated by an ASP.NET file
Facebook's Exhibit No. 1005~ 11
Page 0026

Page 26 of 140 GOOGLE EXHIBIT 1005

CHAPTER 1

This XML document powers = s e T ST —— —
the Flash MP3 player shown in {#) Macromedia Flash Player 7. ' _@Eﬁ

12

Page 27 of 140

Figure 1-10. Fie Vew Control Help

MP3 player

Foldsr chillout

-
Songs .beatles =
Adagio (Drs y chilo % !I._
Alre Kwelj dance [
Barber's A‘«dai Dzvid Bowie
Canlus(Sonﬂ disco - I

Chi llaimp3

Childrermp3

Daydream In dlue mp3s

Embrace.rp3

Grocing mp3

1lissing (Todd Terry Club Mix-Radio Editymp3

000

l'l'l'_.—_l-ll'l'l'l

Nimrod. mp3

Figure 1-10. An MP3 player Mo Grdinary Lorming mps

that uses an XML document

listing the MP3 files

You'll learn how to build a very similar MP3 player a little later in this book.

Separating content and presentation

It's much more flexible for you to build Flash movies that include dynamic content. The term dynamic
content means that the content changes independently of Flash and that the data is stored in a sepa-
rate place. When you separate data from its presentation, you don’t have to use Flash to update the
content. Even if you don't know how to use Flash, you can still change the contents of a movie by
changing the external data source.

This means your clients can update their own Flash content. For example, if you are drawing content
from an XML or text file, they can open a text editor and edit the contents directly. They can also
change the content in a database like MySQL or Access or by using web forms. Your clients are no
longer reliant on you every time they want to make a change. All you need to do is provide them with
a mechanism for updating the data source.

In the case of XML, clients could update content directly using an XML editor. This would be appro-
priate for data with a simple structure and confident clients. You can also provide a web form that
allows clients to make updates.

You can even set up Office 2003 documents that generate XML content. Clients can make changes in
Word, Excel, or Access and export the contents to an XML document. If the Flash movie is part of a
website, they can then use a web form to upload the new XML file.

Going back to my Dura-lite example, the client maintains the content of their Flash catalog with Excel.
They export the Excel file as an XML document. Figure 1-11 shows how to do this. | can’t show the Dura-
lite Excel file for commercial reasons, but the screenshot gives you an idea of the process they use.

Facebook's Exhibit No. 1005
Page 0027

_am

GOOGLE EXHIBIT 1005

FLASH AND XML

B e e e
Ilir Microsoft Excel - simplespreadshestiap.aks

A e Tl vew st reme Toos Cim wrdew (RE Actbe ST

LA VW 8 DR T

=L AL A wone - 5 B

k¥ I I L = Rl T T e L= - & s0acn T vwindow

anal 200 gy B L U il $ o a il e _;_;v?',vv._-“."_‘tjiﬁi

B3 - & Surseicen
[Emee = e T ol € T ¢ [& [W T 7 I msoum x
|_1_ Item Code llem Descriptin Nel price Tax rale Tax inc price e
|2 WW-1235 Umbrela $425 10% 5488
L3 [nw-15 IS::M.N)H-. 15 aea 1% § 50 s e
3 [EC-1427 T 1| &0 ae 2325 |

5 |WT-1050 | Corksc 1.96
[L
P St L
! nse L4
Dekte » | 3l LAl

2’ Corionts |

X] ol woat

B Foun |

ormat o i £
& ck =om Droo dovmn LBt XML Saunce... 13 mag rzizzeng skemens:,
1 = ! | = o he tes
Ej! Hvpelis |Hf XML Map BIoperns. .

i Loskup.

| v
| ML Fxpien-tin Pan ke

12 1Mport 33@, us2 2 Intpors
¥ Ram hitts 9 the i

I | | | T focibery

22

|25 w loetee== L;w taps. f
[« » n\Sheetl/Sneet2 / Sheets / | ¢ i] S paty s et

<eady

L]

Figure 1-11, Exporting XML data from an Excel spreadsheet

Figure 1-12 shows the web interface that Dura-lite uses to upload a new XML file. This is in a pass-

word-protected area so I’'m unable to provide a link to the page, but the screenshot should give you
the general idea.

B it ek et e T 1<) X |

Fiz B kv Fets Toos

C il e sead Tl @bz B (5. By i QEW B &

S TR A I R sy

=y e {
| -
| Souar el veae e B Yy s n s ok Lie cosarg lis wd,
CACLal¢ lomixial)
| Fnax®L e [AT-NTEN)
| me——
iz
£ ErLIs 10 EEH G ina e
i wes g e

Figure 1-12. Dura-lite uses a web interface to upload their new XML files.

Facebook's Exhibit No. 1005 13
Page 0028

Page 28 of 140 GOOGLE EXHIBIT 1005

CHAPTER 1

14

Another benefit of separating Flash movies from their content is that you can use the same data struc-
ture with completely different movies or view different data using the same movie. For example, in
Figure 1-13, the Flash newsreader that | showed you earlier displays a different news feed—in this case
Australian news.

?, R T S ——— : ;.mﬁ_w

Ffiz Edr View FvoMes Toos Hobd 4
G O W E G P e e @ G- @ QLMD &

Addiess | &3 0 ¥ bwarat WNTHR Hewe P il

Moreover Australian News - March 8, 2005

v SualimpG: -
6ee 233 213 Jrut

£rQ AU AR B E g Tl

sraves T oo M Leen a5t Sl

¥y el
PARS IC M3 € LECEI311 7 200

Tzzrzs NIz 2

Z 3 replaces 1o gl
LTk (RE AZ30IRQ TO A Be T3 AT HET

Figure 1-13. The same Flash movie can be used to access multiple sources of information.

If you keep the data structures constant, you can vary the visual appearance by changing Library ele-
ments within Flash. You'll be able to use exactly the same ActionScript to load and display the XML
content within Flash. That way, you can sell the same solution with different skins.

Figure 1-14 shows the original newsreader with slightly different styling. | make no comment about
how attractive the design is!

Facebook's Exhibit No. 1005
Page 0029

—

Page 29 of 140

GOOGLE EXHIBIT 1005

FLASH AND XML

F}_'__‘_szms' - Microsoft Internet Explorer ' e _—L'_.{E-I.E;!
—— -

FI_ Edr \iew Favowes Tocs b

] =l € R search Favortz: @M Madh £ e B = - 3 [o &,

&30 i)l 0o MR e Newr 1l FJ & o

lGD/\‘r‘! MOREOVER WE®R DEVELOFER NEWS

Figure 1-14. The same source of information can be used with different Flash movies.

Specific applications for Flash

Some applications are particularly well suited to Flash. XML-driven maps, stock tickers, and photo
gallery examples abound on the Web.

E-learning is another area where Flash is proving very useful. Combining Flash with XML allows distri-
bution of e-learning applications on CD-ROMs. You can run the applications in stand-alone mode
without the need for an Internet connection or even a Flash Player. These applications have all the
benefits of dynamic data with the flexibility of a portable format.

Flash as a learning tool

In my part of the world, there is a joint project to produce online content for students and teachers.
The project, called the Le@rning Federation, is an initiative of the governments of Australia,
the Australian states, and New Zealand. You can find out more about the project at
www . thelearningfederation.edu.au/.

Facebook's Exhibit No. 1005 15
Page 0030

Page 30 of 140 GOOGLE EXHIBIT 1005

CHAPTER 1

16

Page 31 of 140

The project works in priority areas such as science, languages other than English, literacy, and numer-
acy. Content has been developed in each area to support specific learning objectives. The aim is to
create a pool of resource materials for teachers and students. Schools can access the content online,
through e-learning management systems or servers.

Some important principles for the learning objects are that

m Data is stored separately from its presentation.

m It is easy to modify content.

m Learning objects use a common framework for different contexts, i.e., they can be repurposed.
m Learning objects can operate as stand-alone objects that don’t require server interaction.

Flash coupled with XML is an ideal delivery platform for these learning objects. A high proportion of
learning objects already created use these technologies.

The website contains a showcase of sample content at www.thelearningfederation.edu.au/
t1f2/showMe.asp?nodeID=242#groups. Figure 1-15 shows a learning object from the “stampede”
series of learning objects that deal with languages other than English.

Az Edt Viw RVOTEs Toos E 4
Qe 0 D)2 G senh toverts @M £ - L T B HE D ¥
At ess e i s e altin e U2l {30 Q20w b o T =]uo

Chearacter structures

Chinese snd Japonese use symbols that stand for words, These symbols
are called chorocters. Each character s ditferent ond hos its own sound

ond maaning. v

Structure 2

v Alvidas into toff ond

lo shi
female k6 chlid
good
Nzt L
1 - B e v Tyreration s p arbeezting s limbal 2112 secan uhse Stens K vam s mants “oaditions ol 1e 1
&’ pore B e

Figure 1-15. A learning object about understanding Chinese and Japanese characters

Facebook's Exhibit No. 1005
Page 0031

GOOGLE EXHIBIT 1005

FLASH AND XML

Creating Flash applications with Flex

Macromedia Flex is an alternative means of creating Flash applications. It is a presentation server that
is installed on a web server. At the time of writing, Flex was only available for Sun’s Java 2 Enterprise
Edition (J2EE) application servers.

Flex includes a library of components and uses Macromedia’s Maximum Experience Markup Language
(MXML), an XML-based language to describe the interface for an application with ActionScript. MXML
lays out the visual components and defines aspects like data sources and data bindings. You can also
extend MXML with custom components.

You write the MXML in XML files using a text or XML editor. You can also use Macromedia’s Flex
Builder. Each MXML file must end with the file extension .mxml. Learning about XML will help you to
use Flex to create applications.

| haven't covered Flex in this book as it could be an entire book in its own right. You can find out more
about it at www.macromedia.com/software/flex/.

Summary

In this chapter, | covered a brief introduction to Flash and XML. | looked at some of the reasons why
developers might use Flash with XML in their applications. | also showed you some sample applications
that use Flash and XML together.

In the next chapter, I'll introduce you to XML and explain how to create XML documents. We'll look at
the meaning of the word well formed and examine the differences between XML, HTML, and XHTML.
Chapter 3 will go into more detail about XML documents and we'll look at Document Type Definitions
(DTDs), XML schemas, and Extensible Stylesheet Language Transformations (XSLT). If you have experi-
ence in working with XML documents, you might want to skip ahead to Chapter 4, where we’ll start to
build Flash XML applications.

Facebook's Exhibit No. 1005 17

Page 0032

Page 32 of 140 GOOGLE EXHIBIT 1005

Facebook's Exhibit No. 1005 ‘
Page 0033 i

___a

Page 33 of 140 GOOGLE EXHIBIT 1005

Chapter 2

INTRODUCTION TO XML

If you work in the web design or development area, you've probably heard of XML.
You may have come across it when you were learning how to write web pages or
when you started exploring web services. Many software programs share information
using XML documents, and Office 2003 for PCs lets you work with XML documents.
So what is all the hype about and why should you know about XML?

XML is rapidly becoming the standard for exchanging information between applica-
tions, people, and over the Internet. Both humans and computers can read XML doc-
uments, and as a format, XML is flexible enough to be adapted for many different
purposes.

This chapter introduces you to XML. It explains some of the basic concepts, including
the rules governing the structure of XML documents. You'll also learn about some of
the uses for XML and the reasons why should you start to use XML in your projects. |
show some examples of XML documents, and by the end of the chapter, you'll have
a solid understanding of XML and related concepts.

I'll expand on the concepts covered here in Chapter 3, where we’'ll look at using an
XML editor and creating XML content with Office 2003. I'll also look at some related
topics—defining XML document rules with schemas and changing the appearance of
XML documents with transformations.

Facebook's Exhibit No. 1005 19
Page 0034

Page 34 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

What is XML?

20

Page 35 of 140

Let’s start by answering the most basic question: What is XML?

The World Wide Web Consortium (W3C) provides the following definition for XML in their glossary at
www.w3.0rg/TR/DOM-Level-2-Core/glossary.html:

Extensible Markup Language (XML) is an extremely simple dialect of SGML. The goal is to enable generic
SGML to be served, received, and processed on the Web in the way that is now possible with HTML. XML
has been designed for ease of implementation and for interoperability with both SGML and HTML.

As you can see from this definition, it’s very difficult to explain XML in a single sentence or paragraph.
To start with, XML stands for Extensible Markup Language. Extensible means that you can use XML
to create your own languages. The term markup means that the languages you create use tags to sur-
round or mark up text.

XML is not a markup language like HTML. It is a meta-language that you can use to create other
markup languages. The languages that you create work with structured data, and you use XML to
invent tags that describe your data and the data structures. You can use different tags each time you
create an XML document, or you can use the same tags for different documents.

Groups have created their own languages based on XML. This allows them to share information
specific to their industry or area of expertise using a common set of markup tags and structures.

One example, Chemical Markup Language (CML), allows scientists to share molecular information in a
standardized way. There are specific rules for structuring CML documents and referring to molecular
information. MathML is another example of a standard language using XML. XML documents can use
MathML to describe mathematical operations.

Extensible HTML (XHTML) is an example that is probably more familiar to you. XHTML was created
when HTML was rewritten according to XML rules.

Think about the tags you use in XHTML—<p></p>, <h1></h1>. These tags mark up information on a
web page, and you use them in a specific way, according to some predefined rules. For instance, one
rule says that you can't include <p></p> tags in the <head> section of a web page.

Being familiar with these rules means that you can open any web page written in XHTML and under-
stand the structure. It also means that any software package that knows the XHTML rules can display
a web page.

By itself, XML doesn’t do anything other than store information. It's not a programming language in
its own right. XML documents need humans or software packages to process the information that
they contain.

XML documents work best with structured information such as names and addresses, product cata-
logs, and lists of documents—anything with a standardized format. You can store hierarchical infor-
mation within XML documents, a bit like storing information in a database. Instead of breaking the
information into tables and fields, you use elements and tags to describe the data.

Facebook's Exhibit No. 1005
Page 0035

il

GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

This concept is a little easier to explore with an example. Most of us have a phone book that we use
to store contact information for our friends and colleagues. You probably have the information in a
software package like Microsoft Outlook or Outlook Express.

Your phone book contains many different names but you store the same information about each
contact — their name, phone number, and address. The way the information is stored depends on the
software package you’ve chosen. If the manufacturer changed the package or discontinued it, you'd
have to find a new way to store information about your contacts.

Transferring the information to a new software program is likely to be difficult. You'd have to export
it from the first package, rearrange the contents to suit the second package, and then import the data.
Most software applications don’t share a standard format for contact data, although some can talk to
each other. You have to rely on the standards created by each company.

As an alternative, you can use XML to store the information. You create your own tag names to describe
the data; tags like <contact>, <phone>, and <address> provide clear descriptions for your information.
Anyone else who looks at the file will be able to understand what information you are storing.

Because your phone book XML document is in a standard format, you can display the details on a web
page. Web browsers contain an XML parser to process the XML content. You can also print out your
contacts or even build a Flash movie to display and manage your contacts.

Your friends could agree on which tags to use and share their address books with each other. You can
all save your contacts in the same place and use tags to determine who has contributed each entry.
When you use a standardized structure for storage, the ways that you can work with the information
are endless.

How did XML start?

XML has been around since 1998. It is based on Standard Generalized Markup Language (SGML),
which in turn was created out of General Markup Language (GML) in the 1960s. XML is actually a sim-
plified version of SGML.

SGML describes how to write languages, specifically those that work with text in electronic documents.
SGML is also an international standard—ISO 8879. Interestingly enough, SGML was one of the consid-
erations for HTML when it was first developed.

The first XML recommendation was released in February 1998. Since then, XML has increased in pop-
ularity, and it's now a worldwide standard for sharing information. Human beings, databases, and
many popular software packages all use XML documents to store and share information. Web services
also use an XML format to share information over the Internet.

The W3C developed the XML specification. This organization also works with other recommendations
such as HTML and XHTML. Detailed information about the XML specification is available at the W3C’s
website at www.w3c.org/XML/. At the time of writing, the current specification was for XML 1.1. You
can view this specification at www.w3.0rg/TR/2004/REC-xm111-20040204/.

Facebook's Exhibit No. 1005 21
Page 0036

Page 36 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2 |

Goals of XML

When it created XML, the W3C published the following goals at www.w3.org/TR/REC-xml/
#sec-origin-goals:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

in other words, XML should be easy to use in a variety of settings, by both people and software appli-
cations. The rules for XML documents should be clear so they are easy to create.

So how do we create XML documents?

' Creating XML documents

Before we start, it's important to understand what we mean by the term XML document. The term
refers to a collection of content that meets XML construction rules. When we work with XML, the
term document has a more general meaning than with software packages. In Flash, for example, a
document is a physical file.

While an XML document can be one or more physical files, it can also refer to a stream of information
that doesn’t exist in a physical sense. You can create these streams using server-side files; you'll see
how this is done later in this book. As long as the information is structured according to XML rules, it
qualifies as an XML document.

XML documents contain information and markup. You can divide markup into

Elements
Attributes

Entities
Comments

[
=
m Text
]
]
m CDATA

|
Facebook's Exhibit No. 1005 :
22 Page 0037 ‘

Page 37 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

Elements

Each XML document contains one or more elements. Elements identify and mark up content, and they
make up the bulk of an XML document. Some people call elements nodes.

Here is an element:
<tag>Some text</tag>

This element contains two tags and some text. Elements can also include other elements. They can
even be empty, i.e., they contain no text.

As in HTML, XML tags start and end with less-than and greater-than signs. The name of the tag is
stored in between these signs—<tagName>.

The terms element and tag have a slightly different meaning.
A tag looks like this:

<tagName>
whereas an element looks like this:

<tag>Some text</tag>

If an element contains information or other elements, it will include both an opening and closing
tag—<tag></tag>. Empty elements can also be written in a single tag—<tag/>—so that

<tagname></tagname>
is equivalent to

<tagname/>
There is no preferred way to write empty tags. Either option is acceptable.
You can split elements across more than one line as shown here:

<contacty>
Some text
</contact>

Each element has a name that must follow a standard naming convention. The names start with either
a letter or the underscore character. They can't start with a number. Element names can contain any
letter or number, but they can’t include spaces. Although it’s technically possible to include a colon (:)
character in an element name, it's not a good idea as these are used when referring to namespaces.
You’ll understand what that means a little later in the chapter.

You usually give elements meaningful names that describe the content inside the tags. The element
name

<fullName>Sas Jacobs</fullName>

Facebook's Exhibit No. 1005 23
Page 0038

Page 38 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

24

is more useful than
<axbjd>Sas Jacobs</axbjd>

You can’t include a space between the opening bracket < and the element name. You are allowed to
include space anywhere else, and it’s common to include a space before the /> for empty elements. In
the early days of XHTML, older browsers required the extra space for tags such as
 and <hr /5.

When an element contains another element, the container element is called the parent and the ele-
ment inside is the child.

<tagname>
<childTag>Text being marked up</childTag>
</tagname>

The family analogy continues with grandparent and grandchild elements as well as siblings.
You can also mix the content of elements, i.e., they contain text as well as child elements:

<tagname>
Text being <childTag>marked up</childTag>
</tagname>

The first element in an XML document is called the root element, document root, or root node. It con-
tains all the other elements in the document. Each XML document can have only one root element.
The last tag in an XML document will nearly always be the closing tag for the root element.

XML is case sensitive. For example, <phoneBook> and </phonebook> are not equivalent tags and can't
be used in the same element. This is a big difference from HTML.

Elements serve many functions in an XML document:

Elements mark up content. The opening and closing tags surround text.

® Tag names provide a description of the content they mark up. This gives you a clue about the
purpose of the element.

m Elements provide information about the order of data in an XML document.
m The position of child elements can show their importance.

® Elements show the relationships between blocks of information. Like databases, they show how
one piece of data relates to others.

Attributes

Attributes supply additional information about an element. They provide information that clarifies or
modifies an element.

Attributes are stored in the start tag of an element after the element name. They are pairs of names
and related values, and each attribute must include both the name and the value:

<tagname attributeName="attributeValue">
Text being marked up
</tagname>

Facebook's Exhibit No. 1005
Page 0039

Page 39 of 140

GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

Attribute values appear within quotation marks and are separated from the attribute name with an
equals sign. You can use either single or double quotes around the attribute value. Interestingly
enough, you can also mix and match your quotes in the same element:

<tagname attributei="value1l" attribute2='value2'>

You might choose to use double quotes where a value contains an apostrophe:
<person name="o'mahoney">

You would use single quotes where double quotes make up part of the value:
<photo caption="It was an "interesting” day'>

Keep in mind that tags can’t be included within an attribute.

An XHTML image tag provides an example of an element that contains attributes:

There is no limit to number of attributes within an element, but attributes inside the same element
must have unique names. When you are working with multiple attributes in an element, the order isn't
important.

Attribute names must follow the same naming conventions as elements. You can’t start the name with
a number, and you can’t include spaces in the name. Some attribute names are reserved, and you
shouldn’t use them in your XML documents. These include

m xml:lang

m xml:space

m xml:1link

m xml:attribute
You can rewrite attributes as nested elements. The following

<contact id="1">
<name>Sas Jacobs</name>
</contact>

could also be written as

<contact>

<id>1</id>

<name>Sas Jacobs</name>
</contact>

There is no one right way to structure elements and attributes. The method you choose depends on
your data. The way you're going to process the XML document might also impact on your choices.
Some software packages find it harder to work with attributes compared with elements.

Facebook's Exhibit No. 1005 25

. Page 0040

Page 40 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

Text

En

26
(-

Text refers to any information contained between opening and closing element tags. In the line that
follows, the text Sas Jacobs is stored between the <fullName> and </fullName> tags:

<fullName>Sas Jacobs</fullName>

Unless you specify otherwise, the text between the opening and closing tags in an element will always
be processed as if it was XML. This means that special characters such as < and > have to be replaced
with the entities &1t; and >. The alternative is to use CDATA to present the information, and I'll go
into that a little later.

I've listed the common entities that you’ll need to use in Table 2-1.

Table 2-1. Entities commonly used in XML documents

Character Entity
< <

> >

! 8apos;
" "
& &
tities

Character entities are symbols that represent a single character. In HTML, character entities are used
for special symbols such as an ampersand (&) and a nonbreaking space ().

Character entities replace reserved characters in XML documents. All tags start with a less-than sign so
it would be confusing to include another one in your code.

<expression>3 < 5</expression>

This code would cause an error during processing. If you want to include a less-than sign in text, you
can use the entity &1t;:

<expression>3 < 5</expression>

Some entities use Unicode numbers. You can use numbers to insert characters that you can’t type on
a keyboard. For example, the entity é creates the character é—an e with an acute accent. The
number 233 is the Unicode number for the character é.

You can also use a hexadecimal number to refer to a character. In that case, you need to include an x
in the number so the reference would start with &tx. The hexadecimal entity reference for é is é.

Facebook's Exhibit No. 1005
Page 0041

Page 41 of 140

4
GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

The Character Map in Windows tells you what codes to use. Open it by choosing Start » All Programs
» Accessories » System Tools » Character Map. Figure 2-1 shows the Character Map dialog box.

The bottom left of the window shows the hexadecimal value. Don't forget to remove the trailing
zeroes and add &#x to the beginning of the value. The right side shows the Unicode number. Again,
you'll need to remove the first 0 from the code.

(R M e |

| Font :OAriaI S __Jm
VI #8|% & () [+ .-, r1ol1]2]3] 4=l
5/6(7(8[9]:[:|<[=[>|7|@A|B[C|D|E[F|G[H| =
ITJ[K[LIM[N[o|P|Q|R[s|T|U|VvIW[X|Y|Z[T|\] |
1121 |alblc|d|e|f|{glh|i|j|k|I|m[n|o|p
glris|tiu|viw|x|ylz|{|[]]|} ~ il¢|E|m|¥
Vgl (O| 2 «| |- |®] |°]2 IRl R
oln|%l|%l i |A|A|A|A|A|A|ECIEIEIE|E|T]]
7| T[p[N[O]|GIAAIALa[0[0|0[U|Y|p|R (4|4
alalalales|¢ enéiiiiéﬁbééﬁ
6|+ || 0| U | 0oy oee: LatlngmaI“LetterEW;;Ac‘uteﬁ Cllv

Characters to copy : l_ Select I

| [JAdvanced view

|u~uoea LaunSmauLéime.mmme x'aymgemm

Figure 2-1. The character map in Windows displaying the small letter e with an acute accent

Comments
Comments in XML work the same as in HTML. They begin with the characters <!-- and end with -->:

¢!-- here is a commented line -->

Comments are a useful way to leave messages for other users of an XML document without affecting
the way the XML document is processed. In fact, processing software always ignores comments in XML
documents. You can also use comments to hide a single line or a block of code.

The only requirements for comments in XML documents are that

m A comment can't appear before the first line XML declaration.

m Comments can’t be nested or included within tag names.

m You can't include --> inside a comment.

m Comments shouldn’t split tags, i.e., you shouldn’t comment out just a start or ending tag.

Facebook's Exhibit No. 1005 27
Page 0042

Page 42 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

CDATA

CDATA stands for character data. CDATA blocks mark text so that it isn't processed as XML. For exam-
ple, you could use CDATA for information containing characters such as < and >. Any < or > character
contained within CDATA won't be processed as part of a tag name.

CDATA sections start with <![CDATA and finish with]>. The character data is contained within square
brackets [] inside the section:

<1 [CDATA[
3¢5
or
2>0

1

Entities will display literally in a CDATA section so you shouldn’t include them. For example, if you add
81t; to your CDATA block it will display the same way when the XML document is processed.

The end of a CDATA section is marked with the]]> characters so you can't include these inside
CDATA.

An example

The listing that follows shows a simple XML document. I'll explain this in detail a little later in the
chapter. You can see elements, attributes, and text:

|
|
|
|
|
|
<?xml version="1.0"?> |
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>
</contact>
</phoneBook> i

XML document parts

An XML document contains different parts. it will always start with a prolog. The remainder of the
XML document is contained within the document root or root element.

Document prolog

The document prolog appears at the top of an XML document and contains information about the
XML document as a whole. It must appear before the root element in the document. The prolog is a
bit like the <head> section of an HTML document. It can also include comments.

Facebook's Exhibit No. 1005
28 Page 0043

i

Page 43 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

XML declaration

The prolog usually starts with an XML declaration, although this is optional. If you do include a decla-
ration, it must be the first line of your XML document. The declaration tells software applications and
humans that the content is an XML document:

<?xml version="1.0"?>

The XML declaration includes an XML version, in this case 1.0. At the time of writing, the latest
recommendation was XML 1.1. However, you should continue to use the version="1.0" attribute
value for backward compatibility with XML processors. For example, adding a version 1.1 declaration
causes an error when the XML document is opened in Microsoft Internet Explorer 6.

The XML declaration can also include the encoding and standalone attributes.

XML documents contain characters that follow the Unicode standard, maintained by the Unicode
Consortium. You can find out more at www.unicode.org/.

Encoding determines the character set for the XML document. You can use Unicode character sets
UFT-8 and UTF-16 or ISO character sets like ISO 8859-1, Latin-1 Western Europe. If no encoding attrib-
ute is included, it is assumed that the document uses UTF-8 encoding. Languages like Japanese and
Chinese need UTF-16 encoding. Western European languages often use 1SO 8859-1 to cope with the
accents that aren't part of the English language.

The encoding attribute must appear after the version attribute:

<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-16"?>
<?xml version="1.0" encoding="IS0-8859-1">

The standalone attribute indicates whether the XML document uses external information, such as a
Document Type Definition (DTD). A DTD specifies the rules about which elements and attributes to
use in the XML document. It also provides information about the number of times each element can
appear and whether an element is required or optional.

The standalone attribute is optional but must appear as the last attribute in the declaration. The value
standalone="no" can’t be used when you are including an external DTD or style sheet.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Processing instructions

The prolog can also include processing instructions (P1). These instructions pass information about the
XML document to other applications.

Processing instructions start with <2 and finish with ?>. The first item in a Pl is a name, called the PI
target. Pl names that start with xml are reserved.

A common Pl is the inclusion of an external XSLT style sheet. This PI must appear before the doc-
ument root:

<?xml-stylesheet type="text/xsl" href="listStyle.xsl"?>

Facebook's Exhibit No. 1005 29
Page 0044

Page 44 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

30

Processing instructions can also appear in other places in the XML document.

Document Type Definitions

Document Type Definitions (DTDs), or DOCTYPE declarations, appear in the prolog. These are rules
about the elements and attributes within the XML document. A DTD provides information about
which elements are legal in an XML document and tells you which elements are required and which
are optional. In other words, a DTD provides the rules for a valid XML document.

The prolog can include a set of declarations about the XML document, a reference to an external DTD,
or both. This code shows an external DTD reference:

<?xml version="1.0"?>
<IDOCTYPE phoneBook SYSTEM "phoneBook.dtd">

We'll look at DTDs in more detail in Chapter 3.

Tree

Everything that isn’t in the prolog is contained within the document tree. This includes the elements,
attributes, and text in a hierarchical structure. The root node is the trunk of the tree. You call the child
elements of the root node branches.

As we've seen, elements can include other elements or attributes. They can also contain text values or
a mixture of both. HTML provides good examples of mixed content.

<p>This is a paragraph element with an element
 inside</p>

This distinction becomes important when you use a schema to describe the structure of the document
tree.

Document root
An XML document can have only one root element. All of the elements within an XML document are
contained within this root element.

The root element can have any name at all, providing that it conforms to the standard element nam-
ing conventions. In HTML documents, you can think of the <html> tag as the root element.

White space

XML documents include white space so that humans can read them more easily. White space refers to
spaces, tabs, and returns that space out the content in the document. The XML specification allows
you to include white space anywhere within an XML document except before the XML declaration.

XML processors do take notice of white space in a document, but many won't display the spaces. For
example, Internet Explorer won't display more than one space at a time when it displays an XML or
XHTML document.

Facebook's Exhibit No. 1005
Page 0045

_—

Page 45 of 140

GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

If white space is important, maybe for poetry or a screenplay, you can use the xml:space attribute in
an element. There are two possible values for this attribute: default and preserve. Choosing the
default value is the same as leaving out the attribute.

You can add the xml:space="preserve" attribute to the root node of a document to preserve all
space within the document tree:

<phoneBook xml:space="preserve">

Namespaces

XML documents can get very complicated. One XML document can reference another XML document,
and different rules may apply for each. When this happens, it's possible that two different XML docu-
ments will use the same element names.

In order to overcome this problem, we use namespaces. Namespaces associate XML elements with an
owner. A namespace ensures that each element name is unique within a document, even if other ele-
ments use the same name.

You can find out more about namespaces by reading the latest recommendation at the W3C website.
At the time of writing, this was the “Namespaces in XML 1.1” recommendation at www.w3.org/
TR/2004/REC-xml-names11-20040204/.

It isn’t compulsory to use namespaces in your XML documents, but it can be a good idea. Namespaces
are also useful when you start to work with schemas and style sheets. We'll look at some examples of
schemas and style sheets in the next chapter.

Each namespace includes a reference to a Uniform Resource Identifier (URD. A URI is an Internet
address, and each URI must be unique in the XML document. The URIs used in an XML document
don’t have to point to anything, although they often will.

You can define a namespace using the xmlns attribute within an element. Each namespace usually has
a prefix that you use to identify elements belonging to that namespace. You can't start your prefixes
with xml, and they shouldn’t include spaces.

<FOE:fullName xmlns:FOE="http://www.friendsofed.com/">
Sas Jacobs
</FOE: fullName>

In the preceding element, the FOE prefix refers to the namespace http://www.friendsofed.com/. I've
prefixed the element <fullName> with FOE, and | can use it with other elements and attributes.

<FOE:address>
123 Some Street, Some City, Some Country
</FOE:address>

I'll then be able to tell that the <address> element also comes from the http://www.friendsofed.com/
namespace.

You can also define a namespace without using a prefix. If you do this, the namespace wilt apply to all
elements that don't have a prefix or namespace defined.

Facebook's Exhibit No. 1005 3
Page 0046

Page 46 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

The following listing shows how to use a namespace with no prefix in an XML element:

<contact id="1" xmlns="http://www.friendsofed.com/">
<name>Sas Jacobs</name>
<address»>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>

</contact>

The namespace applies to all the child elements of the <contact> element so the <name>, <address>,
and <phone> elements will use the default namespace http://www.friendsofed.com/.

Namespaces will become clearer when we start working with schemas and style sheets in Chapter 3.

A simple XML document

So far, we've covered some of the rules for creating XML documents. We've looked at the different
types of content within an XML document and seen some XML fragments. Now it’s time to put these
rules together to create a complete XML document.

The following listing shows a simple XML document based on the phone book that | talked about ear-
lier. | use the example throughout the rest of this chapter.

<?xml version="1.0"?»
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123- 456</phone>
</contact>
<contact id="2">
<name>John Smith</name>
<address>4 Another Street, Another City, Another Country</address>
<phone>456 789</phone>
</contact>
</phoneBook>

I’'ve saved this document in the resource file address.xml.

The first line declares the document as an XML document. The declaration is not required, but it's
good practice to include it. A software package that opens the file will immediately identify it as an
XML document.

The remaining lines of the XML document contain elements. The first element, <phoneBook>, contains
the other elements: <contact>, <name>, <address>, and <phone>. There is a hierarchical relationship
between these elements.

There are two <contact> elements. They share the same parent, <phoneBook>, and are child nodes of
that element. They are also siblings to each other.

Facebook's Exhibit No. 1005
Page 0047

Page 47 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

The <contact> tag is a container for the <name>, <address>, and <phone> elements, and they are child
elements of the <contact> tag. The <name>, <address>, and <phone> elements are grandchildren of
the <phoneBook> element.

You'll notice that the last line is a closing </phoneBook> tag written with exactly the same capitaliza-
tion as the first tag.

Each <contact> tag has a single attribute—id. Attributes normally provide extra information about a
specific element, in this case a unique identifier for each <contact>.

As we saw earlier, the element
<contact id="1"»
can be rewritten as

<contact>
<id>1</id>
</contact>

in this document tree, the trunk of the tree is the <phoneBook> tag. Branching out from that are the
<contact> tags, and each <contact> has <name>, <address>, and <phone> branches.

Figure 2-2 shows the relationship between the elements in the phone book XML document.

phoneBook

contact
id (attribute)

hl

contact
id (attribute)

address

Figure 2-2., The hierarchy of elements within the phone book XML document

In this example, I've created my own tag names. The names |'ve chosen tell you about the type of
information that I'm working with so it’s easy to figure out what I’'m describing.

If I want to share the rules for my phone book XML document with other people, | can create a DTD
or XML schema to describe how to use the tags. Adding a reference to the DTD or schema will ensure
that any XML documents that | create follow the rules. This process is called validating an XML docu-
ment. I'll look at working with DTDs and schemas in the next chapter.

Facebook's Exhibit No. 1005 33
Page 0048

Page 48 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

| can view an XML document by opening it in a web browser. Figure 2-3 shows address.xml displayed
in Internet Explorer.

i Edil Vew Favuriis Toos Hdp [3
G 9 W E G Dsed frreie @ra @ Bt QUM B
fazdress) v~'v1-|-m~lmw.yn.-nd< W5 XM m-‘k-,rﬁ:— rexiressyrhackedatidresivml o S |_:J [[%

< ¢xml version—"1.0"' ¢>
- <phonePook>
- <contact ic— '1">
< ame>Sas Jacobs</anme>
<address»123 Some Street, Some City, Some Country</address:>
<nhone>123 456</phone>
</coract> |
- <contact ic—'2">
<anme>1ohn Smith</rame >
<sididiess 456 Another Street, Another City, Another Country</addiess>
<ahone>456 789</phone> |
</contact>
< /phoneBook™

Blow Mvomus, | ‘

Figure 2-3. An XML document opened in internet Explorer

You can see that Internet Explorer has formatted the document to make it easier to read. It has also ‘
added some minus signs that | can click to collapse branches of the document tree.

Requirements for well-formed documents |

In the preceding sections, I've mentioned some of the rules for creating XML documents. In this
section, we look at these rules in more detail. Documents that meet the requirements are said to be
well formed.

XHTML provides us with a standard set of predefined tags. We have to use the <1i> </1i>

 tags when we want to create a list. Because there are no predefined tags in XML documents, it's |
important that the rules for creating documents are strict. You can create any tags you like, providing |
that you stick to these rules. |

Facebook's Exhibit No. 1005
34 Page 0049

Page 49 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

well-formed documents meet the following criteria:

® The document contains one or more elements.

m The document contains a single root element, which may contain other nested elements.
m Each element closes properly.

® Start and end tags have matching case.

® Elements nest correctly.

m Attribute values are contained in quotes.

I'll look at each of these rules in a little more detail.

Element structure

An XML document must have at least one element: the document root. It doesn’t have to have any
other content, although in most cases it will.

The following XML document is well formed as it contains a single element <phoneBook>:

<?xml version="1.0"?>
<phoneBook/>

Of course, this document doesn’t contain any information so it’s not likely to be very useful.

It's more likely that you’ll create an XML document where the root element contains other elements.
The following listing shows an example of this structure:

<?xml version="1.0"?>
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>
</contact>
</phoneBook>

As long as all of the elements are contained inside a single root element, the document is well formed.
This listing shows a document without a root element. This document is not well formed.

<?xml version="1.0"?>

<contact id="1"»>
<name>Sas Jacobs</name>

</contact>

<contact id="2">
<name>John Smith</name>

</contact>

Facebook's Exhibit No. 1005 35
Page 0050

Page 50 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

Elements must be closed

You must close all elements correctly. The way you do this depends on whether or not the element is
empty, i.e., whether it contains text or other elements.

You can close empty elements by adding a forward slash to the opening tag:
<name/>

In the case of a nonempty element, you have to add a closing tag, which must appear after the
opening tag:

<name>Sas Jacobs</name>
You can also write empty elements with a closing tag:
<name></name>

As XML is case sensitive, start and end tag names must match exactly. The following examples are
incorrect:

<name>Sas Jacobs</Name>
<Name>Sas Jacobs</name>

You would rewrite them as
<name>Sas Jacobs</name>
The following example is also incorrect:

<name>Sas Jacobs
<name>John Smith

The elements have an opening tag but no corresponding closing tag. This rule also applies to XHTML.
In XHTML, you can’t use the following code, which was acceptable in HTML:

<p>A paragraph of information.
<p>Another paragraph.

I'll talk about the differences between XML, HTML, and XHTML a little later in this chapter.

Elements must nest correctly

You must close elements in the correct order. In other words, child elements must close before their
parent elements.

This line is incorrect:
<contact><name>Sas Jacobs</contact></name>

and should be rewritten as

<contact><name>Sas Jacobs</name></contact> Facebook's Exhibit No. 1005
Page 0051

Page 51 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

Use quotes for attributes

All attribute values must be contained in quotes. You can either use single or double quotes; these two
lines are equivalent:

<contact id="1"»
<contact id="1">

If your attribute value contains a single quote, you have to use double quotes, and vice versa:
<contact name="0'Malley"/>

or
<contact nickname='3John "Bo bo" Smith'/>

You can also replace the quote characters inside an attribute value with character entities:

<contact name="OBapos;Malley"/>
contact nickname='John "Bo bo8quot; Smith'/>

Documents that aren’t well formed

If you try to view an XML document that is not well formed, you'll see an error. For example, opening
a document that isn't well formed in a web browser will cause an error message similar to the one
shown in Figure 2-4. This is quite different from HTML documents; most web browsers will ignore any
HTML errors such as missing </p> tags.

e 0 -] %
o

S B Wea Anuls Tok sep

G O RE@ D e limows e @ BS-uFH- JQEE D 3
The XML page cannot be displayed

Caarst view XIW_ iroLt Le n¢ XEL style shee: Please
vorec Ve e o ek D Bzl s, e by
aga aber

Fnd ran ‘phanchnak’ doos nnf match the <tart taq
‘phoneBook'. Error processing resource

‘lle:/ / /L:/alp/ cllents/FriendsOfCd/lash XML
Buok/chD3 respuries/ adurezz.xml. Line 18, Pusilian 3

</ghoreboolks

&)oore = 538y computer

Figure 2-4. Internet Explorer displaying a document that isn't well formed

Facebook's Exhibit No. 1005 37
Page 0052

Page 52 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

An XML editor such as XMLSpy often provides more detailed information about the error. You can see
the same XML document displayed in XMLSpy in Figure 2-5.

E‘iﬁ ISPy - (W —r“’-ﬁ‘]_'———" e P T e —— = Tt -1 _}Eﬁ
'F Flo Frt A DTINScawema Srhemacnaana XA/XOray fAutheabe View Browse: Took ADVARCFD Wineaws Eap
IRIETITEAT- TR SRR L AP S TRNL-1L % RS- T=8 -

I‘-,Ju.\ ~UTF
“hitp T w3 o r|1 20X Schama-nstanca™ «si aolanasacedekesms: acation " addrassSehama xed™>

- "X

Sas Jacobs</name>
=<adcress~123 Some Street, Some City, Some Country</ezdress>
3 468 i

= A5 Another Steat. Annther Gty Annther Galntry<atkdmas>
‘phrrﬁM‘-F. 70%</nhnna>

3 Ju Bluyys~/name=
<aderesss e Ui leient Siesl, Didlsient Cily, Dilerenl Counby</addiass
=plene 8% 123¢/plivnee

rilact-

R onchoni

Thiz "B e8CT a2 Iim3I
0 P04 F AN S e sxpertnt

[Vem | zzvenarwSOL Autensc | Drowser
D address xml
)«HLSG‘(V2005 5p2 J Regstzed 10 Sas Iacods (AR 11598 BD)_AIZI‘-'C’l\bI &ﬁlm’ ARCYE XHLY S - Tadiiemta vl'] 12

Figure 2-5. A document that is not well formed d|splayed in XMLSpy

The error message shows that the closing element name </phoneBook> was expected.

Well-formed XHTML documents

You can make sure that your XHTML documents are well formed by adding an XML declaration at the
top of the file before the DOCTYPE declaration. The DOCTYPE declaration should contain a reference
to the appropriate XHTML DTD. The DTD can specify strict or transitional conformance by including
one of the following two declarations:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Strictly conforming documents must meet the mandatory requirements in the XHTML specification. If
you are declaring a strictly conforming document, you should include a namespace in the <html> tag.
The following listing shows the W3C recommendation for well-formed XHTML documents:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">

You can see this W3C recommendation at www.w3.oxg/TR/xhtml11/conformance.html.

Facebook's Exhibit No. 1005
Page 0053

Page 53 of 140 GOOGLE EXHIBIT 1005

—

INTRODUCTION TO XML

working with XML documents

You can work with XML documents in many different ways. To start with, you need to figure out how
to create the document. For example, you can write the document yourself in a text editor or have it
generated automatically by a software package. You can even create a stream of XML information by
running a server-side web page through a web server.

You also need to consider how to work with your XML documents. Will you view them in a web
browser? Will you display and update the document in Office 2003? Maybe you'll create a Flash movie
that displays and updates the XML document.

Generating XML content

The simplest way to create an XML document is by typing the tags and data in your favorite text edi-
tor and saving it with an .xml extension. At the very minimum, you must follow the rules for well-
formed XML content. You can also create a DTD or schema to describe the rules for your elements.
This will allow you to ensure that your content is valid.

You can also use an XML editor to help create content. Many commercial XML editing tools are on the
market. Search for XML editors in your favorite search engine to see a current list. | like to use
XMLSpy, and I'll show you more about it in the next chapter. One advantage of XML editors is that
they will color-code XML documents as well as provide code hints.

Software packages can generate XML documents automatically. Files written in PHP, ColdFusion,
ASP.NET, or any other server-side language can generate XML from a database or another source.
Microsoft Office 2003 for PCs also allows you to save an Office document in XML format.

Whenever you consume or use a web service, you'll receive the information that you request in an
XML document. A web service is like an application that you can use across the Internet. Companies
like Amazon and Google make some of their services available in this way. As you can imagine,
Amazon doesn’t want you poking around in their database so they provide web services that allow you
to carry out various searches. They protect their data but still give you access.

To use a web service, you need to send a request to the provider. The request is formatted in a spe-
cific way, and there will be different requirements for each web service that you consume. You get the
results back in XML format. We’ll find out more about web services later in this book.

If you've used a news feed, the RSS (Rich Site Summary or Really Simple Syndication) format is an XML
document. RSS uses XML to describe website changes and is really a type of web service. There are dif-
ferent RSS versions that you can use to provide a news feed from a website or organization. The spec-
ification for the most recent version, RSS 2.0, is at http://blogs.law.harvard.edu/tech/rss.

One example of an RSS feed is the news service from Macromedia. You can find out about the news
feed from www.macromedia.com/devnet/articles/xml_resource_feed.html and view the content at
www.macromedia.com/devnet/resources/macromedia_resources.rdf. This news feed provides infor-
mation from the Macromedia Developer Center using RSS 1.0.

Facebook's Exhibit No. 1005 39
Page 0054

Page 54 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

Using XML information

40

Page 55 of 140

Software programs access the information in an XML document through the XML Document Object
Model (DOM). The DOM is a W3C specification for programming languages that you use with XML
documents. At the time of writing, version 3.0 of the DOM specification was available at
wWwW.W3.0rg/TR/2004/REC-DOM- Level-3-Core-20040407/.

The general term for any software package that processes XML documents is an XML processor. Many
different software packages fall into this category. You can use them to view, extract, display, and validate
your XML data. Word, Office, and Excel 2003 can exchange XML information and so are examples of XML
processors.

XML parsers are one category of XML processors. Parsers can read through the content of an XML
document and extract individual elements, attributes, and text. Parsers need to be able to separate
processing instructions from elements, attributes, and text. Flash has a built-in XML parser that allows
you to work with XML documents and include them in Flash movies.

XML parsers first check to see if a document is well formed. They can’t use documents that aren’t well
formed. Earlier we saw an error message from Internet Explorer when it tried to open a document that
wasn't well formed.

XML parsers fall into two categories—nonvalidating and validating parsers. All parsers check to see if
a document is well formed. Validating parsers also compare the structure of the document with a DTD
or XML schema to check that it is constructed correctly. A document that meets the rules listed within
a DTD or schema is considered valid by the validating parser.

Most Web browsers are capable of displaying an XML file so that you can see the structure and con-
tent. They contain built-in parsers to process and display the XML document appropriately.

Both Internet Explorer and Mozilla Firefox contain nonvalidating XML parsers. They allow you to open
and display an XML file just as you would any web page. When you open an XML fite, the information
structure displays using the default settings of the web browser.

Internet Explorer 6 contains version 3 of the MSXML Parser. You saw the file address.xml file as it
appears when opened in Internet Explorer earlier in the chapter. Figure 2-6 shows the same file open
in Firefox.

Facebook's Exhibit No. 1005
Page 0055

h_—

GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

() Pustomize 1bs (Frae ~atrai |) Wisdeves Medin [Wirdovee

This SV fie dos no7 appar I herve any sti: ik ¥ sacd with & Tec de tec i3 shown bcdew
L ;
- <phrneRiak>
- vromtacl ="1"
<parme>Sas Jacchsname>
aduresssI 23 Sume Steel, Sowe City, Sowe Coudiy <Caddress™

<phone>127
<eoatacts
~gomtactid—"2">
<oane = Soda Suih e
~addrezs™$E Anotker Suezt, Anotaer Ciy. Another Coustnaiaddrese>
<phone>456 9 phone>
~‘comfacr>
</phonellroks

S6<phone>

Figure 2-6. An XML file open in Firefox

You can download tools for Internet Explorer that will allow you to validate an XML file against an
embedded schema. The download is called Internet Explorer Tools for Validating XML and
Viewing XSLT Output; visit the Microsoft Download Center at www.microsoft.com/downloads/
search.aspx for the relevant files.

By default, the tools install in a folder called TEXMLTLS. You'll need to right-click the .inf files in the
folder and choose the Install option before the tools will be available within Internet Explorer.

After you have installed the IE XML tools, you can right-click an XML page that’s open in Internet
Explorer. The shortcut menu will have two extra options: Validate XML and View XSL Output. Figure 2-7
shows the context menu.

Facebook's Exhibit No. 1005 41
Page 0056

Page 56 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

i Me [dt View lavottes Toos lleo

e I

D Addees @ rpp\cienmsnend X fA\-lsa X1 RKChO2 el eesererket et el

) 2@ Psao Verors Gra @ (ST LB ODEH S

FEw &

<?xml veralon="1.0" 2>
- <paoneRnok>
- <contact bd="1">
<narric8as Jacobs</ianie

<plione>123 456+</phune>
< frantact>
- <conzact id-"2">

<nhone>456 789</chone>
< fcontact>
</pkone2cok>

<4duiess»> 123 Some Street, Soma City

<name>John Smith </name>
<adcress>456 Another Street, Another

Select Al

B

Crzate Shortc.t
Add to Favorkes..,
View Suurcd

iy

PinL
Refresh

Expot to Yiaosoft Exce

| i vath AlrGva XMI Sy
View XSL 2utdul

Biupe lies

s>

<faddress>

s

48 My Computer

Figure 2-7. After installing the Internet Explorer XML tools, you can right click in the browser window to
validate the XML or view XSL output.

Firefox contains a tool called the DOM Inspector, which displays information about the structure of
the XML document. Choose Tools » DOM Inspector to view the structure. Figure 2-8 shows this tool.

Fie Edit Searc View

@ #

7/E:Jaipiclionts/FricndoO Ed/ Flash%20X MLY% 208 0ok/c

T3~ Dccumnent - DON Nodes

| 2

E7i~ Object - DOM Nede ’e
1 ==
T N | —
= e || damespece: [
~ Node Type: [i_ e ;‘J
Hode Yalse:
| aadaRame nndeVzlue B

|
—_———————— = PZTJ}‘

42

Figure 2-8. The DOM
okMssieghilbsitiiex 1005
Page 0057

—_— |

" Page 57 of 140

GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

Flash contains a nonvalidating XML parser. This means that Flash won't check whether the XML docu-
ment meets the rules set down in a DTD or XML schema. When you read in an XML document, Flash
is able to convert the information into a document tree. You can then move around the tree to extract
information for your Flash movie.

XML, HTML, and XHTML

Although the terms XML, HTML, and XHTML all sound similar, they're really quite different. XML and
HTML are not competing technologies. They are both used for managing and displaying online infor-
mation but both do different things. XML doesn’t aim to replace HTML as the language for web pages.
XHTML is a hybrid of the two languages.

HTML tags deal with both the information in a web page and the way it displays. In other words, HTML
works with both presentation and content. It doesn't deal with the structure of the information or the
meaning of different pieces of data. You can’t use HTML to transform the display of information into
a completely different layout. If you store information in a table, you can't easily change it into a list.

HTML was designed as a tool for sharing information online in web pages. The complex designs that
appear in today's web pages weren't part of the original scope of HTML. As a result, designers often
use HTML in ways that were never dreamed of when the language was first created.

The rules for using HTML aren’t terribly strict. For example, you can add headings by using the tags
<h1> to <h6>. The <h1> tag is the first level of heading, but there is no requirement to include heading
tags in any particular order. The first heading in your HTML page could actually be enclosed in an <h3>
or <h4> tag.

Web pages written in HTML can contain errors that don't affect the display of the information. For
example, in many browsers, you could include two <title> tags and the page would still load. You can
also forget to include a closing </table> tag and the table will still be rendered.

HTML is supposed to be a standard, but it works differently across web browsers. Most web develop-
ers know about the problems in designing a website so it appears the same way in Internet Explorer,
Opera, Firefox, and Netscape Browser for both PCs and Macs.

Like XML, HTML comes from the Standard Generalized Markup Language (SGML). Unlike XML, HTML
is not extensible. You're stuck with a standard set of tags that you can’t change or extend in any way.

XML only deals with content. it describes the structure of information without concerning itself with
the appearance of that information. An XML document can show relationships in your data just like a
database. This just isn’t possible in an HTML document.

XML content is probably easier to understand than HTML. The names of tags normally describe the
data they mark up. In the example file address.xml, tag names such as <address> and <phone> tell
you what data is contained in the element.

XML may be used to display information directly in a web page. It's more likely, though, that you’ll use
the XML document behind the scenes. It will probably provide the content for a web application or a
Flash movie.

Facebook's Exhibit No. 1005 43
Page 0058

Page 58 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

Compared with HTML, XML is much stricter about the way markup is used. There are rules about how
tags are constructed, and we've already seen that XML documents have to be well formed. A DTD or
schema can also provide extra rules for the way that elements are used. These rules can include the
legal names for tags and attributes, whether they're required or optional, as well as the number of
times that each element must appear. In addition, schemas specify what data type must be used for
each element and attribute.

XML documents don't deal with the display of information. If you need to change the way XML data
looks, you can change the appearance by using Cascading Style Sheets (CSS) or Extensible Stylesheet
Language (XSL). XSL transformations offer the most power; you can use them to create XHTML from
an XML document or to sort or filter a list of XML elements.

XHTML evolved so that the useful features of XML could be applied to HTML. The W3C says that XML
reformulated HTML into XHTML. XHTML documents have much stricter construction rules and are
generally more robust than their HTML counterparts.

The HTML specification provides a list of legal elements and attributes within XHTML. XML governs the
way that the elements are used in documents. For example, in XHTML, you must close all tags. The
HTML
 tag has to be rewritten as
 or
</bx>. In XHTML, web designers can’t use a single
<p> tag to create a paragraph break as they could in HTML.

Another change is that you must write attribute values in full. For example
<input type="radio" value="1J1" checked/>

has to be written as
<input type="radio" value="131" checked="checked"/>

You can find the XHTML specification at www.w3.0rg/TR/xhtml1/. It became a recommendation in
2000 and was revised in 2002.

I've summarized the main changes from HTML to XHTML:

You should include a DOCTYPE declaration specifying that the document is an XHTML document.
You can optionally include an XML declaration.

You must write all tags in lowercase.

All elements must be closed.

All attributes must be enclosed in quotation marks.

All tags must be correctly nested.

The id attribute should be used instead of name.

Attributes can't be minimized.

The following listing shows the previous address.xml document rewritten in XHTML. I've done this so
you can compare XHTML and XML documents.

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" |
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

44 Facebook's Exhibit No. 1005
Page 0059

Page 59 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

<html>
<body>
<table>
<tr>
<td>Sas Jacobs</td>
<td>123 Some Street, Some City, Some Country</td>
<td>123 456</td>
</t
<tr>
<td>John Smith</td>
<td>4 Another Street, Another City, Another Country</td>
<td>456 789</td>
</tr>
</table>
</body>
</html>

Notice that the file includes both an XML declaration and a DOCTYPE declaration. You can see the
content in the resource file address.html

You're probably used to seeing information like this in web pages. A table displays the content and
lists each contact in a separate row. Figure 2-9 shows this document opened in Internet Explorer.

= === - - T e e e e
E_‘ E:\mip\clients\FriendsOfEd\Flash XML Bookich02 resourcesichecked\address html - Microsoft Internet Explarer t iz a& j

Fie Edi View Favotes Tzck Hel: L

3 AN g = >

H) 2 o sz oravomes ffveds 42 fiv i E- @ HE B Lo8

s B\ pAUies Friend 2OEUNles | XML Bouky| 02 e Uike.'\ddd Eb:._'lUII' B __ _—-—_l Go
Sas Jacobs ilEE Some Street, Some City, Some Caunhf' (123456

Johin St [456 Avother Street, Another Cily, Another l_'_uunu‘.' 456 T84

e

-Q_“j Done

Figure 2-9. An HTML file displayed in Internet Explorer

Facebook's Exhibit No. 1005 45
Page 0060

Page 60 of 140 GOOGLE EXHIBIT 1005

. N

CHAPTER 2

I've rewritten the content in XHTML so that it conforms with the stricter rules for XML documents.
However, the way the document is constructed may still cause some problems. Each piece of informa-
tion about my contacts is stored in a separate cell within a table. The <td> tags don’t give me any clue
about what the cell contains. | get a better idea when | open the page in a web browser.

| It would be difficult for me to use a software program to extract the content from the web page. |
| could remove the <td> tags and add the content to a database, but if the order of the table columns
changed, | might end up with the wrong data in the wrong database field. There’s no way to associate
% the phone number with the third column.

The web page controls the display of information. Although | can make some minor visual adjustments
to the table using style sheets, | can't completely transform the display. For example, | can't remove
the table and create a vertical listing of all entries without completely rewriting the XHTML.

Each time I print the document, it will look the same. | can’t exclude information such as the address
column from my printout. | don’t have any way to filter or sort the information. | am not able to
extract a list of contacts in a specific area or sort into contact name order.

Compare this case with storing the information in an XML document. | can create my own tag names
and write a schema that describes how to use these tags. When | view the document in a web browser,
the tag names make it very clear what information they're storing.

I can apply a transformation to change the appearance of an XML document, including

m Sorting the document into name order
m Filtering the contents to display a single contact
m Listing the names in a table or bulleted list

XML isn't a replacement for XHTML documents, but it certainly provides much more flexibility for
working with data. You're likely to use XML documents differently from XHTML documents. XML doc-
uments are a way to store structured data that may or may not end up in a web page. You normally
use XHTML only to display content in a web browser.

XML offers many advantages compared with other forms of data storage. Before | explore what you
can do with XML documents, | think it's important to understand the benefits of working with XML. I'll
look at this more closely in the next section.

Why XML?

XML is simple, flexible, descriptive, accessible, independent, precise, and free! Using it in Flash will
save you maintenance time. What more incentive could you need to start working with it?

You've seen the advantages that XML offers over HTML and XHTML when working with structured
data. Given the strong support for XML in Flash, there’s bound to be some project in the near future
where you'll need to use XML data.

46 Facebook's Exhibit No. 1005 '

Page 0061

Page 61 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

simple

The rules for creating XML documents are simple. You just need a text editor or another software
package capable of generating XML. The only proviso is that you follow some basic rules so that the
XML document is well formed.

Reading an XML document is also simple. Tag names are normally descriptive so you can figure out
what data each element contains. The hierarchical structure of elements allows you to work out the
relationships between each piece of information. When you use XML documents, you don’t have to
separate out extra style elements when reading an XML document.

Flexible

One key aspect of XML is its flexibility. As long as you follow some simple rules, you can structure an
XML document in any way you like. The choice of tag names, attributes, and structures is completely
flexible so you can tailor it to suit your data.

Unless you're working with an existing XML-based language such as XHTML, you are not restricted to
a standard list of tags. For example, in XHTML, you have to use an <h1> tag to display a title on your
web page; you can't create your own tag <pageTitle>.

You can share information about your XML-based language with other people by using a DTD or
schema to describe the “grammar,” or rules, for the language. While both types of documents serve
the same purpose, schemas use XML to describe the syntax. So if you know XML, you know the basic
rules for writing schemas. '

Software programs can also use DTDs and schemas. This allows them to map XML elements and work
with specific parts of XML documents. For example, Excel 2003 for PCs uses schemas when exporting
XML documents. The schema describes the name for each tag, the type of data it will contain, and the
relationships among each of the elements.

XML documents provide data for use in different applications. You can generate an XML document
from a corporate software package, transform it to display on a website, share it with staff on portable
devices, use it to create PDF files, and provide it to other software packages. You can reuse the same
data in several different settings. The ability to repurpose information is one of XML's key strengths.

The way XML information displays is also flexible. You can display any XML document in a web |
browser to see the structure of elements. You can also use other technologies or software packages to
change the display quite dramatically. For example, you could transform your phone book XML docu-
ment into
m A printed list of names and numbers sorted into name order
m A web page displaying the full details of each entry in a table
m A Flash movie that allows you to search for a contact

I’'m sure you can think of many more ways to use a phone book XML document.

Facebook's Exhibit No. 1005 47
Page 0062

Page 62 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

Descriptive

Because you can choose your own tag names, your XML document becomes a description of your
data. Some people call XML documents self-describing.

| It's easy for humans to understand the content of an XML document just by looking at the tag names.
‘ It's also unambiguous for computers, providing they know the rules and structures in the XML docu-
| ment.

In our XHTML page, we could only describe each table cell using the tag <td>. The corresponding XML
document used tags like <name>, <address>, and <phone>, so it was easy to determine what informa-
tion each element contained.

The hierarchy in elements means that XML documents show relationships between information in a
similar way to a database. The hierarchies in the phone book document tell me that each contact has
a name, address, and phone number and that | can store many different contacts.

Accessible

XML documents separate data from presentation so you can have access to the information without
worrying about how it displays. This makes the data accessible to many different people, devices, and
software packages at the same time. For example, my phone book XML document could be

Read aloud by a screen reader

Displayed on a website

Printed to a PDF file

Processed automatically by a software package

Viewed on a mobile phone

XML documents use Unicode for their standard character sets so you can write XML documents in any
number of languages. A Flash application could offer multilingual support simply by using different
XML documents within the same movie. Switch to a different XML document to display content in an
alternative language. The Le@rning Federation example referred to in Chapter 1 does exactly that.

Independent

XML is platform and device independent. it doesn’t matter if you view the data on a PC, Macintosh, or
handheld computer. The data is still the same and people can exchange it seamlessly. Programmers
can also use XML to share information between software packages that otherwise couldn’t communi-
cate with each other.

You don't need a specific software package to work with XML documents. You can type the content in
just about any package capable of receiving text. The document can be read in a web browser, text
editor, or any other XML processor. XML documents can query databases to provide a text-based
alternative. In the case of web services, XML is an intermediary between you and someone else’s data-
base.

48 Facebook's Exhibit No. 1005
Page 0063

Page 63 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

XML doesn't have “flavors” that are specific to a single web browser, version, or operating system. You
don't have to create three different versions of your XML document to cater for different viewing
conditions.

Precise

XML is a precise standard. If you want your XML document to be read by an XML parser, it must be
well formed. Documents that aren’t well formed won't display. Compare this with HTML files. Even
when it contains fundamental errors, the web page will still display in a web browser.

When a schema or DTD is included within an XML document, you can validate the content to make
sure that the structure conforms to the rules you've set down. Less strict languages like HTML don't
allow you to be this precise with your content. XML documents with schemas provide standards so
there is only one way that the data they contain can be structured and interpreted.

Free

XML is a specification that isn’t owned by any company or commercial enterprise. This means that it's
free to use XML—you don't have to buy any special software or other technology. In fact, most major
software packages either support XML or are moving so that they will support it in the future.

XML is a central standard in a whole family of related standards. These recommendations work
together to create an independent framework for managing markup languages. Table 2-2 shows some
of the other related recommendations from the W3C.

Table 2-2. Some of the main XML-related recommendations from the W3C

Recommendation Purpose
XML Schema Definition (XSD) Schemas describe the structure and syntax of an XML
document.

Extensible Stylesheet Language (XSL) XSL determines the presentation of XML documents. It
uses XSL Transformations (XSLT), XML Path Language, and
XSL Formatting Objects (XSL-FO).

XSL Transformations (XSLT) XSLT transforms one XML document into another XML
document.

XML Path Language (XPath) XPath navigates or locates specific parts of XML documents.

XSL Formatting Objects (XSL-FO) XSL-FO specifies formatting to be applied to an XML
document.

XML Linking Language (XLink) XLink describes the links between XML documents.

XML Pointer Language (XPointer) XPointer describes references between XML documents

50 you can use them in links or in other documents.

Continued

Facebook's Exhibit No. 1005 49
Page 0064

Page 64 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

Table 2-2. Continued

Recommendation Purpose

XML Query (XQuery) XQuery queries XML documents to extract information.
At the time of writing, it was a working draft rather than
a recommendation of the W3C.

XForms XForms are an XML-based replacement for XHTML forms.

| Simple Object Access Protocol (SOAP) ~ SOAP is a standard protocol for requesting information
from a web service.

Web Services Description Language WSDL describes web services using an XML structure.
(WSDL)

I'll look a little more closely at DTDs, XML schemas, and XSLT in Chapter 3 of this book.

What can you do with XML?

So far I've introduced you to XML and given you some background information on how to construct
XML documents. You've also seen how XML is different from HTML and XHTML. Now it’s time to
explore how you can use XML documents.

Remember that the primary purpose for XML documents is the storage of data. XML allows people to
share information using a self-describing document. The data is easy to read and interpret. Software
packages can also read XML documents and use them as a medium for information exchange.

An XML document is portable and doesn't require the purchase of any specific software or technology.
You can use the same XML documents for many different purposes. Best of all, XML documents are
completely platform independent.

Common uses for XML documents include

m Storing and sharing information

®m Querying and consuming web services
m Describing configuration settings

® Interacting with databases

® Interacting with Office 2003 documents

Storing and sharing information

The most important use for XML documents is in storing information. XML documents provide a way
to describe structured data within a text file. The advantage of XML over other storage formats is that
it is a standard so you can use the same content in many different ways. The same XML file could pro-

Facebook's Exhibit No. 1005

50 Page 0065

p=—"

Page 65 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

vide content for a website, a Flash movie, and a printed document. You save time because you need
to create the XML file only once to use it in these varied settings.

Each XML document that you create will probably have a different structure designed to meet the
needs of the people or software who will use the information. The element names will describe the
data they contain, and the element structures will show how blocks of information relate to each other.

An XML document doesn’'t need any specific software or operating system, which means you can
share it with other people and software applications. XML documents can also provide information to
other web-based applications, including websites and Flash applications.

If you are working in an industry group, you can design your own language for sharing information. By
creating DTDs or schemas, you ensure that everyone understands how the language works and that
their XML documents conform to a standard set of rules. CML and MathML are good examples of
common languages.

The listing that follows shows a MathML document taken from the examples at www.mathmlcentral.com/
Tools/FromMathML. jsp. The listing shows how sin(x2) could be described using MathML elements.

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<mrow>
<mi>sin</mi>
<mo>⁡</mo>
<mo>(</mo>
<msup>
<mi>x</miy
<mn»2</mn>
</msup>
<mo>)</mo>
</mrow>
</mathy>

You can find out more about MathML at www.w3.org/Math/.

Another useful standard relates to graphics. Scalable Vector Graphics (SVG) is an XML-based language
that describes two-dimensional graphics. If you want to find out more, the SVG recommendation is at
wwi.w3c.org/Graphics/SVG/.

The following listing shows a sample SVG document. I've saved the document as shapes.svg (in your
resource files) if you want to have a closer look. The elements describe a yellow rectangle, blue ellipse,
and green triangle.

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
“http://www.w3.0rg/TR/SVG/DTD/svg10.dtd">
<svg>
<desc>Shapes</desc>
<rect x="5" y="5" width="100" height="50" fill="yellow"/>
<ellipse cx="200" cy="100" rx="100" ry="40" fill="blue"/>
<polygon points="110,140 40,300 120,250" fill="green"/>
</svg>

Facebook's Exhibit No. 1005 51
Page 0066

Page 66 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

Figure 2-10 shows this file displayed in Internet Explorer.

E" E:\-ip_\:lio_né\r;r(dhfgdil-';h_xﬁf T e or ey 0 o S s g P TALTRET Explorsr
! Fle Edz View Favotes Took Hels
Dok + L3 %) 2 On Josarcr o Fvone @fveda @ oav s e €@ EE 3 (&
baga e gEi\dP\IJEIIL\F'iEIKJ:OEd\é\:s'Imm: eckel izpes.svy) o . 3—'j Go
1
' A
’
Q_T'\r ey ety e b R R :gluy(‘nmp ter

Figure 2-10. The sample SVG document displayed in Internet Explorer

Querying and consuming web services

XML documents are the standard way to share information through web services. Web services are
public functions that organizations make available. For example, you can use web services to calculate
currency exchange transactions, look up weather details, read news feeds, and perform searches at
Amazon or Google.

When you send a request to a web service, you'll often use SOAP, an XML format. You'll also receive
the information from the web service in an XML document. We'll look at web services in more detail
later in this book.

Describing configuration settings

Many software packages use XML documents to describe their configuration settings. For example, an
XML document format is used to configure .NET applications. The settings for a .NET application are
stored in a file called web.config. The file uses standard XML elements to store settings such as
debugging, authentication, error handling, and global variables. The following listing shows a sample
web. config file. You can also see the saved web. config file within your resources.

52 Facebook's Exhibit No. 1005
Page 0067

e I

Page 67 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

<?xml version="1.0" encoding="UTF-8" ?»
<configuration>
<appSettings>
<add key="fileSavelocation" value="D:\Hosting\website\images\"/>
</appSettings>
<system.web>
<customkrrors mode="0ff"/>
<compilation debug="true"/>
</system.web>
</configuration>

The file contains a global variable or key location for saving files: fileSavelLocation. There are also
some settings for customized errors and debugging.

Interacting with databases

Many common databases allow you to work with XML documents. SQL Server and Oracle both offer
support for XML interaction. XML documents can query a database and return results. For example, in
SQL Server, you can construct a SELECT statement that returns the results as an XML fragment:

SELECT * FROM BOOKS FOR XML AUTO

XUpdate is an XML-based language that describes updates to an XML document tree. It is not a W3C
recommendation but uses the XPath specification. XUpdate is one way to manage XML document and
database updates. Flash uses XUpdate in the XUpdateResolver data component.

You can find out more about XUpdate at http://xmldb-org.sourceforge.net/xupdate/
xupdate-wd.html. There are some useful examples of XUpdate statements at www.xmldatabases.org/
projects/XUpdate-UseCases/.

Interacting with Office 2003 documents

One exciting new application for XML is its role in Microsoft Office 2003 documents. For PC users, this
means that you can save Word, Excel, and Access 2003 documents in XML format. Office 2003 can
generate XML documents that you can use in other software packages, such as Flash. You can also dis-
play and update XML documents in Office 2003.

The Save As command converts Word and Excel 2003 documents into XML format using either
WordprocessingML or SpreadsheetML. These are XML-based languages created by Microsoft to
describe Word and Excel structures and formatting. You can also apply your own schema so that you
can modify the XML documents produced by Office 2003.

Unfortunately, this functionality is only available for PC users. There is limited XML functionality in

Excel 2004 for Macintosh users. Office XP for PCs atso offers some XML support, but it is limited com-
pared with Office 2003.

Facebook's Exhibit No. 1005 53

I Page 0068

Page 68 of 140 GOOGLE EXHIBIT 1005

CHAPTER 2

Why is XML important to web developers?

XML is an important tool for all web developers, even those who don’t use Flash. XML provides the
basis for much of the content on the Internet, and its importance will only increase over time. Many
people consider XML the lingua franca of the Internet as it provides the standards for data exchange
between humans and machines in many different settings.

Web developers use XML to create their own languages to store, structure, and name data. XML con-
tent is the perfect mechanism for self-describing data. This makes XML documents ideal for sharing
with other developers and IT specialists.

As a developer, you can use the same XML content for many different purposes. For example, you
could use a single XML document to power a .NET application as well as a Java version. You could also
transform the content into an XHTML document, a Flash movie, or a PDF file.

XML-related technologies also let you sort and filter the data within an XML document. Style sheet
transformations allow you to reshape your data any way you want. You can then show the trans-
formed content in a web browser, read it aloud, print it out, or send it to a mobile phone.

A physical XML document provides portability over and above that of a database. Creating an XML
document enables you to distribute database content offline. For example, you can use the XML file
with a stand-alone Flash movie and distribute it on a CD-ROM. In addition, providing an XML layer
between a user and a database is a good way to prevent access to sensitive corporate data.

The built-in support for XML within Flash allows Flash developers to use XML data within any Flash
movie. Using the content from XML documents enables you to update your movies without ever hav-
ing to open Flash. You can store your Flash application settings in an XML file so that you can config-
ure the application with simple changes to the document. If you're not comfortable with ActionScript,
you can use the data components to add XML content to your movies. You can work with the panels
in Flash so that you don't have to write any ActionScript. |

You can save maintenance time by allowing your clients to manage their own content. It's often not
practical for them to learn how to use Flash, and in reality, you probably don’t want to give your |
clients access to the Flash movies that you've created. Instead, you provide mechanisms for clients to
update an XML file and the Flash movie will update accordingly. ,

| have clients who update the content of their Flash movies using Office 2003. They make the changes
within Word, Access, or Excel 2003; export the content in XML format; and replace the existing XML
file with the new file they've just created. They can use a web page to upload the new XML file to their
website, or they can burn it to a CD-ROM with a stand-alone Flash file.

These clients have the flexibility to change their Flash movie content whenever they like, and I've found
that most clients are very comfortable working this way. It also saves me from continually editing their
Flash movies each time the content changes.

54 Facebook's Exhibit No. 1005
Page 0069 |

e = i |

Page 69 of 140 GOOGLE EXHIBIT 1005

INTRODUCTION TO XML

summary

In this chapter, you've learned about XML and the contents of XML documents. You've also learned
about the differences between XML, HTML, and XHTML. As a developer or designer, | hope I've shown
you the advantages of working with XML in your applications.

The importance of XML cannot be overstated. As a technology, it allows organizations to create their
own mechanisms for sharing information. At its simplest, XML provides a structured, text-based alter-
native to a database. More complex uses of XML might involve data interactions between corporate
systems and outside consumers of information. The most important thing to remember is that an XML
document can provide a data source for many different applications.

The widespread adoption of XML by major software companies such as Microsoft and Macromedia
ensure its future. Most of the popular database packages provide XML support. If it’s not already
there, expect XML to become part of most software packages in the near future.

The next chapter looks at working with XML content in XML editors and in Office 2003. It also looks
more closely at consuming web services. I'll cover creating DTDs and XML schemas as well as trans-
forming XML documents with XSLT. We'll finish by creating an XML document and schema from scratch.

Facebook's Exhibit No. 1005 55
Page 0070

Page 70 of 140 GOOGLE EXHIBIT 1005

Facebook's Exhibit No. 1005
Page 0071

Page 71 of 140 GOOGLE EXHIBIT 1005

Chapter 3

XML DOCUMENTS

Before you can start working with XML content in Flash, you have to create the XML
documents that you’ll be using. This chapter looks at the different ways you can do
this. I'll show you how you can generate content in a text or XML editor, from Office
2003 and by consuming web services. I'll have a quick look at querying Amazon and
Google and receiving XML responses. You'll build applications that work with web
services later in the book.

I'll also look at how you can transform XML documents using CSS and XSL style
sheets. I'll cover creating Document Type Definitions (DTDs) and schemas that
describe the rules for your XML documents. At the end of the chapter, we'll create an
XML document and schema that we’ll use in an application in the next chapter.

Remember that an XML document doesn’t have to be a physical file. There’s nothing to
stop you from creating a text file with an .xml extension to store your XML content,
and we'll look at different ways to do this. However, the term XML document can also
refer to XML information that comes from a software package or web application.

Creating XML content
You can create XML content in many different ways, including
m Typing XML content in a text or XML editor
m Generating XML content with a server-side file
m Extracting XML content from software such as Office 2003
® Consuming XML generated by a web service or news feed

Facebook's Exhibit No. 1005 57
Page 0072

Page 72 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

58

Page 73 of 140

Each of the XML documents that you create will have different content and structure. The only thing
they'll have in common is the rules that you use to create them. At the very minimum, all XML docu-
ments must be well formed. Later on, we'll look at creating valid documents with a DTD or schema.

Using a text editor

You can use a text editor like Notepad or SimpleText to type your XML content. You'll need to enter
every line using your keyboard, which could take a long time if you're working with a large document.
When you've finished, save the file with an .xml extension and you'll have created an XML document.

You can also use a text editor to create a DTD, schema, or XSL style sheet. Just remember to use the
correct file extension—. dtd for DTDs, .xsd for schemas, and .xs1 for XSL style sheets.

Don't forget that if you're using Notepad, you'll probably need to change Save as type to All Files
before you save the document. Otherwise, you could end up with a file called address.xml.txt by
mistake. Figure 3-1 shows the correct way to do this.

= — e e ==
qMM' 3 117
Savein: | (2 FriendsOfEd o — T] ot Er
o \)Apress — - Sl -
@ | Flash XML Book
My Recent | |
Docurent | ‘
Deskiop ‘ |
I |
' !
My DocLments ‘
|
My Cernpuke ‘
> ﬂ ‘ = - 1
My Natwork .
Plzcas tie rame: |acdressxml i m
Save sstype: ’Tp,xr Nocimerts (7 ket - _Zl I—(\m
Encoding: -

Figure 3-1. Saving an XML document in Notepad

Text editors are easy to use, but they don't offer any special functionality for XML content. Text edi-
tors won't tell you if your tag names don’t match, if you've mixed up the cases of your element names,
or if you've nested them incorrectly. There are no tools to check if your XML document meets the
rules set down in a DTD or schema. Text editors don’t automatically add color to your markup. In fact,
you may not find any errors in your XML documents until you first try to use an XML parser.

Facebook's Exhibit No. 1005
Page 0073

GOOGLE EXHIBIT 1005

XML DOCUMENTS

You can also use HTML editors like HomeSite and BBEdit to create XML documents. The advantage of
these over text editors is that they can automate the process a little. HTML editors often come with
extensions for working specifically with XML documents. For example, they can add the correct decla-
rations to the file and auto-complete your tag names. They'll also add coloring to make it easier to
read your content.

However, you'll still have to type in most of your content line by line. Again, most HTML editors don’t
include tools to validate content and to apply transformations. You can only expect that functionality
from an XML editor.

XML editors

An XML editor is a software program designed to work specifically with XML documents. Most XML
editors include tools that auto-complete tags, check for well-formedness, and validate XML docu-
ments. You can use XML editors to create XSL style sheets, DTDs, and schemas.

The category “XML editors” includes both free and for-purchase software packages. With such a range
of great XML tools available, you'd have to wonder why people would want to create XML documents
with a text or HTML editor.

Common XML editors include

m Altova XMLSpy

m SyncRO Soft <oXygen/>

m WebX Systems UltraXML

m XMLEditPro (freeware)

@ RustemSoft XMLFox (freeware)

You can find a useful summary of XML editors and their features at www.xmlsoftware.com/editors.html.

Although it isn’t mandatory to use an XML editor when creating XML documents, it’s likely to save you
time, especially if you work with long documents.

Altova XMLSpy 2005 is one of the most popular XML editors for PCs. You can download a free home
user edition of the software from www.altova.com/download_spy home.html. You can also purchase a
version with additional professional level features.

As we'll be using XMLSpy in this section of the book, it’s probably a good idea to download it and
install it on your computer. If you're working on a Macintosh, you'll need to get access to a PC if you
want to try out the examples.

You can work with any type of XML content in XMLSpy, including XHTML documents. It includes a text
editor interface as well as graphical features. XMLSpy offers features such as checking for well-
formedness and validity. It also helps out with tag templates if you've specified a DTD or schema.

You can use XMLSpy to create DTDs and schemas as well as XSL style sheets. It also allows you to apply
style sheets to preview transformations of your XML documents.

Facebook's Exhibit No. 1005 59
Page 0074

Page 74 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

60

Page 75 of 140

we'll look at some of the features of this software package in a little more detail as an illustration of
what's possible with XML editing software.

To start with, when you create a new document, XMLSpy atlows you to choose from many different
types. Figure 3-2 shows you some of the choices.

- — T T FTET = '
Create new document - ‘m

—— .]

Select the type of document you wish 1o create: {

shtmi Extensible Hypertext Markup Language |
xml DocBook 4.2 Article
xmi DocBook 4.2 Book
xmi EJB 2.0 Deployment Descriptar
xmi IAS XBRL Document
xml J2EE 1 3 Application
xml J2EE 1.3 Application Client
I el J2EE Connector 1.0 Resource Adapter
: xml Servlet 2.3 Deployment Desc‘np!or -
| benl XML Document: BCh i)
xq XML Query Language
xgl XML Query Language 1
xquery XML Query Language \ M)
= I
Select a StyleVision Stylesheet... | [OK I Cancel] |

Figure 3-2. Options available when creating a new document with XMLSpy

Depending on the type of document you choose, XMLSpy automatically adds the appropriate content.
For example, choosing the type XML Document automatically adds the following line to the new file:

<?xml version="1.0" encoding="UTF-8"?>

When you create a new XML document, XMLSpy will ask you if you want to use an existing DTD or
schema. Figure 3-3 shows the prompt.

New fle i . X |

f - —

| Ifyouinlend to create a new XML document instance based on &
‘. certain schema or DTD, XMLSpy can automatically add the proper

assignment for you - in this case please selectwhether you intend to
base your document on a DTD or Schema:
&0TD

) Schema

‘ Otherwise please click the cancel button to begin wilh a new empty
document.

Figure 3-3. When you create a new XML document, XMLSpy prompts for a DTD
or schema reference.

Facebook's Exhibit No. 1005
Page 0075

GOOGLE EXHIBIT 1005

XML DOCUMENTS

If you choose either a DTD or schema and select a file, XMLSpy will create a reference to it in your
XML document:

<phoneBook xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="addressSchema.xsd">

If you don't include a DTD or schema reference, you can always add one later by using the
DTD/Schema menu.

You can use XMLSpy in Text view, like a text editor, or in Authentic view, which has WYSIWYG features.
Schemas can also use the Schema/WSDL view, a graphical presentation that simplifies the creation
process. The final option is Browser view, which simulates how a document would display in a web
browser.

XML documents with a referenced DTD or schema will show you extra information when you work in
Text view. Clicking on an element or attribute in the main window will display information about it in
the Info panel on the left side. You can see this in Figure 3-4.

Wlmﬁ- lp;f'[_l]d:u s.xmﬁ == E HWWW

B e Lot <ML DTD/Schema Schemadasign X5(XQuey Acthentc Mew [rowser Tock ADVARCLC Wirdow Jalo . & x
1 Banwenily T 9x
‘hitp:/wvay v3.0rg2001 XMLSzhema-instance” € address
slocaion-"addressScheme xsd™> ¢ contact
O namae
AACIAASAA JAcOhS<name> « phone
<address> 723 Scme Streel, Soms City, Some Counirv</ecorass» ¢ phoneUock
“pnana> 123 AbGphone
<feunuae
“eontae 2=
<name> John Smith<:name»
<address>1 Arcther Streel. Ancther City, Anothar Country</ancrass>
<phionu=458 789« /v
sieontac
<contact i="3"»
<nama®>Jo Bloggs</name>
<gdross=T Diffsient Steel, DiTeienl Cily, UKszaddivys=
<Nhnnas7e9 12%<iphana> Attrbutzs s ex
</confact> f—————
</phonaBock>
FAECS X
BRI &
<1 ApOs
gt >
ot <
[Tual | Schor 9AVSDL | Aubisils | 3wse v quol
I Claddress il ‘e
XMLSpy v2075 sp2 U Reqistersd to Sas Jacobs (AP} $1398-2003 Alrcva SmbH & Atovz, Inc Ln5, Col 13 W' HUM

Figure 3-4. When a schema or DTD is referenced, XMLSpy displays information about the selected element
or attribute. Entry Helpers are included on the right side of the screen.

The Entry Helpers panel on the right shows a list of the available elements. The panel also shows you
common entities. One very useful feature is the ability to add an element template to the main win-
dow from the Elements panel.

Facebook's Exhibit No. 1005 61
Page 0076

Page 76 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

| child elements, into the document.

to be!

formed documents in Chapter 2.

shown in Figure 3-5.

S ——

Position your cursor in the XML document, double-click the appropriate tag name, and XMLSpy adds
an element template to the code. This is very handy if the element you've chosen contains child ele-
ments as XMLSpy adds the complete tree from that point, including attributes.

| Open the resource file address.xml in XMLSpy to test these features. Click to the left of the closing
</phoneBook> tag and press EnTEr. Position your cursor in the blank line and double-click the
‘ <contact> element in the Elements panel. XMLSpy will insert a <contact> element, complete with

Another feature of XMLSpy is checking whether an XML document is well formed. If you are using a
text editor, you'd have to do this by loading the document into an XML parser and checking for errors.
Not only is this time consuming, but the error messages are often not as detailed as you’d like them

In XMLSpy, you can check the document by clicking the button with the yellow tick or by using the F7
key. XMLSpy then checks all the requirements for well-formed documents, including a single root
node, tag case, element ordering, and quotes on attributes. | covered the requirements for well-

If XMLSpy finds an error, you'll see a message at the bottom of the screen with a Recheck button, as

nEmithsnane?
Ancther Sireat 4nother Citv. Angthar Country
B 780l

J»Bioggs»’fn-ame‘»
CiTorent Street, Diferent Gity, UK</addi e

Aptinns
<contacl>
I <tphansBooks>

| PR [LER I SR B
(;‘; 1) atdmss dosng shonrl vee ecestx

[Tual Sl «AYSDL
Il addresssanl
20253302 U Regstersd to 3as Jacobs (AP $11398-207% Akcva GmbH & Atovs, Inc.

Aulhsnlc 3 inse

LSy

Figure 3-5. Using XMLSpy to check whether a document is well formed

= —— T - = [=
IU»‘ Altova XMLSpy - [address.xml *] = Eﬁ
l'__! e Lzt <ML DTOYGchema Sthexadasign X5LXQuery &cthente Yew [Lrowser Tzck ADVALCLIC Viindoww 120 - & x
0 SREIQIS| BT o B N

il o Aig="bTF-8"7= Bl v Sty
T ST ="hitp:/mway wi.org’230 XKLSchama-instance” O address

bcwatpe ates : RSB i siicn-"addressScheme xsd > O contact

VMo ipace pretsne <gonlacl 1i="1" € name

anarme>S0s Jacohs e « phona
1 et, Samz City, Some Counirv<gccrass?

() phonelicck

Atrbutzs

-

ol e X

X Nerhork

S dnip
1 apos
1t
ok
quol

Ln 12, Cddl 14 HUK

Facebook's Exhibit No. 1005 '

62

Page 0077 ‘

—

Page 77 of 140

GOOGLE EXHIBIT 1005

XML DOCUMENTS

If you want to see it in action, change the address.xml file to introduce a deliberate mistake and
check it again for well-formedness. You could change the case of one of the closing tags or remove
the apostrophes from an attribute. You'll see a detailed error message that will help you to pinpoint
where you went wrong.

XMLSpy can also check if an XML document is valid against a DTD or schema. Click the button with the
green tick or use the F8 key. Figure 3-6 shows an invalid document after it's been checked in XMLSpy.

|§An&.xusp;f['.ddms.xmm' P ——— — ' -2k

iff) e Lot XML DTD/5chema Scheradasgn XGULXQuety Acthentc Yiew [Drowser Took ADVARCID Wiindows [l2ln
i

DSSIHEIS 108 0 A EITPH RN

ik

Idu * mX ol vAErsinn="1 i] Bl L =
iy ‘(nhane[!ook i itpiitwany w3 org’2007/XMLGchama-insianc s’ {} address
[a1 o 3 sLocabcn-"addressScheme xsd > < contact
© name
ATES ¢} phone

<address>123 Go reet. 3oms City, Some Caunirv<eccrass?
<phana¥ 123 A6 phona>
</conlacl=
<eontact ii="2"~

¢ phoneUcck

saddress>4 Anciher Stresl, Another Cltv. Andther Cauntry</accrasss
<phana>A56 789+/chore> |

“/confact
<canfpet 1I9="5"
<name>Jo Dloggs</name> |
<address>7 Difarent Street, Difarent City, UK</addrass>
<phionus>789 123</phunes |
<reonfact> Atrbuzss oA
<‘phonelicok> l—"—‘_

| Fnfees “ax
L [ap &
| I3 MED AR vUC Is apos
g Lnexpeced clemort 2dress in demet cortact pzcied rome 4 Neaidels fergt 4
1 | 5
i Je=lt <
Texl | SclonaAVSDL | Adhouty | 3icmve [1= guol
(2 addressounl t |
X1Spy v2025sp2 U Ragistersd bo Sas Jacobs (AP} $51598-200E Altcva GmbH & AtovE, Inc, tn 3, Cel35 HUK

Figure 3-6. Checking validity in XMLSpy

You can test this feature by checking if address.xml is valid against its schema addressSchema.xsd.
You might want to open up the schema file to have a look at the content. It will make a lot more sense
to you later in the book!

Finally, if you're going to transform your XML document with XSLT, you can use XMLSpy to create the
style sheet and to preview the transformation.

Once you've added a style sheet reference to your XML document, use the F10 key to apply the trans-
formation. XMLSpy will create an XSLOutput.html file and display your transformed content.

You can add a style sheet reference by choosing XSL/XQuery » Assign XSL and selecting the file
listStyle.xs1l. Make sure you check the Make path relative to address.xm! check box before clicking
OK. XMLSpy adds the style sheet reference to the XML document.

<?xml-stylesheet type="text/xsl" href="listStyle.xs1"?>

Facebook's Exhibit No. 1005 63

I Page 0078

Page 78 of 140 GOOGLE EXHIBIT 1005

T ————————
o

CHAPTER 3

Press the F10 key to see the transformation. Figure 3-7 shows the XSLOutput.htm file created by
XMLSpy.

=———craT T T

T T
Altova XNLSDy - [X5L Output.htrl 1] e
‘D Fe Edt XML DTD/Screra Schers dasign XSLXQuery Autherdc Wew 3owser Jools ADVANCED Mndow deld _ a8 ¥

FRYPEP S YT =R AP SR NIORr TN 1 EET I ENE-E ST

I T 3x [Bemant - g%
| Phonc Book
(e Sas Jazohs
» Joha Smith
‘ « Jo Bloggs
| AttHUte vax
‘ Enlly X
et |[iceer
=5 = [ecdessxrl fHASL Output.htni
Jonz riytos KUM
Figure 3-7. A transformed XML document in XMLSpy
Hopefully, some of the preceding examples have shown you how XML editors can help you to work
with XML documents. A full-featured product like XMLSpy can save you a lot of time by validating and

transforming your documents in the click of a button.

Server-side files

You can use content from any server-side file that generates XML. That means you can use a
ColdFusion, PHP, or .NET file to create the XML content for you dynamically. For example, you might
query a database and receive the response as an XML document. You might also use a server-side file
to query the files and folders within your computer. Server-side code can create an XML document
that describes the folder structures and file names.

The following listing shows some VB .NET code that generates a list of folders and files in XML format.
The resource file MP3List.aspx contains the complete listing.

<%@ Page Language="vb" Debug="true" %>
<%@ import Namespace="System" %>

<%@ import Namespace="System.10" %>
<%@ import Namespace="System.XML" %>
¢script runat="server">

Facebook's Exhibit No. 1005
64 Page 0079

Page 79 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

Dim strDirectorylocation as String = "e:\mp3z\"
Dim dirs As String(), fileInfos as String()
Dim i as Integer, j as Integer
sub Page Load
Dim MP3Xml as XmlDocument = new XmlDocument()
Dim folderElement as XMLElement
Dim songElement as XMLElement
Dim writer As New XmlTextWriter(Console.Qut)
writer.Formatting = Formatting.Indented
MP3Xml.AppendChild(MP3Xml.CreateXmlDeclaration("1.0", "UTF-8", =
"no"))
Dim RootNode As XmlElement = MP3Xml.CreateElement("mp3s")
MP3Xml.AppendChild(RootNode)
if Directory.Exists(strDirectorylocation) then
dirs = Directory.GetDirectories(strDirectorylocation)
for i = 0 to Ubound(dirs)
dirs(i) = replace(dirs(i), strDirectorylLocation, "")
next
Array.sort(dirs)
for i=0 to Ubound(dirs)
folderElement = MP3Xml.CreateElement("folder")
folderElement.SetAttribute("name", dirs(i))
RootNode.AppendChild(folderElement)
fileInfos = Directory.GetFiles(strDirectorylocation & w»
dirs(i) & "\", "*.mp3")
for j = 0 to Ubound(fileInfos)
fileInfos(j) = replace(fileInfos(j), strDirectorylLocation =
& dirs(i) & "\", "")
next
Array.sort(fileInfos)
for j = 0 to Ubound(fileInfos)
songElement = MP3xml.CreateElement("song")
songElement.SetAttribute("filename", fileInfos(j))
folderElement.AppendChild(songElement)
next
next
End If
dim strContents as String = MP3Xml.outerXML
response.write (strContents)
end sub
</script>

The server-side file returns a list of folders and MP3 files in an XML document. Figure 3-8 shows how
the file looks when viewed in a web browser. Note that because the file contains server-side code,
you'll have to run it through a web server like Microsoft Internet Information Services (IIS). if you
check the address bar in the screenshot, you'll see that the file is running through http://localhost/

Facebook's Exhibit No. 1005 65
Page 0080

Page 80 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3
E &!ﬁlﬂmmmumlw « Microsoft Internet Explo-rer' T “e"'"w
Fik Edr Vien Favotes Tock Hel: &
P Qe - £ 0 3l 3y szt Favomes @ Meda & v o - @ Eﬁﬁ ﬁ_
faddzss & i iashi oW FOEMPSLiLd:p» - .) |ZI <o
<axml version="1.0" encodinrg="Ull-4" azanda sne="no" > !‘
1 J - <mpls> !
- «folder name="acid jazz">
<song filenome="Acid Jazz - Smokin' with Superman - e funk.mp3" />
<anng flennme="acid jazz - Snatch - Movie - SoundTrack - The Herbaliser - Sensual
Women.mp3" />
cgong filename—"Carl_Cox_Dr_Funk.mp3" />
<sona fename='Digable Planets - Rebirth Of Slick (Cool Like Dat).mp3' />
<sonq flenzme="Diggible Planets - I'm Cool Like That.mp3' />
<sona fienamie="Saint Germaine - Alabama Bl.mp3" />
< /folder>
<felder namp="heatles" />
- <felder rame—"chillaut” >
<nang floneme—"Adagin (Dream Mix).mpa" />
<yony (lenerme—"At The River.mp3' />~
<sony lllenene="Barber's Adagio For Strings.mp3’ />
<song fllenzne—'Cantus {Song OF Tears).mp3' />
<song tlensmne—"Chi Mai.mp3" />
<song flangmne—"Childien.mp3" />
<song fila2neme='Daydream In Blue.mp3' />
<spnq flleneme='Embrace.mp3" />
<song fil2neme="Grooving.mp3' />
<song fileneme="Missing (Todd Terry Club Mix-Radio Edit).mp3" />
<aang fllennma="Nimrod.mp3' /> =
_ czana fllansns="Na Ordinarey Marninag mnl| /> e S —
&) Done &4 Lozalint-anet

Figure 3-8. XML content generated by a server-side file, displayed in Internet Explorer

This is an example of an XML document that doesn't exist in a physical sense. | didn’t save a file with
an .xml extension. Instead, the server-side file creates a stream of XML data. The VB .NET file trans-
forms the file system into an XML document.

Office 2003/2004

Believe it or not, Microsoft Office can be a source of XML content. For PCs, Microsoft Office 2003 has
built-in XML support within Word, Excel, and Access. Unfortunately for Macintosh users, Office 2004
doesn’t provide the same level of support. Macintosh users can use Excel 2004 to read and write XML
documents, but they can’t use schemas and style sheets.

Most people wouldn’t think of Office documents as containers for structured XML information.
Normally, when we work with Office documents we are more concerned with the appearance of data.
| Word, Excel, and Access 2003 all offer support for information exchange via XML. These applications
can open, generate, and transform XML documents.

Word 2003 creates WordprocessingML (previously called WordML) while Excel writes SpreadsheetML.
Both are markup languages that conform to the XML specification. You can find out more about these
languages at www.microsoft.com/office/xml/default.mspx.

Whenever you use Save as and select XML format in Word or Excel, you're automatically generating
one of those markup languages. Unfortunately, both languages are quite verbose as they include tags

66 Facebook's Exhibit No. 1005
Page 0081

Page 81 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

for everything—document properties and styling as well as the data itself. The resulting XML docu-
ment can be quite heavy.

An alternative is to use a schema or XSL style sheet to format the output. You can extract the data to
produce a much more concise XML document. Applying a schema to Word or Excel allows other
people to update the content in Office without seeing a single XML tag.

Access also allows you to work with data in XML format, but it doesn’t have its own built-in XML
language. You just export straight from a table or query into an XML document that replicates the
field structure.

In this section, I'll show you how to generate XML from Office 2003. The examples use sample files
from the book’s resources, so you can open them and follow along if youd like. They are illustrations
of the functionality that is available in Office 2003 rather than step-by-step tutorials. We'll do some
more hands-on work with Office 2003 XML in Chapters 5, 6, and 7.

Word 2003

The stand-alone and professional versions of Word 2003 provide tools that you can use to work with
XML documents. The trial edition of Word doesn't give you the same functionality. Let's look at the
different ways that you can create and edit XML information in Word.

Creating an XML document using Save As

The simplest way to generate an XML document from Word 2003 is to use the File » Save As com-
mand and choose XML Document as the type. Figure 3-9 shows how to do this.

l';““ I e e T T o D e
=] 3
Save i |3 cUs resourcas vl Q& T4 5 - Tools~
5 || Name = sie| Typ2 Date Modfied !
_3 Dbackup Fil2 Folder 12/03/2005 2:... [
My Reze | ‘Dphatos Fil2 Folder 5/03/2005 10
L |1 =i~ gmpledocument.dec 1 KB Microscft worc Do... 18/02/2005 7:...
i= Hsimpledocument.doc 24 KB Microscft worc Do... 2/03/2005 4:3... {
Deskop

-
Ny Hetwo. —— | ——
Docurrent Terplate {* dot) A 2ave
fave astype: |word Document (.doc) v [Caljcel]

Figure 3-9. Using Save as type to generate an XML document

Facebook's Exhibit No. 1005 g7

I Page 0082

Page 82 of 140 GOOGLE EXHIBIT 1005

i

CHAPTER 3

68

You can see a before and after example in your resource files. I've saved the Word document
simpledocument.doc as simpledocument.xml. The source Word file contains three lines, each a differ-
ent heading type. You can open simpledocument.xml in Notepad or an XML editor, to see the
WordprocessingML generated by Word.

The following listing shows the first few lines of simpledocument.xml:

xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mso-application progid="Word.Document"?>

<w:wordDocument xmlns:w:"http://schemas.microsoft.com/office/word/
2003/wordml" xmlns :v="urn:schemas-microsoft-com:vml"
xmlns:w10="urn: schemas-microsoft-com:office:word"
xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core“
xmlns:aml:"http://schemas.microsoft.com/am1/2001/core"
xmlns:wx:"http://schemas.microsoft.com/office/word/2003/auxHint"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:dt="uuid:C2F41010-6583-11d1-A29F-00AA00C14882"
wimacrosPresent="no" w:embeddedObjPresent="no" w:ocxPresent="no"
xml:space="preserve">

<o:DocumentProperties><o:Title>Heading 1</0:Title>

<o:Author>Sas Jacobs</o:Author>

The listing I've shown doesn't display all of the content of the Word document; it only lists the
introductory declarations. Feel free to repeat the test yourself to see the enormous amount of XML
generated by Word.

You'll notice that there is a processing instruction on the second line of the XML document that
instructs it to open in Word. If you double-click the file name, the XML document will probably open
in Word 2003. As | have XMLSpy installed, this doesn’t happen on my computer. However, if | tried to
use this XML document within Flash, the document would probably open in Word 2003 and skip Flash
altogether. I'd have to delete the processing instruction first.

A number of namespaces are listed in the XML document. These identify the elements in the
document. Each namespace has a unique prefix. For example, the prefix o refers to the namespace
urn: schemas-microsoft-com:office:office. The elements <o:DocumentProperties>, <o:Title>,
and <o:Author> use the prefix o so they come from this namespace. More information about name-
spaces is available in Chapter 2.

The document also includes a declaration to preserve space: xml:space="preserve". The last lines in
the listing are elements, and you'll recognize the information contained in tags like <o:Title> and
<o:Author>.

Scroll through the document and you'll see that it has sections such as <o:DocumentProperties>,
«w:fontsy, <w:stylesy, and <w:docPr>. The actual content of the document doesn’t start until the
<w:body> tag. WordprocessingML is descriptive, but contains a lot of information about the styling
applied within the document. It is concerned with both the data and the presentation of the data.

If you knew how to write WordprocessingML, you could create a document in an XML editor and open
it in Word. You could also edit the WordprocessingML from the Word document in your XML editor
as an alternative way to make changes to the document.

Facebook's Exhibit No. 1005
Page 0083

Page 83 of 140

---IIIIIIlIIIlIIIIIIIIIlIIIIIIIIIIIIIIIIIIII.....I..IIIIIII
GOOGLE EXHIBIT 1005

XML DOCUMENTS

working with the XML Toolbox

You can download a tool to work with XML directly in Word 2003. It is a plug-in called XML Toolbox,
which you can download from the Microsoft website at www.microsoft.com/downloads/
details.aspx?familyid=a56446b0-2c64-4723-b282-8859c8120db6&displaylang=en. You'll need to
have a full version of Word 2003 and the .NET Framework installed before you can use the Toolbox.
Installing the plug-in is very simple. You need to accept the license agreement and click the Install button.

Once you've installed the Toolbox, you'll have an extra
toolbar called the Word XML Toolbox. Figure 3-10 shows e -
this toolbar. You can use XML Toolbox to view the XML XL Toobox~ | 21 3 9 L2

elements within a document or to add your own content. Figure 3-10. The XML Toolbox toolbar in
Word 2003

Word XML Toolbox

Choose the View XML command from the XML Toolbox drop-down menu to see the
WordprocessingML from within Word 2003. Figure 3-11 shows the XML source.

—_—— e —— — = = E——

F, Micrasoft Word XML Toolbox - XAL Viewer = E"‘”‘al
~

(«?xml version="1.0" encoding="utf-16" standalone="yes"?>
[“7nso-applicazion progid="Woxrd.Document"?>
|«wiwordDacument =
zminz:w="http://achemas.micresoft.comn/office/word/2003/wordml"” I
rmins:v="urn:schemas-microsoZt-com:vml" xmlns:wl0="urn:schemes-micraosoft—
con:office:word”
wmina:gl="http://sckeras.microsoft.com/schemalikrary/2003/core”
smlns:aml="ht-p://schemas.microsoft.com/anl/2001/core"
wrelns:wx="http://sckeras.micrasoft.com/>fEice,/wcrd/2003/auxHint"
#mins:o="urn:schenas-ricrosoit-com:office:ozfice™
smins:dt="uaid:C2F41010-6533-1.d1-229F-J0AR00C14882" w:macrosPresent="no"
w:embeddedObj?resent="no" #:ocxPreszent="no" xnl:space="preserve">
<o:Docunment?roperties>

<o:Version>11.6358%</0:Version>
</o0:Cocum=nzProperties>
<w:fonts>

<w:defaulzFonts w:ascii="Times New Roman" w:fareast="Times New Roman"
wih-ansi="Times New Roman” w:cs="Times Nev Rorar” />
<wifont w:name="Verdana">

<w:panc3e-l wival="020B0604030504040204" />

<w:icharset w:val="00" />

<w:fanily wival="Swiss" />

<wipitch w:ival="variable" />

<wisiy w:iusb-C="20002287" w:usb-1="000000C0" w:usb-2="00C00002" v

.......... A AAARS e semranAAmA E

Copy 1o Clipboard “ SaveloFile | I Close

I Figure 3-11. The WordprocessingML viewer in Word 2003

You can use the XML document generated by Word 2003 in other applications. For example, you
could use Word to manage content for a web application or a Flash movie.

You're a little limited in the types of XML documents that Word 2003 can produce. Word doesn’t han-
: dle data that repeats very well. You'd be better off to use Excel 2003 or Access 2003 instead. It’s bet-
ter to use Word 2003 documents as a template or form for XML data. You can create the document
structure and set aside blank areas for the data.

Facebook's Exhibit No. 1005 69

I Page 0084 |

Page 84 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

Creating XML content by using a schema

If you have the stand-alone or professional versions of Word 2003, you'll be able to use schemas to
ensure that an XML document created in Word is valid according to your language rules. A schema will
also allow you to reduce the number of XML elements created from the document.

You need to follow these steps to create an XML document in Word 2003 using a schema:

1. Create a schema for the XML document.
2. Create a Word 2003 template that uses the schema.
3. Create a new document from the template and save the data in XML format.

The result is a valid XML document that is much smaller than its WordprocessingML relative.

Let’s look at this more closely in an example. Chapter 5 provides you with the step-by-step instructions
that you'll need to work through an example. The next section gives you an overview of the main steps
and isn’t intended as a tutorial.

Creating the schema

| used the following schema to describe the XML structure for my news item. The resource file
newsSchema.xsd contains the complete schema. You'll learn how to create schemas a little later in this
chapter.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
‘ <xsd:element name="news">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="newsDate" type="xsd:string"/>
<xsd:element name="newsTitle" type="xsd:string"/>
<xsd:element name="newsContent" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

The schema describes the following structure. The root element <news> contains the <newsDate>,
<newsTitle>, and <newsContent> elements. There can only be one of each of those elements, and
they must be included in the order specified. The elements all contain string data.

Creating the Word 2003 template

I've created a simple template called newsXML.dot to show a news item. It is made up of three form
fields to capture the date, title, and content of the news item. If you have Word 2003, you can open
the file to see how it looks. Use the CTri-SHIFF-X shortcut key to toggle the display of the XML tags. '

This template already has the schema applied, but I've included the instructions here in case you want
to re-create it yourself. We’ll cover this in more detail in Chapter 5. After you open the template, you’ll |
need to unlock it if you want to make any changes. Choose Tools » Unprotect Document.

70 Facebook's Exhibit No. 1005
Page 0085

Page 85 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

To apply the schema to a Word 2003 template, = =S
choose Tools » Templates and Add-Ins and select | Schema Settings

the XML Schema tab. Click the Add Schema but- [o e
ton and navigate to the schema file. Enter a URl or || ymi et feniverienaFeriicnn
namespace for the schema and an alias, as shown || .0 .~
in Figure 3-12. T ; ——
Chznges affect current user only
[ok | [cance]

Figure 3-12. Entering schema settings in Word 2003

When you've finished, the schema alias should [+ T ; T |
appear in the Templates and Add-Ins dialog box, | Templates and Add-ins @w

as shown in Figure 3-13.

XML Expansion Packs Linked CSS
Templates | XML Schema

Avallable XML schemas |

Checked schemas are currently attached:

s B

Schema Library...
XML Options...]

! =
foe

URL http:// vy friendsofed.com
Path: E:\...\Flash XML Book\ch02 resources\newsSchema,xsd |

Schema validation options |
Validate document against attached schemas
|:| Allow saving as XML even if not valid ‘

Qrganizer... |:0K" 'I ! Cancel]|

Figure 3-13. Attached schemas in Word 2003

To streamline the XML produced by this document, click the XML Options button and choose the
Save Data Only option. This excludes formatting information from the output. Make sure that
Validate document against attached schemas is also checked.

You can only apply the XML tags if you have selected the Show XML tags in the document option in
the Task Pane. If you can't see the Task Pane, choose View » Task Pane and choose XML Structure
from the drop-down menu at the top.

L First, you need to apply the root element to the entire document. Select all of the content, right-click,
and choose Apply XML element. Select the news element. When prompted choose Apply to Entire
Document. You should see the content surrounded by a shaded tag, as shown in Figure 3-14.

Facebook's Exhibit No. 1005 71
Page 0086

Page 86 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

E‘J'Fiemxm. cot Microsof:\Word - e i g:fill ’EES

] TOT SR L LR S = VIR AT B A

SRS

s Trlers e bwere

\Limeny
Eilan L Ul et

- E it Qo e el 2/ 0 g

-
B V) shen <h.tagemtrc
= ecamect
-
Covce 20 demanzto 203k
et A
| e
~ Jo] Temnae »
= nemitc
o L oesrnbec
3 7] ke ehid sbnien= o
') weeen: tlz e
= oz g " 3 A Cprans
I Diawr il Autoshepes Uy N (RS RERE IS [ahd A
o

ge 3 3 al Hiam 11y fan u G ngEiee 4

Figure 3-14 The content marked up in Word 2003

Then you can apply the other elements to each part of the Word document. Select the fields, one by
one, and apply the tags by right-clicking and selecting Apply XML element. When you've finished, the |
document should look similar to the one shown in Figure 3-15.

E'f RewsHAL col MicrosofsWord . R—— iy :j. Lm

e LF wew mer amer ek Ighe WynTaR Lep 3ax B3 AT LTS T € ueti i ivh H
i s En s A A0S ROTRTEE 1), L Y) - i
-y v Pate TR = AL LR mu
i

W nﬁbﬂmﬂl - 'l=

G Ee @tne bt
‘ 3 1w {us

e

el |

s Bk

' e peas mzl Sy

Fule e unien e e

% </} stow s tzesintre
E recumet
|
o
e |
)
= |
s
R ivbeny hid e o
‘. uren: 2T
el ™M Cptane |

=
Do detoshepese o e ol B UL M 2 LA =ik g
gt e b L I IR i Cegmiue 3

Figure 3-15. The completed template in Word 2003

7 Facebook's Exhibit No. 1005
Page 0087

Page 87 of 140

GOOGLE EXHIBIT 1005

XML DOCUMENTS

The result is a template that maps to an XML schema. Don’t forget to lock the fields before you save
and close the template. Choose View » Toolbars » Forms and click the padlock icon.

Creating XML content from a new document

Once you've created the template, you can generate XML content from documents based on this
template. Choose File » New and select the news template. When the new document is created, all
you have to do is fill in the fields. You can hide the XML tags by deselecting the Show XML tags in the
document option in the Task Pane.

Output the XML by choosing File > Save and selecting the XML document type. Make sure you check
the Save data only option before you save. You'll see the warning shown in Figure 3-16. Click
Continue.

Werowomoterword ey

—
«A Waring: Saving the file as data ony or through & tuston Tansformation (XSLT) may
result in the loss of Jozument features such as formatira, pidures, anc objects. ¥ you
wan: to preserve all document features, dick Catcel and ther. save the file as a Word
Documant.

[pmme | cme]

Figure 3-16. You'll see this warning when saving in XML format
with a schema in Word 2003.

The resource file NewsItem.xml contains the competed XML document from Word 2003. The follow-
ing listing shows the content:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<news xmlns="newsSchema">
<newsDate>July 4, 2005</newsDate>
<newsTitle>Fireworks extravaganza!</newsTitle>
<newsContent>US expats in Australia celebrated the 4th of July
with firework demonstrations throughout the country.</newsContent>
</news>

Compare the structure and content of this XML document with the one that didn’t use a schema,
simpledocument.xml. The tag names in this document are more descriptive, and it is significantly
shorter than the WordprocessingML document. It would be very easy to use this XML document
within a Flash movie. Using simpledocument.xml would be much harder.

We'll cover the step-by-step instructions for creating XML from Word 2003 in much more detail in
Chapter 5.

Excel

If you own Excel Professional or Enterprise edition, you'll be able to work with XML documents. Again,
you can’t use the trial edition of Excel 2003. As with Word, you can save an Excel file in XML format so
that you can use it on the Web or in Flash. You can also use Excel to open an XML document so that
you can update or analyze the information.

Facebook's Exhibit No. 1005 73
Page 0088

Page 88 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

74

Excel document structures are very rigid. They always use a grid made up of rows and columns. This
means that the structure of XML data generated from Excel will match this format. In Word, it's possi-
ble for you to include elements within other elements or text. For example, you could display this XML
structure using Word:

<title>
This is a title by
<author>Sas Jacobs</author
</title>

In Excel, the smallest unit of data that we can work with is a cell. Cells cant contain other cells, so our
XML document structure with mixed content can’t display properly in Excel. Any XML document gen-
erated from Excel will include grid-like data.

Excel uses a document map to describe the structure of XML documents. A document map is like a
simpler version of a schema.

In this section, I'll show you how to work with existing XML documents in Excel. It's an overview of the
functionality that's available rather than a complete tutorial. You'll find more detailed information in
Chapter 6.

Creating an XML document using Save As

As with Word, the easiest way to create an XML document from Excel is to save it using the XML
document type. Choose File » Save As and select XML in the Save as type drop-down box. I've
done this with the file simplespreadsheet.xls; you can see the resulting XML document saved as
simplespreadsheet.xml.

You'll notice that a simple Excel document has created a large XML document. This listing shows the
first few lines of the XML document:

<?xml version="1.0"?>
<Mmso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet”
xmlns:o0="urn:schemas-microsoft-com:office:office"
xmlns:x="urn:schemas-microsoft-com:office:excel”
xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet”
xmlns:html="http://www.w3.0rg/TR/REC-html40">
<DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">
<Author>Sas Jacobs</Author>
<LastAuthor>Sas Jacobs</LastAuthor>

The second line of the file is a processing instruction that instructs the file to open in Excel:
<?mso-application progid="Excel.Sheet"?>

As with Word, a number of namespaces are referenced in the XML document. The element names
<DocumentProperties> and <Author> are self-explanatory. The XML document includes information
about each sheet in a <Worksheet> element. There are descriptions for <Table>, <Column>, <Row>,
<Cell>, and <Data>, and Excel methodically describes the contents of each worksheet by column and
by row. This is how Excel translates the grid style of Excel documents into XML. What we're most inter-
ested in is the contents of the <Data> elements; they contain the values from each cell.

Facebook's Exhibit No. 1005
Page 0089

Page 89 of 140

GOOGLE EXHIBIT 1005

XML DOCUMENTS

As with Word, you'll notice that Excel generates a long XML document. It’s hard for humans to read,

and extracting the content would be a lengthy process. Again, using a schema will reduce the quantity
of data generated by Excel 2003.

You can use Excel to open an existing XML document. [T0i s
Before displaying the data, Excel will ask you how you WDR—
want to open the file, as shown in Figure 3-17. The | please select how you would like to open this file:
process will be a little different depending on whether | (8)jas an XML list

the document references a schema. () As a read-only wworkbook

() Use the XML Source task pane
OK Cancel Help

Figure 3-17. Excel 2003 asks how an XML file should be opened.

Opening an XML document with a schema
You use these steps to work with an XML document in Excel:

1. Optionally create a schema for the XML document.
2. Open the file in Excel.
3. Make changes to the content and export the XML file,

If you open the file as an XML list, Excel will use any related schema to determine how to display data.
The following listing shows address.xml. It uses the schema addressSchema.xsd. Figure 3-18 shows
how this file translates when opened in Excel.

<?xml version="1.0" encoding="UTF-8"?>
<phoneBook xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="addressSchema.xsd">
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>
</contact>
<contact id="2">
<name>John Smith</name>
<address>4 Another Street, Another City, Another Country</address>
<phone>456 789</phone>
</contact>
<contact id="3">
<name>Jo Bloggs</name>
<address>7 Different Street, Different City, UK</address>
<phone>789 123</phone>
</contact>
</phoneBook>

Facebook's Exhibit No. 1005 75
Page 0090

Page 90 of 140 GOOGLE EXHIBIT 1005

e

CHAPTER 3

T ST —

H B Bt Vey nset Format Toos Dam Vidow Hep AdapePOF

BN |

===
L B

'Hn':.ﬁ:..—r-‘—rr——r-‘;—_ﬂ
XML Map Properties i oo T E;

Name: | shuiwBouk_Map

XML ccha e valis
e
Data source
Zavz Joto source definbor n vokaoo<
Data fermazting and lacut

2d:us canma v dth

=reserve cokmn fiter
Freera g v Fornialling

Yhen refrestirg o” importirg data:
(3) Dverys-te exidting rata vty e can
") Appcnd neve €ata 10 exshiig XML bss

R] [ran3el l

76

Al - 7A Y
A 8 __| L [T t I i LW
id |=|name - |addrass _=/phone |= r %‘“‘“‘“
1/ 5as Jaccbs 121 Some Srest, Seme City, Some Ceuntry 123456
2 John Smth |4 Another Srect, Ansthar City, Ancther Ceunry | 456 760 XM e ps nﬂiq mramm_: :
3 JoBieggs 7 Oifferent Street. Different City, UK | 729123 |E'I°1iwk Hzp [wl
e | ; | 1 5 prhoncieak
| = tact
2
A name
1 paaress
= 4 phone
42
el
24
B —
=i To mef rapeztirgelemarts,
16 A7 toa 2lameats troct Ih= ‘res
47 0710 the wzrizhzet share pou
ETY wonl Ui dzla ecding: W
; 22pewr
0 o impo= dnea, 1w the Tmaat
= ' o XMLDZab.noncnthe List
2 A ‘ P ; toskar
i 4 ¢ H\Sheetl/ Sheet? / Sheet3 / |« a |] =
Reaty i
! Figure 3-18. An XML document displayed in Excel 2003

Excel automatically creates a document map for the elements from the schema. You can see the docu-
ment map in the XML Source Task Pane. Excel has also added an automatic filter to the column headings.
You can select specific content from the XML document by choosing values from the drop-down lists.

You can make changes to the existing data in Excel or even add new data. Be careful how you gener-
ate the XML document. If you use Save As and choose the XML type, you'll re-create the current con-
tent using SpreadsheetML. It will produce a large document that doesn’t match your schema. Instead,
you should export the data as shown in the next section.

Exporting XML data with a document map

Before exporting the data, you'll want to make sure the changes
you've made are valid against the schema. Right-click inside your data
and choose XML » XML Map Properties. Check the Validate data
against schema for import and export option. This option isn’t
checked by default. You can also find XML Map Properties in the
Data » XML menu. Figure 3-19 shows the XML Map Properties dia-
log box.

Figure 3-19. The XML Map Properties dialog box in Excel 2003

Facebook's Exhibit No. 1005

Page 0091 .

GOOGLE EXHIBIT 1005

Page 91 of 140

XML DOCUMENTS

To export the XML document, right-click in the data and choose XML » Export. Enter a file name,

choose a location, and click Export. Excel will generate an XML document that is valid according to
your schema.

| used Excel to update the address.xml file and exported the data to the resource file
addressExportedFromExcel.xml. If you look at the XML structure, you'll see that it's almost identical
to that of the address.xml file. Figure 3-20 shows them side by side in XMLSpy.

: He Edt XML DTD/Screra Sthemadsin XSLXQuary Acthentic Mes Bowsar Took ACVANCED Wintow Heb

<l ver si 1.0
<plhunuBusk g
Fillp. /iwde w3 o1

addr-ss[x:o’tedl—'r = aml

honl verson="1.0" eocwlng="0TF &' stuncukne="y
phiuniuBuvk::
2CC1I/XMLS lismia-inslanes” <conldsl id="1"»
RN R CRIE vl ucalon"gddress Seliy 1 xed"™ <iranw>Sas Jacubs<naing:>
<eontanl azhlrnss2 173 Suna Shesl, Seine Cily, St Conmliy</
<@g Sas Javobs<naiie el U oss>
<addiess> 123 Sune Shiesl, Seie Cily, Svie Counlivsy <phune=125 18€</plrniv>
addrass® <jcontact>
<phoneg>123 4%6-%phong> <conlact id-"2">
</contacl> <name>Joh1 Smith<mamz*>
<confacl kI-'2"> <ezddress>4 Another Streat. Another City, Another Country</
<namea>.John Srith</nama> edireass
<address>4 Ancther Street, Another City Another Country<! <phone>d4Ll /8Y¥</phone>
address> < contact>
<phong»4bt /4< phonz> <conlazt kKi="4">
</conact <name>Jd BIaggs</name>
<eontact d="3"> <zddress> / Ditterent Sireet, Uitterent City, UK </address>
<name>.Jo Ulcggs</nanme> <phone> /1Y 12214<¢,phone>
<address>7 Different Street, Differant (City, UKC</addrass> <,cortact>
“phon2>78¢ 123</phong> “<conlact ki="4">
4/contact>

<name=>Mike Creen<,neme>

</phnnsBone <rddress>31 Riack Rnad, Soma City, Soma Colintry</
iirRsS:
<phane>0R1 234<iphone>
Airontact>
=/phansfonks
[Tt | Sewmati) | Awhete Neewser | Temt | GcraraWSRI | Auhedte Nemwsar |

(L adrirsealy rerteamiCeestem (St ressam|

XMLSpy 2005 2 U Regiler=d L.:Seb Jacole AP} @1998-2005 Aluva GnibH & Alov, Ik, 1, Co: UM

Figure 3-20. The original and updated XML documents open in XMLSpy
Opening an XML document without a schema

If you open an XML document that doesn’t specify a schema, Excel will create one based on the data.
Figure 3-21 shows the warning that Excel will display.

The cpedified XML source Jozs not refer to a schaema, Excd will create a schema
bosed on the XML source data.

[1 v e future, du it stow this messeye.

| " Help !

Figure 3-21. Excel 2003 will create a document map for an XML file
if a schema doesn’t exist.

Facebook's Exhibit No. 1005 77
Page 0092

Page 92 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3 |

When the data is imported, Excel creates a document map and figures out how to display the data. |
You can try this with the resource file excelImport.xml. This listing shows a simple XML document
without a schema:

<?xml version="1.0">
<ImportData>
<Column>
! <titlesJan</title>
«data>1234</data>
</Column>
<Column>
| ctitle>Feb</title>
<data>5678</data>
</Column>
| <Column>
| ctitlesMar</title>
<data»9123¢/data>
</Column>
</ImportData>

Figure 3-22 shows the XML document after importing it into Excel. I've saved the imported file as
resource file excelImport.xls

The document map created by Excel displays in the XML Source Task Pane. If it's not visible, you can
show it by choosing View » Task Pane and selecting XML Source from the drop-down menu at the
{ top of the Task Pane.

B ity W~ X

(=i [t Yen el Towat Joos Com Wordow |Eb AdobePDP A e N - o 8

DAL IERIZE sabe s SotlfEs
FETEIS I A e e Y 2 W .
wd sw =B J U|=EESS
(=] - /e
S AT ="
| 1 [titte ciala 1
2 |.an 12
3 |reh 5670 i
£ |Mar w3 |
5 | 5 5 Impovt Wt
Sl i & &2 Cohum
| & | - fitte
3 | L dia
i)
0 |
=L |
B4
puhl |
L = |
= = !
|78, = | L Turwpeie e b oyl
iE o arank n o tioe o
8 | I = TN srTIEaEe.
) | | _ . Verryhm>x Spa..
2 fic L . —
W« v n\Sheat1 /Shest? f Sheets / [i QIR @ ™% wwmn |
-7 - [M-t OFice Outizok |

Figure 3-22. An XML file without a schema imported into Excel 2003 |

78 Facebook's Exhibit No. 1005 ‘
Page 0093

A |

Page 93 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

working with mixed elements
If you use Excel to open an existing XML document, make sure that it conforms to a grid structure.
excel will have difficulty interpreting the structure of an XML document that contains text and child

elements together in the same parent element.

This listing shows the file addressMixedElements.xml. As you can see, this document includes mixed
content in the <address> element. It contains both text and a child element, <suburb>.

<?xml version="1.0" encoding="UTF-8"?>
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street,
<suburb>Some City</suburb>
, Some Country</address>
<phone>123 456</phone>
</contact>
<contact id="2">
<name>John Smith</name>
<address>4 Another Street,
<suburb>Another City</suburb>
, Another Country</address>
<phone>456 789</phone>
</contact>
</phoneBook>

Figure 3-23 shows the file opened in Excel 2003. The <address> element and text is missing; only the
child element <suburb> displays.

[Mcrorokbxcel - Books S . %

PESFR ECL Vonw Bl Fartd T Do Wikew R Aol POF vieamerralrhdh v o 8 X
ER S NENE I DM ATy TREFTIOR 2 JIEe ﬁ_&l_:)_ljl_ﬂj},;cm-ﬁﬁ
iadoi i d) b B el T Renia s 7
4 21 xR 0 S = ; o :
X - % ol
A B | [D E | F Qa | H] 1] T i " -
1 fid [|name lsuburk [+ phone = L m_J“
2 1 e Sane Gty 125 4088
¥ 2 Johu Stk [anwthie Cilly 456 79 AL maga it erideck
|4 = Frenpioch_tamp I;'
- S I3 phorsriont
|6— & b et
14 ! } aw
|0 - v
] = b vidiesi
| 10 2 suburl
i1 = phane
i
JIRE
4
e
2 T3P CEpATLR € EMeUs,

L] drog he ehinents from thé iree
1/ or0 tye saristeet vhe e yu
[1¢ I I | vie d Une I e lue Faup u
= 1 apwan
_ Tairdent oxte use the Imort
2 XU Lstz buton 3 T L st
e N o ; = . | f teokar.
M < ¢ K\ Sheetl; Sneet2 / Sheet3 / |‘ X L | e
Fusty Lo

Figure 3-23. An XML document with mixed elements doesn’t display correctly in Excel 2003.

Facebook's Exhibit No. 1005 79

. Page 0094

Page 94 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

If you export the data to an XML document, Excel will only save the elements displayed. The following
listing shows the exported file addressMixedElementsExported.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<phoneBook xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<contact id="1">
<name>Sas Jacobs</name>
<address>
<suburb>Some City</suburb>
</address>
<phone>123 456</phone>
</contact>
<contact id="2">
<name>John Smith</name>
<address>
<suburb>Another City</suburb>
</address>
<phone>456 789</phone>
</contact>
</phoneBook>

The text within the <address> element is missing. Excel has also added a namespace to the root element.

Using Excel VBA and XML

You can use VBA to work with XML documents. For example, you could handle the importing of XML
documents automatically. Excel 2003 recognizes the XMLMaps collection, and you can use the Import
and Export methods to work with XML documents programmatically.

Access

Access 2003 works a little differently than the other Office applications when it comes to XML. The
XML documents generated by Access come directly from the structure of your tables and queries. The
names of the elements in the resulting XML document come from the Access field names.

This section gives you an overview of the XML functionality available within Access 2003. It isn't a com-
plete reference or tutorial. I'll cover the topic in more detail in Chapter 7.

Exporting XML data

Getting data out of Access and into XML is easy—you just export it in XML format. You need to follow
these steps:

1. Display the table or query objects.

2. Right-click a tabte or query and select Export.

3. Select XML as the file type and choose a destination and file name.

4, Optionally select options for export.

Figure 3-24 shows how to export a table.

80 Facebook's Exhibit No. 1005
Page 0095

Page 95 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS
[T T e T B VT Y e e S T Py T — v — Y
R T e e T—— S
T]:'E fct Yew Ireet Took Wrdow Hep lypez queshonforhap « o & X
£ Yo b
\Bopen W Desgn Tpew| K -. U IR
Oeds] Create @bk © Desn view
B Credlp laine iy Lo vaieal)
LI @ Create @bk oy erterng csa
A Queres || - 1
anibors
|13 ems |3 =
@ Keports | & -
%3 pagss
| 2 Magos
. Moces
‘._’(——. L) Pt Prevew
Gk — —
e s a o
& Farorie
R& cory
" SaveAs..
Bt
| s24d T ’
Kl laGronp »
Qeatz Shotout..
b BTN
Renarme
" Pop=tes
Cib]=T Depenconses..
| i Liked Taniz “2as3er —
Heacy RUN

Figure 3-24. Exporting a table in Access 2003

After you chose the Export option, you'll have to enter
a file name and choose a destination for the XML file.
Don't forget to select XML from the Save as type
drop-down list. When you click Export, you'll be asked
to choose between exporting the data (XML), a schema [Z]Schema of tac data XSD)

(XSD), and presentation of the data (XSL). See Figure [Jeresentatian of your data (X5L)

3-25 for a view of the Export XML dialog box. —— —

lﬁoreOat‘nns.. [0K [Carcel J

Figure 3-25. Export options in Access 2003

Setting export options

You have some extra options that you can view by clicking the More Options button. Figure 3-26
shows these options. You can also include related records from other tables and apply an XSL trans-
formation to the data.

Facebook's Exhibit No. 1005 81
Page 0096

Page 96 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

Data |Schema | Presentation| :

Export Data
Data to Export: Records To BExport:

thiDocuments - (@) Al Records
= [Lookup Data]
tblAuthors

Iq%tmcategories C acord |

| sl _'._;' Encoding: |UTF-B [

Export Location:

C:\Documents and Settings\administrator\Desktop\accessDocumentsExport.xml ‘

[Help } | OK l Cancel

Figure 3-26. Export options in Access 2003

\

i The Schema tab allows you to include or exclude primary key and index information. You can also
| embed the schema in your XML document or create an external schema. Figure 3-27 shows these
options.

Data ! Schema E’resenlation:

‘ [“] Export Schema |
[“]Include primary key and index information

Export Location: ‘

‘ L'_) Embed schema in exported XML data document |

| () Create separate schema document i

‘ accessDncumentsExporthsd

1‘ e = —
|

| Help J | 0K] [Cancel
Figure 3-27. Schema export options in Access 2003
82 Facebook's Exhibit No. 1005 '
Page 0097 : |

R e Bl e o RN s e

Page 97 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

The Presentation tab, shown in Figure 3-28, allows you to generate HTML or ASP and an associated
style sheet.

S LI IRAY
"[v] Export Presentation (HTML 4.0 Sample XSL) ‘

| Data | Schema| Presentation I

| (‘nfmm: &)
||| @dlient (ML) |
1\ O server (AsP) | ‘

| ¢ Include report images: ----— - -

. Export Location: |

|
i i |iccesstumenEE;purﬂg __: __J} [i
|

I Help ___] l : OK I I Cancel]

Figure 3-28. Presentation export options in Access 2003

| used the Access database documents.mdb and exported the records from tblDocuments. | included
the related records from other tables and created both an XML and an XSD file. The resulting XML
documents are called accessDocumentsExport.xml and accessDocumentsExport.xsd, respectively. If
you have Access 2003, you can use the documents.mdb database to create the XML files yourself.

This listing shows a section of the sample XML document created by the export:

<?xml version="1.0" encoding="UTF-8"?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="accessDocumentsExport.xsd"
generated="2005-03-04T18:10:06">
<tblDocuments>
<documentID>1</documentID>
<documentName>Shopping for profit and pleasure</documentName>
<authorID>1</authorID>
<documentPublishYear>2002</documentPublishYears
<categoryID>4</categoryID>
</tblDocuments>
<tblAuthors>
<authorID>1</authorID>
<AuthorFirstName>Alison</AuthorFirstName>
<AuthorlLastName>Ambrose</AuthorLastName>
<AuthorOrganization>Organization A</AuthorOrganization>

Facebook's Exhibit No. 1005 83
Page 0098

Page 98 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

</tblAuthors>
<categoryID>4</categoryID>
<category>Shopping</category>
</tblCategories>
</dataroot>

The only thing added by Access is the <dataroot> element. It contains two namespace references and
annumumcmmdgawrnedTmsEaﬁmeﬂmnphrmeXMLdmmmem.

Because | included records from tables related to tblDocuments, Access added the table references as
separate elements at the end of the XML document. The one-to-many relationships between the
tables aren’t preserved. Figure 3-29 shows the relationships in the database.

i< (b [dt Vew Rehtonships Took Wrdon Lieb
3 § - i

-5

(Al uilesiNar e
|Aull urOryonizelun

_ docomenttiame

m

suthor:
docamentPublishtear
cotegonD

th'Authcts thiDocuments

P . 5 ; Al
aullurD) Lt /.— |
Aull urFilsitfan & e 7 ARy

(thlCatagaries

84

‘['\ .I;.| |

Ready NUM Tgioh)

Figure 3-29. The relationships between tables in the documents.mdb database

Controlling the structure of XML documents
XML documents exported from Access are shorter than their Word and Excel equivalents. The ele-
ments in the XML document take their names from the field names in the table or query. Access

replaces the spaces in field names with an underscore (_) character.

If you don't want to use the default field names in the table, an alternative is to create a query first
that joins all the data and then export that to an XML document. Access won't give you the option to
export data in linked tables, but the rest of the process is much the same as for exporting tables.

The following listing shows a trimmed-down version of the XML document, accessQryBook-
DetailsExport.xml. You can also look at the schema file, accessQryBookDetailsExport.xsd

<?xml version="1.0" encoding="UTF-8"?>
«dataroot xmins:od="urn:schemas-microsoft-com:officedata"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=“accesserBookDetailsExport.xsd"
generated="2005-03-04T18:50:47">
<qryBookDetails>
<documentID>2</documentID>
«documentName>Bike riding for non-bike riders</documentName>
<authorID>4</authorID>

Facebook's Exhibit No. 1005

Page 0099
_. R % —

Page 99 of 140

GOOGLE EXHIBIT 1005

XML DOCUMENTS

<AuthorFirstName>Saul</AuthorFirstName>
<AuthorLastName>Sorenson</AuthorlLastName>
<AuthorOrganization>Organization D</AuthorOrganization>
<documentPublishYear>2004</documentPublishYear>
<categoryID>5</categoryID>
<category>Bike riding</category>
</qryBookDetails>
</dataroot>

This XML document organizes the data by document and shows the relationships between the related
tables. You could also have organized the data by author or category.

For an example of documents organized by author, see the resource file accessQryAuthorDocuments . xml,
shown in the listing that follows, and the resource file accessQryAuthorDocuments. xsd.

<?xml version="1.0" encoding="UTF-8"?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="accessQryAuthorDocuments.xsd"
generated="2005-03-04T18:53:15">
<qryAuthorDocuments>
<authorID>1</authorID>
<AuthorFirstName>Alison</AuthorFirstName>
<AuthorLastName>Ambrose</AuthorLastName>
<AuthorOrganization>Organization A</AuthorOrganization>
<documentID>4</documentID>
<documentName>Fishing tips</documentName>
<documentPublishYear>1999</documentPublishYear>
</qryAuthorDocuments>
<qryAuthorDocuments>
<authorID>1</authorID>
<AuthorFirstName>Alison</AuthorFirstName>
<AuthorLastName>Ambrose</AuthorLastName>
<AuthorOrganization>Organization A</AuthorOrganization>
<documentID>1</documentID>
<documentName>Shopping for profit and pleasure</documentName>
<documentPublishYear>2002</documentPublishYear>
</qryAuthorDocuments>
</dataroot>

Writing queries still doesn’t quite solve our problem. A better structure for the XML file from Access
would have been to group the documents within each <authorID> element. Access doesn’t do this
automatically.

Using Access VBA and XML

You can automate XML importing and exporting with Access 2003 VBA. Access recognizes the
Application.ImportXML and Application.ExportXML methods. You can trigger them from buttons
on a form. It's important to note that VBA can’t transform an XML document during the import
process.

Facebook's Exhibit No. 1005 85

. Page 00100

Page 100 of 140 GOOGLE EXHIBIT 1005

T ——

CHAPTER 3 |

InfoPath

Office 2003 for PCs includes a new product called InfoPath that allows people to create and edit XML
documents by filling in forms. The forms allow you to collect XML information and use it with your
other business systems.

InfoPath is included in Microsoft Office Professional Enterprise Edition 2003, or you can buy it sepa-
rately. There is no equivalent product for Macintosh Office 2004 users.

Office 2003 and data structure

Office 2003 can generate XML documents for use by other applications, including Flash movies. If you
set up Word, Excel, or Access properly, your users can maintain their own XML documents using Office
2003. Most people are familiar with these software packages, so it's not terribly demanding for them
to use them as tools for maintaining their data.

As you can see from the previous sections, each of the Office applications works with particular data
structures. Word 2003 works best with nonrepeating information, a bit like filling in a form to gener-
ate the XML elements. Excel 2003 is best with grid-like data structures that don't include mixed ele-
ments. Access 2003 works with relational data, and you can write queries to specify which data to
export. Using a scherma in Word and Excel greatly simplifies the XML documents that they produce.
we'll look at creating schemas a little later in this chapter.

Consuming a web service

You've probably heard the term web services rentioned a lot. The official definition from the W3C at
| www.w3.0rg/TR/ws-gloss/#defs is

A Web service is a software system designed to support interoperable: machine-to-machine interaction
over a network. It has an interface described in @ machine-processable format (specifically WSDL). Other

systems interact with the Web service in @ manner prescribed by its description using SOAP-messages, typ-
ically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.

In simpler terms, a web service is a way for you to access data on another system using an XML for-
mat. Web services operate over the Internet and are platform independent. In order to use a web
service, you request information and receive a response in an XML document.

You can use web services to look up a variety of information, including television guides, movie
reviews, and weather updates. As an author, | can use Amazon's web service to find out the sales rank-
ing and database details for any books that I've written.

When you start reading about web services, you'll see the terms UDDI, WSDL, SOAP, and REST. A glossary
for the main terms associated with web services is at www.w3.org/TR/2004/NOTE-ws-gloss-20040211/.

You can find out what web services are available through a company's Universal Description,
Discovery, and Integration (UDDI) registry. The UDDI contains a description of the web services that
are available and the way that you can access them.

Web Services Description Language (WSDL) describes web services in a standard XML format. In case
you're interested, most people pronounce this as whizdle. At the time of writing, the working draft for
WSDL version 2 was available at www.w3 .org/TR/2004/WD-wsd120-20040803/.

86 Facebook's Exhibit No. 1005

Page 00101 .

Page 101 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

The WSDL definition explains what is available through the web service, where it is located, and how
you should make a request. It lists the parameters you need to include when requesting information,
such as the fields and datatypes that the web service expects.

You can request information from a web service using a number of different protocols. The SOAP pro-
tocol is probably the most commonly used and has support within Flash. You can also use
Representational State Transfer (REST), but Flash doesn’t support this format natively.

SOAP, which stands for Simple Object Access Protocol, is a format for sending messages to web serv-
ices. A SOAP message is an XML document with a specific structure. The request is contained within a
part of the document called a SOAP Envelope.

You can find more about SOAP by viewing the note submitted to the W3C at www.w3.org/TR/2000/
NOTE-SOAP-20000508/. This document isn't a W3C recommendation. At the time of writing, a working
draft of SOAP version 1.2 was available at www.w3.0rg/TR/2002/WD-soap12-part1-20020626/.

REST is another way to work with web services. It is not a W3C standard; rather, REST is a style for
interacting with web services. REST allows you to make requests through a URL rather than by sending
an XML document request. Flash doesn't support REST requests, but you'll see a little later on that
they can be very useful if you need to add data from a web service to a Flash movie.

Using web services to interact with Amazon

Amazon jumped into web services relatively early on. At the time of writing, the latest version of the
Amazon E-Commerce Service (ECS) was version 4.0, which was released on October 4, 2004. You can
find comprehensive information about ECS at www.amazon.com/gp/aws/landing.html. It's free to use,
but you have to register with Amazon first to get a subscription ID before you can start making
requests.

The ECS provides access to information about products, customer content, sellers, marketplace list-
ings, and shopping carts. You could use ECS to build an Amazon search and purchase application on
your own website.

The WSDL for the US. service can be found at webservices.amazon.com/AWSECommerceService/
AWSECommerceService.wsdl. You can open the file in a web browser if you want to see what it
contains. The schema for the U.S. service is at webservices.amazon.com/AWSECommexceSexrvice/
AWSECommerceService.xsd. Again, you can view this file in a web browser. The other Amazon locations
supported are the UK, Germany, Japan, France, and Canada.

The Application Programming Interface (API) for Amazon web services describes all the operations
you can perform. This includes functions like ItemLookup and ItemSearch. You can also work with wish
lists and shopping carts.

To make a REST query to search for an item at Amazon, you could use the following URL format:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService
&SubscriptionId=[YourSubscription ID Here]&Operation=ItemSearch
8SearchIndex=[A Search Index String]&Keywords=[A Keywords String]
&Sort=[A Sort String]

Facebook's Exhibit No. 1005 87

. Page 00102

Page 102 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

The request can include other optional parameters, and you can find out more in the online docu-
mentation. You can also get help by using the Help operation.

In the sample request that follows, I'm using my own name to search for books in the U.S. Amazon
database. | have replaced my subscriptionlD with XXXX; you'll need to use your own ID if you want to
run the query.

http://webservices.amazon.com/onca/xml?Service=AwSECommerceService
&SubscriptionId=XXXX&Operation=ItemSearch&SearchIndex:Books
| &Author=Sas%20Jacobs

If | enter the URL into the address line of a web browser, the request will run and the results will dis-
play in the browser window. All Amazon responses have the same structure, as shown in this listing:

<?xml version="1.0" encoding="UTF-8">
<rootTag xmlns="http://webservices.amazon.com/AWSECommerceService/ =
2004-03-19">
<OperationRequest>
... XML header and HTTP request information
</OperationRequest>
<Items>
... XML data here
</Items>
</rootTag>

The name of the root element will vary depending on the type of request that you made. For example,
an ltemSearch request will use the root element name <ItemSearchResponse>. If there are any errors
in your request, they'll be contained inside an <Errors> element.

When | made the preceding REST request, | received the response shown in the following listing. Note
that 've removed the sections containing the subscriptioniD from the listing. I've saved the results in
the file AmazonQueryResults.xml

<?xml version="1.0" encoding="UTF-8" ?>
<ItemSearchResponse xmlns="http://webservices.amazon.com/ ‘=
AWSECommerceService/2005-02-23">
<OperationRequest>
<HTTPHeaders>
<Header Name="UserAgent" Value="Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.1; SVi; .NET CLR 1.1.4322)" />
</HTTPHeaders>
<RequestId>05BXE60PQPM6P687]1PAC/RequestId>
<Arguments>
<Argument Name="Service" Value="AWSECommerceService" />
<Argument Name="SearchIndex" Value="Books" />
<Argument Name="Author" Value="Sas Jacobs" />
<Argument Name="Operation” Value="ItemSearch" />

</Arguments>
<RequestProcessingTime>0.0390307903289795</RequestProcessingTime>
</OperationRequest> |
88 Facebook's Exhibit No. 1005

Page 00103

Page 103 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

<Items>
<Request>
<IsValid>True</IsvValid>
<ItemSearchRequest>
<Author>Sas Jacobs</Author>
<SearchIndex>Books</SearchIndex>
</ItemSearchRequest>
</Request>
<TotalResults>2</TotalResults>
<TotalPages>1</TotalPages>
<Item>
<ASIN>8931435061</ASIN>
<DetailPageURL>http://www.amazon.com/exec/obidos/redirect?
tag=ws%261ink_code=xm2%26camp=2025%26creative=165953%26path=
http://www.amazon.com/gp/redirect.html%253fASIN=8931435061%252
location=/0/ASIN/8931435061%25253F
</DetailPageURL>
<ItemAttributes>
<Author>Sas Jacobs</Author>
<Author>YoungJlin.com</Author>
<Author>Sybex</Author>
<ProductGroup>Book</ProductGroup>
<Title>Flash MX 2004 Accelerated: A Full-Color Guide</Titles
</ItemAttributes>
</Item>
</Items>
</ItemSearchResponse>

It's common to query web services using a SOAP request. Usually some kind of server-side script gen-
erates the request for you. The WebServiceConnector data component in Flash can also generate
SOAP requests.

Google provides an example of a web service that you can query with SOAP. At the time of writing,
Google provided three different operations: doGetCachedpage, doSpellingSuggestion, and
doGoogleSearch. You can see the WSDL at http://api.google.com/GoogleSearch.wsdl.

The W3C provides a sample SOAP message for Google at www.w3.0rg/2004/06/03-google-soap-
wsdl.html. This listing shows an example based on the W3C sample. It does a search for the term
Flash XML books:

<?xml version='1.0"' encoding='UTF-8'?>
<soap11:Envelope xmlns="urn:GoogleSearch"
xmlns:soap11="http://schemas.xmlsoap.oxrg/soap/envelope/">
<soap11:Body>
<doGoogleSearch>
<key>00000000000000000000000000000000< /key>
<gq>Flash XML books</q>
<start>o</start>
<maxResults>10</maxResults>
<filter>true</filter>

Facebook's Exhibit No. 1005 89

I Page 00104

Page 104 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

90

<restrict></restrict>
<safeSearchy>false</safeSearch>
<lr></1r>
<ievlatini</ie>
<oe>latini</oe>

</doGoogleSearch>

</soapil:Body>
</soap11:Envelope>

'mhuﬁmgﬂwwsaﬁnmmrmquMLdmmmemfmnnheW3CﬂmJVemownmeﬁmtmwuonWto
simplify the output:

<?xml version='1.0"' encoding="UTF-8'?>
<soap11:Envelope
xmlns="urn:GoogleSearch"
xmlns:google="urn:GoogleSearch"
xmlns: soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/">
<so0ap11:Body>
<doGoogleSearchResponse>
<return>
<documentFiltering>false</documentFiltering>
<estimatedTotalResultsCount>3</estimatedTotalResultsCount>
<directoryCategories soapenc:arrayType=
"google:DirectoryCategory[0]">
</directoryCategories>
<searchTime>0.194871</searchTime>
<resultElements soapenc:arrayType="google:ResultElement[3]">
<item>
<cachedSize>12k</cachedSize>
<hostName></hostName>
<snippet>Snippet for the first result would appear here
</snippet>
<directoryCategory>
<specialEncoding></specialEncoding>
<fullViewableNamey</fullViewableName>
</directoryCategory>
<relatedInformationPresent>true</relatedInformationPresent>
<directoryTitle></directoryTitle>
<summary></summary>
<URL>http://hci.stanford.edu/cs147/examples/shrdlu/</URL>
<title>SHRDLU</title>
</item>
</resultElements>
<endIndex>3</endIndex>
<searchTips></searchTips>
<searchComments></searchComments>
¢startIndex>1</startIndex>
<estimateIsExact>true</estimateIsExact>

Facebook's Exhibit No. 1005
Page 00105

Page 105 of 140

GOOGLE EXHIBIT 1005

XML DOCUMENTS

<searchQuery>shrdlu winograd maclisp teletype</searchQuery>
</return>
</doGoogleSearchResponse>
</soap11:Body>
</soap11:Envelope>

we'll look more closely at using Flash to generate SOAP requests later in the book.

You can use the data-binding capabilities in Flash to display the results from the web service. The
downside to creating a SOAP request using Flash is that you have to include your key as a parameter
in the movie. This is not really a very secure option.

For security reasons, you often can’'t query a web service using a REST request within Flash. You need
some kind of server-side interaction to make the request and pass the results into Flash. You can also
use Flash Remoting to work with web services.

REST is a useful tool for Flash developers. As part of its security restrictions, recent Flash players will
only let you run SOAP requests on a web service that contains a cross-domain policy file specifying
your address. You can imagine that Amazon isn't going to do this for every Flash developer in the
world! REST requests are a good workaround; you can use a server-side language to work with the
information locally or proxy the information. Again, we'll cover this in more detail in Chapter 9.

Transforming XML content

Keeping XML content separate from its presentation allows you to apply many different looks to the
same information. It lets you present the XML data on different devices. The requirements for dis-
playing an XML document on a website are likely to be very different from those for printing it out or
displaying it on a mobile telephone, even though the data will be the same.

Transformations are a powerful way to change the presentation of your data. Transforming means dis-
playing, sorting, filtering, and printing the information contained within an XML document. You can
use Cascading Style Sheets (CSS) to change the way your XML elements display in a web browser. XSL
transformations allow you to change the display as well as include more advanced options such as
sorting and filtering.

CsSs

An easy way to transform the visual appearance of XML documents is by using CSS. CSS is a recommen-
dation from the W3C. You can find out more at www.w3c.org/Style/CSS/.

CSS and XML work together in much the same way as CSS and HTML. You can use CSS to redefine the
way XML tags display in a web browser. You include a reference to an external style sheet by adding a
processing instruction below your XML declaration:

<?xml version="1.0"?>
<?xml-stylesheet href="styles.css" type="text/css"?>

Facebook's Exhibit No. 1005 91
Page 00106

Page 106 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

This is much the same as the HTML instruction:
<link href="styles.css" rel="style sheet" type="text/css">
As with HTML pages, you can include multiple style sheet links:

<2xml-stylesheet href="globalstyles.css" type="text/css"?>
<7xml-stylesheet href="newsstyles.css” type="text/css"?>
<?xml-stylesheet href="homestyles.css" type="text/css"?>

The style declarations contained with the style sheets change the appearance of the XML elements.
Each style declaration refers to a different element in the XML document. They are the same CSS dec-
larations that you would use in HTML pages, so you can change font characteristics, borders, and
colors for each element.

In addition to the standard style declarations, you need to consider whether the element is a block-
level or inline element. In HTML, tables and headings are block-level elements while is an inline
element. Block-level elements automatically display with white space. In XML, all elements are inline
by default. You'll need to declare block-level elements explicitly using the style declaration display:

block.

This listing shows style declarations from the addressCSS.xml file:

contact {
display: block;
margin: 5px;
{ }
name {
display: block;
font-weight: bold;
font-size: 16px;
color: #0033CC;
font-family: Verdana, Arial, sans-serif;

1 address {
font-weight: normalj;
font-size: 12px;
font-family: Verdana, Arial, sans-serif;
}
phone {
display: block;
font-weight: normal;
font-size: 12px; |
color: #0033CC; |
font-family: Verdana, Arial, sans-serif;

}

The style sheet is saved as styles.css. Note that the file contains a style declaration for every element
in the XML document.

92 Facebook's Exhibit No. 1005
Page 00107

Page 107 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

Figure 3-30 shows the file addressCSS.xml file opened in a web browser. It looks very different from
the raw XML document.

T Tt e P e e e e ——
Hﬁ E-\sip\cliants\FriendsOfEd Flash XML Hookichdd resaurcesiaddrenos yml =r iﬂ‘ Q
1 Ak F Vs Facrdw Tk Helr Th L &
218 0 T s R @ MR @ 5 L [- @Eﬁ 23
sadrzss |3 Br\z phcier te\FdzrdsOtEd\Fas 4L Baok\chO3 rescucesizddreszC33.xm| .L > (53 *
Sas Jacobs
137 7ame Stoeer, Same City, Jnme T ity
132 %56
John Smith
4 Anather streat, Anather City, Anathr CounTy
420 730
@;n‘ii e @:‘Yrj-'l‘llh’l

Figure 3-30. nternet Explorer showing an XML document transformed with CSS

As you can see in this example, | had to specify a style for each of my XML elements. In a large XML
file, this is likely to be time consuming. CSS displays the XML elements in the same order that they
appear in the XML document. | can’t use CSS to change this order of the elements.

The W3C has released a recommendation titled “Associating Style Sheets with XML Documents” at
www.w3.0rg/TR/xml-stylesheet/.

CSS changes the way that an XML file renders in the web browser. It doesn’t offer any of the more
advanced transformations that are available through XSL Transformations (XSLT). CSS may be of
limited value because, unlike HTML pages, XML documents aren’t always designed to be displayed in
a web browser.

Bear in mind also that search engines and screen readers are likely to have difficulty when working
with XML pages displayed with CSS. Search engines use the <title> tag, which isn’t likely to be
present in the same way in most XML documents. Screen readers normally require a system of head-
ings—<h1>, <h2>, and so on—to make sense of content. It will be difficult for people using a screen
reader to make sense of a document that uses nonstandard tag names.

Facebook's Exhibit No. 1005 93

I Page 00108

Page 108 of 140 GOOGLE EXHIBIT 1005

- ™

CHAPTER 3

XSL

Extensible Stylesheet Language (XSL) is another way to change the display of XML documents. XSL
transforms one XML document into another. As XHTML is a type of XML, you can use XSL to transform
XML into an XHTML web page.

XSL is made up of XSLT and XSL-FO (XSL Formatting Objects), and relies heavily on XPath. You can use
XSLT to transform one XML document into another. XSL-FO deals with the formatting of printed doc-
uments, and both use XPath to identify different parts of an XML document. We normally use XSL-FO
for more complex types of printed transformations, so we'll focus on XSLT in this section.

At the time of writing, the XSL version 1 recommendation was available at www.w3.org/TR/2001/
REC-xs1-20011015/. The version 1.1 working draft is at W . W3 . 0rg/TR/2004/WD-x5111-20041216/.
The XSLT version 1 recommendation is at www.w3.0rg/TR/1999/REC-xs1t-19991116, and you'll find
the version 2 working draft at www . w3 . 0rg/ TR/2005/WD-xs1t20-20050211/.

XSLT is much more powerful than CSS; it can convert XML documents into valid XHTML documents
for use by search engines and screen readers. XSLT also filters, sorts, and rearranges data. When work-
ing with XSLT, XPath expressions identify which part of the document to transform.

XPath

You can see the XPath 1.0 recommendation at www.w3.0rg/TR/1999/REC-xpath-19991116. At the time
of writing, the working draft for version 2 was at www. w3 .org/TR/2005/WD-xpath20-20050211/.

XPath expressions provide a path to a specific part of an XML document. In a way, XPath expressions
are similar to file paths. The path to the document root is specified by a single forward slash (/). As we
dig into each element in the source tree, element names are separated by a forward slash, for exam-
ple, /phoneBook or /phoneBook/contact.

This listing shows our simple XML phone book example:

<phoneBook>
<contact id="1"»
<name>Sas Jacobs</name>
caddress>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>
</contact>
<contact id="2"»
<name>John Smith</name>
<address>4 Another Street, Another City, Another Country</address>
<phone>456 789</phone>
</contact>
</phoneBook>

To refer to the <address> elements, use the following path:
/phoneBook/contact/address
In other words, start at <phoneBook>, move to <contact>, and finish at the <address> element. You

can also use references relative to the current location.

94 Facebook's Exhibit No. 1005

Page 00109 .

Page 109 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

Two slashes allow you to start the path anywhere in the XML document. The following code snippet
specifies all <contact> elements, wherever they are located:

//contact

XPath expressions can target a specific element, for example, the first <contact> element.
/phoneBook/contact[1]

You can use the text() function to refer to the text inside an element:
/phoneBook/contact/address/text()

XPath recognizes wildcards, so we can specify all elements in an XML document by using the asterisk
(*) character. This example shows all child elements of <phoneBook>:

/phoneBook/*
You can refer to attributes with the @ symbol, for example, the id attribute of <contact>:
/phoneBook/contact/@id

There is a lot more to the XPath specification than we've covered here, but this will provide a good
starting point for the examples that will follow.

XSLT

Many people use the terms XSL and XSLT interchangeably. An XSLT stylesheet is an XML document
that contains transformation rules to apply to an XML source document. We call the original XML doc-
ument the source tree. The transformed document is the result tree. A style sheet is an XML document
so you use the same rutes for well-formedness.

XSLT style sheets start with a declaration followed by a document root. XSLT documents have a root
element of either <stylesheet> or <transform>. We also need to include a reference to the namespace.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

or

<?xml version="1.0"?>
<xsl:transform version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

It's more common to use <stylesheet> than <transform>. The closing tag in the style sheet will need
to match this declaration.

In the previous examples, the namespace uses the xsl prefix so the elements are written
<xsl:stylesheet> or <xsl:transfoxm>. The code that follows also uses the xs1 prefix as we’re work-
ing in the same namespace.

Facebook's Exhibit No. 1005 95
Page 00110

Page 110 of 140 GOOGLE EXHIBIT 1005

e

CHAPTER 3

Transforming content
XSLT documents can include an <template> and an <output> element. The <template> element
shows how to transform the XML elements:

«<xsl:template match = "Xpath expression">
The attribute match specifies which elements the template should affect.
The <output> element defines the format for the output document:
«xsl:output method="html" version="4.0" indent="yes"/>

We use an XPath expression to target each element or group of elements to be transformed. This list-
ing shows a transformation of the phone book XML document into an HTML document:

«xsl:template match="/">
<html>
<body>
<h1>Phone Book</h1>

<xsl:for-each select="/phoneBook/contact”>
<xsl:value-of select="name" /></1i>
</xsl:for-each>

</body>
</html>
</xsl:template>

In the example, the document root is identified and transformed to create the <html>, <body>, and
 elements. For simplicity, no DTD or <head> section has been included in HTML in this example.

Each contact creates a <1i> element that contains the value of the <name> element.

We can use a for-each statement to work with elements that appear more than once in the XML
source document. It's a way to loop through a collection of elements. The example loops through the
<contacts elements using the XPath expression /phoneBook/contact as the value of the select

attribute.

The value-of statement returns the value of an element so that it can be included with the trans-
formed HTML. In our example, value-of retrieves the value of the <name> element and includes it as
a list item. Because the statement is inside a for-each loop, the <name> element uses a relative refer-
ence. It is a child of the <contact> element.

i've saved the complete style sheet as the resource file 1istStyle.xsl. It's a valid XML document, so
you can display it in a web browser as shown in Figure 3-31.

o6 Facebook's Exhibit No. 1005

Page 00111 : -
~:. - . ;

Page 111 '
o of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

Fie Fill Vew Faviedes Tork Hdp

D W AR Feo s @ne @ ST QDA 3

address i B \oplclents FrisndsOrEd Fasn XML Book\ch03 rescu cesiistStyle ssl (28w i

LXK vrsion ="t 2
atyleshret version "1.0" xcalanixsl "http:/ /www.w3.org /1999 /XSL/ Transfonm' >
xel.template natch-"/">

- <htmi>
- <bocy>
<kl>Phone Book</11>
| - i)
<xsi:lur each selecl="/phoneBook/contact" >
— i
wilivalae-ul solec ~"name” />
i
«/xsl:for-each
<jul>
</o0dy>
< /ktml>

</¥sl:templote >
</xsloslylesteels

Lelm . iy commiter

Figure 3-31. Internet Explorer showing the XSLT file

The following line applies the XSLT style sheet to the source XML document addressXSL.xml. It is
included below the XML declaration:

<?xml-stylesheet type="text/xsl" href="listStyle.xsl"?>

Figure 3-32 shows the source document displayed in Internet Explorer after the transformation.

A R Yew Fauden Tooh Hebr = T3
3 B o ﬂ 2 _v = S2aiun % Favu s o i £ Q%' ; =R @ E "o §
address [Exlepicterts P i2ndsOFEd\Fash XML Book\ChO3 rescu ces\addressXSLaml N 8w 1@

' Phone Book

& Sas Jacabs
e Joln Senth

@“"‘ ,yuyﬁulqnln

Figure 3-32. The transformed XML file in Internet Explorer

Facebook's Exhibit No. 1005 97

. Page 00112

Page 112 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

If you have installed the XML tools for Internet Explorer, you can right click the file and choose View
XSL Output. It will display the XHTML created by the transformation. You can see this in Figure 3-33.
The instructions for downloading the tools are in the section “Using XML information” in Chapter 2.

<html>

<body>

<h1>Prone Book</h1>

<||>Sas Jacoos
 John Smith
<ful>

</body>

</html>

Figure 3-33. The XSL output in Internet Explorer.

Sorting content

You can sort XML documents at the same time that they are transformed. Sorting is only relevant
where you have an element that repeats in the XML document. A sort element is added below a for-
each element:

<xsl:for-each select="/phoneBook/contact">
<xsl:sort select="name"/>

You can specify more than one level of sorting with
<xsl:sort select="name,address,phone"/>
The <sort> element allows for other sorting options, such as ascending or descending order:

<xsl:sort select="name" order="descending"/>

98 Facebook's Exhibit No. 1005
Page 00113

Page 113 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

Filtering content

XSLT transformations can also filter XML documents using XPath expressions. A filter criterion is added
to the select attributes in the for-each statement:

<xsl:for-each select="/phoneBook/contact[name="'Sas Jacobs']">

This XPath expression uses [name="Sas Jacobs'] to specify which contact should be selected. This is
called a predicate. This criterion would only display the contact with a <name> value of Sas Jacobs. You
can also use != (not equal to), &1t; (less than), and 8gt; (greater than) in filter criteria.

Conditional content
The <if> element is used to conditionally include content in the result tree:

<xsl:for-each select="/phoneBook/contact">
<xsl:if test="@id8gt;1">
<xsl:value-of select="name" /></1i>
</xsl:if>
</xsl:for-each>

This example only includes contacts where the id attribute is greater than 1. Notice that | used the

entity > to replace the > sign. This is necessary because using the > sign would indicate that the ele-
ment should be closed.

You can specify alternative treatment for elements using <choose», as shown here:

<xsl:for-each select="/phoneBook/contact">
<xsl:choose>
<xsl:when test="@id>1">
<liy<xsl:value-of select="name" /></1i>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="address" /></1li>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>

This listing uses <when> to test whether the contact attribute id is greater than 1. If so, the value of the
<name> element displays. If not, the <otherwise> element specifies that the value of the <address>
element should display. It's a nonsensical example, but I think you'll get the idea.

An example

XSLT will probably become clearer when we look at another example. I'll use XSLT to transform the
phone book XML document into a table layout. The example will sort the XML document into name
order. Each contact will display in a new row and the name, address, and phone details in a different cell.

Figure 3-34 shows how each XML element maps to XHTML content.

Facebook's Exhibit No. 1005 99
Page 00114

Page 114 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

100

Page 115 of 140

Start HTML document.
Start g table
and add row headings.

phoneBook
Document root

contact
id (attribute)

Start a new row
for each contact.

address phone of a contact,
start a new cell.

rd] For each child element

Figure 3-34. Mapping elements from the source tree to the result tree

In addition, the transformed content will be styled with a CSS style sheet.

I've called the completed XSLT file tableStyle.xs1 (which you'll find in the resource files). The follow-
ing listing shows the style sheet. Note that I've simplified the structure of the final HTML document.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XsL/Transform">
<xsl:template match="/">
<html>
<head>
<title>Phone Book</title>
<link href="tablestyles.css" type="text/css" rel="stylesheet"/>
</head>
<body>
<h1>Phone Book</h1>
<table>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
<xsl:for-each select="/phoneBook/contact">
<xsl:sort select="name" />
<tr>
<tds<xsl:value-of select="name" /></td>
<td class="shading"><xsl:value-of select="address"/></td>
<tdy><xsl:value-of select="phone" /></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Facebook's Exhibit No. 1005
Page 00115

GOOGLE EXHIBIT 1005

XML DOCUMENTS

The style sheet starts with an XML declaration and a style sheet processing instruction. It indicates a
template starting at the root element. The transformation creates the HTML document, a page head,
and a title. It also creates a reference to a CSS style sheet called tablestyles.css. Within the body, a
table with a row of headings is created.

The transformation sorts each <contact> element by name and displays it in a table row. Table cells
are created for the <name>, <address>, and <phone> elements.

The XML document address_tableXSL.xml uses this style sheet. Figure 3-35 shows the transformed
file in Internet Explorer.

T o e A g e — T ——— S — =
6™ Fhons Baok T |a E i
Fie Fll Vew Faode, Took Hep dr

0 ARG s s @nes @ (G L B - P LHE A
-;1!5.1! ;‘.:i_sr*:.._ﬁsrjsO!EdFasE KtL_Baok\d'uOS risw_uez'\éd:re.ité:re)(SL.xm ;' .(;o : %
Phone Dook

[l Name Address
| 2071 Smith 4 Anctacr Strcct, Ancener Cioy, Anctwer Country 456 752
|Seudawin. 128 Sur v Sles SUe L Qhy, Sur L So by 133 45§

gl
Figure 3-35. The transformed XML file in Internet Explorer

48 My Gupuitn

Other methods of applying transformations

You can use JavaScript to apply an XSLT transformation. This is an alternative if you don't want to
include a reference to an XSLT file in your source XML document. For example, you might consider
this if you want the transformations to be browser specific after detecting the browser version.

Javascript can use the XML DOM of a web browser to transform the source tree. For example, in
Internet Explorer, the Microsoft.XMLDOM includes the transformNode method. The following listing
loads the XML source document and XSLT style sheet, and uses JavaScript to apply the transformation:

<script type="text/javascript">
var xmlSourceDoc = new ActiveXObject("Microsoft.XMLDOM");
xmlSourceDoc.async = false;
xmlSourceDoc. load("address_tableXSL.xml");
var xslTransformDoc = new ActiveXObject("Microsoft.XMLDOM");
xs1lTransformDoc.async = false;
xs1TransformDoc.load("tableStyle.xs1");
document.write(xmlSourceDoc.transformNode(xslTransformDoc));
</script>

Facebook's Exhibit No. 1005 101

. Page 00116

Page 116 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

Open the resource file transform.htmin a web browser to see the transformation in action. It looks
just like the previous example, but we achieved the look in a different way.

You can also use languages like PHP, ASP.NET, and ColdFusion to apply a transformation server-side
and deliver formatted XHTML to the web browser.

Determining valid XML

Earlier in this chapter, we worked with Office 2003 documents and converted them to an XML format.
Using a schema allowed us to specify the element names and structures for the documents that we
created. Schemas also helped to determine if data in the XML document was valid.

In this section, we'll create both Document Type Definitions (DTDs) and schemas. Collectively, we call
DTDs and schema document models. Document models provide a template and rules for constructing
XML documents. When a document matches these rules, it is a valid document. Valid documents must
start by being well formed. Then they have to conform to the DTD or schema.

The rules contained in DTDs and schemas usually involve the following:

m Specifying the name of elements and attributes

m Identifying the type of content that can be stored

® Specifying hierarchical relationships between elements
m Stating the order for the elements

® Indicating default values for attributes

Before you create either a DTD or schema, you should be familiar with the information that you're
using and the relationships between different sections of the data. This will allow you to create a use-
ful XML representation. | find it best to work with sample data in an XML document and create the
DTD or schema once I'm sure that the structure of the document meets my needs.

It's good practice to create a DTD or schema when you create multiple XML documents with the same
structure. Document models are also useful where more than one author has to create the same or
similar XML documents. Finally, if you need to use XML documents with other software, there may be
a requirement to produce a DTD or schema so that the data translates correctly.

If you're writing a one-off XML document with element structures that you'll never use again, it’s
probably overkill to create a document model. It will certainly be quicker for you to create the ele-
‘ ments as you need them and make changes as required without worrying about documentation.

Comparing DTDs and schemas

The DTD specification is older than XML schemas. In fact, DTDs predate XML documents and have
their roots in Standard Generalized Markup Language (SGML). Because the specification is much older
than XML, it doesn’t use an XML structure.

On the other hand, schemas use XML to provide descriptions of the document rules. This means that
it's possible to use an XML editor to check whether a schema is a well-formed document. You don’t
have this kind of checking ability with DTDs.

102 Facebook's Exhibit No. 1005
Page 00117

Page 117 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

Schemas provide many more options for specifying the type of data for elements and attributes than
DTDs. You can choose from 44 built-in datatypes so, for example, you can specify whether an element
contains a string, datetime, or Boolean value. You can also add restrictions to specify a range of values,
for example, numbers greater than 500. If the built-in types don't meet your needs, you can create
your own datatypes and inherit details from existing datatypes.

The datatype support within XML schemas gives you the ability to be very specific in your specifications.
You can include much more detail about elements and attributes than is possible in a DTD. Schemas
can apply more rigorous error checking than DTDs.

Schemas also support namespaces. Namespaces allow you to identify elements from different sources
by providing a unique identifier. This means that you can include multiple schemas in an XML
document and reuse a single schema in multiple XML documents. Organizations are likely to work with
the same kinds of data, so being able to reuse schema definitions is an important advantage when
working with schemas.

One common criticism of XML documents is that they are verbose. As XML documents, the same crit-
icism could be leveled at schemas. When compared with DTDs, XML schemas tend to be much longer.
It often takes several lines to achieve something that you could declare in a single line within a DTD.

Table 3-1 shows the main differences between DTDs and schemas.

Table 3-1. The main differences between DTDs and schemas

DTDs XML Schema

Non-XML syntax. XML syntax.

DTD can't be parsed. XSD document can be parsed.

No support for data typing. Datatypes can be specified and custom datatypes created.
DTDs can't inherit from one another. Schemas support inheritance.

No support for namespaces. Support for namespaces.

One DTD for each XML document. Multiple schema documents can be used.

Less content. More content.

Document Type Definitions

A DTD defines an XML document by providing a list of elements that are legal within that document.
It also specifies where the elements must appear in the document as well as the number of times the
element should appear.

You create or reference a DTD with a DOCTYPE declaration; you've probably seen these at the top of XHTML
and HTML documents. A DTD can either be stored within an XML document or in an external DTD file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
“http://www.w3.0rg/TR/xhtml-basic/xhtml-basic10.dtd">

Facebook's Exhibit No. 1005 103

I Page 00118

Page 118 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3 | |

The simplest DOCTYPE declaration includes only a reference to the root element of the document:
<IDOCTYPE phoneBook>

This declaration can also include other declarations, a reference to an external file, or both. DTD dec-
larations are listed under the XML declaration:

<?xml version="1.0"?>
<IDOCTYPE documentRoot [element declarations]>

All internal declarations are contained in a DOCTYPE declaration at the top of the XML document. This
includes information about the elements and attributes in the document. The element declarations
can be on different lines:

<IDOCTYPE documentRoot [
<!ELEMENT declaration 1>
<|ELEMENT declaration 2>

>

External file references point to declarations saved in files with the extension .dtd. They are useful if
you are working with multiple documents that have the same rules. External DTD references are
included in an XML document with

<IDOCTYPE documentRoot SYSTEM "file.dtd">
DTDs contain declarations for elements, attributes, and entities.
Elements
You declare an element in the following way:
<VELEMENT elementName (elementContents)>
Make sure that you use the same case for the element name in both the declaration and XML document.
Elements that are empty—that is, that don't have any content—use the word EMPTY:
¢VELEMENT elementName (EMPTY)>

Child elements appear in a list after the parent element name. The order within the DTD indicates the
order for the elements in the XML document:

<VELEMENT elementName (child1, child2, child3)>

Elements can also include modifiers to indicate how often they should appear in the XML document.
Children that appear once or more use a plus + sign as a modifier:

<VELEMENT elementName (childName+)>
The pipe character (|) indicates a choice of elements. It's like including the word or.

<IELEMENT elementName (child1|child2)> ‘

104 Facebook's Exhibit No. 1005 ‘

Page 00119 . ‘

Page 119 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

You can combine a choice with other elements by using brackets to group elements together:

<IELEMENT elementName ((child1|child2),child3)>
<!ELEMENT elementName (child1, child2|(child3,child4))>

Optional child elements are shown with an asterisk. This means they can appear any number of times
or not at all.

<IELEMENT elementName (childName*)>
A question mark (?) indicates child elements that are optional but that can appear a maximum of once:
<IELEMENT elementName (childName?)>
Elements that contain character data include CDATA as content:
<|ELEMENT elementName (#CDATA)>
You can also use the word ANY to indicate that any type of data is acceptable:
<!ELEMENT elementName (ANY)>
The element declarations can be quite complicated. For example:
<!ELEMENT elementName ((child1|child2|child3),child4+,childs*,#CDATA)>

This declaration means that the element called elementName contains character data. It includes a
choice between the childi, child2, or child3 elements, followed by child4, which can appear once
or more. The element childs is optional.

Table 3-2 provides an overview of the symbols used in element declarations.

Table 3-2. An explanation of the symbols used in element declarations within DTDs

Symbol Explanation

Specifies the order of child elements.
+ Signifies that an element has to appear at least once, i.e., one or more times.
| Allows a choice between elements.
0 Marks content as a group.

* Specifies that the element is optional and can appear any number of times,
i.e., 0 or more times.

? Specifies that the element is optional, but if it is present, it can only appear
once, i.e,, 0 or 1 times.

No symbol indicates that element must appear exactly once.

Facebook's Exhibit No. 1005 105

I Page 00120

Page 120 of 140 GOOGLE EXHIBIT 1005

e

CHAPTER 3

Attributes

Attributes declarations come after the elements. Their declarations are a little more complicated:
CIATTLIST elementName attributeName attributeType defaultValue>

The elementName is the element that includes this attribute. Table 3-3 shows the main values for
attributeType.

Table 3-3. The main attributeType values

Attribute Type Comments
CDATA Character data
ID A unique identifier
IDREF The id of another element
IDREFS A list of ids from other elements
NMTOKEN A valid XML name, i.e., doesn’t start with a number and has no spaces
NMTOKENS A list of valid XML names
ENTITY ‘An entity name
| ENTITIES A list of entity names
l LIST A list of specific values, e.g., (red | blue | green)

Most commonly, attributes are of the type CDATA.

The defaultvalue indicates a default value for the element. In the following example, the XML ele-
‘ ment <address» will have an <addressType> attribute with a default value of home. In other words, if
the attribute isn’t included in the XML document, a value of home will be assumed.

¢IATTLIST address addressType CDATA "home">
Using #REQUIRED will force a value to be set for the attribute in the XML document:
CIATTLIST address addressType CDATA H#REQUIRED>

| You can use #IMPLIED if the attribute is optional:

¢IATTLIST address addressType CDATA #IMPLIED>
If you always want to use the same value for an attribute and don’t want it to be overridden, use #FIXED:

CIATTLIST address addressType CDATA #FIXED "home" >

Facebook's Exhibit No. 1005

106
. Page 00121 .

Page 121
ge of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

You can also specify a range of acceptable values separated by a pipe character |:
<IATTLIST address addressType (home|work|mailing) "home">
You can declare all attributes of a single element at the same time within the same ATTLIST declaration:

<IATTLIST address
addressType (home|postal|work) #REQUIRED
addressID CDATA #IMPLIED
addressDefault (true|false) "true">

The declaration lists a required addressType attribute, which has to have a value of home, postal, or
work. The addressID is a CDATA type and is optional. The final attribute, addressDefault, can have a
value of either true or false with the default value being true.

You can also declare attributes separately:

<!ATTLIST address addressType (home|postal|work) #REQUIRED>
<IATTLIST address addressID CDATA #IMPLIED >
<IATTLIST address addressDefault (true|false) "true"s

Entities

Entities are a shorthand way to refer to something that you want to use in more than one place or in
more than one XML document. You also use them for specific characters on a keyboard. If you've
worked with HTML, you've probably used entities for nonbreaking spaces (8nbsp;) and the copyright
symbol (©).

You declare an entity as follows:

<IENTITY entityName "entityValue">
Whenever you want to use the value of the entity in an XML document, you can use 8entityName;.
In the following example, I've declared two entities, email and author:

<IENTITY email “"sas@aip.net.au">
<!ENTITY author "Sas Jacobs, AIP">

| could refer to these entities in my XML document using 8email; or &author;. The entities mean
sas@aip.net.au and Sas Jacobs, AIP.

Entities can also reference external content; we call these external entities. They are a little like using
a server-side include file in an HTML document.

<!ENTITY address SYSTEM "addressBlock.xml">

The XML document would use the entity 8&address; to insert the contents from the

K addressBlock.xml file. You could also use a URL like http://www.friendsofed.com/
addressBlock.xml. The advantage here is that you only have to update the entity in a single location
and the value will change throughout the XML document.

Facebook's Exhibit No. 1005 107

. Page 00122 ‘

Page 122 of 140 GOOGLE EXHIBIT 1005

T —
CHAPTER 3 l

A sample DTD
The following listing shows a sample inline DTD. The DTD describes our phone book XML document:

<!DOCTYPE phoneBook[
<!ELEMENT phoneBook (contact+)>
<!ELEMENT contact (name,address,phone)>
<IELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
¢IATTLIST contact id CDATA #REQUIRED>

IE

I've saved the XML document containing these declarations in the resource file addressDTD.xml
Figure 3-36 shows this file validated within XMLSpy.

—— T : —— - e e B B S St e S S —
EAw-mm--laummj:u t: g;;ﬂ

XQ Lk Lt XL DID!schema -'_;:helad-:sg‘\ XolXuery Acthente Mew Lrcwser 100k AUVARCLL Véndow =iy _ & x
iOlEdd RS Eml o o sad]l 3kl
<hrlvnminn="1 0> R

<IDCCTYTE phonsBoak]

<'LLLMLNI prcrelook {confact! i»
<'ELEMENT contzcl (nama,address phone)>
<!Ft FMFNT name (#FCDATA)>
HCOATAY

4'ELEMENT gccres:
<!LLLMLNY phene (8 CDAIA)>
<'ATTLIST contact id CDATA #REQUIRED>

<ngme>Sas Jacobs</name>
<2123 Somie Slreel, Surze Cily, Sume Counl y</uddices>
»123 4hf~iphener
</cortaclt>
<conlact wi-"Z2">
<rgiiedulin Siith=igng=
= 3s>4 Anather Streel, Anather Gity, Annther Gonntry<raddrasss
<phene»453 709</phrre>
</cerlact> |
<fplwnwBuuk |

T Te ek all = = |
&) e

| vexd | Speammyiran Awhe-hn Browaer
Dladdressnin.xml

CMLSDy V2015502 U Rogisterad to s Jacobs (aIr) (1298 2005 Aeva GmbH & Atov:, InC nLCod NUM

Figure 3-36. The file addressDTD.xml contains an inline DTD, which can be used to validate the contents in
XMLSpy.

The file addressEDTD.xml refers to the same declarations in the external DTD. If you open the
resource file phoneBook . dtd you'll see that it doesn’t include a DOCTYPE declaration at the top of the

file. This listing shows the content:

<!ELEMENT phoneBook (contact+)> |
<IELEMENT contact (name,address,phone)>

<IELEMENT name (H#PCDATA)>

<JELEMENT address (#PCDATA)>

108 Facebook's Exhibit No. 1005
Page 00123

Page 123 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

<!ELEMENT phone (#PCDATA)>
<IATTLIST contact id CDATA #REQUIRED>

This DTD declares the root element phoneBook. The root element can contain a single element
contact, which can appear one or more times. The contact element contains three elements—name,
address, and phone—each of which must appear exactly once. The data in these elements is of type
PCDATA or parsed character data.

The DTD includes a declaration for the attribute id within the contact element. The type is CDATA,
and it is a required attribute.

Designing DTDs can be a tricky process, so you will probably find it easier if you organize your decla-
rations carefully. You can add extra lines and spaces so that the DTD is easy to read.

XML schemas

An XML schema is an XML document that lists the rules for other XML documents. It defines the way
elements and attributes are structured, the order of elements, and the datatypes used for elements
and attributes.

A schema has the same role as a DTD. It determines the rules for valid XML documents. Unlike DTDs,
however, you don't have to learn new syntax to create schemas because they are another example of
an XML document. Schemas are popular for this reason. Some people find it strange that DTDs use a
non-XML approach to define XML document structure.

At the time of writing, the current recommendation for XML schemas was at
www.w3.0rg/TR/2004/REC-xmlschema-1-20041028/. You'll find the Datatypes section of the recom-
mendation at www.w3.0rg/TR/2004/REC-xmlschema-2-20041028/. The working drafts for XML
Schema version 1.1 are at www.w3.org/TR/2005/WD-xmlschemal1-1-20050224/ and www.w3.org/
TR/2005/WD-xmlschemal1-2-20050224/.

Schemas offer several advantages over DTDs. Because schemas can inherit from each other, you can
reuse them with different document groups. It's easier to use XML documents created from databases
with schemas because they recognize different datatypes. You write schemas in XML so you can use
the same tools that you use for your other XML documents.

You can embed a schema within an XML document or store it within an external XML file saved with
an .xsd extension. In most cases, it's better to store the schema information externally so you'll be
able to reuse it with other XML documents that follow the same format.

An external schema starts with an optional XML declaration followed by a <schema> element, which is
the document root. The <schema> element contains a reference to the default namespace. The xmlns
declaration shows that all elements and datatypes come from the namespace http://www.w3.org/
2001/XMLSchema. In my declaration, elements from this namespace should use the prefix xsd.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.01g/2001/XMLSchema">

As with a DTD, a schema describes the document model for an XML document. This can consist of
declarations about elements and attributes and about datatypes. The order of the declarations in the
XSD document doesn’t matter.

Facebook's Exhibit No. 1005 109

I Page 00124

Page 124 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

You declare elements as either simpleType or complexType. They can also have empty, simple, com-
plex, or mixed content. Elements that have attributes are automatically complexType elements.
Elements that only include text are simpleType.

I've included a sample schema document called addressSchema.xsd with your resources to illustrate
some of the concepts in this section. You'll probably want to have it open as you refer to the exam-
ples that follow. You can see the complete schema at the end of this section.

In the sample schema, you'll notice that the prefix xsd is used in front of all elements. This is because
I've referred to the namespace with the xsd prefix, that is, xmlns:xsd=http://www.w3.01g/2001/
XMLSchema. Everything included from this namespace will be prefixed in the same way.

Simple types

Simple type elements contain text only and have no attributes or child elements. In other words,
simple elements contain character data. The text included in a simple element can be of any datatype.
You can define simple element as follows:

<xsd:element name="elementName" type="elementType"/> |

In our phone book XML document, the <name>, <address>, and <phone> elements are simple type ele-
ments. The definitions in the XSD schema document show this: I

<xsd:element name="name" type="xsd:string"/> |
<xsd:element name="address" type="xsd:string"/> ‘
<xsd:element name="phone" type="xsd:string"/>

There are 44 built-in simple types in the W3C Schema Recommendation. You can find out more about
these types at www.w3.o0rg/TR/xmlschema-2/. Common simple types include string, integer, float,
decimal, date, time, ID, and boolean.

Attributes are also simple type elements and are defined with

<xsd:attribute name="attributeName" type="elementType"/>
All attributes are optional unless their use attribute is set to required:
¢<xsd:attribute name="attributeName" type="elementType" use="required"/>
The id attribute in the <contact> element is an example of a required attribute:
<xsd:attribute name="id" type="xsd:integer" use="required"/>

A default or fixed value can be set for simple elements by using

<xsd:attribute name="attributeName" type="elementType"
default="defaultValue"/>

or

<xsd:attribute name="attributeName" type="elementType" fixed="fixedValue"/>

110 Facebook's Exhibit No. 1005

. Page 00125 IJ

Page 125 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

You can't change the value of a simple type element that has a fixed value.

Complex types

Complex type elements include attributes and/or child elements. In fact, any time an element has one
or more attributes it is automatically a complex type element. The <contact> element is an example
of a complex type element.

Complex type elements have different content types, as shown in Table 3-4.

Table 3-4. Complex content types

Content Explanation Example

Empty Element has no content. <recipe id="1234"/>

Simple Element contains only text. <recipe id="1234">Omelette</recipe>

Complex Element contains only child <recipe><food>Eggs</food></recipes>
elements.

Mixed Element contains child <recipe>Omelette<food>Eggs</food></recipe>

elements and text.

It's a little confusing. An element can have a complex type with simple content, or it can be a complex
t type element with empty content. I'll go through these alternatives next.

A complex type element with empty content such as
<recipe id="1234"/>
is defined in a schema with

<xsd:element name="recipe">
<xsd:complexType>
<xsd:attribute name="id" type="xsd:positiveInteger"/>
</xsd:complexType>
</xsd:element>

The <recipe> element is a complexType but only contains an attribute. In the example, the attribute is
declared. We could also use a ref attribute to refer to an attribute that is already declared elsewhere
within the schema.

A complex type element with simple content like
<recipe id="1234">

Omelette
</recipe>

Facebook's Exhibit No. 1005 111

I Page 00126

Page 126 of 140 GOOGLE EXHIBIT 1005

e

CHAPTER 3

1

1

is declared in the following way:

2

<xsd:element name="recipe">
<xsd:complexType>
<xsd:simpleContent>
(xsd:extension base="xsd:string">

¢<xsd:attribute name="1id" type="xsd:positiveInteger"/>

</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>

in other words, the complex element called <
content has a base type of string. The e
positivelnteger.

Complex types have content that is either a sequence, a list, or

either <sequence», <all>, or <c
of the <sequence>, <all, or <choice> elements.

A complex type element with complex content such as

<recipe>

<food>

Eggs
</food>
</recipe>

is declared as follows:

«xsd:element name="recipe">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="food"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

A complex type element with mixed content such as

<recipe>
Omelette
<food>
Eggs
</food>
</recipe>

is defined with

«xsd:element name="recipe">
«xsd:complexType mixed="true">

recipe> has a complex type but simple content. The
lement includes an attribute called id that is a

a choice of elements. You must use
hoice> to enclose your child elements. Attributes are defined outside

Facebook's Exhibit No. 1005

I Page 00127 .

Page 127 of 140

GOOGLE EXHIBIT 1005

XML DOCUMENTS

<xsd:sequence>
<xsd:element name="food" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

The mixed attribute is set to true so that the <recipe> element can contain a mixture of both child
elements and text or character data.

If an element has children, the declaration needs to specify the names of the child elements, the order
in which they appear, and the number of times that they can be included.

Ordering child elements
The sequence element specifies the order of child elements:

<xsd:element name="elementName">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="childElement1" type="xsd:string"/>
<xsd:element name="childElement2" type="xsd:string"/>
<xsd:element name="childElement3" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

You can replace sequence with all where child elements can be written in any order but each child
element must appear only once:

<xsd:all>
<xsd:element name="childElement1" type="xsd:string"/>
<xsd:element name="childElement2" type="xsd:string"/>
<xsd:element name="childElement3" type="xsd:string"/>
</xsd:all>

The element choice indicates that only one of the child elements should be included from the group:

<xsd:choice>
<xsd:element name="childElement1" type="xsd:string"/>
<xsd:element name="childElement2" type="xsd:string"/>
</xsd:choice>

Element occurrences

The number of times an element appears within another can be set with the minOccurs and
maxOccurs attributes:

<xsd:element name="food" type="xsd:string" minOccurs="0"
maxOccurs="1"/>

Facebook's Exhibit No. 1005 113

I Page 00128

Page 128 of 140 GOOGLE EXHIBIT 1005

e

CHAPTER 3

in the previous example, the element is optional but if it is present, it must appear only once. You can
use the value unbounded to specify an unlimited number of occurrences:

«xsd:element name="food" type="xsd:string" minOccurs="0"
maxOccurs="unbounded" />

When neither of these attributes is present, the element must appear exactly once.

Creating undefined content
If you're not sure about the structure of a complex element, you can specify any content:

¢<xsd:element name="elementName">
<xsd:complexType>
<xsd:any minOccurs="0" />
</xsd:complexType>
</xsd:element>

The author of an XML document that uses this schema will be able to create an optional child element.
You can also use the element anyAttribute to add attributes to an element:

<xsd:element name="elementName">
<xsd:complexType>
«<xsd:element name="childElement" type="xsd:string"/>
<xsd:anyAttribute />
</xsd:complexType>
</xsd:element>

Annotations

You can use annotations to describe your schemas. An <annotation> element contains a
<documentation> element that encloses the description. You can add annotations anywhere, but it's
often helpful to include them underneath an element declaration:

«xsd:element name="recipe">
<xsd:annotation>
«xsd:documentation>
A description about the element
</xsd:documentation>
</xsd:annotation>
. more declarations
</xsd:element>

Including a schema

You can include a schema in an XML document by referencing it in the document root. Schemas
always include a reference to the XMLSchema namespace. Optionally, they may include a reference to
a target namespace.

<phoneBook xmlns:xsi:"http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation:"addressSchema.xsd">

114 Facebook's Exhibit No. 1005
Page 00129

Page 129 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

The reference uses noNamespaceSchemalocation because the schema document doesn't have a target
namespace.

An example

The topic of schemas is very complicated. There are other areas that | haven't discussed in this chap-
ter. An example that relates to the phone book XML document should make things a little clearer.

This listing shows the complete schema from the resource file addressSchema. xsd:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="phoneBook">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="contact" minOccurs="1"
maxOccurs="unbounded"/>
</xsd:sequencey
</xsd:complexType>
</xsd:element>
<xsd:element name="contact">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="address" type="xsd:string"/>
<xsd:element name="phone" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer" use="required"/»
</xsd:complexType>
</xsd:element>
</xsd:schema>

The schema starts by declaring itself as an XML document and referring to the
http://www.w3.0rg/2001/XMLSchema namespace. The first element defined is <phoneBook>. This is a
complexType element that contains one or more <contact> elements. The attribute ref indicates that
I've defined <contact> elsewhere in the document.

The <contact> element contains the simple elements <name>, <address>, and <phone> in that order.
Each child element of <contact> can appear only once and is of type string. The <contact> element
also contains a required attribute called id that is an integer type.

The schema is saved as resource file addressSchema.xsd. The XML file that references this schema is
addressSchema.xml. You can open the XML file in XMLSpy or another validating XML editor and vali-
date it against the schema.

We haven't covered everything there is to know about XML schemas in this section, but there should
be enough to get you started.

Facebook's Exhibit No. 1005 115

I Page 00130

Page 130 of 140 GOOGLE EXHIBIT 1005

e —

CHAPTER 3

XML documents and Flash

116

Page 131 of 140

Flash can use XML documents from any source providing that they are well formed. The most straight-
forward method is to use a file saved with an .xml extension. This document can be something that
you've written in NotePad, SimpleText, or XMLSpy. It can also be an Office 2003 document, perhaps
from a Word template or Excel spreadsheet.

Flash can also consume XML documents provided by web services. You can do this either by using data
components or by writing ActionScript. Your Flash movie can display parts of the XML document, per-
haps by binding it to a Ul component such as the DataGrid.

You can also use a server-side file to consume a web service using REST. The server-side file accesses a
URL and receives the XML content. The file can then provide the XML document to Flash.

in Flash version 5, a measurable speed difference was caused by different XML document structures.
Information in attributes parsed more quickly than information contained in elements. As a result,
early XML documents created for Flash used attributes quite a bit. I'm not sure if there is still a notice-
able speed difference with later Flash players.

One useful piece of advice that | can give you is that if you're going to write ActionScript to work with
XML, it will really benefit you to keep the element structures in your XML document as simple as
possible. Try to avoid deeply nested elements as the document will be much harder to process than if
you use flatter structures.

Creating an XML document

1'd like to finish this chapter by creating an XML document from scratch. We'll also create a schema for
the document so that we can update it in Office 2003 later.

I'll work through some of the decisions that we'll need to consider when creating our XML document.
For this example, you can use either a text editor or an XML editor like XMLSpy. I've used XMLSpy as
you'll see from my screenshots.

Wwe'll be creating an XML document to describe photographs for an XML photo gallery that we'll cre-
ate in Chapter 4. The photos that we’re going to use are stored with the resource files in the photos
folder. To make things easier, they are all landscape photos that are exactly the same width and height.
In case you're interested, they're all photos that I've taken during my travels.

Our task is to design an XML document that will store information about these photos. We'll need to
store the file name of the photo, a caption, and a description. If you look at the photo names, you'll
see that they all have a two-letter prefix indicating where they were taken. There are photos from
Australia, Europe, the United Kingdom, the United States, and South Africa.

You can see a working example of this photo gallery at www. sasjacobs. com. Click the photo gallery
link on the home page. The online example uses transitions between each photo.

Before we start typing, let's consider the relationships between the pieces of data that we're going to
store. The photo gallery contains many photos. Each photo comes from an area or location, and more
than one photo can be associated with an area.

Figure 3-37 shows the relationships that we'll need to capture in our XML document.

Facebook's Exhibit No. 1005
Page 00131

GOOGLE EXHIBIT 1005

XML DOCUMENTS

Photo gallery

—_ 1
(File name) iDescriptionJ (File name) | (Description)

(Caption (_ Caption)
(Photo) (Photo)
— |

—_ 1 — T —1
(File name) | (Description) (File name) | (Description)

(Caption) (_ Caption)

Figure 3-37. The data structure for the photo gallery

Let’s start at the top and work down. We’'ll need to begin with an XML declaration. Actually, Flash
doesn’t need this, but it’s a good habit for you to get into.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

All of the information in this XML document is contained inside the photo gallery, so we’ll use that for
the document root:

<photoGallery></photoGallery>

The photo gallery has multiple locations for the photos. Each location has its own name. I'll create an
element with an attribute for the location name. This listing shows the XML document with the list of
locations—Australia, Europe, the United Kingdom, the United States, and South Africa:

. <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

[<photoGallery>

| <location locationName="Australia"></location>
<location locationName = "Europe"></location>
<location locationName = "South Africa"></location>

' <location locationName = "UK"></location>
<location locationName = "US"></location>

</photoGallery>

> You'll notice that | called the attribute locationName instead of just name. There’s nothing wrong with
using the word name; it's just not very specific and could easily refer to other elements. More impor-
tantly, name is often a reserved word in programming languages. Even though Flash will probably let us
use the word name, it may color it incorrectly in the Actions panel.

Facebook's Exhibit No. 1005 117
Page 00132

Page 132 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

Each <locations contains one or more photos, so we'll include child <photo> elements in each
<locationy. Using one of the <location> elements as an example, the XML document fragment looks
like this:

<location locationName="Australia">
<photo></photo>
<photo></photo>

</location>

Each photo has a single file name, caption, and description. Here’s where we have a choice to make.
Photos have two characteristics as well as a text description. We can either enter these as attributes
within the <photo> element, as child elements, or as a mixture of both. Here are some of the choices
for structuring the XML document:

<photo>
<filename></filename>
<caption></caption
<description></description>
</photo>

or
<photo filename="xxx" caption="yyy" description="zzz"/>
or

<photo filename="xxx" caption="yyy">
Text displayed inside the photo element
</photo>

All of these choices are valid structures for the XML documents; however, the implications of each will
be different.

The first choice, where all elements are child elements of <photo>, creates a clearly defined hierarchy
in our elements. In the schema, we can specify the datatypes for each element as well as the order in
which the elements are to appear. Actually, the order probably doesn’t really matter. What is important
is that there is only one occurrence of each element.

However, the first option creates a structure that nests more deeply than either of the other two
examples. This means we'll need a little extra code to display the data within Flash.

The second option isn’t too bad, but the description could be a problem. We'll probably want to enter
quite a tong description for some photos, and this might make the attribute difficult to read. We may
also want to add some basic HTML tags for display within Flash, and we can’t do that inside an attribute.

| favor the third option. Logically, the file name and caption are attributes of a <photo> element.
Placing the text description inside the <photo> element allows us to enclose it within a CDATA decla-
ration to preserve any HTML tags. There are no child elements within the <photo> element, which
means it will be easier to process this document within Flash.

G Facebook's Exhibit No. 1005 ‘
Page 00133

e S |

Page 133 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

This listing shows the completed <location> element for the photographs of the United States:

<location locationName = "US">
<photo filename="us-grandcanyon.jpg"” caption="The Grand Canyon">
<![CDATA[Flying through the Grand Canyon in a helicopter
was an amazing experience.]]>
</photo>
<photo filename="us-timessquare.jpg" caption="Times Square">
<![CDATA[There is no place in the world like Manhattan.]]>
</photo>
</location>

Notice that I've included tags in my description text. I'll be able to display these words as bold
in Flash. | had to include the text as CDATA so that the tags don’t get parsed when the XML
document is loaded.

I've saved the completed XML document as resource file photoGallery.xml. Figure 3-38 shows this
document open in XMLSpy. | checked to see that the document was well formed.

e ===

= = . —=

l@ Altova XMLSpy - [photoGallery xml]
15 e LC-t XML DTD/Schema Schexadssgn XSLXQuey 4.ttentc Mew Crowser Toock ADVARCLD Vdndow [lalo

(D@ EIRAS S RB oo sdh D 3okl e TG R L
sHrnvasinn="1 0" ennoding="1ITF-8" shanda ana= o

<photoGalery> L=t
<Jocation « afisns "Australie™

1ele o ne="4u busselon jog” cupten="Bussclion Joily"=

DATA|TI'E <balongesta/b> wooden ety in the Southern Hemispkers)+

=/

e "au-penbbeliower jpgt
r(")/\]'/\| hePalbetes on the Swean

20 'Perth from Kings Park™ 3
o Jf=

enuma="au-wvater pq" a="Uenfrel Austrae™»
CDnT‘\lTre tlue skizs af ‘b‘ ,entralhu tralia]
</phites

<o at an e ~ "Curcpe”
<phisle u-chitstianshia: py’ ooia="Coponliagan =
={COATA[Christanshavn (0 <hb>Capnnhagen, NDanmark)=
</phote>
“pncte ensme-"au-santonnipa" n="Santorini’ >

‘V[LD,»\TZ«IM/ [svorile <b=Ci ae&i/b> |5|dlld Ji=

< a!ijn:~
\\J\atlm 2 - "South Arnca"s
jole Trigs G banbam pg" clipion="Bain Bsm™
<16 OATA| <h>Bam Ram=/hx £ very gampy adolazeeant alephant ||~
</pnotc> 1
sphele Tenams "za-licns jig’ s "Lians at Kapama"™ RS
. This fie i wal-forred Aessendte can als< vaidate en N _fie a5ers: ds cozumrent bps defivion
)
[Toa | SecemzwWsCL | Aunerss | Browser
%) photoGalery.xml
XMLSpy v2005 52 U Baymwi=d L0 3 Jatols (AP) ($1598-2015 Alleva GiibH & Alovz, Ik 1. Cd1 Hu~

Figure 3-38. The complete file photoGallery.xml displayed in XMLSpy

Facebook's Exhibit No. 1005
Page 00134

119

Page 134 of 140

GOOGLE EXHIBIT 1005

CHAPTER 3

Creating a schema

Nowh%ﬂmen)wmeasmemamrmsXMLdowmerbsﬁﬁwhhwé“nmdanewﬁmcommmng
an XML declaration and a root node that refers to the appropriate namespace:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema“>

</xsd:schema>

Pll need to add declarations, starting with <photoGallery>, the document root of photoCallery.xml.
This is a complexType element because it contains <location> elements. Each <location> element
has to occur at least once and there is no upper limit for the number of repeats.

¢<xsd:element name="photoGallery">
<xsd:complexType>

«xsd:sequence>
¢xsd:element ref="location" minOccurs="1

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

| used ref to refer to the element <locationy as I'll define it in the next block of declarations.

ns an attribute locationName so it is automatically a complexType
contains the child element <photo>.
imited number of times inside the

The <location> element contai
element. The attribute is of string type. The <location> element
This element must occur at least once but can appear an unl

<location> element.

<xsd:element name="location">
<xsd: complexType>
<xsd:sequence>
<xsd:element ref="photo" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

«xsd:attribute name="locationName" type="xsd:string"/>
</xsd:complexType>
</xsd:element>

element. Each <photo> element has two attributes: filename
lement with an attribute is automatically a complexType ele-
is a simpleContent element. The text is string information.

The final block will deal with the <photo>
and caption—and contains only text. Ane
ment, but because it only has text content, it

«xsd:element name="photo">
<xsd:complexType>
<xsd:simpleContent> |
«xsd:extension base="xsd:string">
<xsd:attribute name="filename" type="xsd:string"/>
«xsd:attribute name="caption" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
|

120 Facebook's Exhibit No. 1005 '

I Page 00135 .

Page 1
age 135 of 140 GOOGLE EXHIBIT 1005

XML DOCUMENTS

The following listing shows the complete schema. You can also see it in the resource file
photoGallerySchema. xsd.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="photoGallery">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="location"” minOccurs="1"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="location">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="photo" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="locationName" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="photo">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="filename" type="xsd:string"/>
<xsd:attribute name="caption" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:schema>

There are other ways that | could have arranged the declarations in the schema. For example, instead
of using ref, | could have nested the element declarations within their parent elements. That's often
referred to as a Russian Doll arrangement.

Linking the schema with an XML document

The final job is to link the schema with the photoGallery.xml file by adding a reference in the root
element. I've done this in the resource file photoGallerySchema.xml. The root element in
photoGallerySchema.xml has changed to

<photoGallery xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="photoGallerySchema.xsd">

Figure 3-39 shows the completed file in XMLSpy, validated against the schema.

Facebook's Exhibit No. 1005 121
Page 00136

Page 136 of 140 GOOGLE EXHIBIT 1005

CHAPTER 3

-~ rann=1 11 soding="LITF-5" alanman 3> L |
<phntoGaliery xmins xsi=" hilpuimaw,wd orm/2001/XMLSchema-instance” i yaslamespacess hereloc ancr="photoGallerySchema xsd | il
~ |

|

<gealion Namz—"Auslraia™
<phate Slenaire="a1l husaston jpg’ < #ptien="Risseton Jatty™>
<I[COATA[The longests/b> wooden ety in the Southam liemisphers. 1>

</pholc> 3
<phisle Moo "au-perlibeblower jpy” « sviui="Peidi fronn Kings Paik"> 1 ‘
<I[CNATA[<h>Parth«M> on the Swan River J]»
</photc?
<phcte Tlename-"au-waterpg” apton—' Cenlrel Austraia™
<I[CDATA[The blue skivs ol Cenlisl Ausligiias/>]2

</phntn>
<location>
<ocation coaten = - "burcpe”v
<plicle ignaine="gu-cluistianshigv jpy” Capivi:—"Copsnhidgen™
<I[CHATA[Christanshavn in- Coapznhagen, Nanmark</h> Jj>

“/phowc>
<phcic Tlename-"gu-santorni.|pg" captichi-"Santorini’ >
<I[CDATA[My favorile <U>Gravk=/b> Iskad.]]>
«/phato>
“<flocalion>
<jocation coat 2 — "South Arnca'>
<plicle T za-Daamnban_jpy” caplion=' 8am Ben®™>
<ICDATA[<h>Ram Ram=/h> a very gnimpy adninseaent clophant 1> r

“fphale> e

(; inevew g
«\‘/) l LR i
| Tex Sc-emzVISCL Ald__e'i: Browser

TiphotoGaberySchems xml o
AWLSpy v2075 52 U Ragistarsd bo Sas Jacobs (ALF] (1298-2007 Atova Gmbl | & Atova, Inc Ln1 Coll v

| Figure 3-39. The complete file photoGallerySchema.xml displayed in XMLSpy

Summary

| In this chapter, you looked at the different ways that you could create XML content. | covered the use
‘ of XMLSpy, Office 2003, and the role of server-side documents in generating XML. | also gave you a
brief introduction to XPath, XSL transformations, DTDs, and XML schemas. We finished by creating an
XML document and schema.

That's it for the theory behind XML documents. The rest of the book will focus on using Flash with XML
documents. In Chapter 4, I'll look at the XML class and we'll create a photo gallery and MP3 player
driven by XML data. Later in the book, we'll cover the data components that are included with Flash.

122 Facebook's Exhibit No. 1005
Page 00137

Page 137 of 140 GOOGLE EXHIBIT 1005

Facebook's Exhibit No. 1005
Page 00138

Page 138 of 140 GOOGLE EXHIBIT 1005

Facebook's Exhibit No. 1005
Page 00139

Page 139 of 140 GOOGLE EXHIBIT 1005

MP3 player . LIBHARY OF CONGRE

== = 1 \\' Il

e Urtsne et g

e et 001 3 842 4 492

In this book, you’ll learn how to: Also Available
Add XML content to Flash applications with the XML class

Use data components to import XML documents and bind data
to user interface components

Work with web services and display their results within Flash
Generate XML content from Word. Excel, and Access 2003
Build simple Flash XML applications.

Foundation XML for Flash

ML is an important technology that allows people and applications to share data in

self-describing documents. Many software packages support XML data exchange.
and most major databases can share information using XML. Therefore, an Extending
understanding of XML is essential for anyone working in web development. Flash MX 2004

And this includes Flash! You can load external XML data and include it within your
Flash movies, and also send XML content from Flash to other applications. You can
harness the multimedia capabilities of Flash in a flexible XML framework to create
visually appealing and usable rich Internet applications.

In this book, Sas Jacobs shows you how. She first introduces XML and related
technologies, and then covers the different ways that Flash can work with XML
content, inctuding the XML class, data components, XML sockets, and web services.

Throughout the book, you will build many different fully functional examples,
including an MP3 player, an XML photo gallery, an address book manager, and an
XML-driven chat application. Some of these examples utilize Office 2003 for the PC
and ASP.NET or PHP.

You should read this book if you're a Flash designer or developer and you have a basic
understanding of ActionScript. The book supports Flash 8, but much of the content is

suitable for any version of Flash from 5 up. Whether you're new to XML or ActionScript,
or an experienced Flash developer, Foundation XML for Flash is essential reading.

SHELVING CATEGORY 2

ISBN 1-59059-543-2
“‘ “ 53999
91781590 ’I

892535 5
F acebook's Exhibit No 1005
Page 00140

Page 140 of 140 GOOGLE EXHIBIT 1005

